WorldWideScience

Sample records for prevent undesirable silver

  1. Preventing Undesirable Seismic Behaviour of Infill Walls in Design Process

    Directory of Open Access Journals (Sweden)

    Azadeh Noorifard

    2017-03-01

    Full Text Available Dividing walls are usually considered as non-structural elements, but experiences of past earthquakes show that some buildings designed and constructed by engineers have been damaged during earthquakes because of disregarding the negative effects of walls. Apart from the poor quality of construction and materials, inattention in design process is the main reason for undesirable seismic behaviour of walls.The main aim of this paper is to investigate the measures taken in different stages of architectural and structural design for improving the seismic behaviour of infilled concrete structures. As a general principle, with the further progress of project from basic architectural design to detailed structural design, there is a need to reduce designer authority and increase obligation, furthermore the cost of project increases too. The conclusion of this study implies that, in order to achieve the desirable seismic behaviour of walls, close collaboration between architects and structural engineers is required from the early stages of design. The results of this study are presented in a check list for designing reinforced concrete (RC moment resisting frame and RC shear wall.

  2. Pig herd monitoring and undesirable tripping and stepping prevention

    DEFF Research Database (Denmark)

    Gronskyte, Ruta; Clemmensen, Line Katrine Harder; Hviid, Marchen Sonja

    2015-01-01

    Humane handling and slaughter of livestock are of major concern in modern societies. Monitoring animal wellbeing in slaughterhouses is critical in preventing unnecessary stress and physical damage to livestock, which can also affect the meat quality. The goal of this study is to monitor pig herds...

  3. Guidelines used in Japan to prevent the contamination of feed products with undesirable substances

    Directory of Open Access Journals (Sweden)

    Katsuaki Sugiura

    2011-01-01

    Full Text Available As Japan depends on imports for most ingredients used to manufacture feed products, close co-operation is indispensable between importers and manufacturers of feed and feed ingredients to effectively mitigate the risk associated with feed safety. Guidelines were issued by the Ministry of Agriculture, Forestry and Fisheries (MAFF in March 2008 to prevent feed products from being contaminated with undesirable substances. These guidelines identify the responsibilities of feed ingredient importers, feed manufacturers and distributors, as well as the roles of the MAFF and the Food and Agricultural Materials Inspection Centre.

  4. Topical silver for preventing wound infection

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Vos, Cornelis G.; Ubbink, Dirk T.; Vermeulen, Hester

    2010-01-01

    BACKGROUND: Silver-containing treatments are popular and used in wound treatments to combat a broad spectrum of pathogens, but evidence of their effectiveness in preventing wound infection or promoting healing is lacking. OBJECTIVES: To establish the effects of silver-containing wound dressings and

  5. Potential conflict between TRIPS and GATT concerning parallel importation of drugs and possible solution to prevent undesirable market segmentation.

    Science.gov (United States)

    Lo, Chang-Fa

    2011-01-01

    From international perspective, parallel importation, especially with respect to drugs, has to do with the exhaustion principle in Article 6 of the TRIPS Agreement and the general exception in Article XX of the GATT 1994. Issues concerning the TRIPS Agreement have been constant topics of discussion. However, parallel importation in relation to the general rules of the GATT 1994 as well as to its exceptions provided in Article XX was not seriously discussed. In the view of the paper, there is a conflict between the provisions in these two agreements. The paper explains such conflict and tries to propose a method of interpretation to resolve the conflict between GATT Article XX and TRIPS Article 6 concerning parallel importation for the purpose of reducing the possible undesirable market segmentation in pharmaceutical sector. The method suggested in the paper is a proper application of good faith principle in the Vienna Convention to interpret GATT Article XX, so that there could be some flexibility for those prohibitions of parallel importation which have positive effect on international trade.

  6. Use of Silver in the Prevention and Treatment of Infections: Silver Review

    Science.gov (United States)

    Campbell, Kristin T.; Rosenberger, Laura H.; Sawyer, Robert G.

    2013-01-01

    Abstract Background The use of silver for the treatment of various maladies or to prevent the transmission of infection dates back to at least 4000 b.c.e. Medical applications are documented in the literature throughout the 17th and 18th centuries. The bactericidal activity of silver is well established. Silver nitrate was used topically throughout the 1800s for the treatment of burns, ulcerations, and infected wounds, and although its use declined after World War II and the advent of antibiotics, Fox revitalized its use in the form of silver sulfadiazine in 1968. Method Review of the pertinent English-language literature. Results Since Fox's work, the use of topical silver to reduce bacterial burden and promote healing has been investigated in the setting of chronic wounds and ulcers, post-operative incision dressings, blood and urinary catheter designs, endotracheal tubes, orthopedic devices, vascular prostheses, and the sewing ring of prosthetic heart valves. The beneficial effects of silver in reducing or preventing infection have been seen in the topical treatment of burns and chronic wounds and in its use as a coating for many medical devices. However, silver has been unsuccessful in certain applications, such as the Silzone heart valve. In other settings, such as orthopedic hardware coatings, its benefit remains unproved. Conclusion Silver remains a reasonable addition to the armamentarium against infection and has relatively few side effects. However, one should weigh the benefits of silver-containing products against the known side effects and the other options available for the intended purpose when selecting the most appropriate therapy. PMID:23448590

  7. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    International Nuclear Information System (INIS)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-01-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  8. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism.

    Science.gov (United States)

    Trefry, John C; Wooley, Dawn P

    2013-09-01

    Silver nanoparticles have been shown to inhibit viruses. However, very little is known about the mechanism of antiviral activity. This study tested the hypothesis that 25-nm silver nanoparticles inhibited Vaccinia virus replication by preventing viral entry. Plaque reduction, confocal microscopy, and beta-galactosidase reporter gene assays were used to examine viral attachment and entry in the presence and absence of silver nanoparticles. To explore the mechanism of inhibition, viral entry experiments were conducted with silver nanoparticles and small interfering RNAs designed to silence the gene coding for p21-activated kinase 1, a key mediator of macropinocytosis. The silver nanoparticles caused a 4- to 5-log reduction in viral titer at concentrations that were not toxic to cells. Virus was capable of adsorbing to cells but could not enter cells in the presence of silver nanoparticles. Virus particles that had adsorbed to cells in the presence of silver nanoparticles were found to be infectious upon removal from the cells, indicating lack of direct virucidal effect. The half maximal inhibitory concentration for viral entry in the presence of silver nanoparticles was 27.4+/-3.3 microg/ml. When macropinocytosis was blocked, this inhibition was significantly reduced. Thus, macropinocytosis was required for the full antiviral effect. For the first time, this study points to the novel result that a cellular process involved in viral entry is responsible for the antiviral effects of silver nanoparticles.

  9. Effectiveness of silver diamine fluoride in caries prevention and arrest: a systematic literature review

    OpenAIRE

    Contreras, Violeta; Toro, Milagros J.; Elías-Boneta, Augusto R.; Encarnación-Burgos, Angeliz

    2017-01-01

    This study aimed to evaluate the scientific evidence regarding the effectiveness of silver diamine fluoride (SDF) in preventing and arresting caries in the primary dentition and permanent first molars. A systematic review (SR) was performed by 2 independent reviewers using 3 electronic databases (PubMed, ScienceDirect, and Scopus). The database search employed the following key words: “topical fluorides” AND “children” AND “clinical trials”; “topical fluorides” OR “silver diamine fluoride” AN...

  10. Filtering Undesirable Flows in Networks

    NARCIS (Netherlands)

    Polevoy, G.; Trajanovski, S.; Grosso, P.; de Laat, C.; Gao, X.; Du, H.; Han, M.

    2017-01-01

    We study the problem of fully mitigating the effects of denial of service by filtering the minimum necessary set of the undesirable flows. First, we model this problem and then we concentrate on a subproblem where every good flow has a bottleneck. We prove that unless P=NP, this subproblem is

  11. Undesirable effects after treatment with dermal fillers.

    Science.gov (United States)

    Rodrigues-Barata, Ana Rita; Camacho-Martínez, Francisco M

    2013-04-01

    Soft tissue augmentation is one of the most frequent techniques in cosmetic dermatology. Nowadays, there are a high number of available materials. Nonanimal hyaluronic acid (HA) is one of most useful fillers for lip augmentation and for treating nasolabial folds, marionette lines, and the dynamic wrinkles of the upper face. To evaluate the type and management of undesirable effects of nonanimal reticulated or stabilized HA observed in our cosmetic unit in the past 3 years. The consecutive patients using HA attending to our clinic in the past 3 years were divided into 3 categories, according to the time of presentation of the adverse reactions: immediate, early, and late-onset complications. All patients were treated. Twenty-three patients presented to our clinic complaining of complications after soft tissue augmentation with HA. Ten patients presented immediate-onset complications, 8 showed early-onset complications, and 5 cases complaint of late-onset complications. Treatment of the first group consisted of hyaluronidase injection, massage, and topical antibiotics. Early- and late-onset complications were treated with intralesional triamcinolone acetonide. All patients improved, with the exception of a woman with recurrent granulomas. Generally, undesirable effects of HA (immediate, early, or late onset) are not frequent, and when present, they improve if treated properly. Physicians need to be aware of these possible adverse events in order to establish proper treatment and prevent scarring or other sequelae.

  12. In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections.

    Science.gov (United States)

    Paladini, Federica; Di Franco, Cinzia; Panico, Angelica; Scamarcio, Gaetano; Sannino, Alessandro; Pollini, Mauro

    2016-05-25

    Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control.

  13. In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections

    Directory of Open Access Journals (Sweden)

    Federica Paladini

    2016-05-01

    Full Text Available Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM and thermo-gravimetric analysis (TGA in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control.

  14. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    Directory of Open Access Journals (Sweden)

    Dhas SP

    2015-10-01

    Full Text Available Sindhu Priya Dhas, Suruthi Anbarasan, Amitava Mukherjee, Natarajan Chandrasekaran Center for Nanobiotechnology, VIT University, Vellore, India Abstract: Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. Keywords: silk fibers, silver nanoparticles, antibacterial activity, wound infections, cytotoxicity, 3T3 fibroblast cells

  15. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection.

    Science.gov (United States)

    Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken

    2016-03-17

    Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.

  16. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection

    Science.gov (United States)

    Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken

    2016-03-01

    Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.

  17. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    Science.gov (United States)

    Dhas, Sindhu Priya; Anbarasan, Suruthi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs) by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. PMID:26491317

  18. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients

    NARCIS (Netherlands)

    Tokmaji, George; Vermeulen, Hester; Müller, Marcella C. A.; Kwakman, Paulus H. S.; Schultz, Marcus J.; Zaat, Sebastian A. J.

    2015-01-01

    Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infections in intubated and mechanically ventilated patients. Endotracheal tubes (ETTs) appear to be an independent risk factor for VAP. Silver-coated ETTs slowly release silver cations. It is these silver ions that appear to

  19. A Case of Undesired Bleb Developed After Penetrating Injury

    Directory of Open Access Journals (Sweden)

    Cem Ozgonul

    2014-03-01

    Full Text Available Eighty-year-old male patient was admitted to our policlinic with stinging, burning and itching in both eyes. Ophthalmological examination revealed avascular undesired bleb that releated with anterior chamber at 2-3 hour quadrant nasal limbus with the surrounding corneal and conjunctival epithelium was vascularized and the dimension was 3x3x3 mm. Towards these findings, we questioned the patient again and we found that, 40 years ago, a broken part of the shaving razor had injured his eye. After penetrating injury of the eye, because of the sutured wound leakage, undesired bleb formations can be seen. We suggest that kind of patient shold be followed up to prevent late complications of penetrating injury.

  20. Cycles of undesirable substances in the food chain

    International Nuclear Information System (INIS)

    2012-01-01

    The working group ''Carry over of undesirable substances in animal feed'' at the Federal Ministry of Food, Agriculture and Forestry (BMELV) in cooperation with the Institute of Animal Nutrition of the Friedrich-Loeffler-Institute (FLI) performed on 27 and 28 October 2011 in Braunschweig a workshop on ''cycles of undesirable substances in Food Chain ''. The aim of the workshop was to present the latest findings of research and Carry over Recommendations of the Carry over - Working Group on undesirable substances in feed and production processes of the feed industry, to evaluate and discuss about this with representatives from science, business and management and to work out the further research and action need. The focus of the considerations were the pathways, the carry over and the Exposure to dioxins and other halogenated hydrocarbons, the effects of Mycotoxins in feed and starting points for preventive measures, the soil contamination and the exposure of humans and animals by cadmium and case studies on Nitrite in feed, antibiotics in plants and residues of pesticides and radionuclides in feed. Furthermore the risks associated with specified manufacturing processes of feed are considered, especially the used materials that come into contact with animal feed, and the risks from nanotechnology. [de

  1. The undesirable effects of neuromuscular blocking drugs

    DEFF Research Database (Denmark)

    Claudius, C; Garvey, L H; Viby-Mogensen, J

    2009-01-01

    Neuromuscular blocking drugs are designed to bind to the nicotinic receptor at the neuromuscular junction. However, they also interact with other acetylcholine receptors in the body. Binding to these receptors causes adverse effects that vary with the specificity for the cholinergic receptor...... in question. Moreover, all neuromuscular blocking drugs may cause hypersensitivity reactions. Often the symptoms are mild and self-limiting but massive histamine release can cause systematic reactions with circulatory and respiratory symptoms and signs. At the end of anaesthesia, no residual effect...... of a neuromuscular blocking drug should be present. However, the huge variability in response to neuromuscular blocking drugs makes it impossible to predict which patient will suffer postoperative residual curarization. This article discusses the undesirable effects of the currently available neuromuscular blocking...

  2. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification

    Directory of Open Access Journals (Sweden)

    Somnath Ghosh

    2011-01-01

    Full Text Available Antibacterial efficacy of silver nanoparticles (Ag NPs deposited alternatively layer by layer (LBL on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES, and atomic force microscopy (AFM were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli, were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.

  3. Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus

    Science.gov (United States)

    Regiel, Anna; Irusta, Silvia; Kyzioł, Agnieszka; Arruebo, Manuel; Santamaria, Jesus

    2013-01-01

    In this work different variables have been analyzed in order to optimize the bactericidal properties of chitosan films loaded with silver nanoparticles. The goal was to achieve complete elimination of antibiotic resistant and biofilm forming strains of Staphylococcus aureus after short contact times. The films were produced by solution casting using chitosan as both a stabilizing and reducing agent for the in situ synthesis of embedded silver nanoparticles. We have applied an innovative approach: the influence of the chitosan molecular weight and its deacetylation degree (DD) were analyzed together with the influence of the bacterial concentration and contact time. The best results were obtained with high DD chitosan where a fast reduction was favored; leading to smaller nanoparticles (nucleation is promoted), and a sufficiently high polymer viscosity prevented the resulting nanoparticles from undesired agglomeration. In addition, for the first time, potential detachment of the silver nanoparticles from the films was evaluated and neglected, demonstrating that uncontrolled release of silver nanoparticles from the chitosan films is prevented. The influence of the ionic silver released from the films, silver loading, nanoparticle sizes, contact, and initial number of bacteria was also analyzed to elucidate the mechanism responsible for the strong bactericidal action observed.

  4. A modern method of treatment: The role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds

    Science.gov (United States)

    Munteanu, A; Florescu, IP; Nitescu, C

    2016-01-01

    Burn wounds are a global public health problem, which affects all countries, no matter the development stage and occurs in all age groups, from toddlers to elderly. In spite of burns being the cause of numerous household and work accidents, there are still no clear stated unanimous rules for their treatment. Every day new products appear on the market, each of them trying to prove more effective. Since ancient times, silver has been known for its antimicrobial properties, so it has been used for a long time in the treatment of burns and other types of wounds. One of the relatively modern methods of treatment is applying silver sheets on the scald lesions. In this paper, which was part of a larger study (research for a PhD thesis), concerning prevention and treatment of the post-burn pathological scars, the cases of some patients with burns, who were treated by using the above mentioned method were presented and analyzed. The results obtained by applying silver sheets were then commented and interpreted, pointing out the advantages and disadvantages compared to silver sulfadiazine creams and ointments, which have already been used at a large scale. The prevention and treatment of post-burn pathological (hypertrophic and keloid) scars is a field in which still little is known and in which there are also no clearly set therapy plans. We hope that through this research and the following ones we will manage to establish some major guidelines concerning the prevention of pathological scars, which are not only disabling, but also a major aesthetic issue for any patient, in order to obtain better outcomes. PMID:27974941

  5. A modern method of treatment: The role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds.

    Science.gov (United States)

    Munteanu, A; Florescu, I P; Nitescu, C

    2016-01-01

    Burn wounds are a global public health problem, which affects all countries, no matter the development stage and occurs in all age groups, from toddlers to elderly. In spite of burns being the cause of numerous household and work accidents, there are still no clear stated unanimous rules for their treatment. Every day new products appear on the market, each of them trying to prove more effective. Since ancient times, silver has been known for its antimicrobial properties, so it has been used for a long time in the treatment of burns and other types of wounds. One of the relatively modern methods of treatment is applying silver sheets on the scald lesions. In this paper, which was part of a larger study (research for a PhD thesis), concerning prevention and treatment of the post-burn pathological scars, the cases of some patients with burns, who were treated by using the above mentioned method were presented and analyzed. The results obtained by applying silver sheets were then commented and interpreted, pointing out the advantages and disadvantages compared to silver sulfadiazine creams and ointments, which have already been used at a large scale. The prevention and treatment of post-burn pathological (hypertrophic and keloid) scars is a field in which still little is known and in which there are also no clearly set therapy plans. We hope that through this research and the following ones we will manage to establish some major guidelines concerning the prevention of pathological scars, which are not only disabling, but also a major aesthetic issue for any patient, in order to obtain better outcomes.

  6. The Effect of Silver Nanofibers on the Deformation Properties of Blood Vessels: Towards the Development of New Nanotechnologies to Prevent Rupture of Aneurysms

    Directory of Open Access Journals (Sweden)

    Miguel Gonzalez

    2014-01-01

    Full Text Available An aneurysm is the result of a widening or ballooning of a portion of a blood vessel. The rupture of an aneurysm occurs when the mechanical stress acting on the inner wall exceeds the failure strength of the blood vessel. We propose an innovative approach to prevent the rupture of an aneurysm based on the use of nanotechnology to improve the strength of the blood vessel. We present results on the effect of silver nanofibers on the resistance toward deformation of blood vessels. The silver nanofibers are grown on the surface of the blood vessels. The nanofibers are 120±30 nm in diameter and 2.7±0.8 μm in length. The deformation per applied force of blood vessels was found to decrease from 0.15 m/N in control blood vessels to 0.003 m/N in blood vessels treated with the nanofibers. This represents an increase in the resistance towards deformation of a factor of 50. The increase in the resistance towards deformation is clinically significant since blood pressure increases by factors slightly larger than one in the human body. Treatment of blood vessels with silver nanofibers is a potential translational clinical tool for preventing rupture of aneurysms in a clinical setting.

  7. Effect of Silver Nanoparticle-Added Pit and Fissure Sealant in the Prevention of Dental Caries in Children.

    Science.gov (United States)

    Salas-López, Enid Karina; Pierdant-Pérez, Mauricio; Hernández-Sierra, Juan Francisco; Ruíz, Facundo; Mandeville, Peter; Pozos-Guillén, Amaury J

    The objective of this study was to evaluate the effects of pit and fissure sealant mixed with silver nanoparticles on dental caries, by means of monthly measurement of fluorescence with DIAGNOdent over six months. This study was divided in two phases: experimental and clinical. In the experimental phase, the adhesion and microleakage of the pit and fissure sealant experiment were evaluated. Two groups of 10 teeth, without serious carious lesions, were included. Conventional (group A) and silver nanoparticles (group B) were added to the pit and fissure sealant. For the clinical phase, a split-mouth study was performed on 40 children aged 6-10 years old with healthy, erupted permanent first molars. A conventional pit and fissure sealant or a silver nanoparticle-mixed sealant was randomly placed. Repeated measures analysis was performed. Conventional sealant presented an average microleakage of 30.6%, and the silver nanoparticle-mixed sealant showed 33.6% (P=NS). A three times greater reduction in fluorescence was found in the silver nanoparticles group compared to the conventional group (Psilver nanoparticle-mixed sealant reduced tooth demineralization significantly and likely increased remineralization, compared to the conventional sealant.

  8. A two stage data envelopment analysis model with undesirable output

    Science.gov (United States)

    Shariff Adli Aminuddin, Adam; Izzati Jaini, Nur; Mat Kasim, Maznah; Nawawi, Mohd Kamal Mohd

    2017-09-01

    The dependent relationship among the decision making units (DMU) is usually assumed to be non-existent in the development of Data Envelopment Analysis (DEA) model. The dependency can be represented by the multi-stage DEA model, where the outputs from the precedent stage will be the inputs for the latter stage. The multi-stage DEA model evaluate both the efficiency score for each stages and the overall efficiency of the whole process. The existing multi stage DEA models do not focus on the integration with the undesirable output, in which the higher input will generate lower output unlike the normal desirable output. This research attempts to address the inclusion of such undesirable output and investigate the theoretical implication and potential application towards the development of multi-stage DEA model.

  9. Process for making silver metal filaments

    Science.gov (United States)

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  10. Undesirable Effects of Media on Children: Why Limitation is Necessary?

    Science.gov (United States)

    Karaagac, Aysu Turkmen

    2015-06-01

    Pervasive media environment is a social problem shared by most of the countries around the world. Several studies have been performed to highlight the undesired effects of media on children. Some of these studies have focused on the time spent by children watching television, playing with computers or using mobile media devices while some others have tried to explain the associations between the obesity, postural abnormalities or psychological problems of children, and their media use. This article discusses the recent approaches to curb influence of media on children, and the importance of family media literacy education programs with particular relevance to developing countries.

  11. In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds--preventive agents against the harmful effect?

    Science.gov (United States)

    Martirosyan, Alina; Bazes, Alexandra; Schneider, Yves-Jacques

    2014-08-01

    The increasing commercial use of silver nanoparticles (Ag-NPs) will inevitably lead to elevated silver exposure and thus to potential human health complications. In this study the acute toxicity of Ag-NPs Lucifer Yellow, a paracellular marker. Immunofluorescence staining demonstrated that Ag-NPs affect occludin and zonula occludens 1 distributions, suggesting the opening of tight junctions. Ag(+), corresponding to the release from Ag-NPs, demonstrated a partial contribution in the toxic parameters, induced by Ag-NPs. Two PCs, quercetin and kaempferol, partially protected the Caco-2 cells from Ag-NP-induced toxicity and maintained the epithelial barrier integrity, disrupted by NPs. No protective effect was observed for resveratrol. The protective effect could be beneficial and decrease the potential toxicity of ingested Ag-NPs. However, the precise mechanisms of barrier-integrity-destabilising action of Ag-NPs/Ag(+) and protective effect of PCs still require further elucidation.

  12. Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants.

    Science.gov (United States)

    Guimond-Lischer, Stefanie; Ren, Qun; Braissant, Olivier; Gruner, Philipp; Wampfler, Bruno; Maniura-Weber, Katharina

    2016-03-10

    Fast and efficient osseointegration of implants into bone is of crucial importance for their clinical success; a process that can be enhanced by coating the implant surface with hydroxyapatite (HA) using the vacuum plasma spray technology (VPS). However, bacterial infections, especially the biofilm formation on implant surfaces after a surgery, represent a serious complication. With ever-increasing numbers of antibiotic-resistant bacteria, there is great interest in silver (Ag) as an alternative to classical antibiotics due to its broad activity against Gram-positive and Gram-negative bacterial strains. In the present study, silver ions were introduced into HA spray powder by ion exchange and the HA-Ag powder was applied onto titanium samples by VPS. The Ag-containing surfaces were evaluated for the kinetics of the silver release, its antibacterial effect against Staphylococcus aureus as well as Escherichia coli, and possible cytotoxicity against human bone cells. The HA-Ag coatings with different concentrations of Ag displayed mechanical and compositional properties that fulfill the regulatory requirements. Evaluation of the Ag release kinetic showed a high release rate in the first 24 h followed by a decreasing release rate over the four subsequent days. The HA-Ag coatings showed no cytotoxicity to primary human bone cells while exhibiting antibacterial activity to E. coli and S. aureus.

  13. Undesirable substances in vegetable oils: anything to declare?

    Directory of Open Access Journals (Sweden)

    Lacoste Florence

    2014-01-01

    Full Text Available The presence of undesirable compounds in vegetable and animal oils and fats may have many different origins. Although the potential toxicity of most of these undesirable compounds is real, poisoning risks are rather limited due to the efficient elimination during oil-refining steps, careful conditioning, choice of efficient packaging and industrial quality control management. However the research of contaminants is part of multiple controls conducted by fat and oil industry to verify the conformity of products placed on the market in relation to regulations such as the European commission regulation EC No. 1881/2006 setting maximum levels for some contaminants in food as lead, some mycotoxins, dioxins, polychlorobiphenyls, benzo[a]pyrene. In the absence of regulation, the detection of contaminants must be addressed in partnership with authorities according to the toxicity of molecules. The controls are not confined to environmental contaminants. They also include compounds that can be formed during the production process of vegetable oils such as esters of 3-monochloropropanediol. This article focuses more particularly on heavy metals, polycyclic aromatic hydrocarbons, mineral oils, phthalates and 3-MCPD or glycidyl esters. Aspects such as methods for analysis, limits fixed by EC regulation and occurrence in vegetable oils are discussed.

  14. Biosynthesis of silver nanoparticles.

    Science.gov (United States)

    Poulose, Subin; Panda, Tapobrata; Nair, Praseetha P; Théodore, Thomas

    2014-02-01

    Metal nanoparticles have unique optical, electronic, and catalytic properties. There exist well-defined physical and chemical processes for their preparation. Those processes often yield small quantities of nanoparticles having undesired morphology, and involve high temperatures for the reaction and the use of hazardous chemicals. Relatively, the older technique of bioremediation of metals uses either microorganisms or their components for the production of nanoparticles. The nanoparticles obtained from bacteria, fungi, algae, plants and their components, etc. appear environment-friendly, as toxic chemicals are not used in the processes. In addition to this, the formation of nanoparticles takes place at almost normal temperature and pressure. Control of the shape and size of the nanoparticles is possible by appropriate selection of the pH and temperature. Three important steps are the bioconversion of Ag+ ions, conversion of desired crystals to nanoparticles, and nanoparticle stability. Generally, nanoparticles are characterized by the UV-visible spectroscopy and use of the electron microscope. Silver nanoparticles are used as antimicrobial agents and they possess antifungal, anti-inflammatory, and anti-angiogenic properties. This review highlights the biosynthesis of silver nanoparticles by various organisms, possible mechanisms of their synthesis, their characterization, and applications of silver nanoparticles.

  15. Preventing maritime transport of pathogens: the remarkable antimicrobial properties of silver-supported catalysts for ship ballast water disinfection.

    Science.gov (United States)

    Theologides, C P; Theofilou, S P; Anayiotos, A; Costa, C N

    2017-07-01

    Ship ballast water (SBW) antimicrobial treatment is considered as a priority issue for the shipping industry. The present work investigates the possibility of utilizing antimicrobial catalysis as an effective method for the treatment of SBW. Taking into account the well-known antimicrobial properties of ionic silver (Ag + ), five silver-supported catalysts (Ag/γ-Al 2 O 3 ) with various loadings (0.05, 0.1, 0.2, 0.5, and 1 wt%) were prepared and examined for the antimicrobial treatment of SBW. The bactericidal activity of the aforementioned catalysts was investigated towards the inhibition of Escherichia coli (Gram-negative) and Escherichia faecalis (Gram-positive) bacteria. Catalytic experiments were conducted in a three-phase continuous flow stirred tank reactor, used in a semi-batch mode. It was found that using the catalyst with the lowest metal loading, the inhibition of E. coli reached 95.8% after 30 minutes of treatment of an E. coli bacterial solution, while the inhibition obtained for E. faecalis was 76.2% after 60 minutes of treatment of an E. faecalis bacterial solution. Even better results (100% inhibition after 5 min of reaction) were obtained using the catalysts with higher Ag loadings. The results of the present work indicate that the prepared monometallic catalysts exert their antimicrobial activity within a short period of time, revealing, for the first time ever, that the field of antimicrobial heterogeneous catalysis using deposited ionic silver on a solid support may prove decisive for the disinfection of SBW.

  16. Effectiveness of silver dressing in preventing surgical site infections in contaminated wounds = Efectividad de los apósitos de plata en la prevención de la infección del sitio operatorio en heridas contaminadas

    Directory of Open Access Journals (Sweden)

    Cabrales, Rodolfo Adrián

    2014-07-01

    Full Text Available Abstract Introduction: Silver gauzes are designed to treat infected wounds, but there is controversial evidence about their effectiveness in preventing surgical site infections in contaminated wounds. Objective: To evaluate the effect of silver gauzes in patients undergoing surgery with contaminated wounds at a university-based tertiary referral center. Methods: This was a prospective, controlled trial comparing a silver gauze dressing with saline gauze dressings in patients undergoing abdominal surgeries with contaminated wounds. Patients were randomly assigned to receive either silver gauze (SG dressing or saline gauze dressings (SD. The primary end point was surgical site infection occurring within 30 days of surgery. Results: 65 patients were enrolled in the review. The incidence of surgical site infection was 14% (9/65. No differences were observed among groups (15.2% vs. 12.5%, p = 0.75. Multivariate analysis revealed no relationship between the type of dressing and surgical site infection. Conclusion: Silver gauzes are safe and effective in preventing surgical site infections in surgeries with contaminated wounds. Further trials are required to find out if they have advantages over standard dressings.

  17. Cosmetics Europe Guidelines on the Management of Undesirable Effects and Reporting of Serious Undesirable Effects from Cosmetics in the European Union

    Directory of Open Access Journals (Sweden)

    Gerald Renner

    2017-01-01

    Full Text Available The European Union (EU Cosmetics Regulation (EC No. 1223/2009 requires companies to collect and assess reports of adverse health effects from the cosmetic products (undesirable effects they market. Furthermore, undesirable effects that are considered as serious need to be reported to the national competent authorities. Cosmetics Europe, representing the European cosmetics industry, has developed these guidelines to promote a consistent practical approach for the management of undesirable effects and the notification of serious undesirable effects. Following these guidelines allows companies concerned to demonstrate due diligence and compliance with the legal requirements.

  18. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    NARCIS (Netherlands)

    Song, J.; Remmers, S.J.; Shao, J.; Kolwijck, E.; Walboomers, X.F.; Jansen, J.A.; Leeuwenburgh, S.C.; Yang, F.

    2016-01-01

    To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver

  19. Silver Nanoparticles

    Science.gov (United States)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  20. Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; McGrann, T J; Yamamoto, R M; Parker, J M

    2009-07-01

    This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase the local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.

  1. Silver Clear Nylon Dressing is Effective in Preventing Radiation-Induced Dermatitis in Patients With Lower Gastrointestinal Cancer: Results From a Phase III Study

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, Tamim M. [Segal Cancer Centre, Department of Radiation Oncology, Jewish General Hospital, McGill University (Canada); Vuong, Te, E-mail: tvuong@jgh.mcgill.ca [Segal Cancer Centre, Department of Radiation Oncology, Jewish General Hospital, McGill University (Canada); Azoulay, Laurant [Department of Epidemiology, Jewish General Hospital, McGill University (Canada); Marijnen, Corrie [Department of Clinical Oncology, Leiden University Medical Center, Amsterdam (Netherlands); Bujko, Kryzstof [Department of Radiotherapy, The Maria Sklodowska-Curie Memorial Cancer Centre, Warsaw (Poland); Nasr, Elie [Department of Radiation Oncology, Hotel-Dieu de France Hospital (Lebanon); Lambert, Christine; Duclos, Marie; Faria, Sergio; David, Marc [Department of Radiation Oncology, Montreal-General-Hospital, McGill University, Montreal (Canada); Cummings, Bernard [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto (Canada)

    2012-11-01

    Purpose: For patients with anal canal and advanced rectal cancer, chemoradiation therapy is a curative modality or an important adjunct to surgery. Nearly all patients treated with chemoradiation experience some degree of radiation-induced dermatitis (RID). Prevention and effective treatment of RID, therefore, is of considerable clinical relevance. The present phase III randomized trial compared the efficacy of silver clear nylon dressing (SCND) with that of standard skin care for these patients. Methods and Materials: A total of 42 rectal or anal canal cancer patients were randomized to either a SCND or standard skin care group. SCND was applied from Day 1 of radiation therapy (RT) until 2 weeks after treatment completion. In the control arm, sulfadiazine cream was applied at the time of skin dermatitis. Printed digital photographs taken 2 weeks prior to, on the last day, and two weeks after the treatment completion were scored by 10 blinded readers, who used the common toxicity scoring system for skin dermatitis. Results: The radiation dose ranged from 50.4 to 59.4 Gy, and there were no differences between the 2 groups. On the last day of RT, when the most severe RID occurs, the mean dermatitis score was 2.53 (standard deviation [SD], 1.17) for the standard and 1.67 (SD, 1.2; P=.01) for the SCND arm. At 2 weeks after RT, the difference was 0.39 points in favor of SCND (P=.39). There was considerable intraclass correlation among the 10 observers. Conclusions: Silver clear nylon dressing is effective in reducing RID in patients with lower gastrointestinal cancer treated with combined chemotherapy and radiation treatment.

  2. Silver Clear Nylon Dressing is Effective in Preventing Radiation-Induced Dermatitis in Patients With Lower Gastrointestinal Cancer: Results From a Phase III Study

    International Nuclear Information System (INIS)

    Niazi, Tamim M.; Vuong, Te; Azoulay, Laurant; Marijnen, Corrie; Bujko, Kryzstof; Nasr, Elie; Lambert, Christine; Duclos, Marie; Faria, Sergio; David, Marc; Cummings, Bernard

    2012-01-01

    Purpose: For patients with anal canal and advanced rectal cancer, chemoradiation therapy is a curative modality or an important adjunct to surgery. Nearly all patients treated with chemoradiation experience some degree of radiation-induced dermatitis (RID). Prevention and effective treatment of RID, therefore, is of considerable clinical relevance. The present phase III randomized trial compared the efficacy of silver clear nylon dressing (SCND) with that of standard skin care for these patients. Methods and Materials: A total of 42 rectal or anal canal cancer patients were randomized to either a SCND or standard skin care group. SCND was applied from Day 1 of radiation therapy (RT) until 2 weeks after treatment completion. In the control arm, sulfadiazine cream was applied at the time of skin dermatitis. Printed digital photographs taken 2 weeks prior to, on the last day, and two weeks after the treatment completion were scored by 10 blinded readers, who used the common toxicity scoring system for skin dermatitis. Results: The radiation dose ranged from 50.4 to 59.4 Gy, and there were no differences between the 2 groups. On the last day of RT, when the most severe RID occurs, the mean dermatitis score was 2.53 (standard deviation [SD], 1.17) for the standard and 1.67 (SD, 1.2; P=.01) for the SCND arm. At 2 weeks after RT, the difference was 0.39 points in favor of SCND (P=.39). There was considerable intraclass correlation among the 10 observers. Conclusions: Silver clear nylon dressing is effective in reducing RID in patients with lower gastrointestinal cancer treated with combined chemotherapy and radiation treatment.

  3. Silver clear nylon dressing is effective in preventing radiation-induced dermatitis in patients with lower gastrointestinal cancer: results from a phase III study.

    Science.gov (United States)

    Niazi, Tamim M; Vuong, Te; Azoulay, Laurant; Marijnen, Corrie; Bujko, Kryzstof; Nasr, Elie; Lambert, Christine; Duclos, Marie; Faria, Sergio; David, Marc; Cummings, Bernard

    2012-11-01

    For patients with anal canal and advanced rectal cancer, chemoradiation therapy is a curative modality or an important adjunct to surgery. Nearly all patients treated with chemoradiation experience some degree of radiation-induced dermatitis (RID). Prevention and effective treatment of RID, therefore, is of considerable clinical relevance. The present phase III randomized trial compared the efficacy of silver clear nylon dressing (SCND) with that of standard skin care for these patients. A total of 42 rectal or anal canal cancer patients were randomized to either a SCND or standard skin care group. SCND was applied from Day 1 of radiation therapy (RT) until 2 weeks after treatment completion. In the control arm, sulfadiazine cream was applied at the time of skin dermatitis. Printed digital photographs taken 2 weeks prior to, on the last day, and two weeks after the treatment completion were scored by 10 blinded readers, who used the common toxicity scoring system for skin dermatitis. The radiation dose ranged from 50.4 to 59.4 Gy, and there were no differences between the 2 groups. On the last day of RT, when the most severe RID occurs, the mean dermatitis score was 2.53 (standard deviation [SD], 1.17) for the standard and 1.67 (SD, 1.2; P=.01) for the SCND arm. At 2 weeks after RT, the difference was 0.39 points in favor of SCND (P=.39). There was considerable intraclass correlation among the 10 observers. Silver clear nylon dressing is effective in reducing RID in patients with lower gastrointestinal cancer treated with combined chemotherapy and radiation treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Silver niobates

    International Nuclear Information System (INIS)

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  5. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis

    Science.gov (United States)

    Arora, Sumit; Tyagi, Nikhil; Bhardwaj, Arun; Rusu, Lilia; Palanki, Rohan; Vig, Komal; Singh, Shree R.; Singh, Ajay P.; Palanki, Srinivas; Miller, Michael E.; Carter, James E.; Singh, Seema

    2015-01-01

    Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. PMID:25804413

  6. Cycles of undesirable substances in the food chain; Kreislaeufe unerwuenschter Stoffe in der Lebensmittelkette

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The working group ''Carry over of undesirable substances in animal feed'' at the Federal Ministry of Food, Agriculture and Forestry (BMELV) in cooperation with the Institute of Animal Nutrition of the Friedrich-Loeffler-Institute (FLI) performed on 27 and 28 October 2011 in Braunschweig a workshop on ''cycles of undesirable substances in Food Chain ''. The aim of the workshop was to present the latest findings of research and Carry over Recommendations of the Carry over - Working Group on undesirable substances in feed and production processes of the feed industry, to evaluate and discuss about this with representatives from science, business and management and to work out the further research and action need. The focus of the considerations were the pathways, the carry over and the Exposure to dioxins and other halogenated hydrocarbons, the effects of Mycotoxins in feed and starting points for preventive measures, the soil contamination and the exposure of humans and animals by cadmium and case studies on Nitrite in feed, antibiotics in plants and residues of pesticides and radionuclides in feed. Furthermore the risks associated with specified manufacturing processes of feed are considered, especially the used materials that come into contact with animal feed, and the risks from nanotechnology. [German] Die Arbeitsgruppe ''Carry over unerwuenschter Stoffe in Futtermitteln'' beim Bundesministerium fuer Ernaehrung, Landwirtschaft und Forsten (BMELV) hat in Zusammenarbeit mit dem Institut fuer Tierernaehrung des Friedrich-Loeffler-Instituts (FLI) am 27. und 28. Oktober 2011 in Braunschweig einen Workshop zum Thema ''Kreislaeufe unerwuenschter Stoffe in der Lebensmittelkette'' durchgefuehrt. Ziel des Workshops war es, die aktuellen Erkenntnisse der Carry over Forschung und die Empfehlungen der Carry over - Arbeitsgruppe zu unerwuenschten Stoffen in Futtermitteln und Produktionsverfahren in

  7. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...... used for the evaluation of inhibiting effects and the inhibiting mechanism. For silver-palladium surfaces combined with bacteria in media, the inhibiting effect was a result of electrochemical interactions and/or electrical field, and in some specific media, such as ammonium containing, undesired...... silver ions release can occur from their Surfaces. For silver-bearing stainless steels, the inhibiting effect can only be explained by high local silver ions release. and can be limited or deactivated dependent on the specific environment. (c) 2008 Elsevier Ltd. All rights reserved....

  8. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    Biofouling can cause many undesirable effects in industrial and medical settings. In this study, a new biofouling inhibiting Ag-Pd surface was designed to form an inhibiting effect by itself. This design was based on silver combined with nobler palladium, both with catalytic properties. Owing to ...

  9. Silver Nanoparticles in Dental Biomaterials

    OpenAIRE

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; Cruz, Adriana Dibo da; Poiate, EdgardJr.; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects re...

  10. Docosahexaenoic acid and L-Carnitine prevent ATP loss in SH-SY5Y neuroblastoma cells after exposure to silver nanoparticles.

    Science.gov (United States)

    Tan, Joey Wee-Shan; Ho, Christabel Fung-Yih; Ng, Yee-Kong; Ong, Wei-Yi

    2016-02-01

    Silver nanoparticles (AgNPs) are among the most commonly used nanomaterials, but thus far, little is known about ways to mitigate against potential toxic effects of exposure. In this study, we examined the potential effects of AgNPs on mitochondrial function and cellular ATP levels, and whether these could be prevented by treatment with docosahexaenoic acid (DHA) and L-carnitine (LC). Acute exposure of AgNPs for 1 h to SH-SY5Y cells resulted in decreased mitochondrial membrane potential, and decreased ATP and ADP levels, indicating mitochondrial damage and reduced production of ATP. Incubation of cells with DHA partially reduced, while treatment with LC and DHA completely abolished the AgNP induced decreases in ATP and ADP levels. This could be due to a LC-facilitated entry of DHA to mitochondria, for repair of damaged phospholipids. It is postulated that DHA and LC may be useful for treatment of accidental environmental exposure to AgNPs. © 2014 Wiley Periodicals, Inc.

  11. Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module.

    Science.gov (United States)

    Biswas, Pritam; Bandyopadhyaya, Rajdip

    2017-04-01

    Biofouling significantly decreases membrane performance. So silver nanoparticle (Ag-NP) was impregnated selectively on a sulfonated polyethersulfone (SPES) membrane and its efficacy was tested in a continuous, cross-flow membrane module. The main challenges are: (i) to prevent biofouling on the membrane surface, (ii) achieve zero bacterial cell (E. coli) count in the permeate water, (iii) maintain Ag concentration in the permeate stream within the permissible limit of drinking water and (iv) maintain a high tensile strength of the membrane to prevent mechanical failure. Addressing these factors would ensure a long and productive service-life of the membrane. To this end, 10 4 CFU/ml of E. coli cell-suspension was passed through the Ag-SPES membrane of 150μm total thickness, which has a narrow (1.74μm thickness), upper surface of Ag-NPs. We achieved zero E. coli cell-count and a minimum (10μg/L) Ag concentration in the permeate stream; simultaneously increasing the tensile strength from 2.78MPa to 3.92MPa due to Ag-NP impregnation. Thus, for a continuous inlet flow of E. coli contaminated water, the membrane module could deliver an almost constant permeate flow rate of 3.45L per hour, due to complete E. coli cell-killing. Simultaneously, Ag concentration in permeate stream is well-below the WHO's recommended limit of 100μg/L, for potable quality water. Therefore, the Ag-SPES membrane can be used as an anti-biofouling membrane in a continuous operational mode. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Teaches’ Reactions towards Undesirable Behaviors of Administrators: Whistle-blowing or Keeping Silent?

    Directory of Open Access Journals (Sweden)

    Asiye TOKER GÖKÇE

    2015-11-01

    Full Text Available This research aims to define teachers’ attitudes towards undesired behaviours at school. Therefore, in which possible undesired administrative behaviours teachers would blow a whistle was examined. Second, whether the teachers would prefer whistle-blowing or and the kind of blowing was questioned. Lastly, the reason of keeping silence was examined. This research was designed as qualitative model. The research group was 20 teachers that work at a secondary school in Darica district of Kocaeli. The results revealed that it was put forward that all teachers would react in the case of various undesired behaviours. However it was determined that teachers would mostly react in the case of serious undesired behaviours. Teachers mostly stated that they would prefer to whistle-blow internally, formally and by identifying themselves. Findings of the research are thought to contribute to the literature in terms of revealing teachers’ attitudes towards possible undesired behaviours at school.

  13. Study on Operator Actions during the Occurrences of Undesirable Events in PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Tom, P.P.; Nurul Husna Zainal Abidin; Lanyau, T.A.; Zaredah Hashim

    2016-01-01

    Due to the recent Fukushima accident, the potential risks at one and only nuclear research reactor in the country, which is the PUSPATI TRIGA Reactor (RTP), has increasingly gain concerns and an attempt on the development of Level 1 Probabilistic Safety Assessment (PSA) for this reactor has been commenced. The preliminary scope of the PSA is to analyse the risk of core degradation during normal daily operation due to the random component failure and human error. SPAR-H and THERP method is used for quantifying human error probability (HEP). However, the scopes of this study only cover the qualitative parts that use interview/questionnaire method. The objectives of the questionnaire are to identify the main action for RTP operators when any undesired incident occurs during full power operation that might be caused by random component failures. From the questionnaires that have been conducted, the respondents consisted of 4 licensed operators and 9 trainee operators. All licensed operators have experience of operating reactor for more than 15 years while the trainee operator have been operate the reactor with experience of less than 10 years. Generally, in the event of an abnormal condition involving the reactor, an operator whether a licensed operator or the trainee does not have to ask permission in advance from the top individuals to carry out scram. This is to prevent the situation becoming increasingly severe if the reactor is still operating. With complete training and knowledge derived from the management, an operator can act efficiently in any emergency case. (author)

  14. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach.

    Science.gov (United States)

    Chang, Mincheol; Kim, Taejoon; Park, Hyun-Woo; Kang, Minjeong; Reichmanis, Elsa; Yoon, Hyeonseok

    2012-08-01

    Only limited information is available on the design and synthesis of functional materials for preventing corrosion of metal nanostructures. In the nanometer regime, even noble metals are subject to chemical attack. Here, the corrosion behavior of noble metal nanoparticles coated with a conjugated polymer nanolayer was explored for the first time. Specifically, electrochemical corrosion and sulfur tarnishing behaviors were examined for Ag-polypyrrole (PPy) core-shell nanoparticles using potentiodynamic polarization and spectrophotometric analysis, respectively. First, the Ag-PPy nanoparticles exhibited enhanced resistance to electrochemically induced corrosion compared to their exposed silver counterparts. Briefly, a neutral PPy shell provided the highest protection efficiency (75.5%), followed by sulfate ion- (61.3%) and dodecylbenzenesulfonate ion- (53.6%) doped PPy shells. However, the doping of the PPy shell with chloride ion induced an adverse effect (protection efficiency, -120%). Second, upon exposure to sulfide ions, the Ag-PPy nanoparticles preserved their morphology and colloidal stability while the bare silver analog underwent significant structural deformation. To further understand the function of the PPy shell as a protection layer for the silver core, the catalytic activity of the nanostructures was also evaluated. Using the reduction of 4-nitrophenol as a representative example of a catalytic reaction, the rate constant for that reduction using the PPy encased Ag nanoparticles was found to be 1.1 × 10(-3) s(-1), which is approximately 33% less than that determined for the parent silver. These results demonstrate that PPy can serve as both an electrical and chemical barrier for mitigating undesirable chemical degradation in corrosive environments, as well as provide a simple physical barrier to corrosive substances under appropriate conditions.

  15. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sahubar Ali Mohd. Nadhar, E-mail: sahubar@uum.edu.my; Ramli, Razamin, E-mail: razamin@uum.edu.my; Baten, M. D. Azizul, E-mail: baten-math@yahoo.com [School of Quantitative Sciences, UUM College of Arts and Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia)

    2015-12-11

    Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers’ efficiency.

  16. Distinct oxytocin effects on belief updating in response to desirable and undesirable feedback

    Science.gov (United States)

    Ma, Yina; Li, Shiyi; Wang, Chenbo; Liu, Yi; Li, Wenxin; Yan, Xinyuan; Chen, Qiang; Han, Shihui

    2016-01-01

    Humans update their beliefs upon feedback and, accordingly, modify their behaviors to adapt to the complex, changing social environment. However, people tend to incorporate desirable (better than expected) feedback into their beliefs but to discount undesirable (worse than expected) feedback. Such optimistic updating has evolved as an advantageous mechanism for social adaptation. Here, we examine the role of oxytocin (OT)―an evolutionary ancient neuropeptide pivotal for social adaptation―in belief updating upon desirable and undesirable feedback in three studies (n = 320). Using a double-blind, placebo-controlled between-subjects design, we show that intranasally administered OT (IN-OT) augments optimistic belief updating by facilitating updates of desirable feedback but impairing updates of undesirable feedback. The IN-OT–induced impairment in belief updating upon undesirable feedback is more salient in individuals with high, rather than with low, depression or anxiety traits. IN-OT selectively enhances learning rate (the strength of association between estimation error and subsequent update) of desirable feedback. IN-OT also increases participants’ confidence in their estimates after receiving desirable but not undesirable feedback, and the OT effect on confidence updating upon desirable feedback mediates the effect of IN-OT on optimistic belief updating. Our findings reveal distinct functional roles of OT in updating the first-order estimation and second-order confidence judgment in response to desirable and undesirable feedback, suggesting a molecular substrate for optimistic belief updating. PMID:27482087

  17. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment

    Science.gov (United States)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2015-12-01

    Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers' efficiency.

  18. Distinct oxytocin effects on belief updating in response to desirable and undesirable feedback.

    Science.gov (United States)

    Ma, Yina; Li, Shiyi; Wang, Chenbo; Liu, Yi; Li, Wenxin; Yan, Xinyuan; Chen, Qiang; Han, Shihui

    2016-08-16

    Humans update their beliefs upon feedback and, accordingly, modify their behaviors to adapt to the complex, changing social environment. However, people tend to incorporate desirable (better than expected) feedback into their beliefs but to discount undesirable (worse than expected) feedback. Such optimistic updating has evolved as an advantageous mechanism for social adaptation. Here, we examine the role of oxytocin (OT)-an evolutionary ancient neuropeptide pivotal for social adaptation-in belief updating upon desirable and undesirable feedback in three studies (n = 320). Using a double-blind, placebo-controlled between-subjects design, we show that intranasally administered OT (IN-OT) augments optimistic belief updating by facilitating updates of desirable feedback but impairing updates of undesirable feedback. The IN-OT-induced impairment in belief updating upon undesirable feedback is more salient in individuals with high, rather than with low, depression or anxiety traits. IN-OT selectively enhances learning rate (the strength of association between estimation error and subsequent update) of desirable feedback. IN-OT also increases participants' confidence in their estimates after receiving desirable but not undesirable feedback, and the OT effect on confidence updating upon desirable feedback mediates the effect of IN-OT on optimistic belief updating. Our findings reveal distinct functional roles of OT in updating the first-order estimation and second-order confidence judgment in response to desirable and undesirable feedback, suggesting a molecular substrate for optimistic belief updating.

  19. Russell-Silver syndrome

    Science.gov (United States)

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  20. Synthesis and Characterization of Protein-Conjugated Silver Nanoparticles/Silver Salt Loaded Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Film for Prevention of Bacterial Infections and Potential Use in Bone Tissue Engineering Applications

    Science.gov (United States)

    Bakare, Rotimi Ayotunde

    Failure of orthopedic implants due to bacterial infection has been a major concern in bone tissue engineering. To this end, we have formulated a potential orthopedic implant made of naturally occurring biodegradable polymer, i.e. poly (3-hydroxylbutyrate-co-3-hydroxylvalerate) (PHBV), modified with BSA conjugated silver nanoparticles and or silver chloride. Upon release of Ag NPs and or Ag+ in the implant region, can promote aseptic environment by inhibition of bacteria growth and also support/maintain bone cell adhesion, growth, and proliferation. For formulating nanoparticles loaded PHBV scaffold, we exploit specific interaction between bovine serum albumin (BSA) of BSA capped silver nanoparticles and collagen of collagen immobilized PHBV scaffold. Therefore, the first part of this study dealt with synthesis and characterization of collagen immobilized PHBV film for loading of BSA stabilized silver (Ag/BSA) nanoparticles. Two different approaches were used to immobilize collagen on macroporous PHBV film. First approach uses thermal radical copolymerization with 2-hydroxyethylmethacrylate (HEMA), while the second approach uses aminolysis to functionalize macroporous PHBV film. Using collagen crosslinker, type I collagen was covalently grafted to formulate collagen immobilized PHEMA-g-PHBV and collagen immobilized NH2-PHBV films, respectively. Spectroscopic (FTIR, XPS), physical (SEM), and thermal (TGA) techniques were used to characterize the functionalized PHBV films. The Ag/BSA nanoparticles were then loaded on collagen immobilized PHBV films and untreated PHBV films. The concentration of nanoparticles loaded on PHBV film was determined by atomic absorption spectrometry and fluorescence spectroscopy. The amount of nanoparticles loaded on collagen immobilized PHBV film was found to be significantly greater than that on untreated PHBV film. The amount of Ag/BSA nanoparticles loaded on collagen immobilized PHBV film was found to depend on the concentration of Ag

  1. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-09-01

    Implant-associated infection and limited longevity are two major challenges that orthopedic devices need to simultaneously address. Additively manufactured porous implants have recently shown tremendous promise in improving bone regeneration and osseointegration, but, as any conventional implant, are threatened by infection. In this study, we therefore used rational design and additive manufacturing in the form of selective laser melting (SLM) to fabricate porous titanium implants with interconnected pores, resulting in a 3.75 times larger surface area than corresponding solid implants. The SLM implants were biofunctionalized by embedding silver nanoparticles in an oxide surface layer grown using plasma electrolytic oxidation (PEO) in Ca/P-based electrolytes. The PEO layer of the SLM implants released silver ions for at least 28 days. X-ray diffraction analysis detected hydroxyapatite on the SLM PEO implants but not on the corresponding solid implants. In vitro and ex vivo assays showed strong antimicrobial activity of these novel SLM PEO silver-releasing implants, without any signs of cytotoxicity. The rationally designed SLM porous implants outperformed solid implants with similar dimensions undergoing the same biofunctionalization treatment. This included four times larger amount of released silver ions, two times larger zone of inhibition, and one additional order of magnitude of reduction in numbers of CFU in an ex vivo mouse infection model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro.

    Science.gov (United States)

    Chimutengwende-Gordon, Mukai; Pendegrass, Catherine; Bayston, Roger; Blunn, Gordon

    2014-09-01

    The success of transcutaneous implants depends on the achievement of a soft tissue seal by enabling fibroblasts to win the race for the surface against bacteria. Fibronectin-functionalized hydroxyapatite coatings (HAFn) have been shown to improve dermal tissue ingrowth and attachment. However, during the early postoperative period before a soft tissue seal has formed, bacterial colonization may occur. This study explored the incorporation of silver, a broad spectrum antimicrobial agent, into HAFn coatings with the aim of reducing bacterial colonization. Silver is known to have dose-dependent cytotoxic effects. Therefore, the effects of silver incorporation into HAFn coatings on both in vitro human dermal fibroblast viability and Staphylococcus aureus colonization were assessed. An electrochemical deposition technique was used to codeposit hydroxyapatite and silver (HAAg) and fibronectin was adsorbed onto this to produce HAAgFn coatings. Surfaces were preconditioned with serum to mimic the in vivo environment. Nonpreconditioned HAAg and HAAgFn coatings suppressed bacterial colonization but were cytotoxic. After serum-preconditioning, more than 90% of fibroblasts that grew on all HAAg and HAAgFn coatings were viable. The highest silver content coatings tested (HAAg100 and HAAgFn100) resulted in a greater than 99% reduction in biofilm and planktonic bacterial numbers compared to HA and HAFn controls. Although HAAg100 had greater antibacterial activity than HAAgFn100, the findings of this study indicate that fibroblasts would win the race for the surface against S aureus on both HAAg100 and HAAgFn100 after serum-preconditioning.

  3. The Differential Mortality of Undesired Infants in Sub-Saharan Africa.

    Science.gov (United States)

    Flatø, Martin

    2018-02-01

    With high rates of infant mortality in sub-Saharan Africa, investments in infant health are subject to tough prioritizations within the household, in which maternal preferences may play a part. How these preferences will affect infant mortality as African women have ever-lower fertility is still uncertain, as increased female empowerment and increased difficulty in achieving a desired gender composition within a smaller family pull in potentially different directions. I study how being born at a parity or of a gender undesired by the mother relates to infant mortality in sub-Saharan Africa and how such differential mortality varies between women at different stages of the demographic transition. Using data from 79 Demographic and Health Surveys, I find that a child being undesired according to the mother is associated with a differential mortality that is not due to constant maternal factors, family composition, or factors that are correlated with maternal preferences and vary continuously across siblings. As a share of overall infant mortality, the excess mortality of undesired children amounts to 3.3 % of male and 4 % of female infant mortality. Undesiredness can explain a larger share of infant mortality among mothers with lower fertility desires and a larger share of female than male infant mortality for children of women who desire 1-3 children. Undesired gender composition is more important for infant mortality than undesired childbearing and may also lead couples to increase family size beyond the maternal desire, in which case infants of the surplus gender are particularly vulnerable.

  4. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Møller, Per

    The undesired microbial and biofilm adhesions on the surfaces of food industrial facilities, water supply systems and etc. are so called as “biofouling”. Biofouling can cause many undesirable effects. Until now for solving biofouling, there are few non-toxic inhibiting treatments. In this study......, a new coating has been designed to form an inhibiting effect on the surface by itself. In this way, it is desired that the release of any matter will be in low concentration. This design is based on silver combined with nobler palladium, both with catalytic properties. Due to the potential difference...... between silver and palladium while contacting with an electrolyte, the surface can form numerous discrete anodic and cathodic areas, so that an inhibiting reaction can be formed. In this paper, a series of electrochemical and biological tests were conducted to study the properties of these surfaces...

  5. Desirable and undesirable future thoughts call for different scene construction processes.

    Science.gov (United States)

    de Vito, S; Neroni, M A; Gamboz, N; Della Sala, S; Brandimonte, M A

    2015-01-01

    Despite the growing interest in the ability of foreseeing (episodic future thinking), it is still unclear how healthy people construct possible future scenarios. We suggest that different future thoughts require different processes of scene construction. Thirty-five participants were asked to imagine desirable and less desirable future events. Imagining desirable events increased the ease of scene construction, the frequency of life scripts, the number of internal details, and the clarity of sensorial and spatial temporal information. The initial description of general personal knowledge lasted longer in undesirable than in desirable anticipations. Finally, participants were more prone to explicitly indicate autobiographical memory as the main source of their simulations of undesirable episodes, whereas they equally related the simulations of desirable events to autobiographical events or semantic knowledge. These findings show that desirable and undesirable scenarios call for different mechanisms of scene construction. The present study emphasizes that future thinking cannot be considered as a monolithic entity.

  6. Ranking of bank branches with undesirable and fuzzy data: A DEA-based approach

    Directory of Open Access Journals (Sweden)

    Sohrab Kordrostami

    2016-07-01

    Full Text Available Banks are one of the most important financial sectors in order to the economic development of each country. Certainly, efficiency scores and ranks of banks are significant and effective aspects towards future planning. Sometimes the performance of banks must be measured in the presence of undesirable and vague factors. For these reasons in the current paper a procedure based on data envelopment analysis (DEA is introduced for evaluating the efficiency and complete ranking of decision making units (DMUs where undesirable and fuzzy measures exist. To illustrate, in the presence of undesirable and fuzzy measures, DMUs are evaluated by using a fuzzy expected value approach and DMUs with similar efficiency scores are ranked by using constraints and the Maximal Balance Index based on the optimal shadow prices. Afterwards, the efficiency scores of 25 branches of an Iranian commercial bank are evaluated using the proposed method. Also, a complete ranking of bank branches is presented to discriminate branches.

  7. Risk management of undesirable substances in feed following updated risk assessments

    International Nuclear Information System (INIS)

    Verstraete, Frans

    2013-01-01

    Directive 2002/32/EC of 7 May 2002 of the European Parliament and of the Council on undesirable substances in animal feed is the framework for the EU action on undesirable substances in feed. This framework Directive provides: ⁎that products intended for animal feed may enter for use in the Union from third countries, be put into circulation and/or used in the Union only if they are sound, genuine and of merchantable quality and therefore when correctly used do not represent any danger to human health, animal health or to the environment or could adversely affect livestock production. ⁎that in order to protect animal and public health and the environment, maximum levels for specific undesirable substances shall be established where necessary. ⁎for mandatory consultation of a scientific body (EFSA) for all provisions which may have an effect upon public health or animal health or on the environment. ⁎that products intended for animal feed containing levels of an undesirable substance that exceed the established maximum level may not be mixed for dilution purposes with the same, or other, products intended for animal feed and may not be used for the production of compound feed. Based on the provisions and principles laid down in this framework Directive, maximum levels for a whole range of undesirable substances have been established at EU level. During the discussions in view of the adoption of Directive 2002/32/EC, the European Commission made the commitment to review all existing provisions on undesirable substances on the basis of updated scientific risk assessments. Following requests of the European Commission, the Panel on Contaminants in the Food Chain (CONTAM) from the European Food Safety Authority (EFSA) has completed a series of 30 risk assessments undertaken over the last 5 years on undesirable substances in animal feed reviewing the possible risks for animal and human health due to the presence of these substances in animal feed. EU legislation

  8. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    Science.gov (United States)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  9. Development of Operational Protocols for Electric Barrier Systems on the Chicago Sanitary and Ship Canal: Induction of Passage-Preventing Behaviors in Small Sizes of Silver Carp

    Science.gov (United States)

    2015-07-01

    Barrier Systems incorporate environmental water into an electrical circuit composed of conductors (the submersed electrodes) and a source of...arrays and flow of electric current in the system’s conductors and electrodes creating a waterborne electric field. The quantity of electric current...aquaculture systems housing silver carp prior to testing. Estimates of the voltage, pulse duration, and pulse frequency output capabilities of Electric Barrier

  10. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  11. Relationships between College Students' Credit Card Debt, Undesirable Academic Behaviors and Cognitions, and Academic Performance

    Science.gov (United States)

    Hogan, Eileen A.; Bryant, Sarah K.; Overymyer-Day, Leslie E.

    2013-01-01

    The acquisition of credit card debt by college students has long been a topic of concern. This study explores relationships among debt, undesirable academic behaviors and cognitions, and academic performance, through surveys of 338 students in a public university, replicating two past measures of credit card debt and creating new measures of…

  12. A survey on the presence of undesirable botanical substances in feed in the European Union

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Vancutsem, J.; Jorgensen, J.S.

    2009-01-01

    Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed lists a range of substances from botanical origin (weed seeds) and additionally some chemical compounds directly originating from specific weeds. In order to examine the actual

  13. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  14. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  15. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  16. Rice growing farmers efficiency measurement using a slack based interval DEA model with undesirable outputs

    Science.gov (United States)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2017-11-01

    In recent years eco-efficiency which considers the effect of production process on environment in determining the efficiency of firms have gained traction and a lot of attention. Rice farming is one of such production processes which typically produces two types of outputs which are economic desirable as well as environmentally undesirable. In efficiency analysis, these undesirable outputs cannot be ignored and need to be included in the model to obtain the actual estimation of firm's efficiency. There are numerous approaches that have been used in data envelopment analysis (DEA) literature to account for undesirable outputs of which directional distance function (DDF) approach is the most widely used as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, slack based DDF DEA approaches considers the output shortfalls and input excess in determining efficiency. In situations when data uncertainty is present, the deterministic DEA model is not suitable to be used as the effects of uncertain data will not be considered. In this case, it has been found that interval data approach is suitable to account for data uncertainty as it is much simpler to model and need less information regarding the underlying data distribution and membership function. The proposed model uses an enhanced DEA model which is based on DDF approach and incorporates slack based measure to determine efficiency in the presence of undesirable factors and data uncertainty. Interval data approach was used to estimate the values of inputs, undesirable outputs and desirable outputs. Two separate slack based interval DEA models were constructed for optimistic and pessimistic scenarios. The developed model was used to determine rice farmers efficiency from Kepala Batas, Kedah. The obtained results were later compared to the results obtained using a deterministic DDF DEA model. The study found that 15 out of 30 farmers are efficient in all cases. It

  17. Silver Toxicity With the Use of Silver-Impregnated Dressing and Wound Vacuum-Assisted Closure in an Immunocompromised Patient

    OpenAIRE

    LaRiviere, Cabrini A.; Goldin, Adam B.; Avansino, Jeffrey

    2011-01-01

    Silver-containing topical agents are used to help prevent infectious complications in wound therapy. Toxicity from topical silver agent exposure was initially reported in 1975 and was clinically characterized by granulocytopenia. Currently, the data regarding potential toxicity associated with silver-impregnated devices are limited. A 23-year-old patient receiving chemotherapy for acute lymphoblastic leukemia presented with necrotizing fasciitis of the abdominal wall and scrotum from a Crohn ...

  18. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  19. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  20. Development of Data Envelopment Analysis for the Performance Evaluation of Green Supply Chain with Undesirable Outputs

    Directory of Open Access Journals (Sweden)

    Alireza Alinezhad

    2016-08-01

    Full Text Available A fundamental problem is the use of DEA in multistep or multilevel processes such as supply chain, lack of attention to processes’ internal communications in a way that the recent studies on DEA in the context of serial processes have focused on closed systems that the outputs of one level become the inputs of the next level and none of the inputs enter the mediator process. The present study aimed to examine the general dimensions of an open multilevel process. Here, some of the data such as inputs and outputs are supposed to leave the system while other outputs turn into the inputs of the next level. The new inputs can enter the next level as well. We expand this mode for network structures. The overall performance of such a structure is considered as a weighted average of sectors’ performance or distinct steps. Therefore, this suggested model in this study, not only provides the possibility to evaluate the performance of the entire network, but creates the performance analysis for each of the sub-processes. On the other hand, considering the data with undesirable structure leads to more correct performance estimation. In the real world, all productive processes do not comprise desirable factors. Therefore, presenting a structure that is capable of taking into account the undesirable structure is of crucial importance. In this study, a new model in the DEA by network structure is offered that can analyze the performance considering undesirable factors.

  1. Assessment of undesirable dose to eye-melanoma patients after proton radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stolarczyk, L., E-mail: liliana.stolarczyk@ifj.edu.p [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Olko, P.; Cywicka-Jakiel, T.; Ptaszkiewicz, M.; Swakon, J.; Dulny, B.; Horwacik, T.; Obryk, B. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Waligorski, M.P.R. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Maria Sklodowska-Curie Memorial Institute, Centre of Oncology, Krakow Division, ul. Garncarska 11, 31-115, Krakow (Poland)

    2010-12-15

    Radiotherapy with a proton beam of initial energy 55-80 MeV is presently the clinically recommended therapy for some cases of intraocular melanoma such as large melanomas or tumours adjacent to critical organs. Evaluation and optimization of radiation doses outside the treatment volume may contribute to reducing undesirable side-effects and decreasing the risk of occurrence of secondary cancers, particularly for paediatric patients. In this work the undesired doses to organs were assessed basing on Monte Carlo calculation of secondary radiation transport and on results of measurements of neutron and {gamma}-ray doses at the proton therapy facility of the Institute of Nuclear Physics at Krakow. Dosimetry was performed using a He-3-based FHT 762 neutron monitor (Wendi II), a FH40G proportional counter (for {gamma}-rays), and MTS-7 (LiF:Mg,Ti) thermoluminescence detectors (TLDs). Organ doses were calculated in the ADAM anthropomorphic phantom using the MCNPX Monte Carlo transport code and partly verified, for {gamma}-ray doses, with TLD measurements in the RANDO Anderson anthropomorphic phantom. The effective dose due to undesired radiation, including exposure from scattered radiation during the entire process of proton radiotherapy and patient positioning using X-rays, does not exceed 1 mSv.

  2. The Undesirable Behaviors of Students in Academic Classrooms, and the Discipline Strategies Used by Faculty Members to Control Such Behaviors from the Perspective of the College of Education Students in King Saud University

    Science.gov (United States)

    Al Qahtani, Norah Saad Sultan

    2016-01-01

    This study aimed to identify the undesirable students' behaviors in academic classrooms, and the disciplinary, preventive and therapeutic strategies that will be used by faculty members to control those behaviors from the perspective of the College of Education's students in King Saud University. The results of the study has shown that the…

  3. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  4. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  5. Optimization of silver-dielectric-silver nanoshell for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad; Saliminasab, Maryam [Department of Physics, Razi University, Kermanshah 67144-15111 (Iran, Islamic Republic of)

    2013-08-15

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell.

  6. Undesirable Behaviors Elementary School Classroom Teachers Encounter in the Classroom and Their Reasons

    Directory of Open Access Journals (Sweden)

    E.G. Balcik

    2011-12-01

    Full Text Available The present study aims to determine how often elementary school teachers encounter undesirable behaviors in the classroom and what their thoughts regarding possible reasons of these behaviors are. The teachers’ opininon about the prevalence of these behaviors and their possible reasons were evaluated according to gender, marital status, level of class being taught, size of class being taught and it was tried to be determined if there were significant differences between variables. The measurement tool was applied to a total of 54 teachers at 5 schools in Gölcük district of the Kocaeli province. The data collection tool is composed of three sections. The first section is for establishing teachers’ personal information. In this study, as a data collection tool, a questionnaire was used. When preparing questions for the questionnaire, following the examination of resources available, the questionnaire prepared by Aksoy (1999 and used in the thesis study entitled “Classroom Management and Student Discipline in Elementary Schools of Ankara” and also used in the thesis study by Boyraz (2007 entitled “Discipline Problems that Candidate Teachers Servicing at Elementary Schools Encounter in the Classroom” was employed. Although the validity and reliability of the questionnaire was tested by Aksoy (1999 and Boyraz (2007, the reliability study for the questionnaire was retested and found to be 0,9. The questionnaire include 42 items. 19 of them are related to the reasons of undesirable behaviors observed in the classroom and 23 of them are related to undesirable behaviors observed in the classroom.

  7. A survey on the presence of undesirable botanical substances in feed in the European Union

    Directory of Open Access Journals (Sweden)

    van Raamsdonk LWD.

    2009-01-01

    Full Text Available Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed lists a range of substances from botanical origin (weed seeds and additionally some chemical compounds directly originating from specific weeds. In order to examine the actual status of enforcement and of the present occurrence of these botanical substances, a survey was carried out. A questionnaire was sent to 103 laboratories, including official control labs from all member states of the European Union. The results, indicating the frequency of occurrence as far as reported, are compared to the publications of the EU Rapid Alert System for Food and Feed (RASFF. A total of 44 questionnaires was returned (42.7% from 22 member states. Ten member states predominantly from north-western Europe appeared to have an active monitoring of botanical undesirable substances. The questionnaire results did not indicate that the other member states enforce this part of Directive 2002/32/EC. Reports on the frequency of occurrence include: a few to 25-50% of the samples contain traces of ergot (8 member states, a few to 24% contain at least some traces of thorn apple (6 member states, zero to 17% contain some castor oil plant seeds (3 member states, zero to a few samples contain Crotalaria seeds (3 member states, and zero to 6% contain traces of Sareptian mustard (4 member states. One member state conducted extra surveillance since several cases of animal intoxications have been reported. In some cases a coincidence with undesirable botanical substances was found.

  8. Environmental efficiency evaluation of china based on a kind of congestion and undesirable output coefficient

    Directory of Open Access Journals (Sweden)

    Song Malin

    2015-01-01

    Full Text Available The production “congestion” phenomenon is widespread in reality although few models nowadays consider its influences. In this study, production congestion is introduced into an environmental efficiency evaluation model and a new data envelopment analysis model that considers both production congestion and undesirable output is established so as to measure environmental efficiency evaluation effectively. On this basis, we divide technological change into productive technological change and energy-savings emission reduction technological change to establish their influences on the congestion phenomenon. The results show that productive technological change cannot relieve the degree of congestion while green technology change that stimulates environmental efficiency improvement can greatly alleviate situations of congestion.

  9. Distinguishing Technical Inefficiency from Desirable and Undesirable Congestion with an Application to Regional Industries in China

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-12-01

    Full Text Available Congestion is an important issue that requires the efficiency of decision-making units (DMUs. We first classify conventional congestion into congestion (newly defined and technical inefficiency, based on prior research and real applications. Modified definitions and mathematical expression of congestion, managerial inefficiency, and technical inefficiency are proposed to better illustrate the differences between them. Several modified models are provided to identify and recognize those types of inefficiencies and congestion. We then extend the model by considering the desirable and undesirable types of congestion simultaneously. The proposed approach is applied and verified by identifying resource congestion and environmental inefficiencies in China’s economic development.

  10. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies.

    Science.gov (United States)

    Bansod, Sunita Dashrath; Bawaskar, Manisha Subrashrao; Gade, Aniket Krishnarao; Rai, Mahendra Kumar

    2015-08-01

    Many scientists have focused their research on the role of nanotechnology for the control of human pathogens, but there are also many topical pathogens present in animals, which infect animals and transfer to humans. Topical therapy is extremely important for the management of dermatological condition in animals. Therefore, the present study aims to evaluate the efficacy of biogenic silver nanoparticles (AgNPs) in combination with herbal oils against animal skin infections which may be responsible for causing infections in human beings. Here, the authors synthesised and characterised the AgNPs from Azadirachta indica. The oils were extracted from medicinal plants including Cymbopogon citratus, Cymbopogon martini, Eucalyptus globules, A. indica and Ocimum sanctum and the antifungal and antibacterial activity of plant oils along with AgNPs were evaluated. An excision wound model was used for the study of wound healing activity in rabbits. AgNPs functionalised oil has demonstrated remarkable antimicrobial activity against pathogens present on the skin of animals. The nano-functionalised antimicrobial oils were used in the formulation of shampoo, soap and ointment for veterinary dermatology. Antimicrobial products of plant origin with AgNPs are valuable, safe and have a specific role in controlling diseases. The authors believe that this approach will be a good alternative therapy to solve the continuous antibiotic resistance developed by many bacterial pathogens and will be utilised in various animal contacting areas in medicine.

  11. A mechanism to compensate undesired stiffness in joints of prosthetic hands.

    Science.gov (United States)

    Smit, Gerwin; Plettenburg, Dick; Van der Helm, Frans

    2014-04-01

    Cosmetic gloves that cover a prosthetic hand have a parasitic positive stiffness that counteracts the flexion of a finger joint. Reducing the required input torque to move a finger of a prosthetic hand by compensating the parasitic stiffness of the cosmetic glove. Experimental, test bench. The parasitic positive stiffness and the required input torques of a polyvinyl chloride glove and a silicone glove were measured when flexing a metacarpophalangeal finger joint for 90°. To compensate this positive stiffness, an adjustable compensation mechanism with a negative stiffness was designed and built. A MATLAB model was created to predict the optimal settings of the mechanism, based on the measured stiffness, in order to minimize the required input torque of the total system. The mechanism was tested in its optimal setting with an applied glove. The mechanism reduced the required input torque by 58% for the polyvinyl chloride glove and by 52% for the silicone glove. The total energy dissipation of the joint did not change significantly. This study shows that the undesired positive stiffness in the joint can be compensated with a relatively simple negative stiffness mechanism, which fits inside a finger of a standard cosmetic glove. Clinical relevance This study presents a mechanism that compensates the undesired stiffness of cosmetic gloves on prosthetic hands. As a result, it requires less input force, torque and energy to move the fingers. Application of this mechanism in body-powered hands will reduce the control effort of the user.

  12. Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis.

    Science.gov (United States)

    Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema

    2016-12-01

    Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Eun Kyung Sohn

    2015-01-01

    Full Text Available To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs and silver nanowires (AgNWs released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD test guidelines, including a “Daphnia sp., acute immobilization test,” “Fish, acute toxicity test,” and “freshwater alga and cyanobacteria, growth inhibition test.” Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish, suggesting that the AgNPs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 1” for Raphidocelis subcapitata, while the AgNWs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 2” for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals. In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments.

  14. Peptide-stabilized, fluorescent silver nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon; Vosch, Tom André Jos; Jensen, Knud Jørgen

    2016-01-01

    Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA...

  15. Silver Ion Biocide Delivery System for Water Disinfection

    Science.gov (United States)

    Slote, Benjamin M.; Salley, Edward; Carr, Daniel; Kimble, Michael C.; Adam, Niklas

    2016-01-01

    U.S. space exploration missions have long considered returning to the Moon and exploration of Mars that challenge life support systems. For these long duration missions, there is interest in replacing the iodine water treatment system with ionic silver, a proven biocide. For long duration exploration missions, it is imperative that an effective biocide be used that prevents microbial growth, biofilm formation, and microbially induced corrosion in the water storage and distribution systems while minimizing logistical supply requirements associated with the biocide delivery system. Two biocide delivery systems have been developed that electrochemically produce silver ions for disinfecting water throughout the water storage and distribution system. One system uses a newly developed hybrid micro-filtration and ion-exchange membrane to produce an abundance of silver ions at the 1000 ppb level upstream in the water distribution system to prevent biofilm growth. This is followed by a downstream collection module that electrochemically removes these silver ions before the water is discharged. Another approach uses a membraneless reactor to produce a 1000 ppb silver ion concentration level that also has a mechanically driven electrode cleaning mechanism that removes oxide films ensuring long life operation. By maintaining a sufficiently high level of silver ions throughout the water storage and distribution system, biofilm formation is suppressed. This approach overcomes present concerns where spurious silver deposition occurs on the container and flow line surfaces thus lowering the silver ion concentration to unsatisfactory disinfection levels.

  16. Ability of silver-impregnated contact lenses to control microbial growth and colonisation

    OpenAIRE

    Mark D.P. Willcox; Emma B.H. Hume; Ajay K. Vijay; Robert Petcavich

    2010-01-01

    Purpose: To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. Methods: Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to ...

  17. Silver toxicity with the use of silver-impregnated dressing and wound vacuum-assisted closure in an immunocompromised patient.

    Science.gov (United States)

    Lariviere, Cabrini A; Goldin, Adam B; Avansino, Jeffrey

    2011-03-01

    Silver-containing topical agents are used to help prevent infectious complications in wound therapy. Toxicity from topical silver agent exposure was initially reported in 1975 and was clinically characterized by granulocytopenia. Currently, the data regarding potential toxicity associated with silver-impregnated devices are limited. A 23-year-old patient receiving chemotherapy for acute lymphoblastic leukemia presented with necrotizing fasciitis of the abdominal wall and scrotum from a Crohn disease-related psoas-enteric fistula. Surgical debridement of the soft-tissue and abdominal musculature was performed to the peritoneum. Silver-containing foam sponges and wound vacuum-assisted closure were applied directly to the peritoneum 2 weeks after initial debridement. Subsequently, the patient developed leukopenia, and workup revealed the serum silver level was 4 times normal level. Silver-impregnated sponges were discontinued and silver-free sponges and wound vacuum-assisted closure therapy resumed, followed by leukopenia resolution. Silver toxicity associated with routine application of silver-impregnated sponges has not been previously reported.

  18. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    Science.gov (United States)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  19. Research on China's aquaculture efficiency evaluation and influencing factors with undesirable outputs

    Science.gov (United States)

    Ji, Jianyue; Wang, Pingping

    2015-06-01

    Taking the aquaculture area, the number of farming boats and that of aquaculturist as input variables, the aquaculture production as desirable output variable and polluted economic loss as undesirable output variable, this paper conducts SBM model to evaluate the aquaculture efficiency based on the data of 16 aquaculture-developed provinces in China from 2004 to 2011. The results show the efficiency in China has not changed much in recent years with the efficiency values mainly between 0.39 and 0.53, and the efficiency of marine-aquaculture-dominated provinces is generally higher than that of freshwater-aquaculture-dominated ones. To analyze the difference under the efficiency, the panel Tobit model is used with education level factor, training factor, technology extension factor, technical level factor, scale factor and species factor as the efficiency influencing factors. The results show that technology extension factor and technical level factor have significant positive influence.

  20. The application of game theory and cognitive economy to analyze the problem of undesired location

    International Nuclear Information System (INIS)

    Villani, S.

    2008-01-01

    The analysts of the processes of public bodies decision - taking have long been discussing on the establishment of proper strategies to manage environmental conflicts - above all the so-called problems of undesired location of public works and facilities - efficiently (i.e. on a short-period basis so as to grant decision and agreement stability) and fairly (the parties' satisfaction is itself a further guarantee of decision and agreement stability). Each strategy, anyway, is still in progress, like a universe to create and explore. Therefore, in this paper, we will focus on the analysis of the problem and provide as well some theoretical proposals to arrange a new interpreting model of public bodies decision-taking processes based on the achievements of two new subject-matters: evolutionary game theory and cognitive economy. Both sciences share their investigation field with law and economic science. [it

  1. Undesirable sulphur and carbonyl flavor compounds in UHT milk: a review.

    Science.gov (United States)

    Zabbia, Alex; Buys, Elna M; De Kock, Henriette L

    2012-01-01

    Ultra High Temperature (UHT) processing leads to the formation of "cooked" and "flat" flavors in milk. These undesirable notes occur due to the volatile formation of a variety of sulphur containing compounds, methyl ketones and aliphatic aldehydes, derived from the constituents of the milk's matrix during thermal processing and storage. The "cooked" flavor of UHT milk is associated with the presence of a variety of sulphur containing compounds while the "stale" flavor is characterized by the dissipation of these sulphur volatiles and an increase of the formation and presence of both methyl ketones and aliphatic aldehydes over time. The extent to which the individual volatiles contribute to the overall flavor of UHT milk is not clear. The proposed formation of these volatiles, that is, the methods to control the intensity of "cooked" and "stale" flavors associated with UHT milk and extraction techniques for the isolation of these volatiles from milk, have been reviewed.

  2. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  3. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup; Lee, In Chul

    2011-01-01

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  4. BETWEEN THE RIGHT AND THE COMMON. HOW GROUPS REACT TO SOCIALLY UNDESIRABLE BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Komendant-Brodowska Agata

    2017-06-01

    Full Text Available The aim of the paper is to analyse the relationship between group characteristics and the scope of reaction of the group to socially undesirable behaviour. Sometimes small groups or communities fail to react to undesirable or violent behaviour and their apathy can have devastating consequences. Such a situation can occur among co-workers witnessing workplace mobbing, or neighbours who do not react to a suspicion of domestic violence. Reasons for their inaction are diverse and can include fear, doubts concerning the necessity of such a reaction, and also conformity. In the paper I examine a seemingly favourable situation: I assume that reaction is costless and all the members of the group would like to react (internalised norm, but they also want to conform. In order to analyse the factors that can influence the scope of group reaction, a structurally embedded sequential coordination game was played for different initial conditions. Computer simulations were conducted for networks of a specific type (Erd¨os-R´enyi random graph. The main aim of the analysis was to identify non-structural and structural features of the group that can impede or even block the intervention of the group. There is a positive relationship between the scope of group reaction and the strength of the internalized norm, whereas the level of conformity affects the chances of group intervention in a negative way. Heterogeneity of the group is an important factor - the scope of reaction is higher when members of the group have different levels of norm internalisation and conformity. There is a non-linear relationship between network density and the scope of reaction. Both low and high density can make it harder for people to act.

  5. Revitalising Silver Nitrate for Caries Management

    Directory of Open Access Journals (Sweden)

    Sherry Shiqian Gao

    2018-01-01

    Full Text Available Silver nitrate has been adopted for medical use as a disinfectant for eye disease and burned wounds. In dentistry, it is an active ingredient of Howe’s solution used to prevent and arrest dental caries. While medical use of silver nitrate as a disinfectant became subsidiary with the discovery of antibiotics, its use in caries treatment also diminished with the use of fluoride in caries prevention. Since then, fluoride agents, particularly sodium fluoride, have gained popularity in caries prevention. However, caries is an infection caused by cariogenic bacteria, which demineralise enamel and dentine. Caries can progress and cause pulpal infection, but its progression can be halted through remineralisation. Sodium fluoride promotes remineralisation and silver nitrate has a profound antimicrobial effect. Hence, silver nitrate solution has been reintroduced for use with sodium fluoride varnish to arrest caries as a medical model strategy of caries management. Although the treatment permanently stains caries lesions black, this treatment protocol is simple, painless, non-invasive, and low-cost. It is well accepted by many clinicians and patients and therefore appears to be a promising strategy for caries control, particularly for young children, the elderly, and patients with severe caries risk or special needs.

  6. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  7. Role of gold and silver nanoparticles in cancer nano-medicine.

    Science.gov (United States)

    Chugh, Heerak; Sood, Damini; Chandra, Ishita; Tomar, Vartika; Dhawan, Gagan; Chandra, Ramesh

    2018-03-13

    Development of nanoparticles (NPs) as a part of cancer therapeutics has given rise to a new field of research - cancer nanomedicine. In comparison to traditional anti-cancer drugs, NPs provide a targeted approach which prevents undesirable effects. In this communication, we have reviewed the role of gold and silver NPs (AgNPs) in the cancer nanomedicine. The preparation of gold NPs (AuNPs) and AgNPs can be grouped into three categories - physical, chemical and biological. Among the three approaches, the biological approach is growing and receiving more attention due to its safe and effective production. In this review, we have discussed important methods for synthesis of gold and AgNPs followed by techniques employed in characterization of their physicochemical properties, such as UV-visible spectroscopy, electron microscopy (TEM and SEM) and size and surface analysis (DLS). The mechanism of formation of these NPs in an aqueous medium through various stages - reduction, nucleation and growth has also been reviewed briefly. Finally, we conclude our review with the application of these NPs as anti-cancer agents and numerous mechanisms by which they render cancer cell toxicity.

  8. Mineral commodity profiles: Silver

    Science.gov (United States)

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  9. Caries preventive efficacy of silver diammine fluoride (SDF) and ART sealants in a school-based daily fluoride toothbrushing program in the Philippines.

    Science.gov (United States)

    Monse, Bella; Heinrich-Weltzien, Roswitha; Mulder, Jan; Holmgren, Christopher; van Palenstein Helderman, Wim H

    2012-11-21

    Occlusal surfaces of erupting and newly erupted permanent molars are particularly susceptible to caries.The objective of the study was to assess and compare the effect of a single application of 38% SDF with ART sealants and no treatment in preventing dentinal (D3) caries lesions on occlusal surfaces of permanent first molars of school children who participated in a daily school-based toothbrushing program with fluoride toothpaste. The prospective community clinical trial in the Philippines was conducted over a period of 18 months and included 704 six- to eight-year-old school children in eight public elementary schools with a daily school-based fluoride toothpaste brushing program. Children were randomly assigned for SDF application or ART sealant treatment. Children from two of the eight schools did not receive SDF or ART sealant treatment and served as controls. SDF or ART sealant treatment was applied on sound occlusal surfaces of permanent first molars. Surfaces that were originally defined as sound at baseline but which changed to dentinal (D3) caries lesions were defined as surfaces with new caries (caries increment). Non-compliance to the daily toothbrushing program in three schools offered the opportunity to analyze the caries preventive effect of SDF and sealants separately in fluoride toothpaste brushing and in non-toothbrushing children. In the brushing group, caries increment in the SDF treatment group was comparable with the non-treatment group but caries increment in the sealant group was lower than in the non-treatment group with a statistically significant lower hazard ratio of 0.12 (0.02-0.61). In the non-brushing group, caries increment in the SDF treatment group and the sealant group was lower than the non-treatment group but the hazard ratio was only statistically significant for the sealant group (HR 0.33; 0.20-0.54). Caries increment was lower in toothbrushing children than in non-toothbrushing children. Hazard ratios reached statistical

  10. Caries preventive efficacy of silver diammine fluoride (SDF and ART sealants in a school-based daily fluoride toothbrushing program in the Philippines

    Directory of Open Access Journals (Sweden)

    Monse Bella

    2012-11-01

    Full Text Available Abstract Background Occlusal surfaces of erupting and newly erupted permanent molars are particularly susceptible to caries. The objective of the study was to assess and compare the effect of a single application of 38% SDF with ART sealants and no treatment in preventing dentinal (D3 caries lesions on occlusal surfaces of permanent first molars of school children who participated in a daily school-based toothbrushing program with fluoride toothpaste. Methods The prospective community clinical trial in the Philippines was conducted over a period of 18 months and included 704 six- to eight-year-old school children in eight public elementary schools with a daily school-based fluoride toothpaste brushing program. Children were randomly assigned for SDF application or ART sealant treatment. Children from two of the eight schools did not receive SDF or ART sealant treatment and served as controls. SDF or ART sealant treatment was applied on sound occlusal surfaces of permanent first molars. Surfaces that were originally defined as sound at baseline but which changed to dentinal (D3 caries lesions were defined as surfaces with new caries (caries increment. Non-compliance to the daily toothbrushing program in three schools offered the opportunity to analyze the caries preventive effect of SDF and sealants separately in fluoride toothpaste brushing and in non-toothbrushing children. Results In the brushing group, caries increment in the SDF treatment group was comparable with the non-treatment group but caries increment in the sealant group was lower than in the non-treatment group with a statistically significant lower hazard ratio of 0.12 (0.02-0.61. In the non-brushing group, caries increment in the SDF treatment group and the sealant group was lower than the non-treatment group but the hazard ratio was only statistically significant for the sealant group (HR 0.33; 0.20-0.54. Caries increment was lower in toothbrushing children than in non

  11. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Yulong Guo

    Full Text Available Although artificial microRNA (amiRNA technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1, based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of ami

  12. The presence of undesirable mould species on the surface of dry sausages

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2008-01-01

    Full Text Available Transition from manufacture to the industrial way of meat production and processing, as well as contemporary concept of food quality and safety, have led to the application of starter cultures. Their application leads towards the streamlining of the production process in the desired direction, quality improvement and its harmonization, and thereby to its standardization. Application of moulds in the meat industry is based on positive effects of their proteolytic and lipolytic egzoenzymes which, as a consequence, leads to the creation of characteristic sensory properties ('flavor' of fermented products. Penicillium nalgiovense is a typical representative of moulds used in the production of fermented sausages-salamis from our region. Samples of 'zimska salama' (dry sausage, produced with Penicillium nalgiovense, were evaluated as hygienically unacceptable. Their sensory properties changed due to contamination of this mould during the ripening process. Micological analysis discovered the presence of Penicillium aurantiogriseum, which is a frequent mould contaminant in the meat industry. At the same time, thin layer chromatography revealed no possibility of metabolic activity of this mould in the creation of mycotoxins. However, the presence of this mould on the surface of 'zimska salama' is considered as undesirable due to formation of 'off flavor' in products. Such product is considered as hygienically unacceptable and cannot be used for the human consumption.

  13. On the undesired frequency chirping in photonic time-stretch systems

    Science.gov (United States)

    Xu, Yuxiao; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2017-12-01

    The technique of photonic time stretch (PTS) has been intensively investigated in the past decade due to its potential in the acquisition of ultra-high speed signals. The frequency-related RF power fading in the PTS systems with double sideband (DSB) modulation has been well-known, which limits the maximum modulation frequency. Some solutions have been proposed to solve this problem. In this paper, we report another effect, i.e., undesired frequency chirping, which also relates to the performance degradation of PTS systems with DSB modulation, for the first time to our knowledge. Distinct from the nonlinearities caused by nonlinear modulation and square-law photodetection, which is common in radio frequency analog optical links, this frequency chirping originates from the addition of two beating signals with a relative delay after photodetection. A theoretical model for exactly describing the frequency chirping is presented, and is then verified by simulations. Discussion on the method to avoid the frequency chirping is also presented.

  14. Regime Shifts and Ecosystem Service Generation in Swedish Coastal Soft Bottom Habitats: When Resilience is Undesirable

    Directory of Open Access Journals (Sweden)

    Max Troell

    2005-06-01

    Full Text Available Ecosystems can undergo regime shifts where they suddenly change from one state into another.  This can have important implications for formulation of management strategies, if system characteristics develop that are undesirable from a human perspective, and that have a high resistance to restoration efforts. This paper identifies some of the ecological and economic consequences of increased abundance of filamentous algae on shallow soft bottoms along the Swedish west coast. It is suggested that a successive increase in the sediment nutrient pool has undermined the resilience of these shallow systems. After the regime shift has occurred, self-generation properties evolve keeping the system locked in a high-density algae state. The structural and functional characteristics of the new system state differ significantly from the original one, resulting in less valuable ecosystem goods and services generated for society. In Sweden, loss of value results from the reduced capacity for mitigating further coastal eutrophication, reduced habitat quality for commercial fishery species, and the loss of aesthetic and recreational values.

  15. Tracking Progress in Improving Diagnosis: A Framework for Defining Undesirable Diagnostic Events.

    Science.gov (United States)

    Olson, Andrew P J; Graber, Mark L; Singh, Hardeep

    2018-01-29

    Diagnostic error is a prevalent, harmful, and costly phenomenon. Multiple national health care and governmental organizations have recently identified the need to improve diagnostic safety as a high priority. A major barrier, however, is the lack of standardized, reliable methods for measuring diagnostic safety. Given the absence of reliable and valid measures for diagnostic errors, we need methods to help establish some type of baseline diagnostic performance across health systems, as well as to enable researchers and health systems to determine the impact of interventions for improving the diagnostic process. Multiple approaches have been suggested but none widely adopted. We propose a new framework for identifying "undesirable diagnostic events" (UDEs) that health systems, professional organizations, and researchers could further define and develop to enable standardized measurement and reporting related to diagnostic safety. We propose an outline for UDEs that identifies both conditions prone to diagnostic error and the contexts of care in which these errors are likely to occur. Refinement and adoption of this framework across health systems can facilitate standardized measurement and reporting of diagnostic safety.

  16. From silver nanoparticles to nanostructures through matrix chemistry

    International Nuclear Information System (INIS)

    Ayyad, Omar; Munoz-Rojas, David; Oro-Sole, Judith; Gomez-Romero, Pedro

    2010-01-01

    Direct in situ reduction of silver ions by a biopolymer such as agar, without any other reducing nor capping agent is shown in this article to lead either to nanoparticles (typically 12(2) nm in an optimized case) or to more complex nanostructures depending on the reaction conditions used. This approach takes advantage of the porous polymer lattice acting as a template and leads to hybrid Ag-Agar materials with long-term synergic stability. Silver acts as an antibacterial agent for agar whereas the biopolymer prevents agglomeration of the inorganic nanoparticles leading to a stable nanocomposite formed by a thermoreversible biopolymer from which silver nanoparticles can eventually be recovered.

  17. Role of Fault Attributions and Other Factors in Adults' Attitudes Toward Hypothetical Children With an Undesirable Characteristic.

    Science.gov (United States)

    Wadian, Taylor W; Sonnentag, Tammy L; Jones, Tucker L; Barnett, Mark A

    2018-01-01

    A total of 184 adults read descriptions of six hypothetical children with various undesirable characteristics (i.e., being extremely overweight, extremely aggressive, extremely shy, a poor student, a poor athlete, displaying symptoms of attention deficit hyperactivity disorder). Following each description, the participants were asked to rate how much they disagree or agree that the child, the child's parents, and the child's biological condition (i.e., "something wrong inside the child's body or brain") are at fault for the onset and the perpetuation of the undesirable characteristic. In addition, the participants were asked to rate their attitude toward each child using a 100-point "feeling thermometer." Analyses of the participants' various fault attribution ratings revealed that they tended to agree more strongly that a child's parents and his/her biological condition are at fault for the onset and the perpetuation of the child's undesirable characteristic than is the child him/herself. Despite the participants' reluctance to blame a hypothetical child for his/her undesirable characteristic, regression analyses revealed that, in general, the more they blamed the child for the onset of his/her undesirable characteristic, the more negative their attitude was toward the child. However, the participants' ratings of the extent to which the child's parents or biological condition are at fault for the onset and the perpetuation of the child's undesirable characteristic were not found to be associated with their attitude toward any of the children. Similarities and differences between the present findings and those reported in prior studies involving younger individuals are addressed.

  18. Cadmium exposure: Health hazards of silver cottage industry in developing countries

    OpenAIRE

    Sethi, P. K.; Khandelwal, Dinesh; Sethi, Nitin

    2006-01-01

    In countries such as India, the silver jewelry industry is an important cottage industry. Silver is mixed with cadmium and then used to make silver jewelry. During this process there is a formation of cadmium fumes, and the workers inhale the fumes. Cadmium is a neurotoxic and nephrotoxic heavy metal, and there are no national policies to prevent exposure to such chemicals. We will present a case of cadmium induced peripheral neuropathy, nephropathy, and decreased bone density.

  19. Techniques Use by Science, Technology and Mathematics (STM) Teachers for Controlling Undesirable Classroom Behaviours in Anambra State Secondary Schools

    Science.gov (United States)

    Chinelo, Okigbo Ebele; Nwanneka, Okoli Josephine

    2016-01-01

    This study investigated the techniques used by secondary school Science Technology and Mathematics (STM) teachers in controlling undesirable behaviours in their classrooms. It adopted descriptive survey design in which 178 Anambra State teachers teaching STM subjects in senior secondary were involved in the research. Two sections of questionnaire…

  20. The Emperor’s New Clothing: National Responses to “Undesirable and Unreturnable” Aliens under Asylum and Immigration Law

    NARCIS (Netherlands)

    Cantor, David James; van Wijk, J.; Singer, Sarah; Bolhuis, M.P.

    2017-01-01

    The “scandal” of foreign criminals whom our governments cannot send back to their own countries has become something of a tabloid obsession. Yet, while suspected or convicted of serious crimes or considered to pose a danger to society, such “undesirable and unreturnable” aliens equally often

  1. Silver Nanoparticles in Alveolar Bone Surgery Devices

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2012-01-01

    Full Text Available Silver (Ag ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cells in vitro and in vivo in animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.

  2. Production of porous filter elements from PEUAPM nanocomposites and silver nanoparticles

    International Nuclear Information System (INIS)

    Bizzo, M.A.; Hui, W.S.

    2014-01-01

    The production of filter elements for water based in polymers is widespread in the market, but has an undesirable characteristic: they are not efficient and able to retain or eliminate microorganisms at all times. This paper proposes to produce nanocomposite filters with biocidal properties composed of ultra-high molecular weight polyethylene(UHMWPE) and silver nanoparticles, the UHMWPE is responsible for the uniform porous structure of the filters and the silver nanoparticles incorporated on the polymer are responsible for the biocide action. Particulate polymer that presents a different particle size curve was used for sintering the filters. Samples of filter elements obtained in this work were characterized by the techniques of X-ray diffraction, scanning electron microscopy and EDS microanalysis. The results indicated a porosity of approximately 49% in the filter, and the formation of the nanocomposite. key-words: nanocomposites, silver, UHMWPE, filter elements. (author)

  3. Phosphate binders affect vitamin K concentration by undesired binding, an in vitro study.

    Science.gov (United States)

    Neradova, A; Schumacher, S P; Hubeek, I; Lux, P; Schurgers, L J; Vervloet, M G

    2017-05-02

    Vascular calcification is a major contributing factor to mortality in end stage renal disease (ESRD). Despite the efficacy of phosphate binders to improve hyperphosphatemia, data on vascular calcification are less clear. There seems to be a difference in attenuation or delay in progression between different binders. In this in vitro experiment we tested whether phosphate binders could limit bioavailability of vitamin K2 by undesired binding. Vitamin K-deficiency limits activation of the vascular tissue mineralization inhibitor matrix γ-carboxyglutamate (Gla) protein (MGP) thereby exacerbating vascular calcification. In this experiment vitamin K2 (menaquinone-7; MK-7) binding was assessed by adding 1 mg of vitamin K2 to a medium with pH 6 containing 67 mg phosphate binder with either 7 mg of phosphate or no phosphate. Five different phosphate binders were tested. After five and a half hours vitamin K was analyzed by HPLC. All experiments were performed in triplicate. Sucroferric-oxyhydroxide and sevelamer carbonate did not significantly bind vitamin K2, both in solution only containing vitamin K2 or in combination with phosphate. Calcium acetate/magnesium carbonate binds vitamin K2 strongly both in absence (p = 0.001) and presence of phosphate (p = 0.003). Lanthanum carbonate significantly binds vitamin K2 in solution containing only vitamin K2 (p = 0.005) whereas no significant binding of vitamin K2 was observed in the solution containing vitamin K2 and phosphate (p = 0.462). Calcium carbonate binds vitamin K2 significantly in a solution with vitamin K2 and phosphate (p = 0.009) whereas without phosphate no significant binding of vitamin K2 was observed (p = 0.123). Sucroferric-oxyhydroxide and sevelamer carbonate were the only binders of the five binders studied that did not bind vitamin K2 in vitro. The presence or absence of phosphate significantly interferes with vitamin K2 binding so phosphate binders could potentially limit

  4. The silver lining: towards the responsible and limited usage of silver.

    Science.gov (United States)

    Naik, K; Kowshik, M

    2017-11-01

    Silver has attracted a lot of attention as a powerful, broad spectrum and natural antimicrobial agent since the ancient times because of its nontoxic nature to the human body at low concentrations. It has been used in treatment of various infections and ulcers, storage of water and prevention of bacterial growth on the surfaces and within materials. However, there are numerous medical and health benefits of colloidal or nanosilver apart from its microbicidal ability which as yet has not been fully embraced by the medical community. These include antiplatelet activity, antioxidant effect, anticancer activity, wound healing and bone regeneration, enhancement of immunity, and increase in antibiotic efficiency. Additionally silver also provides protection against alcohol toxicity, upper respiratory tract infections and stomach ailments. Although nanosilver has been proposed for various topical applications, its usage by ingestion and inhalation remains controversial due to the lack of detailed and precise toxicity information. These beneficial properties of silver can be utilized by using silver at very low concentrations which are not harmful to the human body and environment. The following review discusses the diverse medical applications of silver and further recommends human clinical studies for its in vivo usage. #x00A9; 2017 The Society for Applied Microbiology.

  5. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  6. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  7. Absorbent silver (I) antimicrobial fabrics

    Science.gov (United States)

    In recent years, silver in form of silver ions, has been gaining importance in the wound management as an effective broad-spectrum antimicrobial agent. Silver has a long history as an antimicrobial agent, especially in the treatment of wounds. Alginates and carboxymethyl (CM) cotton contain carboxyl...

  8. Ternary Silver Halide Nanocrystals.

    Science.gov (United States)

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO 2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  9. Silver-palladium cathode

    Energy Technology Data Exchange (ETDEWEB)

    Poizot, Philippe [Laboratoire de Reactivite et Chimie des Solides, UMR CNRS 6007, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex (France); Simonet, Jacques, E-mail: jacques.simonet@univ-rennes1.f [Laboratoire MaCSE, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France)

    2010-12-15

    The formation of silver-palladium electrodes is described. It mainly corresponds to the palladization of silver by means of treatment with palladium salts (nitrate and sulphate) in acidic media. Other ways may exist such as the modification of solid conductors like carbons by deposition of a silver-palladium alloy. By using those electrodes in polar aprotic solvents, the one-electron cleavage of carbon-halogen bonds of most alkyl iodides and bromides may yield free alkyl radicals. Coupling and cross-coupling reactions can easily be carried out at such electrodes. The present review aims at discussing the electro-catalytic process as well as providing an update on the state of the art on this new mode of scission regarding carbon-heteroatom bonds.

  10. Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films

    Science.gov (United States)

    Sygnatowicz, Michael; Keyshar, Kunttal; Tiwari, Ashutosh

    2010-07-01

    Silver-doped hydroxyapatite nanopowders were prepared using a solution based sol-gel method and thoroughly characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Antibacterial tests showed silver-doped HAP powders prevented the growth and reproduction of bacteria. Silver-doped HAP powders were pressed into pellets and on these pellets a pulsed laser deposition (PLD) technique was employed to grow amorphous and crystalline thin films on sapphire substrates. Crystalline films had silver nano-particles present within the HAP matrix. Film stability tests showed crystalline films to be far more stable in prolonged solution submersion than their amorphous counterparts.

  11. Durable silver mirror with ultra-violet thru far infra-red reflection

    Science.gov (United States)

    Wolfe, Jesse D.

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  12. Silver azide photolysis

    OpenAIRE

    Surovoy, E. P.; Sirik, S. M.; Bugerko, L. N.

    2007-01-01

    The preliminary silver azide light irradiation (?=365 nm, I>1·1015 quanta·cm-2·с-1) in vacuum (Р=1·10-5 Pа) alongside with increase in photolisys speed and a photocurrent results in occurrence new long-wave (up to ?=1280 nm) area of spectral sensitivity. Constants of silver azide photolysis speed are determined. As a result of measurements of a contact potential difference, volt - ampere of characteristics, a contact photoelectrical moving force, a photocurrent it is established, that at silv...

  13. Silver-Russell syndrome

    Directory of Open Access Journals (Sweden)

    Shohela Akhter

    2016-08-01

    Full Text Available Silver-Russell syndrome is clinically and genetically a heterogeneous disorder. In most of the cases, etiology is unknown, only in 10% cases defect in chromosome 7 is identified. It bas distinctive facial features and asymmetric limbs. Most predominant symptom is growth failure. A case of Silver-Russell syndrome reported here who presented with growth failure, hemihypertrophy ofleft side oftbe body, dysmorphic facial profile and difficulty in speech. Counseling was done with the parents regarding the etiology, progression and outcome of the disease.

  14. UNDESIRED REACTIONS AT THE UROGRAPHY IN THE CORRELATION OF THE IODIC AND THE NON-TODIC CONTRAST MEDIA

    Directory of Open Access Journals (Sweden)

    Rade R. Babić

    2000-07-01

    Full Text Available The paper analyzes the undesired reactions at 6053 urographies (IVU in thecorrelation of the iodic and the non-iodic contrast media (ICM.Depending on the allergological status the ICM (iodic or non-iodic is chosenfor the sake of carrying out an urographic examination as well as the necessarypremedication measures.The undesired reactions to the TCM are registered in 4,87% (1:20 TVU,namely in 5,6% (1:17 TVU to the iodic and in 2,39% (1:41 IVU to the non-iodicICM.At the intravenous application of the iodic ICM at the IVU the undesiredreactions are registered for2,4 times more often than at the application of the non-iodicICM.

  15. Order and control in the environment: Exploring the effects on undesired behaviour and the importance of locus of control

    OpenAIRE

    Jansen, A.M.; Giebels, Ellen; van Rompay, Thomas Johannes Lucas; Austrup, Sebastian; Junger, Marianne

    2017-01-01

    Purpose This study aimed at gaining more insight into the combined influence of environmental factors and personal vulnerability to environmental cues on cheating behaviour in a task-related indoor setting. We propose that a disorderly environment increases cheating as it implicitly signals that undesirable behaviours are common. Camera presence is expected to buffer these effects. We included locus of control (LOC) as a personality variable, as we expected individuals with an external LOC to...

  16. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat.

    Science.gov (United States)

    Kulthong, Kornphimol; Srisung, Sujittra; Boonpavanitchakul, Kanittha; Kangwansupamonkon, Wiyong; Maniratanachote, Rawiwan

    2010-04-01

    Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles.

  17. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat

    Science.gov (United States)

    2010-01-01

    Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles. PMID:20359338

  18. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat

    Directory of Open Access Journals (Sweden)

    Kulthong Kornphimol

    2010-04-01

    Full Text Available Abstract Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus and Gram-negative (E. coli bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles.

  19. Ability of silver-impregnated contact lenses to control microbial growth and colonisation

    Science.gov (United States)

    Willcox, Mark D.P.; Hume, Emma B.H.; Vijay, Ajay K.; Petcavich, Robert

    2010-01-01

    Purpose To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. Methods Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. Results Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. Conclusions Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.

  20. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  1. An electroplated copper–silver alloy as antibacterial coating on stainless steel

    DEFF Research Database (Denmark)

    Ciacotich, Nicole; Din, Rameez Ud; Sloth, Jens Jørgen

    2018-01-01

    electroplated with a copper-silver alloy with the aim of developing antibacterial surfaces for the medical and health care sector. The microstructural characterization showed a porous microstructure of electroplated copper-silver coating and a homogeneous alloy with presence of interstitial silver. The copper-silver......Transfer and growth of pathogenic microorganisms must be prevented in many areas such as the clinical sector. One element of transfer is the adhesion of pathogens to different surfaces and the purpose of the present study was to develop and investigate the antibacterial efficacy of stainless steel...... alloy coating showed active corrosion behavior in chloride-containing environments. ICP-MS measurements revealed a selective and localized dissolution of copper ions in wet conditions due to its galvanic coupling with silver. No live bacteria adhered to the copper-silver surfaces when exposed...

  2. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    Silver has been recognized for its antimicrobial properties for centuries. Most studies on the antibacterial efficacy of silver, with particular emphasis on wound healing, have been performed on planktonic bacteria. Our recent studies, however, strongly suggest that colonization of wounds involves...... bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...

  3. Synthesis and applications of novel silver nanoparticle structures

    Science.gov (United States)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a

  4. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  5. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  6. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Science.gov (United States)

    Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.

    2011-07-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  7. 21 CFR 73.2500 - Silver.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Silver. 73.2500 Section 73.2500 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2500 Silver. (a) Identity. (1) The color additive, silver, is a crystalline powder of high purity silver prepared by the reaction of silver nitrate with ferrous...

  8. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    Science.gov (United States)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  9. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  10. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  11. Identification of undesirable white-colony-forming yeasts appeared on the surface of Japanese kimchi.

    Science.gov (United States)

    Suzuki, Ayaka; Muraoka, Naomi; Nakamura, Mariko; Yanagisawa, Yasuhira; Amachi, Seigo

    2018-02-01

    To identify yeasts involved in white-colony formation on Japanese commercial kimchi products, three types of kimchi were prepared and fermented at four different temperatures. At 4 °C, yeast colonies did not appear until 35 days, while more rapid white-colony formation occurred at higher temperatures (10, 15, and 25 °C). Combination of PCR-DGGE and direct isolation of yeasts from white colonies revealed that Kazachstania exigua and K. pseudohumilis were responsible for the white-colony formation. Inoculation of the isolated Kazachstania strains into fresh kimchi successfully reproduced white-colony formation at 15 °C but not at 4 °C. Growth experiments in liquid medium revealed that Kazachstania spp. grew fast at 15 °C even in the presence of acidulants, which are commonly added to Japanese kimchi products for prevention of yeast growth. These results suggest that white-colony formation on Japanese kimchi is caused by the genus Kazachstania, and that one of important factors determining white-colony formation is its fermentation temperature.

  12. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    International Nuclear Information System (INIS)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua; Hahm, Ki Baik

    2011-01-01

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis

  13. Unexpected and undesired conservation outcomes of wildlife trade bans—An emerging problem for stakeholders?

    Directory of Open Access Journals (Sweden)

    Diana S. Weber

    2015-01-01

    Full Text Available CITES regulates international trade with the goal of preventing over-exploitation, thus the survival of species are not jeopardized from trade practices; however it has been used recently in nontrade conservation measures. As an example, the US proposed to up-list polar bears under CITES Appendix I, despite that the species did not conform to the biological criteria. Polar bears were listed as ‘threatened’ under US ESA in 2008, in response to loss of sea-ice and warming temperatures. In Nunavut, where most of Canada’s polar bears are harvested, the resulting trade ban did not decrease total harvest after the ESA listing but reduced US hunter participation and the proportion of quotas taken by sport hunters from specific populations. Consequently, the import ban impacted livelihoods of Arctic indigenous communities with negative conservation — reduced tolerance for dangerous fauna and affected local participation in shared management initiatives. The polar bear may be the exemplar of an emerging problem: the use of trade bans in place of action for non-trade threats, e.g., climate change. Conservation prospects for this species and other climate-sensitive wildlife will likely diminish if the increasing use of trade bans to combat non-trade issues cause stakeholders to lose faith in participatory management.

  14. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ki Baik Hahm

    2011-07-01

    Full Text Available Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  15. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Hahm, Ki Baik, E-mail: hahmkb@gachon.ac.kr [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Gastroenterology, Gachon Graduate School of Medicine, Gil Hospital, Incheon 406-840 (Korea, Republic of)

    2011-07-25

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  16. Overview of undesirable effects of using diatomaceous earths for direct mixing with grains

    Directory of Open Access Journals (Sweden)

    Korunić Zlatko

    2016-01-01

    Full Text Available Despite numerous advantages of diatomaceous earth (DE, its use for direct mixing with grains to control stored-product insects remains limited because of some very serious obstacles and disadvantages. The main obstacles preventing a wider use of DEs for mixing with grain, such as health concerns, the reduction in bulk density, differences in insect species tolerance to the same DE formulation, the effects of grain moisture and temperature on the effectiveness against insects, the influence of various commodities on DE efficacy, the use of DEs in some other fields, and possible solutions for overcoming DE limitations during direct mixing with grains are described in this manuscript. The same attempts have been made to discover new ways of increasing significantly the effectiveness against insects when much lower concentrations are used for direct mixing with grains. If these newer enhanced formulations can respond to the existing limitations of diatomaceous earth, a wider utilization of diatomaceous earth may be expected to control stored-product insect pests.

  17. Using the incidence and impact of behavioural conditions in guide dogs to investigate patterns in undesirable behaviour in dogs

    OpenAIRE

    Caron-Lormier, Geoffrey; Harvey, Naomi D.; England, Gary C.W.; Asher, Lucy

    2016-01-01

    The domestic dog is one of our most popular companions and longest relationships, occupying different roles, from pet to working guide dog for the blind. As dogs age different behavioural issues occur and in some cases dogs may be relinquished or removed from their working service. Here we analyse a dataset on working guide dogs that were removed from their service between 1994 and 2013. We use the withdrawal reasons as a proxy for the manifestation of undesirable behaviour. More than 7,500 d...

  18. Impact of Silver Nanoparticles on Haemolysis, Platelet Function and Coagulation

    Directory of Open Access Journals (Sweden)

    Julie Laloy

    2014-09-01

    Full Text Available Silver nanoparticles (Ag NPs are increasingly used in biomedical applications because of their large antimicrobial spectrum. Data in the literature on the ability of Ag NPs to perform their desired function without eliciting undesirable effects on blood elements are very limited and contradictory. We studied the impact of Ag NPs on erythrocyte integrity, platelet function and blood coagulation. Erythrocyte integrity was assessed by spectrophotometric measurement of haemoglobin release. Platelet adhesion and aggregation was determined by light transmission aggregometry and scanning electron microscopy. The calibrated thrombin generation test was used to study the impact on coagulation cascade. We demonstrated that Ag NPs induced haemolysis. They also increase platelet adhesion without having any impact on platelet aggregation. Finally, they also had procoagulant potential. Bringing all data from these tests together, the no observed effect concentration is 5 μg/mL.

  19. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  20. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  1. Silver Nanoparticles as Potential Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Gianluigi Franci

    2015-05-01

    Full Text Available Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

  2. Silver nanoparticles as potential antibacterial agents.

    Science.gov (United States)

    Franci, Gianluigi; Falanga, Annarita; Galdiero, Stefania; Palomba, Luciana; Rai, Mahendra; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-05-18

    Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

  3. A dosimetric system for the evaluation of undesired neutron dose in radiotherapy treatments with protons: experimental method and MC simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, A. [INFN, Torino (Italy); Fasolo, F.; Ongaro, C.; Durisi, E. [Torino Univ., Torino (Italy). Dipartimento di Fisica Sperimentale; Nastasi, U. [Ospedale S. Giovanni, Torino (Italy); Scielzo, G.; Fabris, M. [IRCC, Candiolo (Italy); Burn, K.W. [ENEA ERGSPIEC, Bologna (Italy)

    2002-07-01

    Linear accelerator is nowadays the most used radiotherapy device to treat tumour disease. In a number of cases secondary malignancies, due to the undesired dose delivered to the patient, could arise. The optimization of radiotherapy treatment can be obtained only through an accurate evaluation of the undesired dose. A method is presented to evaluate the photoneutron dose produced by GDR during cancer radiotherapy with energetic proton beams. It consists of a computer simulation code based on MCNP4B, in which the new routine GAMMAN was implemented, for the accurate study of photoneutron production in high Z and low Z elements. An experimental technique, based on a bubble passive spectrometer, allows direct measurements of photoneutron spectra at the patient plane, also inside the treatment zone. For the evaluation of neutron contribution to the dose at clinical organs, a new anthropomorphic phantom has been designed and realized, following ICRP60 recommendations. The results are presented for medical accelerators, equipped both with traditional collimator system and with multi leaf collimators.

  4. Removal of silver nanoparticles by coagulation processes

    International Nuclear Information System (INIS)

    Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

    2013-01-01

    Highlights: • This study investigated the removal of AgNP suspensions by four regular coagulants. • The optimal removal efficiencies for the four coagulants were achieved at pH 7.5. • The removal efficiency of AgNPs was affected by the natural water characteristics. • TEM and XRD showed that AgNPs or silver-containing NPs were adsorbed onto the flocs. -- Abstract: Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca 2+ and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions

  5. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    Science.gov (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model.

    Science.gov (United States)

    Tavakoli, Hamidreza; Rastegar, Hossein; Taherian, Mahdi; Samadi, Mohammad; Rostami, Hossein

    2017-10-20

    Nano packaging is currently one of the most important topics in food packaging technologies. The aim of the application of this technology in food packaging is increasing shelf life of foods by preventing internal and external corruption and microbial contaminations. Use of silver nanoparticles in food packaging has recently attracted much attention. The aim of this study was to investigate the effect of nano-silver packaging in increasing the shelf life packages of nuts in an In vitro model. In this experimental study, the effects of different nano-silver concentrations (0, 1, 2 and 3 percent) on biological and chemical properties of 432 samples of nuts including walnuts, hazelnuts, almonds and pistachios were evaluated during 0, 3, 6, 9, 12, 15, 18, 21 and 24 months. In most samples, different concentrations of nano-silver (1, 2 and 3 %) significantly reduced total microbial count, mold and coliform counts compared to control group and the 3% nano-silver concentration was more effective than other concentrations (Peffect especially when 2% and 3% nano-silver concentrations were used. Nano-silver also prevented growth of mold and so prevented aflatoxin production in all treatment groups. Results of chemical and biological tests showed that the silver nanoparticles had a significant effect on increasing the shelf life of nuts. The highest shelf life belonged to pistachios, almonds, hazelnuts and walnuts with 20, 19, 18 and 18 months, respectively. The shelf life was associated with amount of silver nanoparticles. The highest antimicrobial activity was observed when 3% nano-silver concentration was used in pistachios. The shelf life of control groups in similar storage conditions were calculated for an average of 13 months. In conclusion, the results of this study demonstrate the efficacy of nano-silver packing in increasing shelf life of nuts. Hence, use of nano-silver packaging in food industry, especially in food packaging is recommended.

  7. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model

    Directory of Open Access Journals (Sweden)

    Hamidreza Tavakoli

    2017-11-01

    Full Text Available Nano packaging is currently one of the most important topics in food packaging technologies. The aim of the application of this technology in food packaging is increasing shelf life of foods by preventing internal and external corruption and microbial contaminations. Use of silver nanoparticles in food packaging has recently attracted much attention. The aim of this study was to investigate the effect of nano-silver packaging in increasing the shelf life packages of nuts in an In vitro model. In this experimental study, the effects of different nano-silver concentrations (0, 1, 2 and 3 percent on biological and chemical properties of 432 samples of nuts including walnuts, hazelnuts, almonds and pistachios were evaluated during 0, 3, 6, 9, 12, 15, 18, 21 and 24 months. In most samples, different concentrations of nano-silver (1, 2 and 3 % significantly reduced total microbial count, mold and coliform counts compared to control group and the 3% nano-silver concentration was more effective than other concentrations (P<0.05. Moreover, using this packaging yielded an antioxidant effect especially when 2% and 3% nano-silver concentrations were used. Nano-silver also prevented growth of mold and so prevented aflatoxin production in all treatment groups. Results of chemical and biological tests showed that the silver nanoparticles had a significant effect on increasing the shelf life of nuts. The highest shelf life belonged to pistachios, almonds, hazelnuts and walnuts with 20, 19, 18 and 18 months, respectively. The shelf life was associated with amount of silver nanoparticles. The highest antimicrobial activity was observed when 3% nano-silver concentration was used in pistachios. The shelf life of control groups in similar storage conditions were calculated for an average of 13 months. In conclusion, the results of this study demonstrate the efficacy of nano-silver packing in increasing shelf life of nuts. Hence, use of nano-silver packaging in food

  8. Corrosion protection for silver reflectors

    Science.gov (United States)

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  9. Evaluation of input output efficiency of oil field considering undesirable output —A case study of sandstone reservoir in Xinjiang oilfield

    Science.gov (United States)

    Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin

    2017-06-01

    Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.

  10. Negative symbolic aspects in destination branding: exploring the role of the 'undesired self' on web-based vacation information search intentions among potential first-time visitors

    OpenAIRE

    Bosnjak, Michael

    2010-01-01

    Tourist destination choices depend, among other factors, on the match between the destination’s personality image and consumers’ self-concept, in line with self-image congruence theory. Motives also mediate this relationship, yet tourism research largely neglects the influence of avoidance motives. This study applies the product-based construct of undesired congruity, or consumers’ tendency to avoid undesired stereotypical images, to the context of web-based vacation destination information s...

  11. Rethinking Schools and the Power of Silver

    Science.gov (United States)

    Sleeter, Christine

    2011-01-01

    This 25th anniversary of "Rethinking Schools" can be thought of as its silver anniversary. Silver itself must be considered through contrasting lenses. On the one hand, as lessons in "Rethinking Globalization" teach, silver and gold were the basis of Europe's horrendous exploitation of Latin America. On the other hand, silver is often associated…

  12. Nanofluids and chemical highly retentive hydrogels for controlled and selective removal of overpaintings and undesired graffiti from street art.

    Science.gov (United States)

    Giorgi, Rodorico; Baglioni, Michele; Baglioni, Piero

    2017-06-01

    One of the main problems connected to the conservation of street art is the selective removal of overlying undesired graffiti, i.e., drawings and tags. Unfortunately, selective and controlled removal of graffiti and overpaintings from street art is almost unachievable using traditional methodologies. Recently, the use of nanofluids confined in highly retentive pHEMA/PVP semi-interpenetrated polymer networks was proposed. Here, we report on the selective removal of acrylic overpaintings from a layer of acrylic paint on mortar mockups in laboratory tests. The results of the cleaning tests were characterized by visual and photographic observation, optical microscopy, and FT-IR microreflectance investigation. It was shown that this methodology represents a major advancement with respect to the use of nonconfined neat solvents.

  13. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  14. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin...

  15. Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition

    International Nuclear Information System (INIS)

    Grocholl, Luke; Wang Jianjun; Gillan, Edward G.

    2003-01-01

    Many transition-metal azides are thermodynamically unstable with respect to the elements and thus, may serve as energetic precursor sources in nanoscale metal particle synthesis. This report describes the use of silver azide (AgN 3 ) in nonaqueous, solvothermal decomposition reactions to produce crystalline sub-micron silver particles and interconnected structures. The thermal decomposition of AgN 3 directly produces silver and N 2 and no secondary chemical reducing agent is required. This solvothermal conversion was examined in toluene, tetrahydrofuran (THF), and trioctylamine below 250 deg. C. The coordinating solvents produced the smallest particles (150-500 nm), while the toluene reaction products were near 1 μm in size. The addition of soluble elemental sulfur to the THF reaction results in the growth of silver sulfide particles near 1 μm in size. The silver and Ag 2 S products are crystalline by X-ray diffraction and show some faceting by scanning electron microscopy

  16. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Weiya; Gao, Cuicui; Tian, Weicheng [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Sun, Bin [College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Yu, Dan, E-mail: yudan@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-07-01

    Highlights: • We propose a novel modification method to initiate silver electroless plating on PAN fiber without noble metal catalyst. • The silver-plated fiber we fabricated has good electromagnetic shielding effectiveness and antibacterial properties. • The metal layer has good adhesion strength and the properties of the silver-plated fiber can stand 30 cycles of standard washing. - Abstract: Polyacrylonitrile (PAN) fibers with antibacterial, electromagnetic shielding and antistatic functionalities were fabricated in this paper through modifying PAN fibers with (3-aminopropyl)triethoxysilane (APTES) and 3-mercaptopropyltriethoxysilane (MPTES) sequentially and followed with silver electroless plating. The silver layer on PAN fiber surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that the silver layer was plated uniformly and compactly. The surface resistance of plated fabric was about 40 mΩ/sq on average. The antibacterial tests demonstrate that silver-plated PAN fiber exhibits excellent antibacterial property against S. aureus and E. coli with a non-leaching characteristic. The antibacterial property remains good after 30 cycles of standard washing, which is a strong proof of a durable adhesion between metal layer and fiber. The shielding effectiveness (SE) of silver-plated PAN fabric before and after 30 cycles of standard washing was about 40–80 dB and 35–50 dB, respectively. This resultant fiber can be used in many occasions for reducing or preventing electromagnetic interference (EMI) and electromagnetic hazards.

  17. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties

    International Nuclear Information System (INIS)

    Wang, Wei; Li, Weiya; Gao, Cuicui; Tian, Weicheng; Sun, Bin; Yu, Dan

    2015-01-01

    Highlights: • We propose a novel modification method to initiate silver electroless plating on PAN fiber without noble metal catalyst. • The silver-plated fiber we fabricated has good electromagnetic shielding effectiveness and antibacterial properties. • The metal layer has good adhesion strength and the properties of the silver-plated fiber can stand 30 cycles of standard washing. - Abstract: Polyacrylonitrile (PAN) fibers with antibacterial, electromagnetic shielding and antistatic functionalities were fabricated in this paper through modifying PAN fibers with (3-aminopropyl)triethoxysilane (APTES) and 3-mercaptopropyltriethoxysilane (MPTES) sequentially and followed with silver electroless plating. The silver layer on PAN fiber surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that the silver layer was plated uniformly and compactly. The surface resistance of plated fabric was about 40 mΩ/sq on average. The antibacterial tests demonstrate that silver-plated PAN fiber exhibits excellent antibacterial property against S. aureus and E. coli with a non-leaching characteristic. The antibacterial property remains good after 30 cycles of standard washing, which is a strong proof of a durable adhesion between metal layer and fiber. The shielding effectiveness (SE) of silver-plated PAN fabric before and after 30 cycles of standard washing was about 40–80 dB and 35–50 dB, respectively. This resultant fiber can be used in many occasions for reducing or preventing electromagnetic interference (EMI) and electromagnetic hazards

  18. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  19. undesirability , wit h relevance

    African Journals Online (AJOL)

    banzi

    disciplined environment; they were housed, fed, clothed and gainfully employed. The dissolution of the English monasteries in the late 15th century resulted in the vagrancy problem. This early example of kleptocracy had major social repercussions and led to parliament passing the Poor Laws (vide infra). The feudal system.

  20. A Silver DNAzyme.

    Science.gov (United States)

    Saran, Runjhun; Liu, Juewen

    2016-04-05

    Silver is a very common heavy metal, and its detection is of significant analytical importance. DNAzymes are DNA-based catalysts; they typically recruit divalent and trivalent metal ions for catalysis. Herein, we report a silver-specific RNA-cleaving DNAzyme named Ag10c obtained after six rounds of in vitro selection. Ag10c displays a catalytic rate of 0.41 min(-1) with 10 μM Ag(+) at pH 7.5 with 200 mM NaNO3, while its activity is completely inhibited with the same concentration of NaCl. Ag10c is highly specific for Ag(+) among all the tested metals. A catalytic beacon biosensor is designed by labeling a fluorophore and a quencher on the DNAzyme. Fluorescence enhancement is observed in the presence of Ag(+) with a detection limit of 24.9 nM Ag(+). The sensor shows a similar analytical performance in Lake Huron water. This is the first monovalent transition metal dependent RNA-cleaving DNAzyme. Apart from its biosensor application, this study strengthens the idea of exploring beyond the traditional understanding of multivalent ion dependent DNAzyme catalysis.

  1. GREEN SYNTHESIS OF SILVER NANO PARTICLES

    OpenAIRE

    Pallavi Sharma; Valentina V Umrania

    2017-01-01

    The research was carried out to investigate the synthesis of silver nano particles. The silver nano particles have wide tremendous application in the therapeutics, antimicrobials, diagnostics, catalysis, micro-electronics and high sensitivity biomolecular detection. Silver nano particles grow in a single-step method, at room temperature, and with no addition of external energy. The silver nanoparticles were synthesized from silver nitrate aqueous solution through a simple, ecofriendly and cos...

  2. Silver clusters from nozzle expansions

    International Nuclear Information System (INIS)

    Hagena, O.F.

    1990-01-01

    This note reports on the first successful experiments to generate silver clusters (N≤100) in supersonic nozzle flows. A mixture of argon/silver-vapor was used expanding from a conical nozzle (0.35 mm, 10deg full cone angle, 17 mm long conical section). Source temperature and total pressure ranged up to 2200 K/300 kPa, and silver partial pressure up to 25 kPa. The data confirm the scaling laws developed to compare clustering of metals with that of rare gases. (orig.)

  3. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1985-01-01

    The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.

  4. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds

    Directory of Open Access Journals (Sweden)

    Ixtepan-Turrent Liliana

    2011-08-01

    Full Text Available Abstract The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles.

  5. Sustainability of silver nanoparticles in solutions and polymer materials

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Malikov, Sh.; Khaydarov, R.A.; Mironov, V.V.

    2006-01-01

    The technology of obtaining stable silver nanoparticles in solutions and composite materials for attainment of antimicrobial and antifungal properties to different surfaces has been developed. The shape of particles is spherical, diameter is about 5 nm. Various concentrations of silver nanoparticles have been deposited onto surfaces of different materials (cotton and synthetic fabrics, fibroid sorbents and polymer materials). Different ways of treatment and densities of nanoparticles on the treated surface have been studied during 6 months with respect to the best sustainability. In order to prevent agglomeration of obtained metal nanoparticles on the surface of materials treated, stabilizing reagents (ethylene glycol, formic acid, sodium dodecyl sulphate, etc.) have been used and their relative efficacy has been examined. Residual concentrations of the nanoparticles on various fabrics after 1, 3, 5 and 10 cycles of washing have been also studied. The treated fabrics keep their antibacterial properties after at least 3 times of laundering. The best finishing process to attach silver nanoparticles combination to various materials has been compared with biocidal properties of such antibacterial agents as metal salt solutions and zinc pyrithione.The possibility of treatment of nuclear track membranes by silver nanoparticles in order to prevent microbial growth on the surface of membranes has been discussed. (author)

  6. Children's Perceptions of Hypothetical Peers With Undesirable Characteristics: Role of the Peers' Desire to Change, Source of Effort to Change, and Outcome.

    Science.gov (United States)

    Barnett, Mark A; Sonnentag, Tammy L; Wadian, Taylor W; Jones, Tucker L; Langley, Courtney A

    2015-01-01

    The present study, involving sixth- to eighth-grade students, is an extension of a prior investigation (Barnett, Livengood, Sonnentag, Barlett, & Witham, 2010) that examined children's perceptions of hypothetical peers with various undesirable characteristics. Results indicate that children's perceptions of hypothetical peers with an undesirable characteristic are influenced by the peers' desire to change, the source of effort to change, and the peers' success or failure in changing the characteristic. The children anticipated responding more favorably to peers who were successful in overcoming an undesirable characteristic than peers who were unsuccessful. Regardless of the peers' outcome, the children anticipated responding more favorably to peers who tried to change than peers who relied on the effort of adult authorities to motivate change. The children perceived successful peers as experiencing more positive affect than their unsuccessful counterparts, especially if the success was presented as a fulfillment of the peers' desire to change their undesirable characteristic. Finally, the children's ratings reflected the belief that, among peers who failed to change their undesirable characteristic, lacking the desire to change increases the relative likelihood that the characteristic will be permanent.

  7. Silver nanoparticles in dentistry.

    Science.gov (United States)

    Noronha, Victor T; Paula, Amauri J; Durán, Gabriela; Galembeck, Andre; Cogo-Müller, Karina; Franz-Montan, Michelle; Durán, Nelson

    2017-10-01

    Silver nanoparticles (AgNPs) have been extensively studied for their antimicrobial properties, which provide an extensive applicability in dentistry. Because of this increasing interest in AgNPs, the objective of this paper was to review their use in nanocomposites; implant coatings; pre-formulation with antimicrobial activity against cariogenic pathogens, periodontal biofilm, fungal pathogens and endodontic bacteria; and other applications such as treatment of oral cancer and local anesthesia. Recent achievements in the study of the mechanism of action and the most important toxicological aspects are also presented. Systematic searches were carried out in Web of Science (ISI), Google, PubMed, SciFinder and EspaceNet databases with the keywords "silver nano* or AgNP*" and "dentist* or dental* or odontol*". A total of 155 peer-reviewed articles were reviewed. Most of them were published in the period of 2012-2017, demonstrating that this topic currently represents an important trend in dentistry research. In vitro studies reveal the excellent antimicrobial activity of AgNPs when associated with dental materials such as nanocomposites, acrylic resins, resin co-monomers, adhesives, intracanal medication, and implant coatings. Moreover, AgNPs were demonstrated to be interesting tools in the treatment of oral cancers due to their antitumor properties. The literature indicates that AgNPs are a promising system with important features such as antimicrobial, anti-inflammatory and antitumor activity, and a potential carrier in sustained drug delivery. However, there are some aspects of the mechanisms of action of AgNPs, and some important toxicological aspects arising from the use of this system that must be completely elucidated. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Electrodeposition of silver nanodendrites

    International Nuclear Information System (INIS)

    Kaniyankandy, Sreejith; Nuwad, J; Thinaharan, C; Dey, G K; Pillai, C G S

    2007-01-01

    Nanodendrites of silver were synthesized by electrodeposition using AgNO 3 as the source in ammoniacal solution. The method was remarkably fast, simple and scalable. X-ray diffraction (XRD) studies confirmed the formation of a cubic phase of silver. Scanning electron microscopy (SEM) revealed the formation of well-shaped dendrites. The nanodendrites were hyperbranched with lengths of the order of a few micrometres. The concentration of NH 3 in the electrolyte solution was found to have remarkable influence on the morphology, crystallite size and formation of branched nanodendrites. The branchings were found to occur at regular intervals of ∼50 nm along the main stem. Transmission electron microscopy (TEM) studies confirmed the SEM observation and revealed the 2D nature of the dendrites. Selected area electron diffraction (SAED) revealed that the dendrites were single crystalline in nature and the branching could have a crystalline origin. The direction of growth as inferred from SAED was . UV-vis spectra showed a single broad band centred on ∼380 nm indicating the spherical shape of the individual crystallites. The intrinsic size effect of the metal surface plasmon was used to explain the increase in the broadening on addition of NH 3 . The asymmetry of the band was explained on the basis of agglomeration of crystallites. The nanodendrites prepared by this method showed extension of the plasmon band through the entire visible region, indicating potential use in detection of single molecules based on enhanced Raman scattering. The deposition mechanism is described using the diffusion-limited aggregation model

  9. Comment on "A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies".

    Science.gov (United States)

    Lantagne, Daniele; Rayner, Justine; Mittelman, Anjuliee; Pennell, Kurt

    2017-11-13

    We wish to thank Fewtrell, Majuru, and Hunter for their article highlighting genotoxic risks associated with the use of particulate silver for primary drinking water treatment. The recent promotion of colloidal silver products for household water treatment in developing countries is problematic due to previously identified concerns regarding manufacturing quality and questionable advertising practices, as well as the low efficiency of silver nanoparticles to treat bacteria, viruses, and protozoa in source waters. However, in the conclusion statement of the manuscript, Fewtrell et al. state, "Before colloidal Ag or AgNP are used in filter matrices for drinking water treatment, consideration needs to be given to how much silver is likely to be released from the matrix during the life of the filter." Unfortunately, it appears Fewtrell et al. were unaware that studies of silver nanoparticle and silver ion elution from ceramic filters manufactured and used in developing countries have already been completed. These existing studies have found that: 1) silver ions, not silver nanoparticles, are eluted from ceramic filters treated with silver nanoparticles or silver nitrate; and, 2) silver ions have not been shown to be genotoxic. Thus, the existing recommendation of applying silver nanoparticles to ceramic filters to prevent biofilm formation within the filter and improve microbiological efficacy should still be adhered to, as there is no identified risk to people who drink water from ceramic filters treated with silver nanoparticles or silver nitrate. We note that efforts should continue to minimize exposure to silver nanoparticles (and silica) to employees in ceramic filter factories in collaboration with the organizations that provide technical assistance to ceramic filter factories.

  10. Using the incidence and impact of behavioural conditions in guide dogs to investigate patterns in undesirable behaviour in dogs.

    Science.gov (United States)

    Caron-Lormier, Geoffrey; Harvey, Naomi D; England, Gary C W; Asher, Lucy

    2016-04-14

    The domestic dog is one of our most popular companions and longest relationships, occupying different roles, from pet to working guide dog for the blind. As dogs age different behavioural issues occur and in some cases dogs may be relinquished or removed from their working service. Here we analyse a dataset on working guide dogs that were removed from their service between 1994 and 2013. We use the withdrawal reasons as a proxy for the manifestation of undesirable behaviour. More than 7,500 dogs were in the dataset used, 83% of which were retired (due to old age) and 17% were withdrawn for behavioural issues. We found that the main reasons for behaviour withdrawal were environmental anxiety, training, and fear/aggression. Breed and sex had an effect on the odds of dogs being withdrawn under the different reasons. The age at withdrawal for the different withdrawal reasons suggested that dogs were more likely to develop fear/aggression related issues early on, whilst issues related to training could develop at almost any age. We found no evidence for heterosis effecting behaviour. We believe that this work is relevant to the pet dog population and had implications for understanding ageing and genetic influences on behaviour.

  11. Children's disengagement from cancer care and treatment on the ward: an undesirable social tactic in the long term.

    Science.gov (United States)

    Løvschal-Nielsen, P; Clausen, N; Meinert, L

    2017-11-01

    This anthropological study explores children's non-social reactions during the active treatment period, the on-treatment, in a paediatric oncology ward in a Danish university hospital. It is argued that, although some children's non-social reactions is a tactical disengagement to manage the on-treatment situation, such non-social tactics might ultimately prove an undesirable strategy with negative long-term social consequences for social survivorship. Data were generated over 7 months of ethnographic fieldwork between May 2011 and January 2013, using qualitative methods such as participant observation and open-ended interviewing. Fifty children of both sexes between 4 and 15 years, their families and hospital staff participated in the study. These data formed the basis for the study. The findings show that children's response to care challenges, including exhaustion from care management, exposure from being in a public space, and the open-ended duration of treatment, configure in tactic forms that we term social disengagement. It is suggested that such tactical social disengagement might expand into long-term social patterns, and, as such, change from an alleviating tactic to a socially isolating and damaging tactic for survivors of cancer in childhood. © 2016 John Wiley & Sons Ltd.

  12. Mães avaliam comportamentos socialmente "desejados" e "indesejados" de pré-escolares Mothers assess socially "desirable" and "undesirable" behavior of kindergarteners

    Directory of Open Access Journals (Sweden)

    Alessandra Turini Bolsoni-Silva

    2005-08-01

    Full Text Available Comportamentos socialmente habilidosos promovem o desenvolvimento, ao passo que problemas de comportamento dificultam o acesso a novas contingências de reforçamento, facilitadoras da aquisição de repertórios de aprendizagem. Esta pesquisa investiga avaliações maternas de repertórios socialmente "desejados" e "indesejados" de crianças que, segundo o professor, apresentam problemas de comportamento. Participaram mães de 24 crianças indicadas pelo professor como tendo problemas de comportamento e mães de 24 crianças indicadas como tendo comportamentos socialmente "desejados". O Questionário de Comportamentos Socialmente Desejados e a Escala Comportamental Infantil de Rutter foram aplicados nas residências das participantes. Os resultados indicaram mais problemas de comportamento externalizante no grupo previamente indicado como tendo problemas; os grupos não diferiram quanto a comportamentos "desejados". Em ambos os grupos, as crianças obtiveram altos escores de comportamentos socialmente desejados, apontando reservas comportamentais. Também em ambos foram identificadas crianças que poderiam ser beneficiadas com programas para a promoção de interações sociais mais equilibradas, prevenindo problemas de comportamento.Socially desirable behaviors promote development but behavior problems prevent the access to new reinforcement contingencies that could facilitate the acquisition of relevant learning repertoires. This work investigated assessments of mothers concerning socially "desirable" and "undesirable" behaviors in children whose teachers identified as having behavior problems. The sample consisted of 24 mothers of children indicated as having behavioral problems, and 24 mothers of children indicated as presenting socially desirable behaviors. Data about children's behaviors were collected during a home interview, when the Socially Desired Behavior Questionnaire and the Rutter Scale for Parents were filled out. Results

  13. Franklin D. Roosevelt, Silver, and China.

    OpenAIRE

    Friedman, Milton

    1992-01-01

    The silver purchase program, initiated by Franklin Roosevelt in late 1933 in response to the economically small but politically potent silver bloc, gave a large short-run subsidy to silver producers at the cost of destroying any long-run monetary role for silver. More important, it imposed severe deflation on China, the only major country still on a silver standard, and forced it off the silver standard and on to a fiat standard, which brought forward in time and increased in severity the sub...

  14. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  15. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  16. Ethylene epoxidation catalyzed by chlorine-promoted silver oxide

    International Nuclear Information System (INIS)

    Ozbek, M O; Onal, I; Van Santen, R A

    2011-01-01

    It is demonstrated that, on a silver oxide surface, direct formation of ethylene oxide (EO) through the reaction between gas phase ethylene and surface oxygen is possible. The direct reaction channel produces EO selectively without competing with acetaldehyde (AA) formation. The oxometallacycle (OMC) forms on an oxygen vacant surface and reduces EO selectivity. Cl adsorption removes these surface vacant sites and hence prevents the formation of the OMC intermediate.

  17. Production of porous filter elements from PEUAPM nanocomposites and silver nanoparticles; Producao de elementos filtrantes porosos a partir de nanocompositos de PEUAPM e nanoparticulas de prata

    Energy Technology Data Exchange (ETDEWEB)

    Bizzo, M.A.; Hui, W.S., E-mail: mbizzo@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Departamento de Engenharia Metalurgica e de Materiais

    2014-07-01

    The production of filter elements for water based in polymers is widespread in the market, but has an undesirable characteristic: they are not efficient and able to retain or eliminate microorganisms at all times. This paper proposes to produce nanocomposite filters with biocidal properties composed of ultra-high molecular weight polyethylene(UHMWPE) and silver nanoparticles, the UHMWPE is responsible for the uniform porous structure of the filters and the silver nanoparticles incorporated on the polymer are responsible for the biocide action. Particulate polymer that presents a different particle size curve was used for sintering the filters. Samples of filter elements obtained in this work were characterized by the techniques of X-ray diffraction, scanning electron microscopy and EDS microanalysis. The results indicated a porosity of approximately 49% in the filter, and the formation of the nanocomposite. key-words: nanocomposites, silver, UHMWPE, filter elements. (author)

  18. Development kinetics of silver clusters on silver halides

    International Nuclear Information System (INIS)

    Grzesiak, S.; Belloni, J.; Marignier, J.-L.

    2008-01-01

    Silver nuclei are produced by pulse radiolysis at the surface of AgCl nanocrystallites in the presence of an electron donor, the methyl viologen, which induces the growth of silver nuclei. The experimental results observed on the increase of the silver atom concentration and on the decay of the donor concentration during this process, which is similar to the photographic development by an electron donor, are compared with the kinetics obtained from numerical simulation. The model assumes that the formation of silver clusters with a supercritical nuclearity is required before the start of an electron transfer reaction from the two reduced forms of the donor methyl viologen to the silver clusters. The reaction is controlled by the access of the donor to the surface sites of the AgCl crystallite. The rate constant values of the successive steps of the mechanism are derived from the adjustment of calculated kinetics to experimental signals under various conditions, using a single set of parameters which are fairly suitable under all conditions studied

  19. Effectiveness of programs to prevent school bullying

    NARCIS (Netherlands)

    Baldry, A.C.; Farrington, D.P.

    2007-01-01

    Sixteen major evaluations of programs to prevent school bullying, conducted in 11 different countries, are reviewed in detail. Of these 16 evaluations, 8 produced desirable results, 2 produced mixed results, 4 produced small or negligible effects, and 2 produced undesirable results. These varying

  20. COMPARATIVE CHARACTERISTICS OF ANTIBACTERIAL EFFECT OF SILVER AND NANOSILVER IN VITRO

    Directory of Open Access Journals (Sweden)

    E. N. Petritskaya

    2016-01-01

    Full Text Available Rationale: The problem of the resistance of microorganisms to many classes of antimicrobial agents becomes increasingly threatening. This promotes the search of new formulations for prevention and treatment of infectious inflammation. Aim: To evaluate antibacterial effects of silver nanoparticle colloid solutions on gram-negative, gram-positive and fungal microflora compared to already known formulations based on silver salts and nitrates of other metals. Materials and methods: The effects of silver nanoparticle colloid solutions (with concentration of nanoparticles of 50 and 100 mg/mL, particle diameter of 15±5 nm on the microorganism growth were studied in Staphylococcus aureus (# 209P, Escherichia coli (# 26941, Klebsiella pneumoniae (#  43062 and clinical isolates of Candida albicans. For comparison, silver proteinate, nitrofural, and solutions of NaNO₃, Sn(NO₃₂, Co(NO₃₂ and Zn(NO₃₂ at equimolar concentrations to AgNO₃ 1% were used. Results: After the plates with test cultures were treated with silver nanoparticle solutions and with comparator solutions, there was sheer culture growth in the areas of silver nanoparticle application (at both concentrations and no growth in the areas of the comparator solutions application. Conclusion: The results obtained indicate that silver nanoparticle colloid solutions 50 and 100 mg/mL do not influence the growth of the studied cultures, whereas the comparator solutions exert an advanced antibacterial effect.

  1. Antimicrobial particulate silver coatings on stainless steel implants for fracture management

    Energy Technology Data Exchange (ETDEWEB)

    DeVasConCellos, Paul; Bose, Susmita [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Beyenal, Haluk [School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA (United States); Bandyopadhyay, Amit, E-mail: amitband@wsu.edu [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Zirkle, Lewis G. [Surgical Implant Generation Network (SIGN), Richland, WA (United States)

    2012-07-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 and 500 Degree-Sign C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with Pseudomonas aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 h and proved to be statistically significant. - Highlights: Black-Right-Pointing-Pointer Processing of particulate silver coating that are strongly adherent on SS surface. Black-Right-Pointing-Pointer Optimized the amount of silver that is sufficient to reduce bacterial colonization but non-toxic to human bone tissue. Black-Right-Pointing-Pointer The adhesion strength of silver was sufficient to survive industrial sterilization steps used for fracture management devices.

  2. Biosynthesis of silver nanoparticles | Silambarasan | African Journal ...

    African Journals Online (AJOL)

    friendly and exciting approach. Several microorganisms have been known to produce silver nanoparticles (Ag NPs), when silver molecules are exposed either intracellularly or extracellularly. Intracellular synthesis may accomplish a better ...

  3. The Mode of Action of Silver and Silver Halides Nanoparticles against Saccharomyces cerevisiae Cells

    Directory of Open Access Journals (Sweden)

    A. A. Kudrinskiy

    2014-01-01

    Full Text Available Silver and silver halides nanoparticles (NPs (Ag, AgCl, AgBr, and AgI capped with two different stabilizers (sodium citrate and nonionic surfactant Tween 80 were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The effect of the biocidal action of as-prepared synthesized materials against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells depending on concentration of silver. The results clearly indicate that the silver ions either remained in the dispersion of silver NPs and silver halides NPs after their synthesis or were generated afterwards by dissolving silver and silver halides particles playing a major part in the cytotoxic activity of NPs against yeast cells. It was also supposed that this activity most likely does not relate to the damage of cell membrane.

  4. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Science.gov (United States)

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

  5. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures.

    Science.gov (United States)

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-Cryl™, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. The present work has developed a new biocompatible antifungal PMMA denture base material.

  6. Silver nanoparticles toxicity against airborne strains of Staphylococcus spp.

    Science.gov (United States)

    Wolny-Koładka, Katarzyna A; Malina, Dagmara K

    2017-11-10

    The aim of this study was to explore the toxicity of silver nanoparticles (AgNPs) synthesized by chemical reduction method assessment with regard to airborne strains of Staphylococcus spp. The first step of the experiment was the preparation of silver nanoparticle suspension. The suspension was obtained by a fast and simple chemical method involving the reduction of silver ions through a reducing factor in the presence of the suitable stabilizer required to prevent the aggregation. In the second stage, varied instrumental techniques were used for the analysis and characterization of the obtained nanostructures. Third, the bacteria of the Staphylococcus genus were isolated from the air under stable conditions with 47 sports and recreational horses, relatively. Next, isolated strains were identified using biochemical and spectrophotometric methods. The final step was the evaluation of the Staphylococcus genus sensitivity to nanosilver using the disk diffusion test. It has been proven that prepared silver nanoparticles exhibit strong antibacterial properties. The minimum inhibitory concentration for tested isolates was 30 μg/mL. It has been found that the sensitivity of Staphylococcus spp. isolated from six identified species differs considerably. The size distribution of bacterial growth inhibition zones indicates that resistance to various nanosilver concentrations is an individual strain feature, and has no connection with belonging to a specific species.

  7. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    Science.gov (United States)

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Silver and Chan revisited

    Science.gov (United States)

    Walsh, E.; Arnold, R.; Savage, M. K.

    2013-10-01

    Seismic shear waves emitted by earthquakes can be modeled as plane (transverse) waves. When entering an anisotropic medium, they can be split into two orthogonal components moving at different speeds. This splitting occurs along an axis, the fast polarization, that is determined by geologic conditions. We present here a comprehensive analysis of the Silver and Chan (1991) method, used to obtain shear wave splitting parameters, comprising theoretical derivations and statistical tests of the assumptions used to construct the standard errors. We find discrepancies in the derivations of equations in their article, with the most important being a mistake in how the standard errors are calculated. Our simulations suggest that the degrees of freedom are being overestimated by this method, and consequently, the standard errors are too small. Using a set of S waveforms from very similar shallow earthquakes on Reunion Island, we perform a statistical analysis on the noise of these replicates and find that the assumption of Gaussian noise does not hold. Further, the properties of background noise differ substantially from the noise obtained from the shear wave splitting analysis. However, we find that the estimated standard errors for the fast polarization are comparable to the spread in the fast polarization parameters between events. Delay time errors appear to be comparable to delay time estimates once cycle skipping is accounted for. Future work using synthetic seismograms with simulated noise should be conducted to confirm this is the case for earthquakes in general.

  9. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  10. Preparation of silver nanopatterns on DNA templates

    OpenAIRE

    Dai, Shuxi; Zhang, Xingtang; Li, Tianfeng; Du, Zuliang; Dang, Hongxin

    2010-01-01

    Patterns of silver metal were prepared on DNA networks by a template-directed selective deposition and subsequent metallization process. Scanning force microscopic observations and XPS investigations demonstrated that uniform networks of nanosized silver metal clusters formed after incubation of DNA LB films with silver ions and subsequent chemical reduction of silver ions/DNA films samples. The results showed that this template-directed metallization on DNA LB films provided a simple and eff...

  11. Controlling the release from silver electrodes by titanium adlayers for health monitoring.

    Science.gov (United States)

    Amberg, Martin; Rupper, Patrick; Storchenegger, Raphael; Weder, Markus; Hegemann, Dirk

    2015-05-01

    Beside cancer, cardiovascular disease is the leading cause of deaths worldwide. For medical diagnosis electrocardiography (ECG) is only a powerful predicting tool if the sensed cardiac cycle involves a high signal to noise ratio and reduced artefacts over a long term. The interface of the electrodes to the biological system is therefore improved with a novel textile system. The textile fiber therein is a 100nm silver-coated yarn to improve the signal quality and the reliability of the ECG signals. Long term diagnosis involves a silver release to the applied tissue surface. It is known, that a high silver release can cause a cytotoxic effect on human cells. To prevent cytotoxicity but still enabling good electrical conductivity accompanied by positive antibacterial properties of silver we developed a nanoscaled TiOx adlayer. The biological and electrical properties of these novel electrode systems are investigated and described in the manuscript. The detection of cardiovascular disease using electrocardiography (ECG) usually involves the attachment of electrodes on the skin. In this paper, the authors here described a novel textile system using silver-coated yarn, to provide the interface of the electrodes to the biological system. To prevent sustained high silver release that may lead to cytotoxicity, a nanoscaled TiOx adlayer was developed and added to the novel textile electrode. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    of silver tungstate nanoparticles. 2. Experimental. Silver tungstate nanoparticles were synthesized by reacting AR grade silver nitrate. (AgNO3) and sodium tungstate (Na2WO4) using distilled water as solvent at room temperature. The method followed for this synthesis is similar to that used by. Takahashi et al [9]. However ...

  13. Topical silver for treating infected wounds

    NARCIS (Netherlands)

    Vermeulen, H.; van Hattem, J. M.; Storm-Versloot, M. N.; Ubbink, D. T.

    2007-01-01

    BACKGROUND: Topical silver treatments and silver dressings are increasingly used for the local treatment of contaminated or infected wounds, however, there is a lack of clarity regarding the evidence for their effectiveness. OBJECTIVES: To evaluate the effects on wound healing of topical silver and

  14. Synthesis and characterization of silver molybdate nanowires ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Silver molybdate nanowires, nanorods and multipods like structures have been prepared by an organic free hydrothermal process using ammonium molybdate and silver nitrate solutions. The powder X-ray diffraction (PXRD) patterns reveal that the silver molybdate belongs to anorthic structure. The thickness,.

  15. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad; Saliminasab, Maryam [Department of Physics, Razi University, Kermanshah 67144-15111 (Iran, Islamic Republic of)

    2013-05-15

    The local electric field enhancement at different points of silver-dielectric-silver nanoshell is investigated using quasi-static theory. Because of the symmetric and anti-symmetric coupling between surface plasmon of inner silver core and outer silver shell, the local electric field spectrum of silver-dielectric-silver has two distinct peaks at resonance wavelengths. The silver core size and middle dielectric thickness affect the local electric field enhancement at different points of silver-dielectric-silver nanoshell. Increasing the silver core radius always leads to blue shift of shorter resonance wavelength and red shift of longer resonance wavelength. We observed two distinct local electric field peaks, which are corresponded to the symmetric and anti-symmetric coupling between inner and outer surface plasmons. In a system with thick silver shell, local electric field enhancement is greater than a system with thin silver shell. However, the local electric field variations as a function of silver core radius in both systems are different at different points of nanoshell. The effects of the dielectric thickness variations on local electric field are different from those from silver core size variations. As the dielectric thickness is about 3 nm, the highest local electric field enhancement occurs at the surface of the inner silver core, where the symmetric and anti-symmetric modes are mixed together.

  16. Biomonitoring Equivalents for interpretation of silver biomonitoring data in a risk assessment context.

    Science.gov (United States)

    Aylward, Lesa L; Bachler, Gerald; von Goetz, Natalie; Poddalgoda, Devika; Hays, Sean M; Nong, Andy

    2016-08-01

    Silver is widely used as an antimicrobial agent in both ionic and nanoparticle forms, and general population exposure to silver can occur through the presence of trace levels in foods and dusts, through dermal contact with treated textiles, from use of wound care products, and other sources. Biomonitoring for silver in blood or urine in persons in the general population is being conducted by the Canadian Health Measures Survey (CHMS). Tolerable exposure guidance values for silver designed to prevent adverse effects of excess exposure are available from the United States Environmental Protection Agency (an oral reference dose, or RfD), from the United States Food and Drug Administration (a draft provisional tolerable intake, or TI) and from literature evaluations of recent data on responses to nanoparticle silver (a recommended tolerable daily intake, or TDI). A current physiologically-based pharmacokinetic model is used to estimate Biomonitoring Equivalents (BEs) for silver, which are steady-state biomarker concentrations consistent with the RfD, provisional TI, or recommended TDI (BERfD, BETI, or BETDI, respectively). The BE values based on silver in whole blood range from 0.2 to 0.9μg/L. BE values for silver in urine were not derived due to low confidence in the predicted steady-state urinary silver excretion rates. Comparison of general population biomonitoring data from Canada to the derived BE values indicate that general population exposure levels are generally below levels consistent with current risk assessment-derived exposure guidance values. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna

    Science.gov (United States)

    Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin

    2013-01-01

    Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093

  18. Preventing Undesirable Effects of Mutual Trust and the Development of Skepticism in Virtual Groups by Applying the Knowledge and Information Awareness Approach

    Science.gov (United States)

    Engelmann, Tanja; Kolodziej, Richard; Hesse, Friedrich W.

    2014-01-01

    Empirical studies have proven the effectiveness of the knowledge and information awareness approach of Engelmann and colleagues for improving collaboration and collaborative problem-solving performance of spatially distributed group members. This approach informs group members about both their collaborators' knowledge structures and their…

  19. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  20. A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?

    International Nuclear Information System (INIS)

    Wang Ke; Wei Yiming; Zhang Xian

    2012-01-01

    Measuring and improving the energy performance with considering emission constraints is an important issue for China’s energy conservation, pollutant emissions reduction and environment protection. This study utilizes several data envelopment analysis (DEA) based models to evaluate the total-factor energy and emission performance of China’s 30 regions within a joint production framework of considering desirable and undesirable outputs as well as separated energy and non-energy inputs. DEA window analysis is applied in this study to deal with cross-sectional and time-varying data, so as to measure the performance during the period of 2000–2009. Two treatments for undesirable outputs are combined with DEA models and the associated indicators for simplex energy performance and unified energy and emission performance measurement are proposed and compared. The evaluation results indicate that the treatment of undesirable outputs transformation is more appropriate for China’s regional energy and emission performance evaluation because it has stronger discriminating power and can provide more reasonable evaluation results that characterize China’s regions. The empirical result shows that east China has the highest and the most balanced energy and emission performance. The energy and emission performance of China remained stable during 2000–2003, decreased slightly during 2004–2006, and has continuously increased since 2007. - Highlights: ► We evaluate China’s regional energy and emission performance using DEA based models. ► We compare two undesirable outputs treatments according to the evaluation results. ► To treat undesirable outputs as inputs has weaker discriminating power in evaluation. ► Simplex energy performance, without environmental factors, is a biased evaluation. ► China’s energy and emission performance is approximately stable during study period.

  1. Durable silver coating for mirrors

    Science.gov (United States)

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  2. Durable silver coating for mirrors

    International Nuclear Information System (INIS)

    Wolfe, J.D.; Thomas, N.L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers

  3. Antituberculous effect of silver nanoparticles

    International Nuclear Information System (INIS)

    Kreytsberg, G N; Gracheva, I E; Kibrik, B S; Golikov, I V

    2011-01-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  4. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications

    Science.gov (United States)

    González-Sánchez, M. Isabel; Perni, Stefano; Tommasi, Giacomo; Morris, Nathanael Glyn; Hawkins, Karl; López-Cabarcos, Enrique; Prokopovich, Polina

    2015-01-01

    Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods: entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. PMID:25746278

  5. Mineral resource of the month: silver

    Science.gov (United States)

    Brooks, William E.

    2007-01-01

    Silver has been used for thousands of years as ornaments and utensils, for trade and as the basis of many monetary systems. The metal has played an important part in world history. Silver from the mines at Laurion, Greece, for example, financed the Greek victory over the Persians in 480 B.C. Silver from Potosi, Bolivia, helped Spain become a world power in the 16th and 17th centuries. And silver from the gold-silver ores at the Comstock Lode in Virginia City, Nev., helped keep the Union solvent during the Civil War.

  6. Highly Robust Silver Nanowire Network for Transparent Electrode.

    Science.gov (United States)

    Song, Tze-Bin; Rim, You Seung; Liu, Fengmin; Bob, Brion; Ye, Shenglin; Hsieh, Yao-Tsung; Yang, Yang

    2015-11-11

    Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of these electrodes are limited by their poor thermal and chemical stabilities. Existing methods for addressing this challenge mainly focus on protecting the nanowire network with additional layers that require vacuum processes, which can lead to an increment in manufacturing cost. Here, we report a straightforward strategy of a sol-gel processing as a fast and robust way to improve the stabilities of silver nanowires. Compared with reported nanoparticles embedded in nanowire networks, better thermal and chemical stabilities are achieved via sol-gel coating of TiO2 over the silver nanowire networks. The conformal surface coverage suppressed surface diffusion of silver atoms and prevented chemical corrosion from the environment. These results highlight the important role of the functional layer in providing better thermal and chemical stabilities along with improved electrical properties and mechanical robustness. The silver nanowire/TiO2 composite electrodes were applied as the source and drain electrodes for In2O3 thin-film transistors (TFTs) and the devices exhibited improved electrical performance annealed at 300 °C without the degradation of the electrodes. These key findings not only demonstrated a general and effective method to improve the thermal and chemical stabilities of metal nanowire networks but also provided a basic guideline toward rational design of highly efficient and robust composite electrodes.

  7. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  8. Interaction of silver nanoparticles with Tacaribe virus

    Directory of Open Access Journals (Sweden)

    Speshock Janice L

    2010-08-01

    Full Text Available Abstract Background Silver nanoparticles possess many unique properties that make them attractive for use in biological applications. Recently they received attention when it was shown that 10 nm silver nanoparticles were bactericidal, which is promising in light of the growing number of antibiotic resistant bacteria. An area that has been largely unexplored is the interaction of nanomaterials with viruses and the possible use of silver nanoparticles as an antiviral agent. Results This research focuses on evaluating the interaction of silver nanoparticles with a New World arenavirus, Tacaribe virus, to determine if they influence viral replication. Surprisingly exposing the virus to silver nanoparticles prior to infection actually facilitated virus uptake into the host cells, but the silver-treated virus had a significant reduction in viral RNA production and progeny virus release, which indicates that silver nanoparticles are capable of inhibiting arenavirus infection in vitro. The inhibition of viral replication must occur during early replication since although pre-infection treatment with silver nanoparticles is very effective, the post-infection addition of silver nanoparticles is only effective if administered within the first 2-4 hours of virus replication. Conclusions Silver nanoparticles are capable of inhibiting a prototype arenavirus at non-toxic concentrations and effectively inhibit arenavirus replication when administered prior to viral infection or early after initial virus exposure. This suggests that the mode of action of viral neutralization by silver nanoparticles occurs during the early phases of viral replication.

  9. Effect of antioxidants and light stabilisers on silver migration from nanosilver-polyethylene composite packaging films into food simulants.

    Science.gov (United States)

    Su, Qi-Zhi; Lin, Qin-Bao; Chen, Chao-Fang; Wu, Yu-Mei; Wu, Li-Bing; Chen, Xiao-Qing; Wang, Zhi-Wei

    2015-01-01

    The effect of exposure time, temperature and food simulants, especially additives, on the release of silver from nanosilver-polyethylene composite films to food simulants was studied. Two different type of nanosilver-polyethylene composite films (with or without additives) were chosen to conduct the experiment with the aim of exploring the behaviour of silver migration. It was shown that the migration of silver into 50% ethanol at 40 and 70°C was much less than that into 3% acetic acid. With the increase of exposure time and temperature, the release of silver increased. The migration even continued after a long exposure time (14 days at 20°C, 10 days at 40°C, and 6 days at 70°C respectively). Only about 0.15‰ of silver migrated from composite films with the additives into 3% acetic acid after 6 days of exposure at 70°C, while about 1.3% of silver migrated from composite films that did not contain additives under the same conditions. This could be because the addition of the antioxidants and light stabilisers prevents silver from being oxidised, which is an important way for the release of silver.

  10. Bacterial burden of worn therapeutic silver textiles for neurodermitis patients and evaluation of efficacy of washing.

    Science.gov (United States)

    Daeschlein, G; Assadian, O; Arnold, A; Haase, H; Kramer, A; Jünger, M

    2010-01-01

    To reduce pruritus and colonization with Staphylococcus aureus, textiles containing silver are increasingly used as therapeutic option for patients with atopic dermatitis (AD). While wearing such textiles, the contained silver is in close contact with the patient's skin. The silver serves two purposes: to reduce bacterial colonization of the skin, and to prevent contamination of the textile with ensuing growth of microorganisms. It is unknown whether the silver impregnation is able to reduce bacterial contamination of the textile during wearing and to prevent bacterial growth within the textile. The aim of this study was to investigate the bacterial contamination in textiles containing silver versus placebo worn by patients with AD and to determine the efficacy of processing worn textiles by manual and machine-based washing. Additionally, the effect of silver textiles on S. aureus and total bacterial counts colonizing the skin of AD patients was analyzed. The reduction factor of silver textile compared to placebo was 0.5 log steps against S. aureus and 0.4 log steps against total bacteria. Silver textiles exhibited significantly less S. aureus as well as total bacterial colonization after 2 days of wearing without washing, as compared with a placebo textile. On placebo textiles 385.6 +/- 63.5 CFU total bacteria and 236.5 +/- 49.9 CFU S. aureus, and on silver textiles 279.9 +/- 78.7 CFU total bacteria and 119.3 +/- 39.4 CFU S. aureus were found on the inner side of the textiles facing the neurodermitis lesions. However, the unexpectedly high residual contamination despite the silver exposure represents a potential risk as recontamination source of S. aureus that could maintain the proinflammatory process in AD. This contamination is nearly completely eliminated by machine-based washing at 60 degrees C using conventional washing powder. AD patients wearing silver textiles should change their used clothes at least daily and wash them in a washing machine at 60 degrees

  11. Silver based batteries for high power applications

    Science.gov (United States)

    Karpinski, A. P.; Russell, S. J.; Serenyi, J. R.; Murphy, J. P.

    The present status of silver oxide-zinc technology and applications has been described by Karpinski et al. [A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Serenyi, D.C. Williams, Silver-Zinc: status of technology and applications, Journal of Power Sources, 80 (1999) 53-60], where the silver-zinc couple is still the preferred choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size/configuration sensitive applications. Perhaps the silver oxide cathode can be considered one of the most versatile electrode materials. When coupled with other anodes and corresponding electrolyte management system, the silver electrode provides for a wide array of electrochemical systems that can be tailored to meet the most demanding, high power requirements. Besides zinc, the most notable include cadmium, iron, metal hydride, and hydrogen electrode for secondary systems, while primary systems include lithium and aluminum. Alloys including silver are also available, such as silver chloride, which when coupled with magnesium or aluminum are primarily used in many seawater applications. The selection and use of these couples is normally the result of a trade-off of many factors. These include performance, safety, risk, reliability, and cost. When high power is required, silver oxide-zinc, silver oxide-aluminum, and silver oxide-lithium are the most energetic. For moderate performance (i.e., lower power), silver oxide-zinc or silver-cadmium would be the system of choice. This paper summarizes the suitability of the silver-based couples, with an emphasis on the silver-zinc system, as primary or rechargeable power sources for high energy/power applications.

  12. Conducting polymer-silver composites

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 814-848 ISSN 0366-6352 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * polypyrrole * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  13. Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles

    Science.gov (United States)

    Lee, Sang Jin; Heo, Min; Lee, Donghyun; Han, Seungheui; Moon, Ji-Hoi; Lim, Ho-Nam; Kwon, Il Keun

    2018-02-01

    In this study, we developed a hybrid dental resin containing silver nanoparticle (AgNPs) to eliminate periodontal disease causing bacteria such as streptococcus mutans (S. mutans) and streptococcus sobrinus (S. sobrinus). The silver nanoparticles enables the resin to prevent oral pathogen growth during orthodontic therapy. First, AgNPs were directly synthesized in dimethylformamide (DMF) solvent with a capping agent. Second, pure orthodontic primer was mixed with the synthesized AgNPs solvent-slurry followed by photocuring. The resultant material was characterized by physicochemical characterization. Finally, an in vitro antimicrobial test was carried out. The results showed that the AgNPs were fully synthesized and clearly embedded in dental resin. In the bacterial test, the dental resin containing AgNPs showed potent antimicrobial activity against two kinds of bacteria. In conclusion, our methodology may allow for the generation of a wide range of dental resin and composite products which inhibit periodontitis causing bacteria.

  14. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, Jörg P.; Mogensen, K. B.

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver...

  15. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...

  16. A Simple and High Yield Solvothermal Synthesis of Uniform Silver Nanowires with Controllable Diameters

    Directory of Open Access Journals (Sweden)

    M. Khademalrasool

    2015-10-01

    Full Text Available Silver nanowires were synthesized by solvothermal method through reducing silver nitrate (AgNO3 with ethylene glycol (EG in the presence of polyvinylpyrrolidone (PVP. In order to prevent the agglomeration of Ag+ in the initial Ag seeds formation, sodium chloride (NaCl was added into the solution to form AgCl colloids. By dissolving AgCl in the late stages, Ag+ ions were released into the solution. So the diameters of silver nanowires could be controlled by modifying the PVP concentration. The effect of reaction time, reaction temperature, and for first time purity of EG over the shape of resulted silver nanowires were investigated. The wire, sphere and tree-like nanostructures were formed with changing these parameters. The structural and optical properties of the silver nanostructures were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission scanning electron microscopy (FESEM, Fourier transform infrared spectroscopy (FTIR, and UV–visible absorption spectrophotometer. In order to synthesis silver nanowires with smaller diameters and longer lengths, the optimum molar ratio of PVP/AgNO3, reaction time, reaction temperature, and EG purity were found to be 1.5, 2.5 h, 160 °C, and 99.5%, respectively.

  17. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Mendez, Miguel A., E-mail: maguilarme@ipn.mx; San Martin-Martinez, Eduardo; Ortega-Arroyo, Lesli [Instituto Politecnico Nacional, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (Mexico); Cobian-Portillo, Georgina [Instituto Politecnico Nacional, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (Mexico); Sanchez-Espindola, Esther [Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biologicas, Prolongacion Manuel M. Carpio s/n, esq. Plan de Ayala (Mexico)

    2011-06-15

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  18. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  19. Biocide activity of microfiber mops with and without silver after contamination

    Directory of Open Access Journals (Sweden)

    Sonia De Lorenzi

    Full Text Available OBJECTIVE: The purpose of the present research was to compare the residual microbial load in Solo System microfiber mops with silver and in normal microfiber mops without silver to see whether those with the silver prevent bacterial proliferation and spread more effectively during normal cleaning operations. METHODS: Mops with and without silver were experimentally contaminated with suspension of Staphylococcus aureus ATCC 6538. The bioburden was evaluated by a filtering procedure according to UNI EN 1174 after contamination, after washing and after different times of impregnation in an alcohol-base detergent. RESULTS AND DISCUSSION: The results obtained lead to the conclusion that silver microfiber mop was significantly more effective in reducing bacterial load despite initial high level contamination (10(6-10(7 CFU/50 cm². Indeed, after low temperature washing, the bacterial load was already completely eliminated while the mop without silver still presented relatively high levels of the microorganism (approximately 10² CFU/50 cm² even after being soaked for 8 hours in a detergent/disinfectant.

  20. Synthesis and characterization of fine and monodisperse silver particles of uniform shape

    Science.gov (United States)

    Ducamp-Sanguesa, C.; Herrera-Urbina, R.; Figlarz, M.

    1992-10-01

    Fine silver particles of uniform size and shape have been synthesized from silver nitrate in hot ethylene glycol. Quasi-spheric and monodisperse silver particles are produced only when particle sintering is prevented during the growth step. For this purpose, a protective agent, namely, polyvinylpirrolidone (PVP), was added to the system. Particle size increases with increasing temperature and PVP/silver nitrate weight ratio. Heterogeneous nucleation of metallic silver with a critical concentration of in-situ formed platinum nuclei produces monosize particles that have a rod-like shape. This drastic change in particle shape indicates that under these conditions PVP also acts as a crystal habit modifier. The thickness of rod-like particles changes when different PVP/silver nitrate weight ratios are used. Electron microscopy and X-ray diffraction techniques were used for particle characterization. The synthesis of metallic particles in liquid polyols, which act as both solvent and reducing agent, is a useful method for producing highly pure, fine, and monodisperse particles of uniform shape.

  1. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  2. Micellized sequestered silver atoms and small silver clusters

    International Nuclear Information System (INIS)

    Borgarello, E.; Lawless, D.; Serpone, N.; Pelizzetti, E.; Meisel, D.

    1990-01-01

    Pulse radiolysis was used to examine the nature of the silver species obtained when an aqueous solution containing sequestered Ag + ions was reduced by hydrated electrons in the presence of a surfactant macrocyclic crown ether, labeled L, and/or a maltoside surfactant. The initially formed product is the Ag 0 (L) species which rapidly loses its ligand (half-life ≤5 μs) and reacts with another Ag + (L) ion to form Ag 2 + (L). The latter species decays by a bimolecular process to form the Ag 4 2+ (L) n species at a faster rate than its ligand free analogue. Ultimately, colloidal metallic silver, (Ag) n , forms which is stabilized by the surfactant moieties. No long-term stability to the reduced monomolecular species could be obtained

  3. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    Science.gov (United States)

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  4. Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance

    OpenAIRE

    Hall Sedlak, Ruth; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan; Traxler, Beth

    2012-01-01

    Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli...

  5. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  6. In Vitro Biocompatibility and Antibacterial Efficacy of a Degradable Poly(L-lactide-co-epsilon-caprolactone) Copolymer Incorporated with Silver Nanoparticles

    Science.gov (United States)

    Samberg, Meghan E.; Mente, Peter; He, Ting; King, Martin W.; Monteiro-Riviere, Nancy A.

    2014-01-01

    Silver nanoparticles (Ag-nps) are currently used as a natural biocide to prevent undesired bacterial growth in clothing, cosmetics and medical products. The objective of the study was to impart antibacterial properties through the incorporation of Ag-nps at increasing concentrations to electrospun degradable 50:50 poly(L-lactide-co-epsilon-caprolactone) scaffolds for skin tissue engineering applications. The biocompatibility of the scaffolds containing Ag-nps was evaluated with human epidermal keratinocytes (HEK); cell viability and proliferation were evaluated using Live/Dead and alamarBlue viability assays following 7 and 14 days of cell culture on the scaffolds. Significant decreases in cell viability and proliferation were noted for the 1.0 mg(Ag) g(scaffold)−1 after 7 and 14 days on Ag-nps scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the 0.0 and 0.1 mg(Ag) g(scaffold)−1. Both 0.5 and 1.0 mg(Ag) g(scaffold)−1 were capable of inhibiting both Gram positive and negative bacterial strains. Uniaxial tensile tests revealed a significant (p < 0.001) decrease in the modulus of elasticity following Ag-nps incorporation compared to control. These findings suggest that a scaffold containing between 0.5 and 1.0 mg(Ag) g(scaffold)−1 is both biocompatible and antibacterial, and is suitable for skin tissue engineering graft scaffolds. PMID:24150238

  7. Effects of particle size and laser wavelength on heating of silver ...

    Indian Academy of Sciences (India)

    2016-07-15

    Jul 15, 2016 ... Heating of nanoparticles in liquid environ- ments causes the nanoparticle's temperature to increase considerably. Knowledge of localized heating effect due to laser irradiation on the nanoparticles are required to prevent unintentional thermal effects [9]. Various metals such as gold, silver and copper can be.

  8. High purity silver microcrystals recovered from silver wastes by eco-friendly process using hydrogen peroxide.

    Science.gov (United States)

    Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet

    2017-07-01

    A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  10. Biosynthesis of Silver Nanoparticles and Its Applications

    OpenAIRE

    M. Jannathul Firdhouse; P. Lalitha

    2015-01-01

    Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phytomediated synthesis of silver nanoparticles, its significant applications in various fields, and c...

  11. Risk assessment of silver nanoparticles

    International Nuclear Information System (INIS)

    Shipelin, V A; Gmoshinski, I V; Khotimchenko, S A

    2015-01-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples. (paper)

  12. Preparation of counterion stabilized concentrated silver sols.

    Science.gov (United States)

    LaPlante, Sylas; Halaciuga, Ionel; Goia, Dan V

    2011-07-01

    A strategy for obtaining stable concentrated silver dispersions without dedicated stabilizing agents is presented. This approach consists of rapidly mixing aqueous solutions of silver salicylate and ascorbic acid. By using salicylate as Ag(+) counterion, it is possible to prepare stable sols with metal concentrations up to two orders of magnitude higher than with silver nitrate. The stabilizing effect of the counterion is the result of a decreased ionic strength due to salicylate protonation and its adsorption on the surface of silver. Both effects increase the range of the electrostatic repulsive forces by expanding the electrical double layer. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cementation of silver ions on metallic copper

    International Nuclear Information System (INIS)

    Jaskula, M.

    2009-01-01

    The silver cementation on metallic copper was investigated in the presence or absence of oxygen. The influence of sulphuric acid and copper sulphate concentration on the silver cement morphology was studied in details, and results were linked with the previously determined kinetics data of the process. The morpgology of silver depopsit was found to be independent of the prosence of oxygen in the system in as well as the sulphuric acide concentration. Contrary, the concentration of copper sulphate strongly influenced the morphology of silver deposite. Two-stage mechanism of cementation was proposed. (authors).

  14. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  15. Biosynthesized silver nanoparticles to control fungal infections in indoor environments

    Science.gov (United States)

    Deyá, Cecilia; Bellotti, Natalia

    2017-06-01

    Fungi grow especially in dark and moist areas, deteriorating the indoor environment and causing infections that particularly affect immunosuppressed individuals. Antimicrobial coatings have as principal objective to prevent biofilm formation and infections by incorporation of bioactive additives. In this sense, metallic nanoparticles, such as silver, have proven to be active against different microorganisms specially bacteria. Biosynthesized method is a promising environmentally friendly option to obtain nanoparticles. The aim of this research was assess the employment of plants extracts of Aloysia triphylla (cedrón), Laurelia sempervirens (laurel) and Ruta chalepensis (ruda) to obtain silver nanoparticles to be used as an antimicrobial additive to a waterborne coating formulation. The products obtained were assessed against fungal isolates from biodeteriorated indoor coatings. The fungi were identified by conventional and molecular techniques as Chaetomium globosum and Alternaria alternate. The results revealed that the coating with silver nanoparticles obtained with L. sempervirens extract at 60 °C with a size of 9.8 nm was the most efficient against fungal biofilm development.

  16. The Analysis of Silver Nanoparticles After the Manipulation of Synthesis Parameters and with the Addition of Potassium 2-(9-Carboxy-1-Octylnonylsulfanyl)-Malonate

    International Nuclear Information System (INIS)

    Chin, S.Y.; Hakam, M.A.O.; Goh, S.C.; Yarmo, M.A.

    2011-01-01

    This research aimed to synthesize and characterize silver nanoparticles by manipulating the parameters involved in stabilizing the particles. The silver nanoparticles in this research were synthesized by reduction process of silver nitrate (AgNO 3 ) with sodium borohydrate (NaBH 4 ) as the reducing agent. The addition of potassium 2- (9-carboxy-1-octylnonylsulfanyl)-malonate into silver nanoparticles solution functioned as a stabilizing agent. The parameters involved in this research were the effect of time towards stability of silver nanoparticles, the effect of addition of potassium 2-(9-carboxy-1-octylnonylsulfanyl)- malonate and the pH level effect towards the synthesized silver nanoparticles. Based on the results obtained from Transmission Electron Microscopy (TEM), we have observed that the incorporation of potassium 2-(9-carboxy-1- octyl-nonanesulfonyl)-malonate as the stabilizing agent can prevent the agglomeration of silver nanoparticles within 16 days which is a breakthrough for the synthesis of silver nanoparticles by using sodium borohydride. The micrograph showed that the size of silver nanoparticles synthesized were within the range of 1.5 nm to 8.3 nm. In addition to that, Dynamic Light Scattering (DLS) technique was used in this research to measure the average size of the silver nanoparticles which stabilized with potassium 2-(9-carboxy-1-octyl-nonanesulfonyl)-malonate. X-Ray Diffraction (XRD) analysis was carried out to view the effect of manipulated pH level on crystalline silver nanoparticles structure. The XRD diffractogram showed the diffraction peaks which can be indexed to planes of face- centered cubic (fcc) of pure silver. (author)

  17. Solid state synthesis of starch-capped silver nanoparticles.

    Science.gov (United States)

    Hebeish, A; Shaheen, Th I; El-Naggar, Mehrez E

    2016-06-01

    The present research addresses the establishment of a technique which is solely devoted to environmentally friendly one-pot green synthesis of dry highly stable powdered silver nanoparticles (AgNPs) using starch as both reductant and stabilizing agent in the presence of sodium hydroxide. It is believed that the sodium hydroxide can improve the reduction potential of starch. Thus when the alkali treated starch is submitted to addition of silver nitrate (AgNO3), the alkali treated starch induces the well-established dual role of starch; reduction of silver ions (Ag(+)) to AgNPs and capping the as-formed AgNPs to prevent them from further growth and agglomeration. Beside assessment of AgNPs formation, structural and morphological characteristics of AgNPs are investigated by making use of UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, FT-IR and X-ray diffraction (XRD) analysis. Research outputs signify (a) the absorbance around 410-420nm in the UV-vis spectra of AgNPs appears most, probably owing to the presence of nanosized silver particles and the intensity of this peak increases by increasing AgNO3 concentration; (b) that highly stable AgNPs with well-dispersed particle are successfully prepared using the present research-based innovation; (c) that the size of AgNPs does not exceed 30nm with sphere-like morphology even at the highest Ag(+) concentration employed during synthesis operation; (d) that the XRD and FT-IR confirm the successful preparation of pure AgNPs without noticeable impurities; (d) and that the one-pot synthesis of powdered AgNPs in large scale is clean and easily operated and easily transportation which may be applied as per demands of industries such as textile and painting industry. Copyright © 2016. Published by Elsevier B.V.

  18. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution

    NARCIS (Netherlands)

    Ribeiro, Fabianne; Gallego-Urrea, Julián Alberto; Goodhead, Rhys M.; van Gestel, C.A.M.; Moeger, Julian; Soares, Amadeu M.V.M.; Loureiro, Susana

    2015-01-01

    Raphidocelis subcapitata is a freshwater algae species that constitutes the basis of many aquatic trophic chains. In this study, R. subcapitata was used as a model species to investigate the kinetics of uptake and elimination of silver nanoparticles (AgNP) in comparison to silver nitrate

  19. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  20. Serum and urinary silver levels in thermal injury patients.

    Science.gov (United States)

    Boosalis, M G; McCall, J T; Ahrenholz, D H; Solem, L D; McClain, C J

    1987-01-01

    Although silver sulfadiazine has been used extensively as an effective topical antimicrobial agent in thermal injury patients, little is known about the cutaneous absorption of the silver moiety in these patients. Therefore, we longitudinally evaluated both serum silver concentration and 24-hour urinary excretion of silver in 23 patients with second- and third-degree thermal burns. Mean serum silver concentrations were modestly elevated throughout the patients' hospital course. Urinary excretion of silver was markedly elevated, especially in those patients with more severe burns. Indeed, in patients who had burns covering more than 60% of the total body surface area mean peak silver excretion was 1100 micrograms/24 hr (normal, less than 1 micrograms/24 hr). Thus, silver ion is absorbed across the burn wound in thermal injury patients treated with silver sulfadiazine. The 24-hour urinary excretion of silver appears to be a very sensitive indicator of cutaneous absorption in these patients. Possible implications of this cutaneous silver absorption warrant further evaluation.

  1. [Feasibility, in general practice, to give to the patients clear, loyal and appropriate information about the undesirable side effects of the medicines prescribed. EICLAT study].

    Science.gov (United States)

    Arnould, Pascale; Raineri, François; Hebbrecht, Gilles; Duhot, Didier

    2011-12-01

    Drug prescription in general practice is present in 78 to 83% of consultations; practitioners must give to their patient clear loyal and appropriate information about the undesirable side effects of the medicines prescribed. The object of the EICLAT study was to give some light on the feasibility to respect this obligation. To that effect the study evaluates, for a normal prescription activity, the average number of potential undesirable side effects (USE) in relation with the number of lines of different medicines prescribed in each doctor's prescription. A total of 8,382 doctor's prescriptions, generating 34,427 lines of prescriptions given by 175 general practitioners, were analysed. Amongst these prescriptions, 11% included only one line, 55% from 2 to 4 lines and 34% 5 lines or more. The average doctor's prescription was of 4 lines of medicines generating 407 potential USE, of which 194 were different (the same undesirable effect may be present twice or more in the same doctor's prescription), and 293 frequent or serious potential USE, of which 166 were different. The patent medicines with a major or important added medical value (AMV), present in 7,840 doctor's prescriptions for a total of 24,127 lines exposed the patient, in the average, to 151 frequent or serious USE different. The patent medicines with an insufficient AMV, present in 2,292 prescriptions for a total of 3,887 lines, exposed the patient to 37 frequent and/or serious potential USE. Supposing that the information provided by the legal authority is sufficiently adequate, precise and exhaustive, the volume of information that must be given to the patient is not compatible with the present conditions of exercise of the profession.

  2. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes.

    Science.gov (United States)

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2014-09-20

    Silver nanoparticles have a huge share in nanotechnology based products used in clinical and hygiene products. Silver nanoparticles leaching from these medical and domestic products will eventually enter terrestrial ecosystems and will interact with the microbes present in the land and water. These interactions could be a threat to biorecycling microbes present in the Earth's crust. The antimicrobial action towards biorecycling microbes by leached silver nanoparticles from medical waste could be many times greater compared to that of silver nanoparticles leached from other domestic products, since medical products may contain traditional antibiotics along with silver nanoparticles. In the present article, we have evaluated the antimicrobial activities of as-synthesized silver nanoparticles, antibiotics - tetracycline and kanamycin, and antibiotic-adsorbed silver nanoparticles. The antimicrobial action of silver nanoparticles with adsorbed antibiotics is 33-100% more profound against the biorecycling microbes B. subtilis and Pseudomonas compared to the antibacterial action of silver nanoparticles of the same concentration. This study indicates that there is an immediate and urgent need for well-defined protocols for environmental exposure to silver nanoparticles, as the use of silver nanoparticles in nanotechnology based products is poorly restricted.

  3. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  4. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    Science.gov (United States)

    2012-01-01

    Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

  5. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    Science.gov (United States)

    2011-01-01

    Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver. Conclusions The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing

  6. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  7. Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor

    Science.gov (United States)

    Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao

    2015-02-01

    An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (pseudoplastic liquid with viscosity in the range 6.5-9 Pa s. The paste was compatible with the micro-pen direct-writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.

  8. Commercial Bank Efficiency Evaluation in Consideration of the Undesirable Output and Its Link with Stakeholders Relationship: An Application of China’s Commercial Banks

    Directory of Open Access Journals (Sweden)

    Jianyue Ji

    2014-01-01

    Full Text Available Based on the modern contract theory, expectancy theory, and stakeholder theory, this paper analyzes how stakeholders relationship influences the efficiency of commercial banks and finds that the efficiency is a function of stakeholders relationship. A DEA model with Seiford's linear transformation function is developed to evaluate the efficiency in consideration of the undesirable output. The panel Tobit model is established to conduct empirical research with data of 14 Chinese commercial banks from 2004 to 2012. The study finds that except for business customer relation, stakeholder relationship is the key variable that influences comprehensive efficiency of commercial banks.

  9. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    Unknown

    These in- clude reduction of silver salts by NaBH4, HCHO/NaOH/ ... solid inorganic/organic salt of metal is suspended in a liquid polyol, the suspension is stirred and heated to a given temperature. The reduction of metallic salt by polyol quantitatively ... Though the solubility of silver nitrate in glycerol at room temperature is ...

  10. Synthesis and characterization of fluorophore attached silver ...

    Indian Academy of Sciences (India)

    Silver nanoparticles stabilized by soluble starch were synthesized and characterized. in vivo studies in rats showed no toxicity and revealed their distribution in various tissues and permeability across BBB. This starch stabilized silver nanoparticles have good biological characteristics to act as a potential promising vector for ...

  11. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    High purity fine silver powder with uniform particle morphology was prepared through glycerol process. The process involves reduction of silver nitrate by glycerol under atmospheric conditions at a temperature below 175°C. Glycerol, in this process, acts as a solvent as well as a reducing agent. The powders prepared ...

  12. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    Unknown

    Abstract. High purity fine silver powder with uniform particle morphology was prepared through glycerol process. The process involves reduction of silver nitrate by glycerol under atmospheric conditions at a tem- perature below 175°C. Glycerol, in this process, acts as a solvent as well as a reducing agent. The powders.

  13. Preparation of amine coated silver nanoparticles using ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. This article presents a simple method towards the preparation of functionalized silver nano- particles in a continuous medium. Silver nanoparticles were obtained through AgNO3 chemical reduction in ethanol and triethylenetetramine was used to stabilize and functionalize the metal. The product was characterized ...

  14. ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES ...

    African Journals Online (AJOL)

    userpc

    thermal and antibacterial properties of silver nanoparticles have made them suitable for many industrial applications as such it is being rated as being amongst the most commercialized metallic nanoparticles. Quite a number of studies have reported either the extracellular or intracellular synthesis of silver nanoparticles ...

  15. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  16. Pharmacological Properties of Nanometals (Silver, Copper, Iron)

    OpenAIRE

    Chekman, I.S.

    2015-01-01

    The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper). It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  17. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  18. ELECTRO-GRAVIMETRIC RECOVERY OF SILVER FROM ...

    African Journals Online (AJOL)

    Silver is also used in X-ray photography, medicine (Ag2O,. AgNO3, Argyrols), bactericide, antiseptic, oil and water purifier (Ag3PO4). In tableware, electric components, circuits, stable electrodes, medals and batteries silver is applied as a conductor and corrosion resistant metal [4-6]. In Pakistan three main types of rocks like ...

  19. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    Silver-ion- conducting glasses (superionic solids) exhibit high electrical conductivity and therefore they are attractive as electrolytes for all-solid-state batteries or microbatteries operating at ambient temperature [4–6]. Recently, we used BaO/SrO as dopants in silver phosphate glass and studied various prop- erties [7,8].

  20. Biological and electrical properties of biosynthesized silver

    Indian Academy of Sciences (India)

    Biological and electrical properties of biosynthesized silver nanoparticles. Madhulika ... Abstract. In this work, silver nanoparticles (AgNPs) were synthesized biochemically at room temperature using aqueous extract of rhizome of Rheum australe plant. ... The obtained results may have potential applications as sensors.

  1. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  2. Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian-Yang [Department of Electronic Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Hsueh, Yu-Lee [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Huang, Jung-Jie, E-mail: jjhuang@mail.dyu.edu.tw [Department of Industrial Engineering and Management, DaYeh University, Changhua 51591, Taiwan (China); Wu, Jia-Rung [Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan (China)

    2015-06-01

    Silver nanowires were synthesized using a polyol process by employing ethylene glycol, poly(N-vinylpyrrolidone), and silver nitrate as precursors. The concentration of silver nitrate was varied to study the resulting changes in aspect ratios of silver nanowires. The experimental results indicated that the growth characteristics of silver nanowires were affected by the synthesis temperature, the concentration of silver nitrate, and the rate at which silver nitrate was added. Field-emission scanning electron microscopy, UV–visible spectrophotometry, and X-ray diffractometry were employed to characterize the silver nanowires. As the concentration of silver nitrate was reduced, the diameters of the silver nanowires decreased, increasing the aspect ratio. The optimal diameter and length of the silver nanowires were 100 nm and 20 μm, respectively. A thin film composed of silver nanowires exhibited average transmittance of 92.15% at visible wavelengths and a sheet resistance of 20 Ω/sq; such a film could be used as a transparent conductive film in commercial applications. - Highlights: • Using a polyol method to synthesize of silver nanowire • Concentration effect of silver nitrate on the synthesis was discussed. • Seed precursors are not used during the silver nanowire synthesizing. • The silver nanowire diameter and length were 100 nm and 20 μm, respectively. • High transmittance and low sheet resistance of silver nanowire film can be obtained.

  3. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections.

    Science.gov (United States)

    Lv, Xiaonan; Wang, Peng; Bai, Ru; Cong, Yingying; Suo, Siqingaowa; Ren, Xiaofeng; Chen, Chunying

    2014-04-01

    Coronaviruses belong to the family Coronaviridae, which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection in vitro. Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Copper-silver ionization at a US hospital: interaction of treated ...

    Science.gov (United States)

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building’s copper pipes but was typically unable to reach 200 µg/L in first-draw and flushed hot and cold water samples. Unlike copper, silver solubility was not restricted by the incoming water’s high pH of 8.5. Cold water lines had >20 µg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (particularly in the hot water line) prevented reaching 20 µg/L silver in hot water of many taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag+ ions combined with Cl- ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. To inform the

  5. Synthesis of silver nanoparticle and its application.

    Science.gov (United States)

    Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G

    2015-11-01

    In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  7. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  8. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  9. Prevention of non-drug addictions

    OpenAIRE

    PELECHOVÁ, Kateřina

    2010-01-01

    Non-drug addictions are part of us, including children and youth. It is important to realize that non-drug addictions influence us and are underestimated despite their seriousness. They constitute serious social-pathological phenomenon of the present. This Bachelor Thesis deals particularly with prevention and the present situation of socially undesired behaviour that is very widespread in current society. With pathological gambling, mobile phone addiction, virtual addictions, alimentary diso...

  10. Overweight dogs are more likely to display undesirable behaviours: results of a large online survey of dog owners in the UK.

    Science.gov (United States)

    German, Alexander J; Blackwell, Emily; Evans, Mark; Westgarth, Carri

    2017-01-01

    Much of the global canine population is now overweight, and this can adversely affect health, lifespan and quality of life. Undesirable behaviours are also common in pet dogs, and these can adversely affect welfare, as well as being stressful to owners. However, links between obesity and behavioural disorders have never previously been explored. An online survey was conducted between June and August in 2014, coinciding with the broadcast of a National UK television programme, exploring dog health, welfare and behaviour. Information gathered included signalment, overweight status and the prevalence of a range of undesirable behaviours. Fisher's exact test and OR were used to determine associations between overweight status and owner-reported behaviours. A total of 17 028 responses were received. After data verification, the final dataset comprised 11 154 dogs, 1801 (16·1 %) of which were reported by owners to be overweight. Owners of overweight dogs were more likely to see them as 'a baby' ( P  dogs were also more likely to guard food ( P  dogs included barking, growling or snapping at strangers ( P  = 0·0011) and other dogs ( P  = 0·0015), being fearful of outdoors ( P  dog's health ( P  dogs. Further studies are now required to explore the reasons for these associations.

  11. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V. J., E-mail: vicki.keast@newcastle.edu.au; Myles, T. A. [University of Newcastle, School of Mathematical and Physical Sciences (Australia); Shahcheraghi, N.; Cortie, M. B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)

    2016-02-15

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag{sub 2}S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag{sup +} ions.

  12. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    Science.gov (United States)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against

  13. Analysis of ancient silver coins

    International Nuclear Information System (INIS)

    Flament, Christophe; Marchetti, Patrick

    2004-01-01

    Writing from the numismatist point of view, the authors open this paper by reviewing critically the use of scientific methods for the studies of ancient coins. They also report about an application of the PIXE method at low incident proton energy to one of the most celebrated and known coinage in the ancient history: the Athenian silver coins of the fifth century BC. The results of those analyses indicate that the metallic composition of several coins usually taken as ancient imitations of Athenian coins does not differ from that of the genuine ones. Those analyses confirm what the authors have inferred from numismatic sources: These coins are probably genuinely Athenian

  14. Nanopackaging of Silver using Spice Extract and their ...

    African Journals Online (AJOL)

    The aim of the present study was to synthesize silver nanoparticles using spice extracts as reducing agents and further evaluate their anti-microbial activities. Silver has been shown to possess antimicrobial activity. The silver nanoparticles were prepared by solvent evaporation method. The silver nanoparticles were ...

  15. Mycosynthesis of Silver Nanoparticles from Candida albicans and its ...

    African Journals Online (AJOL)

    Purpose: To produce and characterize silver nanoparticles using Candida albicans and evaluate its antibacterial properties. Methods: Extracellular silver nanoparticles were biosynthesized using C. albicans. The biomass obtained from cultures of C. albicans was used to synthesize silver nanoparticles in 1.5 mM silver ...

  16. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Studies were carried out on the recovery of bound silver and reuse of Chlorella emersonii and Saccharomyces cerevisiae biomass for further silver uptake after they were placed in contact with 20mg/l silver for 30 minutes to allow for maximum binding. It was found that 0.16M nitric acid gave the best recovery rates of silver.

  17. Suitsetamisega võitlemisel ei aita inimeste kiusamine / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2004-01-01

    Suitsetamise vastu võitlemisel ei tohiks kasutada rangelt seadusi vaid võimaldada soodsalt osta suitsetamisvastaseid vahendeid, leiab autor. Vt. ka: Silver Meikar: Olen valmis hoidma Eesti edu; Silver Meikar saatis lugejakirja Saksamaa päevalehtedele; Arvamusi Silver Meikarist; Silver Meikar loobus paberkandjale trükitud seaduseelnõudest

  18. 21 CFR 872.3840 - Endodontic silver point.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endodontic silver point. 872.3840 Section 872.3840...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3840 Endodontic silver point. (a) Identification. An endodontic silver point is a device made of silver intended for use during endodontic therapy to...

  19. Green synthesis of silver nanoparticles from leaf extracts of ...

    African Journals Online (AJOL)

    In this work, metallic silver nanoparticles were synthesized from leaf extracts of Parquetina nigrescens and Synedrella nodiflora. Silver ion was reduced to metallic silver on treatment of AgNO solution with aqueous extracts of the 3 two plants within 30minutes. The effects of time and the volume of extract to silver salt solution ...

  20. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties

    Science.gov (United States)

    Wang, Wei; Li, Weiya; Gao, Cuicui; Tian, Weicheng; Sun, Bin; Yu, Dan

    2015-07-01

    Polyacrylonitrile (PAN) fibers with antibacterial, electromagnetic shielding and antistatic functionalities were fabricated in this paper through modifying PAN fibers with (3-aminopropyl)triethoxysilane (APTES) and 3-mercaptopropyltriethoxysilane (MPTES) sequentially and followed with silver electroless plating. The silver layer on PAN fiber surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that the silver layer was plated uniformly and compactly. The surface resistance of plated fabric was about 40 mΩ/sq on average. The antibacterial tests demonstrate that silver-plated PAN fiber exhibits excellent antibacterial property against S. aureus and E. coli with a non-leaching characteristic. The antibacterial property remains good after 30 cycles of standard washing, which is a strong proof of a durable adhesion between metal layer and fiber. The shielding effectiveness (SE) of silver-plated PAN fabric before and after 30 cycles of standard washing was about 40-80 dB and 35-50 dB, respectively. This resultant fiber can be used in many occasions for reducing or preventing electromagnetic interference (EMI) and electromagnetic hazards.

  1. Effects of gamma irradiation and silver nano particles on microbiological characteristics of saffron, using hurdle technology.

    Science.gov (United States)

    Hamid Sales, E; Motamedi Sedeh, F; Rajabifar, S

    2012-03-01

    Saffron, a plant from the Iridaceae family, is the world's most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.

  2. Standard Test Method for Measuring Neutron Fluence Rate by Radioactivation of Cobalt and Silver

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a suitable means of obtaining the thermal neutron fluence rate, or fluence, in well moderated nuclear reactor environments where the use of cadmium, as a thermal neutron shield as described in Method E262, is undesirable because of potential spectrum perturbations or of temperatures above the melting point of cadmium. 1.2 This test method describes a means of measuring a Westcott neutron fluence rate (Note 1) by activation of cobalt- and silver-foil monitors (See Terminology E170). The reaction 59Co(n,γ)60Co results in a well-defined gamma emitter having a half-life of 1925.28 days (1). The reaction 109Ag(n,˙γ) 110mAg results in a nuclide with a complex decay scheme which is well known and having a half-life of 249.76 days (1). Both cobalt and silver are available either in very pure form or alloyed with other metals such as aluminum. A reference source of cobalt in aluminum alloy to serve as a neutron fluence rate monitor wire standard is available from the National Institute ...

  3. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  4. Alternative Silver Production by Environmental Sound Processing of a Sulfo Salt Silver Mineral Found in Bolivia

    Directory of Open Access Journals (Sweden)

    Alexander Birich

    2018-02-01

    Full Text Available Very often, the production of silver causes devastating environmental issues, because of the use of toxic reagents like cyanide and mercury. Due to severe environmental damage caused by humans in the last decades, the social awareness regarding the sustainable production processes is on the rise. Terms like “sustainable” and “green” in product descriptions are becoming more and more popular and producers are forced to satisfy the rising environmental awareness of their customers. Within this work, an alternative environmental sound silver recovery process was developed for a vein type silver ore from Mina Porka, Bolivia. A foregoing characterization of the input material reveals its mineral composition. In the following mineral processing, around 92.9% silver was concentrated by separating 59.5 wt. % of non-silver minerals. Nitric acid leaching of the generated concentrate enabled a silver recovery of up to 98%. The dissolved silver was then separated via copper cementation to generate a metallic silver product of >99% purity. Summarizing all process steps, a silver yield of 87% was achieved in lab scale. A final upscaling trial was conducted to prove the process’ robustness. Within this trial, almost 4 kg of metallic silver with a purity of higher than 99.5 wt. % was produced.

  5. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles.

    Science.gov (United States)

    Mitrano, Denise M; Rimmele, Elisa; Wichser, Adrian; Erni, Rolf; Height, Murray; Nowack, Bernd

    2014-07-22

    Questions about how to regulate nanoenhanced products regularly arise as researchers determine possible nanoparticle transformation(s). Focusing concern on the incorporation and subsequent release of nano-Ag in fabrics often overshadows the fact that many "conventional silver" antimicrobials such as ionic silver, AgCl, metallic Ag, and other forms will also form different species of silver. In this study we used a laboratory washing machine to simulate the household laundering of a number of textiles prepared with known conventional Ag or nano-Ag treatments and a commercially available fabric incorporating yarns coated with bulk metallic Ag. Serial filtration allowed for quantification of total Ag released in various size fractions (>0.45 μm, textiles, regardless of whether the treatment is "conventional" or "nano", can be a source of silver nanoparticles in washing solution when laundering fabrics. Indeed, in this study we observed that textiles treated with "conventional" silver have equal or greater propensity to form nano-silver particles during washing conditions than those treated with "nano"-silver. This fact needs to be strongly considered when addressing the risks of nano-silver and emphasizes that regulatory assessment of nano-silver warrants a similar approach to conventional silver.

  6. Preparation and stability of silver/kerosene nanofluids.

    Science.gov (United States)

    Li, Dan; Fang, Wenjun

    2012-07-02

    A series of silver nanoparticles surface-coated with di-n-dodecyldithiophosphate, di-n-cetyldithiophosphate, or di-n-octadecyldithiophosphate have been prepared and have good dispersity in alkanes or kerosene. Stable silver nanofluids can be formed in alkanes or kerosene with the surface-coated silver nanoparticles. Thermal stability of the silver nanofluids has been measured at different temperatures. The effects of the silver nanoparticles on the thermal oxidation of kerosene have been investigated at different temperatures. The coatings can be released from the surface of the silver nanoparticles above 150°C, giving oxygen access to the silver core and inhibiting the kerosene oxidized by oxygen.

  7. [Evaluation of biocidal properties of silver nanoparticles against cariogenic bacteria].

    Science.gov (United States)

    Pokrowiecki, Rafal; Zareba, Tomasz; Mielczarek, Agnieszka; Opalińska, Agnieszka; Wojnarowicz, Jacek; Majkowski, Marcin; Lojkowski, Witold; Tyski, Stefan

    2013-01-01

    Antimicrobial properties of silver nanoparticles (SNP's) have been recentl well evaluated, and now are being considered as excellent candidates for therapeutic purposes. It is confirmed, that various solutions of colloidal SNP's possess significant antibacterial properties against such species as: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa even at low concentrations, although there have been so far only a few researches evaluating antimicrobial activity of SNP's against cariogenic bacteria: Streptococcus mutans, Streptococcus salivarius and Streptococcus mitis responsible for initiation of dental carries. Tooth decay is infectious disease an worldwide, which may occur in patients of every age. Nanotechnology creates a new approach of designing of medical devices preventing or reducing bacterial colonization. Colloidal silver solution (CSS) of concentration 350 ppm was used in this research. Nanoparticles size, shape and solution stability were evaluated. 16 strains of cariogenic bacteria, 4 isolates of each species: S. mutans, S. salivarius, S. sanguinis and S, mitis were obtained from plaque swabs of 7 patients treated for dental carries at Department of Conservative Dentistry, Medical University of Warsaw. MIC and MBC values for CSS's were evaluated. CSS used in this research is of good stability. No agglomeration or coalescence was observed during 24 hours of experiment. Silver nanoparticles were of round shape and had mean size of 67 nm. MIC values were: 12-25 ppm for S. salivarius, 25 ppm for S. sanguinis, 50-100 ppm for S. mitis and 50 ppm for S. mutans, while MBC values after 1 hour of bacterial contact with nanoparticles were 200-350 ppm for all cariogenic bacterial species. After 24 hours of contact MBC values were: 25-50 ppm for S. salivarius and S. sanguinis, 100-200 ppm for S. mitis and 200 ppmfor S. mutans. Antimicrobial properties of CSS depend on nanoparticles concentration and interaction time with

  8. Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization.

    Science.gov (United States)

    Boonkaew, Benjawan; Barber, Philip M; Rengpipat, Sirirat; Supaphol, Pitt; Kempf, Margit; He, Jibao; John, Vijay T; Cuttle, Leila

    2014-10-01

    Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  10. Controlled Release of Biologically Active Silver from Nanosilver Surfaces

    OpenAIRE

    Liu, Jingyu; Sonshine, David A.; Shervani, Saira; Hurt, Robert H.

    2010-01-01

    Major pathways in the antibacterial activity and eukaryotic toxicity of nano-silver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nano-silver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nano-silver ...

  11. Nanostructured Antibacterial Silver Deposited on Polypropylene Nonwovens

    Science.gov (United States)

    Hong-Bo, Wang; Jin-Yan, Wang; Qu-Fu, Wei; Jian-Han, Hong; Xiao-Yan, Zhao

    Nanostructured silver films were deposited on polypropylene (PP) nonwovens by RF magnetron sputter coating to obtain the antibacterial properties. Shake flask test was used to evaluate the antibacterial properties of the materials. Atomic force microscope (AFM) was utilized to observe the surface morphology. Energy-dispersive X-ray (EDX) was also employed to analyze the surface elemental compositions. The antibacterial results indicated that the prolonged deposition time led to a significant improvement in antibacterial effect, and sputtering power and argon pressure did not show obvious effect on antibacterial performance. It is believed that the total amount of silver ions released from the silver coating was increased as the deposition time increased. AFM images and quantitative analysis of EDX, respectively revealed that increase in deposition time led to the increased coverage of silver film and the increased silver weight percentage per unit surface, which provided evidences for the increased release rate of silver ions from the coating. Moreover, it was found that the optimum silver coating thickness was about 3 nm, taking antibacterial effect and cost of production into account.

  12. Comparison of bioconcentration of ionic silver and silver nanoparticles in zebrafish eleutheroembryos.

    Science.gov (United States)

    López-Serrano, A; Muñoz-Olivas, R; Sanz-Landaluze, J; Olasagasti, M; Rainieri, S; Cámara, C

    2014-08-01

    The production of silver nanoparticles has reached nowadays high levels. Bioconcentration studies, information on persistence and toxicity are fundamental to assess their global risk and thus necessary to establish legislations regarding their use. Previous studies on silver nanoparticle toxicity have determined a clear correlation between their chemical stability and toxicity. In this work, experimental conditions able to assure silver nanoparticles stability have been optimized. Then, zebrafish (Danio rerio) eleutheroembryos were exposed to ionic silver and to Ag NPs for comparison purposes. A protocol alternative to the OECD 305 technical guideline was used. To determine silver concentration in both the eleutheroembryos and the exposure media, an analytical method consisting in ultrasound assisted extraction, followed by inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry, was developed. Then, bioconcentration factors were calculated. The results revealed that ionic silver was more accumulative for zebrafish eleutheroembryos than nanoparticles at the levels tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Shape selectivity using ionic liquids for the preparation of silver and silver sulphide nanomaterials.

    Science.gov (United States)

    Patil, Amol B; Bhanage, Bhalchandra M

    2014-02-21

    Electrodeposition of silver and silver sulphide was carried out from two protic ionic liquids. A change of the anion moiety of ionic liquid was found to bring about significant changes in the morphology of the nanocrystalline silver and silver sulphide deposits obtained. Effects of various parameters like deposition overpotential, change of the substrate, deposition time, etc. on the particle size and shape were studied. It was found that a change of anions of the ionic liquid from acetate to nitrate results in a wide difference in the morphology of the deposits obtained. Acetate containing ionic liquids result in globular nanocrystalline deposits whereas nitrate containing ionic liquids result in flat plates or sheets of silver deposits. Similar results were obtained for silver sulphide nanocrystals.

  14. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  15. 'Direct and Indirect Shadow Price Estimates of Nitrate Pollution Treated as an Undesirable Output and Input', Journal of Agricultural and Resource Economics Vol. 27, No. 2 (December 2002) pp: 420-432.

    OpenAIRE

    Saleem Shaik; Glenn A Helmers; Michael Langemeier

    2005-01-01

    The implication of treating environmental pollution as an undesirable output (weak disposability) as well as a normal input (strong disposability) on the direct and indirect shadow price and cost estimates of nitrogen pollution abatement is analyzed using Nebraska agriculture sector data. The shadow price of nitrogen pollution abatement treated as an undesirable output represents the reduced revenue from reducing nitrogen pollution. In contrast, the shadow price of nitrogen pollution abatemen...

  16. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  17. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol

    OpenAIRE

    Zamiri, Reza; Zakaria, Azmi; Husin, Mohd Shahril; Wahab, Zaidan Abd; Nazarpour, Forough Kalaei

    2011-01-01

    Reza Zamiri1, Azmi Zakaria1,2, Mohd Shahril Husin1, Zaidan Abd Wahab1, Forough Kalaei Nazarpour3 1Department of Physics, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: In the present work, we prepared silver nanoparticles by laser ablation of pure silver plate in ethanol and then irradiated the silver nanoparticles using a 532 nm Q-switched Nd:Y...

  18. Silver-Russell Syndrome: A Case Report

    Science.gov (United States)

    Kumar, Sunil; Jain, AP; Agrawal, Sachin; Chandran, Sindu

    2008-01-01

    A 15-year-old male boy with hemihypertrophy (left side) of the body was admitted in the hospital with the history of repeated attacks of convulsion. The patient was diagnosed as Silver-Russell syndrome on clinical ground. Silver-Russell syndrome (SRS) is a very rare genetic disorder that appears no later than early childhood. This is usually characterized by asymmetry in the size of the two halves or other parts of the body. Silver-Russell Syndrome occurs mostly in isolated cases because of sporadic genetic changes (mutations) for no apparent reason. For lack of facilities we were not able to do genetic study. PMID:18992170

  19. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ramos, K; Ramos, L; Gómez-Gómez, M M

    2017-04-15

    In this study, a chicken meat containing AgNPs (candidate reference material Nanolyse 14) has been used as a model matrix to study the fate and behaviour of AgNPs upon oral ingestion following an in vitro model that included saliva, gastric and intestinal digestions. The behaviour of a 40nm AgNPs standard solution during the three digestion steps was also evaluated. Sample preparation conditions were optimised to prevent AgNPs oxidation and/or aggregation and to ensure the representativeness of the reported results. Total silver released from the test sample and the evaluated AgNP standard was determined by inductively coupled plasma mass spectrometry (ICPMS). The presence of both AgNPs and dissolved silver in the extracts was confirmed by single particle (SP)-ICPMS analysis. AgNPs were sized and the particle number concentration determined in the three digestion juices. Experimental results demonstrated differentiated behaviours for AgNP from the standard solution and the meat sample highlighting the relevance of using physiological conditions for accurate risk assessment. In the most realistic scenario assayed (i.e., spiked chicken meat analysis), only 13% of the AgNPs present in the reference material would reach the intestine wall. Meanwhile, other bioaccessible dissolved forms of silver would account for as much as 44% of the silver initially spiked to the meat paste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method

    International Nuclear Information System (INIS)

    Tien, D.-C.; Tseng, K.-H.; Liao, C.-Y.; Huang, J.-C.; Tsung, T.-T.

    2008-01-01

    As a result of mankind's over-reliance on antibiotics, germs are becoming more drug-resistant every year. The gradual but inexorable decline in the efficacy of traditional antibiotics is forcing scientists and doctors to search for new weapons in the fight against germs. Metallic silver nanoparticle (Ag 0 ) and ionic silver (Ag + ) are the future of the post-antibiotic era, with the latter playing perhaps the central role in this fight. Using the arc discharge method (ADM), our research has allowed us to fabricate silver nanoparticle suspension (SNPS) in deionized water with no added surfactants. Most related research in this field is confined to explore the composition of nanoparticle, ignoring ions. However, we aim to identify and measure the proportion of ionic silver in ADM-SNPS, using conductivity meters, centrifuges, titrator, and atomic absorption spectrophotometer (AA). The results of our experiments show that SNPS fabricated by means of ADM with no added surfactants contains metallic silver nanoparticle and ionic silver. The fabrication consumes silver rods at a rate of 100 mg/min, yielding metallic silver nanoparticle and ionic silver with concentrations of approximately 11 ppm and 19 ppm, respectively

  1. Analysis of regional total factor energy efficiency in China under environmental constraints: based on undesirable-minds and DEA window model

    Science.gov (United States)

    Zhang, Shuying; Li, Deshan; Li, Shuangqiang; Jiang, Hanyu; Shen, Yuqing

    2017-06-01

    With China’s entrance into the new economy, the improvement of energy efficiency has become an important indicator to measure the quality of ecological civilization construction and economic development. According to the panel data of Chinese regions in 1996-2014, the nearest distance to the efficient frontier of Undesirable-MinDS Xeon model and DEA window model have been used to calculate the total factor energy efficiency of China’s regions. Study found that: Under environmental constraints, China’s total factor energy efficiency has increased after the first drop in the overall 1996-2014, and then increases again. And the difference between the regions is very large, showing a characteristic of “the east is the highest, the west is lower, and lowest is in the central” finally, this paper puts forward relevant policy suggestions.

  2. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-01-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L −1 silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L −1 silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L −1 ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths. - Highlights: • Silver nanoparticles and Ag(I) species are separated into a surfactant-rich phase. • The Ag(I) species are not extracted in the presence of thiocyanate. • The cloud point extraction of two aliquots allows speciation to be carried out. • Extreme sensitivity (detection limit 2 ng L −1 ) is achieved

  3. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  4. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  5. Silver-hafnium braze alloy

    Science.gov (United States)

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  6. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  7. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Biological synthesis and characterization of silver nanoparticles using. Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. PARAMASIVAM PREMASUDHA1, MUDILI VENKATARAMANA2,∗, MARRIAPPAN ABIRAMI3,. PERIYASAMY VANATHI4, KADIRVELU KRISHNA2 and RAMASAMY ...

  8. Silver Biocide Analysis & Control Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase I program is to...

  9. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  10. Large silver-cadmium technology program

    Science.gov (United States)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  11. Tartu on Eesti Boston / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2007-01-01

    Tartu eeldustest kujuneda hariduse, innovaatilise tootmise, pärimuskultuuri ja linnaruumi tasakaalustatud kasutamise südameks. Ettevõtluse, transpordi ja turismi arengust. Lisa: Silver Meikari Lõuna-Eesti edu top 10

  12. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  13. Low-Temperature Properties of Silver

    Science.gov (United States)

    Smith, David R.; Fickett, F. R.

    1995-01-01

    Pure silver is used extensively in the preparation of high-temperature superconductor wires, tapes, films, and other configurations in which the silver not only shields the superconducting material from the surrounding materials, but also provides a degree of flexibility and strain relief, as well as stabilization and low-resistance electrical contact. Silver is relatively expensive, but at this stage of superconductor development, its unique combination of properties seems to offer the only reasonable means of achieving usable lengths of conductor. In this role, the low-temperature physical (electrical, thermal, magnetic, optical) and mechanical properties of the silver all become important. Here we present a collection of properties data extracted from the cryogenic literature and, to the extent possible, selected for reliability. PMID:29151733

  14. Silver behaviour in InSb

    International Nuclear Information System (INIS)

    Khlystovskaya, M.D.; Kirichenko, L.S.; Popkov, A.N.; Kiseleva, E.V.

    1976-01-01

    Specimens of InSb, alloyed with silver at concentrations of 2.4x10 14 to 1.1x10 15 cm -3 , have been obtained and investigated. The distribution of Ag along the length of ingots was studied. The effective coefficient of silver distribution in InSb was found to be equal to 5.7x10 -6 . The limit solubility of silver was evaluated by the disturbance of the smooth front of solidification and the appearance of cubstructures and second phases on polished sections, said solubility corresponds to the concentration of approximately 1x10 15 cm -3 of silver. The properties of InSb, alloyed with Ag with various degrees of compensation by residual donors and tellurium were investigated. It was found that in the p-n junction range the specific resistance of specimens rises to 2.3x10 3 Ohm.cm

  15. Silver Biocide Analysis & Control Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase II program is to...

  16. Silver nanowires - unique templates for functional nanostructures

    Science.gov (United States)

    Sun, Yugang

    2010-09-01

    This feature article reviews the synthesis and application of silver nanowires with the focus on a polyol process that is capable of producing high quality silver nanowires with high yield. The as-synthesized silver nanowires can be used as both physical templates for the synthesis of metal/dielectric core/shell nanowires and chemical templates for the synthesis of metal nanotubes as well as semiconductor nanowires. Typical examples including Ag/SiO2 coaxial nanocables, single- and multiple-walled nanotubes made of Au-Ag alloy, AgCl nanowires and AgCl/Au core/shell nanowires are discussed in detail to illustrate the versatility of nanostructures derived from silver nanowire templates. Novel properties associated with these one-dimensional nanostructures are also briefly discussed to shed the light on their potential applications in electronics, photonics, optoelectronics, catalysis, and medicine.

  17. Alternative Plasmonic Materials: Beyond Gold and Silver

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2013-01-01

    such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent...

  18. Silver nasal sprays: misleading Internet marketing.

    Science.gov (United States)

    Gaslin, Michael T; Rubin, Cory; Pribitkin, Edmund A

    2008-04-01

    Long-term use of silver-containing products is associated with a permanent bluish-gray discoloration of the skin known as argyria, but they remain widely available despite several measures by the FDA to regulate them. Several recent case reports have described the occurrence of argyria as a result of using these "natural" products. We used the five most common Internet search engines to find Web sites providing information on silver-containing nasal sprays. Of 49 Web sites analyzed, only 2 (4%) mentioned argyria as a possible complication, although 30 (61%) did caution against long-term use. Eight sites (16%) made specific claims about the health benefits of the product. All 49 sites (100%) provided direct or indirect links to buy silver-containing nasal sprays. We conclude that information about silver-containing nasal sprays on the Internet is misleading and inaccurate. Therefore, otolaryngologists should be aware of the misinformation their patients may be receiving about these products.

  19. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  20. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution...... to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post...... silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 mu m is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites...

  1. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  2. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  3. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  4. An optical tweezer-based study of antimicrobial activity of silver ...

    Indian Academy of Sciences (India)

    traditional cell counting methods. Keywords. Antimicrobial activity; optical tweezer; bacterial suspensions; silver nanoparticles. 1. Introduction. The toxicity of silver ions and silver containing compounds on microbes is well known. Nanoparticles of silver are expected to exhibit enhanced antimicrobial properties when.

  5. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver

    Science.gov (United States)

    Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characte...

  6. Undesirable behavior in forest campgrounds

    Science.gov (United States)

    Roger N. Clark

    1971-01-01

    A 3-year study indicates that nuisance behaviors, law violations, vandalism, and littering in forest campgrounds are more extensive than is generally believed. All campers share responsibility for the problems. Violations occur because of ignorance of, lack of understanding, or a willingness to disregard rules. Control measures are discussed, including an incentive...

  7. Neutron scattering and models: Silver

    International Nuclear Information System (INIS)

    Smith, A.B.

    1996-07-01

    Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes

  8. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...... sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results...

  9. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  10. Pharmacological Properties of Nanometals (Silver, Copper, Iron

    Directory of Open Access Journals (Sweden)

    Chekman, I.S.

    2015-01-01

    Full Text Available The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper. It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  11. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  12. Biosynthesis of silver nanoparticles using Stevia extracts

    International Nuclear Information System (INIS)

    Laguta, I.V.; Fesenko, T.V.; Stavinskaya, O.N.; Shpak, L.M.; Dzyuba, O.I.

    2015-01-01

    Silver nanoparticles are synthesized using Stevia rebaudiana extracts. It is shown that the rate of nanoparticles formation is affected by plant cultivation conditions. It is found that, in the presence of the extract from callus, the formation of nanoparticles occurs faster than in the presence of extracts from plants grown under conditions of ex situ and in vitro. The synthesized silver nanoparticles were studied by UV and IR spectroscopies

  13. Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance.

    Science.gov (United States)

    Sedlak, Ruth Hall; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan; Traxler, Beth

    2012-04-01

    Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli strain by the use of a simple silver-binding peptide motif. A silver-binding peptide, AgBP2, was identified from a combinatorial display library and fused to the C terminus of the E. coli maltose-binding protein (MBP) to yield a silver-binding protein exhibiting nanomolar affinity for the metal. Growth experiments performed in the presence of silver nitrate showed that cells secreting MBP-AgBP2 into the periplasm exhibited silver tolerance in a batch culture, while those expressing a cytoplasmic version of the fusion protein or MBP alone did not. Transmission electron microscopy analysis of silver-tolerant cells revealed the presence of electron-dense silver nanoparticles. This is the first report of a specifically engineered metal-binding peptide exhibiting a strong in vivo phenotype, pointing toward a novel ability to manipulate bacterial interactions with heavy metals by the use of short and simple peptide motifs. Engineered metal-ion-tolerant microorganisms such as this E. coli strain could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo.

  14. In vitro percutaneous penetration and characterization of silver from silver-containing textiles.

    Science.gov (United States)

    Bianco, Carlotta; Kezic, Sanja; Crosera, Matteo; Svetličić, Vesna; Šegota, Suzana; Maina, Giovanni; Romano, Canzio; Larese, Francesca; Adami, Gianpiero

    2015-01-01

    The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS) and by inductively coupled plasma mass spectrometer (ICP-MS). The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX). Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM). On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration) ranged from 0.7 to 4.7 μg/mL (0.6-4.0 μg/cm(2)), fitting the bactericidal range. Silver and silver chloride aggregates at sizes of up to 1 μm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects.

  15. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  16. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  17. Metastable fragmentation of silver bromide clusters

    International Nuclear Information System (INIS)

    L'Hermite, J.M.; Rabilloud, F.; Marcou, L.; Labastie, P.

    2001-01-01

    The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are Ag n Br n - 1 + and Ag n Br n + 1 - and Ag 14 Br 13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, Ag n Br n - 1 + is no more the main series, and Ag n Br n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag 3 Br 3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag + -Ag + repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr) 3 and to quasi-planar cyclic structures of (AgBr) n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH) n , and to cuprous halide compounds. (orig.)

  18. Silver as antibacterial towards Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Simone eBelluco

    2016-03-01

    Full Text Available Listeria monocytogenes is a serious foodborne pathogen that can contaminate food during processing and can grow during food shelf-life. New types of safe and effective food contact materials embedding antimicrobial agents, like silver, can play an important role in the food industry. The present work aimed at evaluating the in vitro growth kinetics of different strains of L. monocytogenes in the presence of silver, both in its ionic and nano form. The antimicrobial effect was determined by assaying the number of culturable bacterial cells, which formed colonies after incubation in the presence of silver nanoparticles (AgNPs or silver nitrate (AgNO3. Ionic release experiments were performed in parallel. A different reduction of bacterial viability between silver ionic and nano forms was observed, with a time delayed effect exerted by AgNPs. An association between antimicrobial activity and ions concentration was shown by both silver chemical forms, suggesting the major role of ions in the antimicrobial mode of action.

  19. Analysis of impurities in silver matrix by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Hussain, R.; Ishaque, M.; Mohammad, D.

    1999-01-01

    A procedure for the analysis of aluminium, chromium, copper, lead, mercury, nickel and zinc mainly using flame lens atomic absorption spectrophotometry has been described. The results depict that the presence of silver does not introduce any significant interference, when standards are prepared in matching silver matrix solutions. The calibration curves obey the straight-line equations passing through the origin. Thus the separation of silver matrix from the analyte solutions is not necessary. The method has successfully been applied for the analysis of silver foils, wires, battery grade silver oxides and silver nitrate samples containing analyte elements in the concentration range 2 to 40 ppm. (author)

  20. Silver as antibacterial agent: ion, nanoparticle, and metal.

    Science.gov (United States)

    Chernousova, Svitlana; Epple, Matthias

    2013-02-04

    The antibacterial action of silver is utilized in numerous consumer products and medical devices. Metallic silver, silver salts, and also silver nanoparticles are used for this purpose. The state of research on the effect of silver on bacteria, cells, and higher organisms is summarized. It can be concluded that the therapeutic window for silver is narrower than often assumed. However, the risks for humans and the environment are probably limited. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    NARCIS (Netherlands)

    Bianco, Carlotta; Kezic, Sanja; Crosera, Matteo; Svetličić, Vesna; Šegota, Suzana; Maina, Giovanni; Romano, Canzio; Larese, Francesca; Adami, Gianpiero

    2015-01-01

    The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were

  2. A silver tattoo of the nasal mucosa after silver nitrate cautery.

    Science.gov (United States)

    Mayall, F; Wild, D

    1996-06-01

    We report a silver tattoo of the nasal mucosa that occurred after silver nitrate cautery for nasal bleeding. This type of tattoo is a very rare potential mimic of melanoma and appears not to have been described before. It has similar features to an amalgam tattoo of the oral mucosa on histology and energy dispersive X-ray analysis (EDAX).

  3. Ultrastructural localization of silver in rat testis and organ distribution of radioactive silver in the rat

    DEFF Research Database (Denmark)

    Ernst, E; Rungby, J; Baatrup, E

    1992-01-01

    The deposition of silver after a single intravenous injection (2 micrograms Ag g-1 body weight) was studied in the testes of Wistar rats 24 h and 1 and 2 weeks after dosing with radiolabelled 110AgNo3 (2 micrograms Ag and 1.2 kBq g-1 body weight). Also, the temporal accumulation of silver during...

  4. Silver behenate and silver stearate powders for calibration of SAS instruments

    Czech Academy of Sciences Publication Activity Database

    Nyam-Osor, M.; Soloviov, D. V.; Kovalev, Yu. S.; Zhigunov, Alexander; Rogachev, A. V.; Ivankov, O. I.; Erhan, R. V.; Kuklin, A. I.

    2012-01-01

    Roč. 351, č. 1 (2012), 012024_1-012024_9 ISSN 1742-6588. [SANS-YuMO User Meeting. Dubna, 27.05.2011-30.05.2011] Institutional research plan: CEZ:AV0Z40500505 Keywords : silver behenate * silver stearate * SAS Subject RIV: CD - Macromolecular Chemistry

  5. Surface Structure of Silver Nanoparticles as a Model for Understanding the Oxidative Dissolution of Silver Ions

    NARCIS (Netherlands)

    Molleman, Bastiaan; Hiemstra, Tjisse

    2015-01-01

    The toxicity of silver nanoparticles (AgNPs) has been related to the release of ionic silver. This process is influenced by a large variety of factors and is poorly understood. The key to understanding Ag+ release by AgNPs is its subvalency. This is a fundamental property of Ag that

  6. Antibacterial nano-structured titania coating incorporated with silver nanoparticles.

    Science.gov (United States)

    Zhao, Lingzhou; Wang, Hairong; Huo, Kaifu; Cui, Lingyun; Zhang, Wenrui; Ni, Hongwei; Zhang, Yumei; Wu, Zhifen; Chu, Paul K

    2011-08-01

    Titanium (Ti) implants are widely used clinically but post-operation infection remains one of the most common and serious complications. A surface boasting long-term antibacterial ability is highly desirable in order to prevent implant associated infection. In this study, titania nanotubes (TiO(2)-NTs) incorporated with silver (Ag) nanoparticles are fabricated on Ti implants to achieve this purpose. The Ag nanoparticles adhere tightly to the wall of the TiO(2)-NTs prepared by immersion in a silver nitrate solution followed by ultraviolet light radiation. The amount of Ag introduced to the NTs can be varied by changing processing parameters such as the AgNO(3) concentration and immersion time. The TiO(2)-NTs loaded with Ag nanoparticles (NT-Ag) can kill all the planktonic bacteria in the suspension during the first several days, and the ability of the NT-Ag to prevent bacterial adhesion is maintained without obvious decline for 30 days, which are normally long enough to prevent post-operation infection in the early and intermediate stages and perhaps even late infection around the implant. Although the NT-Ag structure shows some cytotoxicity, it can be reduced by controlling the Ag release rate. The NT-Ag materials are also expected to possess satisfactory osteoconductivity in addition to the good biological performance expected of TiO(2)-NTs. This controllable NT-Ag structure which provides relatively long-term antibacterial ability and good tissue integration has promising applications in orthopedics, dentistry, and other biomedical devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Diferentes métodos de controle de plantas indesejáveis em pastagem nativa Different methods for controlling undesirable plants in native pasture

    Directory of Open Access Journals (Sweden)

    Luiz Giovani de Pellegrini

    2007-10-01

    Full Text Available O experimento foi desenvolvido em área de pastagem nativa representativa da transição entre a Serra do Sudeste e a Depressão Central do Rio Grande do Sul, onde as espécies indesejáveis foram representadas especialmente por carqueja (Baccharis trimera (Less. DC., caraguatá (Eryngium horridum (Spreng. Less. e alecrim (Vernonia nudiflora Less.. Foram avaliados os efeitos iniciais de dois métodos de controle de espécies indesejáveis (até 60 dias após aplicação sobre a produção de forragem, a dinâmica da vegetação e a eficiência de controle: sem-controle; controle mecânico; e controle químico (herbicida comercial à base de Picloram [64 g/L] + 2,4-D [240 g/L], na dosagem de 5 L do produto comercial/ha. Os tratamentos foram arranjados em um delineamento em blocos ao acaso, com quatro repetições. A massa gramíneas verdes secas e a massa total de MS não diferiram entre os métodos de controle. Foram obtidos valores de 587,9; 472,0 e 0 kg de MS com o controle mecânico, o controle químico e sem-controle, respectivamente, o que comprova influência do método de controle sobre a massa de forragem de leguminosas. A eficiência de controle das espécies indesejáveis, em comparação à ausência de controle, foi de 76,2% para o controle químico e 27,9% para o controle mecânico. A eficiência de controle de espécies, sob aspectos de freqüência dos componentes da pastagem, evidenciou que o controle mecânico não foi eficiente aos 60 dias após aplicação no controle de plantas de alecrim no segundo toque (-27,7% e plantas de caraguatá no primeiro toque (-30,0%.The study was conducted in a representative native pasture area in the transition between the Serra do Sudeste and Depressão Central of RS. The main undesirable species were represented by: carqueja (Baccharis trimera (Less. DC., caraguatá (Eryngium horridum (Spreng. Less. and alecrim (Vernonia nudiflora Less. It was evaluated the initial effect (until 60 days after

  8. Encapsulated Silver Nanoparticles Can Be Directly Converted to Silver Nanoshell in the Gas Phase.

    Science.gov (United States)

    Yang, Peipei; Xu, Yong; Chen, Lei; Wang, Xuchun; Mao, Baohua; Xie, Zhongzhi; Wang, Sui-Dong; Bao, Feng; Zhang, Qiao

    2015-12-09

    We report, for the first time, that an encapsulated silver nanoparticle can be directly converted to a silver nanoshell through a nanoscale localized oxidation and reduction process in the gas phase. Silver can be etched when exposed to a mixture of NH3/O2 gases through a mechanism analogous to the formation of aqueous Tollens' reagent, in which a soluble silver-ammonia complex was formed. Starting with Ag@resorcinol-formaldehyde (RF) resin core-shell nanoparticles, we demonstrate that RF-core@Ag-shell nanoparticles can be prepared successfully when the etching rate and RF thickness were well controlled. Due to the strong surface plasmon resonance (SPR) coupling effect among neighboring silver nanoparticles, the RF@Ag nanoparticle showed great SPR and SERS performance. This process provides a general route to the conversion of Ag-core to Ag-shell nanostructures and might be extended to other systems.

  9. Choking Prevention

    Science.gov (United States)

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & Prevention Safety & Prevention Safety and Prevention Immunizations At Home ...

  10. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  11. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    Science.gov (United States)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  12. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  13. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  14. Silver diffusion and isotope effect in silver rubidium iodide

    International Nuclear Information System (INIS)

    Arzigian, J.S.

    1980-01-01

    The diffusion coefficient of silver in RbAg 4 I 5 was measured in both superionic phases using radiotracer Ag-110m and serial sectioning with a low temperature sectioning apparatus. The activation energies for diffusion in alpha-RbAg 4 I 5 and beta-RbAg 4 I 5 , respectively, are 0.11 +- 0.01 eV and 0.20 +- 0.04 eV. An isotope effect for diffusion was also measured in both superionic phases. Ag-105 and Ag-110m radioisotopes were used with gamma spectroscopy and energy discrimination. The effect is small, with no significant temperature variation, with the value at 333 0 K being 0.12 +- 0.01. The second-order phase transition at 208 0 K has a small effect, if any, on the magnitude of the effect. The data suggest that a highly cooperative transport mechanism is responsible for the unusually high values of both the conductivity and diffusion coefficient. Although it is not possible to deduce the particular mechanism involved, theories inolving ionic polarons, or cooperative motion, such as crowdions or solitons, seem consistent with the observed results

  15. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  16. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  17. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds.

    Science.gov (United States)

    Percival, Steven L; Thomas, John; Linton, Sara; Okel, Tyler; Corum, Linda; Slone, Will

    2012-10-01

    The antibiotic-resistant bacteria are a major concern to wound care because of their ability to resist many of the antibiotics used today to treat infections. Consequently, other antimicrobials, in particular ionic silver, are considered ideal topical agents for effectively helping to manage and prevent local infections. Little is known about the antimicrobial efficacy of ionic silver on antibiotic-resistant bacteria at different pH values. Consequently, in this study our aim was to evaluate the effect of pH on the antimicrobial efficacy of a silver alginate (SA) and a silver carboxymethyl cellulose (SCMC) dressing on antibiotic-resistant bacteria isolated from burn patients. Forty-nine antibiotic-resistant bacteria, including Vancomycin-resistant Enterococcus faecium, meticillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Vibrio sp, MDR Stenotrophomonas maltophilia, extended-spectrum ß-lactamase (ESBL) producing Salmonella sp, ESBL producing Klebsiella pneumoniae, ESBL producing Proteus mirabilis, ESBL producing Escherichia coli and MDR Acinetobacter baumannii, routinely isolated from burn wounds were used in the study and evaluated for their susceptibility to two silver containing wound dressings using a standardised antimicrobial efficacy screening assay [corrected zone of inhibition (CZOI)]. The mean overall CZOI for the Gram-positive isolates at a pH of 5·5 were very similar for both dressings. A mean CZOI of 5 mm was recorded for the SCMC dressing, which was slightly higher, at 5·4 mm for the SA dressing. At a pH of 7·0 both dressings, in general, showed a similar activity. However, at a pH of 8·5 the mean CZOI of the SCMC dressing was found to be significantly (P bacteria followed a similar pattern as observed with the Gram-positive bacteria. Susceptibility to silver ions did vary significantly between genera and species of bacteria. Interestingly, when pH was changed from 8·5 to 5·5 antimicrobial activity

  18. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  19. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    Science.gov (United States)

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  20. Ink composition for making a conductive silver structure

    Science.gov (United States)

    Walker, Steven B.; Lewis, Jennifer A.

    2016-10-18

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.

  1. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  2. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  3. A book on Silver fir (Abies alba in Romania

    Directory of Open Access Journals (Sweden)

    Mercurio R

    2005-01-01

    Full Text Available The contents of a new book on Silver fir (Abies alba in Romania is presented, which describes with special emphasis the characteristics of Silver fir forest in Southern Carpathians

  4. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  5. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    Full Text Available Carlotta Bianco,1 Sanja Kezic,2 Matteo Crosera,1 Vesna Svetličić,3 Suzana Šegota,3 Giovanni Maina,4 Canzio Romano,5 Francesca Larese,6,7 Gianpiero Adami11Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; 2Academic Medical Center, Coronel Institute, University of Amsterdam, Amsterdam, the Netherlands; 3Laboratory for Bioelectrochemistry and Surface Imaging, Division for Marine and Environmental Research, Ruder Boškovic Institute, Zagreb, Croatia; 4Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; 5Department of Public and Pediatric Health Sciences, University of Turin, Turin, Italy; 6Unit of Occupational Medicine, University of Trieste, Trieste, Italy; 7Department of Medical Sciences, University of Trieste, Trieste, ItalyAbstract: The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS and by inductively coupled plasma mass spectrometer (ICP-MS. The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX. Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM. On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration ranged from 0.7 to 4.7 µg/mL (0.6–4.0 µg/cm2, fitting the bactericidal range. Silver and silver

  6. In situ preparation of silver nanocomposites on cellulosic fibers--microwave vs. conventional heating.

    Science.gov (United States)

    Breitwieser, Doris; Moghaddam, Mojtaba Mirhosseini; Spirk, Stefan; Baghbanzadeh, Mostafa; Pivec, Tanja; Fasl, Hubert; Ribitsch, Volker; Kappe, C Oliver

    2013-04-15

    A green approach for the preparation of silver nanocomposites on viscose fibers using microwave and conventional heating is presented. Reduction of silver nitrate is induced by addition of 6-O chitosan sulfate (S-Chi) in aqueous media which provides steric protection and electrostatic stabilization to prevent agglomeration of the nanoparticles. The particles are formed in close spatial proximity to the fibers and adsorption of the particles via structural similarity takes place to create silver nanocomposites. All nanocomposites have been subjected to antimicrobial tests and high antimicrobial activity toward Escherichia coli bacteria has been determined. Further, the nanocomposites are characterized using different analytical techniques which reveal very similar results for both heating techniques. The only significant difference is observed concerning the shape of the nanoparticles on the viscose fibers which are slightly elongated for the microwave method in comparison to spheres observed by conventional heating. Therefore, detailed investigations on the formation of colloidal silver nanoparticles have been performed, comparing microwave dielectric and conventional heating at the exact same temperature and reaction times. These experiments resulted in nearly identical nanoparticle shape and size for both heating methods as demonstrated by dynamic light scattering, UV-vis spectroscopy and transmission electron microscopy. A wide range of parameters has been varied (temperature, AgNO3 to S-Chi ratio, reaction time, and stirring speed) to study the nanoparticle formation under microwave and conventional conditions. No evidence for the existence of so-called specific microwave effects was obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    Science.gov (United States)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  8. Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment.

    Science.gov (United States)

    Pasricha, Aneesh; Jangra, Sant Lal; Singh, Nahar; Dilbaghi, Neeraj; Sood, K N; Arora, Kanupriya; Pasricha, Renu

    2012-01-01

    Nano silver (Ag(n)) is employed as an active antimicrobial agent, but the environmental impact of Ag(n) released from commercial products is unknown. The quantity of nanomaterial released from consumer products during use should be determined to assess the environmental risks of advancement of nanotechnology. This work investigated the amount of silver released from three different types of fabric into water during washing. Three different types of fabric were loaded with chemically synthesized Ag nanoparticles and washed repeatedly under simulated washing conditions. Variable leaching rates among fabric types suggest that the manufacturing process may control the release of silver reaching the waste water treatment plants. In an attempt to recover the Ag(n) for reutilization and to save it from polluting water, the effluents from the wash were efficiently treated with bacterial strains. This treatment was based on biosorption and was very efficient for the elimination of silver nanoparticles in the wash water. The process ensured the recovery of the Ag(n) leached into the effluent for reutilization, thus preventing environmental repercussions.

  9. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; BarathManiKanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Gurunathan, Sangiliyandi

    2010-09-01

    Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Silver Nanoparticles and Mitochondrial Interaction

    Directory of Open Access Journals (Sweden)

    Eriberto Bressan

    2013-01-01

    Full Text Available Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.

  11. Silver nanowire decorated heatable textiles

    Science.gov (United States)

    Doganay, Doga; Coskun, Sahin; Polat Genlik, Sevim; Emrah Unalan, Husnu

    2016-10-01

    The modification of insulating fabrics with electrically conductive nanomaterials has opened up a novel application field. With the help of Joule heating mechanism, conductive fabrics can be used as mobile heaters. In this work, heatable textiles are fabricated using silver nanowires (Ag NWs). Cotton fabrics are decorated with polyol synthesized Ag NWs via a simple dip-and-dry method. The time-dependent thermal response of the fabrics under different applied voltages is investigated. It is found that the fabrics can be heated to 50 °C under an applied power density of as low as 0.05 W cm-2. Uniform deposition of Ag NWs resulted in the homogeneous generation of heat. In addition, the stability of the fabrics with time and under different bending and washing conditions is examined. Moreover, a simple control circuit is fabricated and integrated in order to demonstrate the high potential of the fabrics for mobile applications. This work provides a roadmap for researchers who would like to work on heatable textiles with metallic NWs.

  12. Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces

    OpenAIRE

    Parfenov, Alexandr; Gryczynski, Ignacy; Malicka, Joanna; Geddes, Chris D.; Lakowicz, Joseph R.

    2003-01-01

    Recent reports have shown enhanced fluorescence for fluorophores in close proximity to chemically deposited silver islands or colloids. To expand the usefulness of metal-enhanced fluorescence we tested fractal silver structures formed on, or near, silver electrodes by passage of electric currents. The emission intensity of fluorescein-labeled human serum albumin (FITC-HSA) was enhanced over 100-fold when adsorbed to the fractal silver structures as compared to glass. The amplitude-weighted li...

  13. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    International Nuclear Information System (INIS)

    Lima, R; Feitosa, L O; Ballottin, D; Tasic, L; Durán, N; Marcato, P D

    2013-01-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (− 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  14. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  15. Complex conductivity response to silver nanoparticles in ...

    Science.gov (United States)

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co

  16. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers

    International Nuclear Information System (INIS)

    Liu Zhengchun; Su Yi; Varahramyan, Kody

    2005-01-01

    This paper presents a low-cost and direct-writing silver metallization process based on drop-on-demand inkjet printing technique. Silver nitrate dissolved in the mixture of water and dimethyl sulfoxide (DMSO) was used as a metal precursor for metallization. The fabricated silver films on polyimide substrate were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and electrical measurements. The experimental results show that the inkjet-printed silver tracks have well-defined shapes. The resistivity of the printed silver tracks is around 1.5x10 -5 Ω.cm, one order of magnitude larger than that of bulk silver, which is attributed to the porosities as well as the residual impurities. Two conducting polymers (CP), sulfonated polyaniline (SPANi) and poly(ethylene dioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS), were inkjet-printed on the surface of the silver tracks to study electrical properties of the Ag-polymer contacts. The current-voltage measurement results show that the printed Ag-PEDOT/PSS and Ag-SPANi contacts exhibit 'ohmic' behavior

  17. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells.

    Science.gov (United States)

    Vrček, Ivana Vinković; Žuntar, Irena; Petlevski, Roberta; Pavičić, Ivan; Dutour Sikirić, Maja; Ćurlin, Marija; Goessler, Walter

    2016-06-01

    Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate-coated AgNPs reduced cell viability in a dose-dependent manner. The IC50 values of silver ions and citrate-coated AgNPs were 0.5 and 50 mg L(-1) , respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 679-692, 2016. © 2014 Wiley Periodicals, Inc.

  18. Salinity on artificial reproduction of silver catfish (Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Gabriel Bernardes Martins

    2015-03-01

    Full Text Available Attempting to improve reproduction performance and ichthyo prophylaxis, this study evaluated the effects of maintaining silver catfish (Rhamdia quelen broodstock in different saline concentrations (0, 2, 4, 6 and 8‰ on gametes quality and reproductive viability. The results showed that sperm percent motility did not change between 0 and 4‰, but it was reduced at 6‰, and sperm became immotile at 8‰ salinity. Sperm motility time was increased (almost five fold at 6‰. Salinities up to 4‰ prevented fertilization and hatching, proving their deleterious effects on oocytes and embryos. Therefore, media up to 4‰ salinity may be an alternative for icthyo prophylaxis, although fertilization and incubation must be done in freshwater medium

  19. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  20. Synthesis of silver nanoparticles by sophorolipids: Effect of ...

    Indian Academy of Sciences (India)

    We report in situ synthesis of silver nanoparticles using biosurfactants called sophorolipids as reducing and capping agents. We further study the effect of temperature and the structure of sophorolipid on the size of silver nanoparticles obtained. The silver nanoparticles were characterized by UVvisible, transmission electron ...

  1. Pulsed laser excitation of phosphate stabilised silver nanoparticles

    Indian Academy of Sciences (India)

    Laser flash photolysis studies were carried out on two types of silver nanoparticles prepared by -radiolysis of Ag+ solutions in the presence of polyphosphate as the stabiliser. Type I silver nanoparticles displayed a surface plasmon band at 390 nm. Type II silver nanoparticles showed a 390 nm surface plasmon band with a ...

  2. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  3. In vitro assessment of activity of graphene silver composite sheets ...

    African Journals Online (AJOL)

    Purpose: To synthesize graphene-based silver nanocomposites and evaluate their antimicrobial and anti-Tomato Bushy Stunt Virus (TBSV) activities. Methods: A graphene-based silver composite was prepared by adsorbing silver nanoparticles AgNPs to the surfaces of graphene oxide (GO) sheets. Scanning electron ...

  4. A New Silver Complex with Ofloxacin – Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rusu Aura

    2016-06-01

    Full Text Available Objective: Silver complexes of antibacterial quinolones have the potential advantage of combining the antibacterial activity of silver and fluoroquinolones. The objective of our study was the preparation and the preliminary physico-chemical characterization of a silver complex with ofloxacin.

  5. Antimicrobial efficacy and ocular cell toxicity from silver nanoparticles.

    Science.gov (United States)

    Santoro, Colleen M; Duchsherer, Nicole L; Grainger, David W

    2007-05-01

    Silver in various forms has long been recognized for antimicrobial properties, both in biomedical devices and in eyes. However, soluble drugs used on the ocular surface are rapidly cleared through tear ducts and eventually ingested, resulting in decreased efficacy of the drug on its target tissue and potential concern for systemic side effects. Silver nanoparticles were studied as a source of anti-microbial silver for possible controlled-release contact lens controlled delivery formulations. Silver ion release over a period of several weeks from nanoparticle sources of various sizes and doses in vitro was evaluated in vitro against Pseudomonas aeruginosa strain PA01. Mammalian cell viability and cytokine expression in response to silver nanoparticle exposure is evaluated using corneal epithelial cells and eye-associated macrophages cultured in vitro in serum-free media. Minimal microcidal and cell toxic effects were observed for several silver nanoparticle suspensions and aqueous extraction times for bulk total silver concentrations commensurate with comparative silver ion (e.g., Ag(+) ((aq))) toxicity. This indicates that (1) silver particles themselves are not microcidal under conditions tested, and (2) insufficient silver ion is generated from these particles at these loadings to produce observable biological effects in these in vitro assays. If dosing allows substantially increased silver particle loading in the lens, the bactericidal efficacy of silver nanoparticles in vitro is one possible approach to limiting bacterial colonization problems associated with extended-wear contact lenses.

  6. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure is face-centered cubic. Rhodamine 6G was used as probe molecule to show that the silver ...

  7. Silver plating ensures reliable diffusion bonding of dissimilar metals

    Science.gov (United States)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  8. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    It was found that 0.16M nitric acid gave the best recovery rates of silver. We conclude that, although both organisms were amenable to reuse in further binding of silver, Chlorella emersonii was more efficient than Saccharomyces cerevisiae. Both organisms lost efficiency in metal uptake after two cycles of silver uptake and ...

  9. 25 CFR 304.3 - Classifying and marking of silver.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Classifying and marking of silver. 304.3 Section 304.3 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER, USE OF GOVERNMENT MARK § 304.3 Classifying and marking of silver. For the present the Indian Arts and Crafts Board...

  10. 33 CFR 13.01-10 - Gold and silver bars.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  11. Evaluation of silver nanoparticles as a possible coccidiostat in ...

    African Journals Online (AJOL)

    ... silver content of the livers of the silver nanoparticle group was 0.083 mg/kg compared to 0.001 mg/kg in the control group. The results of this study on the use of silver nanoparticles as a coccidiostat were therefore not conclusive, but holds promise so that further investigation is warranted. Keywords: Ag, protozoa, oocysts, ...

  12. Synthesis of silver nanoparticles by sophorolipids: Effect of ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. We report in situ synthesis of silver nanoparticles using biosurfactants called sophorolipids as reducing and capping agents. We further study the effect of temperature and the structure of sophoro- lipid on the size of silver nanoparticles obtained. The silver nanoparticles were characterized by UV- visible ...

  13. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection

    NARCIS (Netherlands)

    Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J.

    2012-01-01

    The aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution. Ag carbon

  14. Antimicrobial Activity of Silver Nanoparticles Synthesized by Marine ...

    African Journals Online (AJOL)

    In this work, in vitro biosynthesis of silver nanoparticles was achieved using AgNO3 as a substrate by L. plantrum isolated from mangrove rhizosphere region in South East Coast of India (Gulf of Mannar). The biosynthesis was faster within a minute of silver ion coming in contact with the cell filtrate. Presence of silver ...

  15. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    A simple and efficient approach was developed to fabricate silver dendrites by Cu reducing Ag+ in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure ...

  16. The Benefits of Recycling Silver - A Precious Metal.

    Science.gov (United States)

    1985-09-01

    Silver Recovery Costs . . . . . . . . . . . . . . . . 36 IV. DOD Total Savings - Yardney Industries ... 39 V. Total PMRP Silver Recovery Savings...locations -- New Jersey, New York, and Connecticut. Yardney Electric stores only silver at its Connecticut facilities. These companies have storage...GFM are Yardney , and Engelhard and Engelhard Industries (20:11885). The contracts and GFM management are administered by the Defense Contracts

  17. Prolonging the duration of preventing bacterial adhesion of nanosilver-containing polymer films through hydrophobicity.

    Science.gov (United States)

    Yin, Bing; Liu, Tao; Yin, Yansheng

    2012-12-11

    A superhydrophobic coating composed of silver nanoparticles was developed on copper from fluorinated multilayered polyelectrolyte films to examine its performance in preventing microbial adhesion. Antibacterial and antibiofouling experiments for this novel coating were conducted with SRB. From the disk diffusion tests (for 48 h), it was found that, compared to the traditional coating composed of nanosilver, this novel coating significantly improved antibacterial performance and long-term effectiveness. The oxidation states of the immobilized silver in polyelectrolyte multilayer films were investigated with X-ray photoelectron spectroscopy (XPS), and the stability of the immobilized silver was evaluated through a leaching test. It was found that if silver was exposed to aqueous environments some ionic silver species would be produced and released. The ion release kinetics showed that the duration of sustained release of antibacterial Ag ions from the novel coatings was prolonged, which was why they had more long-term antibacterial performance.

  18. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  19. Comparison of silver nylon wound dressing and silver sulfadiazine in partial burn wound therapy.

    Science.gov (United States)

    Abedini, Fereydoon; Ahmadi, Abdollah; Yavari, Akram; Hosseini, Vahid; Mousavi, Sarah

    2013-10-01

    The study aims to perform a comparative assessment of two types of burn wound treatment. To do the assessment, patients with partial thickness burn wounds with total body surface area nylon wound dressing or silver sulfadiazine cream. Efficacy of treatment, use of analgesics, number of wound dressing change, wound infection and final hospitalisation cost were evaluated. The study showed silver nylon wound dressing significantly reduced length of hospital stay, analgesic use, wound infection and inflammation compared with silver sulfadiazine. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  20. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    Energy Technology Data Exchange (ETDEWEB)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  1. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol

    Science.gov (United States)

    Zamiri, Reza; Zakaria, Azmi; Husin, Mohd Shahril; Wahab, Zaidan Abd; Nazarpour, Forough Kalaei

    2011-01-01

    In the present work, we prepared silver nanoparticles by laser ablation of pure silver plate in ethanol and then irradiated the silver nanoparticles using a 532 nm Q-switched Nd:YAG pulsed laser. Transmission electron microscopic images of the sample after irradiation clearly showed formation of big structures, such as microrods and microbelts in ethanol. The obtained microbelts had a width of about 0.166 μm and a length of 1.472 μm. The reason for the formation of such a big structure is the tendency of the nanoparticles to aggregate in ethanol before irradiation, which causes fusion of the nanoparticles. PMID:22114485

  2. Development of filter element from nanocomposites of ultra high molar mass polyethylene having silver nanoparticles; Desenvolvimento de elemento filtrante a partir de nanocompositos de polietileno de ultra-alta massa molar contendo nanoparticulas de prata

    Energy Technology Data Exchange (ETDEWEB)

    Bizzo, Maurizio A.; Wang, S. Hui, E-mail: mbizzo@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica de Engenharia Metalurgica e de Materiais

    2015-07-01

    The production of polymer based filter elements for water is widespread in the market but has an undesirable characteristic, they are not always efficient and capable of retaining or eliminating microorganisms. This paper proposes the production of filters with biocidal activity, comprised by nanocomposites of ultra-high molar mass polyethylene (UHMMPE) containing silver nanoparticles. The polymer is responsible for the uniform porous structure of the filter element and the Ag nanoparticles for its biocidal action. The filter elements were produced from two kinds of UHMMPE particles with different particle size distributions, one in the range of 150 to 200μm and the other of 300 to 400μm. Samples were collected from the obtained filter elements and characterized by X-ray diffractometry, scanning electron microscopy and microanalysis. The results indicated the formation of nanocomposite containing silver nanoparticles. (author)

  3. Silver nanoparticle containing silk fibroin bionanotextiles

    Energy Technology Data Exchange (ETDEWEB)

    Calamak, Semih; Aksoy, Eda Ayse [Hacettepe University, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy (Turkey); Erdogdu, Ceren; Sagıroglu, Meral [Hacettepe University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy (Turkey)

    2015-02-15

    Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.

  4. Deposition of silver layer on different substrates

    Science.gov (United States)

    Krzemiński, J.; Kiełbasiński, K.; Szałapak, J.; Jakubowska, M.; MłoŻniak, A.; Zwierkowska, E.

    2015-09-01

    The hole process of producing continuous layer with silver nanoparticles is presented in this paper. First the ink preparation and then the spray process is shown and discussed. The silver layers were obtained on sodium glass substrate. Three different ink carriers were considered and the best one has been chosen. Spray coating process was carried out using special spray can. After obtaining sprayed layers the samples were sintered in several temperatures to investigate the lowest suitable sintering temperature. After that layers resistivity were measured. Then the silver layers were cracked to produce breakthrough fracture that was investigated by a scanning electron microscope. In this paper, the authors investigated the spray coating technique as an alternative to electroplating and other techniques, considering layer resistivity, thickness and production process.

  5. Genetics of behavior in the silver fox.

    Science.gov (United States)

    Kukekova, Anna V; Temnykh, Svetlana V; Johnson, Jennifer L; Trut, Lyudmila N; Acland, Gregory M

    2012-02-01

    The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.

  6. Release of silver nanoparticles from outdoor facades

    International Nuclear Information System (INIS)

    Kaegi, Ralf; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Mueller, Elisabeth; Vonbank, Roger; Boller, Markus; Burkhardt, Michael

    2010-01-01

    In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 μ Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly 2 S. - We provide direct evidence for the release of silver nanoparticles from exterior paints to the aquatic environment.

  7. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  8. Percutaneous penetration of silver from a silver containing garment in healthy volunteers and patients with atopic dermatitis

    NARCIS (Netherlands)

    Pluut, Olivier A.; Bianco, Carlotta; Jakasa, Ivone; Visser, Maaike J.; Krystek, Petra; Larese-Filon, Francesca; Rustemeyer, Thomas; Kezic, Sanja

    2015-01-01

    Human data on dermal absorption of silver under "in use" scenario are scarce which hampers health risk assessment. The main objective of the present study was to determine percutaneous penetration of silver after dermal exposure to silver containing garment in healthy individuals and atopic

  9. Purifying Sufism: Observations on the Marginalization and Exclusion of Undesirable and Rejected Elements in the Earlier Middle Period (late fourth/tenth to mid-seventh/thirteenth centuries

    Directory of Open Access Journals (Sweden)

    Ephrat, Daphna

    2014-06-01

    Full Text Available This article offers observations on the process of differentiation and purification within premodern Sufism during a seminal period in the institutionalization of the Sufi ṭarīqa as a Path to God and as a community of followers. Drawing on manuals and narratives by prominent articulators and representatives of the emerging mainstream Sufi tradition, the article highlights the discursive and actual mechanisms they employed to delineate the borderlines of affiliation with the communities of the genuine Sufis, disentangle the solid-core from lay affiliates, and exclude undesirable elements wrongly associated with Sufism. The construction of higher barriers between mainstream Sufism and its margins is closely tied to the spread of popular forms of Sufism and a new kind of antinomianism that gained popularity in the public sphere, beginning in the late sixth/twelfth century. The final part of the article considers the involvement of the political rulers of the time in the inner dynamics of Sufism. My main conclusion is that by patronizing mainstream Sufis and supporting arbiters of true religion in the public sphere, the ruling elite of military lords in the Arab Near East played a significant role in marginalizing the undesirable and rejected elements and in strengthening the mainstream Sunni camp against its rivals.Este artículo ofrece una serie de observaciones sobre el proceso de diferenciación y purificación dentro del sufismo pre-moderno durante un periodo crucial para la institucionalización de las ṭarīqa-s sufíes como una Vía hacia Dios y como una comunidad de seguidores. Basándose en manuales y en narraciones de autores prominentes y representantes de la tradición sufí mainstream emergente, este artículo pone de relieve los mecanismos discursivos que emplearon para marcar los bordes de la afiliación con comunidades de sufíes genuinos, separar el núcleo central de los afiliados externos, y excluir a los elementos

  10. Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence

    OpenAIRE

    Geddes, Chris D.; Parfenov, Alexandr; Roll, David; Fang, Jiyu; Lakowicz, Joseph R.

    2003-01-01

    We describe two reagentless methods of silver deposition for metal-enhanced fluorescence. Silver was deposited on glass positioned between two silver electrodes with a constant current in pure water. Illumination of the glass between the electrodes resulted in localized silver deposition. Alternatively, silver was deposited on an Indium Tin Oxide cathode, with a silver electrode as the anode. Both types of deposited silver produced a 5–18-fold increase in the fluorescence intensity of a nearb...

  11. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    OpenAIRE

    Kuo-Hsiung Tseng; Heng-Lin Lee; Chih-Yu Liao; Kuan-Chih Chen; Hong-Shiou Lin

    2013-01-01

    The electrical discharge machining (EDM) system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To ex...

  12. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    , and copper oxides is inserted into a silver tube and reduced by multi-step drawing. These single-filaments are packed in a new silver tube thus forming a multi-filament containing e.g. 37 single-filaments, which is subsequently reduced by drawing and rolling to tapes approximately 0.2 mm thick by 3 mm wide...... and current leading properties of the final superconducting fibres. The present work describes studies on alternative packing geometries and process parameters in the flat rolling operations. The aim is to obtain homogenous filaments with advantageous geometry and good texture while avoiding potential defects...

  13. Silver release from coated particle fuel

    International Nuclear Information System (INIS)

    Brown, P.E.; Nabielek, H.

    1977-03-01

    The fission product Ag-110 m released from coated particles can be the dominant source of radioactivity from the core of a high temperature reactor in the early stages of the reactor life and possibly limits the accessability of primary circuit components. It can be shown that silver is retained in oxide fuel by a diffusion process (but not in carbide or carbon-diluted fuel) and that silver is released through all types of pyrocarbon layers. The retention in TRISO particles is variable and seems to be mainly connected with operating temperature and silicon carbide quality. (orig.) [de

  14. Silver nanoparticles – wolves in sheep's clothing?

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Jiang, Xiumei; Miclaus, Teodora

    2015-01-01

    Silver nanoparticles (Ag NPs) are one of the most widely utilized engineered nanomaterials (ENMs) in commercial products due to their effective antibacterial activity, high electrical conductivity, and optical properties. Therefore, they have been one of the most intensively investigated...... effects following exposure to Ag NPs, information about the mechanisms for their cytotoxicity and genotoxicity is necessary. The present paper attempts to review the cellular and molecular mechanisms behind Ag NP toxicity. In addition, the role of silver ions in the toxicity of Ag NPs is discussed....

  15. Recovery of silver from CEPOD anolyte solutions

    International Nuclear Information System (INIS)

    Blanchard, D.L.; Surma, J.E.; Alexander, D.L.; Shade, E.H.; Matheson, J.D.; Cochran, D.L.; Wheelwright, E.J.; Boyd, T.

    1994-09-01

    The process known as Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) has been shown effective for removing plutonium from a variety of residues and solids. This process involves the electrochemical oxidation of PuO 2 (and other Pu species) to (PuO 2 ) 2+ , and dissolution of the latter species in the anode solution (anolyte). Silver is used to transfer charge from the electrodes to the solid Pu oxide. Ag (1) is oxidized at the anode to Ag(II) and carried by the solution to the plutonium oxide solids, where the silver and oxide undergo a redox reaction that converts Pu(IV) to Pu(VI), and Ag(II) to Ag(I). Other metal ions [such as Ce(IV) and Co(III)] may also be used for this charge transfer, but have been found to be less effective than silver. The same process may be used to destroy various organic materials (such as paper and wood, oil and fuels, and synthetic polymer materials) by complete oxidation to CO 2 or H 2 O, for example. Upon completion of a CEPOD dissolver run, the anolyte may be processed to remove solution species of interest (i.e., Pu), or the anolyte may be recycled, or disposed. Because silver is a Resource Conservation and Recovery Act (RCRA) land ban material, it must be removed from waste streams. Preliminary experiments, completed in FY 1991, demonstrated a simple, effective technique for silver removal from solutions. Ascorbic acid (C 6 H 8 O 6 ) Was Used to reduce silver ion to metallic silver, which precipitates from solution. The process was demonstrated effective on a bench scale using samples of actual CEPOD anolyte. Further experiments, in FY 1993, optimized these parameters and demonstrated the effectiveness of the technique on CEPOD anolyte on a larger, process scale (liters of solution). This report describes both the preliminary bench-scale experiments and the more recent process-scale experiments. The results are also compared to electro-deposition, another method of silver ion removal

  16. Mineral resource of the month: silver

    Science.gov (United States)

    Katrivanos, Florence C.

    2015-01-01

    Silver, one of the eight precious or noble metals, has been used extensively throughout recorded history for various medical purposes, ornaments and utensils, and for its intrinsic value as the basis for trade and monetary systems. Silver has played a significant role in world history, financing a Greek victory over the Persians in 480 B.C., helping Spain become a world power in the 16th and 17th centuries, and helping fund the Union forces during the U.S. Civil War, to give a few examples.

  17. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei

    2015-01-01

    on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended......We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...

  18. James Cox’s Silver Swan

    OpenAIRE

    Smith, Roger

    2018-01-01

    The Silver Swan (ill. 25) is a life-sized automaton that has been in the Bowes Museum in the northern English town of Barnard Castle since 1872. It was first exhibited in 1773 by the jeweller and entrepreneur James Cox (c. 1723-1800), as part of his « museum » of musical clocks and automata in Spring Gardens, London. Before considering the Swan itself, it is important to understand the unusual circumstances which led to its creation. Figure 25 - Silver Swan, c. 1773 H. 80 cm © Bowes Museum, ...

  19. Fluorescent DNA Stabilized Silver Nanoclusters as Biosensors

    Directory of Open Access Journals (Sweden)

    Alfonso Latorre

    2013-01-01

    Full Text Available DNA stabilized fluorescent silver nanoclusters are promising materials, of which fluorescent properties can be exploited to develop sensors. Particularly, the presence of a DNA strand in the structure has promoted the development of gene sensors where one part of the sensor is able to recognize the target gene sequence. Moreover, since oligonucleotides can be designed to have binding properties (aptamers a variety of sensors for proteins and cells have been developed using silver nanoclusters. In this review the applications of this material as sensors of different biomolecules are summarized.

  20. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    Science.gov (United States)

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  1. A critical assessment for the value of markers to gate-out undesired events in HLA-peptide multimer staining protocols

    Directory of Open Access Journals (Sweden)

    Odunsi Kunle

    2011-07-01

    Full Text Available Abstract Background The introduction of antibody markers to identify undesired cell populations in flow-cytometry based assays, so called DUMP channel markers, has become a practice in an increasing number of labs performing HLA-peptide multimer assays. However, the impact of the introduction of a DUMP channel in multimer assays has so far not been systematically investigated across a broad variety of protocols. Methods The Cancer Research Institute's Cancer Immunotherapy Consortium (CRI-CIC conducted a multimer proficiency panel with a specific focus on the impact of DUMP channel use. The panel design allowed individual laboratories to use their own protocol for thawing, staining, gating, and data analysis. Each experiment was performed twice and in parallel, with and without the application of a dump channel strategy. Results The introduction of a DUMP channel is an effective measure to reduce the amount of non-specific MULTIMER binding to T cells. Beneficial effects for the use of a DUMP channel were observed across a wide range of individual laboratories and for all tested donor-antigen combinations. In 48% of experiments we observed a reduction of the background MULTIMER-binding. In this subgroup of experiments the median background reduction observed after introduction of a DUMP channel was 0.053%. Conclusions We conclude that appropriate use of a DUMP channel can significantly reduce background staining across a large fraction of protocols and improve the ability to accurately detect and quantify the frequency of antigen-specific T cells by multimer reagents. Thus, use of a DUMP channel may become crucial for detecting low frequency antigen-specific immune responses. Further recommendations on assay performance and data presentation guidelines for publication of MULTIMER experimental data are provided.

  2. Spectroelectrochemical and morphological studies of the ageing of silver nanoparticles embedded in ultra-thin perfluorinated sputter deposited films

    Energy Technology Data Exchange (ETDEWEB)

    Ebbert, C., E-mail: ebbert@tc.upb.de [University of Paderborn, Faculty of Natural Science, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn (Germany); Alissawi, N. [Institute for Materials Science, Christian-Albrechts University at Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Somsen, C.; Eggeler, G. [Institute of Materials, Department of Mechanical Engineering, Ruhr-University Bochum, Universitaetst. 150, 44780 Bochum (Germany); Strunskus, T.; Faupel, F. [Institute for Materials Science, Christian-Albrechts University at Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Grundmeier, G. [University of Paderborn, Faculty of Natural Science, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn (Germany)

    2014-11-28

    This paper focuses on the investigation of the ageing behaviour of silver nanoparticle containing polytetrafluoroethylene thin films during exposure to phosphate buffer solution (pH = 7.5). In order to investigate the effect of the electrical connection between the silver nanoparticles via a conductive substrate, two kinds of composite films were compared. One model where the nanoparticles are directly deposited on an inert conducting substrate and then covered by an ultra-thin polytetrafluoroethylene like film. In the second case a polytetrafluoroethylene/silver nanoparticle/polytetrafluoroethylene sandwich film was prepared on the same substrate to prevent electrical connection of the silver nanoparticles. Degradation was followed in-situ by means of the combination of ultraviolet–visible spectroscopy and electrochemical impedance spectroscopy. In the case of electrically connected nanoparticles electrochemical Ostwald ripening took place, while this process was not observed for the insulated nanoparticles. The electrochemical impedance spectroscopy studies allowed for the parallel study of the correlated loss of barrier properties. Transmission electron microscopy images of both composite films confirmed the results obtained by means of the in situ electrochemical ultraviolet–visible studies. - Highlights: • Nanoparticle in polymer films could be analysed by a spectroelectrochemical approach. • Transmission electron microscopy analysis proved an Ostwald-ripening process. • Embedding of the silver nanoparticles inhibits the Ostwald-ripening process.

  3. Morphology of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication

    Directory of Open Access Journals (Sweden)

    Harets V.I.

    2016-05-01

    Full Text Available Morphological state of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication was studied. We found that values of the hepatofetal index in the groups Pb+Ag and Pb+Au had significant differences as compared to the group exposed to lead intoxication, but did not differ significantly from the control group and made up 0,086±0,001 and 0,083±0,001, respectively. Value of the relative area of blood vessels in groups Pb+Ag and Pb+Au was 13.08±0.53% and 16.83±0.53%, respectively, which had no significant difference as compared to control group, but differed from the value of lead intoxication group. Under the influence of silver citrate on a background of lead intoxication the relative area of hematopoietic cells was 52,5±0,95%; this indicates to modification action of silver on haematopoiesis. Thus, injection of silver and gold citrates prevents negative effect of lead on morphometric parameters of embryonic liver, relative area of blood vessels and hematopoietic cells. Experiment results showed protective effect of silver and gold citrates on a background of lead intoxication during hepatogenesis.

  4. Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles

    International Nuclear Information System (INIS)

    Nisticò, Roberto; Rosellini, Andrea; Rivolo, Paola; Faga, Maria Giulia; Lamberti, Roberta; Martorana, Selanna; Castellino, Micaela; Virga, Alessandro; Mandracci, Pietro; Malandrino, Mery; Magnacca, Giuliana

    2015-01-01

    Graphical abstract: - Highlights: • Polypropylene meshes for hernioplasty were surface functionalised via plasma-polymerisation to confer adhesive properties. • Subsequently, silver nanoparticles were loaded to add antibacterial activity. • Materials were physico-chemical characterised and adhesive properties evaluated. - Abstract: Hernia diseases are among the most common and diffuse causes of surgical interventions. Unfortunately, still nowadays there are different phenomena which can cause the hernioplasty failure, for instance post-operative prostheses displacements and proliferation of bacteria in the surgical site. In order to limit these problems, commercial polypropylene (PP) and polypropylene/Teflon (PP/PTFE) bi-material meshes were surface functionalised to confer adhesive properties (and therefore reduce undesired displacements) using polyacrylic acid synthesized by plasma polymerisation (PPAA). A broad physico-chemical and morphological characterisation was carried out and adhesion properties were investigated by means of atomic force microscopy (AFM) used in force/distance (F/D) mode. Once biomedical devices surface was functionalised by PPAA coating, metallic silver nanoparticles (AgNPs) with antimicrobial properties were synthesised and loaded onto the polymeric prostheses. The effect of the PPAA, containing carboxylic functionalities, adhesive coating towards AgNPs loading capacity was verified by means of X-ray photoelectron spectroscopy (XPS). Preliminary measurement of the Ag loaded amount and release in water were also investigated via inductively coupled plasma atomic emission spectroscopy (ICP-AES). Promising results were obtained for the functionalised biomaterials, encouraging future in vitro and in vivo tests

  5. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles

    OpenAIRE

    Qu, Haiou; Mudalige, Thilak K.; Linder, Sean W.

    2015-01-01

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the backg...

  6. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    Science.gov (United States)

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed. PMID:28408822

  7. Silver surface enrichment of silver-copper alloys: a limitation for the analysis of ancient silver coins by surface techniques

    International Nuclear Information System (INIS)

    Beck, L.; Bosonnet, S.; Reveillon, S.; Eliot, D.; Pilon, F.

    2004-01-01

    The surface enrichment of archaeological silver-copper alloys has been recognized for many years. However, the origin of this enrichment is not well defined and many hypotheses have been put forward to account for this behaviour: segregation of the components during casting, deliberate thermal and/or chemical post-treatment, abrasion or corrosion. Among the hypotheses mentioned above, we have focused our study on the first step of coin manufacturing. Replications of silver-copper standards of various compositions ranging from 30% to 80% Ag, reflecting the composition of silver blanks, have been produced. Metallographic examination, PIXE and SEM-EDS have been used for the characterization of each sample. A model of the direct enrichment has been established. This model allows us to propose a relationship between the surface composition and the silver content of the core. Comparison with data of Roman coins from the Roman site of Cha-hat teaubleau (France) and from the literature and consequences for the analyses of ancient coins by surface methods are presented

  8. PVDF nanofibers with silver nanoparticles and silver/titanium dioxide for antimicrobial applications

    International Nuclear Information System (INIS)

    Costa, Ligia M.M.; Olyveira, Gabriel M. de

    2009-01-01

    PVDF nanofibers with and without nanoparticles were produced by the method of electro spinning using dimethylformamide (DMF). Silver nitrate nanoparticles (0,5 and 2 wt %) and silver/titanium dioxide nanoparticles obtained by the reduction method (2 wt %) were synthesized and added to the PVDF solution to prepared nanofibers. The processes of electrospinning and film preparation using PVDF with the nanoparticles were compared. Silver/titanium dioxide nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDX and x-ray photoelectron spectroscopy (XPS) to show silver/titanium dioxide nanoparticles. Nanofibers mats were characterized with SEM to study the effects of the addition of the nanoparticles on the morphology behavior and spectroscopy by Fourier transform infrared (FTIR) to analyze the crystalline phase of PVDF films. (author)

  9. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate.

    Science.gov (United States)

    Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso

    2014-03-05

    The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    Science.gov (United States)

    Zhang, Wanzhong; Qiao, Xueliang; Chen, Jianguo

    2006-11-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag4+ intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6 nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields.

  11. Antimicrobial silver: uses, toxicity and potential for resistance.

    Science.gov (United States)

    Mijnendonckx, Kristel; Leys, Natalie; Mahillon, Jacques; Silver, Simon; Van Houdt, Rob

    2013-08-01

    This review gives a comprehensive overview of the widespread use and toxicity of silver compounds in many biological applications. Moreover, the bacterial silver resistance mechanisms and their spread in the environment are discussed. This study shows that it is important to understand in detail how silver and silver nanoparticles exert their toxicity and to understand how bacteria acquire silver resistance. Silver ions have shown to possess strong antimicrobial properties but cause no immediate and serious risk for human health, which led to an extensive use of silver-based products in many applications. However, the risk of silver nanoparticles is not yet clarified and their widespread use could increase silver release in the environment, which can have negative impacts on ecosystems. Moreover, it is shown that silver resistance determinants are widely spread among environmental and clinically relevant bacteria. These resistance determinants are often located on mobile genetic elements, facilitating their spread. Therefore, detailed knowledge of the silver toxicity and resistance mechanisms can improve its applications and lead to a better understanding of the impact on human health and ecosystems.

  12. Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity

    Science.gov (United States)

    Gavade, Chaitali; Shah, Sunil; Singh, N. L.

    2011-07-01

    PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.

  13. Reaction between YBCO/Ag superconductor and melted silver

    International Nuclear Information System (INIS)

    Maeda, Junya; Izumi, Teruo; Shiohara, Yuh

    1999-01-01

    In order to study the feasibility of applying liquid phase processing using melted silver to fabricate YBCO/silver contacts, the chemical reaction at the boundaries between the Y-Ba-Cu-O (YBCO) superconducting matrix and melted silver was observed. YBCO superconducting current leads prepared by the unidirectional solidification method were dipped into liquid silver melted by an electric furnace. Copper-poor layers were formed at the boundary between the YBCO matrix and melted silver, although the temperatures were lower than the YBCO/Ag melting temperature (∼970 deg. C). It was considered that melted silver took up copper from the YBa 2 Cu 3 O x (Y123) crystal, and it is considered that the phase equilibrium at the boundary between the YBCO matrix and molten silver was changed from Y 2 Ba 1 Cu 1 O 5 (Y211)-Y123 to another phase. (author)

  14. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    International Nuclear Information System (INIS)

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-01-01

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag + to Ag 0 ). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged

  15. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, Jörg P.; Mogensen, K. B.

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver...... quantum clusters are subsequently synthesized at the surface of the nanoparticles by photoactivation in presence of Ag+ cations in solution. The photogeneration of these silver quantum clusters leads to a great increase in the fluorescent signal. This photoactivated surface can then be used for sensing...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  16. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    Science.gov (United States)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  17. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Velázquez-Velázquez, Jorge Luis [Laboratorio de Microbiología, Facultad de Ciencias Químicas, UASLP (Mexico); Santos-Flores, Andrés; Araujo-Meléndez, Javier [Servicio de Epidemiología del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosí (Mexico); Sánchez-Sánchez, Roberto; Velasquillo, Cristina [Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación (Mexico); González, Carmen [Laboratorio de Fisiología Celular, Facultad de Ciencias Químicas, UASLP (Mexico); Martínez-Castañon, Gabriel [Maestría en Ciencias Odontológicas Facultad de Estomatología, UASLP (Mexico); Martinez-Gutierrez, Fidel, E-mail: fidel@uaslp.mx [Laboratorio de Microbiología, Facultad de Ciencias Químicas, UASLP (Mexico)

    2015-04-01

    Infections arising from bacterial adhesion and colonization on chronic wounds are a significant healthcare problem. Silver nanoparticles (AgNPs) impregnated in dressing have attracted a great deal of attention as a potential solution. The goal of the present study was to evaluate the anti-biofilm activities of AgNPs impregnated in commercial dressings against Pseudomonas aeruginosa, bacteria isolated of chronic wounds from a hospital patient. The antimicrobial activity of AgNPs was tested within biofilms generated under slow fluid shear conditions using a standard bioreactor. A 2-log reduction in the number of colony-forming units of P. aeruginosa was recorded in the reactor on exposure to dressing impregnated with 250 ppm of AgNPs, diameter 9.3 ± 1.1 nm, and also showed compatibility to mammalian cells (human fibroblasts). Our study suggests that the use of dressings with AgNPs may either prevent or reduce microbial growth in the wound environment, and reducing wound bioburden may improve wound-healing outcomes. - Highlights: • Biological activities of silver nanoparticles for wound-healing purposes • Characterization of the silver nanoparticles impregnated in dressings • Reduction in the P. aeruginosa biofilm formation was statistically significant. • Compatibility to human dermal fibroblasts as the main cell type involved in the reparation • AgNPs covering the surfaces would provide great potential for prevention and treatment.

  18. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles

    International Nuclear Information System (INIS)

    Velázquez-Velázquez, Jorge Luis; Santos-Flores, Andrés; Araujo-Meléndez, Javier; Sánchez-Sánchez, Roberto; Velasquillo, Cristina; González, Carmen; Martínez-Castañon, Gabriel; Martinez-Gutierrez, Fidel

    2015-01-01

    Infections arising from bacterial adhesion and colonization on chronic wounds are a significant healthcare problem. Silver nanoparticles (AgNPs) impregnated in dressing have attracted a great deal of attention as a potential solution. The goal of the present study was to evaluate the anti-biofilm activities of AgNPs impregnated in commercial dressings against Pseudomonas aeruginosa, bacteria isolated of chronic wounds from a hospital patient. The antimicrobial activity of AgNPs was tested within biofilms generated under slow fluid shear conditions using a standard bioreactor. A 2-log reduction in the number of colony-forming units of P. aeruginosa was recorded in the reactor on exposure to dressing impregnated with 250 ppm of AgNPs, diameter 9.3 ± 1.1 nm, and also showed compatibility to mammalian cells (human fibroblasts). Our study suggests that the use of dressings with AgNPs may either prevent or reduce microbial growth in the wound environment, and reducing wound bioburden may improve wound-healing outcomes. - Highlights: • Biological activities of silver nanoparticles for wound-healing purposes • Characterization of the silver nanoparticles impregnated in dressings • Reduction in the P. aeruginosa biofilm formation was statistically significant. • Compatibility to human dermal fibroblasts as the main cell type involved in the reparation • AgNPs covering the surfaces would provide great potential for prevention and treatment

  19. Silver-containing dressing for surgical site infection in clean and clean-contaminated operations: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Li, Hui-Zi; Zhang, Lei; Chen, Jia-Xi; Zheng, Yang; Zhu, Xiang-Nan

    2017-07-01

    Silver-containing dressings for the prevention of surgical site infections (SSIs) remained controversial, and accumulating evidence was lacking, so a meta-analysis was conducted to systematically assess the effectiveness and safety of silver-containing dressings for clean and clean-contaminated surgical incisions. Pubmed, Embase, and the Cochrane Library were searched from the inception to February 2016 for randomized controlled trials (RCTs), which explored silver-containing dressings for the prevention of SSIs in clean and clean-contaminated operations. Relative risk (RR) with 95% confidence interval (CI) was pooled using random effects model. Predefined subgroup analyses, sensitivity analyses, and influence analyses were further undertaken. Nine RCTs totaling 2196 patients (1141 in silver-containing group and 1055 in control group) were included. Silver-containing dressings did not effectively prevent the incidence of SSIs (9 RCTs; RR: 0.92; 95% CI: 0.66-1.29; I 2  = 40%), superficial SSIs (5 RCTs; RR: 0.67; 95% CI: 0.36-1.24; I 2  = 36%), and deep SSIs (5 RCTs; RR: 0.78; 95% CI: 0.41-1.49; I 2  = 0). Subgroup analyses, sensitivity analyses, and influence analyses confirmed the robustness of the pooled estimate. The current available evidence indicated that silver-containing dressing as compared with silver-free dressing was not associated with lower incidence of SSIs. Considering the quality of evidence ranking very low, further studies with higher quality should be warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Highly efficient silver patterning without photo-resist using simple silver precursors

    International Nuclear Information System (INIS)

    Byun, Younghun; Hwang, Eoc-Chae; Lee, Sang-Yun; Lyu, Yi-Yeol; Yim, Jin-Heong; Kim, Jin-Young; Chang, Seok; Pu, Lyong Sun; Kim, Ji Man

    2005-01-01

    Highly efficient method for silver patterning without photo-resist was developed by using high photosensitive organo-silver precursors, which were prepared by a simple reaction of silver salts and excess of amines. The FT-IR and GC-MS spectra were recorded depending on UV exposure time, for (n-PrNH 2 )Ag(NO 3 ).0.5MeCN and (n-PrNH 2 )Ag(NO 2 ).0.5MeCN, to understand the photolysis mechanism. The results indicate not only dissociation of coordinated amine and acetonitrile, but also decomposition of corresponding anion upon UV irradiation. When a precursor thin film was exposed to broadband UV irradiation, a partially reduced and insoluble silver species were formed within several minutes. After development, the irradiated areas were treated with a reducing agent to obtain pure metallic patterns. Subsequently, annealing step was followed at 100-350 deg. C to increase the adhesion of interface and cohesion of silver particles. The line resolution of 5 μm was obtained by the present silver precursors. Film thickness was also controllable from 50 to 250 nm by repetition of the above procedure. The average electrical conductivity was in the range of 3-43 Ω cm, measured by four-point probe technique. AES depth profile of the silver pattern thus obtained showed carbon and oxygen contents are less than 1% through the whole range. Even though sulfur contaminant exists on the surface, it was believed that nearly pure silver pattern was generated

  1. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles.

    Science.gov (United States)

    Bachler, Gerald; von Goetz, Natalie; Hungerbühler, Konrad

    2013-01-01

    Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15-150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag⁺; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure.

  2. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles

    Science.gov (United States)

    Bachler, Gerald; von Goetz, Natalie; Hungerbühler, Konrad

    2013-01-01

    Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15–150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure. PMID:24039420

  3. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    Science.gov (United States)

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  4. A high-temperature, high-pressure, silver-silver chloride reference electrode

    International Nuclear Information System (INIS)

    King, F.; Bailey, M.G.; Clarke, C.F.; Ikeda, B.M.; Litke, C.D.; Ryan, S.R.

    1989-05-01

    A high-temperature, high-pressure, silver-silver chloride reference electrode is described. This report is meant to serve as a user's guide to the experimentalist. Consequently, the design and construction of the electrode are dealt with in some detail. The problems that may be encountered, along with their possible causes and remedies, are also discussed. Conversion factors are given for both internal and external reference electrodes, so that measured potentials can be related to the standard hydrogen electrode scale

  5. Synthesis of silver nanoparticles by chemical reduction at various fraction of MSA and their structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diantoro, Markus, E-mail: m-diantoror@yahoo.com; Fitrianingsih, Rina, E-mail: m-diantoror@yahoo.com; Mufti, Nandang, E-mail: m-diantoror@yahoo.com; Fuad, Abdulloh, E-mail: m-diantoror@yahoo.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang (UM), Jl. Semarang No. 5 Malang 65145 (Indonesia)

    2014-03-24

    Nanosilver is currently one of the most common engineered nanomaterials and is used in many applications that lead to the release of silver nanoparticles and silver ions into aqueous systems. Nanosilver also possesses enhanced antimicrobial activity and bioavailability that may less environmental risk compared with other manufactured nanomaterials. Described in this research are the synthesis of silver nanoparticle produced by chemical reduction from silver nitrate (AgNO{sub 3}) solution. As a reducing agent, Sodium Borohydride (NaBH{sub 4}) was used and mercaptosuccinic Acid (MSA) as stabilizer to prevent the nanoparticle from aglomerating. It was also used two kinds of solvent, they are water and methanol. In typical experiment MSA was dissolve in methanol with a number of variation of molarity i.e. 0,03 M, 0,06 M, 0,12 M, 0,15 M, and the mixture was kept under vigorous stirring in an ice bath. A solution of silver nitrate of 340 mg in 6,792 ml water was added. A freshly prepared aqueous solution of sodium borohydride (756,6 mL in 100 mL of water) was added drop wisely. The solution was kept for half an hour for stirring and were allowed to settle down in methanol. The obtained samples then characterized by means of x-ray diffractometer, and scanning electron microscopy, as well as transmission electron microscopy to obtain their structures of silver nanoparticles, morphology, and sizes. It is shown that diameter of silver nanoparticle sized about 24.3 nm (Ag@MSA 0.03 M), 20.4 nm (Ag@MSA 0.06 M), 16.8 nm (Ag@MSA 0.12 M), 16.9 nm (Ag@MSA 0.15 M) which was calculated by Scherrer formula by taking the FWHM from fitting to Gaussian. The phases and lattice parameter showed that there is no significant change in its volume by increasing molarity of stabilizer. In contrast, the size of particles is decreasing.

  6. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nano structures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    International Nuclear Information System (INIS)

    Goncalves, M.R.; Marti, O.; Fabian Enderle, F.

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver. excitation: by far-field illumination of metal nanostructures or rough metal Raman scattering cross-section of gold-palladium target Temporal Fluctuation in SERS Temporal and spectral fluctuations.

  7. Rape prevention

    Science.gov (United States)

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention website. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. www.cdc.gov/std/tg2015/sexual- ...

  8. Dengue Prevention

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Prevention Recommend on Facebook Tweet Share Compartir This photograph ... medications to treat a dengue infection. This makes prevention the most important step, and prevention means avoiding ...

  9. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Sahar, E-mail: saharzaki@yahoo.com [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt); El Kady, M.F. [Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, Alexandria (Egypt); Abd-El-Haleem, Desouky [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt)

    2011-10-15

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: {yields} About 300 bacterial isolates were screened for their ability to produce nanosilvers {yields} Five of them were potential candidates for synthesis of silver nanoparticles {yields} Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. {yields} The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2{theta} values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (Ag

  10. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction.

    Science.gov (United States)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20-30nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles.

    Science.gov (United States)

    Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Yao, Yongchao; Luo, Jianbin

    2017-04-01

    In order to improve the antibacterial activities while decrease the cytotoxity of silver nanoparticles, we prepared a novel nanocomposites composed of silver nanoparticles decorated lipase-sensitive polyurethane micelles (PUM-Ag) with MPEG brush on the surface. The nanocomposite was characterized by UV-vis, TEM and DLS. UV-vis and TEM demonstrated the formation of silver nanoparticles on PU micelles and the nanoassembly remained intact without the presence of lipase. The silver nanoparticles were protected by the polymer matrix and PEG brush which show good cytocompatibility to HUVEC cells and low hemolysis. Moreover, at the presence of lipase, the polymer matrix of nanocomposites is subject to degradation and the small silver nanoparticles were released as is shown by DLS and TEM. The MIC and MBC studies showed an enhanced toxicity of the nanocomposites to both gram negative and gram positive bacteria, i.e. E. coli and S. aureus, as the result of the degradation of polymer matrix by bacterial lipase. Therefore, the nanocomposites are biocompatible to mammalian cells cells which can also lead to activated smaller silver nanoparticles release at the presence of bacteria and subsequently enhanced inhibition of bacteria growth. The satisfactory selectivity for bacteria compared to HUVEC and RBCs make PUM-Ag a promising antibacterial nanomedicine in biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  13. Studying the morphological features of plasma treated silver and PEGylated silver nanoparticles: antibacterial activity

    Science.gov (United States)

    Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.

    2018-03-01

    A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.

  14. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either

  15. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber ( Cucumis sativus L . negeen)

    Science.gov (United States)

    Shams, Gholamabbas; Ranjbar, Morteza; Amiri, Aliasghar

    2013-05-01

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.

  16. Organic halide electroreduction on silver

    Energy Technology Data Exchange (ETDEWEB)

    Fiori, G.; Mussini, P.; Rondinini, S.; Vertova, A. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry

    2001-04-01

    Silver, whose extraordinary electrolytically properties for organic halide reduction have been recently evidenced, has been used as cathode material for systematic preparative electrolyses in membrane-divided cells. To better elucidate the substrate role on the remarkable positive shift of reduction potentials, and on the cage effect i. e. the promotion of intermolecular reaction on adsorbed intermediates, three halide substrate patterns are here compared in terms of both voltammetric characterization and preparative electroreduction products: aliphatic halides (adamantanes), aromatic halides (phenols) and anomeric glycosyl halides. The preparative electroreductions result mainly in dimerization in the case of glycosyl halides, in H {yields} Br substitution in the case of bromophenols, in dimerization + substitution in the case of haloadamantanes. The product analysis, both at the end of the reaction and at intermediate times, allows discussing the reaction pathways in terms of intermediate stability and of active surface accessibility. The possibility of complete dehalogenation on a wider substrate variety with remarkably lower energy consumption and almost quantitative current yields makes the process potentially very interesting for environmental purposes. [Italian] L'argento, di cui sono state recentemente evidenziate straordinarie proprieta' elettrocatalitiche per la riduzione degli alogenuri organici, e' stato utilizzato come materiale catodico per sistematiche elettrolisi preparative in celle a membrana. Per mettere in risalto il ruolo del substrato organico sul notevole anticipo del potenziale di riduzione e sull'effetto gabbia, ovvero la promozione di reazioni intermolecolari su intermedi adsorbiti, vengono qui confrontate, in termini sia di caratterizzazione voltammetrica sia di prodotti di elettroriduzioni preparative, tre tipologie di alogenuri: alifatici (adamantani), aromatici (fenoli) e glicosidici. Le elettroriduzioni preparative

  17. Microwave assisted template synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Easier, less time consuming, green processes, which yield silver nanoparticles of uniform size, shape and morphology are of interest. Various methods for synthesis, such as conventional temperature as- sisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evalu ...

  18. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Antioxidant and toxicity against human acute promyelocytic leukaemia (HL-60) cell line were also evaluated. 2. Materials and methods. 2.1 Materials. The chemical silver nitrate (AgNO3), brain heart infusion agar (BHIA) and Sabouraud dextrose agar (SDA, Oxoid) were purchased from Merck, Germany. Penicillin and strep-.

  19. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    With increasing global competitions there is a growing need to develop environmentally benevolent nanoparticles without the use of toxic chemicals. The biosynthesis of silver nanoparticles (AgNPs) using plant extracts became one of the potential areas of research. The bioreduction of metal ion is quite rapid, readily ...

  20. Aqueous dispersions of silver nanoparticles in polyelectrolyte ...

    Indian Academy of Sciences (India)

    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous ...

  1. Biological and electrical properties of biosynthesized silver ...

    Indian Academy of Sciences (India)

    In this work, silver nanoparticles (AgNPs) were synthesized biochemically at room temperature using aqueous extract of rhizome of Rheum australe plant. The as-synthesized AgNPs were further studied for their morphological, biological and electrical characterization. The morphological studies, such as scanning electron ...

  2. PIXE analysis of medieval silver coins

    Energy Technology Data Exchange (ETDEWEB)

    Abdelouahed, H. Ben, E-mail: habdelou@cern.ch [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia); Gharbi, F. [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia); Roumie, M. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, 11-8281, Beirut (Lebanon); Baccouche, S. [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia); Romdhane, K. Ben [Faculte des lettres et des sciences humaines, Universite de Tunis (Tunisia); Nsouli, B. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, 11-8281, Beirut (Lebanon); Trabelsi, A. [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia)

    2010-01-15

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135{sup o} to the beam direction. The elements Cu, Pb, and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.

  3. Evaluation of an antimicrobial silver foam dressing.

    Science.gov (United States)

    Park, Jun Kyu; Lee, Jong Hoon; Kwak, Jeong Ja; Shin, Hee Bong; Jung, Hae Won; Bae, Sang Won; Yeo, Eui Dong; Lee, Young Koo; Yang, Seong Seok

    2013-06-01

    CuraVAC Ag, a product that delivers negative pressure wound therapy through a polyurethane foam dressing, contains silver nanoparticles, which, when moistened with water, release silver ions onto a wound surface. The in vitro antimicrobial action of silver can destroy both gram-positive and gram-negative bacteria, as well as methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to assess the efficacy and in vivo outcomes of using the product. Thirty-six female Sprague-Dawley white rats, 8-weeks old and 250 g - 300 g in weight, were used. The experimental product was prepared using a vacuum-assisted closure (VAC) kit and coating it using the silver nanoparticles. For the control group, a 10% povidone-iodine solution was applied. All groups showed decreases in wound area over time, in the order CuraVAC Ag (group A) > CuraVAC (group B) > control (group C). On the third, fifth, and seventh days, wound healing efficacy scores increased in both group A and group C. Groups A and B showed more rapid decreases than group C in bacterial culture from wounds. CuraVAC Ag may be useful for treatment of wounds infected with bacteria..

  4. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  5. Microwave assisted template synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    Various methods for synthesis, such as conventional temperature as- sisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evalu- ated for the kind of silver nanoparticles synthesized. Starch has been employed as a template and reducing agent. Electron microscopy ...

  6. Development and antibacterial performance of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Metallization is one of the finishing processes in textile treatment that can produce multifunctional effects. The present study dealt with the development of an antibacterial polyester-knitted fabric via facile and green impregnation of silver nanoparticles (SNPs). This was done by applying a polymeric foundation on the ...

  7. Development and antibacterial performance of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Abstract. Metallization is one of the finishing processes in textile treatment that can produce multifunctional effects. The present study dealt with the development of an antibacterial polyester-knitted fabric via facile and green impregnation of silver nanoparticles (SNPs). This was done by applying a polymeric foundation on ...

  8. Antibacterial properties of polyaniline-silver films

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Kašpárková, V.; Humpolíček, P.; Ševčíková, P.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1103-1108 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * silver * antibacterial properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  9. Interaction of Silver Nanopowder with Cooper Substrate

    Czech Academy of Sciences Publication Activity Database

    Sopoušek, J.; Buršík, Jiří; Zálešák, J.; Buršíková, V.; Brož, P.

    2011-01-01

    Roč. 43, - (2011), s. 33-38 ISSN 0350-820X R&D Projects: GA ČR(CZ) GA106/09/0700 Institutional research plan: CEZ:AV0Z20410507 Keywords : silver * copper * sintering Subject RIV: JG - Metallurgy Impact factor: 0.274, year: 2011

  10. Preparation, Characterization and Antibacterial Properties of Silver ...

    African Journals Online (AJOL)

    electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE). The antibacterial properties of the nanoparticles were also evaluated by agar diffusion method. Results: The size of the silver-chitosan nanoparticles, ranging from 21.9 to 175.3 nm, ...

  11. Intergranular failure of roman silver artefacts

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, J.; Děd, J.; Bartuška, Pavel; Lejček, Pavel

    567-568, - (2007), s. 213-216 ISSN 0255-5476 Institutional research plan: CEZ:AV0Z10100520 Keywords : silver embrittlement * archaeological artefacts * XRD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.399, year: 2005

  12. Chemical processes during irradiated silver azide solution

    International Nuclear Information System (INIS)

    Ryabykh, S.M.; Konovalova, F.I.

    1980-01-01

    Chemical processes taking place in course of irradiated AgN 3 dissolution in aqueous solutionns of ammonia, Na 2 S 23 and diluted HNO 3 are studied. Proceeding of the development reaction upon small particles of radiolytic silver resulting in the increase of the particle size is detected. Characteristics of the process are determined, sizes of the particles being evaluated

  13. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  14. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    eral plant extracts, particularly Lantana camara, Moringa oleifera, Catharanthus roseus, Eucalyptus hybrid, Cassia auriculata.23 However, potential of the plants as biologi- cal materials for the synthesis of nanoparticles is still under exploitation. In the present study, we developed an optimized method for syntheses of silver ...

  15. Aqueous dispersions of silver nanoparticles in polyelectrolyte ...

    Indian Academy of Sciences (India)

    anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spec- trophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to ...

  16. Silver Vahtre sai Endla teatri peakunstnikuks

    Index Scriptorium Estoniae

    2004-01-01

    Alates 27. IX Endla teatri peakunstnikuna töötava Silver Vahtre elust ja loomingulisest tegevusest, tema Endla teatrile tehtud töid. Peakunstnikuna on S. Vahtre esimeseks tööks osalemine lavastuses "Tammsaare tõde"

  17. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    The absorption spectrum of the aqueous solution of silver nanoparticles showed the appearance of a broad surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. The theoretically generated. SPR peak seems to be in good agreement with the experimental one. Strong green fluores- cence emission ...

  18. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  19. Synthesis and Study of Silver Nanoparticles

    Science.gov (United States)

    Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine

    2007-01-01

    A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.

  20. Preparation of amine coated silver nanoparticles using ...

    Indian Academy of Sciences (India)

    Administrator

    using aminosilanes as surfactants in different concentrations without the precipitation of particles. In this work, an analysis of the temperature influ- ence on the precipitation of silver nanoparticles was carried out. Also, the nanoparticles were func- tionalized using triethylenetetramine in order to im- prove the adhesion ...