WorldWideScience

Sample records for prevent tumor formation

  1. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts

    Directory of Open Access Journals (Sweden)

    Kristina A. Butler

    2017-08-01

    Full Text Available Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID mice from Epstein-Barr virus (EBV–infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab to 5.6% (n = 160 with rituximab, and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth.

  3. Tumor thrombus formation in two dogs with insulinomas.

    Science.gov (United States)

    Hambrook, Lydia E; Kudnig, Simon T

    2012-10-15

    A 9-year-old sexually intact male Staffordshire Bull Terrier and a 9-year-old neutered male Boxer were evaluated for intermittent neurologic signs including muscle tremors, ataxia, episodic collapse, disorientation, and seizures. Both dogs had low blood glucose and high serum insulin concentrations. Results of abdominal ultrasonography were unremarkable for both dogs. Exploratory laparotomy revealed a mass that extended from the body of the pancreas into the pancreaticoduodenal vein in each dog. Marginal resection of pancreatic masses was performed, and tumor thrombi were removed via venotomy in both dogs. Histologic evaluation indicated the masses were pancreatic islet cell tumors with tumor thrombi. Clinical signs resolved following surgical resection of tumors and tumor thrombi, and the dogs were euglycemic during the follow-up period (17 and 45 months after surgery). Although gross tumor thrombus formation has been identified in humans with insulinomas, tumor thrombi have not been previously reported for dogs with insulinomas. Surgical removal of tumor thrombi via venotomy seemed to be well tolerated by the dogs. Tumor thrombus formation did not seem to adversely affect prognosis for the 2 dogs of this report.

  4. Revisiting the TCA cycle: signaling to tumor formation.

    Science.gov (United States)

    Raimundo, Nuno; Baysal, Bora E; Shadel, Gerald S

    2011-11-01

    A role for mitochondria in tumor formation is suggested by mutations in enzymes of the TCA cycle: isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and fumarate hydratase (FH). Although they are all components of the TCA cycle, the resulting clinical presentations do not overlap. Activation of the hypoxia pathway can explain SDH phenotypes, but recent data suggest that FH and IDH mutations lead to tumor formation by repressing cellular differentiation. In this review, we discuss recent findings in the context of both mitochondrial and cytoplasmic components of the TCA cycle, and we propose that extrametabolic roles of TCA cycle metabolites result in reduced cellular differentiation. Furthermore, activation of the pseudohypoxia pathway likely promotes the growth of these neoplasias into tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation

    DEFF Research Database (Denmark)

    Eichenlaub, Teresa; Cohen, Stephen M; Herranz, Héctor

    2016-01-01

    . The mechanisms that allow for ongoing cell competition during adult life could, in principle, contribute to tumorigenesis. However, direct evidence supporting this hypothesis has been lacking. Here, we provide evidence that cell competition drives tumor formation in a Drosophila model of epithelial cancer. Cells...

  6. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  7. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    Science.gov (United States)

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  8. Selenium prevents tumor development in a rat model for chemical carcinogenesis

    DEFF Research Database (Denmark)

    Bjorkhem-Bergman, L.; Torndal, U. B.; Eken, S.

    2005-01-01

    Previous studies in animals and humans have shown that selenium compounds can prevent cancer development. In this work we studied the tumor preventive effect of selenium supplementation, administrated as selenite, in the initiation, promotion and progression phases in a synchronized rat model for...

  9. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model.

    Science.gov (United States)

    Urrutia-Ortega, Ismael M; Garduño-Balderas, Luis G; Delgado-Buenrostro, Norma L; Freyre-Fonseca, Verónica; Flores-Flores, José O; González-Robles, Arturo; Pedraza-Chaverri, José; Hernández-Pando, Rogelio; Rodríguez-Sosa, Miriam; León-Cabrera, Sonia; Terrazas, Luis I; van Loveren, Henk; Chirino, Yolanda I

    2016-07-01

    Colorectal cancer is the fourth worldwide cause of death and even if some dietary habits are consider risk factors, the contribution of food additives including foodgrade titanium dioxide (TiO2), designated as E171, has been poorly investigated. We hypothesized that oral E171 intake could have impact on the enhancement of colorectal tumor formation and we aimed to investigate if E171 administration could enhance tumor formation in a colitis associated cancer (CAC) model. BALB/c male mice were grouped as follows: a) control, b) E171, c) CAC and d) CAC + E171 group (n = 6). E171 used in this study formed agglomerates of 300 nm in water. E171 intragastric administration (5 mg/kg body weight/5 days/10 weeks) was unable to induce tumor formation but dysplastic alterations were observed in the distal colon but enhanced the tumor formation in distal colon (CAC + E171 group) measured by tumor progression markers. Some E171 particles were internalized in colonic cells of the E171 and CAC + E171 groups and both groups showed a decrease in goblet cells in the distal colon. However the CAC + E171 group showed a higher decrease of these cells that act as protection barrier in colon. These results suggest that E171 could worsen pre-existent intestinal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  11. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Kentaro Nakamura

    2018-02-01

    Full Text Available Low-carbohydrate, high-fat diets (ketogenic diets might prevent tumor progression and could be used as supportive therapy; however, few studies have addressed the effect of such diets on colorectal cancer. An infant formula with a ketogenic composition (ketogenic formula; KF is used to treat patients with refractory epilepsy. We investigated the effect of KF on cancer and cancer cachexia in colon tumor-bearing mice. Mice were randomized into normal (NR, tumor-bearing (TB, and ketogenic formula (KF groups. Colon 26 cells were inoculated subcutaneously into TB and KF mice. The NR and TB groups received a standard diet, and the KF mice received KF ad libitum. KF mice preserved their body, muscle, and carcass weights. Tumor weight and plasma IL-6 levels were significantly lower in KF mice than in TB mice. In the KF group, energy intake was significantly higher than that in the other two groups. Blood ketone body concentrations in KF mice were significantly elevated, and there was a significant negative correlation between blood ketone body concentration and tumor weight. Therefore, KF may suppress the progression of cancer and the accompanying systemic inflammation without adverse effects on weight gain, or muscle mass, which might help to prevent cancer cachexia.

  12. CT analysis of intratumoral gas formation after hepatic tumor embolization

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Ahn, In Oak; Kim, Hyung Jin; Lee, Goo; Chung, Sung Hoon

    1994-01-01

    To evaluate the prevalence and the patterns of sterile gas shown at computed tomography(CT) after transarterial embolization(TAE) for primary hepatic tumor. Among 102 patients who performed TAE for hepatoma, thirty-four in whom follow-up CT was underwent constituted the basis of our study. At CT, we evaluated the patterns and locations of intratumoral gas. We also reviewed the clinical data to exclude an infectious origin of intratumoral gas. Of 34 patients, intratumoral gas was detected in 11 patients(32%), in all of whom Gelfoam was used as an embolic material. The initial tumor size measured at pre-TAE CT was larger in patients with intratumoral gas than in patients without it(p < 0.005). No specific patterns or locations of intratumoral gas were noted on CT scans. No patients had clinical signs and symptoms that suggested infection. Intratumoral gas formation without clinical evidence of infection is not an infrequent finding after TAE for hepatoma, especially when Gelfoam is used and when the tumor is larger in size. This finding may be a part of postinfarction syndrome and should not be misinterpreted as an postprocedural abscess formation

  13. Photodynamic therapy-generated vaccines prevent tumor recurrence after radiotherapy

    International Nuclear Information System (INIS)

    Korbelik, M.; Sun, J.

    2003-01-01

    Photodynamic therapy (PDT), an established clinical modality for a variety of malignant and non-malignant diseases, inflicts photoreactive drug-mediated oxidative stress that prompts the engagement of host inflammatory and immune responses which contribute to the therapy outcome. Recently, it has become evident that in vitro PDT-treated tumor cells or their lysates can be utilized as an effective vaccine against established tumors of the same origin. The mechanism underlying the vaccine action appears to be based on eliciting immune recognition of the tumor and developing an efficient immune response even against poorly immunogenic tumors. This study examined whether PDT-generated vaccines can be effectively combined with radiotherapy. Subcutaneous SCCVII tumors (squamous cell carcinomas) growing in syngeneic C3H/HeN mice were treated by radiotherapy (60 Gy x-ray dose). PDT-vaccine treatment, done by peritumoral injection of in vitro PDT-treated SCCVII cells (20 million/mouse), was performed either immediately after radiotherapy or ten days later. The mice were then observed for tumor regression/recurrence. The tumors treated with radiotherapy alone shrunk and became impalpable for a brief period after which they all recurred. In contrast, vaccination performed at 10 days post radiotherapy delayed tumor recurrence and prevented it in one of six mice. Even better results were obtained with mice vaccinated immediately after radiotherapy, with mice showing not only a delayed tumor recurrence but also no sign of tumor in 50% of mice. The PDT-vaccine treatment without radiotherapy produced in this trial a significant tumor growth retardation but no complete regressions. These results indicate that PDT-generated vaccines can ensure immune rejection of cancer once the lesion size is reduced by radiotherapy. Even without obtaining a systemic immunity for the elimination of disseminated malignant deposits, these findings suggest that PDT-vaccines can improve local control

  14. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  15. [Pharmacotherapy for preventing calcium containing stone formation].

    Science.gov (United States)

    Nagata, Masao; Takayama, Tatsuya; Mugiya, Souichi; Ohzono, Seiichiro

    2011-10-01

    Many urinary tract stones consist of calcium, and has high relapse rate. Accordingly, it is very important to prevent calcium-containing stone formation. This paper describes about effects and mechanisms for Xanthine oxidase inhibitor, citrate formulation, magnesium formulation, thiazides, vitamin B(6), extract of Quercus salicina Blume and chorei-to (medical herb) . Recent new drugs and the elucidation of new metabolic pathways may lead to the development of prevention of urolithiasis.

  16. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  17. Alerting the immune system via stromal cells is central to the prevention of tumor growth

    DEFF Research Database (Denmark)

    Navikas, Shohreh

    2013-01-01

    Anticancer immunotherapies are highly desired. Conversely, unwanted inflammatory or immune responses contribute to oncogenesis, tumor progression, and cancer-related death. For non-immunogenic therapies to inhibit tumor growth, they must promote, not prevent, the activation of anticancer immune...

  18. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    DEFF Research Database (Denmark)

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego

    2004-01-01

    has been established. However, a direct contribution of Mdmx to tumor formation remains to be demonstrated. Here we show that retrovirus-mediated Mdmx overexpression allows primary mouse embryonic fibroblast immortalization and leads to neoplastic transformation in combination with HRas(V12...

  19. Inhibitory Effect of a γ-Tocopherol-Rich Mixture of Tocopherols on the Formation and Growth of LNCaP Prostate Tumors in Immunodeficient Mice

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xi, E-mail: xizheng@rci.rutgers.edu [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Cui, Xiao-Xing [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Khor, Tin Oo; Huang, Ying [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); DiPaola, Robert S; Goodin, Susan [Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Lee, Mao-Jung [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Yang, Chung S [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Kong, Ah-Ng [Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States); Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Allan H, Conney [Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Cancer Institute of New Jersey, New Brunswick, NJ 08903 (United States)

    2011-09-28

    In the present study, we determined the effects of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) on the growth and apoptosis of cultured human prostate cancer LNCaP cells. We also determined the effects of dietary γ-TmT on the formation and growth of LNCaP tumors in immunodeficient mice. In the in vitro study, we found that the activity of γ-TmT was stronger than α-tocopherol for inhibiting the growth and stimulating apoptosis in LNCaP cells. In the animal study, treatment of severe combined immunodeficient (SCID) mice with dietary γ-TmT inhibited the formation and growth of LNCaP xenograft tumors in a dose-dependent manner. Mechanistic studies showed that γ-TmT administration inhibited proliferation as reflected by decreased mitosis and stimulated apoptosis as reflected by increased caspase-3 (active form) expression in LNCaP tumors. In addition, dietary administration of γ-TmT increased the levels of α-, γ- and δ- tocopherol in plasma, and increased levels of γ- and δ- tocopherol were also observed in the prostate and in tumors. The present study demonstrated that γ-TmT had strong anticancer activity both in vitro and in vivo. Additional studies are needed to determine the potential preventive effect of γ-TmT for prostate cancer in humans.

  20. Inhibitory Effect of a γ-Tocopherol-Rich Mixture of Tocopherols on the Formation and Growth of LNCaP Prostate Tumors in Immunodeficient Mice

    International Nuclear Information System (INIS)

    Zheng, Xi; Cui, Xiao-Xing; Khor, Tin Oo; Huang, Ying; DiPaola, Robert S; Goodin, Susan; Lee, Mao-Jung; Yang, Chung S; Kong, Ah-Ng; Allan H, Conney

    2011-01-01

    In the present study, we determined the effects of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) on the growth and apoptosis of cultured human prostate cancer LNCaP cells. We also determined the effects of dietary γ-TmT on the formation and growth of LNCaP tumors in immunodeficient mice. In the in vitro study, we found that the activity of γ-TmT was stronger than α-tocopherol for inhibiting the growth and stimulating apoptosis in LNCaP cells. In the animal study, treatment of severe combined immunodeficient (SCID) mice with dietary γ-TmT inhibited the formation and growth of LNCaP xenograft tumors in a dose-dependent manner. Mechanistic studies showed that γ-TmT administration inhibited proliferation as reflected by decreased mitosis and stimulated apoptosis as reflected by increased caspase-3 (active form) expression in LNCaP tumors. In addition, dietary administration of γ-TmT increased the levels of α-, γ- and δ- tocopherol in plasma, and increased levels of γ- and δ- tocopherol were also observed in the prostate and in tumors. The present study demonstrated that γ-TmT had strong anticancer activity both in vitro and in vivo. Additional studies are needed to determine the potential preventive effect of γ-TmT for prostate cancer in humans

  1. PRIMARY PREVENTION OF MALIGNANT SKIN TUMORS – PHOTOPROTECTION

    Directory of Open Access Journals (Sweden)

    Ana Benedičič - Pilih

    2001-12-01

    Full Text Available Background. The incidence of skin cancer is increasing in the world as well as in our country. Decades of research have increased the understanding of the ethiopathogenetic influences and risk factors for development of malignant skin tumors and stimulated efforts to promote their prevention. There are successes of prevention programs in some places in the world expressing with the reduction of mortality because of the cutaneous malignant melanoma. A primary prevention of a skin cancer attempts to change population knowledge, attitudes and beliefs about sunlight, leading to reduce of sunlight exposure.Conclusions. In this article we are discussing guidelines for photoprevention. The best approach to it is a reduction in the overall exposure to sunlight. The natural protection with the use of shade, clothing and hats is promoted as the best protection. Sunscreens are assumed as an important component of adjuvant photoprotection based on their convenience of use and also on their widespread promotion. While it has been argued that all tanning is a manifestation of skin injury, avoiding of artificial tanning devices is proposed also.

  2. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Orth, Anthony P

    2013-12-01

    There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.

  3. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  4. State of cellular and humoral immune system in women of reproductive age with tumor-like ovary formations

    Directory of Open Access Journals (Sweden)

    O. S. Shapoval

    2014-12-01

    Full Text Available Aim. Violations occurring in the immune system in women with ovary tumor-like formations are one of the most important factors in the pathogenesis and development of the disease. In order to study features of immune disorders in 105 women of reproductive age with tumor-like ovary formations determination of cellular and humoral immunity indices was carried out. Methods and results. Variants of immunological reactivity in women with tumor-like ovary formations with different possibilities of reproductive function implementing were established. Conclusion. This indicates that the identification of one of the variants of immunological reactivity disorder in the precurative stage is one of the components of the effective prescribed therapy necessary to select the appropriate tactics of medical correction of homeostasis.

  5. Failure-to-thrive syndrome associated with tumor formation by Madin-Darby canine kidney cells in newborn nude mice.

    Science.gov (United States)

    Brinster, Lauren R; Omeir, Romelda L; Foseh, Gideon S; Macauley, Juliete N; Snoy, Philip J; Beren, Joel J; Teferedegne, Belete; Peden, Keith; Lewis, Andrew M

    2013-08-01

    Tumors that formed in newborn nude mice that were inoculated with 10(7) Madin-Darby canine kidney (MDCK) cells were associated with a failure-to-thrive (FTT) syndrome consisting of growth retardation, lethargy, weakness, and dehydration. Scoliosis developed in 41% of affected pups. Pups were symptomatic by week 2; severely affected pups became moribund and required euthanasia within 3 to 4 wk. Mice with FTT were classified into categories of mild, moderate, and severe disease by comparing their weight with that of age-matched normal nude mice. The MDCK-induced tumors were adenocarcinomas that invaded adjacent muscle, connective tissue, and bone; 6 of the 26 pups examined had lung metastases. The induction of FTT did not correlate with cell-line aggressiveness as estimated by histopathology or the efficiency of tumor formation (tumor-forming dose 50% endpoint range = 10(2.8) to 10(7.5)); however, tumor invasion of the paravertebral muscles likely contributed to the scoliosis noted. In contrast to the effect of MDCK cells, tumor formation observed in newborn mice inoculated with highly tumorigenic, human-tumor-derived cell lines was not associated with FTT development. We suggest that tumor formation and FTT are characteristics of these MDCK cell inocula and that FTT represents a new syndrome that may be similar to the cachexia that develops in humans with cancer or other diseases.

  6. Effect of Chemical Prevention Drugs-based MicroRNAs and Their Target Genes 
on Tumor Inhibition

    Directory of Open Access Journals (Sweden)

    Yanhui JIANG

    2015-04-01

    Full Text Available Chemopreventive drugs including natural chemopreventive drugs and synthetic chemopreventive drugs, it not only can prevent cancer, can also play a role in tumor treatment. MicroRNAs (miRNAs is a kind of short chains of non-coding RNA, regulating the expression of many genes through the way of degradation of mRNA or inhibitting mRNA translation. In recent years, more and more studies have shown that chemopreventive drugs through influence the expression of miRNAs and their target genes play a role in the prevention and treatment in a variety of tumors, and chemopreventive drugs on the experimental study of miRNAs and their target genes in tumor have demonstrated a good safety and efficacy. Effect on chemopreventive drugs-based microRNAs and their target genes into cancer cells will be expected as a new starting point for cancer research. The thesis expounds and analyzes between the natural chemopreventive drugs and synthetic chemopreventive drugs and miRNAs and their target genes in tumor research progress.

  7. [Evaluation of knowledge about colon cancer prevention versus other tumors].

    Science.gov (United States)

    Sanguinetti, José María; Henry, Nicolás; Ocaña, Domingo; Polesel, Julio Lotero

    2015-06-01

    In Argentina almost 7% of deaths are due to different cancers with screening strategies. Evaluate knowledge about cancer prevention compared with other tumors. Materials. A descriptive and comparative study. A survey between April and June 2013 in Salta City, province of Salta, Argentina. Correct answers were considered. Statistical analysis: Descriptive (mean and percentage), comparative Chi square Test (significance level Pmama and cervix. 20% (CI 0,13-0,28) knew that colon cancer has a genetic predisposition and 58% (CI 0,48-0,67) about mama. 73% (CI 0,63-0,8) received information about cancer prevention. The main source of information was the physician. 46% (CI 0,36-0,55) received medical care in private institutions. Those who had social security, higher educational levels and medical care in private institutions had better knowledge about cancer prevention except in colon cancer. The global results showed levels below 70% in general but extremely low in colon cancer. Not having social security, receiving medical care in public institutions and having a low educational level are related with poor knowledge about cancer prevention except for colon and prostate cancer.

  8. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Danika Lindsay

    2016-08-01

    Full Text Available Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the

  9. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells.

    Science.gov (United States)

    Książkiewicz, Magdalena; Markiewicz, Aleksandra; Zaczek, Anna J

    2012-01-01

    The occurrence of either regional or distant metastases is an indicator of poor prognosis for cancer patients. The mechanism of their formation has not yet been fully uncovered, which limits the possibility of developing new therapeutic strategies. Nevertheless, the discovery of circulating tumor cells (CTCs), which are responsible for tumor dissemination, and cancer stem cells (CSCs), required for tumor growth maintenance, shed light on the metastatic cascade. It seems that CTCs and CSCs are not necessarily separate populations of cancer cells, as CTCs generated in the process of epithelial-mesenchymal transition (EMT) can bear features characteristic of CSCs. This article describes the mechanisms of CTC and CSC formation and characterizes their molecular hallmarks. Moreover, we present different types of EMT occurring in physiological and pathological conditions, and we demonstrate its crucial role in providing CTCs with a CSC phenotype. The article delineates molecular changes acquired by cancer cells undergoing EMT that facilitate metastasis formation. Deeper understanding of those processes is of fundamental importance for the development of new strategies of early cancer detection and effective cancer treatment approaches that will be translated into clinical practice. Copyright © 2012 S. Karger AG, Basel.

  10. Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Tang, Weiliang; Deater, Matthew; Phan, Ngoc; Marcogliese, Andrea N; Li, Hui; Al-Dhalimy, Muhsen; Major, Angela; Olson, Susan; Monnat, Raymond J; Grompe, Markus

    2016-12-15

    Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2 -/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2 -/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2 -/- Trp53 +/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells. © 2016 by The American Society of Hematology.

  11. The educative prevention of the early stage of educationist’s formation.

    Directory of Open Access Journals (Sweden)

    Marta Alfonso Nazco

    2010-04-01

    Full Text Available The article introduces a characterization of the educative prevention stage at the early professional formation process of educacionist in Sancti Spìritus province. The study is done by the indication analysis of assistant, learning, permanence and behavior at youths who course pedagogical carrers, and haven’t expressed a desire stage yet. The main shown results dealt with the assumption of the searching variables and its indicators, the construction of instruments and the definition of aspects concerning the educative prevention at the early stage of educationist’s formation in the selected choosing. Theoretical, empirical and statistical- math, methods were used which were helped by the constructed instruments and the triangulations among them thus arriving to generalizations for the caracterization. The results have better the work at the area project of the educative prevention in adolescents and youths in the territory, witch mainly concern the desing and implementation of actions withing the pedagogical process, foccuse in the integration of institutions, socializer and educative agents functioning to eductive prevention.

  12. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    Science.gov (United States)

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  13. Preventing lower cranial nerve injuries during fourth ventricle tumor resection by utilizing intraoperative neurophysiological monitoring.

    Science.gov (United States)

    Jahangiri, Faisal R; Minhas, Mazhar; Jane, John

    2012-12-01

    We present two cases illustrating the benefit of utilizing intraoperative neurophysiological monitoring (IONM) for prevention of injuries to the lower cranial nerves during fourth ventricle tumor resection surgeries. Multiple cranial nerve nuclei are located on the floor of the fourth ventricle with a high risk of permanent damage. Two male patients (ages 8 and 10 years) presented to the emergency department and had brain magnetic resonance imaging (MRI) scans showing brainstem/fourth ventricle tumors. During surgery, bilateral posterior tibial and median nerve somatosensory evoked potentials (SSEPs); four-limb and cranial nerves transcranial electrical motor evoked potentials (TCeMEPs); brainstem auditory evoked responses (BAERs); and spontaneous electromyography (s-EMG) were recorded. Electromyography (EMG) was monitored bilaterally from cranial nerves V VII, IX, X, XI, and XII. Total intravenous anesthesia was used. Neuromuscular blockade was used only for initial intubation. Pre-incision baselines were obtained with good morphology of waveforms. After exposure the floor of the fourth ventricle was mapped by triggered-EMG (t-EMG) using 0.4 to 1.0 mA. In both patients the tumor was entangled with cranial nerves VII to XII on the floor of the fourth ventricle. The surgeon made the decision not to resect the tumor in one case and limited the resection to 70% of the tumor in the second case on the basis of neurophysiological monitoring. This decision was made to minimize any post-operative neurological deficits due to surgical manipulation of the tumor involving the lower cranial nerves. Intraoperative spontaneous and triggered EMG was effectively utilized in preventing injuries to cranial nerves during surgical procedures. All signals remained stable during the surgical procedure. Postoperatively both patients were well with no additional cranial nerve weakness. At three months follow-up, the patients continued to have no deficits.

  14. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  15. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  16. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency.

    Science.gov (United States)

    Zhou, You; Shan, Song; Li, Zhi-Bin; Xin, Li-Jun; Pan, De-Si; Yang, Qian-Jiao; Liu, Ying-Ping; Yue, Xu-Peng; Liu, Xiao-Rong; Gao, Ji-Zhou; Zhang, Jin-Wen; Ning, Zhi-Qiang; Lu, Xian-Ping

    2017-03-01

    Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC 50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R + cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  18. Preventing surgery-induced NK cell dysfunction and cancer metastases with influenza vaccination

    Science.gov (United States)

    Tai, Lee-Hwa; Zhang, Jiqing; Auer, Rebecca C

    2013-01-01

    Surgical resection is the mainstay of treatment for solid tumors, but the postoperative period is uniquely inclined to the formation of metastases, largely due to the suppression of natural killer (NK) cells. We found that preoperative influenza vaccination prevents postoperative NK-cell dysfunction, attenuating tumor dissemination in murine models and promoting the activation of NK cells in cancer patients. PMID:24404430

  19. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  20. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation.

    Directory of Open Access Journals (Sweden)

    Andrew Hamilton

    Full Text Available The serglycin proteoglycan is mainly expressed by hematopoietic cells where the major function is to retain the content of storage granules and vesicles. In recent years, expression of serglycin has also been found in different forms of human malignancies and a high serglycin expression level has been correlated with a more migratory and invasive phenotype in the case of breast cancer and nasopharyngeal carcinoma. Serglycin has also been implicated in the development of the tumor vasculature in multiple myeloma and hepatocellular carcinoma where reduced expression of serglycin was correlated with a less extensive vasculature. To further investigate the contribution of serglycin to tumor development, we have used the immunocompetent RIP1-Tag2 mouse model of spontaneous insulinoma formation crossed into serglycin deficient mice. For the first time we show that serglycin-deficiency affects orthotopic primary tumor growth and tumor vascular functionality of late stage carcinomas. RIP1-Tag2 mice that lack serglycin develop larger tumors with a higher proliferative activity but unaltered apoptosis compared to normal RIP1-Tag2 mice. The absence of serglycin also enhances the tumor vessel functionality, which is better perfused than in tumors from serglycin wild type mice. The presence of the pro-angiogenic modulators vascular endothelial growth factor and hepatocyte growth factor were decreased in the serglycin deficient mice which suggests a less pro-angiogenic environment in the tumors of these animals. Taken together, we conclude that serglycin affects multiple aspects of spontaneous tumor formation, which strengthens the theory that serglycin acts as an important mediator in the formation and progression of tumors.

  1. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells.

    Science.gov (United States)

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-09-29

    Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin

    2016-07-08

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.

  3. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Deminice, Rafael; Cella, Paola Sanches; Padilha, Camila S; Borges, Fernando H; da Silva, Lilian Eslaine Costa Mendes; Campos-Ferraz, Patrícia L; Jordao, Alceu Afonso; Robinson, Jason Lorne; Bertolo, Robert F; Cecchini, Rubens; Guarnier, Flávia Alessandra

    2016-08-01

    The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P creatine supplementation promoted a 28 % reduction of tumor weight (P Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.

  4. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules

    Directory of Open Access Journals (Sweden)

    Jing Kang

    2010-01-01

    Full Text Available H-aggregates of the cyanine dye Cy5 are formed during covalent linkage to the cationic macromolecule Poly(allylamine (PAH. The nonfluorescent H-aggregates strongly restrict the usage of the dye for analytical purposes and prevent a quantitative determination of the labeled macromolecules. The behavior of the H-aggregates has been studied by investigation of the absorption and fluorescence spectra of the dye polymer in dependence on solvent, label degree and additional sulfonate groups. H-aggregate formation is caused by an inhomogeneous distribution of the Cy5 molecules on the polymer chain. The H-aggregates can be destroyed by conformational changes of the PAH induced by interactions with polyanions or in organic solvents. It has been found that the polymer labeling process in high content of organic solvents can prevent the formation of H-aggregates. The results offer a better understanding and improvement of the use of the Cy5 dye for labeling purposes in fluorescence detection of macromolecules.

  5. Multiple Delivery of siRNA against Endoglin into Murine Mammary Adenocarcinoma Prevents Angiogenesis and Delays Tumor Growth

    Science.gov (United States)

    Dolinsek, Tanja; Markelc, Bostjan; Sersa, Gregor; Coer, Andrej; Stimac, Monika; Lavrencak, Jaka; Brozic, Andreja; Kranjc, Simona; Cemazar, Maja

    2013-01-01

    Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches. PMID:23593103

  6. Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth.

    Directory of Open Access Journals (Sweden)

    Tanja Dolinsek

    Full Text Available Endoglin is a transforming growth factor-β (TGF- β co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11 by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.

  7. Percutaneous transfemoral placement of inferior vena cava filter to prevent pulmonary embolism in patients with malignant tumor

    International Nuclear Information System (INIS)

    Hu Baoshan; Li Yong; Luo Pengfei

    2005-01-01

    Objective: To evaluate the effectiveness and safety of inserting an inferior vena cava filter to prevent the pulmonary embolism (PE) due to detachment of the thrombus in the lower extremities. Methods: Inferior vena cava filter were placed in 37 patients with malignant tumor and deep venous thrombosis from 1998 to 2004. Malignancy was confirmed by pathological or cellular biological examination in all cases. The episode of pulmonary embolism was monitored during a post-intervention follow-up. Results: All the filters were placed in the inferior vena cava safely via a percutaneous femoral venous access. No serious complications such as pulmonary embolism occurred during the follow-up periods. Conclusion: The inferior vena cava filter placement is an effective and safe procedure in preventing the pulmonary embolism in patients with malignant tumor and deep venous thrombosis. (authors)

  8. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention.

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P

    2013-01-15

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with "stemness," more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This "two-compartment" metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert "low-risk" breast cancer patients to "high-risk" status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results also show that

  9. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  10. X-Ray longitudinal and computed tomography in the diagnosis of peripheral tumor-like formations of the lungs

    International Nuclear Information System (INIS)

    Sokolov, V.A.; Kartashov, V.M.; Piven', A.I.; Krasnoborova, S.Yu.; Blinova, L.V.; Savel'ev, A.V.

    1997-01-01

    Fifty eight patients with peripheral tumor-like formations of the lung (33 with cancer and 25 with benign formations) were examined by longitudinal tomography and CT. The potentialities f the two techniques in detecting the major semiotic signs of cancer and malignant formations were compared. The main or major signs, such as the shape of shadow and the pattern of outlines, which make it possible to differentiate bening and malignant formations, are virtually equally imaged by the two techniques. CT is superior to X-ray longitudinal tomography in revealing minor calcifications and microdestructions, hyperplastic intrathoracic lymph nodes. The significance of some symptoms for differential diagnosis calls for further clarification

  11. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation

    Science.gov (United States)

    Miao, Bei; Wu, Zhipeng; Xu, Han; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-11-01

    Current catalysts used for ethanol oxidation reaction (EOR) cannot effectively prevent CH3COOH formation, and thus become a major hindrance for direct ethanol fuel cell applications. We report an Ir catalyst that shows great promise for a complete EOR based on density functional theory calculations using PBE functional. The reaction barrier on Ir(1 0 0) was found to be 2.10 eV for CH3COOH formation, which is much higher than currently used Pd and Pt, and 0.57 eV for Csbnd C bond cleavage in CHCO species, which are comparable to Pd and Pt. The result suggests future directions for studying optimal complete EOR catalysts.

  12. The Tumor Macroenvironment: Cancer-Promoting Networks Beyond Tumor Beds.

    Science.gov (United States)

    Rutkowski, Melanie R; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Conejo-Garcia, Jose R

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. © 2015 Elsevier Inc. All rights reserved.

  13. Role of stem cells in tumor initiation, metastasis formation and their use in cancer therapy

    International Nuclear Information System (INIS)

    Altaner, C.; Altanerova, V.

    2010-01-01

    This review considers recent advances in the stem cell field focusing on the challenges and opportunities for their use in clinical practice. Various kinds of stem cells and their roles in the human organism are in the review described. Attention is given to the role of mesenchymal stem cells as a potential tool in regenerative medicine. The origin and consequences of existence of tumor-initiating cells known as cancer stem cells is discussed also in context of metastasis formation. It seems that tumor-initiating cells might be responsible for resistance to many conventional cancer therapies, which might explain the limitations of these therapeutic modalities. Furthermore, the review focuses to tumor homing property of adult mesenchymal (stromal) stem cells. The feasibility of mesenchymal stem cells isolation from human adipose tissue, their genetic modifications with suicide genes together with ability to find tumor in the organism make them an attractive vehicle for cancer therapy without systemic toxicity. Published achievements from our laboratory in stem cell-based gene cancer therapy are shortly summarized. Generally, it is believed that the stem cell therapies might be ideal future treatment modality for inherited, degenerative diseases and in curing human malignancies as well. (author)

  14. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention.

    Directory of Open Access Journals (Sweden)

    David E Blask

    Full Text Available The central circadian clock within the suprachiasmatic nucleus (SCN plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.

  15. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.

    Science.gov (United States)

    Vogel, Megan E; Idelman, Gila; Konaniah, Eddy S; Zucker, Stephen D

    2017-04-01

    Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice and elucidate the molecular processes underlying this effect. Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to Ldlr -/- mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression. Bilirubin suppresses atherosclerotic plaque formation in Ldlr -/- mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  16. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    Science.gov (United States)

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  17. The chromatin remodeling BAP complex limits tumor-promoting activity of the Hippo pathway effector Yki to prevent neoplastic transformation in Drosophila epithelia

    DEFF Research Database (Denmark)

    Song, Shilin; Herranz, Héctor; Cohen, Stephen M.

    2017-01-01

    Switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are mutated in many human cancers. In this article, we make use of a Drosophila genetic model for epithelial tumor formation to explore the tumor suppressive role of SWI/SNF complex proteins. Members of the BAP complex exhibit...

  18. Radiation therapy for favorable histology Wilms tumor: Prevention of flank recurrence did not improve survival on National Wilms Tumor Studies 3 and 4

    International Nuclear Information System (INIS)

    Breslow, Norman E.; Beckwith, J. Bruce; Haase, Gerald M.; Kalapurakal, John A.; Ritchey, Michael L.; Shamberger, Robert C.; Thomas, Patrick; D'Angio, Giulio J.; Green, Daniel M.

    2006-01-01

    Purpose: To determine whether radiation therapy (RT) of patients with Wilms tumor of favorable histology prevented flank recurrence and thereby improved the survival outcomes. Methods and Materials: Recurrence and mortality risks were compared among groups of patients with Stage I-IV/favorable histology Wilms tumor enrolled in the third (n = 1,640) and fourth (n = 2,066) National Wilms Tumor Study Group studies. Results: Proportions of patients with flank recurrence were 0 of 513 = 0.0% for 20 Gy, 12 of 805 = 1.5% for 10 Gy, and 44 of 2,388 = 1.8% for no flank RT (p trend 0.001 adjusted for stage and doxorubicin); for intra-abdominal (including flank) recurrence they were 5 of 513 = 1.0%, 30 of 805 = 3.7%, and 58 of 2,388 = 2.4%, respectively (p trend = 0.02 adjusted). Survival percentages at 8 years after intra-abdominal recurrence were 0 of 5 = 0% for 20 Gy, 10 of 30 = 33% for 10 Gy, and 34 of 58 = 56% for no RT (p trend = 0.0001). NWTS-4 discontinued use of 20 Gy RT, and the 8-year flank recurrence risk increased to 2.1% from 1.0% on NWTS-3 (p = 0.013). However, event-free survival was unaltered (88% vs. 86%, p = 0.39), and overall survival was better (93.8% vs. 90.8%, p = 0.036) on NWTS-4. Conclusions: Partly because of lower postrecurrence mortality among nonirradiated patients, prevention of flank recurrence by RT did not improve survival. It is important to evaluate entire treatment policies with regard to long-term outcomes

  19. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  20. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  1. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  2. Contribution of formative research to design an environmental program for obesity prevention in schools in Mexico City.

    Science.gov (United States)

    Bonvecchio, Anabelle; Théodore, Florence L; Safdie, Margarita; Duque, Tiffany; Villanueva, María Ángeles; Torres, Catalina; Rivera, Juan

    2014-01-01

    This paper describes the methods and key findings of formative research conducted to design a school-based program for obesity prevention. Formative research was based on the ecological model and the principles of social marketing. A mixed method approach was used. Qualitative (direct observation, indepth interviews, focus group discussions and photo-voice) and quantitative (closed ended surveys, checklists, anthropometry) methods were employed. Formative research key findings, including barriers by levels of the ecological model, were used for designing a program including environmental strategies to discourage the consumption of energy dense foods and sugar beverages. Formative research was fundamental to developing a context specific obesity prevention program in schools that seeks environment modification and behavior change.

  3. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Noritake, Hidenao [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kimura, Wataru; Wu, Yi-Xin [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kobayashi, Yoshimasa [Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Uezato, Tadayoshi [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Miura, Naoyuki, E-mail: nmiura@hama-med.ac.jp [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  4. Is IGSF1 involved in human pituitary tumor formation?

    Science.gov (United States)

    Faucz, Fabio R; Horvath, Anelia D; Azevedo, Monalisa F; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R; Wit, Jan M; Bernard, Daniel J; Stratakis, Constantine A

    2015-02-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study, we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in the sections of GH-producing adenomas, familial somatomammotroph hyperplasia, and in normal pituitary. We identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function, in two male patients and one female with somatomammotroph hyperplasia from the same family. Of 60 female controls, two carried the same variant and seven were heterozygous for other variants. Immunohistochemistry showed increased IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared with a GH-producing adenoma from a patient negative for any IGSF1 variants and with normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. © 2015 Society for Endocrinology.

  5. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  6. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    Science.gov (United States)

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  7. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  8. Control and Prevention of Ice Formation on the Surface of an Aluminum Alloy

    DEFF Research Database (Denmark)

    Rahimi, Maral

    modified with (3-aminopropyl) triethoxy silane (APTES) exhibited longer freezing delays as compared to both more hydrophilic and more hydrophobic substrates. This is attributed to a particular surface chemistry of the APTES modification that prevents ice formation at the interface of the substrate due...

  9. An Immune-Modulating Diet in Combination with Chemotherapy Prevents Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice.

    Science.gov (United States)

    Nakamura, Kentaro; Sasayama, Akina; Takahashi, Takeshi; Yamaji, Taketo

    2015-01-01

    Cancer cachexia is characterized by muscle wasting caused partly by systemic inflammation. We previously demonstrated an immune-modulating diet (IMD), an enteral diet enriched with immunonutrition and whey-hydrolyzed peptides, to have antiinflammatory effects in some experimental models. Here, we investigated whether the IMD in combination with chemotherapy could prevent cancer cachexia in colon 26 tumor-bearing mice. Forty tumor-bearing mice were randomized into 5 groups: tumor-bearing control (TB), low dose 5-fluorouracil (5-FU) and standard diet (LF/ST), low dose 5-FU and IMD (LF/IMD), high dose 5-FU and standard diet (HF/ST) and high dose 5-FU and IMD (HF/IMD). The ST and IMD mice received a standard diet or the IMD ad libitum for 21 days. Muscle mass in the IMD mice was significantly higher than that in the ST mice. The LF/IMD in addition to the HF/ST and HF/IMD mice preserved their body and carcass weights. Plasma prostaglandin E2 levels were significantly lower in the IMD mice than in the ST mice. A combined effect was also observed in plasma interleukin-6, glucose, and vascular endothelial growth factor levels. Tumor weight was not affected by different diets. In conclusion, the IMD in combination with chemotherapy prevented cancer cachexia without suppressing chemotherapeutic efficacy.

  10. Photocarcinogenesis and Skin Cancer Prevention Strategies.

    Science.gov (United States)

    Seebode, Christina; Lehmann, Janin; Emmert, Steffen

    2016-03-01

    In this review the basic principles of UV-induced carcinogenesis are summarized and the state of the art diagnosis and therapeutic strategies are discussed. The prevalent keratinocyte-derived neoplasms of the skin are basal cell and squamous cell carcinomas. Cutaneous melanoma is less frequent but associated with high mortality. Common risk factors for all three tumor entities include sun exposure and DNA-repair deficiencies. Photocarcinogenesis follows a multistep model of cancer development in which ultraviolet-induced DNA damage leads to mutations resulting in activation of oncogenes or silencing of tumor-suppressor genes. This ends in a cellular mutator phenotype even more prone to mutation acquisition. DNA repair, especially the nucleotide excision repair (NER) pathway, counteracts mutation formation and skin cancer development. This is vividly demonstrated by the NER-defective disorder xeroderma pigmentosum. Primary skin cancer preventative strategies, therefore, include reduction of DNA photodamage by protection from the sun. Secondary preventative strategies include skin cancer screening. This implies standard examination techniques with the naked eye, an epiluminescence microscope, or digital epiluminescence microscopy. More advanced techniques include confocal laser scan microscopy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Randomized clinical trial of prevention of seroma formation after mastectomy by local methylprednisolone injection

    DEFF Research Database (Denmark)

    Qvamme, G; Axelsson, C. K.; Lanng, C

    2015-01-01

    : This was a double-blind randomized placebo-controlled intervention study of a single dose of 80 mg methylprednisolone versus saline on seroma formation after mastectomy. Patients were further classified according to the surgical axillary procedure: mastectomy with sentinel lymph node biopsy (M + SLNB) or mastectomy......BACKGROUND: Seroma formation, the most prevalent postoperative complication after mastectomy, is an inflammatory process that is potentially preventable via local steroid administration. This study investigated the effect of local steroid administration on seroma formation. METHODS...... with level I-II axillary lymph node dissection (M + ALND). Treatments were administered into the wound cavity via the drain orifice following removal of the drain on the first day after surgery. The primary endpoint was seroma formation; secondary endpoints included the frequency of side...

  12. Complementary roles in cancer prevention: protease inhibitor makes the cancer preventive peptide lunasin bioavailable.

    Directory of Open Access Journals (Sweden)

    Chia-Chien Hsieh

    Full Text Available BACKGROUND: The lower incidence of breast cancer among Asian women compared with Western countries has been partly attributed to soy in the Asian diet, leading to efforts to identify the bioactive components that are responsible. Soy Bowman Birk Inhibitor Concentrate (BBIC is a known cancer preventive agent now in human clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: The objectives of this work are to establish the presence and delineate the in vitro activity of lunasin and BBI found in BBIC, and study their bioavailability after oral administration to mice and rats. We report that lunasin and BBI are the two main bioactive ingredients of BBIC based on inhibition of foci formation, lunasin being more efficacious than BBI on an equimolar basis. BBI and soy Kunitz Trypsin Inhibitor protect lunasin from in vitro digestion with pancreatin. Oral administration of (3H-labeled lunasin with lunasin-enriched soy results in 30% of the peptide reaching target tissues in an intact and bioactive form. In a xenograft model of nude mice transplanted with human breast cancer MDA-MB-231 cells, intraperitoneal injections of lunasin, at 20 mg/kg and 4 mg/kg body weight, decrease tumor incidence by 49% and 33%, respectively, compared with the vehicle-treated group. In contrast, injection with BBI at 20 mg/kg body weight shows no effect on tumor incidence. Tumor generation is significantly reduced with the two doses of lunasin, while BBI is ineffective. Lunasin inhibits cell proliferation and induces cell death in the breast tumor sections. CONCLUSIONS/SIGNIFICANCE: We conclude that lunasin is actually the bioactive cancer preventive agent in BBIC, and BBI simply protects lunasin from digestion when soybean and other seed foods are eaten by humans.

  13. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  14. Prevention of organic iodide formation in BWR's

    International Nuclear Information System (INIS)

    Karjunen, T.; Laitinen, T.; Piippo, J.; Sirkiae, P.

    1996-01-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR's as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs

  15. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  16. Novel thermosensitive hydrogel for preventing formation of abdominal adhesions

    Directory of Open Access Journals (Sweden)

    Gao X

    2013-07-01

    Full Text Available Xiang Gao,1,2 Xiaohui Deng,3 Xiawei Wei,2 Huashan Shi,2 Fengtian Wang,2 Tinghong Ye,2 Bin Shao,2 Wen Nie,2 Yuli Li,2 Min Luo,2 Changyang Gong,2 Ning Huang1 1Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, 2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 3Department of Human Anatomy, Xinxiang Medical University, Xinxiang, People’s Republic of China Abstract: Adhesions can form after almost any type of abdominal surgery. Postoperative adhesions can be prevented by improved surgical techniques, such as reducing surgical trauma, preventing ischemia, and avoiding exposure of the peritoneal cavity to foreign materials. Although improved surgical techniques can potentially reduce formation of adhesions, they cannot be eliminated completely. Therefore, finding more effective methods to prevent postoperative adhesions is imperative. Recently, we found that a novel thermosensitive hydrogel, ie, poly(ε-caprolactone-poly(ethylene glycol-poly(ε-caprolactone (PCEC had the potential to prevent postoperative adhesions. Using the ring-opening polymerization method, we prepared a PCEC copolymer which could be dissolved and assembled at 55°C into PCEC micelles with mean size of 25 nm. At body temperature, a solution containing PCEC micelles could convert into a hydrogel. The PCEC copolymer was biodegradable and had low toxicity in vitro and in vivo. We found that most animals in a hydrogel-treated group (n = 10 did not develop adhesions. In contrast, 10 untreated animals developed adhesions that could only be separated by sharp dissection (P < 0.001. The hydrogel could adhere to peritoneal wounds and degraded gradually over 7–9 days, transforming into a viscous fluid that was completely absorbed within 12 days. The injured parietal and visceral peritoneum remesothelialized over about seven and nine days

  17. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation.

    Science.gov (United States)

    Zuo, Jiangcheng; Yu, Yalan; Zhu, Man; Jing, Wei; Yu, Mingxia; Chai, Hongyan; Liang, Chunzi; Tu, Jiancheng

    2018-02-06

    Breast cancer is a common cancer in women of worldwide. Cancer cells with stem-like properties played important roles in breast cancer, such as relapse, metastasis and treatment resistance. Micro-RNA-155 (miR-155) is a well-known oncogenic miRNA overexpressed in many human cancers. The expression levels of miR-155 in 38 pairs of cancer tissues and adjacent normal tissues from breast cancer patients were detected using quantitative real-time PCR. The invasive cell line MDA-MB-231 was used to quantify the expression of miR-155 by tumor-sphere forming experiment. Soft agar colony formation assay and tumor xenografts was used to explore whether the inhibition of miR-155 could reduce proliferation of cancer cells in vivo and vitro. In the study, we found miR-155 was upregulated in BC. Soft agar colony formation assay and tumor xenografts showed inhibition of miR-155 could significantly reduce proliferation of cancer cells in vivo and vitro, which confirmed that miR-155 is an effective therapeutic target of breast cancer. Sphere-forming experiment showed that overexpression of miR-155 significantly correlated with stem-like properties. Expressions of ABCG2, CD44 and CD90 were repressed by inhibition of miR-155, but CD24 was promoted. Interestingly, inhibition of miR-155 rendered MDA-MB-231 cells more sensitive to Doxorubicinol, which resulted in an increase of inhibition rate from 20.23% to 68.72%. Expression of miR-155 not only was a therapeutic target but also was associated with cancer stem cell formation and Doxorubicinol sensitivity. Our results underscore the importance of miR-155 as a therapeutic target and combination of Doxorubicinol and miR-155-silencing would be a potential way to cure breast cancer.

  18. The two sides of the coin: Similarities and differences in the pathomechanisms of fistulas and stricture formations in irritable bowel disease.

    Science.gov (United States)

    Scharl, Michael; Bruckner, Ramona S; Rogler, Gerhard

    2016-08-01

    Fistulas and fibrosis or strictures represent frequent complications in irritable bowel disease (IBD) patients. To date, treatment options for fistulas are limited and surgery is often required. Similarly, no preventive treatment for fibrosis and stricture formation has been established. Frequently, stricture formation and fibrosis precede fistula formation, indicating that both processes may be connected or interrelated. Knowledge about the pathology of both processes is limited. A crucial role for the epithelial-to-mesenchymal transition (EMT) in fistula development has been demonstrated. Of note, EMT also plays a major role in the pathogenesis of fibrosis in many organs, and most likely also plays that role in the intestine. In addition, aberrant matrix remodeling, as well as soluble factors such as tumor necrosis factor (TNF), interleukin 13 (IL-13) and tumor growth factor beta (TGFβ) were involved, both in the onset of the fistula and fibrosis formation. Both fistulas and fibrosis may occur due to deregulated wound healing mechanisms from chronic and severe intestinal inflammation; however, further research is required to obtain a better understanding of the complex pathophysiology of fistula and intestinal fibrosis formation, to allow the development of new and more effective preventive treatment options for those important disease complications.

  19. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  20. UV-Induced prevention of biofilm formation inside medical tubes and catheters

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Nielsen, Kristian; Bang, Ole

    2014-01-01

    Biofilm formation inside medical tubes and catheters may often cause unwanted infections, illness andimpaired wound healing during medical treatment, resulting in extended hospitalization and - in worst case– life threatening conditions of the patients. In fact, it is estimated, that the infection...... of multi resistant bacteriacultures. Prevention of biofilm formation inside the tube or catheter, without risk of developing multiresistance, may be achieved by creating a UV-exposed environment in the interior. This may be realized bytransforming the tube itself into an optical waveguide supporting UV...... risk connected withthe use of medical tubes and catheters is the direct cause of more than 60% of all infections acquired inEuropean hospitals. Once formed, the biofilm is generally very tough to suppress by either the body’simmunity system or by use of antibiotics, which may even favor the population...

  1. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo

    DEFF Research Database (Denmark)

    Wang, Z; Pedersen, Esben Ditlev Kølle; Basse, A

    2010-01-01

    that Rac1 is essential for DMBA/TPA-induced skin tumor formation. This corresponded to a decreased keratinocyte hyperproliferation, although apoptosis was not detectably altered. Activated Rac1 promoted Erk-dependent hyperproliferation by Pak1-mediated Mek activation independent of Mek1 phosporylation...

  2. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    International Nuclear Information System (INIS)

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2007-01-01

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-α antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL). TNF-α might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-κB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed

  3. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro.

    Science.gov (United States)

    Messner, Donald J; Robinson, Todd; Kowdley, Kris V

    2017-04-01

    Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC 50 values near 10 μM, P turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations.

  4. Ursodeoxycholic Acid in the Prevention of Gallstone Formation After Bariatric Surgery: an Updated Systematic Review and Meta-analysis.

    Science.gov (United States)

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Svokos, Alexis A; Svokos, Konstantina A; Chatedaki, Christina; Sioka, Eleni; Zacharoulis, Dimitris

    2017-11-01

    We aim to review the available literature on obese patients treated with ursodeoxycholic acid (UDCA) in order to prevent gallstone formation after bariatric surgery. A systematic literature search was performed in PubMed, Cochrane library, and Scopus databases, in accordance with the PRISMA guidelines. Eight studies met the inclusion criteria incorporating 1355 patients. Random-effects meta-analysis showed a lower incidence of gallstone formation in patients taking UDCA. Subgroup analysis reported fewer cases of gallstone disease in the UDCA group in relation to different bariatric procedures, doses of administered UDCA, and time from bariatric surgery. Adverse events were similar in both groups. Fewer patients required cholecystectomy in UDCA group. No deaths were reported. The administration of UDCA after bariatric surgery seems to prevent gallstone formation.

  5. Efficacy of cimetidin in the prevention of ulcer formation in the stomach during immobilization stress

    Science.gov (United States)

    Dorofeyev, G. I.; Litovskiy, I. A.; Gavrovskaya, L. K.; Ivashkin, V. T.

    1982-01-01

    The effect of stress on the formation of ulcers in the mucous membrane of the stomach, the increase in cyclic adenosine monophosphate level in the gastric tissues, and parietal cell structure alteration. Use of cimetidin prevents these effects

  6. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  7. Integrated imaging (ultrasound, computed tomography, intravenous urography) in diagnosing renal tumors and tumor-like formations

    International Nuclear Information System (INIS)

    Drudi, F.M.; Capanna, G.; Poggi, R.; Occhiato, R.; Iannicelli, E.; Nardo, R.; di Passariello, R.

    1994-01-01

    This is an assessment of semiologic imaging criteria based on computerised tomography, ultrasound diagnosis and intravenous urography in renal tumors. The purpose is to obtain differential diagnostic data capable to modify the treatment approach. Over the last three years, a total of 570 cases of kidney tumors are observed. In 490 of them (86%) the imaging patterns obtained by either of the three techniques leads to correct diagnosis. In 62 of the remaining 80 patients, the integration of two techniques allows to unveil the neoplastic nature of the disease (27 cases), or the presence of a benign process (35 cases). In 15 of the remaining 18 cases only integration of the three techniques results in diagnosing renal tumors or tumor-like conditions (3 adeno-carcinomas, 5 abscesses, 3 cases of tuberculosis, 2 - pyeloxanthogranulomatosis, 2 dysmorphisms). In the last three cases definite diagnosis is made on the basis of needle biopsy. The radiological diagnosis is confirmed intraoperatively or during clinical follow-up study. The obtained data underscore the clinical relevance of imaging integration in evaluating renal lesions. This is particularly valid whenever the clinical data are nonspecific or misleading. 15 refs., 3 figs., 5 tabs. (orig.)

  8. A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Das, Theerthankar; Sharifi, Shahriar; Subbiahdoss, Guruprakash; Sharma, Prashant K.; Krom, Bastiaan P.; Busscher, Henk J.; van der Mei, Henny C.

    2013-01-01

    Biofilms are detrimental in many industrial and biomedical applications and prevention of biofilm formation has been a prime challenge for decades. Biofilms consist of communities of adhering bacteria, supported and protected by extracellular-polymeric-substances (EPS), the so-called house of

  9. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  10. Melanotic neuroectodermal tumor of the neurocranium in infancy.

    Science.gov (United States)

    Walsh, J W; Strand, R D

    1982-01-01

    Melanotic neuroectodermal tumors of the neurocranium are a rare but life-threatening disorder of infancy. 11 previously reported cases are reviewed in terms of clinical presentation, radiological diagnosis, and management. A twelfth case, a 4-month-old infant who developed three discrete sites of tumor unilaterally in the neurocranium is presented. Several hypotheses for the mechanism of formation of these tumors are reviewed. The authors propose that the mechanism of formation involves a dysontogenesis of neural crest tissue and that these tumors form, at least in part, from fragments of melanin-containing arachnoid villi which are displaced during embryonic development.

  11. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  12. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis.

    Science.gov (United States)

    Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Fan, Bo; Kang, Lin; Gao, Zhonggao

    Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.

  13. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  14. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  15. The Pleiotropic Role of L1CAM in Tumor Vasculature

    Directory of Open Access Journals (Sweden)

    Francesca Angiolini

    2017-01-01

    Full Text Available Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM, a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.

  16. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T; Piippo, J; Sirkiae, P [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  17. Methylene blue 1% solution on the prevention of intraperitoneal adhesion formation in a dog model

    Directory of Open Access Journals (Sweden)

    Marco Augusto Machado Silva

    Full Text Available Intraperitoneal adhesions usually are formed after abdominal surgeries and may cause technical difficulties during surgical intervention, chronic abdominal pain and severe obstructions of the gastrointestinal tract. The current study aimed to evaluate the efficacy of methylene blue (MB 1% solution on the prevention of intraperitoneal postsurgical adhesion formation in a canine surgical trauma model. Twenty bitches were submitted to falciform ligament resection, omentectomy, ovariohysterectomy and scarification of a colonic segment. Prior to abdominal closure, 10 bitches received 1mg kg-1 MB intraperitoneally (MB group and 10 bitches received no treatment (control group, CT. On the 15th postoperative day the bitches were submitted to laparoscopy to assess adhesions. The mean adhesion scores were 13.9 (±5.6 for MB group and 20.5 (±6.4 for the CT group (P=0,043. In conclusion, the 1% MB solution was efficient on the prevention of intraperitoneal postoperative adhesion formation in bitches, especially those involving the colonic serosa.

  18. Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks

    International Nuclear Information System (INIS)

    Zhang, H.; Wallen, C.A.; Wheeler, K.T.; Joch, C.J.

    1995-01-01

    Results from several laboratories, including ours, have suggested that measurements of radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) may be used to estimate the hypoxic fraction or fractional hypoxic volume of tumors and normal tissues. This suggestion has been predicated on both published and nonpublished information that (1) the oxygen dependence of the formation of strand breaks in irradiated mammalian cells is similar to the oxygen dependence of radiation-produced cell killing, and (2) the oxygen dependence of the formation of DPCs in irradiated mammalian cells is the mirror image of the oxygen dependence of radiation-induced cell killing. However, the published studies that attempted to determine the relationship between the oxygen dependence of the formation of strand breaks and the radiation sensitivity of mammalian cells were not performed at 37 degrees C, the exact oxygen concentrations were not always known, and the results were conflicting. In addition, most of the data on the oxygen dependence of the formation of DPCs are unpublished. Consequently, we have undertaken a comprehensive investigation of one cell line, 9L/Ro rat brain tumor cells, to determine if the shape of the oxygen dependence curve and the K m value for radiation-induced strand breaks and DPCs were similar when 9L cells were irradiated under both ideal gas-liquid equilibrium conditions at 4 degrees C and nonideal gas-liquid equilibrium conditions at 37 degrees C. At 4 degrees C under ideal gas-liquid equilibrium conditions, the K m for the formation of strand breaks was approximately 0.0045 mM, and Km for radiation sensitivity was approximately 0.005mM. A similar comparison for the formation of DPCs at 4 degrees C could not be made, because the efficiency of the formation of DPC was much lower at 4 degrees C than at 37 degrees C. 30 refs., 3 figs

  19. MRI of the transplanted endothelial progenitor cells for prevent atherosclerotic plaque formation

    International Nuclear Information System (INIS)

    Ma Zhanlong; Teng Gaojun; Mai Xiaoli; Chen Jun; Sun Junhui; Zhang Hongying; Yu Hui; Li Guozhao

    2007-01-01

    Objective: To evaluate the 1.5 T magnetic resonance imaging system to depict and track in vivo of magnetically labeled endothelial progenitor cells (EPCs), and to study the possibility for preventing the atherosclerotic plaque formation in New Zealand rabbit model of carotid arterial injury after transplantation. Methods: New Zealand rabbit EPCs were isolated, confirmed, expanded and then incubated with home synthesized Fe 2 O 3 -PLL, Prussian blue stain was performed for showing intracellular irons. The model of carotid arterial injury was performed by 2.5F balloons, the group A of 8 rabbits received magnetically labeled EPCs, group B of 3 rabbits received fluorescent-labeled EPCs and the group C of 5 rabbits were given same volume saline injection after endothelial injury of the carotid artery. MR imaging and histology were performed and compared 4 days later for randomly chosen three rabbit, each from one of the three group; all the other rabbits were fed with high lipid diet and examed using MR imaging and histology after 15 weeks. Results: Epcs labeling efficiency was more than 95% by Prussian blue stain, 4 days after transplantation of EPCs, only in group A, the injured endothelium of carotid artery had signal intensity loss in T 2 * WI, which were correlated well with the area where the most Prussian blue staining positive cells were found in histopathology analyses. The rabbits of group A and B which received EPCs transplantation exhibited fewer plaques formation than those of the group C (P 2 O 3 -PLL. The 1.5 T magnetic resonance imaging system could depict and monitor the magnetically labeled endothelial progenitor cells homing to the injured endothelium of the artery, and EPCs contribute to preventing atherosclerotic plaque formation in New Zealand rabbit model of atherosclerosis. (authors)

  20. Cinnamon Oil and Chitosan Coating on Orthopaedic Implant Surface for Prevention of Staphylococcus Epidermidis Biofilm Formation

    OpenAIRE

    R Magetsari; P Dewo; BK Saputro; Z Lanodiyu

    2014-01-01

    S. Epidermidis is among the most frequently isolated microorganisms found in -infection related to implanted devices and the formation of biofilm will be more resistantcompared to the planktonic form. This study was carried out determine the effect of coating on stainless steel orthopaedic implants surfaces with cinnamon oil and chitosan as bioadhesive to prevent biofilms formation of S. Epidermidis.The rod shaped stainless steel 316 L orthopaedic implant with 5 mm diameters was coated 2 t...

  1. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  2. A rare case with synchronous gastric gastrointestinal stromal tumor, pancreatic neuroendocrine tumor, and uterine leiomyoma.

    Science.gov (United States)

    Arabadzhieva, Elena; Yonkov, Atanas; Bonev, Sasho; Bulanov, Dimitar; Taneva, Ivanka; Vlahova, Alexandrina; Dikov, Tihomir; Dimitrova, Violeta

    2016-11-15

    Although gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, they comprise less than 1% of all gastrointestinal tumors. Neuroendocrine tumors (NET) of the gastro-enteropancreatic system are also rare, representing about 2% of all gastrointestinal neoplasms. Pancreatic localization of NET is extremely uncommon-these tumors are only 1-5% of all pancreatic cancers. We describe an unusual case with triple tumor localization-a gastric tumor, a formation in the pancreas, which involves the retroperitoneal space, and a uterine leiomyoma. The exact diagnosis was confirmed with immunohistochemical study after surgical treatment of the patient. Distal pancreatic resection, splenectomy, partial gastrectomy, omentectomy, and hysterectomy were performed. The histological examination proved an epithelioid type of gastric GIST. Immunostaining showed focal positive expression of c-kit and no mitotic figures per 50 HPF. Histology of the pancreatic and retroperitoneal formation proved a well-differentiated NET with origin from the islets of Langerhans. The immunohistochemical study demonstrated co-expression of chromogranin A and synaptophysin. This is the fourth case published so far of a patient with synchronous pancreatic NET and gastric GIST. The main objective of the study is to present a unique case because we have not found any reports for coexistence of the described three types of neoplasm, as in our patient, and we hope that it will be valuable in the future investigations about the genesis, diagnosis, and treatment of these types of tumors.

  3. The role of succinylcholine in the prevention of the obturator nerve reflex during transurethral resection of bladder tumors

    International Nuclear Information System (INIS)

    Cesur, M.; Erdem, Ali F.; Alici, Haci A.; Yuksek, Mustafa S.; Yapanoglu, T.; Aksoy, Y.

    2008-01-01

    Objective was to present our 8 year experience in the prevention of the obturator nerve reflex during transurethral resection of bladder tumors. This study was performed in Ataturk University Hospital between 1999 and 2007. We retrospectively reviewed the records of 89 patients with inferolateral bladder tumors, who underwent transurethral resection under epidural or general anesthesia and requested obturator nerve reflex inhibition. Epidural anesthesia was administered to 57 patients, while the remaining 32 patients underwent general anesthesia via mask; and succinylcholine was administered prior to resection. Of the 57 patients received epidural anesthesia, 18 were diagnosed as inferolateral bladder tumors during endoscopy and had to undergo general anesthesia. Obturator nerve block was attempted preoperatively in 39 patients. However, a nerve identification failure, hematoma and 4 obturator nerve reflex events, despite the block, were observed and these patients were subjected to general anesthesia with succinylcholine. Fifty-six patients (32 patients initially had general anesthesia and 24 converted from epidural to general anesthesia) were all given succinylcholine prior to resection. Due to its mechanisms of action, succinylcholine is completely effective and represents a simple alternative to obturator nerve block. No contraction was observed in any patient given succinylcholine. (author)

  4. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity.

    Science.gov (United States)

    Yao, Wenjun; Peng, Yixing; Du, Mingzhu; Luo, Juan; Zong, Li

    2013-08-05

    Chitosan (CS) has been extensively used as a protein drug and gene delivery carrier, but its delivery efficiency is unsatisfactory. In this study, a mannose ligand was used to modify CS, which could enhance the delivery efficiency of CS via mannose receptor-mediated endocytosis. A preventative anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2, pGRP) was condensed with mannosylated chitosan (MCS) to form MCS/pGRP nanoparticles. Nanoparticles were intranasally administered in a subcutaneous mice prostate carcinoma model to evaluate the efficacy on inhibition of the growth of tumor cells. The titers of anti-GRP IgG that lasted for 11 weeks were significantly higher than that for administration of CS/pGRP nanoparticles (p intramuscular administration of a pGRP solution (p nanoparticles could suppress the growth of tumor cells. The average tumor weight (0.79 ± 0.30 g) was significantly lower than that in the CS/pGRP nanoparticle group (1.69 ± 0.15 g) (p nanoparticles bound with C-type lectin receptors on macrophages. MCS was an efficient targeting gene delivery carrier and could be used in antitumor immunotherapy.

  5. Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1

    Directory of Open Access Journals (Sweden)

    Haque Inamul

    2010-08-01

    Full Text Available Abstract Background New blood vessel formation, or angiogenic switch, is an essential event in the development of solid tumors and their metastatic growth. Tumor blood vessel formation and remodeling is a complex and multi-step processes. The differentiation and recruitment of mural cells including vascular smooth muscle cells and pericytes are essential steps in tumor angiogenesis. However, the role of tumor cells in differentiation and recruitment of mural cells has not yet been fully elucidated. This study focuses on the role of human tumor cells in governing the differentiation of mouse mesenchymal stem cells (MSCs to pericytes and their recruitment in the tumor angiogenesis process. Results We show that C3H/10T1/2 mouse embryonic mesenchymal stem cells, under the influence of different tumor cell-derived conditioned media, differentiate into mature pericytes. These differentiated pericytes, in turn, are recruited to bind with capillary-like networks formed by endothelial cells on the matrigel under in vitro conditions and recruited to bind with blood vessels on gel-foam under in vivo conditions. The degree of recruitment of pericytes into in vitro neo-angiogenesis is tumor cell phenotype specific. Interestingly, invasive cells recruit less pericytes as compared to non-invasive cells. We identified tumor cell-secreted platelet-derived growth factor-B (PDGF-B as a crucial factor controlling the differentiation and recruitment processes through an interaction with neuropilin-1 (NRP-1 in mesenchymal stem cells. Conclusion These new insights into the roles of tumor cell-secreted PDGF-B-NRP-1 signaling in MSCs-fate determination may help to develop new antiangiogenic strategies to prevent the tumor growth and metastasis and result in more effective cancer therapies.

  6. Surgical, radio and immunotherapy of syngeneic tumors in mice

    International Nuclear Information System (INIS)

    Engel, B.

    1982-01-01

    In untreated DBA/2 and (57 Black 6 mice the growth of and formation of metastases by syngeneic tumors (L 1210, EL 4, P 815 respectively Lewis Lung) was tested to obtain hints regarding the subsequent treatment modalities. In summary it can be said that each tumor type has its specific behaviour as regards the formation of metastases. Tumor-carrying mice were then operated on respectively received radiotherapy at different lengths of time after the tumor cell transplantation. The results led to the conclusion that an early therapy increased the survival rates. These findings were taken as a basis for further experiments in which tumor-carrying mice were exclusively treated 24 hours after the tumor cell transplantation. It was found that tumor-carrying animals, as compared to untreated control animals, were cured by surgical measures. Radiotherapy was successful in cases of L 1210 and EL 4 tumors. Animals carrying P 815 and Lewis Lung tumors that were irradiated 24 hours after the tumor cell transplantation died of progressive tumor growth. (orig./MG) [de

  7. Control and prevention of ice formation and accretion on heat exchangers for ventilation systems

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza

    2015-01-01

    In cold climates, the application of mechanical ventilation systems with heat recovery like are airto-air exchangers is used for reducing energy consumption for heating buildings by transferring heat exhausted air to supply air. However, increase efficiency of heat exchanger results in lower...... exhaust air temperatures and Ice formation on heat exchanger fins, which can cause problem and is not favourable. Therefore, prevention and control of ice formation on heat exchangers is necessary. The existing methods are divided into two different methods: active and passive ice control methods....... The active methods are e.g. bypass, recirculation, preheating. The passive methods relate to the surface characteristics of the heat exchanger fins as they have effect on ice formation in initial phase. All these methods have varying levels of success, cost, and effectiveness, which are depending on the heat...

  8. Shenlingbaishusan, a chines herbal medicine, in the prevention and treatment of colo-rectal radiation reactions during pelvic tumor radiotherapy

    International Nuclear Information System (INIS)

    Hu Yueran; Liu Yajie; Wu Chaoquan; Chen Chuping; Wang Yaobang; Li Xianming; Zhong Heli; Wu Dong

    2005-01-01

    Objective: To study the effect of traditional Chinese herbal medicine-Shenlingbaishusan in preventing and treating colon and rectum radiation reactions. Methods: Ninty-six patients with female pelvic tumor (cervical and endometrial cancer) were randomly divided into two groups: radiotherapy (RT) alone group (47 patients) and RT+ Shenlingbaishusan group(49 patients). RT in both groups, being similar, 1.8-2.0 Gy/per fraction, five fractions/per week, to a total dose of 48-50 Gy/5-6 weeks to the whole pelvis by external irradiation plus brachytherapy: to a total dose of 42-49 Gy/6-7 weeks for cervix carcinoma, and 10-15 Gy/1-2 weeks for endometrial cancer. Results: All patients have been were followed for more than one year after radiotherapy. The incidence of acute and late colon and rectum radiation reactions. was:15 patients in the RT + Shenlingbaishusan group: grade I10 patients, Grade II3 patients, grade III2 patients incontrast to the 47 patients in the RT group: grade I 24 patients, grade II 14 patients and grade III 9 patients (P<0.01). Conclusions: The traditional Chinese medicine-Shenlingbaishusan is effective in preventing and treating colon and rectum radiation reactions during pelvic tumor radiotherapy.(authors)

  9. Oxaliplatin immuno hybrid nanoparticles for active targeting: an approach for enhanced apoptotic activity and drug delivery to colorectal tumors.

    Science.gov (United States)

    Tummala, Shashank; Gowthamarajan, K; Satish Kumar, M N; Wadhwani, Ashish

    2016-06-01

    Tumor necrosis factor related apoptosis inducing ligand (TRAIL) proved to be a promising new target for colorectal cancer treatment. Elevated expression of TRAIL protein in tumor cells distinguishes it from healthy cells, thereby delivering the drug at the specific site. Here, we formulated oxaliplatin immunohybrid nanoparticles (OIHNPs) to deliver oxaliplatin and anti-TRAIL for colorectal cancer treatment in xenograft tumor models. The polymeric chitosan layer binds to the lipid film with the mixture of phospholipids by an ultra sound method followed by conjugating with thiolated antibody using DSPE-PEG-mal3400, resulting in the formation of OIHNPs. The polymer layer helps in more encapsulation of the drug (71 ± 0.09%) with appreciable particle size (95 ± 0.01 nm), and lipid layer prevents degradation of the drug in serum by preventing nanoparticle aggregation. OIHNPs have shown a 4-fold decrease in the IC50 value compared to oxaliplatin in HT-29 cells by the MTT assay. These immuno-nanoparticles represent the successful uptake and internalization of oxaliplatin in HT-29 cells rather than in MCF-7 cells determined by triple fluorescence method. Apoptotic activity in vitro of OIHNPs was determined by the change in the mitochondria membrane potential that further elevates its anti-tumor property. Furthermore, the conjugated nanoparticles can effectively deliver the drug to the tumor sites, which can be attributed to its ability in reducing tumor mass and tumor volume in xenograft tumor models in vivo along with sustaining its release in vitro. These findings indicated that the oxaliplatin immuno-hybrid nanoparticles would be a promising nano-sized active targeted formulation for colorectal-tumor targeted therapy.

  10. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  11. Acute intracranial hematoma formation following excision of a cervical subdural tumor: a report of two cases and literature review.

    Science.gov (United States)

    Ma, Xuexiao; Zhang, Yan; Wang, Ting; Li, Guizhi; Zhang, Guoqing; Khan, Hassan; Xiang, Hongfei; Chen, Bohua

    2014-01-01

    An intracranial hematoma is a rare, yet significant, complication following spinal surgery. The authors describe two cases with acute intracranial hematoma formation after excision of a cervical subdural schwannoma. One was a 14-year-old girl who developed bilateral intracranial extradural hematomas immediately following excision of the C4 subdural schwannoma. The other was a 59-year-old woman who had an acute cerebellar hematoma after removal of the C2-C5 subdural schwannoma. During the surgeries of both cases, spinal dura was partially removed together with the tumor and the dural sac could not be repaired, resulting in large amounts of intraoperative CSF loss and persistent postoperative CSF leakage. Both patients failed to regain consciousness from anesthesia after surgery, and a cranial CT scan identified large intracranial hematomas. Urgent hematoma evacuation was ultimately performed to save the patients. Based on the authors' experience and literature review, a conclusion was drawn that considerable CSF leakage and a sharp decrease of CSF pressure are common features during the excision of a spinal subdural tumor, which may lead to acute intracranial hematomas. Continual postoperative monitoring in patients with this condition should be of a very high priority. A CT or MRI should be immediately investigated to exclude intracranial hematomas for any patient with delayed emergence from anesthesia following spinal surgery. Hematoma evacuation is indispensable once an intracranial hematoma is identified in the patient who fails to regain consciousness from anesthesia post surgery. Furthermore, the possible pathophysiological mechanisms responsible for the formation of an intracranial hematoma after spinal procedures, particularly after manipulations of a cervical subdural tumor, are discussed.

  12. Industasis, a promotion of tumor formation by nontumorigenic stray cells

    Czech Academy of Sciences Publication Activity Database

    Pajer, Petr; Karafiát, Vít; Pečenka, Vladimír; Průková, Dana; Dudlová, J.; Plachý, Jiří; Kašparová, P.; Dvořák, Michal

    2009-01-01

    Roč. 69, č. 11 (2009), s. 4605-4612 ISSN 0008-5472 R&D Projects: GA ČR GA204/06/1728; GA MŠk(CZ) LC06061; GA AV ČR IAA500520608 Institutional research plan: CEZ:AV0Z50520514 Keywords : tumor promotion * lung tumors * Fyn-related kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.543, year: 2009

  13. Prevention of Risky Sexual Behaviour through the Formation of Psychological Readiness to Parenthood

    Directory of Open Access Journals (Sweden)

    Krysko A.A.,

    2018-04-01

    Full Text Available In the world there are tendencies of early entering into sexual relations and simultaneous withdrawal of the age of marriage, an increase in the number of early pregnancies and abortions among minors. Existing programs for the prevention of risky sexual behavior are ineffective, since they are one-time, narrowly focused. The author presents the results of an experiment on the prevention of risky sexual behavior in adolescents based on the formation of their ideas of parenting and child-parent relations, and through the prism of this topic, allowing to build an image of reproductive behavior in the present and future. The program is designed taking into account the psychology of modern adolescents, in accordance with the principles of awareness and responsibility, is based on a restorative approach and resource approach to the formation of psychological readiness for parenthood M.E. Lantsburg. The program for the development of psychological preparedness for parenting in adolescents has two targets: the nearest: preventing adolescent pregnancy and reducing its negative consequences in the event of an early pregnancy, and strategic - preparing for the planning and birth of the coveted child in the future. The results prove that the adolescents' views about the family depend both on the experiences they experienced in their own childhood and on the trends in the social and political space discussed in this topic. The study showed that adolescents' views on sexual relations, family and parenthood can be purposefully influenced through a program based on the knowledge of age-related psychology, resource and recovery approaches and using interactive methods of teaching relevant to this age group.

  14. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections

    Science.gov (United States)

    Howlin, R. P.; Brayford, M. J.; Webb, J. S.; Cooper, J. J.; Aiken, S. S.

    2014-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 106 CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  15. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells

    International Nuclear Information System (INIS)

    Amaral, Camila L.; Freitas, Lidia B.; Tamura, Rodrigo E.; Tavares, Mariana R.; Pavan, Isadora C. B.; Bajgelman, Marcio C.; Simabuco, Fernando M.

    2016-01-01

    The S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms–p70-S6K1, p85-S6K1 and p54-S6K2–in prostate cancer, as well as their potential as therapeutic targets. In this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro. S6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line. These findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment. The online version of this article (doi:10.1186/s12885-016-2629-y) contains supplementary material, which is available to authorized users

  16. [Desmoid tumors in three patients].

    Science.gov (United States)

    Mohos, E; Kovács, T; Brittig, F; Nagy, A

    2001-12-01

    Desmoids are rare tumors of the connective tissue. It develops about 1:1000 times more in patients with familial adenomatous polyposis (FAP, Gardner syndrome) compared to normal population. It has been shown in molecular genetic examinations, that different mutations of the APC gene are responsible for desmoid tumors in FAP. It means, that this disease is one of the extraintestinal manifestations of Gardner syndrome. This tumor has high recurrence rate and is growing rapidly, and as a result it is the second most common cause of death in FAP patients. That is why genetic examination for FAP patients is advised to decide if the patient has higher risk for desmoid formation. If the result of the genetic test is positive, it is advisable to try to slow the progression of polyposis with medical treatment, and so to delay the date of the colectomy because the surgical intervention--and connective tissue damage--can induce desmoid formation in these patients. At the same time it is reasonable to examine and regularly control patients with sporadic desmoid tumors searching for other manifestations of Gardner syndrome (colon, stomach and duodenum polyposis, tumor of papilla Vateri, retinopathy, etc.). Palliative surgery is not indicated in patients with inoperable intraabdominal desmoid tumors, because partial resections (R1, R2, debulking) result in further tumor progression. In these patients medical treatment (sulindac, tamoxifen), chemotherapy (doxorubicin, dacarbazin) and radiotherapy or combination of them can result tumor remission. We describe our three patients (an abdominal wall desmoid four years following Cesarean section; a desmoid tumor in the retroperitoneum and in the pelvis diagnosed three years after total colectomy; and a retroperitoneal and abdominal wall desmoid one year after total colectomy) and etiology, diagnosis and therapy of desmoid tumors are discussed.

  17. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  18. Development of a smoking prevention mass media program using diagnostic and formative research.

    Science.gov (United States)

    Worden, J K; Flynn, B S; Geller, B M; Chen, M; Shelton, L G; Secker-Walker, R H; Solomon, D S; Solomon, L J; Couchey, S; Costanza, M C

    1988-09-01

    The process of developing a mass media campaign to prevent smoking among adolescents is described in detail. This campaign supplements a school smoking prevention program and shares educational objectives with the school program but is otherwise independent. It comprises various television and radio 30- and 60-sec "spot" messages. The campaign development process includes identifying educational objectives and strategies for appealing to young people; conducting diagnostic surveys and focus groups to determine target audience interests and perceptions about smoking and media content; suggesting approaches to producers to create preliminary television and radio messages for testing; conducting formative pretests with target groups to select optimal messages and suggest improvements to those messages; producing final messages for media presentation; and developing a media exposure plan to place messages in local media at optimal times for reception by target audiences. The media campaign is being evaluated in a 5-year project with 5,500 adolescents in four communities to determine the additional effect of mass media over a school program alone in preventing smoking.

  19. Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide

    International Nuclear Information System (INIS)

    Gensler, H.L.

    1997-01-01

    Ultraviolet (UV) B irradiation leads to a potent immunosuppression of the capacity to reject syngeneic, antigenic tumors. If this immunosuppression is critical for the development of most skin tumors, then its prevention should result in prevention of photocarcinogenesis. We previously showed a correlation between the inhibition of photoimmunosuppression and prevention of photocarcinogenesis by dl-alpha-tocopherol, tannic acid, or alpha-difluoro methylornithine. The current study was designed to determine whether topical nicotinamide, the active form of vitamin B-3, or niacin, prevents immunosuppression and skin cancer in UV-irradiated mice. In a passive transfer assay for immunosuppression, splenocytes from UV-irradiated mice enhanced the growth of antigenic tumor challenges in recipient mice. Treatment of the UV-irradiated mice with 40 micromoles of nicotinamide twice weekly starting two weeks before UV irradiation and throughout the experiment prevented this immunosuppresion. UVB irradiation consisted of five weekly 30-minute exposures to banks of six FS40 Westinghouse fluorescent sunlamps. Mice received approximatety 6.2 x 10(5) J/m(2) in the passive transfer assays and 1.09 x 10(6) J/m(2) in the photocarcinogenesis studies. Application of nicotinamide to UV-irradiated mice reduced skin tumor incidence from 75% to 42.5% (p = 0.016, Cox proportional hazards analysis). Thus topical nicotinamide prevented the immunosuppression and skin tumor induction by UVB irradiation

  20. Neuroendocrine Tumor, Well Differentiated, of the Breast: A Relatively High-Grade Case in the Histological Subtype

    Directory of Open Access Journals (Sweden)

    Shogo Tajima

    2013-01-01

    Full Text Available Primary neuroendocrine carcinoma of the breast is a rare entity, comprising <1% of breast carcinomas. Described here is the case of a 78-year-old woman who developed an invasive tumor in the left breast measuring 2.0 cm x 1.5 cm x 1.2 cm. The tumor was composed of only endocrine elements in the invasive part. It infiltrated in a nested fashion with no tubular formation. Intraductal components were present both inside and outside of the invasive portion. Almost all carcinoma cells consisting of invasive and intraductal parts were positive for synaptophysin and neuron-specific enolase. According to the World Health Organization classification 2012, this tumor was subclassified as neuroendocrine tumor, well-differentiated. Among the subgroup, this tumor was relatively high-grade because it was grade 3 tumor with a few mitotic figures. Vascular and lymphatic permeation and lymph node metastases were noted. In the lymph nodes, the morphology of the tumor was similar to the primary site. No distant metastasis and no relapse was seen for one year after surgery. The prognosis of neuroendocrine carcinomas is thought to be worse than invasive mammary carcinomas, not otherwise specified. Therefore, immunohistochemistry for neuroendocrine markers is important in the routine practice to prevent overlooking neuroendocrine carcinomas.

  1. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  2. NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation.

    Science.gov (United States)

    Plotkin, Jesse D; Elias, Michael G; Dellinger, Anthony L; Kepley, Christopher L

    2017-08-01

    The transformation of monocyte-derived macrophages into lipid-laden foam cells is one inflammatory process underlying atherosclerotic disease. Previous studies have demonstrated that fullerene derivatives (FDs) have inflammation-blunting properties. Thus, it was hypothesized that FD could inhibit the transformation process underlying foam cell formation. Fullerene derivatives inhibited the phorbol myristic acid/oxidized low-density lipoprotein-induced differentiation of macrophages into foam cells as determined by lipid staining and morphology.Lipoprotein-induced generation of TNF-α, C5a-induced MC activation, ICAM-1 driven adhesion, and CD36 expression were significantly inhibited in FD treated cells compared to non-treated cells. Inhibition appeared to be mediated through the NF-κB pathway as FD reduced expression of NF-κB and atherosclerosis-associated genes. Compared to controls, FD dramatically inhibited plaque formation in arteries of apolipoprotein E null mice. Thus, FD may be an unrecognized therapy to prevent atherosclerotic lesions via inhibition of foam cell formation and MC stabilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Malignant renal tumors in pediatrics

    International Nuclear Information System (INIS)

    Pena, C.; Torterolo, J.; Irigoyen, B.; Bel, M.; Elias, E.

    2004-01-01

    Introduction: Professionals who work in pediatric oncology, we see childhood cancer as a common disease, but in fact constitutes about 2% of all cancers diagnosed worldwide. Wilms tumor accounts for 6% of all childhood tumors and presentation bilateral accounts for 4-6% of all Wilms tumors diagnosed. Theoretical Framework: In the period between the year 1994-2003 period were attended in the Pediatric Hematology-Oncology Center, a total of 29 cases of malignant renal tumors, corresponding to 86% (25 cases) to Wilms tumor or nephroblastoma tumor. The Wilms is of embryonic origin, capable of metastatic spread, (85% lungs 15% liver). Very sensitive to chemotherapy and radiotherapy, which confers high cure rates (85%); having a multidisciplinary treatment model, combining surgery, chemotherapy, and radiotherapy. The role of nursing in comprehensive cancer care child is essential in the prevention and early detection of side effects or complications. Case report: S.D. currently 10 years old. In 10/1994, at 8 months of age, was diagnosed with bilateral Wilms tumor. On admission her weight was 8200gr with abdominal circumference 50cm. Conducted pre-operative MDT and 02/1995 nephrectomy of the left kidney and right kidney lumpectomy (tumor nodule 420gr. and a 250gr.). MDT begins in 03/1995 01/1996 ending. 09/2003 with abdominal pain and vomiting, and kidney failure. 10/2003 lumpectomy biopsy (sclerotic nodule associated with maturation nephroblastoma). Currently severe renal insufficiency plan enters dialysis. Nursing process: Objectives: 1) To prepare the child and family to the side effects and possible complications of chemotherapy and / or radiotherapy 2) Prevent and minimize related complications tumor and / or treatment. Care Plan comprises four stages: A) rating and customer income. B) Implement care chemotherapy C) post-operative Care D) Implement radiation care

  4. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms.

    Science.gov (United States)

    Rane, Hallie S; Bernardo, Stella M; Howell, Amy B; Lee, Samuel A

    2014-02-01

    Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine. C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models. Cranberry PAC concentrations of ≥16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms. These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation.

  5. Role of the Blood-Brain Barrier in the Formation of Brain Metastases

    Directory of Open Access Journals (Sweden)

    István A. Krizbai

    2013-01-01

    Full Text Available The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB. The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation.

  6. Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth

    Directory of Open Access Journals (Sweden)

    Ok-Hee Lee

    2006-05-01

    Full Text Available Systematic analyses of the expression of angiogenic regulators in cancer models should yield useful information for the development of novel therapies for malignant gliomas. In this study, we analyzed tumor growth, vascularization, and angiopoietin-2 (Ang2 expression during the development of U-87 MG xenografts. We found that tumoral angiogenesis in this model follows a multistage process characterized by avascular, prolific peripheral angiogenesis, and late vascular phases. On day 4, we observed an area of central necrosis, a peripheral ring of Ang2-positive glioma cells, and reactive Ang2-positive vascular structures in the tumor/brain interface. When the tumor had developed a vascular network, Ang2 was expressed only in peripheral vascular structures. Because Ang2 expression was downmodulated in the late stages of development, probably to maintain a stable tumoral vasculature, we next studied whether sustained Ang2 expression might impair vascular development and, ultimately, tumor growth. Ang2 prevented the formation of capillary-like structures and impaired angiogenesis in a chorioallantoic membrane chicken model. Finally, we tested the effect of sustained Ang2 expression on U-87 MG xenograff development. Ang2 significantly prolonged the survival of intracranial U-87 MG tumor-bearing animals. Examination of Ang2treated xenograffs revealed areas of tumor necrosis and vascular damage. We therefore conclude that deregulated Ang2 expression during gliomagenesis hindered successful angiogenesis and that therapies that sustain Ang2 expression might be effective against malignant gliomas.

  7. Pituitary Tumors: Condition Information

    Science.gov (United States)

    ... hormones. They can press on or damage the pituitary gland and prevent it from secreting adequate levels of hormones. National Institute of Neurological Disorders and Stroke. (2010). NINDS pituitary tumors information page . ...

  8. Anti-tumor effects of an engineered “killer” transfer RNA

    International Nuclear Information System (INIS)

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-01-01

    Highlights: ► tRNA with anti-cancer effects. ► tRNA induced protein misfolding. ► tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA Ser (AAU) is an engineered human tRNA Ser with an anticodon coding for isoleucine. Here we test the possibility that tRNA Ser (AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA Ser (AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA Ser (AAU) in both tumorigenic and non-tumorigenic cells. tRNA Ser (AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA Ser (AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA Ser (AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA Ser (AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  9. The MC160 Protein Expressed by the Dermatotropic Poxvirus Molluscum Contagiosum Virus Prevents Tumor Necrosis Factor Alpha-Induced NF-κB Activation via Inhibition of I Kappa Kinase Complex Formation

    Science.gov (United States)

    Nichols, Daniel Brian; Shisler, Joanna L.

    2006-01-01

    The pluripotent cytokine tumor necrosis factor alpha (TNF-α) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-κB transcription factor. To prevent the detrimental effects of TNF-α in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-α-mediated NF-κB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-κB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-κB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-κB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes. PMID:16378960

  10. Role of Erbin in ErbB2-dependent breast tumor growth

    Science.gov (United States)

    Tao, Yanmei; Shen, Chengyong; Luo, Shiwen; Traoré, Wilfried; Marchetto, Sylvie; Santoni, Marie-Josée; Xu, Linlin; Wu, Biao; Shi, Chao; Mei, Jinghong; Bates, Ryan; Liu, Xihui; Zhao, Kai; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2014-01-01

    ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression. PMID:25288731

  11. 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors.

    LENUS (Irish Health Repository)

    Yan, Min

    2009-06-09

    Pharmacologic inhibitors of the prostaglandin-synthesizing COX-2 oncogene prevent the development of premalignant human colon adenomas. However, resistance to treatment is common. In this study, we show that the adenoma prevention activity of the COX-2 inhibitor celecoxib requires the concomitant presence of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) tumor suppressor gene, and that loss of 15-PGDH expression imparts resistance to celecoxib\\'s anti-tumor effects. We first demonstrate that the adenoma-preventive activity of celecoxib is abrogated in mice genetically lacking 15-PGDH. In FVB mice, celecoxib prevents 85% of azoxymethane-induced tumors >1 mm in size, but is essentially inactive in preventing tumor induction in 15-PGDH-null animals. Indeed, celecoxib treated 15-PGDH null animals develop more tumors than do celecoxib naive WT mice. In parallel with the loss of tumor prevention activity, celecoxib-mediated suppression of colonic PGE(2) levels is also markedly attenuated in 15-PGDH-null versus WT mice. Finally, as predicted by the murine models, humans with low colonic 15-PGDH levels also exhibit celecoxib resistance. Specifically, in a colon adenoma prevention trial, in all cases tested, individuals who developed new adenomas while receiving celecoxib treatment were also found as having low colonic 15-PGDH levels.

  12. Formative research to develop theory-based messages for a Western Australian child drowning prevention television campaign: study protocol.

    Science.gov (United States)

    Denehy, Mel; Crawford, Gemma; Leavy, Justine; Nimmo, Lauren; Jancey, Jonine

    2016-05-20

    Worldwide, children under the age of 5 years are at particular risk of drowning. Responding to this need requires the development of evidence-informed drowning prevention strategies. Historically, drowning prevention strategies have included denying access, learning survival skills and providing supervision, as well as education and information which includes the use of mass media. Interventions underpinned by behavioural theory and formative evaluation tend to be more effective, yet few practical examples exist in the drowning and/or injury prevention literature. The Health Belief Model and Social Cognitive Theory will be used to explore participants' perspectives regarding proposed mass media messaging. This paper describes a qualitative protocol to undertake formative research to develop theory-based messages for a child drowning prevention campaign. The primary data source will be focus group interviews with parents and caregivers of children under 5 years of age in metropolitan and regional Western Australia. Qualitative content analysis will be used to analyse the data. This study will contribute to the drowning prevention literature to inform the development of future child drowning prevention mass media campaigns. Findings from the study will be disseminated to practitioners, policymakers and researchers via international conferences, peer and non-peer-reviewed journals and evidence summaries. The study was submitted and approved by the Curtin University Human Research Ethics Committee. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Síndrome de lise tumoral: uma revisão abrangente da literatura Acute tumor lysis syndrome: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Michael Darmon

    2008-09-01

    égias baseadas no risco dos pacientes são necessários para limitar a alta morbidade e mortalidade desta complicação.Tumor lysis syndrome is characterized by the massive destruction of malignant cells and the release in the extra-cellular space of their content. While Tumor lysis syndrome may occur spontaneously before treatment, it usually develops shortly after the initiation of cytotoxic chemotherapy. These metabolites can overwhelm the homeostatic mechanisms with development of hyperuricaemia, hyperkalaemia, hyperphosphataemia, and hypocalcaemia. These biological manifestations may lead to clinical manifestations including, acute kidney injury, seizure, or sudden death that require intensive care. Since clinical tumor lysis syndrome is associated with a poor prognosis both prevention of tumor lysis syndrome and prevention of clinical consequences of tumor lysis syndrome are mandatory. The objective of this review is to describe pathophysiological mechanisms, biological and clinical manifestations of tumor Lysis syndrome, and to provide upto-date guidelines to ensure prevention of tumor lysis syndrome. Review of selected studies on tumor lysis syndrome published at the PubMed database www.pubmed.gov during the last 20 years. Additional references were retrieved from the studies initially selected. Tumor lysis syndrome is a frequent and life-threatening complication of the newly diagnosed malignancies. Preventive measures, including hydration, uricolytic agents, eviction of factors predisposing to acute kidney injury and, in the more severe patients, on prophylactic renal replacement therapy, are required to prevent or limit clinical consequences of Tumor lysis syndrome. However optimal timing and modalities of prevention remains unknown and may be modified by the changing spectrum of patients at risk of tumor lysis syndrome. Development and validation of risk based strategies is required to limit the high morbidity and mortality of this complication.

  14. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    International Nuclear Information System (INIS)

    Yang, Jie; Li, Jun-Wen; Wang, Lu; Chen, Zhaoli; Shen, Zhi-Qiang; Jin, Min; Wang, Xin-Wei; Zheng, Yufei; Qiu, Zhi-Gang; Wang, Jing-feng

    2008-01-01

    Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies. In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking. Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed. We conclude that VE might prevent lung tumor induced by smoking in Swiss mice

  15. Tumor-associated antigens identified by mRNA expression profiling as tumor rejection epitopes

    DEFF Research Database (Denmark)

    Andersen, Marie; Ruhwald, Morten; Thorn, Mette

    2003-01-01

    , suggesting that SM7 thymoma cells are recognized by the adaptive immune system of the host. However, prophylactic vaccination with RAD23-31 and RAD24-31 peptides combined with anti-CTLA4 Ab treatment and did not improve tumor resistance. Our data would indicate that vaccination with immunogenic peptides......Thirteen H-2b-binding peptides derived from six potentially overexpressed proteins in p53-/- thymoma (SM7) cells were studied for immunogenecity and vaccine-induced prevention of tumor growth in mice inoculated with SM7 tumor cells. Six of the peptides generated specific CTL responses after...... immunization, but only two of these peptides (RAD23-31 and RAD24-31) were capable of generating a weak vaccination-induced protection against adoptive tumor growth. SM7 inoculated mice treated with a blocking antibody against the inhibitory T cell signal transducing molecule CTLA4 appeared to delay tumor take...

  16. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  17. Bone tumor mimickers: A pictorial essay

    International Nuclear Information System (INIS)

    Mhuircheartaigh, Jennifer Ni; Lin, Yu-Ching; Wu, Jim S

    2014-01-01

    Focal lesions in bone are very common and many of these lesions are not bone tumors. These bone tumor mimickers can include numerous normal anatomic variants and non-neoplastic processes. Many of these tumor mimickers can be left alone, while others can be due to a significant disease process. It is important for the radiologist and clinician to be aware of these bone tumor mimickers and understand the characteristic features which allow discrimination between them and true neoplasms in order to avoid unnecessary additional workup. Knowing which lesions to leave alone or which ones require workup can prevent misdiagnosis and reduce patient anxiety

  18. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    essential oil hydrodistilled at 100 oC was more potent than the essential oil prepared at 78 oC in inducing cancer cell death, preventing the cellular network formation (MDA-MB-231) cells on Matrigel, causing the breakdown of multicellular tumor spheroids (T47D cells), and regulating molecules involved in apoptosis, signal transduction, and cell cycle progression. Conclusions Similar to our previous observations in human bladder cancer cells, Boswellia sacra essential oil induces breast cancer cell-specific cytotoxicity. Suppression of cellular network formation and disruption of spheroid development of breast cancer cells by Boswellia sacra essential oil suggest that the essential oil may be effective for advanced breast cancer. Consistently, the essential oil represses signaling pathways and cell cycle regulators that have been proposed as therapeutic targets for breast cancer. Future pre-clinical and clinical studies are urgently needed to evaluate the safety and efficacy of Boswellia sacra essential oil as a therapeutic agent for treating breast cancer. PMID:22171782

  19. Angiogenesis and anti-angiogenesis: Perspectives for the treatment of solid tumors

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Collen, A.; Koolwijk, P.

    1999-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones. Many solid tumors depend on an extensive newly formed vascular network to become nourished and to expand. Tumor cells induce the formation of an extensive but aberrant vascular network by the secretion of angiogenic factors. A

  20. Can ultrasound be helpful in selecting optimal management methods for pregnancies complicated by placental non-trophpblastic tumors?

    Directory of Open Access Journals (Sweden)

    Nabil Abdalla

    2017-06-01

    Full Text Available Placental chorioangioma is the most common subtype of non-trophoblastic placental tumors. Other subtypes are very rare and usually associated with an uneventful course of pregnancy. Most chorioangiomas are small and of no clinical significance. Giant chorioangiomas may be associated with serious fetal and maternal complications. So far, no established ultrasound guidelines are available for the management of placental non-trophoblastic tumors. This may be attributed to the rarity of the disease entity and its different clinical features and complications. In this article, the role of ultrasound findings such as the tumor’s size, vascularity, feeding vessels, amniotic fluid and location of the placenta in the diagnosis, treatment and follow up of these tumors is presented relying on up-todate literature review. Conservative management with serial ultrasound examinations can be an adequate method for monitoring small uncomplicated tumors. Ultrasound-guided procedures such as amnioreduction and cordocentesis can be used for amelioration of complications. Chorioangioma-specific treatment is reserved for complicated cases in the second trimester of pregnancy when prematurity is a matter of concern. Endoscopic laser ablation is indicated when the feeding vessel is superficial and small. Interstitial laser ablation is helpful when the placenta is located in the anterior uterine wall. Ligation of the feeding vessels is preferred when they are large. Alcohol injection should be performed away from the vasculature to prevent toxicity. Microcoils should be inserted as near as possible to the tumor to prevent collateral formation. Ultrasound is also a method of choice for monitoring the effectiveness of these procedures.

  1. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation o...

  2. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    Science.gov (United States)

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  3. Keeping a Step Ahead: formative phase of a workplace intervention trial to prevent obesity.

    Science.gov (United States)

    Zapka, Jane; Lemon, Stephenie C; Estabrook, Barbara B; Jolicoeur, Denise G

    2007-11-01

    Ecological interventions hold promise for promoting overweight and obesity prevention in worksites. Given the paucity of evaluative research in the hospital worksite setting, considerable formative work is required for successful implementation and evaluation. This paper describes the formative phases of Step Ahead, a site-randomized controlled trial of a multilevel intervention that promotes physical activity and healthy eating in six hospitals in central Massachusetts. The purpose of the formative research phase was to increase the feasibility, effectiveness, and likelihood of sustainability of the intervention. The Step Ahead ecological intervention approach targets change at the organization, interpersonal work environment, and individual levels. The intervention was developed using fundamental steps of intervention mapping and important tenets of participatory research. Formative research methods were used to engage leadership support and assistance and to develop an intervention plan that is both theoretically and practically grounded. This report uses observational data, program minutes and reports, and process tracking data. Leadership involvement (key informant interviews and advisory boards), employee focus groups and advisory boards, and quantitative environmental assessments cultivated participation and support. Determining multiple foci of change and designing measurable objectives and generic assessment tools to document progress are complex challenges encountered in planning phases. Multilevel trials in diverse organizations require flexibility and balance of theory application and practice-based perspectives to affect impact and outcome objectives. Formative research is an essential component.

  4. PSA-NCAM-Negative Neural Crest Cells Emerging during Neural Induction of Pluripotent Stem Cells Cause Mesodermal Tumors and Unwanted Grafts

    Science.gov (United States)

    Lee, Dongjin R.; Yoo, Jeong-Eun; Lee, Jae Souk; Park, Sanghyun; Lee, Junwon; Park, Chul-Yong; Ji, Eunhyun; Kim, Han-Soo; Hwang, Dong-Youn; Kim, Dae-Sung; Kim, Dong-Wook

    2015-01-01

    Summary Tumorigenic potential of human pluripotent stem cells (hPSCs) is an important issue in clinical applications. Despite many efforts, PSC-derived neural precursor cells (NPCs) have repeatedly induced tumors in animal models even though pluripotent cells were not detected. We found that polysialic acid-neural cell adhesion molecule (PSA-NCAM)− cells among the early NPCs caused tumors, whereas PSA-NCAM+ cells were nontumorigenic. Molecular profiling, global gene analysis, and multilineage differentiation of PSA-NCAM− cells confirm that they are multipotent neural crest stem cells (NCSCs) that could differentiate into both ectodermal and mesodermal lineages. Transplantation of PSA-NCAM− cells in a gradient manner mixed with PSA-NCAM+ cells proportionally increased mesodermal tumor formation and unwanted grafts such as PERIPHERIN+ cells or pigmented cells in the rat brain. Therefore, we suggest that NCSCs are a critical target for tumor prevention in hPSC-derived NPCs, and removal of PSA-NCAM− cells eliminates the tumorigenic potential originating from NCSCs after transplantation. PMID:25937368

  5. Tumor lysis syndrome in children

    International Nuclear Information System (INIS)

    Suarez, Amaranto

    2004-01-01

    Tumor lysis syndrome is a metabolic emergency characterized by electrolyte alteration with or without acute renal failure. It occurs mainly in patients with malignant tumors that have a high growth fraction, or after cytotoxic therapy, as a result of the massive degradation of malignant cells and the release of high amounts of intracellular elements that exceed the capacity of renal excretion. The objective of the treatment is the prevention of nephropathy due to uric acid deposits, and the correction of metabolic acidosis and electrolyte alterations. This paper reviews the incidence, the physiopathology, and the treatment of tumor lysis syndrome in children

  6. Steps in the design, development and formative evaluation of obesity prevention-related behavior change trials

    OpenAIRE

    Baranowski Janice; Cerin Ester; Baranowski Tom

    2009-01-01

    Abstract Obesity prevention interventions through dietary and physical activity change have generally not been effective. Limitations on possible program effectiveness are herein identified at every step in the mediating variable model, a generic conceptual framework for understanding how interventions may promote behavior change. To minimize these problems, and thereby enhance likely intervention effectiveness, four sequential types of formative studies are proposed: targeted behavior valida...

  7. Uncertainces in tumor target definition using PET

    International Nuclear Information System (INIS)

    Kirov, A.

    2013-01-01

    Full text: Introduction: PET entered into the clinics for radiation therapy as a means of displaying the metabolically active part of the tumor. However this advantage, PET has a number of shortcomings that prevent its use for precise determination of the tumor boundaries. What you will learn: The aim of the lecture is to present: the requirements for the accuracy of the determination of tumor boundaries in radiation therapy; the main phenomena which bring uncertainty using PET and a brief overview of methods for segmentation of tumors and their problems

  8. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy.

    Science.gov (United States)

    Rasnick, David

    2002-07-01

    The autocatalyzed progression of aneuploidy accounts for all cancer-specific phenotypes, the Hayflick limit of cultured cells, carcinogen-induced tumors in mice, the age distribution of human cancer, and multidrug-resistance. Here aneuploidy theory addresses tumor formation. The logistic equation, phi(n)(+1) = rphi(n) (1 - phi(n)), models the autocatalyzed progression of aneuploidy in vivo and in vitro. The variable phi(n)(+1) is the average aneuploid fraction of a population of cells at the n+1 cell division and is determined by the value at the nth cell division. The value r is the growth control parameter. The logistic equation was used to compute the probability distribution for values of phi after numerous divisions of aneuploid cells. The autocatalyzed progression of aneuploidy follows the laws of deterministic chaos, which means that certain values of phi are more probable than others. The probability map of the logistic equation shows that: 1) an aneuploid fraction of at least 0.30 is necessary to sustain a population of cancer cells; and 2) the most likely aneuploid fraction after many population doublings is 0.70, which is equivalent to a DNA(index)=1.7, the point of maximum disorder of the genome that still sustains life. Aneuploidy theory also explains the lack of immune surveillance and the failure of chemotherapy.

  9. MUC1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo.

    Science.gov (United States)

    Mukherjee, P; Ginardi, A R; Tinder, T L; Sterner, C J; Gendler, S J

    2001-03-01

    We have reported previously that MUC1 transgenic mice with spontaneous tumors of the pancreas (designated MET) naturally develop MHC class I-restricted, MUC1-specific CTLs as tumors progress (P. Mukherjee et al., J. Immunol., 165: 3451-3460, 2000). From these MET mice, we have isolated, expanded, and cloned naturally occurring MUC1-specific CTLs in vitro. In this report, we show that the CTL line is predominantly CD8+ T cells and expresses T-cell receptor Vbeta chains 5.1/5.2, 11, 13, and 2 and Valpha chains 2, 8.3, 3.2, and 11.1/11.2. These CTLs recognize several epitopes on the MUC1 tandem repeat with highest affinity to APGSTAPPA. The CTL clone, on the other hand, is 100% CD8+ cells and expresses a single Vbeta chain of 5.1/5.2 and Valpha2. It recognizes only the H-2Db class I-restricted epitope of MUC1, APGSTAPPA. When adoptively transferred, the CTLs were effective in eradicating MUC1-expressing injected tumor cells including mammary gland cells (C57mg) and B16 melanomas. These results suggest that MUC1-specific CTLs are capable of possibly preventing, or at least substantially delaying, MUC1-expressing tumor formation. To our knowledge, this is the first evidence that demonstrates that the naturally occurring MUC1-specific CTLs isolated from one tumor model has antitumor effects on other MUC1-expressing tumors in vivo. Therefore, our data confirm that MUC1 is an important tumor rejection antigen and can serve as a target for immunotherapy.

  10. Role of chemical carcinogens in epithelial and mesenchymal neoplasms with tumor initiation-promotion protocol and the effect of 13-cis retinoic acid in chemo prevention

    International Nuclear Information System (INIS)

    Bukhari, S.M.H.; Shahzad, S.Q.; Naeem, S.; Qureshi, G.R.; Naveed, I.A.

    2002-01-01

    Objective: To study the effects of chemical carcinogens on epithelial and mesenchymal tumorigenesis with tumor initiation-promotion protocol and the use of 13-cis retinoic acid as a chemo preventive agent. Design: It was an experimental study. Place and Duration of Study: The study was conducted at Postgraduate Medical Institute (PGML) Lahore for 20 weeks. Materials and Methods: Sixty albino rats were divided into six groups of ten of animals each. First group of animals (control) was not given carcinogens and 13-cis retinoic acid in second group DMBA was applied on the dorsal skin in repeated dos of 100 mu g/ml in acetone, twice a weak. In the third group DMBA was given 100 mu g/ml as single dose while TPA was given 10 mu g//ml in acetone, twice a weak after two weeks of DMBA applications. In fourth group only DMBA 100 mu g/ml in acetone was applied as a single dose. In fifth and sixth groups 13-cis retinoic acid was given topically before and after the application of DMBA and TPA. Results: First and fourth groups did not develop any tumor. In second groups 2 animals developed malignant fibrous histiocytoma, 4 squamous cell carcinoma while 1 dysphasia and 1 carcinoma in situ. Third group developed osteoma (3 animals), papilloma (3 animals, squamous cell carcinoma (01) and dysplasia (01). Conclusion: Our results showed that DMBA acts as tumor initiator while TPA as promoter. DMBA also produces tumors itself when given alone in repeated doses. The chemical carcinogens are not only a cause of epithelial carcinogenesis but also responsible for mesenchymal tumorigenesis. 13 cis retinoic acid was equally effective in both stages of tumorigenesis. It also prevents malignant conversion of chemically induced benign tumors. (author)

  11. Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption

    Science.gov (United States)

    2009-12-01

    diabetic retinopathy . Therefore, se- lectively targeting existing blood vessels (vascular- disrupting therapy) and/or inhibiting the forma- tion of new...adhesion led to the formation of thrombi that can occlude blood vessels, causing vascular shutdown. However, viable tumor cells were often detected at...tumor sections (Fig. 4). However, viable tumor cells were commonly detected at tumor periphery. Because of the existence of viable peripheral tumor cells

  12. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells12

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation ...

  13. Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium

    Directory of Open Access Journals (Sweden)

    Serena Bianco

    2017-08-01

    Full Text Available Background: endothelial cells play a key role in vessels formation both under physiological and pathological conditions. Their behavior is influenced by blood components including gasotransmitters (H2S, NO and CO. Tumor cells are subjected to a cyclic shift between pro-oxidative and hypoxic state and, in this scenario, H2S can be both cytoprotective and detrimental depending on its concentration. H2S effects on tumors onset and development is scarcely studied, particularly concerning tumor angiogenesis. We previously demonstrated that H2S is proangiogenic for tumoral but not for normal endothelium and this may represent a target for antiangiogenic therapeutical strategies. Methods: in this work, we investigate cell viability, migration and tubulogenesis on human EC derived from two different tumors, breast and renal carcinoma (BTEC and RTEC, compared to normal microvascular endothelium (HMEC under oxidative stress, hypoxia and treatment with exogenous H2S. Results: all EC types are similarly sensitive to oxidative stress induced by hydrogen peroxide; chemical hypoxia differentially affects endothelial viability, that results unaltered by real hypoxia. H2S neither affects cell viability nor prevents hypoxia and H2O2-induced damage. Endothelial migration is enhanced by hypoxia, while tubulogenesis is inhibited for all EC types. H2S acts differentially on EC migration and tubulogenesis. Conclusions: these data provide evidence for a great variability of normal and altered endothelium in response to the environmental conditions. Keywords: Hydrogen sulfide, Human microvascular endothelial cells, Human breast carcinoma-derived EC, Human renal carcinoma-derived EC, Tumor angiogenesis

  14. Viral infection of implanted meningeal tumors induces antitumor memory T-cells to travel to the brain and eliminate established tumors.

    Science.gov (United States)

    Gao, Yanhua; Whitaker-Dowling, Patricia; Barmada, Mamdouha A; Basse, Per H; Bergman, Ira

    2015-04-01

    Leptomeningeal metastases occur in 2%-5% of patients with breast cancer and have an exceptionally poor prognosis. The blood-brain and blood-meningeal barriers severely inhibit successful chemotherapy. We have developed a straightforward method to induce antitumor memory T-cells using a Her2/neu targeted vesicular stomatitis virus. We sought to determine whether viral infection of meningeal tumor could attract antitumor memory T-cells to eradicate the tumors. Meningeal implants in mice were studied using treatment trials and analyses of immune cells in the tumors. This paper demonstrates that there is a blood-meningeal barrier to bringing therapeutic memory T-cells to meningeal tumors. The barrier can be overcome by viral infection of the tumor. Viral infection of the meningeal tumors followed by memory T-cell transfer resulted in 89% cure of meningeal tumor in 2 different mouse strains. Viral infection produced increased infiltration and proliferation of transferred memory T-cells in the meningeal tumors. Following viral infection, the leukocyte infiltration in meninges and tumor shifted from predominantly macrophages to predominantly T-cells. Finally, this paper shows that successful viral therapy of peritoneal tumors generates memory CD8 T-cells that prevent establishment of tumor in the meninges of these same animals. These results support the hypothesis that a virally based immunization strategy can be used to both prevent and treat meningeal metastases. The meningeal barriers to cancer therapy may be much more permeable to treatment based on cells than treatment based on drugs or molecules. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Importance of hyaluronan biosynthesis and degradation in cell differentiation and tumor formation

    Directory of Open Access Journals (Sweden)

    Heldin P.

    2003-01-01

    Full Text Available Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

  16. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens.

    Science.gov (United States)

    Zhang, Xinheng; Yan, Yiming; Lei, Xiaoya; Li, Aijun; Zhang, Huanmin; Dai, Zhenkai; Li, Xinjian; Chen, Weiguo; Lin, Wencheng; Chen, Feng; Ma, Jingyun; Xie, Qingmei

    2017-05-23

    Avian leukosis virus subgroup (ALV-J) is an oncogenic neoplasm-inducing retrovirus that causes significant economic losses in the poultry industry. Recent studies have demonstrated circular RNAs (circRNAs) are implicated in pathogenic processes; however, no research has indicated circRNAs are involved in resistance to disease. In this study, over 1800 circRNAs were detected by circRNA sequencing of liver tissues from ALV-J-resistant (n = 3) and ALV-J-susceptible chickens (n = 3). 32 differentially expressed circRNAs were selected for analyzing including 12 upregulated in ALV-J-resistant chickens and 20 upregulated in ALV-J-susceptible chickens, besides, the top five microRNAs (miRNAs) for 12 upregulated circRNAs in ALV-J-resistant chickens were analyzed. Gene ontology and KEGG pathway analyses were performed for miRNA target genes, the predicted genes were mainly involved in immune pathways. This study provides the first evidence that circRNA alterations are involved in resistance to ALV-J-induced tumor formation. We propose circRNAs may help to mediate tumor induction and development in chickens.

  17. Breast cancer prevention with Morinda citrifolia (noni at the initiation stage

    Directory of Open Access Journals (Sweden)

    Mian-Ying Wang

    2013-06-01

    Full Text Available ABSTRACTBackground: It has been reported that noni has multiple health benefits for over 2000 years. In this study, the cancer preventive effects of Tahitian noni® juice (TNJ at the initiation stage on DMBA-induced mammary tumorigenesis in female SD rats was investigated.Objective: We took advantage of the DMBA-induced mammary carcinogenic model to study the preventive effects of TNJ at the initiation stage of mammary carcinogenesis in female SD rats by using clinical observation, pathological examination, and 32P-postlabeling assay.Methods: One hundred and sixty female SD rats were divided into eight groups with 20 rats in each group. Three doses of TNJ or placebo was given to the animals at the age of 35 days until the end of the experiment. When the animals were 55 days old, 25 mg/kg DMBA was fed to the animals in the DMBA group, placebo, and TNJ groups. The 20 rats were kept at age-matched controls. Palpable tumors were examined twice a week after DMBA administration in each group by an experienced professional. The size of tumor was measured by a graduated caliper. A piece of tumor, vascularization area, and mammary glands in the thoracic and abdomen areas of each rat were dissected respectively and fixed in 10% neutral buffered formalin for light microscope examination. The DMBA-DNA adduct formation in mammary tissues was detected by 32P-postlabeling assay.Results: The tumor latency in TNJ groups was delayed about 60-90 days when compared with positive controls. The number of palpable tumors per group was significantly reduced by 73%, 72% and 80% in 3%, 5%, and 10% TNJ groups respectively when compared with positive controls at the end of 330 days after DMBA administration. The number of palpable tumors in the placebo groups was slightly reduced in the early stage, but much less than that in the TNJ groups. The multiplicity and malignancy of lesions were significantly reduced and the survival rate of animals in the TNJ groups was

  18. Anti-tumor effects of an engineered 'killer' transfer RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-hui [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Lee, Jiyoung; Frankenberger, Casey [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Geslain, Renaud, E-mail: rgeslain@depaul.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Department of Biology, DePaul University, Chicago, IL 60614 (United States); Rosner, Marsha, E-mail: m-rosner@uchicago.edu [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Pan, Tao, E-mail: taopan@uchicago.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  19. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects.

    Science.gov (United States)

    Sudiwala, Sonia; De Castro, Sandra C P; Leung, Kit-Yi; Brosnan, John T; Brosnan, Margaret E; Mills, Kevin; Copp, Andrew J; Greene, Nicholas D E

    2016-07-01

    The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule.

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sugahara

    Full Text Available The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl-3H-imidazole-4-carbaldehyde was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS, which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7 which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.

  1. Requirement of RIZ1 for cancer prevention by methyl-balanced diet.

    Science.gov (United States)

    Zhou, Wenyun; Alonso, Sergio; Takai, Daisaku; Lu, Shelly C; Yamamoto, Fumiichiro; Perucho, Manuel; Huang, Shi

    2008-01-01

    The typical Western diet is not balanced in methyl nutrients that regulate the level of the methyl donor S-adenosylmethionine (SAM) and its derivative metabolite S-adenosylhomocysteine (SAH), which in turn may control the activity of certain methyltransferases. Feeding rodents with amino acid defined and methyl-imbalanced diet decreases hepatic SAM and causes liver cancers. RIZ1 (PRDM2 or KMT8) is a tumor suppressor and functions in transcriptional repression by methylating histone H3 lysine 9. Here we show that a methyl-balanced diet conferred additional survival benefits compared to a tumor-inducing methyl-imbalanced diet only in mice with wild type RIZ1 but not in mice deficient in RIZ1. While absence of RIZ1 was tumorigenic in mice fed the balanced diet, its presence did not prevent tumor formation in mice fed the imbalanced diet. Microarray and gene expression analysis showed that, unlike most of its related enzymes, RIZ1 was upregulated by methyl-balanced diet. Methyl-balanced diet did not fully repress oncogenes such as c-Jun in the absence of RIZ1. Higher RIZ1 activity was associated with greater H3 lysine 9 methylation in RIZ1 target genes as shown by chromatin immunoprecipitation analysis. The data identify RIZ1 as a critical target of methyl-balanced diet in cancer prevention. The molecular understanding of dietary carcinogenesis may help people make informed choices on diet, which may greatly reduce the incidence of cancer.

  2. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    Science.gov (United States)

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  3. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  4. Recent advances of bispecific antibodies in solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-09-01

    Full Text Available Abstract Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T, bispecific antibody (BsAb is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides and targets (e.g., tumor cells but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM, human epidermal growth factor receptor (HER family, carcinoembryonic antigen (CEA, and prostate-specific membrane antigen (PSMA related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.

  5. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition.An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay.Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl indoline (BSI, Compound #38 significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities.This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and

  6. Mast cells mediate malignant pleural effusion formation.

    Science.gov (United States)

    Giannou, Anastasios D; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M; Vreka, Malamati; Zazara, Dimitra E; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A; Patmanidi, Alexandra L; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S; Agalioti, Theodora; Stathopoulos, Georgios T

    2015-06-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.

  7. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  8. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  9. Effects of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Lu Yanda

    2001-01-01

    Objective: To study the effect of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in the tumor-bearing mice. Methods: Kunming strain male mice were implanted with S 180 sarcoma cells in the right inguen subcutaneously as an experimental in situ animal model. Six hours before implantation the mice were given 75 mG whole-body X-ray irradiation and tumor-formation rate was counted 5 days late. From then, every two days the tumor volume was measured to draw a tumor growth curve. Fifteen days later, all mice were killed to measure the tumor weight, observe the necrosis area and the tumor-infiltration lymphoreticular cells (TIL) in the tumor pathologically. At the same time, erythrocyte immune function and activity of SOD were tested. Results: (1) The mice pre-exposed to low dose radiation had a lower tumor formation rate than those without a pre-exposed (P < 0.05). (2) The tumor growth slowed down significantly in mice receiving a low does irradiation; The average tumor weight in mice receiving a low dose irradiation was lighter too (P < 0.05). (3) The tumor necrosis areas were larger and TILs were more in the irradiation group than those of the control group. (4) The erythrocyte immune function and activity of SOD in the irradiation group were all higher significantly than those of the control group ( P < 0.05). Conclusion: Low dose radiation could markedly increase anti-tumor ability of the organism and improve the erythrocyte immune function and activity of SOD in red cells, suggesting it could be useful in clinical cancer treatment

  10. Tumor-Protective Mechanism Identified from Premature Aging Disease | Center for Cancer Research

    Science.gov (United States)

    Hutchinson-Gilford Progeria Syndrome (HGPS) is an extraordinarily rare genetic disorder caused by a mutation in the LMNA gene, which encodes architectural proteins of the human cell nucleus. The mutation causes the production of a mutant protein called progerin. Patients with HGPS display signs of premature aging, such as hair loss, slowed growth, weakening of bone and joint integrity, and cardiovascular disease. Most die in their mid-teens of heart disease or stroke. Intriguingly, these patients do not develop another aging-related disease, cancer, despite having dramatically elevated levels of DNA damage. Tom Misteli, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues hypothesized that, rather than patients not living long enough to develop cancer, a resistance mechanism was operating in HGPS cells to prevent cancer formation. To begin testing this idea, the researchers transformed fibroblasts from HGPS patients or age-matched, healthy controls with telomerase, constitutively-activated HRAS, and SV40 large and small T antigens. Transformed HGPS cells displayed morphological changes and increased proliferation similar to transformed controls but formed fewer colonies in soft agar and fewer tumors when injected into mice. When the investigators examined global gene expression in the two populations of cells, they found that transformed HGPS cells failed to activate many of the genes that are induced in response to transformation in controls, including oncogenic and proliferation pathways. In addition the transformed HGPS cells were unable to undergo oncogenic de-differentiation. Importantly, the tumor resistance in HGPS cells was due to the presence of the progerin protein, which was both necessary and sufficient to protect cells from oncogenic transformation. Together these results suggested that HGPS cells resist cancer-inducing stimuli by not undergoing the genetic reprogramming necessary for tumor initiation. The scientists

  11. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    Science.gov (United States)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  12. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  13. Targeting sarcoma tumor-initiating cells through differentiation therapy

    Directory of Open Access Journals (Sweden)

    Dan Han

    2017-05-01

    Full Text Available Human leukocyte antigen class I (HLA-I down-regulation has been reported in many human cancers to be associated with poor clinical outcome. However, its connection to tumor-initiating cells (TICs remains unknown. In this study, we report that HLA-I is down-regulated in a subpopulation of cells that have high tumor initiating capacity in different types of human sarcomas. Detailed characterization revealed their distinct molecular profiles regarding proliferation, apoptosis and stemness programs. Notably, these TICs can be induced to differentiate along distinct mesenchymal lineages, including the osteogenic pathway. The retinoic acid receptor signaling pathway is overexpressed in HLA-1 negative TICs. All-trans retinoic acid treatment successfully induced osteogenic differentiation of this subpopulation, in vitro and in vivo, resulting in significantly decreased tumor formation. Thus, our findings indicate down-regulated HLA-I is a shared feature of TICs in a variety of human sarcomas, and differentiation therapy strategies may specifically target undifferentiated TICs and inhibit tumor formation.

  14. A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation

    International Nuclear Information System (INIS)

    Kaufmann, T.J.; Kallmes, D.F.; Marx, W.F.

    2006-01-01

    We tested the hypothesis that nonspecific matrix metalloproteinase (MMP) inhibition with doxycycline would decrease the incidence of intracranial aneurysm formation in a rat aneurysm model. We performed common carotid artery ligation on 96 Long-Evans rats. A treatment group of 48 animals was chosen at random to receive oral doxycycline (3 mg/kg) in addition to standard rat chow, and the control group of 48 animals received standard rat chow only. The major circle of Willis arteries was dissected at 1 year following carotid ligation, and the proportions of animals with aneurysms were compared between groups using Fisher's exact test. Four animals given oral doxycycline and ten control animals expired before 1 year. Of the examined animals, eight saccular intracranial aneurysms were found in 8 of 45 animals which had received doxycycline (17.8%) and seven saccular intracranial aneurysms were found in 7 of 37 control animals (18.9%). There was no significant difference in aneurysm formation between the doxycycline-treated and control groups (P=0.894). Nonspecific MMP inhibition with doxycycline is not effective in preventing intracranial aneurysm formation in a rat model. (orig.)

  15. Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma

    Science.gov (United States)

    Oberyszyn, Tatiana M.

    2013-01-01

    Ultraviolet B (UVB) light is the major environmental carcinogen contributing to non-melanoma skin cancer (NMSC) development. There are over 3.5 million NMSC diagnoses in two million patients annually, with men having a 3-fold greater incidence of squamous cell carcinoma (SCC) compared with women. Chronic inflammation has been linked to tumorigenesis, with a key role for the cyclooxygenase-2 (COX-2) enzyme. Diclofenac, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, currently is prescribed to patients as a short-term therapeutic agent to induce SCC precursor lesion regression. However, its efficacy as a preventative agent in patients without evidence of precursor lesions but with significant UVB-induced cutaneous damage has not been explored. We previously demonstrated in a murine model of UVB-induced skin carcinogenesis that when exposed to equivalent UVB doses, male mice had lower levels of inflammation but developed increased tumor multiplicity, burden and grade compared with female mice. Because of the discrepancy in the degree of inflammation between male and female skin, we sought to determine if topical treatment of previously damaged skin with an anti-inflammatory COX-2 inhibitor would decrease tumor burden and if it would be equally effective in the sexes. Our results demonstrated that despite observed sex differences in the inflammatory response, prolonged topical diclofenac treatment of chronically UVB-damaged skin effectively reduced tumor multiplicity in both sexes. Unexpectedly, tumor burden was significantly decreased only in male mice. Our data suggest a new therapeutic use for currently available topical diclofenac as a preventative intervention for patients predisposed to cutaneous SCC development before lesions appear. PMID:23125227

  16. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Modern principles of prevention of anophthalmic syndrome: formation of the locomotor stump, the types of orbital implants

    Directory of Open Access Journals (Sweden)

    I. V. Zapuskalov

    2017-01-01

    Full Text Available This article analyzes the current state of the problem of the correction of anophthalmic syndrome. Evaluated various methods of formation of the locomotor stump after removal of the eyeball, gave a detailed description of different types of materials for the fabrication of orbital implant, as well as reflect the basic principles of prevention of complications.

  18. Imaging Reporters for Proteasome Activity Identify Tumor- and Metastasis-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Amanda C. Stacer

    2015-08-01

    Full Text Available Tumor-initiating cells, also designated as cancer stem cells, are proposed to constitute a subpopulation of malignant cells central to tumorigenesis, metastasis, and treatment resistance. We analyzed the activity of the proteasome, the primary organelle for targeted protein degradation, as a marker of tumor- and metastasis-initiating cells. Using human and mouse breast cancer cells expressing a validated fluorescent reporter, we found a small subpopulation of cells with low proteasome activity that divided asymmetrically to produce daughter cells with low or high proteasome activity. Breast cancer cells with low proteasome activity had greater local tumor formation and metastasis in immunocompromised and immunocompetent mice. To allow flexible labeling of cells, we also developed a new proteasome substrate based on HaloTag technology. Patient-derived glioblastoma cells with low proteasome activity measured by the HaloTag reporter show key phenotypes associated with tumor-initiating cells, including expression of a stem cell transcription factor, reconstitution of the original starting population, and enhanced neurosphere formation. We also show that patient-derived glioblastoma cells with low proteasome activity have higher frequency of tumor formation in mouse xenografts. These studies support proteasome function as a tool to investigate tumor- and metastasis-initiating cancer cells and a potential biomarker for outcomes in patients with several different cancers.

  19. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.

    Science.gov (United States)

    Ma, Hongshi; Luo, Jian; Sun, Zhe; Xia, Lunguo; Shi, Mengchao; Liu, Mingyao; Chang, Jiang; Wu, Chengtie

    2016-12-01

    Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface. Taking advantage of biocompatibility, biodegradability and the excellent photothermal effect of polydopamine, the bifunctional scaffolds with mussel-inspired nanostructures could be used as a satisfactory and controllable photothermal agent, which effectively induced tumor cell death in vitro, and significantly inhibited tumor growth in mice. In addition, owing to the nanostructured surface, the prepared polydopamine-modified bioceramic scaffolds could support the attachment and proliferation of rabbit bone mesenchymal stem cells (rBMSCs), and significantly promoted the formation of new bone tissues in rabbit bone defects even under photothermal treatment. Therefore, the mussel-inspired nanostructures in 3D-printed bioceramic exhibited a remarkable capability for both cancer therapy and bone regeneration, offering a promising strategy to construct bifunctional biomaterials which could be widely used for therapy of tumor-induced tissue defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Malignant tumors of gastrointestinal tract

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    International histological classification and classification according to TNM systems, domestic clinical classification according to stages of carcinoma of stomach, large intestine and rectum are presented. Diagnosis of tumoral processes of the given localizations should be based on complex application of diagnostic methods: clinical, ultrasonic, radiological and others. Surgical method and variants of surgical method with preoperative radiotherapy play a leading role in treatment of mentioned tumors. Combined method of treatment-surgical intervention with postoperation intravenous injection of colloid 198 Au - is applied for preventing propagation of stomach cancer metastases. Advisability of combining operations with radiological and antitumoral medicamentous therapy is shown. Reliable results of treatment of malignant tumors of gastrointestinal tract are presented

  1. Understanding Collagen Organization in Breast Tumors to Predict and Prevent Metastasis

    Science.gov (United States)

    2015-11-01

    mouse mammary tumor virus polyoma middle T (MMTV-PyMT) mice crossed with MMP13 KO mice, noted proportionately more “thin collagen fibers” (rela- tive to...mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev. Res. 2, 850–861. Wohleb, E.S., Hanke, M.L., Corona , A.W...1:100 dilution of mouse anti-Collagen II (II-II6B3; Developmental Studies Hybridoma Bank, Iowa City, IA) or a mouse monoclonal anti-Collagen I ( Cat

  2. A new experimental method to prevent paraffin - wax formation on the crude oil wells: A field case study in Libya

    Directory of Open Access Journals (Sweden)

    Elhaddad Elnori E.

    2015-01-01

    Full Text Available Wax formation and deposition is one of the most common problems in oil producing wells. This problem occurs as a result of the reduction of the produced fluid temperature below the wax appearance temperature (range between 46°C and 50°C and the pour point temperature (range between 42°C and 44°C. In this study, two new methods for preventing wax formation were implemented on three oil wells in Libya, where the surface temperature is, normally, 29°C. In the first method, the gas was injected at a pressure of 83.3 bar and a temperature of 65°C (greater than the pour point temperature during the gas-lift operation. In the second method, wax inhibitors (Trichloroethylene-xylene (TEX, Ethylene copolymers, and Comb polymers were injected down the casings together with the gas. Field observations confirmed that by applying these techniques, the production string was kept clean and no wax was formed. The obtained results show that the wax formation could be prevented by both methods.

  3. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    Science.gov (United States)

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  4. Neuroendocrine tumors and smoking

    Directory of Open Access Journals (Sweden)

    Tanja Miličević

    2016-12-01

    Full Text Available Neuroendocrine cells are dispersed around the body and can be found within the gastrointestinal system, lungs, larynx, thymus, thyroid, adrenal, gonads, skin and other tissues. These cells form the so-called ''diffuse neuroendocrine system'' and tumors arising from them are defined as neuroendocrine tumors (NETs. The traditional classification of NETs based on their embryonic origin includes foregut tumors (lung, thymus, stomach, pancreas and duodenum, midgut tumors (beyond the ligament of Treitz of the duodenum to the proximal transverse colon and hindgut tumors (distal colon and rectum. NETs at each site are biologically and clinically distinct from their counterparts at other sites. Symptoms in patients with early disease are often insidious in onset, leading to a delay in diagnosis. The majority of these tumors are thus diagnosed at a stage at which the only curative treatment, radical surgical intervention, is no longer an option. Due to the increasing incidence and mortality, many studies have been conducted in order to identify risk factors for the development of NETs. Still, little is known especially when it comes to preventable risk factors such as smoking. This review will focus on smoking and its contribution to the development of different subtypes of NETs.

  5. Premature chromosome condensation and cell separation studies in biopsies from head and neck tumors for radiosensitivity prediction

    International Nuclear Information System (INIS)

    Begg, Adrian C.; Sprong, Debbie; Balm, Alfons; Coco Martin, Jose M.

    2002-01-01

    Background and purpose: Intrinsic radiosensitivity of tumor cells from biopsies, assayed by colony formation after in vitro irradiation, has shown significant correlations with outcome after radiotherapy. Alternatives to the colony assay have been sought due to its long and cumbersome nature. We have previously shown good correlations between colony formation and radiation-induced chromosome aberrations in human tumor cell lines. In addition, we and others have shown on cell lines that premature chromosome condensation (PCC) induced with phosphatase inhibitors can be used to aid rapid assessment of aberrations in interphase cells, reducing the selection problem with metaphases. The purpose of this study was to translate the in vitro results to human cancer, with the aim of developing a rapid assay for intrinsic radiosensitivity. Methods and results: The problem of admixtures of normal and malignant cells in biopsies was addressed using magnetic bead separation (MACS) employing antibodies to human fibroblasts. This proved to be a reliable and efficient method, enriching mean tumor cell fractions from 20 to almost 80%. PCC could be induced in human normal and tumor cell lines, and in sorted or unsorted suspensions from biopsies, with the phosphatase inhibitor calyculin A. Maximum PCCs were achieved after 1-week culture of biopsy-derived cells. Mean fractions of aneuploid tumor cell PCCs were, however, less than 1%. PCCs were predominantly from S and G2 phase, of which only G2 were scorable for aberrations. Almost no G1 PCCs were found. More scorable PCCs were found after 1 h of calyculin A than metaphases after 5 h of colcemid, but these were calculated to be too few to yield reliable estimates of chromosome damage after radiation. Conlcusions: Tumor cells can be satisfactorily separated from fibroblasts in fresh suspensions from cancer biopsies, but poor growth of tumor cells in short term culture and low yields of PCCs combine to prevent the routine use of such

  6. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice.

    Directory of Open Access Journals (Sweden)

    Natasha T Hill

    Full Text Available ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR and phosphatase and tensin homologue deleted on chromosome ten (PTEN. Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.

  7. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Directory of Open Access Journals (Sweden)

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  8. Investigating Contingency Risk Factors of Brain Tumor in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    A Nazemi

    2014-12-01

    Conclusion: According to research results, several preventable and predictable factors are linked to pediatric brain tumors. Therefore, children prone to brain tumors are recommended to be examined and screened for these risk factors.

  9. Passive control of quorum sensing: prevention of Pseudomonas aeruginosa biofilm formation by imprinted polymers.

    Science.gov (United States)

    Piletska, Elena V; Stavroulakis, Georgios; Larcombe, Lee D; Whitcombe, Michael J; Sharma, Anant; Primrose, Sandy; Robinson, Gary K; Piletsky, Sergey A

    2011-04-11

    Here we present the first molecular imprinted polymer (MIP) that is able to attenuate the biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa through specific sequestration of its signal molecule N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-AHL). The MIP was rationally designed using computational modeling, and its capacity and specificity and that of a corresponding blank polymer toward signal molecule of P. aeruginosa (3-oxo-C(12)-AHL) and its analogue were tested. The biofilm formation in the presence of polymers and without polymers was studied using scanning confocal laser microscopy. Staining with crystal violet dye was used for the quantification of the biofilm formation. A significant reduction of the biofilm growth was observed in the presence of MIP (>80%), which was superior to that of the resin prepared without template, which showed a reduction of 40% in comparison with biofilm, which was grown without polymer addition. It was shown that 3-oxo-C(12)-AHL-specific MIP prevented the development of quorum-sensing-controlled phenotypes (in this case, biofilm formation) from being up-regulated. The developed MIP could be considered as a new tool for the elimination of life-threatening infections in a multitude of practical applications; it could, for example, be grafted on the surface of medical devices such as catheters and lenses, be a component of paints, or be used as a wound adsorbent.

  10. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  11. Requirement of RIZ1 for Cancer Prevention by Methyl-Balanced Diet

    Science.gov (United States)

    Zhou, Wenyun; Alonso, Sergio; Takai, Daisaku; Lu, Shelly C.; Yamamoto, Fumiichiro; Perucho, Manuel; Huang, Shi

    2008-01-01

    Background The typical Western diet is not balanced in methyl nutrients that regulate the level of the methyl donor S-adenosylmethionine (SAM) and its derivative metabolite S-adenosylhomocysteine (SAH), which in turn may control the activity of certain methyltransferases. Feeding rodents with amino acid defined and methyl-imbalanced diet decreases hepatic SAM and causes liver cancers. RIZ1 (PRDM2 or KMT8) is a tumor suppressor and functions in transcriptional repression by methylating histone H3 lysine 9. Methodology/Principal Findings Here we show that a methyl-balanced diet conferred additional survival benefits compared to a tumor-inducing methyl-imbalanced diet only in mice with wild type RIZ1 but not in mice deficient in RIZ1. While absence of RIZ1 was tumorigenic in mice fed the balanced diet, its presence did not prevent tumor formation in mice fed the imbalanced diet. Microarray and gene expression analysis showed that, unlike most of its related enzymes, RIZ1 was upregulated by methyl-balanced diet. Methyl-balanced diet did not fully repress oncogenes such as c-Jun in the absence of RIZ1. Higher RIZ1 activity was associated with greater H3 lysine 9 methylation in RIZ1 target genes as shown by chromatin immunoprecipiation analysis. Conclusions/Significance The data identify RIZ1 as a critical target of methyl-balanced diet in cancer prevention. The molecular understanding of dietary carcinogenesis may help people make informed choices on diet, which may greatly reduce the incidence of cancer. PMID:18852888

  12. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Saptak Banerjee

    Full Text Available We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  13. Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo

    Science.gov (United States)

    Thomas, Grace M.; Panicot-Dubois, Laurence; Lacroix, Romaric; Dignat-George, Françoise; Lombardo, Dominique

    2009-01-01

    Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients. PMID:19667060

  14. Biochemomechanical poroelastic theory of avascular tumor growth

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  15. Local and systemic tumor immune dynamics

    Science.gov (United States)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  16. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-01-01

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR −/− and SHP −/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR −/− mice and therefore, increased SHP expression in FXR −/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR −/− mice with overexpression of SHP in hepatocytes (FXR −/− /SHP Tg ) and determined the contribution of SHP in HCC development in FXR −/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR −/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR −/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  17. Role of ADAMs in cancer formation and progression.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    The ADAMs (a disintegrin and metalloproteinase) comprise a family of multidomain transmembrane and secreted proteins. One of their best-established roles is the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal growth factor, transforming growth factor-alpha, and amphiregulin. Because these ligands have been implicated in the formation and progression of tumors, it might be expected that the specific ADAMs involved in their release would also be involved in malignancy. Consistent with this hypothesis, emerging data from model systems suggest that ADAMs, such as ADAM-9, ADAM-12, ADAM-15, and ADAM-17, are causally involved in tumor formation\\/progression. In human cancer, specific ADAMs are up-regulated, with levels generally correlating with parameters of tumor progression and poor outcome. In preclinical models, selective ADAM inhibitors against ADAM-10 and ADAM-17 have been shown to synergize with existing therapies in decreasing tumor growth. The ADAMs are thus a new family of potential targets for the treatment of cancer, especially malignancies that are dependent on human epidermal growth factor receptor ligands or tumor necrosis factor-alpha.

  18. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  19. Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.

    1990-01-01

    In our previous studies carried out on inbred Sprague-Dawley rats, we reported a striking increase in the incidence of tumors following total-body gamma-irradiation [150 rads (1.5 Gy) five times at weekly intervals]. Subsequently, we observed that two or three irradiations, and to a lesser extent even a single irradiation, were sufficient to induce an impressive increase in the incidence of tumors, particularly in females. A significant reduction of the incidence of radiation-induced tumors resulted when the rats were placed on calorically restricted diet. In experiments reported here, we increased slightly the amount of food given to animals on restricted diet. In the new study, among 102 irradiated females on full diet, 91 (89%) developed tumors, as compared with 29 out of 128 female rats (23%) also irradiated but maintained on restricted diet and 43 out of 89 (48%) untreated control females. None of 77 nonirradiated females on restricted diet developed tumors. Among 65 irradiated male rats, 29 (45%) developed tumors, as compared with 5 out of 74 (7%) rats also irradiated but maintained on restricted diet. Of the 49 males in the nonirradiated groups, 2 (4%) developed tumors. There was a significant weight reduction in both females and males maintained on restricted diet; animals on restricted diet lived longer than those on full diet

  20. Desmoid tumor of bone with enchondromatous nodules, mistaken for chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Won-Jong [Musculoskeletal Oncology Study Group, Catholic University of Korea (Korea); Department of Orthopaedic Surgery, Uijongbu St. Mary' s Hospital, 65-1 Geumohdong, Uijongbu, Gyunggido, 480-130 (Korea); Kang, Yong-Koo; Lee, An-Hee [Musculoskeletal Oncology Study Group, Catholic University of Korea (Korea); Mirra, Joseph M. [Orthpaedic Oncology, Orthopaedic Hospital, Los Angeles, CA (United States)

    2003-04-01

    Desmoid tumor of bone, also termed desmoplastic fibroma or aggressive fibromatosis, is a rare, locally aggressive fibroblastic tumor. We present a 16-year-old male with a huge desmoid tumor involving the iliac wing. It was associated with enchondromatous nodules mimicking malignancy. The tumor in this patient was mistaken for chondrosarcoma and hemipelvectomy was performed. To our knowledge, such a case has not previously been documented fully in the English literature. The radiographic and pathologic findings and a possible mechanism of enchondromatous nodule formation in fibrous bone tumors are discussed. (orig.)

  1. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  2. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    International Nuclear Information System (INIS)

    Litviakov, N. V.; Tsyganov, M. M.; Cherdyntseva, N. V.; Tverdokhlebov, S. I.; Bolbasov, E. N.; Perelmuter, V. M.; Kulbakin, D. E.; Zheravin, A. A.; Svetlichnyi, V. A.

    2016-01-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  3. Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation.

    Science.gov (United States)

    Kotb, Ahmed M; Hierholzer, Andreas; Kemler, Rolf

    2011-10-26

    E-cadherin (E-cad; cadherin 1) and N-cadherin (N-cad; cadherin 2) are the most prominent members of the cadherin family of cell adhesion molecules. Although they share many structural and functional features, they are expressed in an almost mutually exclusive manner in vivo. To explore functional differences between the two cadherins in vivo, we recently generated a knock-in line in which N-cad is expressed from the E-cad locus. In combination with a conditional gene inactivation approach, we expressed N-cad in the absence of E-cad (referred to as Ncadk.i.) in alveolar epithelial cells of the mammary gland starting in late pregnancy. We found that the sole presence of N-cad induces constitutively active fibroblast growth factor (Fgf) signaling and a precocious involution resulting in massive apoptosis of alveolar cells. To block apoptosis, we conditionally deleted one allele of p53 in Ncadk.i. mice and observed a temporal rescue of alveolar morphology and function. However, an accumulation of fibrotic tissue and cysts with increasing age and lactation cycles was observed. This phenotype closely resembled fibrocystic mastopathy (FM), a common disorder in humans, which is thought to precede breast cancer. Concordantly, 55% of Ncadk.i. mice harboring a heterozygous p53 deletion developed malignant and invasive tumors. Our results demonstrate a possible role for N-cad in the formation of fibrosis and cysts in the mammary gland. Moreover, we show that these lesions precede the development of malignant tumors. Thus, we provide a new mouse model to investigate the molecular mechanisms of fibrocystic mastopathy and the transition from benign to malignant tumors.

  4. A Case of Malignant Peripheral Nerve Sheath Tumor with Rhabdomyoblastic Differentiation: Malignant Triton Tumor

    Directory of Open Access Journals (Sweden)

    Kenichiro Mae

    2013-12-01

    Full Text Available Malignant peripheral nerve sheath tumors (MPNST constitute a rare variety of soft tissue sarcomas thought to originate from Schwann cells or pluripotent cells of the neural crest. Malignant triton tumor (MTT, a very rare, highly aggressive soft tissue tumor, is a subgroup of MPNST and is comprised of malignant Schwann cells coexisting with malignant rhabdomyoblasts. We herein report the case of a 24-year-old man who presented a subcutaneous mass in his right thigh. The mass was removed surgically in its entirety and radiation therapy was applied locally to prevent tumor regrowth. Nonetheless, the patient died 10 months after surgery from metastases to the lung and brain. He presented neither cafe-au-lait spots nor cutaneous neurofibromas. The histopathology showed a transition from a neurofibroma to an MTT, making this the second report of an MTT arising from a neurofibroma without neurofibromatosis type 1, an autosomal dominant disorder with which 50-70% of tumors reported in previous studies were associated. A histopathological examination using immunostaining with desmin confirmed this diagnosis. MTT has a poorer prognosis than MPNST and should therefore be regarded as a distinct clinical entity.

  5. [Tumor-like bone lesions of the forearm after karate training].

    Science.gov (United States)

    Steckel, H; Oldenburg, M; Klinger, H M; Schultz, W

    2005-03-01

    Differentiation between malignant bone tumors and tumor-like lesions after repetitive microtrauma following sport activities can be difficult just using radiographic methods. We present the case of a fifteen year old karate fighter, who was examined by imaging diagnostics because of a progressive swelling and pain in the distal right forearm. A tumor-like appearance with bone mass formation in the x-ray, an enhancement in the surrounding tissue shown in the MRI and an increased activity in the bone scintigraphy made the diagnosis of an osteosarcoma very likely. Blood tests were not helpful. Only the evaluation of a bone biopsy could demonstrate hypertrophic reparative bone formation after multiple osseous microtrauma. Cast immobilisation reduced the osseous alteration. With the start of the training the swelling reappeared again but then finally vanished after modifying the training technique. The case demonstrates that even modern imaging techniques cannot always distinguish between tumor and tumor-like lesions caused by sports. It also stresses the importance of a correct technique in sports like karate.

  6. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    Science.gov (United States)

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Occurrence of mammary tumors in beagls given radium-226

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Lloyd, R.D.; Miller, S.C.; Taylor, G.N.; Angus, W.; Huth, D.A.

    1994-01-01

    A total of 128 primary mammary tumors (66 of them malignant) occurred in 35 female beagles injected with 226 Ra at eight dose levels ranging from 0.2 to 440 kBq/kg body mass as young adults, while a total of 156 mammary tumors (57 of them malignant) were seen in 46 female control beagles not given any radioactivity. Sixty-three of 65 control dogs and 59 of 61 dogs given 226 Ra survived the minimum age for diagnosis of mammary tumors of 3.75 years. Based on the observed age-dependent tumor incidence rates in the controls and on the corresponding number of dog-years at risk, the total number of observed malignant tumors in the radium group was statistically greater than the number of expected malignant tumors (66 observed vs 34 expected, P < 0.005). There was no such difference for the benign tumors. Cox regression analysis indicated no increased risk for the first tumor occurrence in irradiated dogs. Cox regression analysis of the multivariate risk sets showed no significantly increased risk for the occurrence of benign tumors but a statistically higher risk of 1.66 with a confidence interval of 1.15-2.40 for the occurrence of malignant tumors. The increased risk was dependent on dose, but a dependence on the frequency of previous occurrence of mammary tumors could not be confirmed. Censoring ovariectomized dogs at time of surgery decreased the relative risks slightly but did not alter the significance. Exposure to diagnostic X rays with cumulative exposures below 0.2 Gy had no effect on tumor formation. It is unknown whether the increased risk for malignant mammary tumors was due to some initial deposition of radium in sensitive tissue, a possible irradiation of fatty mammary tissue from transient radon → polonium deposition, or a general effect of the overall radium deposition on the immune system of the dogs that lowered their resistance to formation of mammary tumors. 27 refs., 5 figs., 4 tabs

  8. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini-Costa, Débora Barbosa, E-mail: vendramini.debora@gmail.com [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Alcaide, Antonio [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Pelizzaro-Rocha, Karin Juliane [Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, SP (Brazil); Talero, Elena; Ávila-Román, Javier [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Garcia-Mauriño, Sofia [Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville (Spain); Pilli, Ronaldo Aloise [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Carvalho, João Ernesto de [Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP (Brazil); Motilva, Virginia [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain)

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1 expression

  9. Chondrosarcoma of the femur with histology-imaging correlation of tumor growth--preliminary observations concerning periosteal new bone formation and soft tissue extension.

    Science.gov (United States)

    Steiner, German C; Schweitzer, Mark E; Kenan, Samuel; Abdelwahab, Ibrahim F

    2011-01-01

    The objective of this study was, in chondrosarcoma (CHS) of the femur, to evaluate by radiologic-pathologic correlation, the degree of tumor growth, cortical destruction, periosteal reaction, and soft tissue extension present. Eight cases of histologically proven CHS of the femur were studied. All cases were resected, evaluated histologically with coronal slabs, and compared with radiographs and magnetic resonance imaging (MRI) scans. In two resected specimens, the tumors were studied in more detail; along with coronal slabs, axial sections of the remaining anterior and posterior halves of both tumors were taken, and the bone specimens were X-rayed and examined histologically. CHS initially involved the medullary cavity and subsequently destroyed the cortex; first, by endosteal scalloping and, second, by subsequent invasion and destruction of the cortex. During this process, there was periosteal new bone formation (PNBF), with increased cortical thickness, the degree of which often correlated with the degree of cortical destruction. In the areas of cortical thickening of three cases, a "grey line" was seen on MRI that separated the cortex from the periosteal new bone; the line, in reality,is a space between the two structures. The presence of this line suggests that the tumor does not extend beyond the cortex. PNBF occurred in all cases and varied in thickness. It frequently developed independent of direct periosteal tumor involvement. The periosteum of one case contained porotic bone with interposed marrow fat, which was easily misinterpreted as tumor extension on MRI. Expansion and remodeling of the femoral diaphysis in CHS, with widening of the medullary cavity, is usually due to extensive cortical destruction with PNBF. Soft tissue extension was present in five cases and apparently occurred by two different mechanisms: direct tumor destruction of the cortex and periosteum, with extension into the soft tissues; and subtle MRI occult tumor permeation through the

  10. Formative evaluation of the telecare fall prevention project for older veterans.

    Science.gov (United States)

    Miake-Lye, Isomi M; Amulis, Angel; Saliba, Debra; Shekelle, Paul G; Volkman, Linda K; Ganz, David A

    2011-05-23

    Fall prevention interventions for community-dwelling older adults have been found to reduce falls in some research studies. However, wider implementation of fall prevention activities in routine care has yielded mixed results. We implemented a theory-driven program to improve care for falls at our Veterans Affairs healthcare facility. The first project arising from this program used a nurse advice telephone line to identify patients' risk factors for falls and to triage patients to appropriate services. Here we report the formative evaluation of this project. To evaluate the intervention we: 1) interviewed patient and employee stakeholders, 2) reviewed participating patients' electronic health record data and 3) abstracted information from meeting minutes. We describe the implementation process, including whether the project was implemented according to plan; identify barriers and facilitators to implementation; and assess the incremental benefit to the quality of health care for fall prevention received by patients in the project. We also estimate the cost of developing the pilot project. The project underwent multiple changes over its life span, including the addition of an option to mail patients educational materials about falls. During the project's lifespan, 113 patients were considered for inclusion and 35 participated. Patient and employee interviews suggested support for the project, but revealed that transportation to medical care was a major barrier in following up on fall risks identified by nurse telephone triage. Medical record review showed that the project enhanced usual medical care with respect to home safety counseling. We discontinued the program after 18 months due to staffing limitations and competing priorities. We estimated a cost of $9194 for meeting time to develop the project. The project appeared feasible at its outset but could not be sustained past the first cycle of evaluation due to insufficient resources and a waning of local

  11. Formative evaluation of the telecare fall prevention project for older veterans

    Directory of Open Access Journals (Sweden)

    Saliba Debra

    2011-05-01

    Full Text Available Abstract Background Fall prevention interventions for community-dwelling older adults have been found to reduce falls in some research studies. However, wider implementation of fall prevention activities in routine care has yielded mixed results. We implemented a theory-driven program to improve care for falls at our Veterans Affairs healthcare facility. The first project arising from this program used a nurse advice telephone line to identify patients' risk factors for falls and to triage patients to appropriate services. Here we report the formative evaluation of this project. Methods To evaluate the intervention we: 1 interviewed patient and employee stakeholders, 2 reviewed participating patients' electronic health record data and 3 abstracted information from meeting minutes. We describe the implementation process, including whether the project was implemented according to plan; identify barriers and facilitators to implementation; and assess the incremental benefit to the quality of health care for fall prevention received by patients in the project. We also estimate the cost of developing the pilot project. Results The project underwent multiple changes over its life span, including the addition of an option to mail patients educational materials about falls. During the project's lifespan, 113 patients were considered for inclusion and 35 participated. Patient and employee interviews suggested support for the project, but revealed that transportation to medical care was a major barrier in following up on fall risks identified by nurse telephone triage. Medical record review showed that the project enhanced usual medical care with respect to home safety counseling. We discontinued the program after 18 months due to staffing limitations and competing priorities. We estimated a cost of $9194 for meeting time to develop the project. Conclusions The project appeared feasible at its outset but could not be sustained past the first cycle of

  12. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Shoya Shiromizu

    2018-04-01

    Full Text Available Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Keywords: l-asparaginase, Asparagine, Solid tumor, Chrono-pharmacotherapy

  13. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  14. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model.

    Science.gov (United States)

    Jablonska, Jadwiga; Leschner, Sara; Westphal, Kathrin; Lienenklaus, Stefan; Weiss, Siegfried

    2010-04-01

    Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.

  15. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  16. INFLAMMATION AS A THERAPEUTIC TARGET IN THE COMPLEX TREATMENT OF MALIGNANT TUMORS

    Directory of Open Access Journals (Sweden)

    O. E. Savelieva

    2017-01-01

    Full Text Available In this review, we analyzed the role of inflammation in carcinogenesis, tumor development, and metastasis. In addition, the mechanisms of non-steroidal anti-inflammatory drugs (NSAIDs and the reasons of their contradictory influence on cancers were discussed. We summarized the numerous data about effectiveness of anti-inflammatory drugs for the prevention and additional therapy of tumor diseases. In particular, divergent effects of NSAIDs may be due to the peculiarities of immune-inflammatory responses that are realized in carcinogenesis and tumor development that have yet to be studied. We also discussed the selectivity of NSAID effects on different cancers and opposite effects of anticancer drugs with similar mechanisms of action. Apparently, the unsuccessful use of NSAIDs in cancer prevention and therapy are more specific for squamous cell carcinomas. Based on the literature, we provided significant clinical findings regarding the need of NSAID use in the current therapy of certain cancers and the determination of molecular predictors of the drug effect. In fact, anti-inflammatory therapy could eliminate the factors that contribute to the appearance of invasive and metastatic tumor cells, cancer and premetastatic niches and thus prevent metastasis and recurrence. At present, some non-selective (aspirin and selective (celecoxib NSAIDs are highly promising in the therapy of solid tumors

  17. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation

    International Nuclear Information System (INIS)

    Nguyen, Aaron N.; Stebbins, Elizabeth G.; Henson, Margaret; O'Young, Gilbert; Choi, Sun J.; Quon, Diana; Damm, Debby; Reddy, Mamatha; Ma, Jing Y.; Haghnazari, Edwin; Kapoun, Ann M.; Medicherla, Satyanarayana; Protter, Andy; Schreiner, George F.; Kurihara, Noriyoshi; Anderson, Judy; Roodman, G. David; Navas, Tony A.; Higgins, Linda S.

    2006-01-01

    The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38α MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNFα-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNFα-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNFα-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1α as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM

  18. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  19. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  20. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  1. The use of silicone occlusive sheeting (Sil-K) and silicone occlusive gel (epiderm) in the prevention of hypertrophic scar formation

    NARCIS (Netherlands)

    Niessen, FB; Spauwen, PHM; Robinson, PH; Fidler, [No Value; Kon, M

    The development of hypertrophic scars and keloids is an unsolved problem in the process of found healing. For this reason, a successful treatment to prevent excessive scar formation still has not been found. Over the last decade, however, a promising new treatment has been introduced. Silicone

  2. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    Science.gov (United States)

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Endoscopic Management of Tumor Bleeding from Inoperable Gastric Cancer

    Science.gov (United States)

    Kim, Young-Il

    2015-01-01

    Tumor bleeding is not a rare complication in patients with inoperable gastric cancer. Endoscopy has important roles in the diagnosis and primary treatment of tumor bleeding, similar to its roles in other non-variceal upper gastrointestinal bleeding cases. Although limited studies have been performed, endoscopic therapy has been highly successful in achieving initial hemostasis. One or a combination of endoscopic therapy modalities, such as injection therapy, mechanical therapy, or ablative therapy, can be used for hemostasis in patients with endoscopic stigmata of recent hemorrhage. However, rebleeding after successful hemostasis with endoscopic therapy frequently occurs. Endoscopic therapy may be a treatment option for successfully controlling this rebleeding. Transarterial embolization or palliative surgery should be considered when endoscopic therapy fails. For primary and secondary prevention of tumor bleeding, proton pump inhibitors can be prescribed, although their effectiveness to prevent bleeding remains to be investigated. PMID:25844339

  4. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  5. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy.

    Science.gov (United States)

    Terunuma, Toshiyuki; Tokui, Aoi; Sakae, Takeji

    2018-03-01

    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling "importance recognition": the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated.

  6. Antiangiogenic Effects of Noscapine Enhance Radioresponse for GL261 Tumors

    International Nuclear Information System (INIS)

    Newcomb, Elizabeth W.; Lukyanov, Yevgeniy; Alonso-Basanta, Michelle; Esencay, Min; Smirnova, Iva; Schnee, Tona; Shao Yongzhao; Devitt, Mary Louise; Zagzag, David; McBride, William; Formenti, Silvia C.

    2008-01-01

    Purpose: To assess the effects of noscapine, a tubulin-binding drug, in combination with radiation in a murine glioma model. Methods and Materials: The human T98G and murine GL261 glioma cell lines treated with noscapine, radiation, or both were assayed for clonogenic survival. Mice with established GL261 hind limb tumors were treated with noscapine, radiation, or both to evaluate the effect of noscapine on radioresponse. In a separate experiment with the same treatment groups, 7 days after radiation, tumors were resected and immunostained to measure proliferation rate, apoptosis, and angiogenic activity. Results: Noscapine reduced clonogenic survival without enhancement of radiosensitivity in vitro. Noscapine combined with radiation significantly increased tumor growth delay: 5, 8, 13, and 18 days for control, noscapine alone, radiation alone, and the combination treatment, respectively (p < 0.001). To assess the effect of the combination of noscapine plus radiation on the tumor vasculature, tubule formation by the murine endothelial 2H11 cells was tested. Noscapine with radiation significantly inhibited tubule formation compared with radiation alone. By immunohistochemistry, tumors treated with the combination of noscapine plus radiation showed a decrease in BrdU incorporation, an increase in apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling, and a decrease in tumor vessel density compared with tumors treated with radiation alone. Conclusion: Noscapine enhanced the sensitivity of GL261 glioma tumors to radiation, resulting in a significant tumor growth delay. An antiangiogenic mechanism contributed to the effect. These findings are clinically relevant, particularly in view of the mild toxicity profile of this drug

  7. Iatrogenic giant cell tumor at bone graft harvesting site

    Directory of Open Access Journals (Sweden)

    Zile S Kundu

    2013-01-01

    Full Text Available 30 year old female patient with giant cell tumor of the distal tibia initially treated at a peripheral nononcological center by curettage and autologous bone grafting from the ipsilateral iliac crest reported to us with local recurrence and an implantation giant cell tumor at the graft harvesting site which required extensive surgeries at both sites. The risk of iatrogenic direct implantation of tumor, often attributable to inadequate surgical planning or poor surgical techniques, and the steps to prevent such complication is reported here.

  8. Attitude of the Italian general population towards prevention and screening of the most common tumors, with special emphasis on colorectal malignancies.

    Science.gov (United States)

    Domati, Federica; Travlos, Estratios; Cirilli, Claudia; Rossi, Giuseppina; Benatti, Piero; Marino, Massimiliano; Ponti, Giovanni; Vandelli, Maria; Valmori, Simone; Oursana, Amal; Pezzi, Annalisa; Ponz de Leon, Maurizio

    2009-06-01

    Screening and early diagnosis of cancer represent relatively recent tools in the long-lasting battle against tumors. If the American public opinion manifests its enthusiasm towards screening, the attitude of European is less well known. The purpose of the present study was to assess the level of knowledge and awareness of cancer screening (with particular emphasis on colorectal neoplasms) among middle-aged individuals. The study group consisted of 945 healthy individuals (489 men, 456 women, average age 57 +/- 12.4 years) who were asked to answer a series of questions about cancer screening and surveillance through a questionnaire presented by trained residents. Each interview lasted 20-30 min. Middle-aged Italians of both sexes seem to be aware of the fact that cancer is a frequent disease; moreover, many of the interviewed subjects believe almost all neoplasms are incurable. Diet, style of life, other environmental factors and familial factors are fully appreciated as relevant risk factors. The exact meaning of prevention was clear to less than half of the subjects. When various cancer sites were analyzed, the existence of preventive measures was well known for breast, cervical and prostate tumors, but their role was less clear for colorectal cancer. Only a fraction of the interviewed individuals were willing to undergo screening; the main reasons for refusal were lack of usefulness and fear of results. Among various tests, ultrasound and endoscopy were usually carried out in the presence of symptoms. Finally, multivariate analysis showed that the two factors significantly associated with the decision to undergo screening procedures were increasing age and level of education. The results of the study suggest that middle-aged Italian individuals, predominantly from Northern regions, have a correct perception of some aspects (frequency, risk factors) of cancer biology, whereas the knowledge of other aspects (outcome, prevention) remains poor or approximate. It

  9. A study of spinal cord tumors by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro [Ryukyu Univ., Nishihara, Okinawa (Japan). School of Medicine; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio

    1989-10-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author).

  10. A study of spinal cord tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio.

    1989-01-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author)

  11. Biopsy in Musculoskeletal Tumors

    Directory of Open Access Journals (Sweden)

    Mohammad Gharehdaghi

    2014-09-01

    other anatomic structures? (4 Carcinomas are homogeneous, and a simple CNB is usually sufficient for diagnosis, but in soft tissue sarcomas, the periphery of the tumor is the growing part and usually represents the authentic underlying malignancy. The center of the tumor may be hemorrhagic or necrotic, thus taking biopsy from this part may distract from the correct diagnosis.Extraosseus part of a bone sarcoma is as representative as bony component of the tumor. Violating the bone and weakening the cortex may predispose it to pathologic fracture, so biopsy of an extraosseus part is sufficient for the diagnosis if present (3. The biopsy tract “open or CNB” is contaminated by tumor cells and should be widely excised if a wide excision or amputation is performed. For this reason, excision of the biopsy incision or needle entrance should be planned along with the definitive tumor excision to prevent complications and the need for altering the treatment strategy (Figure A, B, C. Open incisional biopsy provides sufficient material for microscopic diagnosis as well as immune- histochemical, cytogenetic, or electron microscopic studies. It has some disadvantages such as wound healing problems, infection, tumor cell contamination, and nerve and vessel injuries (1. For open biopsies, the incision should be as small as necessary and longitudinal. Transverse incisions are not advisable. To perform an intraosseus biopsy, the window should be circular or oblong, and as small as needed to prevent a pathologic fracture. Closing this window by PMMA prevents tumor cell contamination. Compressing the PMMA exceeds the chance of metastasis. As a rule, culture what you biopsy and biopsy what you culture. Use of a tourniquet without exsanguinations helps better visualization and meticulous hemostasis which prevents spreading of the tumor cells in hematoma. Importantly, it should be deflated before closing the wound (3. The port of entry of drains, if necessary, must be in line and

  12. Sclerosing stromal tumor of the ovary: A case report

    Directory of Open Access Journals (Sweden)

    Navjot Kaur

    2014-01-01

    Full Text Available Sclerosing stromal tumors are benign ovarian neoplasms of the sex cord-stromal category, occurring predominantly in the second and third decades of life. Herein, we report a 23-year-old female who presented with pelvic pain, irregular menses but normal hormonal status and was diagnosed as having a right ovarian tumor. A right oophorectomy was performed, and microscopic examination revealed a sclerosing stromal tumor of the right ovary. We stress the importance of being familiar with sclerosing stromal tumors when evaluating ovarian neoplasms in young women, in order to contribute to the appropriate clinical management, preventing extensive and unnecessary surgery, and preserving fertility.

  13. Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; Isern, Nancy G.; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2017-03-30

    Chemoselective blocking of the phenolic hydroxyl (Ar-OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar-OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. This approach could be directed toward alteration of natural lignification processes to produce biomass more amenable to chemical depolymerization.

  14. Labeled bleomycin as a tumor localizing agent

    International Nuclear Information System (INIS)

    Vos, C.M.

    1982-01-01

    The antitumor antibiotics bleomycins labeled with 57 Co are known to possess excellent tumor localizing properties but the rather long halflife of 57 Co prevents its use in clinical routine. It is therefore desirable to label cobalt-bleomycin with a more suitable radionuclide, e.g. 123 I. This thesis reports on further studies on cobalt-bleomycin. It appears from the studies on the structure of cobalt-bleomycin described in this thesis (Chapter B), that cobalt is able to form different complexes with bleomycin (the forms I and II). The difference in structure is not clear, but the biological behavior of both forms is studied (Chapter C). In Chapter D the iodination of cobalt-bleomycin is described. Iodination of free bleomycin yields a product with bad tumor localizing properties, and straight-on iodination of cobalt-bleomycin is prevented by the presence of cobalt. To retain the good tumor-localizing properties of cobalt-bleomycin, possibilities were explored to incorporate the iodine in the terminal amine (a side chain, not involved in complexation). Alkylation of cobalt-bleomycin demethyl A 2 with N-bromoacetyl-3-iodoaniline yielded a product; unfortunately this product possessed bad tumor localizing properties and moreover, was not stable in vivo. The structure of a possibly successful iodinated cobalt-bleomycin is outlined but could not be realized during this research. (Auth.)

  15. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under

  16. Reoxygenation of hypoxic cells by tumor shrinkage during irradiation. A computer simulation

    International Nuclear Information System (INIS)

    Kocher, M.; Treuer, H.

    1995-01-01

    A 3-dimensional computer simulation was developed in order to estimate the impact of tumor shrinkage on reoxygenation of chronic hypoxic tumor cells during a full course of fractionated irradiation. The growth of a small tumor situated in a vascularized stroma with 350 capillary cross-sections/mm 3 which were displaced by the growing tumor was simulated. Tumors contained 10 4 cells when irradiation started, intrinsic radiosensitivity was set to either low (α=0.3 Gy -1 , β=0.03 Gy -2 ) or high (α=0.4 Gy -1 , β=0.04 Gy -2 ) values. Oxygen enhancement ratio was 3.0, potential tumor doubling time T pot =1, 2 or 5 days. A simulated fractionated radiotherapy was carried out with daily fractions of 2.0 Gy, total dose 50 to 70 Gy. The presence or absence of factors preventing tumor cord shrinkage was also included. During the growth phase, all tumors developed a necrotic core with a hypoxic cell fraction of 25% under these conditions. During irradiation, the slower growing tumors (T pot =2 to 5 days) showed complete reoxygenation of the hypoxic cells after 30 to 40 Gy independent from radiosensitivity, undisturbed tumor shrinkage provided. If shrinkage was prevented, the hypoxic fraction rose to 100% after 30 to 50 Gy. Local tumor control, defined as the destruction of all clonogenic and hypoxic tumor cells increased by 20 to 100% due to reoxygenation and 50 Gy were enough in order to sterilize the tumors in these cases. In the fast growing tumors (T pot =1 day), reoxygenation was only observed in the case of high radiosensitivity and undisturbed tumor shrinkage. In these tumors reoxygenation increased the control rates by up to 60%. (orig./MG) [de

  17. Cinnamon Oil and Chitosan Coating on Orthopaedic Implant Surface for Prevention of Staphylococcus Epidermidis Biofilm Formation

    Directory of Open Access Journals (Sweden)

    R Magetsari

    2014-11-01

    Full Text Available S. Epidermidis is among the most frequently isolated microorganisms found in -infection related to implanted devices and the formation of biofilm will be more resistantcompared to the planktonic form. This study was carried out determine the effect of coating on stainless steel orthopaedic implants surfaces with cinnamon oil and chitosan as bioadhesive to prevent biofilms formation of S. Epidermidis.The rod shaped stainless steel 316 L orthopaedic implant with 5 mm diameters was coated 2 times using a mixture of cinnamon oil and chitosan 3% and 2% respectively with serial concentration of cinnamon from 0.125% to 2%. The coated implants were then put into tubes that contained bacterial suspension and incubated. Subsequently, the implants were washed with PBS solution followed by MTT soulution and isopropanol acid solution that related to biofilm formation. The results were expressed in numbers which represents the absorbance level at ELISA readings on 575 nm (A575 wavelength.The stainless steel implant coated with chitosan and cinnamon oil 2% and 1% has lower absorbance level compared with the absorbance level of S.Epidermidis biofilm only. This study showed that mixture of cinnamon oil and chitosan coated on the surface of stainless steel orthopaedic implant has an effect against S.Epidermidis biofilm formation with minimum cinnamon oil concentration of 1%.

  18. Negative brain scintigrams in brain tumors

    International Nuclear Information System (INIS)

    Dalke, K.G.

    1978-01-01

    With 53 histologically verified and 2 histologically not identified brain tumors, that showed a negative scintigram, it was tried to find reasons for the wrong and negative dropout of these scintigrams. The electroencephalograms and angiograms, that were made simultaneously were taken into consideration with respect to their propositional capability and were compared with the scintigram findings. For the formation of the negative brain scintigrams there could be found no unique cause or causal constellation. The scintigraphic tumor representation is likely based on a complex process. Therefore the reasons for the negativity of the brain scintigrams can be a manifold of causes. An important role plays the vascularisation of the tumor, but not in a sole way. As well the tumor localisation gains some importance; especially in the temporal lobe or in the deeper structures situated tumors can be negative in the scintigram. To hold down the rate of wrong-negative quote in the case of intracranial tumor search, one is advised to continue with an further exposure after 2 to 4 hours besides the usual exposures, unless a sequential scintigraphy was made from the beginning. (orig./MG) [de

  19. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors

    OpenAIRE

    Sonkin, Dmitriy

    2015-01-01

    eLife digest Damaged cells in the human body can develop into tumors if left unchecked. TP53 (also called p53) is a protein that normally helps to repair or eliminate these damaged cells and prevent tumors from forming. About half of all cancerous tumors have mutations that prevent TP53 from working. In tumors with normal TP53 (called TP53 wild type tumors), another protein that acts to keep TP53 in check is often overly active. This overactive protein (called MDM2) prevents TP53 from suppres...

  20. Activation of GABA(A) receptors in the accessory olfactory bulb does not prevent the formation of an olfactory memory in mice.

    Science.gov (United States)

    Otsuka, T; Hashida, M; Oka, T; Kaba, H

    2001-07-01

    When female mice are mated, they form a memory to the pheromonal signal of their male partner. The neural mechanisms underlying this memory involve changes at the reciprocal dendrodendritic synapses between glutamatergic mitral cells and gamma-aminobutyric acid (GABA)-ergic granule cells in the accessory olfactory bulb (AOB). Blockade of GABA(A) receptors in the AOB leads to the formation of an olfactory memory. In an attempt to disrupt memory formation at mating, we used local infusions of the GABA(A) receptor agonist muscimol into the AOB during the critical period for memory formation. Muscimol across a wide range of doses (1-1000 pmol) did not prevent memory formation. The resistance of this memory to GABA(A) receptor activation may reflect the complexity of synaptic microcircuits in the AOB.

  1. Developing a diabetes prevention education programme for community health-care workers in Thailand: formative findings.

    Science.gov (United States)

    Sranacharoenpong, Kitti; Hanning, Rhona M

    2011-10-01

    The aim of this study was to investigate barriers to and supports for implementing a diabetes prevention education programme for community health-care workers (CHCWs) in Chiang Mai province, Thailand. The study also aimed to get preliminary input into the design of a tailored diabetes prevention education programme for CHCWs. Thailand has faced under-nutrition and yet, paradoxically, the prevalence of diseases of over-nutrition, such as obesity and diabetes, has escalated. As access to diabetes prevention programme is limited in Thailand, especially in rural and semi-urban areas, it becomes critical to develop a health information delivery system that is relevant, cost-effective, and sustainable. Health-care professionals (n = 12) selected from health centres within one district participated in in-depth interviews. In addition, screened people at risk for diabetes participated in interviews (n = 8) and focus groups (n = 4 groups, 23 participants). Coded transcripts from audio-taped interviews or focus groups were analysed by hand and using NVivo software. Concept mapping illustrated the findings. Health-care professionals identified potential barriers to programme success as a motivation for regular participation, and lack of health policy support for programme sustainability. Health-care professionals identified opportunities to integrate health promotion and disease prevention into CHCWs' duties. Health-care professionals recommended small-group workshops, hands-on learning activities, case studies, and video presentations that bring knowledge to practice within their cultural context. CHCWs should receive a credit for continuing study. People at risk for diabetes lacked knowledge of nutrition, diabetes risk factors, and resources to access health information. They desired two-way communication with CHCWs. Formative research supports the need for an effective, sustainable programme to support knowledge translation to CHCWs and at-risk populations in the

  2. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    Science.gov (United States)

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  3. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function.

    Science.gov (United States)

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2017-12-25

    Methylglyoxal (MG) is a potent protein glycating agent and an important precursor of advanced glycation end products, which are involved in the pathogenesis of diabetic osteopathy. In this study, we investigated the effects of limonene on MG-induced damage in osteoblastic MC3T3-E1 cells. Pretreating cells with limonene prevented MG-induced protein adduct formation, tumor necrosis factor alpha and interleukin-6 release, mitochondrial superoxide production, and cardiolipin peroxidation. In addition, limonene increased glyoxalase I activity, and glutathione and heme oxygenase-1 levels in the presence of MG. Pretreatment with limonene prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss, and reduced the levels of adenosine monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ coactivator 1α, and nitric oxide. These results demonstrate that limonene may prevent the development of diabetic osteopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development and formative evaluation of a family-centred adolescent HIV prevention programme in South Africa.

    Science.gov (United States)

    Visser, Maretha; Thurman, Tonya R; Spyrelis, Alexandra; Taylor, Tory M; Nice, Johanna K; Finestone, Michelle

    2018-03-06

    Preventing HIV among young people is critical to achieving and sustaining global epidemic control. Evidence from Western settings suggests that family-centred prevention interventions may be associated with greater reductions in risk behaviour than standard adolescent-only models. Despite this, family-centred models for adolescent HIV prevention are nearly non-existent in South Africa - home to more people living with HIV than any other country. This paper describes the development and formative evaluation of one such intervention: an evidence-informed, locally relevant, adolescent prevention intervention engaging caregivers as co-participants. The programme, originally consisting of 19 sessions for caregivers and 14 for adolescents, was piloted with 12 groups of caregiver-adolescent dyads by community-based organizations (CBOs) in KwaZulu-Natal and Gauteng provinces. Literature and expert reviews were employed in the development process, and evaluation methods included analysis of attendance records, session-level fidelity checklists and facilitator feedback forms collected during the programme pilot. Facilitator focus group discussions and an implementer programme workshop were also held. Results highlighted the need to enhance training content related to cognitive behavioural theory and group management techniques, as well as increase the cultural relevance of activities in the curriculum. Participant attendance challenges were also identified, leading to a shortened and simplified session set. Findings overall were used to finalize materials and guidance for a revised 14-week group programme consisting of individual and joint sessions for adolescents and their caregivers, which may be implemented by community-based facilitators in other settings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    Science.gov (United States)

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2017-05-01

    Full Text Available Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß/bone morphogenic protein (BMP signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  7. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Science.gov (United States)

    Qi, Wenjing; Yan, Yijian; Pfeifer, Dietmar; Donner V Gromoff, Erika; Wang, Yimin; Maier, Wolfgang; Baumeister, Ralf

    2017-05-01

    Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS) is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß)/bone morphogenic protein (BMP) signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  8. Prevention of bladder tumor implantion after fluorescence-guided TUR with photodynamic therapy

    Science.gov (United States)

    Berrahmoune, Saoussen; Bezdetnaya, Lina; de Witte, Peter; Leroux, Agnès; Dumas, Dominique; Guillemin, François; D'Hallewin, Marie Ange

    2009-06-01

    The prevalence of bladder cancer is very high, due to its high recurrence rate in superficial bladder cancer (30 to 85%), which is the staging of approximately 80% of the patients at first diagnosis. Risk of recurrence and progression is associated with grade, stage, presence of concomitant carcinoma in situ, size and number of lesions, as well as time to first recurrence. Recurrences can be partly attributed to new occurrences but also to residual tumors after resection. Incomplete tumor removal has been observed in 30 to 50% of TUR's, especially when dealing with T1 or poorly visible malignant or pre-malignant disease1. Fluorescence guided resection with 5 amino levulinic acid (ALA) or its hexyl ester derivative (Hexvix, has now unequivocally been demonstrated to increase detection rate and a growing number of studies indicate this has a positive impact on recurrence and progression ratesImplantation of viable tumor cells, dispersed during resection, is a third factor influencing bladder cancer recurrence. The aim of early intravesical therapy is to interfere with cell viability and thus reduce implantation risks.

  9. Solitary Fibrous Tumor of Retromolar Pad; a Rare Challenging Case

    Science.gov (United States)

    Lotfi, Ali; Mokhtari, Sepideh; Moshref, Mohammad; Shahla, Maryam; Atarbashi Moghadam, Saede

    2017-01-01

    Solitary fibrous tumor has a wide spectrum of histopathologic features and many tumors show similar microscopic features. This similarity poses diagnostic challenges to the pathologists and immunohistochemical analysis is required in many cases. Moreover, it is a rare entity in orofacial region which consequently would make its diagnosis more challenging in oral cavity. The knowledge of various microscopic patterns of this tumor contributes to a proper diagnosis and prevents unnecessary treatment. This study reports a case of solitary fibrous tumor in the retromolar pad area and discusses its various histological features and differential diagnoses. PMID:28620640

  10. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    Science.gov (United States)

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  11. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    Science.gov (United States)

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Targeting Autophagy in the Tumor Stroma to Eradicate Breast Cancer

    Science.gov (United States)

    2013-09-01

    initiated. One potential caveat that has arisen is that fibroblast specific protein (FSP) may be expressed at low levels in late stage PyMT tumor...digestion solution per 5g of tumor tissue) 1.5 mg/ml Collagenase (from 100X stock solution) 125 U/ml Hyaluronidase (from 100X stock solution) MMF media...g. Determine the latency period to the onset of primary tumor formation and metastasis for recipient mice generated in subtask 1f. At selected

  13. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-01-01

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  14. Use of postoperative irradiation for the prevention of heterotopic bone formation after total hip replacement

    International Nuclear Information System (INIS)

    Sylvester, J.E.; Greenberg, P.; Selch, M.T.; Thomas, B.J.; Amstutz, H.

    1988-01-01

    Formation of heterotopic bone (HTB) following total hip replacement may partially or completely ankylose the joint space, causing pain and/or limiting the range of motion. Patients at high risk for formation of HTB postoperatively include those with previous HTB formation, heterotopic osteoarthritis, and active rheumatoid spondylitis. Patients in these high risk groups have a 63-69% incidence of post-operative HTB formation, usually seen radiographically by 2 months post-operation. From 1980-1986 twenty-nine hips in 28 consecutively treated patients were irradiated post-operatively at the UCLA Center for the Health Sciences. The indication for irradiation was documented HTB formation previously in 26 of the 27 hips presented below. From 1980-1982 patients received 20 Gray (Gy) in 2 Gy fractions; from 1982-1986 the dose was reduced to 10 Gy in 2 Gy fractions. Twenty-seven hips in 26 patients completed therapy and were available for evaluation, with a minimum of 2 month follow-up, and a median follow-up of 12 months. Three of 27 hips developed significant HTB (Brooker grade III or IV) post-operatively, whereas 5 of 27 hips developed minor, nonsymptomatic HTB (Brooker grade I). When irradiation was begun by postoperative day 4, 0 of 17 hips formed significant HTB. If irradiation began after post-operative day 4, 3 of 10 hips formed significant HTB (Brooker grade III or IV). These 3 hips received doses of 10 Gy in one hip and 20 Gy in the other 2 hips. There were no differences in the incidence or severity of side effects in the 10 Gy vs. the 20 Gy treatment groups. Eighteen hips received 10 Gy, 8 hips 20 Gy and, 1 hip 12 Gy. In conclusion, 10 Gy in 5 fractions appears as effective as 20 Gy in 10 fractions at preventing post-operative formation of HTB. For optimal results, treatment should begin as early as possible prior to post-operative day 4

  15. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors.

    Science.gov (United States)

    da Costa, Natacha M M; de Siqueira, Adriane S; Ribeiro, André L R; da Silva Kataoka, Maria S; Jaeger, Ruy G; de Alves-Júnior, Sérgio M; Smith, Andrew M; de Jesus Viana Pinheiro, João

    2018-01-01

    Odontogenic cysts and tumors are the most relevant lesions that affect the gnathic bones. These lesions have in common the formation of cystic areas and this common feature may suggest involvement of similar mechanisms. The hypoxia inducible factor 1 alpha (HIF-1α), a responsive protein to hypoxia and caspase-3, an irreversible apoptosis marker, may contribute to cyst formation. Thus, this study aimed to investigate the immunoexpression of these proteins in odontogenic cysts and tumors. Twenty cases of ameloblastoma, keratocystic odontogenic tumor (KOT) (n = 20), radicular cyst (RC) (n = 18), dentigerous cyst (DC) (n = 11), calcifying cystic odontogenic tumor (n = 8), and dental follicle (DF) (n = 10) were used to investigate HIF-1α and caspase-3 expression in sequential serial cuts by immunohistochemistry. HIF-1α was overexpressed in RC, DC, and ameloblastoma when compared with DF. The basal and sometimes the lower suprabasal layer showed no or very low expression in DC, KOT, and ameloblastoma, the last also showing strong expression in solid epithelial areas and initial cystic formation regions. Caspase-3 was found to be overexpressed in all lesions, with the highest expression in odontogenic cysts compared to tumors. HIF-1α and caspase-3 were localized in similar areas of the same lesions, especially in the epithelium surrounding cystic formations. This study showed distinct immunoexpression of HIF-1α and caspase-3 in odontogenic cyst and tumors, with higher expression observed in odontogenic cysts. These findings suggest a possible correlation between hypoxia, apoptosis, and cystogenesis, leading to understand the mechanisms responsible to cystic formation in odontogenic lesions.

  16. [Punish or cherish: p53, metabolism and tumor suppression].

    Science.gov (United States)

    Albagli, Olivier

    2015-10-01

    The p53 gene is essential for tumor suppression, but how it does so remains unclear. Upon genotoxic or oncogenic stresses, increased p53 activity induces transient cell cycle arrest, senescence or apoptosis, the three cornerstones of the so-called triumvirate. Accordingly, it has long been thought that p53 suppresses tumorigenesis by somehow counteracting cell proliferation or survival. However, several recently described genetically modified mice indicate that p53 can suppress tumorigenesis without triggering these three responses. Rather, as an important mechanism for tumor suppression, these mutant mice point to the ability of p53 to prevent the Warburg effect, that is to dampen glycolysis and foster mitochondrial respiration. Interestingly, these metabolic functions of p53 rely, in part, on its "unstressed" (basal) expression, a feature shared by its mechanistically linked anti-oxydant function. Together, these "conservative" activities of p53 may prevent tumor initiation by promoting and maintaining a normal oxidative metabolism and hence underly the "daily" tumor suppression by p53 in most cells. Conversely, destructive activities elicited by high p53 levels and leading to senescence or apoptosis provide a shield against partially or overtly transformed cells. This last situation, although relatively infrequent throughout life, is usual in experimental settings, which could explain the disproportionally high number of data implicating the triumvirate in tumor suppression by p53. © 2015 médecine/sciences – Inserm.

  17. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy

    Directory of Open Access Journals (Sweden)

    Xi J

    2017-04-01

    Full Text Available Juqun Xi,1–3 Lanyue Da,1 Changshui Yang,1 Rui Chen,4 Lizeng Gao,2 Lei Fan,5 Jie Han5 1Pharmacology Department, Medical School, Yangzhou University, 2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, 3Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 4Department of Nephrology, Subei People’s Hospital, Yangzhou University, 5School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China Abstract: Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX-loaded poly(lactic-co-glycolic acid (PLGA nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties. Keywords: PLGA nanoparticles, polydopamine, chemo-photothermal therapy, smart theranostic agent

  18. High Endogenous Expression of Chitinase 3-Like 1 and Excessive Epithelial Proliferation with Colonic Tumor Formation in MOLF/EiJ Mice.

    Directory of Open Access Journals (Sweden)

    Daren Low

    Full Text Available Colorectal cancer (CRC development is mediated by uncontrolled survival and proliferation of tumor progenitor cells. Using animal models to identify and study host-derived factors that underlie this process can aid interventions in preventing tumor expansion and metastasis. In healthy steady states in humans and mice (e.g. C57BL/6 strain, colonic Chitinase 3-like 1 (CHI3L1 gene expression is undetectable. However, this expression can be induced during intestinal inflammation and tumorigenesis where CHI3L1 plays an important role in tissue restitution and cell proliferation. Here, we show that a wild-derived mouse strain MOLF/EiJ expresses high levels of colonic epithelial CHI3L1 at the steady state due to several nucleotide polymorphisms in the proximal promoter regions of the CHI3L1 gene. Interestingly, these mice spontaneously developed polypoid nodules in the colon with signs of immune cell infiltrations at steady state. The CHI3L1 positive colonic epithelial cells were highly proliferative and exhibited malignant transformation and expansion when exposed in vivo to azoxymethane, one of the well-known colonic carcinogens.

  19. Lack of efficacy of blueberry in nutritional prevention of azoxymethane-initiated cancers of rat small intestine and colon

    Directory of Open Access Journals (Sweden)

    Wu Xianli

    2009-09-01

    Full Text Available Abstract Background Blueberries may lower relative risk for cancers of the gastrointestinal tract. Previous work indicated an inhibitory effect of consumed blueberry (BB on formation of aberrant crypt foci (ACF in colons of male Fisher F344 rats (inbred strain. However, effects of BB on colon tumors and in both genders are unknown. Methods We examined efficacy of BB in inhibition of azoxymethane (AOM-induced colon ACF and intestine tumors in male and female Sprague-Dawley rats (outbred strain. Pregnant rats were fed a diet with or without 10% BB powder; progeny were weaned to the same diet as their dam and received AOM as young adults. Results Male and female rats on control diet had similar numbers of ACF at 6 weeks after AOM administration. BB increased (P P P > 0.05 to reduce overall gastrointestinal tract tumor incidence in males, however, tumor incidence in females was unaffected (P > 0.1 by BB. There was a tendency (0.1 > P > 0.05 for fewer adenocarcinomas (relative to total of adenomatous polyps plus adenocarcinomas in colons of female than male tumor-bearing rats; in small intestine, this gender difference was significant (P P Conclusion Results did not indicate robust cancer-preventive effects of BB. Blueberry influenced ACF occurrence in distal colon and tumor progression in duodenum, in gender-specific fashion. Data indicate the potential for slowing tumor progression (adenomatous polyp to adenocarcinoma by BB.

  20. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Jiang, Wen-guo; Zhen, Yong-su; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; Zhang, Sheng-hua; Zhou, Daifu; Li, Liang; Li, Yi; Luo, Yongzhang

    2013-01-01

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  1. Differentiation of EL4 lymphoma cells by tumoral environment is associated with inappropriate expression of the large chondroitin sulfate proteoglycan PG-M and the tumor-associated antigen HTgp-175.

    Science.gov (United States)

    Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J

    1998-11-09

    Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.

  2. Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors

    Directory of Open Access Journals (Sweden)

    Shanawaz Mohammed Ghouse

    2018-01-01

    Full Text Available Summary: High numbers of mast cells populate the stroma of many types of neoplasms, including human papilloma virus-induced benign and malignant tumors in man and mouse. Equipped with numerous pattern recognition receptors and capable of executing important pro-inflammatory responses, mast cells are considered innate sentinels that significantly impact tumor biology. Mast cells were reported to promote human papilloma virus (HPV-induced epithelial hyperproliferation and neo-angiogenesis in an HPV-driven mouse model of skin cancer. We analyzed HPV-induced epithelial hyperplasia and squamous cell carcinoma formation, as well as growth of tumors inoculated into the dermis, in mice lacking skin mast cells. Unexpectedly, the absence of mast cells had no effect on HPV-induced epithelial growth or angiogenesis, on growth kinetics of inoculated tumors, or on the immunological tumor micro-milieu. Thus, the conspicuous recruitment of mast cells into tumor tissues cannot necessarily be equated with important mast cell functions in tumor growth. : Mast cells accumulate in high numbers in many human tumors, and they are widely viewed as important promoters of tumor growth. Ghouse et al. show that growth, angiogenesis, and the immunological micro-milieu of tumors growing in mice genetically deficient for mast cells are unchanged compared to control tumors. Keywords: mast cells, HPV-induced skin cancer, tumor angiogenesis, tumor micro-milieu

  3. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  4. Tumor-induced osteomalacia (TIO): atypical presentation.

    Science.gov (United States)

    Khaliq, Waseem; Cheripalli, Praveen; Tangella, Krishnarao

    2011-05-01

    Tumor-induced osteomalacia is a rare acquired condition characterized by phosphaturia, hypophosphatemia and osteomalacia. We report an unusual presentation in a 15-year-old healthy male with a two-week history of cough and chest pain. The chest radiograph showed right middle lobe opacity and chest CT revealed a mass in the extra pleural space. A biopsy showed chondro-myxoidstroma with osteoid formation. Diagnosis was confirmed with the above findings and hypophosphatemia. The patient's symptoms resolved after complete surgical excision of the mass. Tumor-induced osteomalacia, although a rare disorder, can be a diagnostic challenge, especially in patients presenting with atypical symptoms.

  5. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  6. Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2016-01-01

    Full Text Available Wnt/β-catenin activation in adult epidermis can induce new hair follicle formation and tumor development. We used lineage tracing to uncover the relative contribution of different stem cell populations. LGR6+ and LRIG1+ stem cells contributed to ectopic hair follicles formed in the sebaceous gland upon β-catenin activation, whereas LGR5+ cells did not. Lgr6, but not Lrig1 or Lgr5, was expressed in a subpopulation of interfollicular epidermal cells that were competent to form new hair follicles. Oncogenic β-catenin expression in LGR5+ cells led to formation of pilomatricomas, while LRIG1+ cells formed trichoadenomas and LGR6+ cells formed dermatofibromas. Tumor formation was always accompanied by a local increase in dermal fibroblast density and transient extracellular matrix remodeling. However, each tumor had a distinct stromal signature in terms of immune cell infiltrate and expression of CD26 and CD44. We conclude that compartmentalization of epidermal stem cells underlies different responses to β-catenin and skin tumor heterogeneity.

  7. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  8. Spices for Prevention and Treatment of Cancers.

    Science.gov (United States)

    Zheng, Jie; Zhou, Yue; Li, Ya; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2016-08-12

    Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action.

  9. Spices for Prevention and Treatment of Cancers

    Science.gov (United States)

    Zheng, Jie; Zhou, Yue; Li, Ya; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2016-01-01

    Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action. PMID:27529277

  10. Glycosaminoglycan-sac formation in vitro. Interactions between normal and malignant cells

    OpenAIRE

    Logothetou-Rella, H.

    1994-01-01

    The interaction of monolayer normal human or normal rat cells with suspension Walker rat tumor cells was demonstrated cytologically, during a cocultivation period of thirty days. At ten days, Walker rat tumor cells were interiorized in the cytoplasm of the normal monolayer host cells. At twenty days, degeneration of the interiorized tumor cells followed by mucification led to glycosaminoglycan-sac formation. At thirty days, tumor nodules and protease (a,- c...

  11. Gastroenteropancreatic Neuroendocrine Tumors in Multiple Endocrine Neoplasia Type 1

    International Nuclear Information System (INIS)

    Tonelli, Francesco; Giudici, Francesco; Giusti, Francesca; Brandi, Maria Luisa

    2012-01-01

    We reviewed the literature about entero-pancreatic neuroendocrine tumors in Multiple Endocrine Neoplasia type 1 syndrome (MEN1) to clarify their demographic features, localization imaging, practice, and appropriate therapeutical strategies, analyzing the current approach to entero-pancreatic neuroendocrine tumors in MEN1. Despite the fact that hyperparathyroidism is usually the first manifestation of MEN1, the penetrance of these tumors is similar. They are characterized by multiplicity of lesions, variable expression of the tumors, and propensity for malignant degeneration. Both the histological type and the size of MEN1 neuroendocrine tumors correlate with malignancy. Monitoring of pancreatic peptides and use of imaging exams allow early diagnosis and prompt surgical treatment, resulting in prevention of metastatic disease and improvement of long-term survival. Surgery is often the treatment of choice for MEN1-neuroendocrine tumors. The rationale for surgical approach is to curtail malignant progression of the disease, and to cure the associated biochemical syndrome, should it be present

  12. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography

    International Nuclear Information System (INIS)

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Dellasega, David; Cortelli, Daniele; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-01-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO 2 film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO 2 films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO 2 film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell–surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell–implant interactions. (paper)

  13. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  14. Selenium for the Prevention of Cutaneous Melanoma

    Science.gov (United States)

    Cassidy, Pamela B.; Fain, Heidi D.; Cassidy, James P.; Tran, Sally M.; Moos, Philip J.; Boucher, Kenneth M.; Gerads, Russell; Florell, Scott R.; Grossman, Douglas; Leachman, Sancy A.

    2013-01-01

    The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence. PMID:23470450

  15. 2-deoxy-d-glucose (2-DG) inhibits radiation induced carcinogenesis (skin tumors) in mice

    International Nuclear Information System (INIS)

    Singh, Saurabh; Bhuria, Vikas; Pandey, Sanjay; Saluja, Daman; Dwarakanath, B.S.

    2014-01-01

    One of the late effects of radiation exposure i.e. carcinogenesis is exemplified by atomic bomb survivors, radiotherapy patients and occupational workers. Enhanced glucose metabolism (Warburg's effect) is a fundamental metabolic change in transformed cells which drives tumorigenesis. It is suggested that Dietary Energy Restriction (DER) that targets glucose metabolism may afford protection against radiation-induced carcinogenesis. However, DER is practically difficult to sustain in humans. Therefore, we have hypothesized that the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), a potential energy restriction mimetic agent (ERMA) may impair the process of tumorigenesis as an alternative to DER. In the present studies we investigated the effects of dietary 2-DG on radiation induced papillomas in mice. Swiss albino mice (male) were irradiated with a fractionated dose schedule (1.5 Gy ionizing radiation/week for four weeks) focally on the shaved back followed by the application of tumor promoting agent (TPA) once weekly till the termination of the study. Mice were administered 2-DG (0.2% and 0.4% w/v) containing water starting a week after last irradiation. A significant reduction in the tumor incidence, tumor burden, besides increase in the latency period was observed in the 2-DG fed mice. The average tumor incidence (papillomas formation) was reduced to 25% and 37% in 0.2% and 0.4% 2-DG group respectively from 47% in the control group with a significant delay in the onset. Under these conditions, 2-DG considerably enhanced the level of reduced glutathione (GSH) with a concomitant decrease in the lipid peroxidation. 2-DG fed tumor bearing mice showed decrease in splenic CD4 + to CD8 + T-cell ratio and prevented the tumor induced augmentation of T-regulatory cells (CD4 + CD25 + ) which correlated with an increase in CD8 + (CTLs) cells. Dietary 2-DG also reduced the tumor associated and radiation induced angiogenesis. These observations suggest that dietary 2-DG

  16. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects.

    Science.gov (United States)

    Svanborg, Catharina; Agerstam, Helena; Aronson, Annika; Bjerkvig, Rolf; Düringer, Caroline; Fischer, Walter; Gustafsson, Lotta; Hallgren, Oskar; Leijonhuvud, Irene; Linse, Sara; Mossberg, Ann-Kristin; Nilsson, Hanna; Pettersson, Jenny; Svensson, Malin

    2003-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.

  17. Mushroom Ganoderma lucidum Prevents Colitis-Associated Carcinogenesis in Mice

    Science.gov (United States)

    Sliva, Daniel; Loganathan, Jagadish; Jiang, Jiahua; Jedinak, Andrej; Lamb, John G.; Terry, Colin; Baldridge, Lee Ann; Adamec, Jiri; Sandusky, George E.; Dudhgaonkar, Shailesh

    2012-01-01

    Background Epidemiological studies suggest that mushroom intake is inversely correlated with gastric, gastrointestinal and breast cancers. We have recently demonstrated anticancer and anti-inflammatory activity of triterpene extract isolated from mushroom Ganoderma lucidum (GLT). The aim of the present study was to evaluate whether GLT prevents colitis-associated carcinogenesis in mice. Methods/Principal Findings Colon carcinogenesis was induced by the food-borne carcinogen (2-Amino-1-methyl-6-phenylimidazol[4,5-b]pyridine [PhIP]) and inflammation (dextran sodium sulfate [DSS]) in mice. Mice were treated with 0, 100, 300 and 500 mg GLT/kg of body weight 3 times per week for 4 months. Cell proliferation, expression of cyclin D1 and COX-2 and macrophage infiltration was assessed by immunohistochemistry. The effect of GLT on XRE/AhR, PXR and rPXR was evaluated by the reporter gene assays. Expression of metabolizing enzymes CYP1A2, CYP3A1 and CYP3A4 in colon tissue was determined by immunohistochemistry. GLT treatment significantly suppressed focal hyperplasia, aberrant crypt foci (ACF) formation and tumor formation in mice exposed to PhIP/DSS. The anti-proliferative effects of GLT were further confirmed by the decreased staining with Ki-67 in colon tissues. PhIP/DSS-induced colon inflammation was demonstrated by the significant shortening of the large intestine and macrophage infiltrations, whereas GLT treatment prevented the shortening of colon lengths, and reduced infiltration of macrophages in colon tissue. GLT treatment also significantly down-regulated PhIP/DSS-dependent expression of cyclin D1, COX-2, CYP1A2 and CYP3A4 in colon tissue. Conclusions Our data suggest that GLT could be considered as an alternative dietary approach for the prevention of colitis-associated cancer. PMID:23118901

  18. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    Energy Technology Data Exchange (ETDEWEB)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.; Weichselbaum, R.R. [Dana Farber Cancer Institute, Boston, MA (United States)

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2 inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.

  19. Hypoxia alters the physical properties of the tumor microenvironment

    Science.gov (United States)

    Gilkes, Daniele

    Of all the deaths attributed to cancer, 90% are due to metastasis, or the spread of cancer cells from a primary tumor to distant organs, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that low oxygen states within a tumor, termed hypoxia, can alter the chemical and physical parameters of the extracellular matrix (ECM), or scaffold of the tumor tissue. These changes generate a microenvironment that may be more conducive for promoting metastasis. During tumor evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence the cells properties, such as cellular proliferation and cell motility. The talk will cover how hypoxia arises within normal tissue and also in tumors. We will cover the role of hypoxia in collagen biogenesis which influences compositional changes to the tumor microenvironment and discuss how these changes lead to a stiffer tumor stroma. The challenges in determining the influence of chemical versus physical cues on cancer progression will also be considered.

  20. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  1. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  2. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  3. Fractional laser exposure induces neutrophil infiltration (N1 phenotype into the tumor and stimulates systemic anti-tumor immune response.

    Directory of Open Access Journals (Sweden)

    Masayoshi Kawakubo

    Full Text Available Ablative fractional photothermolysis (aFP using a CO2 laser generates multiple small diameter tissue lesions within the irradiation field. aFP is commonly used for a wide variety of dermatological indications, including treatment of photodamaged skin and dyschromia, drug delivery and modification of scars due to acne, surgical procedures and burns. In this study we explore the utility of aFP for treating oncological indications, including induction of local tumor regression and inducing anti-tumor immunity, which is in marked contrast to current indications of aFP.We used a fractional CO2 laser to treat a tumor established by BALB/c colon carcinoma cell line (CT26.CL25, which expressed a tumor antigen, beta-galactosidase (beta-gal. aFP treated tumors grew significantly slower as compared to untreated controls. Complete remission after a single aFP treatment was observed in 47% of the mice. All survival mice from the tumor inoculation rejected re-inoculation of the CT26.CL25 colon carcinoma cells and moreover 80% of the survival mice rejected CT26 wild type colon carcinoma cells, which are parental cells of CT26.CL25 cells. Histologic section of the FP-treated tumors showed infiltrating neutrophil in the tumor early after aFP treatment. Flow cytometric analysis of tumor-infiltrating lymphocytes showed aFP treatment abrogated the increase in regulatory T lymphocyte (Treg, which suppresses anti-tumor immunity and elicited the expansion of epitope-specific CD8+ T lymphocytes, which were required to mediate the tumor-suppressing effect of aFP.We have demonstrated that aFP is able to induce a systemic anti-tumor adaptive immunity preventing tumor recurrence in a murine colon carcinoma in a mouse model. This study demonstrates a potential role of aFP treatments in oncology and further studies should be performed.

  4. Induction of parotitis by fine-needle aspiration in parotid Warthin's tumor.

    Science.gov (United States)

    Suzuki, Kensuke; Iwai, Hiroshi; Kaneko, Toshihiko; Sakaguchi, Mariko; Hoshino, Shoichi; Inaba, Muneo

    2009-08-01

    To estimate parotitis caused by fine-needle aspiration (FNA) in parotid Warthin tumor. Case series with chart review. Hospital records were reviewed for 104 parotid tumors (103 patients) including 35 Warthin tumors, which underwent FNA within our department. Three patients with four Warthin tumors among them noticed parotid pain, swelling, and abscess formation as a consequence of acute parotitis after FNA. Examinations of the materials obtained from tumor puncture or drainage before the start of antibiotic therapy showed no bacterial association in any patient. Two of the patients with Warthin tumor underwent parotidectomy, and the surgical specimens indicated histopathological changes with necrosis, abscess, granuloma, and the infiltration of inflammatory cells including Langhans-type multinucleated giant cells. It is conceivable that Warthin tumor bears the characteristics of inflammation induced by the FNA procedure without any relation to infection. Therefore, it may be better to avoid routine FNA and give priority to diagnostic imagings over FNA in the diagnosis of tumors strongly suspected as Warthin tumor.

  5. An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.

    Science.gov (United States)

    Liang, Ying; Liao, Bo; Zhu, Wen

    2017-01-01

    Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.

  6. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  7. Phenotypic and Functional Properties of Tumor-Infiltrating Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Gap Ryol Lee

    2017-01-01

    Full Text Available Regulatory T (Treg cells maintain immune homeostasis by suppressing excessive immune responses. Treg cells induce tolerance against self- and foreign antigens, thus preventing autoimmunity, allergy, graft rejection, and fetus rejection during pregnancy. However, Treg cells also infiltrate into tumors and inhibit antitumor immune responses, thus inhibiting anticancer therapy. Depleting whole Treg cell populations in the body to enhance anticancer treatments will produce deleterious autoimmune diseases. Therefore, understanding the precise nature of tumor-infiltrating Treg cells is essential for effectively targeting Treg cells in tumors. This review summarizes recent results relating to Treg cells in the tumor microenvironment, with particular emphasis on their accumulation, phenotypic, and functional properties, and targeting to enhance the efficacy of anticancer treatment.

  8. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    Science.gov (United States)

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  9. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  10. Pseudocapsule formation after gamma knife radiosurgery for trigeminal neurinoma. Case report

    International Nuclear Information System (INIS)

    Akiyama, Takenori; Ikeda, Eiji; Kawase, Takeshi; Yoshida, Kazunari

    2005-01-01

    A 38-year-old female presented with a trigeminal neurinoma manifesting as left facial paresthesia. The diagnosis was based on magnetic resonance (MR) imaging findings. Gamma knife radiosurgery (GKR) was performed at another hospital at her request. Fifteen months after the GKR, follow-up MR imaging revealed tumor regrowth causing extensive compression of the brainstem, and cyst formation in the tumor. Her clinical symptoms including facial pain and diplopia had worsened, so she was referred to our affiliated hospital for microsurgery. The tumor was totally resected, but the left trigeminal nerve had to be sacrificed because of pseudocapsule formation which covered both the tumor and the trigeminal nerve fibers. The diplopia disappeared, but her facial pain deteriorated after the operation. GKR can induce fibrosis or degenerative change in nearby structures, which may complicate subsequent surgery. (author)

  11. "Mixed germ cell testicular tumor" in an adult female

    Directory of Open Access Journals (Sweden)

    Udasimath Shivakumarswamy

    2012-01-01

    Full Text Available The androgen insensitivity (testicular feminization syndrome was described by Morris in phenotypic females with 46XY karyotype, presenting with primary amenorrhea, adequate breast development, and absent or scanty pubic or axillary hair. Gonads consist usually of seminiferous tubules without spermatogenesis. These patients have a 5-10% risk of developing germ cell tumors, usually after the complete development of secondary female sexual characteristics. We hereby report a case considered as a female with married life of 15 years, who was operated for severe abdominal pain. Phenotype characters were that of female. Microscopic examination of the tumor from the abdomen revealed germinoma and yolk sac tumor with adjacent seminiferous tubules. Karyotyping showed 46XY. Final diagnosis of malignant mixed germ cell tumor in androgen insensitivity syndrome was made. Surveillance may be the most appropriate option when these conditions are initially diagnosed in adulthood to prevent development of germ cell tumors.

  12. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft.

    Science.gov (United States)

    Bolleboom, Anne; de Ruiter, Godard C W; Coert, J Henk; Tuk, Bastiaan; Holstege, Jan C; van Neck, Johan W

    2018-02-09

    OBJECTIVE Traumatic neuromas may develop after nerve injury at the proximal nerve stump, which can lead to neuropathic pain. These neuromas are often resistant to therapy, and excision of the neuroma frequently leads to recurrence. In this study, the authors present a novel surgical strategy to prevent neuroma formation based on the principle of centro-central anastomosis (CCA), but rather than directly connecting the nerve ends to an autograft, they created a loop using a 3D-printed polyethylene Y-shaped conduit with an autograft in the distal outlets. METHODS The 3D-printed Y-tube with autograft was investigated in a model of rat sciatic nerve transection in which the Y-tube was placed on the proximal sciatic nerve stump and a peroneal graft was placed between the distal outlets of the Y-tube to form a closed loop. This model was compared with a CCA model, in which a loop was created between the proximal tibial and peroneal nerves with a peroneal autograft. Additional control groups consisted of the closed Y-tube and the extended-arm Y-tube. Results were analyzed at 12 weeks of survival using nerve morphometry for the occurrence of neuroma formation and axonal regeneration in plastic semi-thin sections. RESULTS Among the different surgical groups, the Y-tube with interposed autograft was the only model that did not result in neuroma formation at 12 weeks of survival. In addition, a 13% reduction in the number of myelinated axons regenerating through the interposed autograft was observed in the Y-tube with autograft model. In the CCA model, the authors also observed a decrease of 17% in the number of myelinated axons, but neuroma formation was present in this model. The closed Y-tube resulted in minimal nerve regeneration inside the tube together with extensive neuroma formation before the entrance of the tube. The extended-arm Y-tube model clearly showed that the majority of the regenerating axons merged into the Y-tube arm, which was connected to the autograft

  13. Locally aggressive and multifocal phosphaturic mesenchymal tumors: two unusual cases of tumor-induced osteomalacia.

    Science.gov (United States)

    Higley, Meghan; Beckett, Brooke; Schmahmann, Sandra; Dacey, Elizabeth; Foss, Erik

    2015-12-01

    Tumor-induced osteomalacia (TIO) has long been recognized as a clinical paraneoplastic syndrome. The identification of a unique histopathologic entity, the phosphaturic mesenchymal tumor (PMT), as a distinct etiology for TIO has been a more recent discovery. The majority of published cases describe a solitary, non-aggressive appearing soft tissue or osseous lesions in patients with osteomalacia; aggressive appearing or multifocal lesions appear to be exceedingly rare. These tumors characteristically secrete fibroblast growth factor 23 (FGF23). Elevated serum levels of FGF23 result in phosphate wasting and osteomalacia. In the majority of cases, laboratory abnormalities and clinical signs and symptoms of osteomalacia precede identification of the causative lesion by years. Following diagnosis, complete resection with wide margins to prevent local recurrence is most often curative. Imaging characteristics of PMT are diverse and remain incompletely defined, as the majority of previous publications are outside of the radiologic literature. We present multiple imaging modalities in two cases of patients with debilitating osteomalacia and unusual appearing PMTs: one with a locally aggressive lesion leading to pathologic fracture, the second presenting with exceedingly rare multifocal PMT.

  14. Tumor-educated myeloid cells: impact the micro- and macroenvironment.

    Science.gov (United States)

    Becker, Jürgen C

    2014-03-01

    Immune escape mechanisms of cancers include some of the mechanisms normally used for immune homeostasis, particular those preventing autoimmunity; one of these is the polarisation of myeloid cells. Thereby, tumors, i.e. the cancerous and stromal cells, also condition distant sites like spleen and bone marrow via soluble factors and membrane vesicles such as exosomes in order to create a tumor-educated macroenvironment. Albeit these mechanisms are currently in the focus of (tumor-)immunologic research, the first evidence had been published almost 40 years ago. One of these early reports will be discussed here. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Moving Toward Bioadjuvant Approaches to Head and Neck Cancer Prevention

    International Nuclear Information System (INIS)

    Saba, Nabil F.; Hammond, Anthea; Shin, Dong M.; Khuri, Fadlo R.

    2007-01-01

    Head and neck squamous cell carcinoma affects >45,000 Americans annually. Patients who are successfully treated for their primary tumor are at high risk of developing a second primary tumor, making effective preventive strategies highly desirable for this disease. Although a landmark study in 1990 suggested some benefit of high-dose retinoids in head and neck cancer prevention, subsequent trials using more tolerable doses have shown limited clinical success. Newer preventive strategies have included bioadjuvant therapy combining retinoids with interferon and α-tocopherol, combinations of molecularly targeted agents, and oncolytic viruses. Furthermore, considerable evidence has supported a cancer protective role for several nutrients, including green tea and curcumin analogs. Natural compounds such as these with favorable long-term safety profiles might be particularly suited to the cancer prevention setting, in which patients will usually tolerate only moderate risk and toxicity

  16. Naked DNA Immunization for Prevention of Prostate Cancer in a Dunning Rat Prostate Tumor Model

    National Research Council Canada - National Science Library

    Mincheff, Milcho

    2003-01-01

    ...: H-PSMA-T, R-"PSMA"-T, H-PSA, H-PSA-T, H-PAP-T and R"PSMA"-S. Preliminary studies using the Copenhagen rat tumor prostate model showed uniform tumor development in rats that were injected subcutaneously with 100 000 AT3B-lPSMA,PSA cells...

  17. Adapting an Evidence-Based HIV Prevention Intervention Targeting High-Risk Migrant Workers: The Process and Outcome of Formative Research

    Directory of Open Access Journals (Sweden)

    Roman eShrestha

    2016-03-01

    Full Text Available BackgroundHistorically, HIV prevention efforts in Nepal have primarily focused on heterosexual transmission, particularly, among female sex workers (FSWs and their male clients, with little acknowledgment of the contribution of migrant workers to the epidemic. The very few HIV prevention efforts that have been attempted with migrants have been unsuccessful primarily due to stigma, discrimination, and insufficient availability of culturally relevant evidence-based interventions (EBIs. As an initial step toward addressing this unmet need, we conducted formative research aimed at adapting an evidence-based HIV risk reduction intervention for implementation among migrants in Nepal.MethodsOur formative work involved a critical examination of established EBIs and associated published reports complemented by data elicited through structured interviews with members of the target population and key stakeholders. Between July and August, 2014, we conducted structured one-on-one interview with migrants (n = 5 and key stakeholder (e.g., counselors, field workers, and project coordinator; n = 5, which focused on the HIV risk profiles of the migrants and on ways to optimize intervention content, delivery, and placement within the community-based settings. Data analysis followed a thematic analysis approach utilizing several qualitative data analysis techniques, including inductive analysis, cross-case analysis, and analytical coding of textual data.ResultsBased on formative research, we adapted the Holistic Health Recovery Program (HHRP, an EBI, to consist of four 30-minute sessions that cover a range of topics relevant to migrants in Nepal. The intervention was adapted with flexibility so that it could be provided in an individual format, implemented within or outside the CBO, and can be delivered in either consecutive or weekly sessions based on time constraints. ConclusionsThis paper provides a detailed description of the formative research process

  18. Application of Sodium Selenite in the Prevention and Treatment of Cancers

    Directory of Open Access Journals (Sweden)

    Marek Kieliszek

    2017-10-01

    Full Text Available Selenium is an essential trace element that occurs in nature, in both inorganic and organic forms. This element participates in numerous biochemical processes, including antioxidant potential, but the mechanism of its anti-cancer action is still not well known. It should be noted that the anti-cancer properties of selenium depends on its chemical form, therapeutic doses, and the tumor type. Higher nutritional doses of selenium can stimulate human immune system. There are several hypotheses concerning the anticancer activity of selenium, including oxidation of sulfhydryl groups in proteins causing their conformational alterations. Conformational changes in proteins have the ability to weaken the activity of enzymes involved in the metabolism of cancer cells. In case of human fibrinogen sodium selenite, but not selenate, it inhibits protein disulfide exchange reactions, thus preventing formation of a hydrophobic polymer termed parafibrin, circulatory accumulation, of which is associated with numerous degenerative diseases. Parafibrin can specifically form a protein coat around tumor cells that is completely resistant to degradation induced with lymphocyte protease. In this way, cancer cells become protected against destruction by the organism’s immune system. Other possible mechanisms of anticancer action of selenium are being still investigated.

  19. PENGOBATAN PENYAKIT TUMOR MAMMAE MELALAUI OPERASI (MATEKTOMI DAN OVARIOHISTEREKTOMI DAN KOMBINASINYA (TANAMAN HERBAL PADA HEWAN

    Directory of Open Access Journals (Sweden)

    Gunanati Soedjono

    2009-04-01

    Full Text Available Tumor or neuplasm can be meant as a abnormal and uncontrol growth of the transformation tissue or the change of one or main location of the body. This degenerative desease is one of the deseases in the animal pet especially dog and cat. Generaly this tumor deseases can be used with therapy using surgery and usually will relapse after six months. From our previous research had succeded to examp by using activity in vitro antiproliverati from extract plant (nusa indah, blustru and temu putih combined with recombinanct interferon dog ( rCaIFN. The above phenomenon indicate a new hope to make a therapy for tumor desease, especially for dog and cat and may be in the future can be used for human. In this research we used 21 female rabbits and divided into 7 treatment groups, consisted of 3 rabits ie : group A. negative control; B. surgery, preventive and curative curcumine; C. positive control; D. positive control and surgery; E. surgery and preventive zedoaria capsul; F. surgery , preventive and curative zedoaria capsule and G. surgery and curative zedoaria capsule . Induction with carcinogen (MNU treated every weeks during 3 weeks. Surgery is executed in the 5 weeks and giving capsule zedoaria is executed every day for 4 weeks (preventive or curative and 8 weeks (preventive and curative. Result of the research indicated that mammae tumor has been made successfully by MNU (n-metil-n-nitrosuria induction to rabit and capsule zedoaria and it has been treated by doing surgery therapy (mastectomy and ovariohisterectomy. Also decombination of zedoaria capsule. The result of the research indicated lindrance of tumorgenesis to the group which is given by zedoaria capsule. From the clinical picture shows that zedoaria capsule does not give negative effect to clinical picture (temperature, respiratory frequency and heart rate/ still normal to all the groups. Tumor induction with (MNO at mammary gland will occur allegic reaction inflammatory which is the

  20. Proinflammatory Adhesion Molecules Facilitate Polychlorinated Biphenyl–Mediated Enhancement of Brain Metastasis Formation

    OpenAIRE

    Sipos, Eszter; Chen, Lei; András, Ibolya E.; Wrobel, Jagoda; Zhang, Bei; Pu, Hong; Park, Minseon; Eum, Sung Yong; Toborek, Michal

    2012-01-01

    Polychlorinated biphenyls (PCBs) are environmental toxicants that cause vascular inflammation and facilitate the development of brain metastases. The crucial event in metastasis formation is adhesion of blood-borne tumor cells to the vascular endothelium, followed by their transcapillary migration. The aim of the present study was to examine the mechanisms of PCB118-induced brain metastasis formation at the blood-brain barrier level with the focus on tumor cell adhesion to the brain endotheli...

  1. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  2. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available BACKGROUND: The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.

  3. Clinical results of BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kageji, Teruyoshi; Mizobuchi, Yoshifumi; Kumada, Hiroaki; Nakagawa, Yoshiaki

    2009-01-01

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  4. Overview of gastrointestinal cancer prevention in Asia.

    Science.gov (United States)

    Park, Jong-Min; Lee, Ho-Jae; Yoo, Jun Hwan; Ko, Weon Jin; Cho, Joo Young; Hahm, Ki Baik

    2015-12-01

    "War on cancer" was declared through the National Cancer Act by President Richard Nixon in 1971, but cancer statistics from the American Cancer Society and other sources indicated the failure of this war, suggesting instead focus on the message that a "prevention strategy" might be much more effective than cancer treatment. While cancer statistics notoriously showed sharp increases in incidence as well as in mortality concurrent with economic growth in Asia, fortunately Asian countries benefit from plentiful resources of natural compounds, which can prevent cancer. Just like cancer chemotherapeutics targeted to kill cancer cells in Western countries, natural agents activating molecular mechanisms for cancer prevention, reversion of premalignant tumors, and even ablation of cancer stem cells, are very abundant in Asia. Currently, these natural agents are under very active investigations targeting the hallmarks of cancer prevention, including selective induction of apoptosis in cancer cells, suppression of growth factors or their signaling, suppression of cell proliferation and of cancer-promoting angiogenesis, induction of mesenchymal-epithelial transition, and disruption of the tumor microenvironment, developing promising cancer preventive agents. However, Asia is the most populous continent in the world and some Asian countries do not have the resources to implement cancer screening programs for early detection or treatment. In addition, despite the excellent cancer preventive screening strategies in some Asian countries, well-designed clinical trials for cancer prevention are somewhat delayed compared to Western countries. In this review article, several phytochemicals/phytoceuticals produced and studied in different Asian countries will be introduced, including Korean red ginseng (pride of Korea), curcumin (Indian spice for life), black or green tea (popular in Japan/Sri Lanka), genistein from tofu (famous Chinese food), diallylsulfide or S-allylcysteine (garlic

  5. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    International Nuclear Information System (INIS)

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-01-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell [ 3 H]thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by [ 3 H]thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by [ 3 H]thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity

  6. Brown tumor of the patella caused by primary hyperparathyroidism: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Tomoko; Mawatari, Taro; Ikemura, Satoshi; Matsui, Gen; Iguchi, Takahiro; Mitsuyasu, Hiroaki [Orthopaedic Surgery, Hamanomachi Hospital, Fukuoka (Japan)

    2015-06-15

    It has been reported that the common sites of brown tumors are the jaw, pelvis, ribs, femurs and clavicles. We report our experience in a case of brown tumor of the patella caused by primary hyperparathyroidism. An initial radiograph and CT showed an osteolytic lesion and MR images showed a mixed solid and multiloculated cystic tumor in the right patella. One month after the parathyroidectomy, rapid bone formation was observed on both radiographs and CT images.1.

  7. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    International Nuclear Information System (INIS)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P.; Gelman, Andrew E.; Jarzembowski, Jason A.; Zhang, Hao; Pritchard, Kirkwood A. Jr.; Vikis, Haris G.

    2014-01-01

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting

  8. The role of neutrophil myeloperoxidase in models of lung tumor development.

    Science.gov (United States)

    Rymaszewski, Amy L; Tate, Everett; Yimbesalu, Joannes P; Gelman, Andrew E; Jarzembowski, Jason A; Zhang, Hao; Pritchard, Kirkwood A; Vikis, Haris G

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  9. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P. [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Gelman, Andrew E. [Department of Surgery, Washington University in St. Louis, St. Louis, MO 63130 (United States); Jarzembowski, Jason A. [Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Zhang, Hao; Pritchard, Kirkwood A. Jr. [Department of Surgery and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Vikis, Haris G., E-mail: hvikis@mcw.edu [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  10. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Directory of Open Access Journals (Sweden)

    Amy L. Rymaszewski

    2014-05-01

    Full Text Available Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA-initiated, butylated hydroxytoluene (BHT-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC, a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  11. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    Science.gov (United States)

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inui, Shoki; Minami, Kazumasa; Ito, Emiko; Imaizumi, Hiromasa; Mori, Seiji; Koizumi, Masahiko; Fukushima, Satsuki; Miyagawa, Shigeru; Sawa, Yoshiki; Matsuura, Nariaki

    2017-01-01

    Induced pluripotent stem (iPS) cells have demonstrated they can undergo self-renewal, attain pluripotency, and differentiate into various types of functional cells. In clinical transplantation of iPS cells, however, a major problem is the prevention of tumorigenesis. We speculated that tumor formation could be inhibited by means of irradiation. Since the main purpose of this study was to explore the prevention of tumor formation in human iPS (hiPS) cells, we tested the effects of irradiation on tumor-associated factors such as radiosensitivity, pluripotency and cell death in hiPS cells. The irradiated hiPS cells showed much higher radiosensitivity, because the survival fraction of hiPS cells irradiated with 2 Gy was < 10%, and there was no change of pluripotency. Irradiation with 2 and 4 Gy caused substantial cell death, which was mostly the result of apoptosis. Irradiation with 2 Gy was detrimental enough to cause loss of proliferation capability and trigger substantial cell death in vitro. The hiPS cells irradiated with 2 Gy were injected into NOG mice (NOD/Shi-scid, IL-2 Rγnull) for the analysis of tumor formation. The group of mice into which hiPS cells irradiated with 2 Gy was transplanted showed significant suppression of tumor formation in comparison with that of the group into which non-irradiated hiPS cells were transplanted. It can be presumed that this diminished rate of tumor formation was due to loss of proliferation and cell death caused by irradiation. Our findings suggest that tumor formation following cell therapy or organ transplantation induced by hiPS cells may be prevented by irradiation.

  13. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    International Nuclear Information System (INIS)

    Bodvarsdottir, Sigridur K.; Steinarsdottir, Margret; Bjarnason, Hordur; Eyfjord, Jorunn E.

    2012-01-01

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and γ-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  14. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  15. Selenium for the Prevention of Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Douglas Grossman

    2013-03-01

    Full Text Available The role of selenium (Se supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.

  16. Steps in the design, development and formative evaluation of obesity prevention-related behavior change trials.

    Science.gov (United States)

    Baranowski, Tom; Cerin, Ester; Baranowski, Janice

    2009-01-21

    Obesity prevention interventions through dietary and physical activity change have generally not been effective. Limitations on possible program effectiveness are herein identified at every step in the mediating variable model, a generic conceptual framework for understanding how interventions may promote behavior change. To minimize these problems, and thereby enhance likely intervention effectiveness, four sequential types of formative studies are proposed: targeted behavior validation, targeted mediator validation, intervention procedure validation, and pilot feasibility intervention. Implementing these studies would establish the relationships at each step in the mediating variable model, thereby maximizing the likelihood that an intervention would work and its effects would be detected. Building consensus among researchers, funding agencies, and journal editors on distinct intervention development studies should avoid identified limitations and move the field forward.

  17. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum.

    Science.gov (United States)

    Wefers, Annika K; Lindner, Sven; Schulte, Johannes H; Schüller, Ulrich

    2017-02-01

    LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.

  18. Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice.

    Science.gov (United States)

    Xu, X; Ehdaie, B; Ohara, N; Yoshino, T; Deng, C-X

    2010-02-04

    Mutations of SMAD4/DPC4 are found in about 60% of human invasive pancreatic ductal adenocarcinomas (PDACs); yet, the manner in which SMAD4 deficiency enhances tumorigenesis remains elusive. Using a Cre-LoxP approach, we generated a mutant mouse carrying a targeted deletion of Smad4 in the pancreas. We showed that the absence of Smad4 alone did not trigger pancreas tumor formation; however, it increased the expression of an inactivated form of Pten, suggesting a role of Pten in preventing Smad4-/- cells from undergoing malignancy. To investigate this, we disrupted both Pten and Smad4. We showed that Pten deficiency initiated widespread premalignant lesions, and a low tumor incidence that was significantly accelerated by Smad4-deficiency. The absence of Smad4 in a Pten-mutant background enhanced cell proliferation and triggered transdifferentiation from acinar, centroacinar and islet cells, accompanied by activation of Notch1 signaling. We showed that all tumors developed in the Smad4/Pten-mutant pancreas exhibited high levels of pAKT and mTOR, and that about 50 and 83% of human pancreatic cancers examined showed increased pAKT and pmTOR, respectively. Besides the similarity in gene expression, the pAKT and/or pmTOR-positive human PDACs and mouse pancreatic tumors also shared some histopathological similarities. These observations indicate that Smad4/Pten-mutant mice mimic the tumor progression of human pancreatic cancers that are driven by activation of the AKT-mTOR pathway, and uncovered a synergistic action of Smad4 and Pten in repressing pancreatic tumorigenesis.

  19. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis

    Directory of Open Access Journals (Sweden)

    Nipin Sp

    2018-06-01

    Full Text Available Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36 is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1, and then interacting with transforming growth factor beta 1 (TGFβ1. CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin’s anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3 rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB, suggesting that nobiletin also acts through the CD36/ (STAT3/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.

  20. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts.

    Science.gov (United States)

    Peinado, Héctor; Lavotshkin, Simon; Lyden, David

    2011-04-01

    Metastasis is a multistep process that requires acquisition of malignant cell phenotypes which allow tumor cells to escape from the primary tumor site. Each of the steps during metastatic progression involves co-evolution of the tumor and its microenvironment. Although tumor cells are the driving force of metastasis, new findings suggest that the host cells within the tumor microenvironment play a key role in influencing metastatic behavior. Many of these contributing cells are derived from the bone marrow; in particular, recruited bone marrow progenitor cells generate the "pre-metastatic niche" to which the tumor cells metastasize. Analysis of the molecular mechanisms involved in pre-metastatic niche formation has revealed that secreted soluble factors are key players in bone marrow cell mobilization during metastasis. In addition, membrane vesicles derived from both tumor and host cells have recently been recognized as new candidates with important roles in the promotion of tumor growth and metastasis. This review describes old ideas and presents new insights into the role of tumor and bone marrow-derived microvesicles and exosomes in pre-metastatic niche formation and metastasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Fever and abdominal tumoral masses

    Directory of Open Access Journals (Sweden)

    Augustin C. Dima

    2016-04-01

    Full Text Available 49 year-old man presented to our clinic for pain in the right hypochondrium, diarrhea, and fever. The clinical examination highlights a tumoral formation in the right side of the abdomen, with firm consistency, poorly defined margins, and present mobility in the deep structures. On biological exams, leukocytosis with neutrophilia, inflammatory syndrome, and hypoalbuminaemia were identified. The first computed tomography exam described parietal thickening of the ascending colon, with infiltrative aspect, and multiple local adenopathies, lomboaortic and interaortocave. Moreover, four nodular liver tumors, with hypodense image in native examination, were identified. The lab tests for infectious diseases were all inconclusives: three hemocultures, three stool samples, and three coproparasitological exams were all negatives. Interdisciplinary examinations, internal medicine and infectious diseases, sustained the diagnosis of colonic neoplasm with peritumoral abscess and liver pseudo-tumoral masses. The colonoscopy did not revealed any bowel lesions relevant for neoplasia. This result as well as the bio-clinical context imposed abstention from surgical intervention. Wide spectrum antibiotics and symptomatic treatment were initiated. But, ten days after hospitalization, the second computed tomography exam showed reduction of the ascending colon wall thickness associated with significant increases of the liver tumors is so revealed. The investigations for other possible etiologies were so continued.

  2. Tumor initiating cells in malignant gliomas: biology and implications for therapy.

    Science.gov (United States)

    Hadjipanayis, Costas G; Van Meir, Erwin G

    2009-04-01

    A rare subpopulation of cells within malignant gliomas, which shares canonical properties with neural stem cells (NSCs), may be integral to glial tumor development and perpetuation. These cells, also known as tumor initiating cells (TICs), have the ability to self-renew, develop into any cell in the overall tumor population (multipotency), and proliferate. A defining property of TICs is their ability to initiate new tumors in immunocompromised mice with high efficiency. Mounting evidence suggests that TICs originate from the transformation of NSCs and their progenitors. New findings show that TICs may be more resistant to chemotherapy and radiation than the bulk of tumor cells, thereby permitting recurrent tumor formation and accounting for the failure of conventional therapies. The development of new therapeutic strategies selectively targeting TICs while sparing NSCs may provide for more effective treatment of malignant gliomas.

  3. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis.

    Science.gov (United States)

    Hu, Zhiwei; Brooks, Samira A; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Prudhomme, Kalan R; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Lowe, Leroy; Jensen, Lasse; Bisson, William H; Kleinstreuer, Nicole

    2015-06-01

    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    Science.gov (United States)

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  5. Physiological levels of Pik3ca(H1047R mutation in the mouse mammary gland results in ductal hyperplasia and formation of ERα-positive tumors.

    Directory of Open Access Journals (Sweden)

    Anjali Tikoo

    Full Text Available PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin(-; CD29(lo; CD24(+; CD61(+ cell population. The Pik3ca(H1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months. This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3ca(H1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3ca(H1047R mutation in mammary tumorigenesis both in vivo and in vitro.

  6. Efficacy of silver/hydrophilic poly(p-xylylene) on preventing bacterial growth and biofilm formation in urinary catheters.

    Science.gov (United States)

    Heidari Zare, Hamideh; Juhart, Viktorija; Vass, Attila; Franz, Gerhard; Jocham, Dieter

    2017-01-18

    Catheter associated urinary tract infections (CAUTI), caused by several strains of bacteria, are a common complication for catheterized patients. This may eventually lead to a blockage of the catheter due to the formation of a crystalline or amorphous biofilm. Inhibiting bacteria should result in a longer application time free of complaints. This issue has been investigated using an innovative type of silver-coated catheter with a semipermeable cap layer to prevent CAUTI. In this work, two different types of silver catheters were investigated, both of which were capped with poly(p-xylylene) (PPX-N) and exhibited different surface properties that completely changed their wetting conduct with water. The contact angle of conventionally deposited PPX-N is approximately 80°. After O 2 plasma treatment, the contact angle drops to approximately 30°. These two systems, Ag/PPX-N and Ag/PPX-N-O 2 , were tested in synthetic urine at a body temperature of 37 °C. First, the optical density and the inhibition zones of both bacteria strains (Escherichia coli and Staphylococcus cohnii) were examined to confirm the antibacterial effect of these silver-coated catheters. Afterward, the efficacy of silver catheters with different treatments of biofilm formed by E. coli and S. cohnii were tested with crystal violet staining assays. To estimate the life cycles of silver/PPX-catheters, the eluted amount of silver was assessed at several time intervals by anodic stripping voltammetry. The silver catheter with hydrophilic PPX-N coating limited bacterial growth in synthetic urine and prevented biofilm formation. The authors attribute the enhanced bacteriostatic effect to increased silver ion release detected under these conditions. With this extensive preparatory analytic work, the authors studied the ability of the two different cap layers (without silver), PPX-N and oxygen plasma treated PPX-N, to control the growth of a crystalline biofilm by measuring the concentrations of the Ca 2

  7. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    Full Text Available Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS virus / tumor virus receptor-A (tv-a transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  8. Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice

    Directory of Open Access Journals (Sweden)

    Marcel A. Deken

    2016-12-01

    Full Text Available Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies.

  9. Using theory-based messages to motivate U.S. pregnant women to prevent cytomegalovirus infection: results from formative research.

    Science.gov (United States)

    Levis, Denise M; Hillard, Christina L; Price, Simani M; Reed-Gross, Erika; Bonilla, Erika; Amin, Minal; Stowell, Jennifer D; Clark, Rebekah; Johnson, Delaney; Mask, Karen; Carpentieri, Cynthia; Cannon, Michael J

    2017-12-14

    An estimated 1 in 150 infants is born each year with congenital cytomegalovirus (CMV); nearly 1 in 750 suffers permanent disabilities. Congenital CMV is the result of a pregnant woman becoming infected with CMV. Educating pregnant women about CMV is currently the best approach to prevention. Limited research is available on how to effectively communicate with women about CMV. We conducted formative research on fear appeals theory-based messages about CMV and prevention with U.S. women. Fear appeal theories suggest that message recipients will take action if they feel fear. First, we conducted in-depth interviews (N = 32) with women who had young children who tested positive for CMV. Second, we conducted eight focus groups (N = 70) in two phases and two cities (Phase 2: Atlanta, GA; Phase 3: San Diego, CA) with pregnant women and non-pregnant women who had young children. Few participants knew about CMV before the focus groups. Participants reviewed and gave feedback on messages created around fear appeals theory-based communication concepts. The following concepts were tested in one or more of the three phases of research: CMV is severe, CMV is common, CMV is preventable, CMV preventive strategies are similar to other behavior changes women make during pregnancy, CMV preventive strategies can be incorporated in moderation to reduce exposure, and CMV is severe but preventable. Participants recommended communicating that CMV is common by using prevalence ratios (e.g., 1 in 150) or comparing CMV to other well-known disabilities. To convey the severity of CMV, participants preferred stories about CMV along with prevention strategies. Participants also welcomed prevention strategies when it included a message about risk reduction. In general, participants said messages were motivating, even if they felt that it could be difficult to make certain behavior changes. Findings from this research can contribute to future efforts to educate pregnant women about CMV

  10. Anti-tumor necrosis factor treatment in cherubism--clinical, radiological and histological findings in two children.

    Science.gov (United States)

    Hero, M; Suomalainen, A; Hagström, J; Stoor, P; Kontio, R; Alapulli, H; Arte, S; Toiviainen-Salo, S; Lahdenne, P; Mäkitie, O

    2013-01-01

    Cherubism is a rare and disfiguring genetic disorder with excessive bone resorption and multilocular lesions in the mandible and/or maxilla. The disease-causing gain-of-function mutations in the SH3-binding protein 2 (SH3BP2) gene result in increased myeloid cell responses to macrophage colony stimulating factor and RANK ligand, formation of hyperactive osteoclasts (giant cells), and hyper-reactive macrophages that produce excessive amounts of the inflammatory cytokine tumor necrosis factor α (TNF-α). Recent findings in the cherubism mouse model suggest that TNF-α plays a major role in disease pathogenesis and that removal of TNF-α prevents development of the bone phenotype. We treated two children with cherubism with the TNF-α antagonist adalimumab for approximately 2.5 years and collected extensive clinical, radiological and histological follow-up data during the treatment. Histologically the treatment resulted in a significant reduction in the number of multinucleated giant cells and TNF-α staining positivity in both patients. As evaluated by computed tomography and magnetic resonance imaging, the lesions in Patient 1 showed either moderate enlargement (mandibular symphysis) or remained stable (mandibular rami and body, the maxilla). In Patient 2, the lesions in mandibular symphysis showed enlargement during the first 8 months of treatment, and thereafter the lesions remained unchanged. Bone formation and resorption markers remained unaffected. The treatment was well tolerated. Based on our findings, TNF-α antagonist may decrease the formation of pathogenic giant cells, but does not result in lesion regression or prevent lesion expansion in active cherubism. TNF-α modulator treatment thus does not appear to provide sufficient amelioration for patients suffering from cherubism. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  12. The burden of chronic pain after major head and neck tumor therapy

    Directory of Open Access Journals (Sweden)

    Abdullah Sulieman Terkawi

    2017-01-01

    Conclusion: Our study highlighted the high burden of chronic pain after therapy for major head and neck tumors. We identified demographic and clinical factors that are associated with the presence of chronic pain. Further studies are required to better understand the risk factors to implement strategies to prevent, alleviate, and treat chronic pain associated with major head and neck tumor therapies.

  13. Induction of highly immunogenic variants of Lewis lung carcinoma tumor by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Peppoloni, S.; Herberman, R.B.; Gorelik, E.

    1985-01-01

    This study was undertaken to determine whether in vitro treatment of Lewis lung carcinoma (3LL) cells with ultraviolet (UV) radiation could increase their immunogenicity. Tumor cells were irradiated with UV light from a germicidal lamp (254 nm; UV-C) at a dose of 720 J/sq m. After 2 weeks of culture, the surviving cell population was cloned by limiting dilution. Cell suspensions of each clone were injected intrafootpad in C57BL/6 mice at a dose of 2.5 X 10(5) cells per mouse. Eighty independent clones were tested. Fifty-one clones showed decreased tumorigenicity and failed to grow in 20 to 95% of immunocompetent mice, whereas they produced tumors in 100% of irradiated (550 R) and athymic nude mice. These clones were designated tum- (nontumorigenic) clones. In contrast, all 25 clones selected from the untreated parental 3LL induced progressively growing tumors in 100% of the mice. After two courses of UV treatment, the uncloned 3LL population was rejected in 45% of inoculated mice. Mice rejecting an inoculum of a tum- clone were completely resistant to subsequent challenge with higher doses of the same or unrelated tum- clones. This resistance was fully expressed even after irradiation of immune mice with 550 R. Mice immune to a tum- clone also were able to prevent the growth of various tum+ clones or untreated 3LL tumor cells. When tum- and tum+ clone cells were simultaneously inoculated intrafootpad in opposite legs, rejection of tum- clone resulted also in the prevention of the growth of tum+ clone. Spleen cells of immune mice caused rapid elimination of radiolabeled 3LL tumor cells from the place of their inoculation (intrafootpad) and prevented tumor growth

  14. Advancement of researches on the malignant tumor radio-genetic therapy

    International Nuclear Information System (INIS)

    Tian Yue; Su Chenghai

    2008-01-01

    Radiotherapy is one of the routine methods of malignant tumor treatment and used in clinical many years, while gene therapy is one of the new therapy. But the formation of tumor is the complicated process effected by many factors and many genes. The effect of polygene therapy is not ideal. Therefore, radio-genetic therapy is the hot spot of the present study and will become one of the important direction of cancer therapy. (authors)

  15. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  16. Pyrrolizidine Alkaloids: Metabolic Activation Pathways Leading to Liver Tumor Initiation.

    Science.gov (United States)

    Fu, Peter P

    2017-01-17

    Pyrrolizidine alkaloids (PAs) and PA N-oxides are a class of phytochemical carcinogens contained in over 6000 plant species spread around the world. It has been estimated that approximately half of the 660 PAs and PA N-oxides that have been characterized are cytotoxic, genotoxic, and tumorigenic. It was recently determined that a genotoxic mechanism of liver tumor initiation mediated by PA-derived DNA adducts is a common metabolic activation pathway of a number of PAs. We proposed this set of PA-derived DNA adducts could be a common biological biomarker of PA exposure and a potential biomarker of PA-induced liver tumor formation. We have also found that several reactive secondary pyrrolic metabolites can dissociate and interconvert to other secondary pyrrolic metabolites, resulting in the formation of the same exogenous DNA adducts. This present perspective reports the current progress on these new findings and proposes future research needed for obtaining a greater understanding of the role of this activation pathway and validating the use of this set of PA-derived DNA adducts as a biological biomarker of PA-induced liver tumor initiation.

  17. Tumor odontógeno adenomatoide en región mandibular Adenomatoid odontogenic tumor in mandibular region

    Directory of Open Access Journals (Sweden)

    Ernesto Sánchez Cabrales

    2010-12-01

    Full Text Available El tumor odontogénico adenomatoide es un tumor poco frecuente derivado del epitelio odontontogénico, que contiene estructuras canaliculares con modificaciones inductivas de intensidad variable en el tejido conjuntivo. Es una lesión de crecimiento lento y poco invasiva pero que se puede asemejar a otras lesiones odontógenas de mayor agresividad como el quiste dentígero y el ameloblastoma entre otros. Su localización clásica (área de caninos superiores nos orienta al diagnóstico y su patrón histológico ductiforme es muy propio de este tumor. Otros tumores que se encuentran dentro de este grupo son el fibroma ameloblástico, el odontoameloblastoma, el quiste odontógeno calcificante y los odontomas compuesto y complejo. Este grupo de lesiones puede o no tener formaciones de tejido duro dental dentro de ellos. Por esta razón, se presenta un paciente con este tipo de tumor, al que se le realizó estudio histopatológico, se revisó la literatura acerca de este tumor odontogénico benigno y sus características clínicas, radiográficas, tratamiento, así como los diagnósticos diferenciales que se deben tener en cuenta.The adenomatoid odontogenic tumor is an uncommon neoplasm derivative of the odontogenic epithelium containing canalicular structures with inductor modifications of variable intensity in the conjunctival tissue. It is a slow growth lesion and no much invasive but that may to be similar to other odontogenic lesions more aggressive including the dentigerous cyst and the ameloblastoma among others. Its classical location (upper canine area guides us to diagnosis and its duct histological pattern is very typical of this tumor. Other tumors included in this group are the ameloblastic fibroma, the ameloblastic odontoma, the calcified odontogenic cyst and composed and complex odontomas. This group of lesions may or not to have formations of hard tissue inside. Thus, authors present the case of a patient presenting with this type of

  18. Congenital occipital encephalocele with Dabska tumor: report of an unusual case.

    Science.gov (United States)

    Rumana, M; Khursheed, N; Ramzan, A

    2012-01-01

    Encephaloceles arise from developmental defects in neural tube formation. These lesions contain brain and meninges which herniate through a defect in the skull. These may present as isolated malformations or rarely be associated with brain tumors. We hereby discuss a case of an unusual association of an occipital encephalocele with papillary intralymphatic angioendothelioma or Dabska tumor arising from the sac itself. The patient underwent resection of the herniated brain tissue with repair and closure of the dural defect. Histopathological examination revealed evidence of Dabska tumor from the sac. This is the first case report of the association of an occipital encephalocele with a rare vascular tumor, i.e. papillary intralymphatic angioendothelioma. Copyright © 2012 S. Karger AG, Basel.

  19. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression.

    Science.gov (United States)

    Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L

    2018-05-01

    B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.

  20. Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.

    Science.gov (United States)

    Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias

    2003-10-20

    Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.

  1. Steps in the design, development and formative evaluation of obesity prevention-related behavior change trials

    Directory of Open Access Journals (Sweden)

    Baranowski Janice

    2009-01-01

    Full Text Available Abstract Obesity prevention interventions through dietary and physical activity change have generally not been effective. Limitations on possible program effectiveness are herein identified at every step in the mediating variable model, a generic conceptual framework for understanding how interventions may promote behavior change. To minimize these problems, and thereby enhance likely intervention effectiveness, four sequential types of formative studies are proposed: targeted behavior validation, targeted mediator validation, intervention procedure validation, and pilot feasibility intervention. Implementing these studies would establish the relationships at each step in the mediating variable model, thereby maximizing the likelihood that an intervention would work and its effects would be detected. Building consensus among researchers, funding agencies, and journal editors on distinct intervention development studies should avoid identified limitations and move the field forward.

  2. Formation and role of exosomes in cancer.

    Science.gov (United States)

    Brinton, Lindsey T; Sloane, Hillary S; Kester, Mark; Kelly, Kimberly A

    2015-02-01

    Exosomes offer new insight into cancer biology with both diagnostic and therapeutic implications. Because of their cell-to-cell communication, exosomes influence tumor progression, metastasis, and therapeutic efficacy. They can be isolated from blood and other bodily fluids to reveal disease processes occurring within the body, including cancerous growth. In addition to being a reservoir of cancer biomarkers, they can be re-engineered to reinstate tumor immunity. Tumor exosomes interact with various cells of the microenvironment to confer tumor-advantageous changes that are responsible for stromal activation, induction of the angiogenic switch, increased vascular permeability, and immune escape. Exosomes also contribute to metastasis by aiding in the epithelial-to-mesenchymal transition and formation of the pre-metastatic niche. Furthermore, exosomes protect tumor cells from the cytotoxic effects of chemotherapy drugs and transfer chemoresistance properties to nearby cells. Thus, exosomes are essential to many lethal elements of cancer and it is important to understand their biogenesis and role in cancer.

  3. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Science.gov (United States)

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  4. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    Science.gov (United States)

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  5. Selective anti-tumor activity of the novel fluoropyrimidine polymer F10 towards G48a orthotopic GBM tumors.

    Science.gov (United States)

    Gmeiner, William H; Lema-Tome, Carla; Gibo, Denise; Jennings-Gee, Jamie; Milligan, Carol; Debinski, Waldemar

    2014-02-01

    F10 is a novel anti-tumor agent with minimal systemic toxicity in vivo and which displays strong cytotoxicity towards glioblastoma (GBM) cells in vitro. Here we investigate the cytotoxicity of F10 towards GBM cells and evaluate the anti-tumor activity of locally-administered F10 towards an orthotopic xenograft model of GBM. The effects of F10 on thymidylate synthase (TS) inhibition and Topoisomerase 1 (Top1) cleavage complex formation were evaluated using TS activity assays and in vivo complex of enzyme bioassays. Cytotoxicity of F10 towards normal brain was evaluated using cortices from embryonic (day 18) mice. F10 displays minimal penetrance of the blood-brain barrier and was delivered by intra-cerebral (i.c.) administration and prospective anti-tumor response towards luciferase-expressing G48a human GBM tumors in nude mice was evaluated using IVIS imaging. Histological examination of tumor and normal brain tissue was used to assess the selectivity of anti-tumor activity. F10 is cytotoxic towards G48a, SNB-19, and U-251 MG GBM cells through dual targeting of TS and Top1. F10 is not toxic to murine primary neuronal cultures. F10 is well-tolerated upon i.c. administration and induces significant regression of G48a tumors that is dose-dependent. Histological analysis from F10-treated mice revealed tumors were essentially completely eradicated in F10-treated mice while vehicle-treated mice displayed substantial infiltration into normal tissue. F10 displays strong efficacy for GBM treatment with minimal toxicity upon i.c. administration establishing F10 as a promising drug-candidate for treating GBM in human patients.

  6. To avoid operating on pseudo tumoral pulmonary infarctions ...

    African Journals Online (AJOL)

    Pulmonary infarction usually appears as a hump-shaped triangular opacity with its base applied to a pleural surface. In some cases, pulmonary infarctions may appear as a pseudo tumoral opacity mimicking lung cancer. Thoracotomy could be prevented by repeating CT scan in properly selected patients. Pan African ...

  7. The study on linac stereotactic radiosurgery for acoustic tumors

    International Nuclear Information System (INIS)

    Ohishi, Hitoshi

    1995-01-01

    We have designed and manufactured a new type of device for stereotactic radiosurgery characterized by the combined use of a rotatory chair and a linear accelerator. In this study, 20 acoustic tumors treated by our modality were evaluated by serial neuroimaging, neurofunctional outcome and, in a few cases, pathological findings of surgical specimens. Because tumor size usually changed very slowly after radiosurgery, 12 cases that had a minimum of 12 months of follow-up were employed in the analysis of tumor size. Serial neuroimaging studies revealed the reduction of tumor size in 3 cases and prevention of tumor growth in 7 cases, therefore, the rate of tumor control was evaluated as 83%. Growth of tumor size occurred in 3 cases, two were cases harbouring a large cyst in the tumor and another was a case of neurofibromatosis type 2. In 13 cases (68%), loss of the gadolinium enhancement effect inside the tumor was observed. This is a characteristic change after radiosurgery for acoustic tumors, and attributable to a necrotic change. Cranial nerve neuropathies as a complication also occurred (facial nerve palsy in 2 and trigeminal nerve dysfunction in 1). Adjacent parenchymal change appeared in 1 case. This patient had two prior operations and the tumor had an irregular shape, therefore, planning for radiosurgery encountered some difficulty. Hydrocephalus occurred in 1 case. Surgical specimens in 2 cases in which microsurgery was undertaken for growing tumors, revealed a necrotic tumor tissue and proliferation of fibrous tissue. In conclusion, our new device for stereotactic radiosurgery is particularly useful for the treatment of acoustic tumors. Similar therapeutic results of the gamma knife have been achieved. Radiosurgery is a recommendable treatment for acoustic tumors. However, the superiority of radiosurgery over microsurgery is still controversial and needs a longer term follow-up and multivariate analysis for a final conclusion. (author)

  8. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Science.gov (United States)

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P; Parton, Robert G; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  9. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Directory of Open Access Journals (Sweden)

    Fiorella Faggi

    Full Text Available The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3 in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS, an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  10. Human Tumor Antigens Yesterday, Today, and Tomorrow.

    Science.gov (United States)

    Finn, Olivera J

    2017-05-01

    The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Braeuning, Albert; Jaworski, Maike; Schwarz, Michael; Koehle, Christoph

    2006-01-01

    In a previous microarray expression analysis, Rex3, a gene formerly not linked to tumor formation, was found to be highly overexpressed in both Ctnnb1-(β-Catenin) and Ha-ras-mutated mouse liver tumors. Subsequent analyses by in situ hybridization and real-time PCR confirmed a general liver tumor-specific overexpression of the gene (up to 400-fold). To investigate the role of Rex3 in liver tumors, hepatoma cells were transfected with FLAG- and Myc-tagged Rex3 expression vectors. Rex3 was shown to be exclusively localized to the cytoplasm, as determined by fluorescence microscopy and Western blotting. However, forced overexpression of Rex3 did not significantly affect proliferation or stress-induced apoptosis of transfected mouse hepatoma cells. Rex3 mRNA was determined in primary hepatocytes in culture by real-time PCR. In primary mouse hepatocytes, expression of Rex3 increased while cells dedifferentiated in culture. This effect was abolished when hepatocytes were maintained in a differentiated state. Furthermore, expression of Rex3 decreased in mouse liver with age of mice and the expression profile was highly correlated to that of the tumor markers α-fetoprotein and H19. The findings suggest a role of Rex3 as a marker for hepatocyte differentiation/dedifferentiation processes and tumor formation

  12. Clinical and pathological analysis of benign brain tumors resected after Gamma Knife surgery.

    Science.gov (United States)

    Liu, Ali; Wang, Jun-Mei; Li, Gui-Lin; Sun, Yi-Lin; Sun, Shi-Bin; Luo, Bin; Wang, Mei-Hua

    2014-12-01

    The goal of this study was to assess the clinical and pathological features of benign brain tumors that had been treated with Gamma Knife surgery (GKS) followed by resection. In this retrospective chart review, the authors identified 61 patients with intracranial benign tumors who had undergone neurosurgical intervention after GKS. Of these 61 patients, 27 were male and 34 were female; mean age was 49.1 years (range 19-73 years). There were 24 meningiomas, 18 schwannomas, 14 pituitary adenomas, 3 hemangioblastomas, and 2 craniopharyngiomas. The interval between GKS and craniotomy was 2-168 months, with a median of 24 months; for 7 patients, the interval was 10 years or longer. For 21 patients, a craniotomy was performed before and after GKS; in 9 patients, pathological specimens were obtained before and after GKS. A total of 29 patients underwent GKS at the Beijing Tiantan Hospital. All specimens obtained by surgical intervention underwent histopathological examination. Most patients underwent craniotomy because of tumor recurrence and/or exacerbation of clinical signs and symptoms. Neuroimaging analyses indicated tumor growth in 42 patients, hydrocephalus in 10 patients with vestibular schwannoma, cystic formation with mass effect in 7 patients, and tumor hemorrhage in 13 patients, of whom 10 had pituitary adenoma. Pathological examination demonstrated that, regardless of the type of tumor, GKS mainly induced coagulative necrosis of tumor parenchyma and stroma with some apoptosis and, ultimately, scar formation. In addition, irradiation induced vasculature stenosis and occlusion and tumor degeneration as a result of reduced blood supply. GKS-induced vasculature reaction was rarely observed in patients with pituitary adenoma. Pathological analysis of tumor specimens obtained before and after GKS did not indicate increased tumor proliferation after GKS. Radiosurgery is effective for intracranial benign tumors of small size and deep location and for tumor recurrence

  13. GFAP-Cre-mediated transgenic activation of Bmi1 results in pituitary tumors.

    Directory of Open Access Journals (Sweden)

    Bart A Westerman

    Full Text Available Bmi1 is a member of the polycomb repressive complex 1 and plays different roles during embryonic development, depending on the developmental context. Bmi1 over expression is observed in many types of cancer, including tumors of astroglial and neural origin. Although genetic depletion of Bmi1 has been described to result in tumor inhibitory effects partly through INK4A/Arf mediated senescence and apoptosis and also through INK4A/Arf independent effects, it has not been proven that Bmi1 can be causally involved in the formation of these tumors. To see whether this is the case, we developed two conditional Bmi1 transgenic models that were crossed with GFAP-Cre mice to activate transgenic expression in neural and glial lineages. We show here that these mice generate intermediate and anterior lobe pituitary tumors that are positive for ACTH and beta-endorphin. Combined transgenic expression of Bmi1 together with conditional loss of Rb resulted in pituitary tumors but was insufficient to induce medulloblastoma therefore indicating that the oncogenic function of Bmi1 depends on regulation of p16(INK4A/Rb rather than on regulation of p19(ARF/p53. Human pituitary adenomas show Bmi1 overexpression in over 50% of the cases, which indicates that Bmi1 could be causally involved in formation of these tumors similarly as in our mouse model.

  14. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  15. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome.

    Science.gov (United States)

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C J; Schreibelt, Gerty

    2017-09-10

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations in MMR genes. This syndrome is characterized by the development of childhood cancer. Patients with CMMRD are at extremely high risk of developing multiple cancers including hematological, brain and intestinal tumors. Mutations in MMR genes impair DNA repair and therefore most tumors of patients with CMMRD are hypermutated. These mutations lead to changes in the translational reading frame, which consequently result in neoantigen formation. Neoantigens are recognized as foreign by the immune system and can induce specific immune responses. The growing evidence on the clinical efficacy of immunotherapies, such as immune checkpoint inhibitors, offers the prospect for treatment of patients with CMMRD. Combining neoantigen-based vaccination strategies and immune checkpoint inhibitors could be an effective way to conquer CMMRD-related tumors. Neoantigen-based vaccines might also be a preventive treatment option in healthy biallelic MMR mutation carriers. Future studies need to reveal the safety and efficacy of immunotherapies for patients with CMMRD. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Polaprezinc reduces paclitaxel-induced peripheral neuropathy in rats without affecting anti-tumor activity

    Directory of Open Access Journals (Sweden)

    Kuniaki Tsutsumi

    2016-06-01

    Full Text Available Paclitaxel, an anticancer drug, frequently causes painful peripheral neuropathy. In this study, we investigated the preventive effect of polaprezinc on paclitaxel-induced peripheral neuropathy in rats. Polaprezinc (3 mg/kg, p.o., once daily inhibited the development of mechanical allodynia induced by paclitaxel (4 mg/kg, i.p., on days 1, 3, 5 and 7 and suppressed the paclitaxel-induced increase in macrophage migration in dorsal root ganglion cells. In addition, polaprezinc did not affect the anti-tumor activity of paclitaxel in cultured cell lines or tumor-bearing mice. These results suggest a clinical indication for polaprezinc in the prevention of paclitaxel-induced neuropathy.

  17. Prevention of radiochemotherapy-induced toxicity with amifostine in patients with malignant orbital tumors involving the lacrimal gland: a pilot study

    International Nuclear Information System (INIS)

    Goldblum, David; Ghadjar, Pirus; Curschmann, Juergen; Greiner, Richard; Aebersold, Daniel

    2008-01-01

    To use amifostine concurrently with radiochemotherapy (CT-RT) or radiotherapy (RT) alone in order to prevent dry eye syndrome in patients with malignancies located in the fronto-orbital region. Five patients (2 males, 3 females) with diagnosed malignancies (Non-Hodgkin B-cell Lymphoma, neuroendocrine carcinoma) involving the lacrimal gland, in which either combined CT-RT or local RT were indicated, were prophylactically treated with amifostine (500 mg sc). Single RT fraction dose, total dose and treatment duration were individually adjusted to the patient's need. Acute and late adverse effects were recorded using the RTOG score. Subjective and objective dry eye assessment was performed for the post-treatment control of lacrimal gland function. All patients have completed CT-RT or RT as indicated. The median total duration of RT was 29 days (range, 23 – 39 days) and the median total RT dose was 40 Gy (range, 36 – 60 Gy). Median lacrimal gland exposure was 35.9 Gy (range, 16.8 – 42.6 Gy). Very good partial or complete tumor remission was achieved in all patients. The treatment was well tolerated without major toxic reactions. Post-treatment control did not reveal in any patient either subjective or objective signs of a dry eye syndrome. The addition of amifostine to RT/CT-RT of patients with tumors localized in orbital region was found to be associated with absence of dry eye syndrome

  18. Repurposing of bisphosphonates for the prevention and therapy of nonsmall cell lung and breast cancer.

    Science.gov (United States)

    Stachnik, Agnes; Yuen, Tony; Iqbal, Jameel; Sgobba, Miriam; Gupta, Yogesh; Lu, Ping; Colaianni, Graziana; Ji, Yaoting; Zhu, Ling-Ling; Kim, Se-Min; Li, Jianhua; Liu, Peng; Izadmehr, Sudeh; Sangodkar, Jaya; Scherer, Thomas; Mujtaba, Shiraz; Galsky, Matthew; Gomez, Jorge; Epstein, Solomon; Buettner, Christoph; Bian, Zhuan; Zallone, Alberta; Aggarwal, Aneel K; Haider, Shozeb; New, Maria I; Sun, Li; Narla, Goutham; Zaidi, Mone

    2014-12-16

    A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine kinase inhibitors (TKIs), namely gefitinib and erlotinib, and whether the drugs can target TKI-resistant NSCLCs. In silico docking, together with molecular dynamics and anisotropic network modeling, showed that bisphosphonates bind to TKIs within the HER1 kinase domain. As predicted from this combinatorial binding, bisphosphonates enhanced the effects of TKIs in reducing cell viability and driving tumor regression in mice. Impressively, the drugs also overcame erlotinib resistance acquired through the gatekeeper mutation T790M, thus offering an option for TKI-resistant NSCLCs. We suggest that bisphosphonates can potentially be repurposed for the prevention and adjunctive therapy of HER1-driven cancers.

  19. Different manifestations of calcifying cystic odontogenic tumor

    Directory of Open Access Journals (Sweden)

    Estevam Rubens Utumi

    2012-09-01

    Full Text Available The calcifying cystic odontogenic tumor normally presents as apainless, slow-growing mass, involving both maxilla and mandible,primarily the anterior segment (incisor/canine area. It generallyaffects young adults in the third to fourth decades, with no genderpredilection. Computerized tomography images revealed importantcharacteristics that were not detected by panoramic radiography,such as fenestration, calcification and tooth-like structures. Thetypical microscopic feature of this lesion is the presence of variableamounts of aberrant epithelial cells, without nuclei, which arenamed “ghost cells”. In addition, dysplastic dentine can be foundand occasionally the cyst can be associated with an area of dentalhard tissue formation resembling an odontoma. The treatment forcalcifying cystic odontogenic tumor involves simple enucleationand curettage. The purpose of this article is to present two differentmanifestation of calcifying cystic odontogenic tumor in whichcomputerized tomography, associated to clinical features, servedas an important tool for diagnosis, adequate surgical planning andfollow-up of patients.

  20. Preventive but Not Curative Efficacy of Celecoxib on Bladder Carcinogenesis in a Rat Model

    Directory of Open Access Journals (Sweden)

    José Sereno

    2010-01-01

    Full Text Available To evaluate the effect of a cyclooxygenase 2 inhibitor, celecoxib (CEL, on bladder cancer inhibition in a rat model, when used as preventive versus as curative treatment. The study comprised 52 male Wistar rats, divided in 5 groups, during a 20-week protocol: control: vehicle, carcinogen: 0.05% of N-butyl-N-(4-hydroxybutyl nitrosamine (BBN, CEL: 10 mg/kg/day of the selective COX-2 inhibitor Celebrex, preventive CEL (CEL+BBN-P, and curative CEL (BBN+CEL-C groups. Although tumor growth was markedly inhibited by the preventive application of CEL, it was even aggravated by the curative treatment. The incidence of gross bladder carcinoma was: control 0/8(0%, BBN 13/20(65%, CEL 0/8(0%, CEL+BBN-P 1/8(12.5%, and BBN+CEL-C 6/8(75%. The number and volume of carcinomas were significantly lower in the CEL+BBN-P versus BBN, accompanied by an ample reduction in hyperplasia, dysplasia, and papillary tumors as well as COX-2 immunostaining. In spite of the reduction of tumor volumes in the curative BBN+CEL-C group, tumor malignancy was augmented. An anti-inflammatory and antioxidant profile was encountered only in the group under preventive treatment. In conclusion, preventive, but not curative, celecoxib treatment promoted a striking inhibitory effect on bladder cancer development, reinforcing the potential role of chemopreventive strategies based on cyclooxygenase 2 inhibition.

  1. Intraoperative radiotherapy of malignant pancreatic tumors - first results

    Energy Technology Data Exchange (ETDEWEB)

    Thurnher, S.; Glaser, K.; Url, M.; Frommhold, H.; Bodner, E.

    1987-02-01

    Thirteen patients suffering from adenocarcinomas of the pancreas were submitted to an intraoperative fast electron 'boost' therapy with or without percutaneous photon irradiation. A duodeno-cephalo-pancreatectomy with subsequent irradiation of the tumor bed could be performed in three patients. Ten patients were inoperable because of advanced tumors and formation of metastases. The average survival is 6.5 months, at present six patients are alive without major troubles. An analgetic effect was obtained in ten patients. The first results are encouraging with respect to local control, the little acute and chronic morbidity, and palliation achieved in advances stages.

  2. Intraoperative radiotherapy of malignant pancreatic tumors - first results

    International Nuclear Information System (INIS)

    Thurnher, S.; Glaser, K.; Url, M.; Frommhold, H.; Bodner, E.; Innsbruck Univ.

    1987-01-01

    Thirteen patients suffering from adenocarcinomas of the pancreas were submitted to an intraoperative fast electron 'boost' therapy with or without percutaneous photon irradiation. A duodeno-cephalo-pancreatectomy with subsequent irradiation of the tumor bed could be performed in three patients. Ten patients were inoperable because of advanced tumors and formation of metastases. The average survival is 6.5 months, at present six patients are alive without major troubles. An analgetic effect was obtained in ten patients. The first results are encouraging with respect to local control, the little acute and chronic morbidity, and palliation achieved in advances stages. (orig.) [de

  3. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  4. Prevalence of odontogenic cysts and tumors among UAE population

    Directory of Open Access Journals (Sweden)

    Natheer Hashim Al-Rawi

    2013-01-01

    Full Text Available Background: Odontogenic cysts and tumors are lesions that tend to arise from the tooth apparatus or its remnants. Odontogenic cysts and tumors constitute an important aspect of oral maxillofacial pathology as they can be diagnosed in general dental practice. Aim: The purpose of this study was to evaluate the prevalence of odontogenic cysts and tumors diagnosed in the UAE and to compare the results with findings in the literature. Materials and Methods: Data of odontogenic cysts diagnosed between 1990 and 2010 were collected from the files of the Oral Pathology Laboratory and Oral Surgery Department of Tawam Hospital, UAE. Results: Most of the prevalent odontogenic cysts are radicular cysts (69.1% - followed by dentigerous cysts (7.9%. Among the odontogenic tumors, the most prevalent is odontoma (12.2% followed by ameloblastoma (2.9%. The middle and posterior mandible was the most common anatomic site for the formation of cysts and tumors. In fact, 93.4% of patients over 40 years presented with odontogenic cysts, whereas 6.3% presented with odontogenic tumor. Odontoma as odontogenic tumor was seen mostly in the first and second decades of life. Conclusion: The prevalence of odontogenic cysts was similar to that reported in the literature, with inflammatory cysts occurring most frequently.

  5. Annual Fasting; the Early Calories Restriction for Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Solat Eslami

    2012-12-01

    Full Text Available Essentially, people’s diet and nutritional status has been changed substantially worldwide and several lines of evidence suggest that these changes are to the detriment of their health. Additionally, it has been well documented that unhealthy diet especially the fast foods, untraditional foods or bad-eating-habits influence the human gut microbiome. The gut microbiota shapes immune responses during human life and affects his/her metabolomic profiles. Furthermore, many studies highlight the molecular pathways that mediate host and symbiont interactions that regulate proper immune function and prevention of cancer in the body. Intriguingly, if cancer forms in a human body due to the weakness of immune system in detriment of microbiome, the removal of cancer stem cells can be carried out through early Calories Restriction with Annual Fasting (AF before tumor development or progress. Besides, fasting can b balance the gut microbiome for enhancement of immune system against cancer formation.

  6. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine.

    Science.gov (United States)

    Ogino, Shuji; Fuchs, Charles S; Giovannucci, Edward

    2012-07-01

    Cancers are complex multifactorial diseases. For centuries, conventional organ-based classification system (i.e., breast cancer, lung cancer, colon cancer, colorectal cancer, prostate cancer, lymphoma, leukemia, and so on) has been utilized. Recently, molecular diagnostics has become an essential component in clinical decision-making. However, tumor evolution and behavior cannot accurately be predicted, despite numerous research studies reporting promising tumor biomarkers. To advance molecular diagnostics, a better understanding of intratumor and intertumor heterogeneity is essential. Tumor cells interact with the extracellular matrix and host non-neoplastic cells in the tumor microenvironment, which is influenced by genomic variation, hormones, and dietary, lifestyle and environmental exposures, implicated by molecular pathological epidemiology. Essentially, each tumor possesses its own unique characteristics in terms of molecular make-up, tumor microenvironment and interactomes within and between neoplastic and host cells. Starting from the unique tumor concept and paradigm, we can better classify tumors by molecular methods, and move closer toward personalized cancer medicine and prevention.

  7. Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors

    International Nuclear Information System (INIS)

    Voisin, Laure; Basik, Mark; Meloche, Sylvain; Julien, Catherine; Duhamel, Stéphanie; Gopalbhai, Kailesh; Claveau, Isabelle; Saba-El-Leil, Marc K; Rodrigue-Gervais, Ian Gaël; Gaboury, Louis; Lamarre, Daniel

    2008-01-01

    The Ras-dependent ERK1/2 MAP kinase signaling pathway plays a central role in cell proliferation control and is frequently activated in human colorectal cancer. Small-molecule inhibitors of MEK1/MEK2 are therefore viewed as attractive drug candidates for the targeted therapy of this malignancy. However, the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer remains to be established. Wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We studied the impact of MEK1 and MEK2 activation on cellular morphology, cell proliferation, survival, migration, invasiveness, and tumorigenesis in mice. RNA interference was used to test the requirement for MEK1 and MEK2 function in maintaining the proliferation of human colorectal cancer cells. We found that expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Mechanistically, activation of MEK1 or MEK2 up-regulates the expression of matrix metalloproteinases, promotes invasiveness and protects cells from undergoing anoikis. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect. MEK1 and MEK2 isoforms have similar transforming properties and are able to induce the formation of metastatic intestinal tumors in mice. Our results suggest that MEK2 plays a more important role than MEK1 in sustaining the proliferation of human colorectal cancer cells

  8. Lin28 sustains early renal progenitors and induces Wilms tumor

    Science.gov (United States)

    Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S.; Zhu, Hao; Perez-Atayde, Antonio R.; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q.

    2014-01-01

    Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis. PMID:24732380

  9. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

    Directory of Open Access Journals (Sweden)

    Green HN

    2014-11-01

    Full Text Available Hadiyah N Green,1,2 Stephanie D Crockett,3 Dmitry V Martyshkin,1 Karan P Singh,2,4 William E Grizzle,2,5 Eben L Rosenthal,2,6 Sergey B Mirov11Department of Physics, Center for Optical Sensors and Spectroscopies, 2Comprehensive Cancer Center, 3Department of Pediatrics, Division of Neonatology, 4Department of Medicine, Division of Preventive Medicine, Biostatistics and Bioinformatics Shared Facility, 5Department of Pathology, 6Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Alabama at Birmingham, Birmingham, AL, USAPurpose: Nanoparticle (NP-enabled near infrared (NIR photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies.Methods: Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed.Results: The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a

  10. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  11. Non osseous intra-spinal tumors in children and adolescents: spinal column deformity (in french)

    International Nuclear Information System (INIS)

    Ghanem, I.; Zeller, R.; Dubousset, J.

    1997-01-01

    Purpose of the study. The delay in diagnosis of spinal tumors is not rare. The chief complaint may include pain, walking disability and spinal or limb deformities. The purpose of our study is to analyze the spinal deformities associated with non osseous intra-spinal tumors, to assess the complications of treatment, and to set out a preventive protocol. Methods. The incidence and pattern of spinal deformity was assessed before tumor treatment and ultimately after laminectomy or osteoplastic laminotomy (or lamino-plasty). Results. Among the 9 cases with preexisting spinal deformity, the curve magnitude increased after laminectomy in 4. A kyphotic, kyphoscoliotic or scoliotic deformity developed in 18 cases after surgery for tumor resection. Among these 18 patients, only one had bad an adequate osteoplastic laminotomy. The treatment of spinal deformities was surgical in 12 cases, and done by either posterior or anterior and posterior combined arthrodesis. Discussion. Spinal deformity may be the main complaint of a patient who has intraspinal tumor. Prevention of post-laminectomy spinal deformity is mandatory, and could be done by osteoplastic laminotomy and the use of a brace during a minimum period of 4 to 6 months after surgery. Conclusion. Diagnosis of intraspinal tumors in children and adolescents should be done early, and lamino-arthrectomy should be replaced by osteoplastic laminotomy. (authors)

  12. Gleditsia Saponin C Induces A549 Cell Apoptosis via Caspase-Dependent Cascade and Suppresses Tumor Growth on Xenografts Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    2018-01-01

    Full Text Available Saponins are natural compounds and possess the most promising anti-cancer function. Here, a saponin gleditsia saponin C (GSC, extracted from gleditsiae fructus abnormalis, could induce apoptosis of lung tumor cell line A549 via caspase dependent cascade and this effect could be prevented by the caspase inhibitors. In addition, GSC induced cell death companied with an increase ratio of Bax:Bcl-2 and inhibition of ERK and Akt signaling pathways. Meanwhile, GSC suppressed TNFα inducing NF-κB activation and increased the susceptibility of lung cancer cell to TNFα induced apoptosis. Furthermore, on mouse xenograft model, GSC significantly suppressed tumor growth and induced cancer cell apoptosis, which validated the anti-tumor effect of GSC. Based on these results, GSC might be a promising drug candidate of anti-lung cancer for its potential clinical applications.

  13. Evolution of sarcoma 180 (ascitic tumor in mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Fausto Edmundo Lima Pereira

    1986-03-01

    Full Text Available Mice infected with 60 cercariae of Schistosoma mansoni were more resistant to the sarcoma 180 ascites tumor. Tumor inoculation was performed 50 days after schistosoma infection and the animals were observed and weighed at 48 hours intervals for development and progression of malignancy. In infected mice the weight gain (ascites formation started later and was shorter than in uninfected Controls. Also, the number of tumor cells into the peritoneal cavity 72h after tumor implantation was shorter in infected group than incontrols. This in creased resistance against a transplantable tumor probably is related to the effect of endotoxin on tumoricidal activity of macrophages activated by the infection. The immunodepression induced by Schistosoma mansoni infection enhances the proliferation of endogenous bacteria increasing the amount of endotoxin absorbed from the gut.

  14. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth.

    Science.gov (United States)

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-04-18

    Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.

  15. Galectin-4 Reduces Migration and Metastasis Formation of Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ana I Belo

    Full Text Available Galectin-4 (Gal-4 is a member of the galectin family of glycan binding proteins that shows a significantly higher expression in cystic tumors of the human pancreas and in pancreatic adenocarcinomas compared to normal pancreas. However, the putative function of Gal-4 in tumor progression of pancreatic cancer is still incompletely understood. In this study the role of Gal-4 in cancer progression was investigated, using a set of defined pancreatic cancer cell lines, Pa-Tu-8988S (PaTu-S and Pa-Tu-8988T (PaTu-T, as a model. These two cell lines are derived from the same liver metastasis of a human primary pancreatic adenocarcinoma, but differ in their growth characteristics and metastatic capacity. We demonstrated that Gal-4 expression is high in PaTu-S, which shows poor migratory properties, whereas much lower Gal-4 levels are observed in the highly metastatic cell line PaTu-T. In PaTu-S, Gal-4 is found in the cytoplasm, but it is also secreted and accumulates at the membrane at sites of contact with neighboring cells. Moreover, we show that Gal-4 inhibits metastasis formation by delaying migration of pancreatic cancer cells in vitro using a scratch assay, and in vivo using zebrafish (Danio rerio as an experimental model. Our data suggest that Gal-4 may act at the cell-surface of PaTu-S as an adhesion molecule to prevent release of the tumor cells, but has in addition a cytosolic function by inhibiting migration via a yet unknown mechanism.

  16. International Workshop on Mathematical Modeling of Tumor-Immune Dynamics

    CERN Document Server

    Kim, Peter; Mallet, Dann

    2014-01-01

    This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction betwe...

  17. Prevention and curative management of hypertrophic scar formation

    NARCIS (Netherlands)

    Bloemen, M.C.; Veer, van der W.M.; Ulrich, M.; Zuijlen, van P.P.; Niessen, F.B.; Middelkoop, E.

    2009-01-01

    Although hypertrophic scarring commonly occurs following burns, many aspects such as incidence of and optimal treatment for scar hypertrophy remain unclear. This review will focus on hypertrophic scar formation after burn in particular, exploring multiple treatment options and describing their

  18. Low-Grade Astrocytoma Associated with Abscess Formation: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Tai-Hsin Tsai

    2008-05-01

    Full Text Available A rare case of low-grade astrocytoma associated with abscess formation occurred in a 52-year-old man presenting with Broca's aphasia. He underwent craniotomy and tumor removal under the impression of brain tumor with necrotic cystic change. Abscess accumulation within the intra-axial tumor was found intraoperatively. Literature related to brain abscess with brain tumor is reviewed, with an emphasis on abscesses with astrocytoma. We discuss the common brain tumors that are associated with abscess, pathogens that coexist with brain tumor, and the pathogeneses of coexisting brain abscess and tumor. It is very important to know how to differentiate between and diagnose a brain abscess and tumor, or brain abscess with tumor, preoperatively from clinical presentation and through the use of computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging or magnetic resonance spectroscopy.

  19. Endocrine tumors other than thyroid tumors

    International Nuclear Information System (INIS)

    Takeichi, Norio; Dohi, Kiyohiko

    1992-01-01

    This paper discusses the tendency for the occurrence of tumors in the endocrine glands, other than the thyroid gland, in A-bomb survivors using both autopsy and clinical data. ABCC-RERF sample data using 4136 autopsy cases (1961-1977) revealed parathyroid tumors in 13 A-bomb survivors, including 3 with the associated hyperparathyroidism, with the suggestion of dose-dependent increase in the occurrence of tumors. Based on clinical data from Hiroshima University, 7 (46.7%) of 15 parathyroid tumors cases were A-bomb survivors. Data (1974-1987) from the Tumor Registry Committee (TRC) in Hiroshima Prefecture revealed that a relative risk of parathyroid tumors was 5.6 times higher in the entire group of A-bomb survivors and 16.2 times higher in the group of heavily exposed A-bomb survivors, suggesting the dose-dependent increase in their occurrence. Adrenal tumors were detected in 47 of 123 cases from the TRC data, and 15 (31.5%) of these 47 were A-bomb survivors. Particularly, 11 cases of adrenal tumors associated with Cushing syndrome included 6 A-bomb survivors (54.5%). The incidence of multiple endocrine gonadial tumors (MEGT) tended to be higher with increasing exposure doses; and the 1-9 rad group, the 10-99 rad group, and the 100 or more rad group had a risk of developing MEGT of 4.1, 5.7, and 7.1, respectively, relative to both the not-in the city group and the 0 rad group. These findings suggested that there is a correlation between A-bomb radiation and the occurrence of parathyroid tumors (including hyperparathyroidism), adrenal tumors associated with Cushing syndrome and MEGT (especially, the combined thyroid and ovarian tumors and the combined thyroid and parathyroid tumors). (N.K.)

  20. Innovations in the management of Wilms' tumor.

    Science.gov (United States)

    Gleason, Joseph M; Lorenzo, Armando J; Bowlin, Paul R; Koyle, Martin A

    2014-08-01

    Advances in the management of Wilms' tumor have been dramatic over the past half century, not in small part due to the institution of multimodal therapy and the formation of collaborative study groups. While different opinions exist in the management of Wilms' tumors depending on where one lives and practices, survival rates have surpassed 90% across the board in Western societies. With more children surviving into adulthood, the concerns about morbidity have reached the forefront and now represent as much a consideration as oncologic outcomes these days. Innovations in treatment are on the horizon in the form of potential tumor markers, molecular biological means of testing for chemotherapeutic responsiveness, and advances in the delivery of chemotherapy for recurrent or recalcitrant tumors. Other technological innovations are being applied to childhood renal tumors, such as minimally invasive and nephron-sparing approaches. Risk stratification also allows for children to forego potentially unnecessary treatments and their associated morbidities. Wilms' tumor stands as a great example of the gains that can be made through protocol-driven therapy with strenuous outcomes analyses. These gains continue to spark interest in minimization of morbidity, while avoiding any compromise in oncologic efficacy. While excitement and innovation are important in the advancement of treatment delivery, we must continue to temper this enthusiasm and carefully evaluate options in order to continue to provide the highest standard of care in the management of this now highly curable disease.

  1. Digital Bangladesh: Using Formative Research to Develop Phone Messages for the Prevention and Control of Diabetes in Rural Bangladesh.

    Directory of Open Access Journals (Sweden)

    Hannah Maria Jennings

    2015-10-01

    Full Text Available Background: As with many low-income countries, diabetes is an increasing issue in Bangladesh affecting an estimated 20% to 30% of the population either as intermediate hyperglycaemia or fully expressed diabetes mellitus (Bhowmik et al., 2012. The Bangladesh D-MAGIC project is a cluster randomised control trial to test the effectiveness of interventions to improve detection, management and control of diabetes in rural Bangladesh. One of these interventions is an mHealth intervention, which involves sending health promotion voice messages to individuals’ mobile phones to target diabetes prevention and management. In-depth formative research (interviews and focus group discussions has been undertaken in rural Faridpur District in order to gain a greater understanding of people’s beliefs, practices and behaviour regarding diabetes prevention and control and their access to and use of mobile phones. The findings of the research, used within the COM-B framework (Michie et al 2011, are being used to inform and appropriately tailor the voice messages to the needs of the target population. This presentation will highlight key findings of the formative research and discuss how these findings are being used to design the mHealth intervention. Aim: To identify key issues for the content and delivery of voice messages regarding the prevention and control of diabetes in rural Bangladesh through in-depth formative research. Methods: We conducted sixteen semi-structured interviews with purposively sampled diabetics, non-diabetics and health professionals. In addition, nine focus group discussions with diabetics and non-diabetics were conducted in villages in three sub-districts of Faridpur. We explored beliefs and behaviour regarding diet, exercise, smoking, stress and care-seeking. The findings from the interviews and focus group discussions were analysed thematically, and specific enablers and barriers to behaviour change related to diabetes identified

  2. NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects.

    Science.gov (United States)

    Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N

    2018-05-16

    Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.

  3. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    Science.gov (United States)

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. © 2016 UICC.

  4. Method of treating non-supporting underground formations

    International Nuclear Information System (INIS)

    Anderson, B.W.; Trotty, K.D.

    1977-01-01

    Method of treating non-supporting underground formations, through which passes a borehole, aimed at preventing the transport of sand particles from the formation into the borehole during conveyance of liquids. (orig./RW) [de

  5. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  6. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  7. Is oxygen important in the radiocurability of human tumors

    International Nuclear Information System (INIS)

    Withers, H.R.; Suit, H.D.

    1974-01-01

    It is quite likely that untreated human tumors contain hypoxic cells. Frequently, perhaps usually, the presence of these hypoxic cells does not influence radiocurability. If hypoxia limits radiocurability, it is more likely to do so in the treatment of large tumors and maybe with greater likelihood in tumors in certain sites. Hypoxia would also be more likely to affect response to a small number of fractions, since reoxygenation would need to be more complete in order that cell killing by the larger dose fractions used would not be prejudiced by the hypoxia of a small proportion of cells. Hyperbaric oxygen is disappointing as an adjuvant to radiotherapy. Results obtained are not better than those obtained using the best conventional fractionation regimes in air. This does not prove, however, that hypoxia is not a cause of failure to control tumors locally, since physiological adaptive mechanisms against HPO such as vasoconstriction may prevent better oxygenation of the tumor. If other methods such as high LET beams are to be used to reduce any effect hypoxia may have on radiocurability, their greatest benefit would be expected in the local control of late-stage disease and this benefit may be greater in some tumor sites than others. (U.S.)

  8. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    International Nuclear Information System (INIS)

    Hindriksen, Sanne; Bijlsma, Maarten F.

    2012-01-01

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  9. Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα

    Science.gov (United States)

    Zhong, Nianxin; Ward, Jerrold M.; Perella, Christine M.; Hoffmann, Victoria J.; Rogers, Keith; Combs, Gerald F.; Schweizer, Ulrich; Merlino, Glenn; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2013-01-01

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors. PMID:23460847

  10. Keratocystic Odontogenic Tumor: Case Reports and Review of Literature

    Directory of Open Access Journals (Sweden)

    Mukta B Motwani

    2011-01-01

    Full Text Available The lesion traditionally known as odontogenic keratocyst has been renamed by WHO in 2005, as "keratocystic" odontogenic tumor as it is more appropriate and reflects its potential for local, destructive behavior. It is a benign intraosseous neoplasm of jaw, which is unusual due to its characteristic histopathological and clinical features, including potentially aggressive behavior, high recurrence rate and association with the nevoid basal cell carcinoma syndrome. The purpose of this review is to highlight the importance of proper diagnosis of keratocystic odontogenic tumor in order to prevent the recurrence due to improper surgical excision of the lesion.

  11. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with “stemness.” These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) “cancer stem cells.” These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies. PMID:23047602

  12. Antibacterial activity of probiotics in bladder tumor patients

    Directory of Open Access Journals (Sweden)

    Molchanov R.N.

    2014-09-01

    Full Text Available The chronic urinary tract infection (UTI is a risk factor that worsens a natural course of bladder tumors. Using of probiotics, possessing antagonistic influence on pathogenic microflora and immunocorrection effect, for preventive maintenance and treat¬ment of a chronic UTI in bladder tumor patients is an actual and perspective direction. The goal of the research was studying antimicrobial and anti-inflammatory effect of a single bladder instillation of either lactobacilli or aerococci in bladder tumor patients. In the preoperative period a single bladder instillation with either lactobacterin or a-bacterin preparation to 35 bladder tumor patients was done. Bacteriuria, leucocyturia, lactobacilli and aerococci count in urine were measured before and in 1, 3, 6 and 24 hours after instillation. Decrease in bacteriuria level in both groups of patients was revealed. Lactobacilli and aerococci count in urine gradually decreased up to complete elimination in 24 hours (in 1 patient who received lactobacterin (12,5 % and in 9 patients who received a-bacterin. (40,9 %. Leucocyturia study did not show statistically confidence dynamics throughout the observation period in both groups. Thus, bladder instillation with lactobacterin or a-bacterin leads to suppression of uropathogenic microflora in bladder tumor patients; in the majority of patients spontaneous elimination of lactobacilli and aerococci occurs within 24 hours.

  13. Increased formate overflow is a hallmark of oxidative cancer.

    Science.gov (United States)

    Meiser, Johannes; Schuster, Anne; Pietzke, Matthias; Vande Voorde, Johan; Athineos, Dimitris; Oizel, Kristell; Burgos-Barragan, Guillermo; Wit, Niek; Dhayade, Sandeep; Morton, Jennifer P; Dornier, Emmanuel; Sumpton, David; Mackay, Gillian M; Blyth, Karen; Patel, Ketan J; Niclou, Simone P; Vazquez, Alexei

    2018-04-10

    Formate overflow coupled to mitochondrial oxidative metabolism\\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.

  14. Differential diagnosis between benign and malignant soft tissue tumors utilizing ultrasound parameters.

    Science.gov (United States)

    Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi

    2018-01-01

    Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.

  15. Herbal Medicine Goshajinkigan Prevents Paclitaxel-Induced Mechanical Allodynia without Impairing Antitumor Activity of Paclitaxel

    Directory of Open Access Journals (Sweden)

    Muh. Akbar Bahar

    2013-01-01

    Full Text Available Chemotherapy-induced peripheral neuropathy is a major dose-limiting side effect of commonly used chemotherapeutic agents. However, there are no effective strategies to treat the neuropathy. We examined whether Goshajinkigan, a herbal medicine, would prevent paclitaxel-induced allodynia without affecting the anticancer action in mice. Murine breast cancer 4T1 cells were inoculated into the mammary fat pad. Paclitaxel (10 and 20 mg/kg, intraperitoneal, alternate day from day 7 postinoculation inhibited the tumor growth, and Goshajinkigan (1 g/kg, oral, daily from day 2 postinoculation did not affect the antitumor action of paclitaxel. Mechanical allodynia developed in the inoculated region due to tumor growth and in the hind paw due to paclitaxel-induced neuropathy. Paclitaxel-induced allodynia was markedly prevented by Goshajinkigan, although tumor-associated allodynia was not inhibited by Goshajinkigan. These results suggest that Goshajinkigan prevents paclitaxel-induced peripheral neuropathy without interfering with the anti-cancer action of paclitaxel.

  16. Numerical simulation of an alternative to prevent hydrates formation in a bypass section

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Lucilla Coelho; Oliveira Junior, Joao Americo Aguirre; Fonte, Clarissa Bergman [Engineering Simulation and Scientific Software Ltda. (ESSS), Florianopolis, SC (Brazil); Silva, Fabricio Soares da; Moraes, Carlos Alberto Capela [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This work presents the use of Computational Fluid Dynamics to evaluate the feasibility of MEG (monoethylene glycol) injection as an alternative to prevent hydrate formation in a bypass section, present in an inlet module of a separation device of a subsea separation system. As the bypass section is open to the main pipeline, MEG will probably be dragged due to secondary flows generated by the main flow stream. The MEG removal rate is estimated, as well as the internal heat transfer between the currents and the heat loss to the external environment in order to estimate the temperature in the equipment. In a first step, the MEG removal was evaluated considering the heat transfer between the liquid phase (composed of water, oil and MEG) and the gas phase as well as the heat transfer by forced convection to the external environment. In a second step, the influence of a thermal insulation layer around the bypass line, reducing the heat loss to the external environment, was studied. Both simulations (with or without thermal insulation) showed the establishment of secondary flows in the open connection between the main line and bypass line, promoting the removal of MEG from the bypass section and enabling other components of the liquid phase and/or gas to enter in the bypass line. This MEG removal is faster when thermal isolation was considered, due to the fact that higher temperatures are established in the bypass, maintaining the liquid phase with lower densities and viscosities. With regard to temperature, the insulation was able to keep higher temperatures at the bypass line than those obtained without insulation, indicating that the combination of MEG injection and thermal insulation may be able to avoid the critical condition for hydrate formation. (author)

  17. IL-33 activates tumor stroma to promote intestinal polyposis.

    Science.gov (United States)

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  18. Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16+ Oral Tumors and Immunologic Control.

    Science.gov (United States)

    Lin, Yi-Hsin; Yang, Ming-Chieh; Tseng, Ssu-Hsueh; Jiang, Rosie; Yang, Andrew; Farmer, Emily; Peng, Shiwen; Henkle, Talia; Chang, Yung-Nien; Hung, Chien-Fu; Wu, T-C

    2018-01-23

    Human papillomavirus type 16 (HPV16) is the etiologic factor for cervical cancer and a subset of oropharyngeal cancers. Although several prophylactic HPV vaccines are available, no effective therapeutic strategies to control active HPV diseases exist. Tumor implantation models are traditionally used to study HPV-associated buccal tumors. However, they fail to address precancerous phases of disease progression and display tumor microenvironments distinct from those observed in patients. Previously, K14-E6/E7 transgenic mouse models have been used to generate spontaneous tumors. However, the rate of tumor formation is inconsistent, and the host often develops immune tolerance to the viral oncoproteins. We developed a preclinical, spontaneous, HPV16 + buccal tumor model using submucosal injection of oncogenic plasmids expressing HPV16-E6/E7, NRas G12V , luciferase, and sleeping beauty (SB) transposase, followed by electroporation in the buccal mucosa. We evaluated responses to immunization with a pNGVL4a-CRT/E7(detox) therapeutic HPV DNA vaccine and tumor cell migration to distant locations. Mice transfected with plasmids encoding HPV16-E6/E7, NRas G12V , luciferase, and SB transposase developed tumors within 3 weeks. We also found transient anti-CD3 administration is required to generate tumors in immunocompetent mice. Bioluminescence signals from luciferase correlated strongly with tumor growth, and tumors expressed HPV16-associated markers. We showed that pNGVL4a-CRT/E7(detox) administration resulted in antitumor immunity in tumor-bearing mice. Lastly, we demonstrated that the generated tumor could migrate to tumor-draining lymph nodes. Our model provides an efficient method to induce spontaneous HPV + tumor formation, which can be used to identify effective therapeutic interventions, analyze tumor migration, and conduct tumor biology research. Cancer Immunol Res; 6(3); 1-15. ©2018 AACR. ©2018 American Association for Cancer Research.

  19. Formation and utilization of acetoin, an unusual product of pyruvate metabolism by Ehrlich and AS30-D tumor mitochondria.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-07-15

    [14C]Pyruvate was rapidly non-oxidatively decarboxylated by Ehrlich tumor mitochondria at a rate of 40 nmol/min/mg of protein in the presence or absence of ADP. A search for decarboxylation products led to significant amounts of acetoin formed when Ehrlich tumor mitochondria were incubated with 1 mM [14C] pyruvate in the presence of ATP. Added acetoin to aerobic tumor mitochondria was rapidly utilized in the presence of ATP at a rate of 65 nmol/min/mg of protein. Citrate has been found as a product of acetoin utilization and was exported from the tumor mitochondria. Acetoin has been found in the ascitic liquid of Ehrlich and AS30-D tumor-bearing animals. These unusual reactions were not observed in control rat liver mitochondria.

  20. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    Science.gov (United States)

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  1. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens

    Directory of Open Access Journals (Sweden)

    Luke A. Wiley

    2011-07-01

    We previously found that lenses lacking the Acvr1 gene, which encodes a bone morphogenetic protein (BMP receptor, had abnormal proliferation and cell death in epithelial and cortical fiber cells. We tested whether the tumor suppressor protein p53 (encoded by Trp53 affected this phenotype. Acvr1 conditional knockout (Acvr1CKO mouse fiber cells had increased numbers of nuclei that stained for p53 phosphorylated on serine 15, an indicator of p53 stabilization and activation. Deletion of Trp53 rescued the Acvr1CKO cell death phenotype in embryos and reduced Acvr1-dependent apoptosis in postnatal lenses. However, deletion of Trp53 alone increased the number of fiber cells that failed to withdraw from the cell cycle. Trp53CKO and Acvr1;Trp53DCKO (double conditional knockout, but not Acvr1CKO, lenses developed abnormal collections of cells at the posterior of the lens that resembled posterior subcapsular cataracts. Cells from human posterior subcapsular cataracts had morphological and molecular characteristics similar to the cells at the posterior of mouse lenses lacking Trp53. In Trp53CKO lenses, cells in the posterior plaques did not proliferate but, in Acvr1;Trp53DCKO lenses, many cells in the posterior plaques continued to proliferate, eventually forming vascularized tumor-like masses at the posterior of the lens. We conclude that p53 protects the lens against posterior subcapsular cataract formation by suppressing the proliferation of fiber cells and promoting the death of any fiber cells that enter the cell cycle. Acvr1 acts as a tumor suppressor in the lens. Enhancing p53 function in the lens could contribute to the prevention of steroid- and radiation-induced posterior subcapsular cataracts.

  2. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Nabendu Pore

    2015-06-01

    Full Text Available Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX, monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.

  3. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I.

    Directory of Open Access Journals (Sweden)

    Yanke Chen

    Full Text Available Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF and matrix metalloproteinases (MMPs. In this study, we made a three-dimensional (3D tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.

  4. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  5. Metastatic liver tumor from cystic ovarian carcinomas. CT and MRI appearance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yi; Yamashita, Yasuyuki; Ogata, Ichiro; Namimoto, Tomohiro; Abe, Yasuko; Urata, Joji; Takahashi, Mutsumasa [Kumamoto Univ. (Japan). School of Medicine

    1999-08-01

    The initial and follow-up CT and MRI images of ten patients with hepatic metastases from ovarian tumors were retrospectively analyzed to establish their features and sequential changes in appearance. Ten patients with hepatic metastasis from ovarian tumors received initial and follow-up CT and MRI examinations. Six patients were followed up every two to three weeks before surgical tumor resection. Both CT and MR images were analyzed by two radiologists. A total of fourteen lesions were detected by CT and MRI in 10 patients. All 14 lesions were demonstrated as areas of marked hyperintensity on T2-weighted MRI. Eleven cyst-like tumors were demonstrated as round or oval low density lesions on CT and as areas of hypointensity on T1-weighted imaging. Three lesions were shown as solid masses with slightly low attenuation at the initial CT examination and slightly low or iso-intensity areas on T1-weighted imaging, and these lesions showed early peripheral globular enhancement and delayed enhancement on contrast-enhanced CT and MR imaging. Cystic formation was observed two to three weeks later after initial study in all the 3 solid lesions. Rapid subcapsular effusion, which showed obvious enhancement on delayed Gd-DTPA enhanced MR imaging, was observed in two patients. The hepatic metastatic tumor from cystic ovarian carcinoma may manifest as a well-defined cystic lesion or as a solid mass, and the solid mass shows delayed enhancement on contrast-enhanced CT and MR imaging. Furthermore, rapid cystic formation and rapid subcapsular extension is frequently seen. (author)

  6. Prevention of parastomal hernias with 3D funnel meshes in intraperitoneal onlay position by placement during initial stoma formation.

    Science.gov (United States)

    Köhler, G; Hofmann, A; Lechner, M; Mayer, F; Wundsam, H; Emmanuel, K; Fortelny, R H

    2016-02-01

    In patients with terminal ostomies, parastomal hernias (PSHs) occur on a frequent basis. They are commonly associated with various degrees of complaints and occasionally lead to life-threatening complications. Various strategies and measures have been tested and evaluated, but to date there is a lack of published evidence with regard to the best surgical technique for the prevention of PSH development. We conducted a retrospective analysis of prospectively collected data of eighty patients, who underwent elective permanent ostomy formation between 2009 and 2014 by means of prophylactic implantation of a three-dimensional (3D) funnel mesh in intraperitoneal onlay (IPOM) position. PSH developed in three patients (3.75%). No mesh-related complications were encountered and none of the implants had to be removed. Ostomy-related complications had to be noted in seven (8.75%) cases. No manifestation of ostomy prolapse occurred. Follow-up time was a median 21 (range 3-47) months. The prophylactical implantation of a specially shaped, 3D mesh implant in IPOM technique during initial formation of a terminal enterostomy is safe, highly efficient and comparatively easy to perform. As opposed to what can be achieved with flat or keyhole meshes, the inner boundary areas of the ostomy itself can be well covered and protected from the surging viscera with the 3D implants. At the same time, the vertical, tunnel-shaped part of the mesh provides sufficient protection from an ostomy prolapse. Further studies will be needed to compare the efficacy of various known approaches to PSH prevention.

  7. Radiation as an inducer of in-situ autologous vaccine in the treatment of solid tumors

    International Nuclear Information System (INIS)

    Ahmed, Mansoor M.

    2013-01-01

    Radiation therapy (RT) is conventionally used for local tumor control. Although local control of the primary tumor can prevent the development of subsequent systemic metastases, tumor irradiation is not effective in controlling pre-existing systemic disease. The concept of radiation-enhanced antigen presentation and immunomodulation allows the harnessing of tumor cell death induced by radiation as a potential source of tumor antigens for immunotherapy. Immunomodulation using RT is a novel strategy of in situ tumor vaccination where primary tumor irradiation can contribute to the control of pre-existing systemic metastatic disease. The absence of systemic immunosuppression (often associated with chemotherapy) and the generally lower toxicity makes radiation a desirable adjuvant regimen for immunotherapy and tumor vaccination strategies. Increased understanding of tumor immunology and the biology of radiation-mediated immune modulation should enhance the efficacy of combining these therapeutic modalities. Here we aim to provide an overview of the biology of radiation-induced immune modulation. (author)

  8. General certification procedure of formation organizations

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document presents the procedure dealing with the certification of formation organizations dispensing the formation and the risks prevention to the personnel of A or B category in nuclear facilities. This certification proves the organization ability to satisfy the ''F'' specification of the CEFRI. (A.L.B.)

  9. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  10. Anti-tumor effects of (1→3)-β-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice.

    Science.gov (United States)

    Mo, Li; Chen, Yafei; Li, Wenjian; Guo, Shuai; Wang, Xuzhao; An, Hailong; Zhan, Yong

    2017-02-01

    (1→3)-β-d-Glucan from Saccharomyces cerevisiae is a typical polysaccharide with various biological effects and is considered a candidate for the prevention and treatment of cancer in vitro. Research into the function of (1→3)-β-d-glucan in tumor-bearing animals in vivo, however, is limited. Here, we investigated the effects of (1→3)-β-d-glucan from S. cerevisiae on S180 tumor-bearing mice and on the immunity of the tumor-bearing host. The molecular mechanisms underlying the observed effects were investigated. (1→3)-β-d-Glucan was shown to exert anti-tumor effects without toxicity in normal mouse cells. The volume and weight of S180 tumors decreased dramatically following treatment with (1→3)-β-d-glucan, and treatment with the polysaccharide was furthermore shown to increase the tumor inhibition rate in a dose-dependent manner. Spleen index, T lymphocyte subsets (CD 4 and CD 8 ), as well as interleukins (IL)-2, (IL-2, IL-6), and tumor necrosis factor-α were assayed to detect the immunoregulatory and anti-tumor effects after (1→3)-β-d-glucan intragastrical administration. (1→3)-β-d-Glucan was shown to significantly potentiate the mouse immune responses by, among other effects, decreasing the ratio of CD 4 to CD 8 . The expression levels of IL-2, IL-6, and TNF-α were also significantly increased by (1→3)-β-d-glucan. These results suggest that (1→3)-β-d-glucan enhances the host's immune function during the tumor inhibition process. S180 tumor cells treated with (1→3)-β-d-glucan also exhibited significant apoptotic characteristics. (1→3)-β-d-glucan increased the ratio of Bax to Bcl-2 at the translation level by up-regulating Bax expression and down-regulating Bcl-2 expression, resulting in the initiation of cell apoptosis in S180 tumor-bearing mice. Taken together, these results indicate that the anti-tumor effects exerted by (1→3)-β-d-glucan may be attributed to the polysaccharide's immunostimulating properties and apoptosis

  11. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors.

    Science.gov (United States)

    Rehfeld, Anders; Plass, Mireya; Døssing, Kristina; Knigge, Ulrich; Kjær, Andreas; Krogh, Anders; Friis-Hansen, Lennart

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3' untranslated regions. Additionally, APA can also produce mRNAs containing different 3'-terminal coding regions. Therefore, APA alters both the repertoire and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3' truncation of mRNA coding regions or 3' untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1, and DACT2. We validated the APA in three out of three cases with quantitative real-time-PCR. Our findings suggest that changes of APA pattern in these 16 genes could be involved in the tumorigenesis of SI-NETs. Furthermore, they also point to APA as a new target for both diagnostic and treatment of SI-NETs. The identified genes with APA specific to the SI-NETs could be further tested as diagnostic markers and drug targets for disease prevention and treatment.

  12. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  13. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  14. Is primary prevention with antiepileptic drugs effective in brain tumors or brain metastases?

    Directory of Open Access Journals (Sweden)

    Diego Lobos-Urbina

    2017-03-01

    Full Text Available Resumen Los pacientes con tumores cerebrales, primarios o metastásicos, presentan riego de desarrollar convulsiones durante la evolución de su enfermedad, por lo que se ha propuesto el uso profiláctico de anticonvulsivantes. Sin embargo, el efecto de esta intervención no está claro. Para responder esta pregunta utilizamos la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en múltiples bases de datos. Identificamos 12 revisiones sistemáticas que en conjunto incluyen ochenta estudios primarios. Doce corresponden a estudios aleatorizados, pero sólo dos responden la pregunta de interés. Extrajimos los datos, realizamos un metanálisis y preparamos una tabla de resumen de los resultados utilizando el método GRADE. Concluimos que la prevención primaria con anticonvulsivantes podría no disminuir el riesgo de convulsiones en tumores o metástasis cerebrales, y se asocia a efectos adversos frecuentes.

  15. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    Science.gov (United States)

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  16. Advances in the biology of bone metastasis: how the skeleton affects tumor behavior.

    Science.gov (United States)

    Sterling, Julie A; Edwards, James R; Martin, T John; Mundy, Gregory R

    2011-01-01

    It is increasingly evident that the microenvironment of bone can influence the cancer phenotype in many ways that favor growth in bone. The ability of cancer cells to adhere to bone matrix and to promote osteoclast formation are key requirements for the establishment and growth of bone metastases. Several cytokine products of breast cancers (e.g. PTHrP, IL-11, IL-8) have been shown to act upon host cells of the bone microenvironment to promote osteoclast formation, allowing for excessive bone resorption. The increased release of matrix-derived growth factors, especially TGF-β, acts back upon the tumor to facilitate further tumor expansion and enhance cytokine production, and also upon osteoblasts to suppress bone formation. This provides a self-perpetuating cycle of bone loss and tumor growth within the skeleton. Other contributing factors favoring tumor metastasis and colonization in bone include the unique structure and stiffness of skeletal tissue, along with the diverse cellular composition of the marrow environment (e.g. bone cells, stromal fibroblasts, immune cells), any of which can contribute to the phenotypic changes that can take place in metastatic deposits that favor their survival. Additionally, it is also apparent that breast cancer cells begin to express different bone specific proteins as well as proteins important for normal breast development and lactation that allow them to grow in bone and stimulate bone destruction. Taken together, these continually emerging areas of study suggest new potential pathways important in the pathogenesis of bone metastasis and potential areas for targeting therapeutics. Copyright © 2010. Published by Elsevier Inc.

  17. Dietary supplement use and colorectal tumors : from prevention to diagnosis

    NARCIS (Netherlands)

    Bröring, R.C.

    2015-01-01

    Background: Expert guidelines formulated by the World Cancer Research Fund and the American Institute for Cancer Research (WCRF/AICR) advised no use of dietary supplements for cancer prevention. However, it is unclear whether those recommendations also apply to populations at

  18. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma.

    Science.gov (United States)

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Chang, Na

    2017-09-20

    Curcumin, a derivative from the dried rhizome of curcuma longa, has been proven to possess anti-tumor effects. However, the detailed molecular mechanisms have not been fully elucidated. In this study, we aimed to explore the anti-tumor mechanisms of curcumin in treating gastric cancer. BALB/C mice grafted with a mouse gastric adenocarcinoma cell line (MFC) were used as the experimental model. Mice received different doses of curcumin after grafting. Tumor size was measured and tumor weight was determined after tumor inoculation. TUNEL assay and flow cytometric analysis were applied to evaluate the apoptosis of the cancer cells. Serum cytokines IFN-γ, TNF-α, granzyme B and perforin were detected by ELISA assay. The anti-tumor effect was determined using cytotoxic T-lymphocyte (CTL) assays and in vivo tumor prevention tests. The expression of DEC1, HIF-1α, STAT3 and VEGF in tumor tissues was examined by immunostaining and analyzed using an Image J analysis system. Compared with controls, tumor growth (size and weight) was significantly inhibited by curcumin treatment (P curcumin treatment group. Splenocyte cells from mice treated with curcumin exhibited higher cytolytic effects on MFC cancer cells than those from mice treated with saline (P curcumin treatment. Our results indicate that curcumin inhibits the proliferation of gastric carcinoma by inducing the apoptosis of tumor cells, activating immune cells to secrete a large amount of cytokines, and down-regulating the DEC1, HIF-1α, VEGF and STAT3 signal transduction pathways.

  19. Land use, macroalgae, and a tumor-forming disease in marine turtles.

    Directory of Open Access Journals (Sweden)

    Kyle S Van Houtan

    Full Text Available Wildlife diseases are an increasing concern for endangered species conservation, but their occurrence, causes, and human influences are often unknown. We analyzed 3,939 records of stranded Hawaiian green sea turtles (Chelonia mydas over 28 years to understand fibropapillomatosis, a tumor-forming disease linked to a herpesvirus. Turtle size is a consistent risk factor and size-standardized models revealed considerable spatial and temporal variability. The disease peaked in some areas in the 1990s, in some regions rates remained constant, and elsewhere rates increased. Land use, onshore of where the turtles feed, may play a role. Elevated disease rates were clustered in watersheds with high nitrogen-footprints; an index of natural and anthropogenic factors that affect coastal eutrophication. Further analysis shows strong epidemiological links between disease rates, nitrogen-footprints, and invasive macroalgae and points to foraging ecology. These turtles now forage on invasive macroalgae, which can dominate nutrient rich waters and sequester environmental N in the amino acid arginine. Arginine is known to regulate immune activity, promote herpesviruses, and contribute to tumor formation. Our results have implications for understanding diseases in aquatic organisms, eutrophication, herpesviruses, and tumor formation.

  20. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    International Nuclear Information System (INIS)

    Hamdi, Hamdi K.; Castellon, Raquel

    2005-01-01

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet

  1. Highly efficient elimination of colorectal tumor-initiating cells by an EpCAM/CD3-bispecific antibody engaging human T cells.

    Directory of Open Access Journals (Sweden)

    Ines Herrmann

    2010-10-01

    Full Text Available With their resistance to genotoxic and anti-proliferative drugs and potential to grow tumors and metastases from very few cells, cancer stem or tumor-initiating cells (TICs are a severe limitation for the treatment of cancer by conventional therapies. Here, we explored whether human T cells that are redirected via an EpCAM/CD3-bispecific antibody called MT110 can lyse colorectal TICs and prevent tumor growth from TICs. MT110 recognizes EpCAM, a cell adhesion molecule expressed on TICs from diverse human carcinoma, which was recently shown to promote tumor growth through engagement of elements of the wnt pathway. MT110 was highly potent in mediating complete redirected lysis of KRAS-, PI3 kinase- and BRAF-mutated colorectal TICs, as demonstrated in a soft agar assay. In immunodeficient mice, MT110 prevented growth of tumors from a 5,000-fold excess of a minimally tumorigenic TIC dose. T cells engaged by MT110 may provide a potent therapeutic means to eradicate TICs and bulk tumor cells derived thereof.

  2. The establishment of transmissible venereal tumor lung cancer model in canine and the observation of its biological characteristics

    International Nuclear Information System (INIS)

    Sun Zhichao; Dong Weihua; Xiao Xiangsheng; Zhu Ruimin; Chen mofan; Wang Zhi

    2010-01-01

    Objective: To establish an allogeneic transplanted lung cancer model in canine by percutaneously injecting canine transmissible venereal tumor (CTVT) cell suspension and to observe its biological characteristics. Methods: Under CT guidance fresh CTVT cell suspension was inoculated into the middle or posterior lobe of lungs through percutaneous puncturing needle in 12 beagle dogs. Cyclosporin was administrated orally to obtain immunosuppression. Tumor growth and metastasis were judged by chest CT scanning at regular intervals (every 1-2 weeks). The daily mental and physical condition of the dogs was observed. Autopsy and pathological examination were performed when the animals died naturally or at the tenth week after the procedure when the animals were sacrificed. Results: A total of 15 sites were inoculated in 12 dogs. The formation of tumor was observed in 2 dogs at the fifth week and in 9 dogs at the sixth week. Ten weeks after the inoculation the formation of tumor was detected in 10 inoculated points in 9 dogs, the inoculation success rate was 66.67%. The mean largest diameter of the tumor at 6, 8 and 10 weeks after the inoculation was (1.059 ± 0.113)cm, (1.827 ± 0.084)cm and (2.189 ± 0.153)cm, respectively. The largest diameter of the tumor nodule was 3.5 cm. Moderate to severe pleural effusion and mediastinal lymph nodes metastasis were found in all the dogs that showed the formation of the tumor. Conclusion: Percutaneous CTVT cell suspension injection can establish an allogeneic canine lung cancer model, which is helpful for the experimental studies related to lung cancer. (authors)

  3. Evaluation of Amelotin Expression in Benign Odontogenic Tumors

    Directory of Open Access Journals (Sweden)

    Daiana Paula Stolf

    2013-10-01

    Full Text Available Objective: Amelotin (AMTN is highly and selectively expressed by odontogenic epithelium-derived ameloblasts throughout the maturation stage of enamel formation. The protein is secreted and concentrated at the basal lamina interface between ameloblasts and the mineralized enamel matrix. Odontogenic tumors (OT are characterized by morphological resemblance to the developing tooth germ. OT vary from slowly expanding, encapsulated tumors to locally aggressive and destructive lesions. The purpose of this study was to determine the expression profile of AMTN in benign odontogenic tumors and to correlate it with specific features of the lesions. Methods: Immunohistochemical staining for AMTN was performed on human ameloblastoma, ameloblastic fibroma (AF, ameloblastic fibro-odontoma (AFO, odontoma, adenomatoid odontogenic tumor (AOT and calcifying cystic odontogenic tumor (CCOT. Results: Generally, ameloblastoma and AF did not stain for AMTN. A strong signal was detected in ameloblast-like layers of AFO and odontoma. Epithelial cells in AOT did not stain for AMTN, while calcifying areas of extracellular eosinophilic matrix were intensely stained. Interestingly, ghost cells present in odontomas and CCOT revealed variable staining, again in association with calcification foci. Conclusions: Amelotin expression was consistently detected in tumors presenting differentiated ameloblasts and obvious matrix deposition. Additionally, the presence of the protein in the eosinophilic matrix and small mineralized foci of AOT and calcification areas of ghost cells may suggest a role for AMTN in the control of mineralization events. [J Interdiscipl Histopathol 2013; 1(5.000: 236-245

  4. Scanning electron microscopic studies on bone tumors

    International Nuclear Information System (INIS)

    Itoh, Motoya

    1978-01-01

    Surface morphological observations of benign and malinant bone tumors were made by the use of scanning electron microscopy. Tumor materials were obtained directly from patients of osteogenic sarcomas, chondrosarcomas, enchondromas, giant cell tumors and Paget's sarcoma. To compare with these human tumors, the following experimental materials were also observed: P 32 -induced rat osteogenic sarcomas with their pulmonary metastatic lesions, Sr 89 -induced transplantable mouse osteogenic sarcomas and osteoid tissues arising after artificial fractures in mice. One of the most outstanding findings was a lot of granular substances seen on cell surfaces and their intercellular spaces in osteoid or chondroid forming tissues. These substances were considered to do some parts in collaborating extracellular matrix formation. Protrusions on cell surface, such as mucrovilli were more or less fashioned by these granular substances. Additional experiments revealed these substances to be soluble in sodium cloride solution. Benign osteoid forming cells, such as osteoblasts and osteoblastic osteosarcoma cells had granular substances on their surfaces and their intercellular spaces. On the other hand, undifferentiated transplantable osteosarcoma which formed on osteoid or chondroid matrix had none of these granular substances. Consequently, the difference of surface morphology between osteosarcoma cells and osteoblasts was yet to be especially concluded. (author)

  5. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  6. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion.

    Directory of Open Access Journals (Sweden)

    Katarzyna S Kopanska

    Full Text Available The mechanical properties of tumors and the tumor environment provide important information for the progression and characterization of cancer. Tumors are surrounded by an extracellular matrix (ECM dominated by collagen I. The geometrical and mechanical properties of the ECM play an important role for the initial step in the formation of metastasis, presented by the migration of malignant cells towards new settlements as well as the vascular and lymphatic system. The extent of this cell invasion into the ECM is a key medical marker for cancer prognosis. In vivo studies reveal an increased stiffness and different architecture of tumor tissue when compared to its healthy counterparts. The observed parallel collagen organization on the tumor border and radial arrangement at the invasion zone has raised the question about the mechanisms organizing these structures. Here we study the effect of contractile forces originated from model tumor spheroids embedded in a biomimetic collagen I matrix. We show that contractile forces act immediately after seeding and deform the ECM, thus leading to tensile radial forces within the matrix. Relaxation of this tension via cutting the collagen does reduce invasion, showing a mechanical relation between the tensile state of the ECM and invasion. In turn, these results suggest that tensile forces in the ECM facilitate invasion. Furthermore, simultaneous contraction of the ECM and tumor growth leads to the condensation and reorientation of the collagen at the spheroid's surface. We propose a tension-based model to explain the collagen organization and the onset of invasion by forces originating from the tumor.

  7. Impact of anemia prevention by recombinant human erythropoietin on the sensitivity of xenografted glioblastomas to fractionated irradiation

    International Nuclear Information System (INIS)

    Stueben, G.; Poettgen, C.; Knuehmann, K.; Sack, H.; Stuschke, M.; Thews, O.; Vaupel, P.

    2003-01-01

    Background: Pronounced oxygen deficiency in tumors which might be caused by a diminished oxygen transport capacity of the blood (e.g., in anemia) reduces the efficacy of ionizing radiation. The aim of this study was to analyze whether anemia prevention by recombinant human erythropoietin (rHuEPO) affects the radiosensitivity of human glioblastoma xenografts during fractionated irradiation. Material and Methods: Anemia was induced by total body irradiation (TBI, 2 x 4 Gy) of mice prior to tumor implantation into the subcutis of the hind leg. In one experimental group, the development of anemia was prevented by rHuEPO (750 U/kg s.c.) given three times weekly starting 10 days prior to TBI. 13 days after tumor implantation (tumor volume approx. 40 mm 3 ), fractionated irradiation (4 x 7 Gy, one daily fraction) of the glioblastomas was performed resulting in a growth delay with subsequent regrowth of the tumors. Results: Compared to nonanemic control animals (hemoglobin concentration cHb = 14.7 g/dl), the growth delay in anemic mice (cHb = 9.9 g/dl) was significantly shorter (49 ± 5 days vs. 79 ± 4 days to reach four times the initial tumor volume) upon fractionated radiation. The prevention of anemia by rHuEPO treatment (cHb = 13.3 g/dl) resulted in a significantly prolonged growth delay (61 ± 5 days) compared to the anemia group, even though the growth inhibition found in control animals was not completely achieved. Conclusions: These data indicate that moderate anemia significantly reduces the efficacy of radiotherapy. Prevention of anemia with rHuEPO partially restores the radiosensitivity of xenografted glioblastomas to fractionated irradiation. (orig.)

  8. Diverse bone morphogenetic protein expression profiles and smad pathway activation in different phenotypes of experimental canine mammary tumors.

    Directory of Open Access Journals (Sweden)

    Helena Wensman

    Full Text Available BACKGROUND: BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones. CONCLUSIONS/SIGNIFICANCE: We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.

  9. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area......-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell...... in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers...

  10. Ovarian Brenner tumors and Walthard nests: a histologic and immunohistochemical study.

    Science.gov (United States)

    Roma, Andres A; Masand, Ramya P

    2014-12-01

    Brenner tumors are composed of urothelial/transitional-type epithelium and, hence, are morphologically similar to Walthard nests and tubal/mesothelial transitional metaplasia. In this study, we analyzed immunohistochemical markers on Brenner tumors to explore Müllerian as well as Wolffian and germ cell derivation. We also attempted to explore their possible association with tubal/paratubal Walthard nests/transitional metaplasia, using the same immunostains. Thirty-two consecutive cases of Brenner tumors were identified. Thirteen (43%) of the patients had Walthard nests in the tubal/periovarian soft tissue. All Brenner tumors were diffusely positive for GATA3 (strongly positive in 30/32 and weakly positive in the remaining 2) and negative for PAX8, PAX2, and SALL4. Similarly, all Walthard nests were positive for GATA3, whereas only 3 (23%) of 13 showed occasional PAX8 expression; all were negative for PAX2 and SALL4. In our study, more than 40% of Brenner tumors had associated Walthard nests. The similar morphology and immunoprofile of Brenner tumors and Walthard nests suggest a probable link between Brenner tumors and Walthard nests. Two additional cases presented highlight small transitional lesions involving the ovary: a possible precursor lesion or the initial steps of Brenner tumor formation. Brenner tumors and most Walthard nests lacked staining for Müllerian (PAX8 and PAX2) and germ cell tumor markers (SALL4). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Radioprotection of normal tissues in tumor-bearing mice by troxerutin

    International Nuclear Information System (INIS)

    Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K.

    2004-01-01

    The flavanoid derivative troxerutin, used clinically for treating venous disorders, protected biomembranes and cellular DNA against the deleterious effects of γ-radiation. The peroxidation of lipids (measured as thiobarbituric acid-reacting substances, or TBARS) in rat liver microsomal and mitochondrial membranes resulting from γ-irradiation up to doses of 500 Gy in vitro was prevented by 0.2 mM troxerutin. The administration of troxerutin (175 mg/kg body weight) to tumor-bearing mice by intraperitoneal (ip) one hour prior to 4 Gy whole-body γ-irradiation significantly decreased the radiation-induced peroxidation of lipids in tissues such as liver and spleen, but there was no reduction of lipid peroxidation in tumor. The effect of troxerutin in γ-radiation-induced DNA strand breaks in different tissues of tumor-bearing mice was studied by comet assay. The administration of troxerutin to tumor-bearing animals protected cellular DNA against radiation-induced strand breaks. This was evidenced from decreases in comet tail length, tail moment, and percent of DNA in the tails in cells of normal tissues such as blood leukocytes and bone marrow, and these parameters were not altered in cells of fibrosarcoma tumor. The results revealed that troxerutin could preferentially protect normal tissues against radiation-induced damages in tumor-bearing animals. (author)

  12. Beta-endorphin cell therapy for cancer prevention.

    Science.gov (United States)

    Zhang, Changqing; Murugan, Sengottuvelan; Boyadjieva, Nadka; Jabbar, Shaima; Shrivastava, Pallavi; Sarkar, Dipak K

    2015-01-01

    β-Endorphin (BEP)-producing neuron in the hypothalamus plays a key role in bringing the stress axis to a state of homeostasis and maintaining body immune defense system. Long-term delivery of BEP to obtain beneficial effect on chemoprevention is challenging, as the peptides rapidly develop tolerance. Using rats as animal models, we show here that transplantation of BEP neurons into the hypothalamus suppressed carcinogens- and hormone-induced cancers in various tissues and prevented growth and metastasis of established tumors via activation of innate immune functions. In addition, we show that intracerebroventricular administration of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) increased the number of BEP neurons in the hypothalamus, reduced the stress response, enhanced the innate immune function, and prevented tumor cell growth, progression, and metastasis. BEP neuronal supplementation did not produce any deleterious effects on general health but was beneficial in suppressing age-induced alterations in physical activity, metabolic, and immune functions. We conclude that the neuroimmune system has significant control over cancer growth and progression, and that activation of the neuroimmune system via BEP neuronal supplementation/induction may have therapeutic value for cancer prevention and improvement of general health. ©2014 American Association for Cancer Research.

  13. Immunoconjugates against solid tumors: mind the gap.

    Science.gov (United States)

    Ricart, A D

    2011-04-01

    The objective of immunoconjugate development is to combine the specificity of immunoglobulins with the efficacy of cytotoxic molecules. This therapeutic approach has been validated in hematologic malignancies; however, several obstacles to achieving efficacy in treating solid tumors have been identified. These include insufficient specificity of targets and poor antibody delivery, most specifically to the tumor core. Heterogeneous antigen expression, imperfect vascular supply, and elevated interstitial fluid pressure have been suggested as the factors responsible for the poor delivery of antibodies. Promising immunoconjugates are in development: immunoconjugates targeting the prostate-specific membrane antigen, trastuzumab-DM1, lorvotuzumab mertansine, and SS1P. Advances in cancer biology and antibody engineering may overcome some of the challenges. New small antibody formats, such as single-chain Fv, Fab, and diabodies, may improve penetration within tumor masses. Nevertheless, the cost of treatment might require justification in terms of demonstrable improvement in quality of life in addition to efficacy; further economic evaluation might be necessary before this approach can replace the current standards of care in clinical practice.

  14. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  15. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  16. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  17. Prevention of Addictive Behavior Based on the Formation of Teenagers' Resilience

    Science.gov (United States)

    Zeleeva, Vera P.; Shubnikova, Ekaterina G.

    2016-01-01

    The relevance of the study is due to the development of a new stage of prevention and the need to justify new educational goals and objectives of the pedagogical prevention of addictive behavior in the educational environment. The purpose of this article is to examine the totality of the necessary and sufficient individual resources, that are…

  18. Losartan prevents from the formation and interferes with the development of calcium chloride-induced abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    Yan Huimin; Cui Bing; Yang Hongzhen; Hu Zhuowei; Chen Zhong; Tang Xiaobin

    2010-01-01

    Objective: Abdominal aortic aneurysm (AAA), a chronic inflammatory vascular disorder, results in progressive expansion and rupture of the aorta with high mortality among the elderly. Multiple factors contribute to the pathogenesis of AAA that somehow induces aneurysmal manifestations. There are no effective drugs available currently. This study aims to find out whether losartan, an angiotensin II type 1 receptor (AT1) antagonist, can prevent and treat the CaCl 2 -induced AAA. Methods: We chose periaortic application of 0.5 mol/L CaCl 2 -induced mouse AAA model. Ultrasonographic and histological studies were conducted to evaluate the formation of AAA in mice. Results: Losartan not only protected against the formation of AAA, but also hindered the development of AAA. Losartan reduced aortic expansion and elastic lamina degradation. Conclusion: The prophylactic and therapeutic effects of losartan are associated with the regulation of vascular fibrosis and inflammation. Losartan inhibits the infiltration of inflammatory cells and decreases the expression of several cytokines in the vascular tissue of AAA. Our studies will provide insight into the pathogenesis of AAA induced by CaCl 2 and offer more evidence that losartan has a great potential for the development of therapeutic agents against AAA. (authors)

  19. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Ruman Rahman

    2010-01-01

    Full Text Available Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.

  20. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  1. The mechanism of cerebral aneurysmal formation

    International Nuclear Information System (INIS)

    Yokoi, Toshihiro; Nozaki, Kazuhiko

    2010-01-01

    Cerebral aneurysm is a disease of poor prognosis and MR- and CT-angiographies are used for its diagnosis and in the preventive therapy of its rupture. Here discussed are formation and growth leading to rupture of the lesion for its advanced diagnosis and prevention of rupturing. Beginning from findings in animal experimentation in mice, rats and monkeys, discussed are pathology of the aneurysm, genes related with its formation, molecular biological approaches concerning apoptosis and NF-kB/TNF-α related inflammatory reactions, participation of sex hormone, clinical hemodynamic analyses based on 3D data from CT and MRI findings, and clinical studies. Authors consider that local hemodynamic stress loading is possibly related to cerebral aneurysm formation as it is yielded at the loading part of the vessel in human and in animal models. The aneurysm is possibly a result of remodeling disturbance by the load and subsequent excessive involution of the artery. In the process, probably included are the inflammation, apoptosis, degradation of extracellular matrix and functional impairment of endotherial cells. Future elucidation of molecular mechanisms underlying the aneurismal growth and rupture will bring about the improved treatment to prevent the disease by stabilizing the aneurismal wall. (T.T.)

  2. The role of tumor molecular subtypes in formation of personalized approach to the theatment of the breast cancer

    Directory of Open Access Journals (Sweden)

    Bondarenko I.N.

    2016-05-01

    Full Text Available Extreme heterogeneity of breast cancer (BC is considered to be one of the reasons that affects the success of treatment. According to current classifications, there are 4 molecular subtypes (MS. The basis for subtypes division is immunohistochemical testing of tumor cell receptors - estrogen (ER, progesterone (PR, HER2-neu and Ki-67. The doctrine of the tumor MS was the basis for the individualization of therapeutic tactics in patients with breast cancer. It was studied that luminal A subtype is the most common and the most favorable, with hormone therapy being a highly effective treatment method. Luminal B subtype, HER2 - positive and triple negative MS is characterized by a high ag­gressiveness, worse survival rate of patients and better prognostic effect of chemotherapy. The importance of determining the level of Ki-67 for assessment of tumor aggressiveness was revealed. Significant differences in receptor status of the primary tumor and metastases were proven. Data on the impact of changes in receptor status of the tumor prognosis are ambiguous and need further study. The use of targeted agents in the treatment of HER2 + patients can significantly improve treatment outcomes, turning this MS from historically aggressive subgroup to quite favorable.

  3. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    Science.gov (United States)

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs. © 2014 Society for Endocrinology.

  4. Teratoid Wilms′ tumor - A rare renal tumor

    Directory of Open Access Journals (Sweden)

    Biswanath Mukhopadhyay

    2011-01-01

    Full Text Available Teratoid Wilms′ tumor is an extremely rare renal tumor. We report a case of unilateral teratoid Wilms′ tumor in a 4-year-old girl. The patient was admitted with a right-sided abdominal mass. The mass was arising from the right kidney. Radical nephrectomy was done and the patient had an uneventful recovery. Histopathology report showed teratoid Wilms′ tumor.

  5. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  6. Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma

    Science.gov (United States)

    Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing

    2012-01-01

    Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892

  7. Tumor control probability after a radiation of animal tumors

    International Nuclear Information System (INIS)

    Urano, Muneyasu; Ando, Koichi; Koike, Sachiko; Nesumi, Naofumi

    1975-01-01

    Tumor control and regrowth probability of animal tumors irradiated with a single x-ray dose were determined, using a spontaneous C3H mouse mammary carcinoma. Cellular radiation sensitivity of tumor cells and tumor control probability of the tumor were examined by the TD 50 and TCD 50 assays respectively. Tumor growth kinetics were measured by counting the percentage of labelled mitosis and by measuring the growth curve. A mathematical analysis of tumor control probability was made from these results. A formula proposed, accounted for cell population kinetics or division probability model, cell sensitivity to radiation and number of tumor cells. (auth.)

  8. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  9. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    Science.gov (United States)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  10. An exceptional collision tumor: gastric calcified stromal tumor and ...

    African Journals Online (AJOL)

    The authors report an exceptional case of collision tumor comprised of a gastric calcified stromal tumor and a pancreatic adenocarcinoma. The pancreatic tumor was detected fortuitously on the histological exam of resection specimen. Key words: Collision tumor, stromal tumor, adenocarcinoma ...

  11. Five-chlorodeoxycytidine, a tumor-selective enzyme-driven radiosensitizer, effectively controls five advanced human tumors in nude mice

    International Nuclear Information System (INIS)

    Greer, Sheldon; Alvarez, Marcy; Mas, Marisol; Wozniak, Chandra; Arnold, David; Knapinska, Anna; Norris, Christina; Burk, Ronald; Aller, Alex; Dauphinee, Michael

    2001-01-01

    to possess CldU in their DNA. The great majority of head-and-neck tumors from patient material had markedly higher levels of dC kinase and dCMP deaminase than found in adjacent normal tissue. Physiologic and histologic studies showed that CldC + H 4 U combined with X-ray, focused on the cervical spinal cord, did not result in damage to that tissue. Conclusions: 5-CldC coadministered with only H 4 U is an effective radiosensitizer of human tumors. Ninety-two percent of PC-3 tumor cells have been shown to take up ClUra derived from CldC in their DNA after only 1((1)/(2)) weeks and 2 weeks of bolus i.p. injections. Enzymatic alterations that make tumors successful have been exploited for a therapeutic advantage. The great electronegativity, coupled with the relatively small Van der Waal radius of the Cl atom, may result in CldC's possessing the dual advantageous properties of FdC on one hand and BrdU and IdU on the other hand. These advantages include autoenhancing the incorporation of CldUTP into DNA by not only overrunning but also inhibiting the formation of competing TTP pools in tumors. A clinical trial is about to begin, with head-and-neck tumors as a first target of CldC radiosensitization

  12. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    International Nuclear Information System (INIS)

    Morison, W.L.; Kelley, S.P.

    1985-01-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans

  13. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  14. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    Science.gov (United States)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  15. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Science.gov (United States)

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  16. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Jin, Haifeng; Xu, Ruodan

    2009-01-01

    ability to block progress of colitis to colon cancer, and its molecular mechanism of action are investigated. A mouse model for colitis-induced colorectal cancer was used to test the effect of triptolide on cancer progression. Treatment of mice with triptolide decreased the incidence of colon cancer...... formation, and increased survival rate. Moreover, triptolide decreased the incidence of tumors in nude mice inoculated with cultured colon cancer cells dose-dependently. In vitro, triptolide inhibited the proliferation, migration and colony formation of colon cancer cells. Secretion of IL6 and levels of JAK....... This suggests that triptolide might be a candidate for prevention of colitis induced colon cancer because it reduces inflammation and prevents tumor formation and development....

  17. Withaferin A Inhibits STAT3 and Induces Tumor Cell Death in Neuroblastoma and Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Lisette P. Yco

    2014-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that has been implicated in many human cancers and has emerged as an ideal target for cancer therapy. Withaferin A (WFA is a natural product with promising antiproliferative properties through its association with a number of molecular targets including STAT3. However, the effect of WFA in pediatric neuroblastoma (NB and its interaction with STAT3 have not been reported. In this study, we found that WFA effectively induces dose-dependent cell death in high-risk and drug-resistant NB as well as multiple myeloma (MM tumor cells, prevented interleukin-6 (IL-6–mediated and persistently activated STAT3 phosphorylation at Y705, and blocked the transcriptional activity of STAT3. We further provide computational models that show that WFA binds STAT3 near the Y705 phosphotyrosine residue of the STAT3 Src homology 2 (SH2 domain, suggesting that WFA prevents STAT3 dimer formation similar to BP-1-102, a well-established STAT3 inhibitor. Our findings propose that the antitumor activity of WFA is mediated at least in part through inhibition of STAT3 and provide a rationale for further drug development and clinical use in NB and MM.

  18. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    Science.gov (United States)

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  19. Taming dendritic cells with TIM-3: Another immunosuppressive strategy by tumors

    Science.gov (United States)

    Patel, Jaina; Bozeman, Erica N.; Selvaraj, Periasamy

    2013-01-01

    The identification of TIM-3 expression on tumor associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells, however its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 mAb treated mice or mice depleted of all DCs which indicated that significant role played by TADCs inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings. PMID:23240746

  20. [Mixed odontogenic tumors in children and adolescents].

    Science.gov (United States)

    Gyulai-Gaál, Szabolcs; Takács, Daniel; Barabás, József; Tarján, Ildikó; Martonffy, Katalin; Szabó, György; Suba, Zsuzsanna

    2007-04-01

    Mixed odontogenic tumors in the jaws of children and adolescents usually cause dentition anomalies. The typical forms of these are ameloblastic fibroma, ameloblastic fibroodontoma, complex odontoma and compound odontoma. In the present study mixed odontogenic tumor cases are presented in patients under 20 years of age. All of them were associated with tooth eruption disturbances. Further aim of this study was to discuss the nature and interrelationships of this group of lesions. Ameloblastic fibromas (AFs) are true, mixed, soft tissue neoplasms, deriving from the proliferation of both odontogenic epithelium and mesenchyma. They have a potential to both recurrence and malignant transformation. Ameloblastic fibroodontomas (AFOs) may be regarded as hamartomas, which exhibit epithelial, mesenchymal and abundant hard tissue components of the developing teeth. Odontomas are calcifying benign hamartomas, and represent the most common type of odontogenic jaw tumors among patients less than 20y, having complex and compound variants. Complex odontomas (CXOs) are built up from amorphous hard tissue elements, and generally occur in the premolar or molar regions of the maxilla. Compound odontomas (CDOs) usually appear in the maxilla, in the region of the incisors and canines, and contain small, radio-opaque structures reminiscent of rudimentary teeth. Early diagnosis and treatment of mixed odontogenic jaw tumors in children may prevent the serious orthodontic complications and jaw deformations.

  1. Hydrate prevention during formation test of gas in deep water; Prevencao de formacao de hidratos durante teste de formacao de poco de gas em lamina d'agua profunda

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Renato Cunha [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work shows a scenery of formation test in deep water, for a well of gas, for which, there were made simulations with objective of identifying possible pairs of points (Pressure x Temperature), favorable to the hydrates formation. Besides, they were made comparisons of the values obtained in the simulation with the values registered during the formation test for the well Alfa of the field Beta. Of ownership of those information, we made an evaluation of the real needs of injection of inhibitors with intention of preventing the hydrates formation in each phase of the test. In an including way, the work has as objective recommends the volumes of hydrates inhibitors to be injected in each phase of a test of formation of well of gas in deep water, in way to assure that the operations are made without there is risk of hydrates formation. (author)

  2. Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Directory of Open Access Journals (Sweden)

    Inman David R

    2006-12-01

    Full Text Available Abstract Background Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Methods Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM to generate multiphoton excitation (MPE of endogenous fluorophores and second harmonic generation (SHG to image stromal collagen. Results We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent

  3. MR findings of ovarian tumors with hormonal activity, with emphasis on tumors other than sex cord-stromal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yumiko Oishi [Department of Radiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan)]. E-mail: ytanaka@md.tsukuba.ac.jp; Saida, Tsukasa Sasaki [Department of Diagnostic and Interventional Radiology, Tsukuba University Hospital (Japan); Minami, Rie [Department of Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Japan); Yagi, Takako [Department of Diagnostic and Interventional Radiology, Tsukuba University Hospital (Japan); Tsunoda, Hajime [Department of Obstetrics and Gynecology, Kanto Medical Center, Nippon Telegraph and Telephone East Corporation (Japan); Yoshikawa, Hiroyuki [Department of Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Japan); Minami, Manabu [Department of Radiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan)

    2007-06-15

    Sex cord-stromal tumors including granulosa cell tumor, thecoma, Sertoli stromal cell tumor and steroid cell tumor are noted for their hormonal activity. However, there are many kinds of ovarian tumors other than sex cord-stromal tumors and tumor-like conditions with endocrine manifestations. Cross-sectional imaging, especially MR, can provide precise features of ovarian tumors and uterine morphological change even in a clinically latent excess of estrogen. In this article, we demonstrate typical imaging findings of ovarian tumors with hormonal activity. We also shortly explain the mechanism of the virilization and hyperestrogenism caused by ovarian tumors and tumor-like conditions.

  4. MR findings of ovarian tumors with hormonal activity, with emphasis on tumors other than sex cord-stromal tumors

    International Nuclear Information System (INIS)

    Tanaka, Yumiko Oishi; Saida, Tsukasa Sasaki; Minami, Rie; Yagi, Takako; Tsunoda, Hajime; Yoshikawa, Hiroyuki; Minami, Manabu

    2007-01-01

    Sex cord-stromal tumors including granulosa cell tumor, thecoma, Sertoli stromal cell tumor and steroid cell tumor are noted for their hormonal activity. However, there are many kinds of ovarian tumors other than sex cord-stromal tumors and tumor-like conditions with endocrine manifestations. Cross-sectional imaging, especially MR, can provide precise features of ovarian tumors and uterine morphological change even in a clinically latent excess of estrogen. In this article, we demonstrate typical imaging findings of ovarian tumors with hormonal activity. We also shortly explain the mechanism of the virilization and hyperestrogenism caused by ovarian tumors and tumor-like conditions

  5. Experimental induction of ovarian Sertoli cell tumors in rats by N-nitrosoureas.

    Science.gov (United States)

    Maekawa, A; Onodera, H; Tanigawa, H; Furuta, K; Kanno, J; Ogiu, T; Hayashi, Y

    1987-01-01

    Spontaneous ovarian tumors are very rare in ACI, Wistar, F344 and Donryu rats; the few neoplasms found are of the granulosa/theca cell type. Ovarian tumors were also rare in these strains of rats when given high doses of N-alkyl-N-nitrosoureas continuously in the drinking water for their life-span; however, relatively high incidences of Sertoli cell tumors or Sertoli cell tumors mixed with granulosa cell tumors were induced in Donryu rats after administration of either a 400 ppm N-ethyl-N-nitrosourea solution in the drinking water for 4 weeks or as a single dose of 200 mg N-propyl-N-nitrosourea per kg body weight by stomach tube. Typical Sertoli cell tumors consisted of solid areas showing tubular formation. The tubules were lined by tall, columnar cells, with abundant, faintly eosinophilic, often vacuolated cytoplasm, and basally oriented, round nuclei, resembling seminiferous tubules in the testes. In some cases, Sertoli cell tumor elements were found mixed with areas of granulosa cells. The induction of ovarian Sertoli cell tumors in Donryu rats by low doses of nitrosoureas may provide a useful model for these tumors in man. Images PLATE 1. PLATE 2. PLATE 3. PLATE 4. PLATE 5. PLATE 6. PLATE 7. PLATE 8. PLATE 9. PLATE 10. PLATE 11. PLATE 12. PLATE 13. PLATE 14. PLATE 15. PLATE 16. PMID:3665856

  6. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation.

    NARCIS (Netherlands)

    Braake, A.D. ter; Tinnemans, P.T.; Shanahan, C.M.; Hoenderop, J.G.J.; Baaij, J.H.F. de

    2018-01-01

    Magnesium has been shown to effectively prevent vascular calcification associated with chronic kidney disease. Magnesium has been hypothesized to prevent the upregulation of osteoblastic genes that potentially drives calcification. However, extracellular effects of magnesium on hydroxyapatite

  7. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Andrea [Biologics Safety and Disposition, Preclinical Safety, Translational Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Klybeckstraße 141, Basel CH-4057 (Switzerland); Wehner, Rebekka [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Füssel, Susanne [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Bachmann, Michael [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Wirth, Manfred P. [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Schmitz, Marc, E-mail: marc.schmitz@tu-dresden.de [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany)

    2012-02-22

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8{sup +} cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4{sup +} T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.

  8. Gamma knife radiosurgery for metastatic brain tumors from lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Toru; Ono, Junichi; Iuchi, Toshihiko [Chiba Cardiovascular Center, Ichihara (Japan). Chiba Cancer Center] (and others)

    2003-01-01

    The purpose of this retrospective study is to evaluate the effectiveness of gamma knife radiosurgery (GKS) alone for metastatic brain tumors from lung cancer. Two hundred thirty-one consecutive patients with metastatic brain tumors from lung cancer filling the following 4 criteria were analyzed for this study; no prior brain tumor treatment, 25 or fewer lesions, a maximum 5 tumors with diameter of 2 cm or more, no surgically inaccessible tumor 3 cm or greater in diameter. According to the same treatment protocol, large tumors ({>=} 3 cm) were surgically removed and all the other small lesions (<3 cm) were treated with GKS. New lesions were treated with repeated GKS. The tumor-progression-free, overall, neurological, lowered-QOL (quality of life)-free and new-lesion-free survivals were calculated with the Kaplan-Meier method. The poor prognostic factors for each survival were also analyzed with the Cox's proportional hazard model. The tumor control rate at 1 year was 96.5%. The estimated median overall survival time was 7.7 months. The first-year survival rates were 83.0% in neurological survival and 76.0% in lowered-QOL-free survival. The new-lesion-free survival at 1 year was 27.9%. Multivariate analysis revealed significant poor prognostic factors for neurological and lowered-QOL-free survivals were carcinomatous meningitis and >10 brain lesions. This study suggests the results of GKS for metastatic brain tumors from lung cancer are quite satisfactory considering prevention of neurological death and maintenance of QOL. But cases with carcinomatous meningitis and/or >10 brain lesions are not good candidates for GKS alone. (author)

  9. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells.

    Science.gov (United States)

    Attia, W Y; Gabry, M S; El-Shaikh, K A; Othman, G A

    2008-01-01

    Honey is thought to exhibit a broad spectrum of therapeutic properties including antibacterial, antifungal, cytostatic and anti-inflammatory activity and has been used for the treatment of gastric ulcers, burns, and for storage of skin grafts. The present study investigated the antitumor effect of bee honey against Ehrlich ascites tumor in mice and the possible mode of antitumor action. Peroral administration of mice with honey (10, 100 or 1000 mg/ 100 g BW) every other day for 4 weeks before intraperitoneal inoculation with Ehrlich ascites tumor (EAT, 1 x 10(6) cells) increased the number bone marrow cells as well as peritoneal macrophages, but not peripheral blood leukocytes nor splenocytes. The phagocytic function of macrophages as well as the T- and B-cell functions were also increased. Honey pre-treatment also recovered the total lipids, total proteins, as well as liver and kidney enzyme activities in EAT-bearing mice. In vitro studies on EAT cells demonstrated inhibitory effect of honey on tumor cell proliferation, viability % of tumor cells as well as the size of solid tumor. The present results indicate that the preventive treatment with honey is considerably effective against EAT in mice both in vivo and in vitro. The antitumor activity of honey may occur through the activation of macrophages, T-cells and B-cells.

  10. Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Beom Ju; Kim, Jong Woo; Jeong, Hoi Bin; Bok, Seo Yeon; Kim, Young Eun; Ahn, G One [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of ‘reoxygenation’ phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because ‘reoxygenation’ is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn’t it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy.

  11. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model.

    Directory of Open Access Journals (Sweden)

    Peila Chen

    2010-05-01

    Full Text Available Oncogenes induce cell proliferation leading to replicative stress, DNA damage and genomic instability. A wide variety of cellular stresses activate c-Jun N-terminal kinase (JNK proteins, but few studies have directly addressed the roles of JNK isoforms in tumor development. Herein, we show that jnk2 knockout mice expressing the Polyoma Middle T Antigen transgene developed mammary tumors earlier and experienced higher tumor multiplicity compared to jnk2 wildtype mice. Lack of jnk2 expression was associated with higher tumor aneuploidy and reduced DNA damage response, as marked by fewer pH2AX and 53BP1 nuclear foci. Comparative genomic hybridization further confirmed increased genomic instability in PyV MT/jnk2-/- tumors. In vitro, PyV MT/jnk2-/- cells underwent replicative stress and cell death as evidenced by lower BrdU incorporation, and sustained chromatin licensing and DNA replication factor 1 (CDT1 and p21(Waf1 protein expression, and phosphorylation of Chk1 after serum stimulation, but this response was not associated with phosphorylation of p53 Ser15. Adenoviral overexpression of CDT1 led to similar differences between jnk2 wildtype and knockout cells. In normal mammary cells undergoing UV induced single stranded DNA breaks, JNK2 localized to RPA (Replication Protein A coated strands indicating that JNK2 responds early to single stranded DNA damage and is critical for subsequent recruitment of DNA repair proteins. Together, these data support that JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms.

  12. Bone tumors

    International Nuclear Information System (INIS)

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  13. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds. © The

  14. Evaluation of the human relevance of the constitutive androstane receptor-mediated mode of action for rat hepatocellular tumor formation by the synthetic pyrethroid momfluorothrin.

    Science.gov (United States)

    Okuda, Yu; Kushida, Masahiko; Kikumoto, Hiroko; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Cohen, Samuel M; Lake, Brian G; Yamada, Tomoya

    2017-01-01

    High dietary levels of the non-genotoxic synthetic pyrethroid momfluorothrin increased the incidence of hepatocellular tumors in male and female Wistar rats. Mechanistic studies have demonstrated that the mode of action (MOA) for momfluorothrin-induced hepatocellular tumors is constitutive androstane receptor (CAR)-mediated. In the present study, to evaluate the potential human carcinogenic risk of momfluorothrin, the effects of momfluorothrin (1-1,000 µM) and a major metabolite Z-CMCA (5-1,000 µM) on hepatocyte replicative DNA synthesis and CYP2B mRNA expression were examined in cultured rat and human hepatocyte preparations. The effect of sodium phenobarbital (NaPB), a prototypic rodent hepatocarcinogen with a CAR-mediated MOA, was also investigated. Human hepatocyte growth factor (hHGF) produced a concentration-dependent increase in replicative DNA synthesis in rat and human hepatocytes. However, while NaPB and momfluorothrin increased replicative DNA synthesis in rat hepatocytes, NaPB, momfluorothrin and Z-CMCA did not increase replicative DNA synthesis in human hepatocytes. NaPB, momfluorothrin and Z-CMCA increased CYP2B1/2 mRNA levels in rat hepatocytes. NaPB and momfluorothrin also increased CYP2B6 mRNA levels in human hepatocytes. Overall, while momfluorothrin and NaPB activated CAR in cultured human hepatocytes, neither chemical increased replicative DNA synthesis. Furthermore, to confirm whether the findings observed in vitro were also observed in vivo, a humanized chimeric mouse study was conducted. Replicative DNA synthesis was not increased in human hepatocytes of chimeric mice treated with momfluorothrin or its close structural analogue metofluthrin. As human hepatocytes are refractory to the mitogenic effects of momfluorothrin, in contrast to rat hepatocytes, the data support the hypothesis that the MOA for momfluorothrin-induced rat liver tumor formation is not relevant for humans.

  15. Spindle epithelial tumor with thymus-like differentiation of thyroid gland: Report of two cases with follow-up

    Directory of Open Access Journals (Sweden)

    Nisa Azizun

    2010-10-01

    Full Text Available Spindle epithelial tumor with thymus-like differentiation (SETTLE is a rare malignant thyroid tumor showing thymic or related branchial pouch differentiation. The tumors are composed predominantly of spindle cells along with focal epithelial component and ductular formations. SETTLE occurs in young patients, with indolent growth and a tendency to develop delayed blood-borne metastases. We herein report two cases of SETTLE with a follow-up period of 64 months and 30 months, respectively.

  16. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  17. The Role of Large-Format Histopathology in Assessing Subgross Morphological Prognostic Parameters: A Single Institution Report of 1000 Consecutive Breast Cancer Cases

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2012-01-01

    Full Text Available Breast cancer subgross morphological parameters (disease extent, lesion distribution, and tumor size provide significant prognostic information and guide therapeutic decisions. Modern multimodality radiological imaging can determine these parameters with increasing accuracy in most patients. Large-format histopathology preserves the spatial relationship of the tumor components and their relationship to the resection margins and has clear advantages over traditional routine pathology techniques. We report a series of 1000 consecutive breast cancer cases worked up with large-format histology with detailed radiological-pathological correlation. We confirmed that breast carcinomas often exhibit complex subgross morphology in both early and advanced stages. Half of the cases were extensive tumors and occupied a tissue space ≥40 mm in its largest dimension. Because both in situ and invasive tumor components may exhibit unifocal, multifocal, and diffuse lesion distribution, 17 different breast cancer growth patterns can be observed. Combining in situ and invasive tumor components, most cases fall into three aggregate growth patterns: unifocal (36%, multifocal (35%, and diffuse (28%. Large-format histology categories of tumor size and disease extent were concordant with radiological measurements in approximately 80% of the cases. Noncalcified, low-grade in situ foci, and invasive tumor foci <5 mm were the most frequent causes of discrepant findings.

  18. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  19. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells.

    Science.gov (United States)

    Liu, Yu-xiao; Li, Guo-qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-wen; Zhang, Yi; Li, An-ming

    2015-08-08

    The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response.

  20. COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro

    Directory of Open Access Journals (Sweden)

    Petasis Nicos A

    2008-05-01

    Full Text Available Abstract Background An increasing number of reports is challenging the notion that the antitumor potential of the selective COX-2 inhibitor celecoxib (Celebrex® is mediated primarily via the inhibition of COX-2. We have investigated this issue by applying two different analogs of celecoxib that differentially display COX-2-inhibitory activity: the first analog, called unmethylated celecoxib (UMC, inhibits COX-2 slightly more potently than its parental compound, whereas the second analog, 2,5-dimethyl-celecoxib (DMC, has lost the ability to inhibit COX-2. Results With the use of glioblastoma and pancreatic carcinoma cell lines, we comparatively analyzed the effects of celecoxib, UMC, and DMC in various short-term (≤48 hours cellular and molecular studies, as well as in long-term (≤3 months focus formation assays. We found that DMC exhibited the most potent antitumor activity; celecoxib was somewhat less effective, and UMC clearly displayed the overall weakest antitumor potential in all aspects. The differential growth-inhibitory and apoptosis-stimulatory potency of these compounds in short-term assays did not at all correlate with their capacity to inhibit COX-2, but was closely aligned with their ability to trigger endoplasmic reticulum stress (ERS, as indicated by the induction of the ERS marker CHOP/GADD153 and activation of the ERS-associated caspase 7. In addition, we found that these compounds were able to restore contact inhibition and block focus formation during long-term, chronic drug exposure of tumor cells, and this was achieved at sub-toxic concentrations in the absence of ERS or inhibition of COX-2. Conclusion The antitumor activity of celecoxib in vitro did not involve the inhibition of COX-2. Rather, the drug's ability to trigger ERS, a known effector of cell death, might provide an alternative explanation for its acute cytotoxicity. In addition, the newly discovered ability of this drug to restore contact inhibition and

  1. Formative evaluation of the telecare fall prevention project for older veterans

    OpenAIRE

    Miake-Lye, Isomi M; Amulis, Angel; Saliba, Debra; Shekelle, Paul G; Volkman, Linda K; Ganz, David A

    2011-01-01

    Abstract Background Fall prevention interventions for community-dwelling older adults have been found to reduce falls in some research studies. However, wider implementation of fall prevention activities in routine care has yielded mixed results. We implemented a theory-driven program to improve care for falls at our Veterans Affairs healthcare facility. The first project arising from this program used a nurse advice telephone line to identify patients' risk factors for falls and to triage pa...

  2. A case of collision tumor or transdifferentiation between malignant melanoma and leiomyosarcoma

    DEFF Research Database (Denmark)

    Ul-Mulk, Jamshaid; Rasmussen, Helle; Breiting, Line

    2012-01-01

    with a seborrheic keratosis. There have also been occasional reports of rhabdomyosarcomatous differentiation. However, mesenchymal differentiation, and in this case leiomysarcoma, with formation of heterologous elements in melanocytic tumor is very rare. Another plausible explanation may be that malignant melanoma...

  3. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin.

    Directory of Open Access Journals (Sweden)

    Damien Destouches

    Full Text Available BACKGROUND: Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar nucleolin. CONCLUSION/SIGNIFICANCE: Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy.

  4. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    Directory of Open Access Journals (Sweden)

    Takahiro Ochiya

    Full Text Available The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy.

  5. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  6. Injury Signals Cooperate with Nf1 Loss to Relieve the Tumor-Suppressive Environment of Adult Peripheral Nerve

    Directory of Open Access Journals (Sweden)

    Sara Ribeiro

    2013-10-01

    Full Text Available Schwann cells are highly plastic cells that dedifferentiate to a progenitor-like state following injury. However, deregulation of this plasticity, may be involved in the formation of neurofibromas, mixed-cell tumors of Schwann cell (SC origin that arise upon loss of NF1. Here, we show that adult myelinating SCs (mSCs are refractory to Nf1 loss. However, in the context of injury, Nf1-deficient cells display opposing behaviors along the wounded nerve; distal to the injury, Nf1−/− mSCs redifferentiate normally, whereas at the wound site Nf1−/− mSCs give rise to neurofibromas in both Nf1+/+ and Nf1+/− backgrounds. Tracing experiments showed that distinct cell types within the tumor derive from Nf1-deficient SCs. This model of neurofibroma formation demonstrates that neurofibromas can originate from adult SCs and that the nerve environment can switch from tumor suppressive to tumor promoting at a site of injury. These findings have implications for both the characterization and treatment of neurofibromas.

  7. Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Stieltjes, B.; Weber, M.A.

    2007-01-01

    This contribution considers the possibilities involved with using functional methods in magnetic resonance imaging (MRI) diagnostics for brain tumors. Of the functional methods available, we discuss perfusion MRI (PWI), diffusion MRI (DWI and DTI) and MR spectroscopy (H-MRS). In cases of brain tumor, PWI aids in grading and better differentiation in diagnostics as well as for pre-therapeutic planning. In addition, the course of treatment, both after chemo- as well as radiotherapy in combination with surgical treatment, can be optimized. PWI allows better estimates of biological activity and aggressiveness in low grade brain tumors, and in the case of WHO grade II astrocytoma showing anaplastically transformed tumor areas, allows more rapid visualization and a better prediction of the course of the disease than conventional MRI diagnostics. Diffusion MRI, due to the directional dependence of the diffusion, can illustrate the course and direction of the nerve fibers, as well as reconstructing the nerve tracts in the cerebrum, pons and cerebellum 3-dimensionally. Diffusion imaging can be used for describing brain tumors, for evaluating contralateral involvement and the course of the nerve fibers near the tumor. Due to its operator dependence, DTI based fiber tracking for defining risk structures is controversial. DWI can also not differentiate accurately between cystic and necrotic brain tumors, or between metastases and brain abscesses. H-MRS provides information on cell membrane metabolism, neuronal integrity and the function of neuronal structures, energy metabolism and the formation of tumors and brain tissue necroses. Diagnostic problems such as the differentiation between neoplastic and non-neoplastic lesions, grading cerebral glioma and distinguishing between primary brain tumors and metastases can be resolved. An additional contribution will discuss the control of the course of glial tumors after radiotherapy. (orig.)

  8. Effect of hyperthermia on blood flow in VX2 tumor transplanted in rabbit

    International Nuclear Information System (INIS)

    Arita, Takeshi

    1994-01-01

    Effect of hyperthermia on blood flow was evaluated using VX 2 rabbit carcinoma in both legs. Microwave energy at 2450 MHz was used to heat tumors for 40 minutes. An outer canula of 18 G Erasta was implanted in the depth of 2 cm in tumor to measure the temperature and to maintain at 43.0degC-44.0degC. The blood flow in tumors was evaluated by color doppler flow imaging and dynamic MRI. Disturbance of blood flow in the depth of surface 0 cm to 2 cm in tumors was showed at 10 minutes starting 43.0degC heating and at almost all sites disappearance of blood flow was showed at 40 minutes using color doppler flow imaging. But the blood flow beyond the depth of 2 cm was not so disturbed at 40 minutes, relatively. After hyperthermia T1WI and T2WI in heated tumor were no difference comparing with those in control tumor, but heated tumor showed no enhancement using dynamic MRI with TURBO-FLASH technique and post-enhanced T1WI. Histologically, there was extensive tumor necrosis and thrombus formation in heated tumor after 3 days and 1 week. Therefore color doppler flow imaging and dynamic MRI were considered to be useful for evaluation of blood flow in tumor after and during hyperthermia. (author)

  9. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  10. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P.

    2013-01-01

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with “stemness,” more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This “two-compartment” metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert “low-risk” breast cancer patients to “high-risk” status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results

  11. Neuroendocrine tumors of the adrenal glands

    International Nuclear Information System (INIS)

    Antova, R.; Valcheva, V.; Genova, K.

    2013-01-01

    Full text: Introduction: Paraganglioma is neuroendocrine neoplasm derived from the sympathetic and parasympathetic paraganglia. They produce large amounts of catecholamine, usually noradrenaline and adrenaline. In 10% of cases are malignant, the criterion for which is not local tumor invasion, and the presence of distant metastases. What you will learn: We present a case of 17 years old boy with headache in the occipital region. Measured blood pressure is 200/100. Patient was consulted by children cardiologist and Holter examination was conducted and a high arterial hypertension (AH) with maximum values to 217/120 mmHg, was recognized with a pattern corresponding to secondary hypertension. An antihypertensive therapy with two drugs has started. Laboratory indicators showed enhanced levels of catecholamines in the urine, enhanced serum levels of noradrenaline, dopamine, renin, adosteron. Doppler ultrasound of the renal arteries showed evidence of stenosis of the left renal artery. Discussion: The performed CT abdomen with contrast enhancement demonstrated retroperitoneal heterogeneous, well- vascularized with lobular surface tumor formation, located between the left renal artery, as the latter ones are in varying degrees stenosed. It was considered that this was a paraganglioma. The diagnosis was confirmed postoperatively. Conclusion: CT is a diagnostic non-invasive imaging method serving for preoperative evaluation of tumors of the sympathetic and parasympathetic paraganglia

  12. Local anesthetics for brain tumor resection: current perspectives

    Directory of Open Access Journals (Sweden)

    Potters JW

    2018-02-01

    Full Text Available Jan-Willem Potters, Markus Klimek Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands Abstract: This review summarizes the added value of local anesthetics in patients undergoing craniotomy for brain tumor resection, which is a procedure that is carried out frequently in neurosurgical practice. The procedure can be carried out under general anesthesia, sedation with local anesthesia or under local anesthesia only. Literature shows a large variation in the postoperative pain intensity ranging from no postoperative analgesia requirement in two-thirds of the patients up to a rate of 96% of the patients suffering from severe postoperative pain. The only identified causative factor predicting higher postoperative pain scores is infratentorial surgery. Postoperative analgesia can be achieved with multimodal pain management where local anesthesia is associated with lower postoperative pain intensity, reduction in opioid requirement and prevention of development of chronic pain. In awake craniotomy patients, sufficient local anesthesia is a cornerstone of the procedure. An awake craniotomy and brain tumor resection can be carried out completely under local anesthesia only. However, the use of sedative drugs is common to improve patient comfort during craniotomy and closure. Local anesthesia for craniotomy can be performed by directly blocking the six different nerves that provide the sensory innervation of the scalp, or by local infiltration of the surgical site and the placement of the pins of the Mayfield clamp. Direct nerve block has potential complications and pitfalls and is technically more challenging, but mostly requires lower total doses of the local anesthetics than the doses required in surgical-site infiltration. Due to a lack of comparative studies, there is no evidence showing superiority of one technique versus the other. Besides the use of other local anesthetics for analgesia, intravenous lidocaine administration has

  13. Results of the activities on conduction of the Russian Research Program on topic Malignant Tumors in 1994-1995

    International Nuclear Information System (INIS)

    Chissov, V.I.; Starinskij, V.V.; Borisov, V.I.; Kovalev, B.N.; Lebedkova, T.S.; Filippova, E.R.; Ul'chenko, V.M.

    1996-01-01

    The results of the research and development activities in accordance with the industry research program The medicinal and social aspects of the problem on prevention, identification, treatment and rehabilitation of patients with malignant tumors in the Russian Federation, compatible with the general concept of developing the problem Malignant Tumors up to 2010, are described. The priority trends in the scientific research relative to the basic sections: Organization of anticancer activities and Malignant tumors treatment are determined

  14. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    Science.gov (United States)

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  15. Chemo prevention of Tea Polyphenols against Tumor Growth of Hepato-Colon Cancer Induced by Azoxy methane in Rats

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.

    2008-01-01

    This investigation was conducted to evaluate the chemo prevention of tea polyphenols as anticancer agent in rats which were injected with azoxy methane (AOM) which is a potent hepato-colon carcinogen agents in rodents. The obtained data revealed a significant elevation in serum tumor markers, carcino-embryonic antigen (CEA), alpha-fetoprotein (AFP) and cancer antigen (CA 1 9.9) in carcinogenic rats in comparison to their corresponding normal control ones. Also, there was a significant increase in the content of cytochrome P 4 50 and the activity of alcohol dehydrogenase (ADH) in both liver and colon as well as a significant elevation in the activities of methoxyresorufin-O-dealkylase (MRD), ethoxyresorutin-O-dealkylase (ERD) and pentoxyresorufin-O- dealkylase (PRD) in liver microsomes. While, glutathione content (GSH) and glutathione peroxidase (Gp x ) activity were decreased significantly in liver and colon as a result of cancer induction. On the other hand, the supplementation of black or green tea before induction of cancer in rats led to a considerable correction in all previous parameters studied. These amelioration effects dependent on magic biochemical properties of flavanols (catechins) and type of tea. In conclusion, tea polyphenols have appreciable anti-cancer efficacy on hepato colon cancer in rats. The underlying mechanisms of through which tea counteracted hepato-colon cancer were discussed

  16. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  17. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  18. Molecular analysis of radiation-induced experimental tumors in mice

    International Nuclear Information System (INIS)

    Niwa, O.; Muto, M.; Suzuki, F.

    1992-01-01

    Molecular analysis was made on mouse tumors induced by radiation and chemicals. Expression of oncogenes was studied in 12 types of 178 mouse tumors. Southern blotting was done on tumors in which overexpression of oncogenes was noted. Amplification of the myc oncogene was found in chemically induced sarcomas, but not those induced by radiations. Radiogenic thymomas were studied in detail. These thymomas were induced in two different ways. The first was thymomas induced by direct irradiation of F1 mice between C57BL/6NxC3H/He. Southern analysis of DNA revealed deletion of specific minisatellite bands in these tumors. DNA from directly induced thymomas induced focus formation when transfected into normal Golden hamster cells. The mouse K-ras oncogene was detected in these transformants. The second type of thymomas was induced by X-irradiation of thymectomized B10.thy1.2 mice in which normal thymus from congenic B10,thy1.1. mice was grafted. Thymomas of the donor origin was analysed by transfection and the transformants by DNA from those indirectly induced thymomas did not contain activated ras oncogenes. (author)

  19. Video-Assisted Thoracoscopic Surgery in Patients With Clinically Resectable Lung Tumors

    Directory of Open Access Journals (Sweden)

    H. Sakai

    1996-01-01

    Full Text Available To investigate the feasibility of thoracoscopic resection, a pilot study was performed in patients with clinically resectable lung tumors. In 40 patients, Video-assisted thoracic surgery (VATS was performed because of suspicion of malignancy. There were 29 men and 11 women with a median age of 54.8 years (range 18 to 78. Preoperative indications were suspected lung cancer and tumor in 27 patients, assessment of tumor resectability in 7 patients, and probability of metastatic tumors in 6 patients. The final diagnoses in the 27 patients with suspected lung cancer were 12 primary lung cancers, 6 lung metastases, and 9 benign lesions. The success rates for VATS (no conversion to thoracotomy were 1 of 12 (8.3% for resectable stage I lung cancer, 8 of 12 (66.7% for metastatic tumors, and 9 of 9 (100% for benign tumors. With VATS, 6 of 7 patients (85.7%, possible stage III non-small cell lung cancer, an explorative thoracotomy with was avoided, significantly reducing morbidity. The reasons for conversion to thoracotomy were 1 oncological (N2 lymph node dissection and prevention of tumor spillage and 2 technical (inability to locate the nodule, central localization, no anatomical fissure, or poor lung function requiring full lung ventilation. The ultimate diagnoses were 19 lung cancers, 12 metastatic lung tumors, and 9 benign lung tumors. Our data show the limitations of VATS for malignant tumors in general use. These findings, together with the fact that experience in performing thoracoscopic procedures demonstrates a learning curve, may limit the use of thoracoscopic resection as a routine surgical procedure, especially when strict oncological rules are respected.

  20. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL