WorldWideScience

Sample records for prevent oxidative stress-induced

  1. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats.

    Science.gov (United States)

    Allam, Farida; Dao, An T; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A; Salim, Samina

    2013-06-01

    We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P blood pressure was significantly greater in BSO rats compared with C or GP rats (P high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P oxidative stress-induced anxiety, memory impairment, and hypertension in rats.

  2. Lidocaine Prevents Oxidative Stress-Induced Endothelial Dysfunction of the Systemic Artery in Rats With Intermittent Periodontal Inflammation.

    Science.gov (United States)

    Saito, Takumi; Yamamoto, Yasuhiro; Feng, Guo-Gang; Kazaoka, Yoshiaki; Fujiwara, Yoshihiro; Kinoshita, Hiroyuki

    2017-06-01

    Periodontal inflammation causes endothelial dysfunction of the systemic artery. However, it is unknown whether the use of local anesthetics during painful dental procedures alleviates periodontal inflammation and systemic endothelial function. This study was designed to examine whether the gingival or systemic injection of lidocaine prevents oxidative stress-induced endothelial dysfunction of the systemic artery in rats with intermittent periodontal inflammation caused by lipopolysaccharides (LPS). Some rats received 1500 µg LPS injections to the gingiva during a week interval from the age of 8 to 11 weeks (LPS group). Lidocaine (3 mg/kg), LPS + lidocaine (3 mg/kg), LPS + lidocaine (1.5 mg/kg), and LPS + lidocaine (3 mg/kg, IP) groups simultaneously received gingival 1.5 or 3 mg/kg or IP 3 mg/kg injection of lidocaine on the same schedule as the gingival LPS. Isolated aortas or mandibles were subjected to the evaluation of histopathologic change, isometric force recording, reactive oxygen species, and Western immunoblotting. Mean blood pressure and heart rate did not differ among the control, LPS, LPS + lidocaine (3 mg/kg), and lidocaine (3 mg/kg) groups. LPS application reduced acetylcholine (ACh, 10 to 10 mol/L)-induced relaxation (29% difference at ACh 3 × 10 mol/L, P = .01), which was restored by catalase. Gingival lidocaine (1.5 and 3 mg/kg) dose dependently prevented the endothelial dysfunction caused by LPS application (24.5%-31.1% difference at ACh 3 × 10 mol/L, P = .006 or .001, respectively). Similar to the gingival application, the IP injection of lidocaine (3 mg/kg) restored the ACh-induced dilation of isolated aortas from rats with the LPS application (27.5% difference at ACh 3 × 10 mol/L, P lidocaine (3 mg/kg), or the combination. The LPS induced a 4-fold increase in the protein expression of tumor necrosis factor-α in the periodontal tissue (P lidocaine (3 mg/kg) coadministration partly reduced the levels. Lidocaine application also decreased

  3. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    Science.gov (United States)

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  5. Hsp27 binding to the 3'UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism.

    Science.gov (United States)

    Dávila, David; Jiménez-Mateos, Eva M; Mooney, Claire M; Velasco, Guillermo; Henshall, David C; Prehn, Jochen H M

    2014-11-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3'-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress-induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3'UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3'UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons. © 2014 Dávila et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Yasuo Ido

    Full Text Available The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK suppressed senescence in hydrogen peroxide (H2O2-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1, attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3, a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol's effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation

  7. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  8. Alcoholic beverages and gastric epithelial cell viability: effect on oxidative stress-induced damage.

    Science.gov (United States)

    Loguercio, C; Tuccillo, C; Federico, A; Fogliano, V; Del Vecchio Blanco, C; Romano, M

    2009-12-01

    Alcohol is known to cause damage to the gastric epithelium independently of gastric acid secretion. Different alcoholic beverages exert different damaging effects in the stomach. However, this has not been systematically evaluated. Moreover, it is not known whether the non-alcoholic components of alcoholic beverages also play a role in the pathogenesis of gastric epithelial cell damage. Therefore, this study was designed to evaluate whether different alcoholic beverages, at a similar ethanol concentration, exerted different damaging effect in gastric epithelial cells in vitro. Moreover, we evaluated whether pre-treatment of gastric epithelial cells with alcoholic beverages prevented oxidative stress-induced damage to gastric cells. Cell damage was assessed, in MKN-28 gastric epithelial cells, by MTT assay. Oxidative stress was induced by incubating cells with xanthine and xanthine oxidase. Gastric cell viability was assessed following 30, 60, and 120 minutes incubation with ethanol 17.5-125 mg/ml(-1) or different alcoholic beverages (i.e., beer, white wine, red wine, spirits) at comparable ethanol concentration. Finally, we assessed whether pre-incubation with red wine (with or without ethanol) prevented oxidative stress-induced cell damage. Red wine caused less damage to gastric epithelial cells in vitro compared with other alcoholic beverages at comparable ethanol concentration. Pre-treatment with red wine, but not with dealcoholate red wine, significantly and time-dependently prevented oxidative stress-induced cell damage. 1) red wine is less harmful to gastric epithelial cells than other alcoholic beverages; 2) this seems related to the non-alcoholic components of red wine, because other alcoholic beverages with comparable ethanol concentration exerted more damage than red wine; 3) red wine prevents oxidative stress-induced cell damage and this seems to be related to its ethanol content.

  9. Diet enriched with the Amazon fruit açaí (Euterpe oleracea) prevents electrophysiological deficits and oxidative stress induced by methyl-mercury in the rat retina.

    Science.gov (United States)

    Brasil, Alódia; Rocha, Fernando Allan de Farias; Gomes, Bruno Duarte; Oliveira, Karen Renata M; de Carvalho, Tayana Silva; Batista, Evander de Jesus O; Borges, Rosivaldo Dos Santos; Kremers, Jan; Herculano, Anderson Manoel

    2017-06-01

    The protective effect of a diet supplemented by the Amazonian fruit Euterpe oleracea (EO) against methylmercury (MeHg) toxicity in rat retina was studied using electroretinography (ERG) and biochemical evaluation of oxidative stress. Wistar rats were submitted to conventional diet or EO-enriched diet for 28 days. After that, each group received saline solution or 5 mg/kg/day of MeHg for 7 days. Full-field single flash, flash and flicker ERGs were evaluated in the following groups: control, EO, MeHg, and EO+MeHg. The amplitudes of the a-wave, b-wave, photopic negative response from rod and/or cone were measured by ERGs as well as the amplitudes and phases of the fundamental component of the sine-wave flicker ERG. Lipid peroxidation was determined by thiobarbituric acid reactive species. All ERG components had decreased amplitudes in the MeHg group when compared with controls. EO-enriched food had no effect on the non-intoxicated animals. The intoxicated animals and those that received the supplemented diet presented significant amplitude reductions of the cone b-wave and of the fundamental flicker component when compared with non-intoxicated control. The protective effect of the diet on scotopic conditions was only observed for bright flashes eliciting a mixed rod and cone response. There was a significant increase of lipid peroxidation in the retina from animals exposed to MeHg and EO-supplemented diet was able to prevent MeHg-induced oxidative stress in retinal tissue. These findings open up perspectives for the use of diets supplemented with EO as a protective strategy against visual damage induced by MeHg.

  10. Cordyceps militaris Extract Protects Human Dermal Fibroblasts against Oxidative Stress-Induced Apoptosis and Premature Senescence

    Science.gov (United States)

    Park, Jun Myoung; Lee, Jong Seok; Lee, Ki Rim; Ha, Suk-Jin; Hong, Eock Kee

    2014-01-01

    Oxidative stress induced by reactive oxygen species (ROS) is the major cause of degenerative disorders including aging and disease. In this study, we investigated whether Cordyceps militaris extract (CME) has in vitro protective effects on hydrogen peroxide-induced oxidative stress in human dermal fibroblasts (HDFs). Our results showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of CME was increased in a dose-dependent manner. We found that hydrogen peroxide treatment in HDFs increased ROS generation and cell death as compared with the control. However, CME improved the survival of HDFs against hydrogen peroxide-induced oxidative stress via inhibition of intracellular ROS production. CME treatment inhibited hydrogen peroxide-induced apoptotic cell death and apoptotic nuclear condensation in HDFs. In addition, CME prevented hydrogen peroxide-induced SA-β-gal-positive cells suggesting CME could inhibit oxidative stress-induced premature senescence. Therefore, these results suggest that CME might have protective effects against oxidative stress-induced premature senescence via scavenging ROS. PMID:25230212

  11. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  12. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  13. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  14. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Directory of Open Access Journals (Sweden)

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  15. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Science.gov (United States)

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  16. Secoisolariciresinol diglucoside prevents the oxidative stress-induced apoptosis of myocardial cells through activation of the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Huang, Guiqiong; Huang, Xiaofang; Liu, Min; Hua, Yue; Deng, Bo; Jin, Wen; Yan, Wen; Tan, Zhangbin; Wu, Yifen; Liu, Bin; Zhou, Yingchun

    2018-06-01

    Myocardial cell apoptosis mediated by oxidative stress has previously been identified as a key process in ischemic heart disease. Secoisolariciresinol diglucoside (SDG), a polyphenolic plant lignan primarily found in flaxseed, has been demonstrated to effectively protect myocardial cells from apoptosis. In the present study, the role of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) was investigated in mediating the protective effect of SDG. Findings of the present study revealed that treatment with H2O2 reduced cell viability and induced apoptosis in H9C2 rat cardiomyocytes. However, SDG was able to reduce the effect of H2O2 in a dose‑dependent manner. H2O2 reduced the expression level of phosphorylated STAT3 and inhibited the levels of B‑cell lymphoma‑extra‑large and induced myeloid leukemia cell differentiation protein, which are the STAT3 target genes. Conversely, SDG rescued phosphorylation of STAT3 and increased the levels of STAT3 target genes. Treatment with SDG alone led to a dose‑dependent increased phosphorylation of JAK2 and STAT3, without activating Src. Furthermore, the anti‑apoptotic effects of SDG were partially abolished by a JAK2/STAT3 inhibitor. In addition, molecular docking revealed that SDG may bind to the protein kinase domain of JAK2, at a binding energy of ‑8.258 kcal/mol. Molecular dynamics simulations revealed that JAK2‑SDG binding was stable. In conclusion, activation of the JAK2/STAT3 signaling pathway contributed to the anti‑apoptotic activity of SDG, which may be a potential JAK2 activator.

  17. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi......-proteome") during ageing and age-related diseases represent a restricted set of cellular proteins, indicating that certain proteins are more prone to oxidative carbonylation and subsequent intracellular accumulation. The occurrence of specific carbonylated proteins upon oxidative stress induced premature senescence...... of WI-38 human fibroblasts and their follow-up identification have been addressed in this study. Indeed, it was expected that the identification of these proteins would give insights into the mechanisms by which oxidatively damaged proteins could affect cellular function. Among these proteins, some...

  18. Resveratrol protects rabbit ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload.

    Science.gov (United States)

    Li, Wei; Wang, Yue-peng; Gao, Ling; Zhang, Peng-pai; Zhou, Qing; Xu, Quan-fu; Zhou, Zhi-wen; Guo, Kai; Chen, Ren-hua; Yang, Huang-tian; Li, Yi-gang

    2013-09-01

    To investigate whether resveratrol suppressed oxidative stress-induced arrhythmogenic activity and Ca(2+) overload in ventricular myocytes and to explore the underlying mechanisms. Hydrogen peroxide (H2O2, 200 μmol/L)) was used to induce oxidative stress in rabbit ventricular myocytes. Cell shortening and calcium transients were simultaneously recorded to detect arrhythmogenic activity and to measure intracellular Ca(2+) ([Ca(2+)]i). Ca(2+)/calmodulin-dependent protein kinases II (CaMKII) activity was measured using a CaMKII kit or Western blotting analysis. Voltage-activated Na(+) and Ca(2+) currents were examined using whole-cell recording in myocytes. H2O2 markedly prolonged Ca(2+) transient duration (CaTD), and induced early afterdepolarization (EAD)-like and delayed afterdepolarization (DAD)-like arrhythmogenic activity in myocytes paced at 0.16 Hz or 0.5 Hz. Application of resveratrol (30 or 50 μmol/L) dose-dependently suppressed H2O2-induced EAD-like arrhythmogenic activity and attenuated CaTD prolongation. Co-treatment with resveratrol (50 μmol/L) effectively prevented both EAD-like and DAD-like arrhythmogenic activity induced by H2O2. In addition, resveratrol markedly blunted H2O2-induced diastolic [Ca(2+)]i accumulation and prevented the myocytes from developing hypercontracture. In whole-cell recording studies, H2O2 significantly enhanced the late Na(+) current (I(Na,L)) and L-type Ca(2+) current (I(Ca,L)) in myocytes, which were dramatically suppressed or prevented by resveratrol. Furthermore, H2O2-induced ROS production and CaMKII activation were significantly prevented by resveratrol. Resveratrol protects ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca(2+) overload through inhibition of I(Na,L)/I(Ca,L), reduction of ROS generation, and prevention of CaMKII activation.

  19. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  20. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  1. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  2. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  3. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  4. Antioxidant effect of phycocyanin on oxidative stress induced with monosodium glutamate in rats

    Directory of Open Access Journals (Sweden)

    Telma Elita Bertolin

    2011-08-01

    Full Text Available The objective of this work was to study the antioxidant effect of phycocyanin on the oxidative stress induced by monosodium glutamate in the rats. The tests were performed with 32 rats of Wistar breed, divided into four groups, which were administered saline solution of phycocyanin, monosodium glutamate and monosodium glutamate plus phycocyanin. Sulfhydryl groups and the secondary substances derived from lipid oxidation were determined through the level of TBA. The evaluation of these values and the level of sulfhydryl showed that the administration of phycocyanin presented significant antioxidant effect (p < 0.05 reducing the oxidative stress induced by the monosodium glutamate in vivo.

  5. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  6. Chlorogenic and Caftaric Acids in Liver Toxicity and Oxidative Stress Induced by Methamphetamine

    Science.gov (United States)

    Koriem, Khaled M. M.; Soliman, Rowan E.

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective. PMID:25136360

  7. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  8. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  9. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  10. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  11. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  12. Oxidative stress induces idiopathic infertility in Egyptian males ...

    African Journals Online (AJOL)

    The most common cause of male infertility is idiopathic. Oxidative stress (OS) would play a vital role in etiology of idiopathic male infertility because of its targeting to spermatozoa plasma membrane rich in polyunsaturated fatty acids. To examine OS effect on Egyptian men fertility, sperm samples were obtained from infertile ...

  13. Alleviation of oxidative stress induced by spider mite invasion ...

    African Journals Online (AJOL)

    Spider mite invasion induces oxidative stress on bean plants and increased soluble sugars, phenole, proline and peroxidase activity, but decreased catalase activity and ascorbic acid and carotenoid concentration. Application of elicitors significantly enhanced spider mite tolerance by decreasing hydrogen peroxide, ...

  14. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  15. Antioxidant effect of phycocyanin on oxidative stress induced with monosodium glutamate in rats

    OpenAIRE

    Bertolin, Telma Elita; Farias, Daniele; Guarienti, Cíntia; Petry, Fernanda Tais Souza; Colla, Luciane Maria; Costa, Jorge Alberto Vieira

    2011-01-01

    The objective of this work was to study the antioxidant effect of phycocyanin on the oxidative stress induced by monosodium glutamate in the rats. The tests were performed with 32 rats of Wistar breed, divided into four groups, which were administered saline solution of phycocyanin, monosodium glutamate and monosodium glutamate plus phycocyanin. Sulfhydryl groups and the secondary substances derived from lipid oxidation were determined through the level of TBA. The evaluation of these values ...

  16. Xiaoyaosan Decoction, a Traditional Chinese Medicine, Inhibits Oxidative-Stress-Induced Hippocampus Neuron Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Zhen-zhi Meng

    2012-01-01

    Full Text Available Xiaoyaosan (XYS decoction is a famous prescription for the treatment of mental disorders in China. In this experiment, we explored the way in which XYS decoction-reverse hippocampus neuron apoptosis in vitro. We used XYS decoction-containing serum to treat oxidative-stress-induced hippocampus neuron apoptosis and used immunofluorescence to determine the concentration of free calcium, mitochondrial membrane potential, and apoptotic rate of neuron. Results showed that 3-hour oxidative stress decrease mitochondrial membrane potential, increase the concentration of free calcium and apoptotic rate of neuron via triggering pathological changes of nucleus such as karyorrhexis, karyopyknosis. Low, medium, high dose of XYS-decoction-containing serum could reverse these phenomenon, and the effect of low-dose XYS-decoction-containing serum was significant in improving mitochondrial membrane potential and apoptotic rate of neuron. These findings suggest that XYS decoction may be helpful in reducing oxidative-stress-induced hippocampus neuron apoptosis.

  17. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  18. Nordihydroguaiaretic acid attenuates the oxidative stress-induced decrease of CD33 expression in human monocytes.

    Science.gov (United States)

    Guzmán-Beltrán, Silvia; Pedraza-Chaverri, José; Gonzalez-Reyes, Susana; Hernández-Sánchez, Fernando; Juarez-Figueroa, Ulises E; Gonzalez, Yolanda; Bobadilla, Karen; Torres, Martha

    2013-01-01

    Nordihydroguaiaretic acid (NDGA) is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs). Oxidative stress was induced by iodoacetate (IAA) or hydrogen peroxide (H(2)O(2)) and was evaluated using reactive oxygen species (ROS) production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H(2)O(2) in human MNs. It was also shown that NDGA (20  μ M) attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H(2)O(2). These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  19. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-A [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Shim, Sang Hee [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ahn, Hong Ryul [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Jung, Sang Hoon, E-mail: shjung507@gmail.com [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+} was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  20. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    International Nuclear Information System (INIS)

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul; Jung, Sang Hoon

    2013-01-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca 2+ was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  1. Stress-induced structural remodeling in hippocampus: Prevention by lithium treatment

    Science.gov (United States)

    Wood, Gwendolyn E.; Young, L. Trevor; Reagan, Lawrence P.; Chen, Biao; McEwen, Bruce S.

    2004-03-01

    Chronic restraint stress, psychosocial stress, as well as systemic or oral administration of the stress-hormone corticosterone induces a morphological reorganization in the rat hippocampus, in which adrenal steroids and excitatory amino acids mediate a reversible remodeling of apical dendrites on CA3 pyramidal cell neurons of the hippocampus. This stress-induced neuronal remodeling is accompanied also by behavioral changes, some of which can be prevented with selective antidepressant and anticonvulsive drug treatments. Lithium is an effective treatment for mood disorders and has neuroprotective effects, which may contribute to its therapeutic properties. Thus, we wanted to determine whether lithium treatment could prevent the effects of chronic stress on CA3 pyramidal cell neuroarchitecture and the associated molecular and behavioral measures. Chronic lithium treatment prevented the stress-induced decrease in dendritic length, as well as the stress-induced increase in glial glutamate transporter 1 (GLT-1) mRNA expression and the phosphorylation of cAMP-response element binding in the hippocampus. Lithium treatment, however, did not prevent stress effects on behavior in the open field or the plus-maze. These data demonstrate that chronic treatment with lithium can protect the hippocampus from potentially deleterious effects of chronic stress on glutamatergic activation, which may be relevant to its therapeutic efficacy in the treatment of major depressive disorder and bipolar disorder.

  2. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?

    Science.gov (United States)

    Xie, Heng; Zhou, Fubo; Liu, Ling; Zhu, Guannan; Li, Qiang; Li, Chunying; Gao, Tianwen

    2016-01-01

    Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  4. Oxidative stress-induced apoptosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid.

    Science.gov (United States)

    Sakata, Shuhei; Hayashi, Shinya; Fujishiro, Takaaki; Kawakita, Kohei; Kanzaki, Noriyuki; Hashimoto, Shingo; Iwasa, Kenjiro; Chinzei, Nobuaki; Kihara, Shinsuke; Haneda, Masahiko; Ueha, Takeshi; Nishiyama, Takayuki; Kuroda, Ryosuke; Kurosaka, Masahiro

    2015-03-01

    Eicosapentaenoic acid (EPA) is an antioxidant and n-3 polyunsaturated fatty acid that reduces the production of inflammatory cytokines. We evaluated the role of EPA in chondrocyte apoptosis and degeneration. Normal human chondrocytes were treated with EPA and sodium nitroprusside (SNP). Expression of metalloproteinases (MMPs) was detected by real-time polymerase chain reaction (PCR) and that of apoptosis-related proteins was detected by western blotting. Chondrocyte apoptosis was detected by flow cytometry. C57BL/6J mice were used for the detection of MMP expression by immunohistochemistry and for investigation of chondrocyte apoptosis. EPA inhibited SNP-induced chondrocyte apoptosis, caspase 3 and poly(ADP-ribose) polymerase cleavage, phosphorylation of p38 MAPK and p53, and expression of MMP3 and MMP13. Intra-articular injection of EPA prevented the progression of osteoarthritis (OA) by inhibiting MMP13 expression and chondrocyte apoptosis. EPA treatment can control oxidative stress-induced OA progression, and thus may be a new approach for OA therapy. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  6. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  7. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  8. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription

    Science.gov (United States)

    Li, Yanyan; Wei, Yuyan; Gong, Di; Gao, Junping; Zhang, Jie; Tan, Weiwei; Wen, Tianfu; Zhang, Le; Huang, Lugang; Xiang, Rong; Lin, Ping; Wei, Yuquan

    2015-01-01

    Reactive oxygen species (ROS)-driven oxidative stress has been recognized as a critical inducer of cancer cell death in response to therapeutic agents. Our previous studies have demonstrated that zinc finger protein (ZNF)32 is key to cell survival upon oxidant stimulation. However, the mechanisms by which ZNF32 mediates cell death remain unclear. Here, we show that at moderate levels of ROS, Sp1 directly binds to two GC boxes within the ZNF32 promoter to activate ZNF32 transcription. Alternatively, at cytotoxic ROS concentrations, ZNF32 expression is repressed due to decreased binding activity of Sp1. ZNF32 overexpression maintains mitochondrial membrane potential and enhances the antioxidant capacity of cells to detoxify ROS, and these effects promote cell survival upon pro-oxidant agent treatment. Alternatively, ZNF32-deficient cells are more sensitive and vulnerable to oxidative stress-induced cell injury. Mechanistically, we demonstrate that complement 1q-binding protein (C1QBP) is a direct target gene of ZNF32 that inactivates the p38 MAPK pathway, thereby exerting the protective effects of ZNF32 on oxidative stress-induced apoptosis. Taken together, our findings indicate a novel mechanism by which the Sp1-ZNF32-C1QBP axis protects against oxidative stress and implicate a promising strategy that ZNF32 inhibition combined with pro-oxidant anticancer agents for hepatocellular carcinoma treatment. PMID:26497555

  9. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  10. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice.

    Science.gov (United States)

    Abdel-Wahab, Basel A; Salama, Ragaa H

    2011-11-01

    Venlafaxine (VLF) is an approved antidepressant that is claimed to have superior clinical efficacy to comparable drugs. Recently, many studies showed the relationship between depression and increased oxidative stress. This study investigated the relationship between the antidepressant effect of VLF and its ability to protect animals against stress-induced oxidative lipid peroxidation and DNA damage induced during antidepressant testing. The antidepressant effect of long-term treatment (21 days) of VLF in doses 5, 10 and 20mg/kg/day, i.p. was tested using forced swimming test (FST) and tail suspension test (TST). The effects of VLF on hippocampal lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH), total antioxidant (TAC) levels and glutathione-S-transferase (GST) activity were tested. Furthermore, the corresponding changes in serum and hippocampal 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. Long-term VLF treatment showed a significant, antidepressant effect in both FST and TST. VLF could decrease the hippocampal MDA and NO and to increase hippocampal GSH and TAC levels and GST activity in the tested animals. Only GSH and TAC levels were increased by VLF in the non-tested animals. In addition, both serum and hippocampal 8-OHdG levels were significantly reduced by VLF in animals exposed to antidepressant tests. Long-term VLF treatment in the effective antidepressant doses can protect against stress-induced oxidative cellular and DNA damage. This action may be through antagonizing the oxidative stress and enhancing the antioxidant defense mechanisms. Consequently, pharmacological modulation of stress-induced oxidative DNA damage as a possible stress-management approach should be an important avenue of further research. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    Science.gov (United States)

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  12. Evaluation of the neuroprotective effect of taurine and green tea extract against oxidative stress induced by pilocarpine during status epilepticus

    Directory of Open Access Journals (Sweden)

    Neveen A. Noor

    2015-10-01

    Full Text Available Status epilepticus (SE has functional and structural consequences resulting in brain damage. The present study aims to investigate the role of taurine and green tea extract in the neuroprotection against oxidative stress and changes in acetylcholinesterase (AChE and Na+,K+-ATPase activities during SE induced by pilocarpine in the hippocampus of adult male rats. Animals received an oral administration of either taurine (100 mg/kg or green tea extract containing 100 mg/kg epigallocatechin gallate for 3 days before the induction of SE with pilocarpine (380 mg/kg, i.p. and were sacrificed 1 h after pilocarpine injection. Data indicated that a state of oxidative stress has evolved during SE as evident from the significant increase in lipid peroxidation level and significant decrease in reduced glutathione (GSH level. Significant decreases in AChE and Na+,K+-ATPase activities were also recorded. Pretreatment of rats with taurine exaggerated the increase in lipid peroxidation and failed to prevent the decrease in Na+,K+-ATPase activity resulting from pilocarpine. However, taurine pretreatment prevented the reduced activity of hippocampal AChE induced by pilocarpine during SE. Pretreatment of rats with green tea extract prevented the increase in lipid peroxidation occurring during SE. However, it failed to inhibit the decrease in Na+,K+-ATPase activity. In conclusion, taurine pretreatment failed to reduce the oxidative stress induced during SE. In contrast, pretreatment of rats with green tea extract ameliorated the oxidative stress induced by pilocarpine and this may assist in reducing the insults of hyperexcitability and excitotoxicity that occur during SE and thereby reduce neuronal damage.

  13. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  14. Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death

    DEFF Research Database (Denmark)

    Juel, Helene B; Faber, Carsten; Svendsen, Signe Goul

    2013-01-01

    PURPOSE: To investigate the effects of inflammatory factors and oxidative stress on cell survival of the human retinal pigment epithelial (RPE) cell line, ARPE-19. METHODS: Confluent RPE cells were treated with peripheral blood mononuclear cells-conditioned medium (PCM), H2O2, NaIO3, interferon......-cultured with activated T cells, or treated with cytokines showed increased expression of anti-oxidative genes, with upregulation of superoxide dismutase 2 protein following PCM treatment. CONCLUSION: Oxidative stress-induced cell death was reduced by concomitant inflammatory stress. This is likely due to the cytokine......-mediated induction of the anti-oxidative stress response, upregulating protective anti-oxidant pathway(s). These findings suggest caution for the clinical use of anti-inflammatory agents in the management of immune-associated eye diseases such as age-related macular degeneration....

  15. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Chronic stress-induced oxidative damage and hyperlipidemia are accompanied by atherosclerotic development in rats.

    Science.gov (United States)

    Devaki, M; Nirupama, R; Yajurvedi, H N

    2013-03-01

    Although stress-induced hyperlipidemia and increased oxidative stress have been reported and implicated in etiology of atherosclerosis, experimental evidence for stress-induced atherosclerotic development concomitant with these alterations is lacking. In this study, exposure of adult male albino Wistar rats (Rattus norvegicus) to restraint for 1 h and after a gap of 4 h to forced swimming for 15 min every day for 2, 4, or 24 weeks resulted in a duration of exposure-dependent hyperlipidemia as shown by significant increases in concentrations of blood cholesterol, low-density lipoproteins, and triglycerides and decrease in high-density lipoprotein concomitant with increased oxidative stress as indicated by decrease in hepatic antioxidant enzyme activities and increase in lipid peroxidation in the liver, kidney, and heart. These alterations were accompanied by development of fibrous layer, formation of foam cells, reduction in elastic fibers, and accumulation of Oil-Red-O-positive lipid droplets in the intima of thoracic aorta following 24 weeks of stress exposure, but not after 4 weeks. The study demonstrates for the first time that (i) chronic stress-induced hyperlipidemia and oxidative damage are coupled with atherosclerotic development in rats fed with normal diet and (ii) chronic stress effects prevail even after the cessation of stress exposure as indicated by high concentration of blood cholesterol and reduced hepatic superoxide dismutase activity 20 weeks after 2 or 4 weeks of stress. This study exemplifies long-term allostatic regulation leading to a pathological state, with long-term hyperlipidemia and oxidative damage from chronic stress resulting in atherosclerosis.

  17. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro

    Science.gov (United States)

    Pazzini, Camila Eliza Fernandes; Colpo, Ana Ceolin; Poetini, Márcia Rósula; Pires, Cauê Ferreira; de Camargo, Vanessa Brum; Mendez, Andreas Sebastian Loureiro; Azevedo, Miriane Lucas; Soares, Júlio César Mendes; Folmer, Vanderlei

    2015-01-01

    The literature indicates that red wine presents in its composition several substances that are beneficial to health. This study has investigated the antioxidant effects of Tannat red wine on oxidative stress induced by glucose and fructose in erythrocytes in vitro, with the purpose to determine some of its majoritarian phenolic compounds and its antioxidant capacity. Erythrocytes were incubated using different concentrations of glucose and fructose in the presence or absence of wine. From these erythrocytes were determined the production of thiobarbituric acid reactive species (TBARS), glucose consumption, and osmotic fragility. Moreover, quantification of total phenolic, gallic acid, caffeic acid, epicatechin, resveratrol, and DPPH scavenging activity in wine were also assessed. Red wine showed high levels of polyphenols analyzed, as well as high antioxidant potential. Erythrocytes incubated with glucose and fructose had an increase in lipid peroxidation and this was prevented by the addition of wine. The wine increased glucose uptake into erythrocytes and was able to decrease the osmotic fragility of erythrocytes incubated with fructose. Altogether, these results suggest that wine leads to a reduction of the oxidative stress induced by high concentrations of glucose and fructose. PMID:26078708

  18. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    Science.gov (United States)

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  19. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  20. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  1. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  2. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  3. Solcoseryl in prevention of stress-induced gastric lesions and healing of chronic ulcers.

    Science.gov (United States)

    Konturek, S J; Drozdowicz, D; Pytko-Polonczyk, J; Brzozowski, T; Bielański, W

    1991-03-01

    Solcoseryl, a deproteinized extract of calf blood, protects the gastric mucosa against various topical irritants and enhances the healing of chronic gastric ulcerations but the mechanisms of these effects have been little studied. This study was designed to elucidate the active principle in Solcoseryl and to determine the role of prostaglandins (PG) and polyamines in the antiulcer properties of this agent. Using both, the radioimmunoassay and radioreceptor assay, EGF-like material was detected in Solcoseryl preparation. Solcoseryl given s.c. prevented the formation of stress-induced gastric lesions and this was accompanied by an increase in the generation of PGE2 in the gastric mucosa. Similar effects were obtained with EGF. Pretreatment with indomethacin, to suppress mucosal generation of prostaglandins (PG), greatly augmented stress-induced gastric ulcerations and antagonized the protection exerted by both Solcoseryl and EGF. Solcoseryl, like EGF, enhanced the healing of chronic gastro-duodenal ulcerations. This effect was abolished by the pretreatment with difluoromethylornithine, an inhibitor of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines. The healing effects of Solcoseryl and EGF was also reduced by prednisolone which decreased the angiogenesis in the granulation tissue in the ulcer area. These results indicate that Solcoseryl 1. contains EGF-like material, 2. displays the protective and ulcer healing effects similar to those of EGF and involving both PG and polyamines and 3. acts via similar mechanism as does EGF.

  4. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  5. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress.

    Science.gov (United States)

    Park, Jong-Soo; Park, Jong-Beom; Park, In-Joo; Park, Eun-Young

    2014-06-01

    Diabetes mellitus (DM) is thought to be an important aetiological factor in intervertebral disc degeneration. A glucose-mediated increase of oxidative stress is a major causative factor in development of diseases associated with DM. The aim of this study was to investigate the effect of high glucose on mitochondrial damage, oxidative stress and senescence of young annulus fibrosus (AF) cells. AF cells were isolated from four-week-old young rats, cultured, and placed in either 10 % FBS (normal control) or 10 % FBS plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days. We identified and quantified the mitochondrial damage and reactive oxygen species (ROS) (oxidative stress). We also identified and quantified the occurrence of senescence and telomerase activity. Finally, the expressions of proteins were determined related to replicative senescence (p53-p21-pRB) and stress-induced senescence (p16-pRB). Two high glucoses enhanced the mitochondrial damage in young rat AF cells, which resulted in an excessive generation of ROS in a dose- and time-dependent manner for one and three days compared to normal control. Two high glucose concentrations increased the occurrence of senescence of young AF cells in a dose- and time-dependent manner. Telomerase activity declined in a dose- and time-dependent manner. Both high glucose treatments increased the expressions of p16 and pRB proteins in young rat AF cells for one and three days. However, compared to normal control, the expressions of p53 and p21 proteins were decreased in young rat AF cells treated with both high glucoses for one and three days. The present study demonstrated that high glucose-induced oxidative stress accelerates premature stress-induced senescence in young rat AF cells in a dose- and time-dependent manner rather than replicative senescence. These results suggest that prevention of excessive generation of oxidative stress by strict blood glucose

  6. A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Yogita Mistry

    2013-01-01

    Full Text Available Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the induction of telomere-dependent and -independent premature senescence of human vascular smooth muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-induced premature senescence protocol consisting of three successive once-daily exposure of cells to 1×10−8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone. Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH oxidases, via as yet unidentified signalling pathways, is likely to play a key role.

  7. Resveratrol for prenatal-stress-induced oxidative damage in growing brain and its consequences on survival of neurons.

    Science.gov (United States)

    Madhyastha, Sampath; Sahu, Sudhanshu Sekhar; Rao, Gayathri

    2014-02-01

    Prenatal-stress-induced neuronal damage in offspring is multifactorial, including oxidative damage in the developing brain. Resveratrol is known to exert its neuroprotective potentials by upregulating several antioxidant systems. Hence, the study was undertaken to evaluate the neuroprotective effect of resveratrol against prenatal-stress-induced hippocampal damage and oxidative damage in neonate rat brains. Pregnant rats were subjected to restraint stress during early or late gestational period. Another set of rats received resveratrol during the entire gestational period along with early or late gestational stress. The study parameters included several antioxidant studies directly from rat brain homogenate on the 40th postnatal day and hippocampal neuronal assay on the 21st postnatal day. Early as well as late gestational stress resulted in a significant increase in lipid peroxidation and advanced oxidation protein products and decrease in total antioxidant activity and nitric oxide levels in rat brain homogenate. The neurons of the dentate gyrus were severely affected in early and late gestational stress, and only the neurons of the CA3 region were adversely affected in late gestational stress. Administration of resveratrol reversed the prenatal-stress-induced oxidative damage and neurons of dentate gyrus but not the CA3 hippocampal neurons. These results show the neuroprotective abilities of resveratrol against prenatal-stress-induced oxidative damage in neonatal rat brain.

  8. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes.

    Science.gov (United States)

    Rondeau, Philippe; Singh, Nihar Ranjan; Caillens, Henri; Tallet, Frank; Bourdon, Emmanuel

    2008-09-15

    Oxidative stress and protein modifications are frequently observed in numerous disease states. Albumin, the major circulating protein in blood, can undergo increased glycoxidation in diabetes. Protein glycoxidation can lead to the formation of advanced glycoxidation end products, which induce various deleterious effects on cells. Herein, we report the effect of glucose or methylglyoxal-induced oxidative modifications on BSA or HSA protein structures and on THP1 monocyte physiology. The occurrence of oxidative modifications was found to be enhanced in glycoxidized BSA and HSA, after determination of their free thiol group content, relative electrophoretic migration, carbonyl content, and antioxidant activities. Cells treated with glycoxidized albumin exhibited an overgeneration of intracellular reactive oxygen species, impairments in proteasomal activities, enhancements in RAGE expression, and an accumulation of carbonylated proteins. These novel observations made in the presence of a range of modified BSA and HSA facilitate the comparison of the glycoxidation extent of albumin with the oxidative stress induced in cultured monocytes. Finally, this study reconfirms the influence of experimental conditions in which AGEs are generated and the concentration levels in experiments designed to mimic pathological conditions.

  9. Antioxidant effect of pomegranate against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Anahita Aboonabi

    2014-01-01

    Full Text Available Oxidative stress attributes a crucial role in chronic complication of diabetes. The aim of this study was to determine the most effective part of pomegranate on oxidative stress markers and antioxidant enzyme activities against streptozotocin-nicotinamide (STZ-NA-induced diabetic rats. Male Sprague-Dawley rats were randomly divided into six groups. Experimental diabetes was induced by a single intraperitoneal injection (i.p, 15 min after the i.p administration of NA. Diabetic rats showed significant increase in plasma glucose level, and the significant decrease in plasma insulin level. The activities of antioxidant enzymes such as total antioxidant status (TAS, superoxide dismutase (SOD, and catalase (CAT reduced while the levels of biomarkers of oxidative stress such as gamma-glutamyle transferase (GGT, and malondialdehyde (MDA increased in diabetic control rats as compared to normal control rats. Oral treatment with pomegranate seed-juice for 21 days demonstrated significant protective effects on all the biochemical parameters studied. Besides, biochemical findings were supported by histopathological study. These results revealed that pomegranate has potential protective effect against oxidative stress induced diabetic rats.

  10. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  11. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals.

    Science.gov (United States)

    Salah, Myriam Ben; Abdelmelek, Hafedh; Abderraba, Manef

    2013-11-01

    We investigated the effect of olive leaves extract administration on glucose metabolism and oxidative response in liver and kidneys of rats exposed to radio frequency (RF). The exposure of rats to RF (2.45 GHz, 1h/day during 21 consecutive days) induced a diabetes-like status. Moreover, RF decreased the activities of glutathione peroxidase (GPx, -33.33% and -49.40%) catalase (CAT, -43.39% and -39.62%) and the superoxide dismutase (SOD, -59.29% and -68.53%) and groups thiol amount (-62.68% and -34.85%), respectively in liver and kidneys. Indeed, exposure to RF increased the malondialdehyde (MDA, 29.69% and 51.35%) concentration respectively in liver and kidneys. Olive leaves extract administration (100 mg/kg, ip) in RF-exposed rats prevented glucose metabolism disruption and restored the activities of GPx, CAT and SOD and thiol group amount in liver and kidneys. Moreover, olive leave extract administration was able to bring down the elevated levels of MDA in liver but not in kidneys. Our investigations suggested that RF exposure induced a diabetes-like status through alteration of oxidative response. Olive leaves extract was able to correct glucose metabolism disorder by minimizing oxidative stress induced by RF in rat tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Estrogen receptor-a in the medial amygdala prevents stress-induced elevations in blood pressure in females

    Science.gov (United States)

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in femal...

  13. The implication of p66shc in oxidative stress induced by deltamethrin.

    Science.gov (United States)

    Ding, Ruqian; Cao, Zongfu; Wang, Yihan; Gao, Xiaobo; Luo, Haiyan; Zhang, Changyong; Ma, Shuangcheng; Ma, Xu; Jin, Hongyu; Lu, Cailing

    2017-12-25

    Deltamethrin (DLT) is effective against a broad spectrum of insects. Exposure to DLT has been demonstrated to cause oxidative stress. However, the mechanism of oxidative stress induced by DLT is little known. Groups of rats were gavaged with DLT once daily for 7 days at six dosages: 0, 2, 5, 10, 20, 40 mg/kg. The intensity of neurotoxicity and liver dysfunction caused by DLT were significantly increased in a dose-dependent manner. We found that DLT caused the increase of cytosolic superoxide in tissues. Western blot analysis showed that both the expression of p66shc and Ser36 phosphorylated p66shc, which were involved in ROS generation, were increased in tissues treated with DLT. Further investigation showed that DLT treatment resulted in the increase of intracellular ROS accompanied with elevated p66shc expression in different cell lines. And treatment of cells with DLT induced p66shc phosphorylation at Ser36 and the translocation of p66shc from cytoplasm to mitochondria. Moreover, the overexpression of wildtype p66shc caused the increase of DLT-mediated ROS level in SH-SY5Y cells, but cells overexpressing p66shcSer36Ala mutant plasmid had the opposite effect. And p66shc suppression by siRNA blunted DLT-mediated ROS generation. Taken together, our findings indicated p66shc mediated DLT-induced oxidative stress, which may be partly responsible for toxic effects. Copyright © 2017. Published by Elsevier B.V.

  14. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    Science.gov (United States)

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  15. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    Science.gov (United States)

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  16. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    Science.gov (United States)

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Novel sila-amide derivatives of N-acetylcysteine protects platelets from oxidative stress-induced apoptosis.

    Science.gov (United States)

    Paul, Manoj; Thushara, Ram M; Jagadish, Swamy; Zakai, Uzma I; West, Robert; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-02-01

    Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H 2 O 2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.

  18. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  19. Protective Effect of γ-Irradiated Dried Powder of Artichoke Leaves against CCl4 Oxidative Stress Induced in Rat Liver

    International Nuclear Information System (INIS)

    Hamza, R.G.; El shahat, A.N.; Mekawey, H.M.S.

    2012-01-01

    Liver injuries are one of the most degenerative worldwide diseases and can lead to different complications. Artichoke (Cynara scolymus L.) is full of natural antioxidants and has hepato protective effect against liver toxicity. Gamma irradiation has been widely used as a first choice sterilization method of raw medicinal plants to be used in the phytotherapic industry worldwide .This study was designed to investigate the effect of dietary supplementation with γ- irradiated artichoke against carbon tetrachloride (CCl 4 )-induced oxidative stress and hepatotoxicity. The results of high performance liquid chromatography (HPLC) analysis of artichoke leaves indicated that the value of some of the main phenolic constituents was elevated under the effect of γ-irradiation (10 KGy). CCl 4 administration resulted in significant increase in the activity of serum alkaline phosphatase, gamma glutamyl transferase and transaminase in addition to an increase in the level of total bilirubine, malondialdehyde (MDA), glucose and the concentration of some lipid contents. Furthermore, CCl 4 administration reduced glutathione content, superoxides dismutase (SOD) and catalase (CAT) activity as well as a remarkable decrease in the level of insulin and high density lipoprotein-cholesterol was observed. In CCl 4 -treated rats dietary supplemented with either raw or γ-irradiated artichoke, a significant amelioration was observed on the adverse effects of the above mentioned parameters induced by CCl 4 administration. The present findings concluded that artichoke may be useful, as dietary supplement and possess phenolic compounds, for the prevention of oxidative stress-induced hepatotoxicity

  20. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  1. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  2. Effect of temperature on oxidative stress induced by lead in the leaves of Plantago major L.

    Science.gov (United States)

    Balakhnina, Tamara I.; Borkowska, Aneta; Nosalewicz, Magdalena; Nosalewicz, Artur; Włodarczyk, Teresa M.; Kosobryukhov, Anatoly A.; Fomina, Irina R.

    2016-07-01

    Fluctuation of the summer day-time temperatures in the mid-latitudes in a range from 16 to 30°C should not have irreversible negative effects on plants, but may influence metabolic processes including the oxidative stress. To test the effect of moderately high temperature on oxidative stress induced by lead in the leaves of Plantago major L.; the plants were incubated in a water solution of 0, 150, 450, and 900 μM Pb (NO3)2 at 20 and 28°C. Plant reactions were evaluated by the content of thiobarbituric acid reactive substances and ascorbate peroxidase and glutathione reductase activities in leaves after 2, 24, 48, and 72 h. The Pb concentration in the leaves rose with the increase in the Pb content and was higher at 20°C. The increase in stomatal resistance caused by Pb was higher at 28°C. The contents of TBARS increased after 2 h of plant exposure to Pb and the increase was the highest at 900 μM Pb, 28°C. The AsP activity increased up to 50% after 24 h of Pb-treatment at 28°C; the highest increase in glutathione reductase activity was observed after 72 h at 20°C. Thus, the moderately high temperature 28°C compared with optimal 20°C caused a decrease in Pb accumulation in Plantago leaves but amplified the negative effects of lead, especially in the beginning of stress development.

  3. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  4. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Directory of Open Access Journals (Sweden)

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  5. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  6. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    Directory of Open Access Journals (Sweden)

    Maria Razzoli

    2016-01-01

    Conclusion: Our findings demonstrate that thermogenesis and BAT function are determinant of the resilience or vulnerability to stress-induced obesity. Our data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT.

  7. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    Science.gov (United States)

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Qin, Meng [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Ye, Jing-xue [Jilin Agricultural University, No. 2888, Xincheng Street, Changchun, 130118 Jilin (China); Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China)

    2013-08-15

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H{sub 2}O{sub 2})-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H{sub 2}O{sub 2}-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H{sub 2}O{sub 2}-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H{sub 2}O{sub 2} induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up

  9. Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats.

    Science.gov (United States)

    Augusti, P R; Conterato, G M M; Somacal, S; Sobieski, R; Spohr, P R; Torres, J V; Charão, M F; Moro, A M; Rocha, M P; Garcia, S C; Emanuelli, T

    2008-01-01

    Reactive oxygen species are implicated as mediators of tissue damage in the acute renal failure induced by inorganic mercury. Astaxanthin (ASX), a carotenoid with potent antioxidant properties, exists naturally in various plants, algae, and seafoods. This paper evaluated the ability of ASX to prevent HgCl(2) nephrotoxicity. Rats were injected with HgCl(2) (0 or 5 mg/kg b.w., sc) 6h after ASX had been administered (0, 10, 25, or 50mg/kg, by gavage) and were killed 12h after HgCl(2) exposure. Although ASX prevented the increase of lipid and protein oxidation and attenuated histopathological changes caused by HgCl(2) in kidney, it did not prevent creatinine increase in plasma and delta-aminolevulinic acid dehydratase inhibition induced by HgCl(2). Glutathione peroxidase and catalase activities were enhanced, while superoxide dismutase activity was depressed in HgCl(2)-treated rats when compared to control and these effects were prevented by ASX. Our results indicate that ASX could have a beneficial role against HgCl(2) toxicity by preventing lipid and protein oxidation, changes in the activity of antioxidant enzymes and histopathological changes.

  10. High susceptibility of activated lymphocytes to oxidative stress-induced cell death

    Directory of Open Access Journals (Sweden)

    Giovanna R. Degasperi

    2008-03-01

    Full Text Available The present study provides evidence that activated spleen lymphocytes from Walker 256 tumor bearing rats are more susceptible than controls to tert-butyl hydroperoxide (t-BOOH-induced necrotic cell death in vitro. The iron chelator and antioxidant deferoxamine, the intracellular Ca2+ chelator BAPTA, the L-type Ca2+ channel antagonist nifedipine or the mitochondrial permeability transition inhibitor cyclosporin A, but not the calcineurin inhibitor FK-506, render control and activated lymphocytes equally resistant to the toxic effects of t-BOOH. Incubation of activated lymphocytes in the presence of t-BOOH resulted in a cyclosporin A-sensitive decrease in mitochondrial membrane potential. These results indicate that the higher cytosolic Ca2+ level in activated lymphocytes increases their susceptibility to oxidative stress-induced cell death in a mechanism involving the participation of mitochondrial permeability transition.O presente estudo demonstra que linfócitos ativados de baço de ratos portadores do tumor de Walker 256 são mais susceptíveis à morte celular necrótica induzida por tert-butil hidroperóxido (t-BOOH in vitro quando comparados aos controles. O quelante de ferro e antioxidante deferoxamina, o quelante intracelular de Ca2+ BAPTA, o antagonista de canal de Ca2+ nifedipina ou o inibidor da transição de permeabilidade mitocondrial ciclosporina-A, mas não o inibidor de calcineurina FK-506, inibiram de maneira similar a morte celular induzida por t-BOOH em linfócitos ativados e controles. Os linfócitos ativados apresentaram redução do potencial de membrana mitocondrial induzida por t-BOOH num mecanismo sensível a ciclosporina-A. Nossos resultados indicam que o aumento da concentração de Ca2+ citosólico em linfócitos ativados aumenta a susceptibilidade dos mesmos à morte celular induzida por estresse oxidativo, num mecanismo envolvendo a participação do poro de transição de permeabilidade mitocondrial.

  11. Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression.

    Science.gov (United States)

    Bouvier, E; Brouillard, F; Molet, J; Claverie, D; Cabungcal, J-H; Cresto, N; Doligez, N; Rivat, C; Do, K Q; Bernard, C; Benoliel, J-J; Becker, C

    2017-12-01

    Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation.

  12. The triterpenoids of Ganoderma tsugae prevent stress-induced myocardial injury in mice.

    Science.gov (United States)

    Kuok, Qian-Yu; Yeh, Chen-Yu; Su, Bor-Chyuan; Hsu, Pei-Ling; Ni, Hao; Liu, Ming-Yie; Mo, Fan-E

    2013-10-01

    Ganoderma mushrooms (Lingzhi in Chinese) have well-documented health benefits. Ganoderma tsugae (G. tsugae), one of the ganoderma species, has been commercially cultivated as a dietary supplement. Because G. tsugae has high antioxidant activity and because oxidative stress is often associated with cardiac injury, we hypothesized that G. tsugae protects against cardiac injury by alleviating oxidative stress. We tested the hypothesis using a work-overload-induced myocardial injury model created by challenging mice with isoproterenol (ISO). Remarkably, oral G. tsugae protected the mice from ISO-induced myocardial injury. Moreover, the triterpenoid fraction of G. tsugae, composed of a mixture of nine structurally related ganoderic acids (GAs), provided cardioprotection by inhibiting the ISO-induced expression of Fas/Fas ligand, oxidative stress, and apoptosis. The antioxidant activity of GAs was tested in cultured cardio-myoblast H9c2 cells against the insult of H₂O₂. GAs dissipated the cellular reactive oxygen species imposed by H₂O₂ and prevented cell death. Our findings uncovered the cardioprotective activity of G. tsugae and identified GAs as the bioactive components against cardiac insults. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. PLA2G3, a gene involved in oxidative stress induced death, is associated with Alzheimer's disease.

    Science.gov (United States)

    Martínez-García, Ana; Sastre, Isabel; Recuero, María; Aldudo, Jesús; Vilella, Elisabet; Mateo, Ignacio; Sánchez-Juan, Pascual; Vargas, Teo; Carro, Eva; Bermejo-Pareja, Félix; Rodríguez-Rodríguez, Eloy; Combarros, Onofre; Rosich-Estrago, Marcel; Frank, Ana; Valdivieso, Fernando; Bullido, María J

    2010-01-01

    Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging, the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking such stress in AD brains, are therefore of great interest. PLA2G3 is the most overexpressed gene in a human neuronal model of oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system, which provokes apoptotic cell death. In this work, we describe that PLA2G3 gene silencing produced a marked inhibition of X-XOD induced cell death, and that PLA2G3 polymorphisms are associated with AD in a Spanish case-control sample. The capacity to respond to oxidative stress may therefore modulate the risk of AD, and PLA2G3 is a potential target to regulate neuronal damage induced by free radicals.

  14. CHIP has a protective role against oxidative stress-induced cell death through specific regulation of Endonuclease G

    Science.gov (United States)

    Lee, J S; Seo, T W; Yi, J H; Shin, K S; Yoo, S J

    2013-01-01

    Oxidative stress is implicated in carcinogenesis, aging, and neurodegenerative diseases. The E3 ligase C terminus of Hsc-70 interacting protein (CHIP) has a protective role against various stresses by targeting damaged proteins for proteasomal degradation, and thus maintains protein quality control. However, the detailed mechanism by which CHIP protects cells from oxidative stress has not been demonstrated. Here, we show that depletion of CHIP led to elevated Endonuclease G (EndoG) levels and enhanced cell death upon oxidative stress. In contrast, CHIP overexpression reduced EndoG levels, and resulted in reduced or no oxidative stress-induced cell death in cancer cells and primary rat cortical neurons. Under normal conditions Hsp70 mediated the interaction between EndoG and CHIP, downregulating EndoG levels in a Hsp70/proteasome-dependent manner. However, under oxidative stress Hsp70 no longer interacted with EndoG, and the stabilized EndoG translocated to the nucleus and degraded chromosomal DNA. Our data suggest that regulation of the level of EndoG by CHIP in normal conditions may determine the sensitivity to cell death upon oxidative stress. Indeed, injection of H2O2 into the rat brain markedly increased cell death in aged mice compared with young mice, which correlated with elevated levels of EndoG and concurrent downregulation of CHIP in aged mice. Taken together, our findings demonstrate a novel protective mechanism of CHIP against oxidative stress through regulation of EndoG, and provide an opportunity to modulate oxidative stress-induced cell death in cancer and aging. PMID:23764847

  15. Evaluation ofCassia toraLinn. against Oxidative Stress-induced DNA and Cell Membrane Damage.

    Science.gov (United States)

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti Js; Danagoudar, Ananda

    2017-01-01

    The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  16. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo

    Science.gov (United States)

    Shi, Q; Zhang, W; Guo, S; Jian, Z; Li, S; Li, K; Ge, R; Dai, W; Wang, G; Gao, T; Li, C

    2016-01-01

    Oxidative stress has a critical role in the pathogenesis of vitiligo. However, the specific molecular mechanism involved in oxidative stress-induced melanocyte death is not well characterized. Given the powerful role of microRNAs (miRNAs) in the regulation of cell survival as well as the fact that the generation of miRNAs can be affected by oxidative stress, we hypothesized that miRNAs may participate in vitiligo pathogenesis by modulating the expression of vital genes in melanocytes. In the present study, we initially found that miR-25 was increased in both serum and lesion samples from vitiligo patients, and its serum level was correlated with the activity of vitiligo. Moreover, restoration of miR-25 promoted the H2O2-induced melanocyte destruction and led to the dysfunction of melanocytes. Further experiments proved that MITF, a master regulator in melanocyte survival and function, accounted for the miR-25-caused damaging impact on melanocytes. Notably, other than the direct role on melanocytes, we observed that miR-25 inhibited the production and secretion of SCF and bFGF from keratinocytes, thus impairing their paracrine protective effect on the survival of melanocytes under oxidative stress. At last, we verified that oxidative stress could induce the overexpression of miR-25 in both melanocytes and keratinocytes possibly by demethylating the promoter region of miR-25. Taken together, our study demonstrates that oxidative stress-induced overexpression of miR-25 in vitiligo has a crucial role in promoting the degeneration of melanocytes by not only suppressing MITF in melanocytes but also impairing the paracrine protective effect of keratinocytes. Therefore, it is worthy to investigate the possibility of miR-25 as a potential drug target for anti-oxidative therapy in vitiligo. PMID:26315342

  17. Lipopolysaccharide IP-PA1 from Pantoea agglomerans prevents suppression of macrophage function in stress-induced diseases.

    Science.gov (United States)

    Nakata, Kazue; Inagawa, Hiroyuki; Soma, Gen-Ichiro

    2011-07-01

    Chronic psychological stress impairs health and induces various diseases by causing an imbalance in the immune, neuropsychiatric and endocrine systems. The primary reason for the development of stress-induced disease is suppression of macrophage function, which plays a pivotal role in innate immunity. In fact, surgical stress has been shown to exacerbate opportunistic infections by significantly suppressing macrophage function. Conversely, administration of macrophage activating substances before surgery, such as tumor necrosis factor (TNF)-α or Picibanil (OK-432), has been shown to protect against macrophage suppression and the resulting exacerbation of infectious diseases, and against tumor metastasis in the lungs. Thus, if suppression of macrophage function by stress could be safely prevented by use of a macrophage activating substance, the detrimental side effects of stress could be reduced. Recently, we identified a lipopolysaccharide, IP-PA1, derived from Pantoea agglomerans, a symbiotic Gram-negative bacteria found in wheat and other food plants. Oral administration of IP-PA1 demonstrated macrophage activation (priming) and protective effects against infection, allergy and cancer, without any side-effects. In this review, the possibility of using IP-PA1 as a safe, macrophage activating substance for prevention of stress-induced impairments is discussed.

  18. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Yoshida, Go J.; Saya, Hideyuki

    2014-01-01

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high

  19. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  20. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  1. Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yue Han

    2013-01-01

    Full Text Available Intrinsic oxidative stress through increased production of reactive oxygen species (ROS is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion, is very sensitive to exogenous H2O2 but independent of endogenous ROS production in both prostate cancer and normal cells. In contrast, aggressive prostate cancer cells exhibit a more than 10-fold sensitivity to H2O2-induced cell toxicity than normal cells, and a cascade of secondary ROS production is a critical determinant to the differential response. We propose a new paradigm to account for different mechanisms governing cellular oxidative stress, cell toxicity, and DNA damage with important ramifications in devising new techniques and strategies in prostate cancer prevention and treatment.

  2. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Bhavya B Chandrika

    Full Text Available We examined whether endoplasmic reticulum (ER stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

  3. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei

    2016-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  4. Ku80 Counters Oxidative Stress-Induced DNA Damage and Cataract Formation in the Human Lens.

    Science.gov (United States)

    Smith, Andrew John Oliver; Ball, Simon Sidney Robert; Manzar, Kamal; Bowater, Richard Peter; Wormstone, Ian Michael

    2015-12-01

    Oxidative stress in the human lens leads to a wide range of damage including DNA strand breaks, which are likely to contribute to cataract formation. The protein Ku80 is a fundamental component of the nonhomologous end-joining pathway that repairs DNA double strand breaks. This study investigates the putative impact of Ku80 in cataract prevention in the human lens. The present study used the human lens epithelial cell line FHL124 and whole human lens organ culture. Targeted siRNA was used to deplete Ku80, with Western blot and immunocytochemistry employed to assess Ku80 expression levels. Oxidative stress was induced with hydrogen peroxide and DNA strand breaks measured by alkaline comet assay and γH2AX foci counts. Visual quality of whole human lenses was measured with image analysis software. Expression of Ku80 was predominately found in the cell nucleus of both FHL124 cells and native human lens epithelium. Treatment of FHL124 cells and whole lens cultures with siRNA targeted against Ku80 resulted in a significant knockdown at the protein level. Application of oxidative stress (30 μM H2O2) created more DNA strand breaks when added to Ku80 knockdown cells than in scrambled siRNA control cells as determined by the alkaline comet assay and the number of γH2AX foci. In whole lens cultures, exposure to 1 mM H2O2 resulted in more lens opacity in Ku80 knockdown lenses than match-paired controls. Depletion of Ku80 in the lens through acute change or a consequence of aging is likely to increase levels of DNA strand breaks, which could negatively influence physiological function and promote lens opacity. It is therefore feasible that Ku80 plays a role in retarding cataract formation.

  5. Allantopyrone A activates Keap1-Nrf2 pathway and protects PC12 cells from oxidative stress-induced cell death.

    Science.gov (United States)

    Uesugi, Shota; Muroi, Makoto; Kondoh, Yasumitsu; Shiono, Yoshihito; Osada, Hiroyuki; Kimura, Ken-Ichi

    2017-04-01

    Keap1-Nrf2 system is known as a sensor of electrophilic compounds, and protects cells from oxidative stress through induction of various antioxidant enzymes. We found by proteomic analysis that allantopyrone A, a metabolite isolated from an endophytic fungus, upregulates the expression of proteins that are regulated by the transcription factor Nrf2. Indeed, allantopyrone A increased the antioxidant enzyme heme oxygenase-1 in PC12 cells. Moreover, it induced localization of Nrf2 in the nucleus. Affinity purification of allantopyrone A-binding protein showed that this compound could bind directly to Keap1. Allantopyrone A suppressed intracellular reactive oxygen species level and cell death induced by H 2 O 2 in PC12 cells. These results indicate that allantopyrone A protects PC12 cells from oxidative stress-induced cell death through direct binding with Keap1 and activation of the Keap1-Nrf2 pathway.

  6. Neuroprotective Effects of Bioavailable Polyphenol-Derived Metabolites against Oxidative Stress-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    González-Sarrías, Antonio; Núñez-Sánchez, María Ángeles; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2017-02-01

    Oxidative stress is involved in cell death in neurodegenerative diseases. Dietary polyphenols can exert health benefits, but their direct effects on neuronal cells are debatable because most phenolics are metabolized and do not reach the brain as they occur in the dietary sources. Herein, we evaluate the effects of a panel of bioavailable polyphenols and derived metabolites at physiologically relevant conditions against H 2 O 2 -induced apoptosis in human neuroblastoma SH-SY5Y cells. Among the 19 metabolites tested, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, gallic acid, ellagic acid, and urolithins prevented neuronal apoptosis via attenuation of ROS levels, increased REDOX activity, and decreased oxidative stress-induced apoptosis by preventing the caspase-3 activation via the mitochondrial apoptotic pathway in SH-SY5Y cells. This suggests that dietary sources containing the polyphenol precursors of these molecules such as cocoa, berries, walnuts, and tea could be potential functional foods to reduce oxidative stress associated with the onset and progress of neurodegenerative diseases.

  7. Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Meetali Deori

    2016-09-01

    Full Text Available This study evaluated the antioxidant effect of crude sericin extract (CSE from Antheraea assamenisis (Aa in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w./day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control (NC, high cholesterol fed (HCF, HCF + 0.065 gm/kg b.w./day fenofibrate (FF, HCF + sericin 0.25 gm/kg b.w./day (LSD and HCF + sericin 0.5 gm/kg b.w./day (HSD. In brain, heart, liver, serum and kidney homogenates nitric oxide (NO, thiobarbituric acid reactive substances (TBARS, protein carbonyl content (PCC, superoxide dismutase (SOD, reduced glutathione (GSH was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress (OS marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  8. Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta).

    Science.gov (United States)

    Contreras-Porcia, Loretto; Thomas, Daniela; Flores, Verónica; Correa, Juan A

    2011-03-01

    Unravelling the mechanisms underlying desiccation tolerance is crucial in order to understand the position of algal species in the intertidal zone. The alga Porphyra columbina lives in the uppermost part of the rocky intertidal zones around the world and was selected as a model for this study. Naturally desiccated plants were collected during low tide and studied for morphological changes, oxidative burst induction, biomolecule oxidation, antioxidant responses, and photosynthetic status. Naturally hydrated plants collected during high tides were used for comparative purposes. In addition, changes induced by desiccation were assessed in vitro and the capacity to recover from desiccation was determined by rehydrating the fronds in seawater. The global results show that desiccation induces morphological and cellular alterations accompanied by a loss of ∼96% of the water content. Overproduction of reactive oxygen species (ROS) was induced by desiccation and two peaks of H(2)O(2) were detected at 1 and 3 h of desiccation. However, during in vitro rehydration post-desiccation, the ROS quickly returned to the basal levels. At the biomolecular level, only a low production of oxidized proteins was recorded during desiccation, whereas the activity of diverse antioxidant enzymes increased. However, this activity diminished to near basal levels during rehydration. The photosynthetic efficiency (F(v)/F(m)) during desiccation declined by 94-96% of the values recorded in hydrated plants. This reduction was generated by the low levels of trapped energy flux per cross-section (TRo/CS), electron transport flux per CS (ETo/CS), and density of reaction centres (RC/SCo) as well as the chlorophyll content. The inverse pattern was observed for the levels of phycocyanin and phycoerythrin content. F(v)/F(m) and the photosynthetic indicators were restored to normal levels after only 5 min of rehydration. The results indicate that desiccation in P. columbina causes overproduction of ROS

  9. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  10. Cardioprotective and Antioxidant Influence of Aqueous Extracts from Sesamum indicum Seeds on Oxidative Stress Induced by Cadmium in Wistar Rats.

    Science.gov (United States)

    Oyinloye, Babatunji Emmanuel; Ajiboye, Basiru Olaitan; Ojo, Oluwafemi Adeleke; Nwozo, Sarah Onyenibe; Kappo, Abidemi Paul

    2016-05-01

    Oxidative stress has been implicated in the pathogenesis of several acute and chronic diseases of the heart as a result of indiscriminate exposure to cardiotoxic heavy metals. The study reported here was designed to evaluate the possible ameliorative effect of aqueous extracts from Sesamum indicum (SI) seeds on oxidative stress induced by cadmium (Cd) in Wistar rats. Daily administration of Cd (200 mg/L Cd as CdCl2) in the animals' main drinking water for 21 days led to oxidative stress. Thereafter, the ameliorative effects were assessed by measuring biochemical parameters such as extent of lipid peroxidation (LPO), lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activities. Treatment with SI extract elicited notable reduction in serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels as well as concomitant increase in high-density lipoprotein cholesterol. SI extract also reversed the elevations witnessed in serum aminotransferase activities, LPO level, and ameliorated enzymatic and nonenzymatic antioxidant status in the heart of Cd-exposed rats. Thus, SI appears to be an attractive candidate with potential for the novel treatment of cardiotoxicity and management of oxidative stress arising from Cd exposure. Cadmium (200 mg/L) exposure in drinking water caused pronounced oxidative stress and cardiac tissue damage in animal modelAqueous extract of Sesamum indicum (SI) seeds at a dose of 200 or 400 mg/kg body weight exhibited a significant reversal effect in all biochemical parameters measured such as extent of lipid peroxidation, lipid profile, and enzymatic and nonenzymatic antioxidants, as well as serum aminotransferase activitiesAqueous extract of SI seeds possess antioxidant and cardioprotective potential in a dose-dependent manner, thus conferring protection against oxidative stress induced by cadmium. Abbreviation used: SI: Sesamum indicum, Cd: Cadmium, CdCl2: Cadmium chloride, LPO

  11. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase......, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified...

  12. Cardio protective role of garlic (Allium Sativum) against oxidative stress induced by gamma radiation exposure

    International Nuclear Information System (INIS)

    Said, U.Z.; Azab, KH.SH.; And Soliman, A.M.

    2004-01-01

    Oxidative stress and free radicals play a crucial role in the pathophysiology of a broad spectrum of cardiovascular diseases. The need to identify agents with a potential for preventing such damage has assumed great importance. Therefore, the present study was designed to investigate the possible effect of raw garlic homogenate on cardiac endogenous antioxidants, lipid peroxidation and histopathological changes. Plasma lipid profile was also determined. Three different dosage levels (125, 250 and 500 mg/kg body weight) once daily for 20 days were evaluated. The results obtained showed that whole body gamma irradiation of rats at 6 Gy (single dose) resulted in significant increase in cardiac thiobarbituric acid reactive substances (TEARS) along with reduction in cardiac superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities 1, 2 and 4 weeks following radiation exposure. These changes were associated with subendocardial loss of muscles and accumulation of acute inflammatory cells surrounded by edema. Depletion of cardiac endogenous antioxidants and rise in TEARS were significantly less in the garlic treated rats. Also, histological examination of cardiac tissue showed less damage. Garlic treatment significantly diminished the radiation induced increase in the plasma content of triglycerides, total cholesterol and low density lipoprotein-cholesterol (LDL-C). Significant amelioration was also observed in the plasma content of high density lipoprotein- cholesterol (HDL-C) as compared to irradiated rats. Among the three garlic treated groups, 250 mg/kg group showed the best protection in terms of biochemical and histopathological evidences. It could be concluded that the intake dose plays an important role on endogenous antioxidants and cytoprotective effects on the heart

  13. Effect of Brewing Duration on the Antioxidant and Hepatoprotective Abilities of Tea Phenolic and Alkaloid Compounds in a t-BHP Oxidative Stress-Induced Rat Hepatocyte Model

    Directory of Open Access Journals (Sweden)

    Laura Braud

    2015-08-01

    Full Text Available Tea is an interesting source of antioxidants capable of counteracting the oxidative stress implicated in liver diseases. We investigated the impact of antioxidant molecules provided by a mixture of teas’ leaves (green, oolong, pu-erh after different infusion durations in the prevention of oxidative stress in isolated rat hepatocytes, by comparison with pure epigallocatechin-3-gallate (EGCG, the main representative of tea catechins. Dried aqueous tea extracts (ATE obtained after 5, 15 and 30 min infusion time were characterized for total polyphenols (gallic acid equivalent, catechins, gallic acid and caffeine (HPLC-DAD/ESI-MS contents, and for scavenging ability against 2,2-diphenyl-1-picrylhydrazyl free radical. Hepatoprotection was evaluated through hepatocyte viability tests using tert-butyl hydroperoxide as a stress inducer, (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, neutral red uptake, real-time cellular impedance and mitochondrial function tests. We showed that a 5-min incubation time is sufficient for an optimal bioaccessibility of tea compounds with the highest antioxidative ability, which decreases for longer durations. A 4-h pretreatment of cells with ATE significantly prevented cell death by regulating reactive oxygen species production and maintaining mitochondrial integrity. Pure EGCG, at doses similar in ATE (5–12 µM, was inefficient, suggesting a plausible synergy of several water-soluble tea compounds to explain the ATE beneficial effects.

  14. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  15. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Vrenken, Titia E; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the

  16. Characterization of the transcriptional profile in primary astrocytes after oxidative stress induced by Paraquat

    DEFF Research Database (Denmark)

    Olesen, Birgitte S. M. Thuesen; Clausen, Jørgen; Vang, Ole

    2008-01-01

    In the central nervous system oxidative stress has been implicated in the pathology of several neurological disorders. The ability to withstand reactive oxygen species and oxidative stress are essential for survival and therefore all aerobic cells are endowed with chemical and enzymatic...... exposure to PQ using a commercial cDNA membrane array containing 207 genes from key oxidative stress pathways. The gene expression pattern clearly indicated that 60 μM PQ for 48 h induces genes related to oxidative stress, detoxification, mitotic arrest, DNA repair, and apoptosis. The PQ (48 h......)-induced expressions of genes identified in cDNA array were confirmed by Northern blot analysis, which revealed a statistical significant up-regulation of genes involved in oxidative stress, detoxification, and DNA repair/synthesis and includes heme oxygenase-1 (11-fold), NAD(P)H dehydrogenase (8-fold), glutathione S...

  17. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    Science.gov (United States)

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (pacetylsalicylic acid induces oxidative stress and DNA damage in D. magna. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death

    OpenAIRE

    Fang, Yuan; Su, Tu; Qiu, Xiaorong; Mao, Pingan; Xu, Yidan; Hu, Zizhong; Zhang, Yi; Zheng, Xinhua; Xie, Ping; Liu, Qinghuai

    2016-01-01

    It is known that oxidative stress plays a pivotal role in age-related macular degeneration (AMD) pathogenesis. Alpha-mangostin is the main xanthone purified from mangosteen known as anti-oxidative properties. The aim of the study was to test the protective effect of alpha-mangostin against oxidative stress both in retina of light-damaged mice model and in hydrogen peroxide (H2O2)-stressed RPE cells. We observed that alpha-mangostin significantly inhibited light-induced degeneration of photore...

  19. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    International Nuclear Information System (INIS)

    Ceschia, M.; Paccagnella, A.; Cester, A.; Scarpa, A.

    1998-01-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices

  20. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  1. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  2. Vitamin E Prevents Cold Wrap Restraint Stress-Induced Intestinal Fluid Transport Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Scott Burdick

    1994-01-01

    Full Text Available Psychological stress may alter gastrointestinal absorptive function by increasing the quantity of intestinal free radicals or by lowering endogenous intestinal free radical scavenging capacity. Vitamin E has been shown to be a potent endogenous antioxidant and free radical scavenger under both physiological and pathological conditions. The purpose of this study was to determine whether cold wrap restraint stress altered in vivo intestinal fluid absorption in rats, and whether vitamin E administration prior to the induction of cold wrap restraint stress could prevent such changes in intestinal secretion. Jejunal, ileal and colonic fluid and electrolyte transport rates were measured in vivo using an isolated loop technique. Cold wrap restraint stress reduced in vivo fluid absorption in the ileum and colon, but not in the jejunum. Administration of vitamin E prior to the cold wrap restraint stress procedure completely prevented this alteration of ileal and colonic fluid absorption.

  3. Electroconvulsive stimulations prevent stress-induced morphological changes in the hippocampus

    DEFF Research Database (Denmark)

    Hageman, I; Nielsen, M; Wörtwein, Gitta

    2008-01-01

    Stress can precipitate major depression and other disorders linked to hippocampal shrinkage. It is hypothesized but not established that treatment of these disorders reverses and prevents the hippocampal changes. Dendritic retraction of individual neurons might in concert with other pathophysiolo......Stress can precipitate major depression and other disorders linked to hippocampal shrinkage. It is hypothesized but not established that treatment of these disorders reverses and prevents the hippocampal changes. Dendritic retraction of individual neurons might in concert with other...... pathophysiological events contribute to the shrinkage phenomenon. Animal studies have shown that various stress paradigms can induce dendritic retraction in the CA3 pyramidal neurons of the hippocampus. Since electroconvulsive treatment is the most effective treatment in humans with major depression, we investigated...

  4. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-Induced DNA Damage

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter

    2007-01-01

    exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. METHODS: The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were......BACKGROUND: Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. OBJECTIVE: We investigated oxidative damage to DNA and related repair capacity in peripheral blood...... mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. DESIGN. Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking...

  5. Neuroprotective Effects of Theaflavins Against Oxidative Stress-Induced Apoptosis in PC12 Cells.

    Science.gov (United States)

    Zhang, Jing; Cai, Shuxian; Li, Juan; Xiong, Ligui; Tian, Lili; Liu, Jianjun; Huang, Jianan; Liu, Zhonghua

    2016-12-01

    Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H 2 O 2 . A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H 2 O 2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H 2 O 2 induced toxicity and increased cell viability by approximately 40 %. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H 2 O 2 -treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H 2 O 2 . These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.

  6. The Effects of Silymarin on Oxidative Status and Bone Characteristics in Japanese Quail Subjected to Oxidative Stress Induced by Carbon Tetrachloride

    Directory of Open Access Journals (Sweden)

    Moradi F

    2017-10-01

    Full Text Available This experiment was conducted to assess the effects of Silymarin on oxidative status, bone characteristics, and some blood parameters in Japanese quail subjected to oxidative stress induced by carbon tetrachloride (CCl4. The experiment was performed as a completely randomized design with four replicates, each with 30 birds, using a 2 × 2 factorial arrangement with two doses of Silymarin (0 and 1 mL/kg BW and CCl4 (0 and 1 mL/kg BW. Results revealed that the interaction between Silymarin and CCl4on concentrations of total cholesterol, triglycerides, glucose, albumin, calcium, and alkaline phosphatase were significant (P < 0.05. In contrast, concentrations of phosphorus, total protein, and high density lipoprotein-cholesterol in blood serum did not differ between experimental treatments. Experimental treatments had a significant effect on superoxide dismutase activity in blood serum (P < 0.05, but not on glutathione peroxide activity and malondialdehyde concentration. Experimental treatments significantly affected the weight, thickness, and external and internal diameters of tibia bone (P < 0.05, but not its length, ash, volume, and density. This study shows that Silymarin has potential to attenuate adverse effects of oxidative stress induced by CCl4 in Japanese quail.

  7. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death.

    Science.gov (United States)

    Fang, Yuan; Su, Tu; Qiu, Xiaorong; Mao, Pingan; Xu, Yidan; Hu, Zizhong; Zhang, Yi; Zheng, Xinhua; Xie, Ping; Liu, Qinghuai

    2016-02-18

    It is known that oxidative stress plays a pivotal role in age-related macular degeneration (AMD) pathogenesis. Alpha-mangostin is the main xanthone purified from mangosteen known as anti-oxidative properties. The aim of the study was to test the protective effect of alpha-mangostin against oxidative stress both in retina of light-damaged mice model and in hydrogen peroxide (H2O2)-stressed RPE cells. We observed that alpha-mangostin significantly inhibited light-induced degeneration of photoreceptors and 200 μM H2O2-induced apoptosis of RPE cells. 200 μM H2O2-induced generation of reactive oxygen species (ROS) and light-induced generation of malondialdehyde (MDA) were suppressed by alpha-mangostin. Alpha-mangostin stimulation resulted in an increase of superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity and glutathione (GSH) content both in vivo and vitro. Furthermore, the mechanism of retinal protection against oxidative stress by alpha-mangostin involves accumulation and the nuclear translocation of the NF-E2-related factor (Nrf2) along with up-regulation the expression of heme oxygenas-1 (HO-1). Meanwhile, alpha-mangostin can activate the expression of PKC-δ and down-regulate the expression of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, P38. The results suggest that alpha-mangostin could be a new approach to suspend the onset and development of AMD.

  8. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  9. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy.

    Science.gov (United States)

    Giordano, Courtney R; Roberts, Robin; Krentz, Kendra A; Bissig, David; Talreja, Deepa; Kumar, Ashok; Terlecky, Stanley R; Berkowitz, Bruce A

    2015-05-01

    Preclinical studies have highlighted retinal oxidative stress in the pathogenesis of diabetic retinopathy. We evaluated whether a treatment designed to enhance cellular catalase reduces oxidative stress in retinal cells cultured in high glucose and in diabetic mice corrects an imaging biomarker responsive to antioxidant therapy (manganese-enhanced magnetic resonance imaging [MEMRI]). Human retinal Müller and pigment epithelial cells were chronically exposed to normal or high glucose levels and treated with a cell-penetrating derivative of the peroxisomal enzyme catalase (called CAT-SKL). Hydrogen peroxide (H2O2) levels were measured using a quantitative fluorescence-based assay. For in vivo studies, streptozotocin (STZ)-induced diabetic C57Bl/6 mice were treated subcutaneously once a week for 3 to 4 months with CAT-SKL; untreated age-matched nondiabetic controls and untreated diabetic mice also were studied. MEMRI was used to analytically assess the efficacy of CAT-SKL treatment on diabetes-evoked oxidative stress-related pathophysiology in vivo. Similar analyses were performed with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. After catalase transduction, high glucose-induced peroxide production was significantly lowered in both human retinal cell lines. In diabetic mice in vivo, subnormal intraretinal uptake of manganese was significantly improved by catalase supplementation. In addition, in the peroxisome-rich liver of treated mice catalase enzyme activity increased and oxidative damage (as measured by lipid peroxidation) declined. On the other hand, DFMO was largely without effect in these in vitro or in vivo assays. This proof-of-concept study raises the possibility that augmentation of catalase is a therapy for treating the retinal oxidative stress associated with diabetic retinopathy.

  10. Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin.

    Science.gov (United States)

    Schmidt-Heydt, Markus; Stoll, Dominic; Schütz, Peter; Geisen, Rolf

    2015-01-02

    Penicillium verrucosum is a fungus that can produce ochratoxin A and citrinin, two structurally related nephrotoxic mycotoxins. P. verrucosum usually occurs on wheat but can occasionally also be found in NaCl rich habitats such as salted cheeses or olives, indicating that this fungus can adapt to different environments. The ratio of ochratoxin A to citrinin produced by P. verrucosum is shifted to one of either mycotoxin at the expense of the other dependent on the environmental conditions. High NaCl concentrations shift secondary metabolite biosynthesis towards ochratoxin A production. P. verrucosum copes with NaCl stress by increased ochratoxin A biosynthesis, ensuring chloride homeostasis. Ochratoxin A carries chlorine in its molecule and can excrete chlorine from the cell. It was further shown that the regulation of ochratoxin A by high NaCl conditions is mediated by the HOG MAP kinase signal transduction pathway. Here it is shown that high oxidative stress conditions, evoked for example by increasing concentrations of Cu(2+) cations in the growth medium, shift secondary metabolite biosynthesis of P. verrucosum from ochratoxin A to citrinin. The production of citrinin normalizes the oxidative status of the fungal cell under oxidative stress conditions leading to an adaptation to these environmental conditions and protects against increased oxidative stress caused by increased Cu(2+) concentrations. Moreover citrinin also protects against light of short wavelength, which may also increase the oxidative status of the environment. The biosynthesis of citrinin is apparently regulated by a cAMP/PKA signaling pathway, because increasing amounts of external cAMP reduce citrinin biosynthesis in a concentration dependent manner. These conditions lead to the cross-regulation of the ochratoxin A/citrinin secondary metabolite pair and support the adaptation of P. verrucosum to different environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats.

    Science.gov (United States)

    Dalmases, Mireia; Torres, Marta; Márquez-Kisinousky, Leonardo; Almendros, Isaac; Planas, Anna M; Embid, Cristina; Martínez-Garcia, Miguel Ángel; Navajas, Daniel; Farré, Ramon; Montserrat, Josep Maria

    2014-07-01

    To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Prospective controlled animal study. University laboratory. Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats. Dalmases M, Torres M, Márquez-Kisinousky L, Almendros I, Planas AM, Embid C, Martínez-Garcia MA, Navajas D, Farré R, Montserrat JM. Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats.

  12. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Chun-Hao Huang

    2011-12-01

    Full Text Available The development of gastric cancer was suggested to be associated with chronic inflammation as a consequence of Helicobacter pylori infection. Such inflammation-related oxidative stress induced by reactive oxygen species (ROS in vivo may exert bidirectional effects on both hosts and H pylori. In this study, ROS-induced oxidative stress was mimicked by coculture of gastric epithelial cells with H pylori treated with hydrogen peroxide (H2O2. To investigate the effect of H2O2 on the proteome of H pylori, we performed two-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography coupled with nano-electrospray ionization-tandem mass spectrometry (liquid chromatography mass spectrometry and bioinformatics database analysis. The nine most overexpressed proteins consisted of three virulence factors, including cytotoxin-associated protein A (CagA, vacuolating cytotoxin (VacA, adherence-associated protein (AlpA, and two antioxidant enzymes alkylhydroperoxide reductase (AhpC and catalase (KatA, plus one serine protease (HtrA, aconitate hydratase, and fumarate reductase. We have also confirmed the upregulation of virulence factors and antioxidant proteins in several H pylori strains isolated from patients of different clinical outcomes. Furthermore, it is noted that H pylori was found to decrease in infection rate and increase in proliferation after being exposed to H2O2. We also found that gastric epithelial cells can be protected from oxidative damage by H2O2 in the presence of H pylori. In conclusion, this study lends support to the supposition that ROS containing H2O2 as one of the major oxidative species can induce upregulation of virulence factors and antioxidant enzymes in H pylori, which may aid in the elucidation of inflammation leading to the development of gastric cancer from H pylori infection.

  13. Quercetin and omega 3 ameliorate oxidative stress induced by aluminium chloride in the brain.

    Science.gov (United States)

    Ali, Haytham Abdallah; Afifi, Mohamed; Abdelazim, Aaser Mohamed; Mosleh, Yahia Youssef

    2014-08-01

    Exposure to high levels of aluminum (Al) leads to neurodegeneration, which may be mediated through over-generation of free radicals. So, in the present study, we investigated the ability of both quercetin and omega 3 to ameliorate adverse effects of Al on brain antioxidants by monitoring the main brain antioxidant enzymes on molecular and cellular levels. The obtained results indicated that Al induced oxidative stress through induction of free radical production and inhibition of activity and expression of the antioxidant enzymes catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx); and at the same time induced superoxide dismutase (SOD) activity and gene expression. Both quercetin (QE) and omega 3 have the ability to overcome Al-induced oxidative stress, manifested by the significant reduction in free radical concentration and induction of the activity and gene expression of the brain antioxidant enzymes.

  14. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  15. Propofol protects against oxidative-stress-induced COS-7 cell apoptosis by inducing autophagy.

    Science.gov (United States)

    Yoon, Ji-Young; Baek, Chul-Woo; Kim, Eun-Jung; Park, Bong-Soo; Yu, Su-Bin; Yoon, Ji-Uk; Kim, Eok-Nyun

    2017-03-01

    In oxidative stress, reactive oxygen species (ROS) production contributes to cellular dysfunction and initiates the apoptotic cascade. Autophagy is considered the mechanism that decreases ROS concentration and oxidative damage. Propofol shows antioxidant properties, but the mechanisms underlying the effect of propofol preconditioning (PPC) on oxidative injury remain unclear. Therefore, we investigated whether PPC protects against cell damage from hydrogen peroxide (H 2 O 2 )-induced oxidative stress and influences cellular autophagy. COS-7 cells were randomly divided into the following groups: control, cells were incubated in normoxia (5% CO 2 , 21% O 2 , and 74% N 2 ) for 24 h without propofol; H 2 O 2 , cells were exposed to H 2 O 2 (400 µM) for 2 h; PPC + H 2 O 2 , cells pretreated with propofol were exposed to H 2 O 2 ; and 3-methyladenine (3-MA) + PPC + H 2 O 2 , cells pretreated with 3-MA (1 mM) for 1 h and propofol were exposed to H 2 O 2 . Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) reduction. Apoptosis was determined using Hoechst 33342 staining and fluorescence microscopy. The relationship between PPC and autophagy was detected using western blot analysis. Cell viability decreased more significantly in the H 2 O 2 group than in the control group, but it was improved by PPC (100 µM). Pretreatment with propofol effectively decreased H 2 O 2 -induced COS-7 cell apoptosis. However, pretreatment with 3-MA inhibited the protective effect of propofol during apoptosis. Western blot analysis showed that the level of autophagy-related proteins was higher in the PPC + H 2 O 2 group than that in the H 2 O 2 group. PPC has a protective effect on H 2 O 2 -induced COS-7 cell apoptosis, which is mediated by autophagy activation.

  16. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi

    2009-01-01

    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads to int...... to normoxic conditions. The rate of apoptosis in all three cell lines demonstrated dependence on intralysosomal Abeta content (Vector...

  17. Oxidative stress induced damage in benign and malignant breast diseases: histopathological and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Seema Khanna

    2012-04-01

    Full Text Available Increasing evidences indicate involvement of free radicals in the pathogenesis of benign and malignant breast diseases. Free radicals are highly reactive molecules and react with non–radicals in chain reaction leading to formation of new free radicals. If the defense mechanism of body fails to combat them, these free radicals pose a threat of injuring tissues by reacting with cell lipids. Lipids in the cell membrane undergo degradation to form hydroperoxides, which decompose to form a variety of products including malondialdehyde (MDA. MDA therefore was used as a marker to assess oxidative damage of cells and tissues. The aim of the present study was to assess the status of oxidative stress in the patients of benign and malignant breast diseases. Study has been made on the blood samples of 25 cases of benign breast disease and on an equal number of breast carcinoma patients. 20 healthy subjects were taken as the control cases.Mean MDA levels were significantly raised with depletion of antioxidant activity in all the patients in comparison to their control group suggesting the role of oxidative damage in the aetiopathogenesis of disease.

  18. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; Osman, N.N.

    2013-01-01

    Human exposure to ionizing radiation induced overproduction of free radicals leading to oxidative stress. This study aimed to evaluate the possibility of using of coffee and cardamom mixture; as natural antioxidant compounds ; to ameliorate oxidative stress in rats induced by exposure to ionizing radiation. Phenolic contents in coffee and essential oils in cardamom were identified by using HPLC chromatography and GC/MS analysis. Four groups of adult male rats were used; the control group (A), the second group (B) received orally the mixture extract of coffee and cardamom (60 mg/100g body weight) for 8 weeks, the third group (C) irradiated (6 Gy) and the fourth group (D) received orally the mixture extract for 8 weeks and exposed to radiation at the 4th week. The results revealed that the administration of mixture extract of coffee and cardamom to rats significantly reduced the damage effect induced by irradiation via the adjustment of the antioxidant status, decreasing of malondialdehyde content and the subsequent amending of different biochemical parameters as well as some hormones. Accordingly, it is possible to indicate that coffee-cardamom reduced the radiation exposure induced oxidative stress.

  19. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    Science.gov (United States)

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. In Vivo Cytogenotoxicity and Oxidative Stress Induced by Electronic Waste Leachate and Contaminated Well Water

    Directory of Open Access Journals (Sweden)

    Adeyinka M. Gbadebo

    2013-07-01

    Full Text Available Environmental, plant and animal exposure to hazardous substances from electronic wastes (e-wastes in Nigeria is increasing. In this study, the potential cytogenotoxicity of e-wastes leachate and contaminated well water samples obtained from Alaba International Electronic Market in Lagos, Nigeria, using induction of chromosome and root growth anomalies in Allium cepa, and micronucleus (MN in peripheral erythrocytes of Clarias gariepinus, was evaluated. The possible cause of DNA damage via the assessments of liver malondialdehyde (MDA, catalase (CAT, reduced glutathione (GSH and superoxide dismutase (SOD as indicators of oxidative stress in mice was also investigated. There was significant (p < 0.05 inhibition of root growth and mitosis in A. cepa. Cytological aberrations such as spindle disturbance, C-mitosis and binucleated cells, and morphological alterations like tumor and twisting roots were also induced. There was concentration-dependent, significant (p < 0.05 induction of micronucleated erythrocytes and nuclear abnormalities such as blebbed nuclei and binucleated erythrocytes in C. gariepinus. A significant increase (p < 0.001 in CAT, GSH and MDA with concomitant decrease in SOD concentrations were observed in the treated mice. Pb, As, Cu, Cr, and Cd analyzed in the tested samples contributed significantly to these observations. This shows that the well water samples and leachate contained substances capable of inducing somatic mutation and oxidative stress in living cells; and this is of health importance in countries with risk of e-wastes exposure.

  1. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats

    Directory of Open Access Journals (Sweden)

    J. Voces

    2004-12-01

    Full Text Available Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group. The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05 after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05 by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

  2. Hepatoprotective Effects of Betaine Against Oxidative Stress Induced by Levodopa and Benserazide in Rats

    Directory of Open Access Journals (Sweden)

    M Alirezaei

    2015-02-01

    Results: The study results indicated that the treatment of rats with levodopa and benserazide significantly increased total homocysteine (tHcy in plasma of the LD/Ben. group in comparison with the other groups (p <0.05. tHcy concentration was also significantly higher in LD group in comparison with control, betaine and LD/Bet. groups. Lipid peroxidation (TBARS amount of liver increased significantly in LD/Ben. group when compared to the control group which this index decreased by betaine treatment. In contrast, glutathione peroxidase and superoxide dismutase activities in liver were significantly higher in the LD-treated rats as compared to the LD/Ben. group. Serumic dopamine concentration decreased significantly in LD/Ben.-treated rats in comparison with LD and LD/Bet. groups. Conclusion: Taken together, it seems that betaine acts as an antioxidant agent regarding decrease of LD/Ben.-induced oxidative stress and is able to decrease their oxidative effects in liver of rats.

  3. Antioxidants Attenuate Oxidative Stress-Induced Hidden Blood Loss in Rats

    Directory of Open Access Journals (Sweden)

    Hong Qian

    2017-12-01

    Full Text Available Objective: Hidden blood loss (HBL, commonly seen after total knee or hip arthroplasty, causes postoperative anemia even after reinfusion or blood transfusion based on the visible blood loss volume. Recent studies demonstrated that oxidative stress might be involved in HBL. However, whether the antioxidants proanthocyanidin (PA or hydrogen water (HW can ameliorate HBL remains poorly understood. The aim of this study was to evaluate the effects of PA and HW on HBL. Materials and Methods: A rat HBL model was established through administration of linoleic acid with or without treatment with PA or HW. The levels of hemoglobin (Hb, red blood cell (RBC count, superoxide dismutase (SOD activity, glutathione peroxidase (GSH-PX activity, malondialdehyde (MDA, and ferryl Hb were measured. Results: RBC and Hb values as well as the activity of SOD and GSH-PX were reduced after administration of linoleic acid, which was ameliorated by treatment with PA or HW. In addition, the quantity of MDA was significantly decreased with the administration of PA or HW. Conclusion: PA and HW could ameliorate HBL in a rat model by reducing oxidative stress, suggesting that they might be used as a novel therapeutic approach in the prophylaxis or treatment of HBL in clinics.

  4. Nano-composites chitosan-curcumin synergistically inhibits the oxidative stress induced by toxic metal cadmium.

    Science.gov (United States)

    Ahmad, Mohammad; Taweel, Gasem M Abu; Hidayathulla, Syed

    2018-03-01

    The present study intends to compare the influence of pre-treatment with nanoparticles of curcumin (Cr-NPS), chitosan (Ch-NPS) and nanocomposites chitosan-curcumin (CC-NPS) on cadmium (Cd)-induced oxidative damage in the liver, kidneys, and blood indices in Swiss strain adult male mice. The pretreated mice with Cr-NPS, Ch-NPS, and CC-NPS were exposed to Cd (10mg/kg) for three weeks. The non-enzymatic Oxidative Stress (OS) indices like lipid peroxides (TBARS), reduced total glutathione (GSH), enzymatic OS indices like catalase (CAT), glutathione S-transferase (GST) and superoxide dismutase (SOD) were estimated together with some blood indices. Cadmium was able to induce a significant increase in TBARS and a significant decrease in GSH, GST, CAT and SOD levels in all the tissues, which were pretreated with nanocomposite. Furthermore, the blood indices like counts of red and white blood cells, platelets, hemoglobin and packed cell volume were also depleted due to Cd exposure but remained unaffected and kept under normal levels in pretreated mice group. The results indicate that Cr-NPS, Ch-NPS, and CC-NPS may act as natural antioxidants and when compared among the three, CC-NPS appears to be the best antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protective effect of Ginkgo biloba extract against oxidative stress induced by gamma-irradiation in rats

    International Nuclear Information System (INIS)

    Hashim, I. M.; El-Hindy, H.M.A.; Moussa, S.Z.; Mansour, S.Z.

    2013-01-01

    This study was to evaluate the prophylactic and therapeutic efficacy of Ginkgo biloba extract against redox imbalance induced by protracted exposure to γ -rays. Rats were exposed to γ-radiation at a dose 2 Gy / week for 4 weeks (γ-radiated group) Ginkgo biloba extract was administered in a dose of 100 mg/kg b. wt. for 7 days before the first dose of γ-radiation and contemned during for exposure period (Ginkgo biloba pre- treated group) and also after the last dose of γ-radiation (Ginkgo biloba post- treated group), these groups were compared with either control or Ginkgo biloba animals. The results reveal obtained significant increases in malondialdhyde and nitric oxide concentrations in blood and liver of γ-irradiated group with concomitant decrease in reduced glutathione content and glutathione peroxidase, superoxide dismutase and catalase activities. Histopathological examinations in the liver revealed a severe damage showed by dilated congested control vein with ruptured endothelium. Vacuolated hapatocytes and extensive cell necrosis were also seen. Note extravagated RBCs within sinusoidal spaces. In addition, the enzymes of liver function and bilirubin content were increased. DNA fragmentation percentage and tumor necrosis factor alpha concentration were also increased in liver. Ginkgo biloba extract administration significantly ameliorated the adverse effects of γ-irradiation in rats. It could be concluded that Ginkgo biloba extract has a role in reducing the oxidative stress of pre or post γ-irradiation on liver tissue of rats

  6. THE COMBINED EFFECT OF SCUTELLARIA BAICALENSIS EXTRACT AND COENZYME Q10 IN OXIDATIVE STRESS INDUCED BY CHROMIUM COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ewa Sawicka

    2010-03-01

    Full Text Available Background: The common use of antioxidants and its joint application brings the question whether they are useful in oxidative stress induced by the chemicals or whether they cause harmful interaction. Both Scutellaria baicalensis and CoQ10 are known as antioxidants, however one exogenous, the second endogenous. Chromium belongs equal to essential microelements and toxic factors. Therefore the aim of work was the evaluation joint effect of two examined antioxidants in exposure to chromium compounds.Materials and methods: The material was fresh blood obtained from healthy volunteers. The concentration of malondialdehyde (MDA in erythrocytes was evaluated using Stock’s method. The activity of mixture of Antoxyd and coenzyme Q10 was tested after exposure to chromium III and VI at concentrations: 0,05; 0,5 and 1,0 µg/ml. Antioxidants were used in concentrations : 8,0; 20; 60 and 100 µg/ml. Results: The influence of coenzyme Q10 in exposure to chromium III and chromium VI was statistically insignificant, but CoQ10 given together with Antoxyd in all used concentration statistically significant decreased the level of MDA in erythrocytes exposed to chromium compounds (p*0,001. Conclusions: Application of both antioxidants has exerted synergistic action lowering MDA level, which was elevated after chromium. No harmful interactions in the examined sample between antioxidants and chromium ions were noted.

  7. Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages

    Science.gov (United States)

    Ye, Fangmao; White, Collin C.; Jin, Yuhui; Hu, Xiaoge; Hayden, Sarah; Zhang, Xuanjun; Gao, Xiaohu; Kavanagh, Terrance J.; Chiu, Daniel T.

    2015-05-01

    The rapid development and acceptance of PDots for biological applications depends on an in depth understanding of their cytotoxicity. In this paper, we performed a comprehensive study of PDot cytotoxicity at both the gross cell effect level (such as cell viability, proliferation and necrosis) and more subtle effects (such as redox stress) on RAW264.7 cells, a murine macrophage cell line with high relevance to in vivo nanoparticle disposition. The redox stress measurements assessed were inner mitochondrial membrane lipid peroxidation (nonyl-acridine orange, NAO), total thiol level (monobromobimane, MBB), and pyridine nucleotide redox status (NAD(P)H autofluorescence). Because of the extensive work already performed with QDots on nanotoxicity and also because of their comparable size, QDots were chosen as a comparison/reference nanoparticle for this study. The results showed that PDots exhibit cytotoxic effects to a much lesser degree than their inorganic analogue (QDots) and are much brighter, allowing for much lower concentrations to be used in various biological applications. In addition, at lower dose levels (2.5 nM to 10 nM) PDot treatment resulted in higher total thiol level than those found with QDots. At higher dose levels (20 nM to 40 nM) QDots caused significantly higher thiol levels in RAW264.7 cells, than was seen with PDots, suggesting that QDots elicit compensation to oxidative stress by upregulating GSH synthesis. At the higher concentrations of QDots, NAD(P)H levels showed an initial depletion, then repletion to a level that was greater than vehicle controls. PDots showed a similar trend but this was not statistically significant. Because PDots elicit less oxidative stress and cytotoxicity at low concentrations than QDots, and because they exhibit superior fluorescence at these low concentrations, PDots are predicted to have enhanced utility in biomedical applications.

  8. Protective effects of coffee against oxidative stress induced by the tobacco carcinogen benzo[α]pyrene.

    Science.gov (United States)

    Kalthoff, Sandra; Landerer, Steffen; Reich, Julia; Strassburg, Christian P

    2017-07-01

    Coffee consumption has been epidemiologically associated with a lower risk for liver cirrhosis and cancer. UDP-glucuronosyltransferases (UGT1A) catalyze the detoxification of reactive metabolites thereby acting as indirect antioxidants. Aim of the study was to examine UGT1A regulation in response to Benzo[α]pyrene (BaP) to elucidate the potentially protective effects of coffee on BaP-induced oxidative stress and toxicity. In cell culture (HepG2, KYSE70 cells) and in htgUGT1A-WT mice, UGT1A transcription was activated by BaP, while it was reduced or absent htgUGT1A-SNP (containing 10 commonly occurring UGT1A-SNPs) mice. siRNA-mediated knockdown identified aryl hydrocarbon receptor (AhR) and nuclear factor erythroid2-related factor-2 (Nrf2) as mediators of BaP-induced UGT1A upregulation. Exposure to coffee led to a reduction of BaP-induced production of reactive oxygen species in vitro and in htgUGT1A-WT and -SNP mice. After UGT1A silencing by UGT1A-specific siRNA in cell culture, the coffee-mediated reduction of ROS production was significantly impaired compared to UGT1A expressing cells. A common UGT1A haplotype, prevalent in 9% (homozygous) of the White population, significantly impairs the expression of UGT1A enzymes in response to the putative tobacco carcinogen BaP and is likely to represent a significant risk factor for reduced detoxification and increased genotoxicity. Coffee was demonstrated to inhibit BaP-induced production of oxidative stress by UGT1A activation, and is therefore an attractive candidate for chemoprotection in risk groups for HCC or other tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oxidative stress induced in PCB 126-exposed northern leopard frogs, Rana pipiens

    Science.gov (United States)

    Huang, Y.-W.; Hoffman, D.J.; Karasov, W.H.

    2007-01-01

    Northern leopard frogs Rana pipiens exposed to PCB 126 (3,3',4,4',5-pentachlorobiphenyl) were examined for hepatic oxidative stress. In a dose-response study, northern leopard frogs were injected intraperitoneally with either PCB 126 in corn oil (0.2, 0.7, 2.3, or 7.8 mg/kg body weight) or corn oil alone. In a time-course study, frogs received 7.8 mg/kg or corn oil alone, and were examined at 1, 2, 3, and 4 wk after dosing. Hepatic concentrations of reduced glutathione (GSH), thiobarbituric acid-reactive substances (TBARS), and total sulfhydryls (total SH), as well as activities of glutathione peroxidase (GSH-P), GSSG reductase (GSSG-R), glucose-6-phosphate dehydrogenase (G-6-PDH), and glutathione S-transferase (GSH-S-T) were measured. In the dose-response experiment, few effects were apparent 1 wk after dosing. In the time-course experiment, significant changes were observed in the 7.8-mg/kg group at 2 wk or more posttreatment. Hepatic concentrations of GSH and TBARS were higher than in corresponding controls at wk 3 and 4; the activities of GSSG-R and GSH-S-T were higher than in controls at wk 2 and 4; and the activity of G-6-PDH was increased at wk 2 and 4. These data collectively indicate that altered glutathione metabolism and oxidative stress occurred and were indicative of both toxicity and induction of protective mechanisms in frogs exposed to PCB. A similar delay in response was reported in fish and may relate to lower metabolic rate and physiological reactions in ectothermic vertebrates

  10. Oxidative stress induced by glyphosate-based herbicide on freshwater turtles.

    Science.gov (United States)

    Héritier, Laurent; Duval, David; Galinier, Richard; Meistertzheim, Anne-Leila; Verneau, Olivier

    2017-12-01

    Freshwater ecosystems face very strong anthropogenic pressures, among which overexploitation, habitat degradation, flow modification, species invasion, and water pollution lead to growing threats on biodiversity. Urbanization through wastewater treatment, industry through the release of inorganic and organic chemicals, and agriculture through the use of pesticides and herbicides are the main factors involved in water pollution. In France, more precisely in the Pyrénées-Orientales department, the poor quality of the watercourses is attributable overall to the use of glyphosate-based herbicides in agricultural activities. Because these chemicals can impact individuals, populations, and biodiversity, we investigated, under experimental conditions, the physiological response of animals facing abiotic contaminants. We selected as a model, juveniles of the freshwater turtle Trachemys scripta elegans. We measured the gene expression and activity of the catalase and superoxide dismutase enzymes as well as the levels of lipid peroxidation, which are all oxidative stress biomarkers, in turtles challenged with high concentrations of glyphosate-based herbicides, on the one hand, and with degraded waters collected from a local watercourse, on the other. We also measured the acetylcholinesterase activity across the same animals. We showed through variations in gene expression and enzyme activity that a glyphosate commercial formulation induced a stress in turtles. A similar outcome was obtained when turtles faced degraded waters. The results indicated that the poor quality of regional waters could be a real threat for animal health. Because turtles are globally less sensitive to contaminants than amphibians, which are lacking in the degraded waters of the Pyrénées-Orientales department, they could constitute an excellent model to follow the evolution of water quality through the study of oxidative stress biomarkers. Environ Toxicol Chem 2017;36:3343-3350. © 2017 SETAC.

  11. Early Signs of Oxidative Stress Induced by Environmental Pollutants and Radiation Exposure in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Gharib, O.A.

    2005-01-01

    The current study examines the early effects of whole body y-radiation exposure with single dose of (6.5 Gy) and acute single dose (2250 mg/Kg b. wt.) of 1,4-dioxane, which is considered the most common environmental contaminants used. Rats were sacrificed after one and twenty-four h after radiation exposure and/or 1,4-dioxane administration. The significant elevation in lipid peroxidation concentration, measured as malonaldehydoyl (MDA) was observed only after 24 h in radiation/1,4-dioxane group. The results showed that Glutathione (GSH) concentration was significantly decreased after 1 h followed by enhancement significantly after 24 h in radiation/1,4-dioxane group. Elevation in superoxide dismutase (SOD) activity was detected early (after 1 h) and continued elevation after twenty-four h recorded highly significant increase in radiation and/or 1,4-dioxane groups. The hematological parameters revealed more or less non-significant changes in red blood cells (RBCs) counts, hemoglobin concentration (Hbg) and haematocrit value (PVC), while significant increase in white blood cell counts (WBCs) count after one and 24 h post irradiation with or without 1,4-dioxane administration were recorded. In general 1,4-dioxane acted as a debilitator, which enhanced the overall effect of ionizing radiation when applied as the second insult. Antioxidants are the body's primary defense against free radicals and reactive oxygen species (ROS). Free radicals can cause tissue damage by reacting with polyunsaturated fatty acids in cellular membrane, nucleotides, in DNA and critical sulfhydryl bonds in protein. The over production of ROS in both intra-and extra cellular spaces upon exposure of living subjects to certain chemicals, radiation or local tissue inflammation, results in oxidative stress defined as the imbalance between pro- oxidation and antioxidants

  12. Anti-oxidative Effect of Ligustrazine on Treatment and Prevention of ...

    African Journals Online (AJOL)

    protective mechanism of ligustrazine on H2O2-induced injury in HUVECs may be a caspase-dependent anti-apoptotic mechanism which provide important information for treating and preventing oxidative stress-induced atherosclerosis. Keywords: Ligustrazine, Oxidative stress, Umbilical vein, Endothelial cells, ...

  13. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions.

    Science.gov (United States)

    Echeverry, M B; Guimarães, F S; Del Bel, E A

    2004-01-01

    Microinjection into the dentate gyrus of the hippocampus of N(omega)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nitric oxide synthase (NOS) inhibitor, induces antinociceptive effect 5 days after a single restraint episode. The mechanisms of this stress-antinociceptive modulatory effect have not been investigated but may involve plastic changes in the hippocampal formation (HF). The objective of the present study was to investigate possible mechanisms of the stress-modulating effect on antinociception induced by NOS inhibition in the hippocampus. We analyzed the effects of restraint stress on neuronal NOS (nNOS) expression and nicotinamide adenine dinucleotide phosphate-diaphorase histochemical activity (NADPH-d) in the HF and related brain regions. Male Wistar rats (n=6-11/group) were submitted to a single (acute stress) or repeated (5 days) episodes of 2-h restraint. Control animals remained in their home cages being all animals daily handled during this period. In the fifth day, animals received unilateral microinjection of l-NAME (150 nmol/0.2 microl) or saline (control) into the dentate gyrus of the dorsal hippocampus (DG). Immediately before and after drug microinjection tail-flick reflex latency or hotplate licking reaction was measured. Animals were killed i. immediately; ii. 5 days after acute stress; or iii. after repeated stress. NADPH-d and nNOS expression were quantified in the HF, caudate-putamen, secondary somatosensorial, entorhinal and piriform cortices and amygdaloid complex. Five days after one or five restraint episodes l-NAME microinjection into the DG elicited antinociceptive effect (analysis of variance [ANOVA], Psomatosensorial cortex. The results confirm that the dorsal hippocampus participates in the modulation of stress consequences. They also show that a single stress episode causes acute changes in nitric oxide system in the amygdala complex and delayed modifications in the HF. The delayed (5 days) antinociceptive effect of

  14. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma.

    Science.gov (United States)

    Yang, Hongyan; Xie, Yan; Yang, Dongyu; Ren, Decheng

    2017-04-11

    Reactive oxygen species (ROS) play important roles in follicular development and survival. Granulosa cell death is associated with increased ROS, but the mechanism of granulosa cell death induced by ROS is not clear. In order to define the molecular link between ROS and granulosa cell death, COV434, human granulosa tumor cells, were treated with H2O2. Compared to control cells, H2O2 induced granulosa cell death in a dose- and time-dependent manner. H2O2 induced an increase in Bax, Bak and Puma, and a decrease in anti-apoptotic molecules such as Bcl-2, Bcl-xL and Mcl-1. Both knockdown of Puma and overexpression of Bcl-xL could inhibit H2O2-induced granulosa cell death. These results suggest that suppression of Puma and overexpression of anti-apoptotic Bcl-2 family members could improve granulosa cell survival. To explore the mechanisms responsible for these findings, ROS in granulosa cells treatment with H2O2 were measured. The results showed that ROS was increased in a H2O2 dose- and time-dependent manner at the earlier time point. In addition, H2O2 induced an increase in Nrf2 and phosphorylation of JNK and p53. SP600125, an inhibitor of JNK, inhibits H2O2-induced phosphorylation of JNK and p53, and granulosa cell death. Antioxidant N-acetylcysteine (NAC) dose-dependently prevents H2O2-induced granulosa cell death. Furthermore, NAC also prevents phosphorylation of JNK and p53 induced by H2O2. Taken together, these data suggest that H2O2 regulates cell death in granulosa cells via the ROS-JNK-p53 pathway. These findings provide an improved understanding of the mechanisms underlying granulosa cell apoptosis, which could potentially be useful for future clinical applications.

  16. Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2015-06-01

    Although used motor oil from automobiles is one of the major pollutants through storm water in urban environments leading to contamination of water bodies, very little information is available on its toxicity towards growth of microalgae. Also, to our knowledge, there are no data on the used motor oil-induced oxidative stress in microalgae. We therefore investigated the toxicity of used and fresh motor oil on growth and antioxidant enzymes of a microalga, Pseudokirchneriella subcapitata. In general, used oil was more toxic to the alga than fresh oil. Used oil at 0.20 % inhibited algal growth, measured in terms of chlorophyll a, by 44 % while fresh oil was nontoxic up to 2.8 %. Water-accommodated fraction (WAF) of the used oil at >50 % concentration exhibited significant toxicity while WAF from fresh oil was nontoxic even up to 100 %. Used oil and its WAF, even at lower concentrations, increased the levels of antioxidant enzymes indicating algal response to the toxicity stress. When the alga was exposed to WAF from fresh motor oil, no alterations in the antioxidant enzyme levels were evident. The present investigation suggests that contamination of aquatic systems with used oil could potentially affect the ecosystem health via disruption of primary producers that are located at the base of the food chain.

  17. Renoprotective Effect of Plantago Major Against Nephrotoxicity and Oxidative Stress Induced by Cisplatin.

    Science.gov (United States)

    Parhizgar, Soghra; Hosseinian, Sara; Hadjzadeh, Mousa-Al-Reza; Soukhtanloo, Mohammad; Ebrahimzadeh, Alireza; Mohebbati, Reza; Naji Ebrahimi Yazd, Zohreh; Khajavi Rad, Abolfazl

    2016-07-01

    The aim of this study was to investigate the possible renoprotective effect of Plantago major extract against cisplatin-induced nephrotoxicity in rats. Rats were divided into 6 groups. The first group was the control, group 2 was treated with cisplatin (7 mg/kg, single dose), and groups 3 to 6 received cisplatin with vitamin E (100 mg/kg) and Plantago major  extract at doses of 300 mg/kg, 600 mg/kg, and 1200 mg/kg, for 20 days. On day12, serum concentration of urea, creatinine, and potassium significantly increased and sodium concentration significantly decreased in the cisplatin group compared with the control rats. However, serum creatinine, urea, and potassium concentrations were significantly lower in all of the Plantago major groups compared to the cisplatin group. Also, there was a significant elevation in serum sodium concentration in the Plantago major 600 mg/kg group compared to the cisplatin group on day12. Injection of cisplatin caused a significant elevation in malondialdehyde concentration but a significant decrease in catalase activity and total thiol content compared to the control group. Plantago major extract at 1200 mg/kg significantly improved malondialdehyde concentration and total thiol content compared to the cisplatin group. Catalase activity with Plantago major significantly increased at all doses compared to the cisplatin group. The current study suggests that Plantago major extract and vitamin E are able to improve kidney function as well as oxidative stress in cisplatin-induced renal toxicity in the rat.

  18. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    Science.gov (United States)

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén; Frimodt-Møller, Jakob; Løbner-Olesen, Anders

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised. PMID:25389264

  19. Non-selective cation channels and oxidative stress- induced cell swelling

    Directory of Open Access Journals (Sweden)

    FELIPE SIMON

    2002-01-01

    Full Text Available Necrosis is considered as a non-specific form of cell death that induces tissue inflammation and is preceded by cell swelling. This increase in cell volume has been ascribed mainly to defective outward pumping of Na+ caused by metabolic depletion and/or to increased Na+ influx via membrane transporters. A specific mechanism of swelling and necrosis driven by the influx of Na+ through nonselective cation channels has been recently proposed (Barros et al., 2001a. We have characterized further the properties of the nonselective cation channel (NSCC in HTC cells. The NSCC shows a conductance of ~18 pS, is equally permeable to Na+ and K+, impermeant to Ca2+, requires high intracellular Ca2+ as well as low intracellular ATP for activation and is inhibited by flufenamic acid. Hydrogen peroxide induced a significant increase in cell volume that was dependent on external Na+. We propose that the NSCC, which is ubiquitous though largely inactive in healthy cells, becomes activated under severe oxidative stress. The ensuing Na+ influx initiates via positive feedback a series of metabolic and electrolytic disturbances, resulting in cell death by necrosis

  20. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence

    Science.gov (United States)

    Wedel, Sophia; Cavinato, Maria; Jansen-Dürr, Pidder

    2017-01-01

    Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence. PMID:28593022

  1. An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization.

    Science.gov (United States)

    Kavitha, Kumaresan; Venkataraman, Gayatri; Parida, Ajay

    2008-01-01

    APX (EC, 1.11.1.11) has a key role in scavenging ROS and in protecting cells against their toxic effects in algae and higher plants. A cDNA encoding a peroxisomal ascorbate peroxidase, Am-pAPX1, was isolated from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening and its expression in the context of various environmental stresses was investigated. Am-pAPX1 contains an ORF of 286 amino acids coding for a 31.4 kDa protein. The C-terminal region of the Am-pAPX1 ORF has a putative transmembrane domain and a peroxisomal targeting signal (RKKMK), suggesting peroxisomal localization. The peroxisomal localization of Am-pAPX1 was confirmed by stable transformation of the GFP-(Ala)(10)-Am-pAPX1 fusion in tobacco. RNA blot analysis revealed that Am-pAPX1 is expressed in response to salinity (NaCl) and oxidative stress (high intensity light, hydrogen peroxide application and excess iron). The isolated genomic clone of Am-pAPX1 was found to contain nine exons. A fragment of 1616bp corresponding to the 5' upstream region of Am-pAPX1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative light and abiotic stress regulatory elements.

  2. [Role of oxidative stress in endoplasmic reticulum stress? induced apoptosis of alveolar macrophages triggered by quartz dust].

    Science.gov (United States)

    Song, Jing; Lu, Xiaoting; Li, Qiuying; Liu, Chengyun; Liu, Ying

    2014-07-01

    To investigate the role of oxidative stress in the endoplasmic reticulum stress-induced apoptosis of alveolar macrophages triggered by quartz dust. Seventy-two healthy adult Wistar rats were randomly divided into control group, quartz dust group, quartz dust plus N-acetyl cysteine (NAC) group, and NAC group, with 18 rats in each group. One milliliter of sterile saline (for the control and NAC groups) or 1 ml of saline with 5%ultrafine quartz dust (for dust group and dust plus NAC group) was given to each rat by non-exposed endotracheal infusion. From the second day after dust infusion, rats in dust plus NAC group and NAC group received intragastric administration of NAC (100 mg/kg). In each week, the treatment with NAC lasted for 5 consecutive days, followed by 2 days' interval. For each group, 6 rats were randomly selected on the 14th, 28th, or 56th day after dust exposure; they were sacrificed by bloodletting from the femoral artery, and the lungs were collected. Bronchoalveolar lavage fluid was collected to separate macrophages. The protein expression of caspase-12 in alveolar macrophages, the apoptosis rate and reactive oxygen species (ROS) content of alveolar macrophages, and the protein carbonyl content of alveolar macrophages were determined by Western blot, flow cytometry, and colorimetry, respectively. Increased protein expression of caspase-12, apoptosis rate, and content of ROS and protein carbonyl were discovered on the 14th day in the dust group, in comparison with the control group (P quartz dust. Oxidative damage of protein in the endoplasmic reticulum may play an important role in the process.

  3. IL-17A modulates oxidant stress-induced airway hyperresponsiveness but not emphysema.

    Directory of Open Access Journals (Sweden)

    Mariona Pinart

    Full Text Available IL-17A induces the release of pro-inflammatory cytokines and of reactive oxygen species which could lead to neutrophilic inflammation. We determined the role of IL-17 receptor (IL-17R signalling in oxidant-induced lung emphysema and airway hyperresponsiveness. IL-17R(-/- and wild-type C57/BL6 mice were exposed to ozone (3 ppm; 3 hours for 12 times over 6 weeks. Bronchial responsiveness to acetylcholine was measured, and lungs were retrieved. Mean linear intercept (Lm and isometric contractile responses of intrapulmonary airways to acetylcholine were determined. In wild-type mice but not in IL-17R(-/-, chronic ozone exposure caused airway hyperresponsiveness. The increase in Lm after chronic ozone exposure of wild-type mice was also observed in IL-17R(-/- mice. The increased maximal contractile response to acetylcholine seen in airways of wild-type mice exposed to ozone was abolished in IL-17R(-/- mice. p38-mitogen-activated protein kinase (MAPK and dexamethasone-dependent increase in contractile response was reduced in airways from IL-17R(-/- ozone-exposed mice. Lung inflammation scores were not altered in IL-17R(-/- mice exposed to ozone compared to wild-type mice. The increased release of IL-17 and IL-1β, and the activation of p38 MAPK in the lungs of ozone-exposed mice was reduced in IL-17R(-/- mice. IL-17R signalling underlies the increase in airway hyperresponsiveness seen after ozone exposure, mediated by the increased contractility of airway smooth muscle. The emphysema and lung inflammation induced by ozone is not dependent on IL-17.

  4. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    Science.gov (United States)

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  5. Fagraea racemosa leaf extract inhibits oxidative stress-induced liver damage in Wistar rats

    Directory of Open Access Journals (Sweden)

    Eva Rachmi

    2012-07-01

    Full Text Available Latar belakang: Kemampuan hati mengatasi stres oksidatif dapat ditingkatkan dengan konsumsi antioksidan eksogen yang berasal dari alam. Penelitian ini ditujukan untuk mempelajari kemampuan hepatoprotektif dari ekstrak metanol  daun  Fagraea racemosa, dengan menggunakan CCL4 sebagai model sumber radikal bebas. Metode: Tiga kelompok perlakuan tikus Wistar  (enam ekor per  kelompok, masing-masing diberi dosis ekstrak berturut-turut 50, 100, 200 mg/kg bb per oral, sekali perhari selama 30 hari. CCl4 diinjeksikan intraperitoneal kepada ketiga kelompok , dua kali per minggu (1,5 ml/kg bb.  Sebagai pembanding, digunakan dua kelompok kontrol, yaitu kontrol normal dan kontrol CCl4.  Pada hari ke-30, tikus dibunuh dan hati diwarnai dengan hematoksilin-eosin. Perubahan histopatologi ditentukan berdasar derajat steatosis, degenerasi hidropik, dan inflamasi. Data dianalisis dengan Anova dan uji post hoc LSD (p≤0.05 menggunakan SPSS versi 13.0 Hasil: Hasil menunjukkan perbaikan derajat degenerasi hidropik dan inflamasi (p≤0,05 pada ketiga kelompok perlakuan bila dibanding dengan kelompok kontrol CCl4. Tetapi, derajat steatosis meningkat pada kelompok perlakuan dosis  50 dan 100 mg/kg bb, dan kemudian menurun secara bermakna pada perlakuan 200 mg/kg bb. Kesimpulan : Ekstrak methanol daun Fagraea racemosa  mampu melindungi hati dari radikal bebas yang dihasilkan dari CCl4. Hasil ini mengindikasikan bahwa Fagraea racemosa menjanjikan untuk dikembangkan sebagai suplemen antioksidan. (Health Science Indones 2011;2:46-51   Abstract Background: The ability of the liver in dealing with oxidative stress can be enhanced by consumption of exogenous antioxidants derived from nature. This study aimed to explore the hepatoprotective ability of Fagraea racemosa leaves methanolic extract against CCl4 exposure as a model of free radicals source. Methods: Three different doses (50, 100, 200 mg/kg bw were administered orally to three treatment groups of Wistar rats

  6. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  7. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.

    Science.gov (United States)

    Hatmi, Saloua; Trotel-Aziz, Patricia; Villaume, Sandra; Couderchet, Michel; Clément, Christophe; Aziz, Aziz

    2014-01-01

    Abiotic factors inducing osmotic stress can influence the plant immune response and resistance to pathogen infections. In this study, the effect of polyethylene glycol (PEG)- and sucrose-induced osmotic stress on polyamine (PA) homeostasis and the basal immune response in grapevine plantlets before and after Botrytis cinerea infection was determined. Pharmacological approaches were also addressed to assess the contribution of osmotic stress-induced PA oxidation to the regulation of defence responses and the susceptibility of grapevine to B. cinerea. Following osmotic stress or pathogen infection, PA homeostasis was linked to enhanced activity of diamine oxidases (CuAO) and PA oxidases (PAO) and the production of 1,3-diaminopropane. These responses paralleled the accumulation of the main stilbenic phytoalexins, resveratrol and ε-viniferin and upregulation of gene transcripts including STS (a stilbene synthase), PR-2 (a β-1,3-glucanase), PR3-4c (acidic chitinase IV), and PR-5 (a thaumatin-like protein), as well as NCED2 involved in abscisic acid biosynthesis. It was also demonstrated that leaves pre-exposed to osmotic stress and later inoculated with B. cinerea showed enhanced PA accumulation and attenuation of CuAO and PAO activities. This was consistent with the impaired production of phytoalexins and transcript levels of defence- and stress-related genes following infection, and the enhanced susceptibility to B. cinerea. Pharmacological experiments revealed that, under osmotic stress conditions, CuAO and PAO were involved in PA homeostasis and in the regulation of defence responses. Specific inhibition of CuAO and PAO in osmotically stressed leaves strongly attenuated the induction of defence responses triggered by B. cinerea infection and enhanced susceptibility to the pathogen. Taken together, this study reveals a contribution of PA catabolism to the resistance state through modulation of immune response in grapevine following osmotic stress and/or after B

  8. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience.

    Science.gov (United States)

    Ramot, Assaf; Akirav, Irit

    2012-05-01

    The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Antioxidant Activity of Cabbage and/or Carrot Against Oxidative Stress Induced by Gamma Irradiation in Male Albino Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; Mahmoud, K.A.

    2011-01-01

    Several studies indicated that diets rich in fruits and vegetables are protective against diseases, and populations that consume such diets have higher plasma antioxidants and exhibit lower risk of cancer and cardiovascular diseases. Vegetable is considered major dietary source of fibers and antioxidants such as polyphenols, flavonoids and carotenoids that can protect against different dietary disorders. The present study was carried out to investigate the potential protective effects of cabbage and/or carrot against oxidative stress induced by gamma irradiation in male albino rats. Chemical composition and phenolic contents in cabbage and carrot were determined. Male albino rats were exposed to 5 Gy (single dose with rate 0.46 Gy/min) of whole body gamma irradiation. Thirty five rats were randomly divided into five groups as follow: group 1: control (rats fed on balanced diet for 6 weeks), group 2: irradiated (rats were exposed to whole gamma irradiation and fed on balanced diet for 6 weeks) and groups 3, 4 and 5: irradiated rats fed on balanced diet and received cabbage 15%, carrot 15% and a combination of cabbage and carrot, respectively. The results obtained revealed that the administration of cabbage and/or carrot diet significantly reduced the changes induced by gamma irradiation in the serum level of glucose and liver function parameters; serum aminotransferases (AST, ALT), alkaline phosphatase (ALP), total protein and albumin. In addition, significant improvements were observed in the serum levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C). Significant enhancement in hepatic antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), was observed. The levels of reduced glutathione (GSH) associated with remarkable decrease in the level of lipid peroxidation (TBARS) were observed. Accordingly, it could be concluded that consumption of cabbage and/or carrot

  10. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  11. Activation of PPARβ/δ protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases.

    Science.gov (United States)

    Barlaka, Eleftheria; Görbe, Anikó; Gáspár, Renáta; Pálóczi, János; Ferdinandy, Péter; Lazou, Antigone

    2015-01-01

    Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARβ/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARβ/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARβ/δ agonist. These effects were abolished in the presence of the PPARβ/δ antagonist indicating that the effect was through PPARβ/δ receptor activation. Treatment with PPARβ/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARβ/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARβ/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might represent a new target for the management of oxidative stress-induced cardiac dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The ROCK Inhibitor Fasudil Prevents Chronic Restraint Stress-Induced Depressive-Like Behaviors and Dendritic Spine Loss in Rat Hippocampus.

    Science.gov (United States)

    García-Rojo, Gonzalo; Fresno, Cristóbal; Vilches, Natalia; Díaz-Véliz, Gabriela; Mora, Sergio; Aguayo, Felipe; Pacheco, Aníbal; Parra-Fiedler, Nicolás; Parra, Claudio S; Rojas, Paulina S; Tejos, Macarena; Aliaga, Esteban; Fiedler, Jenny L

    2017-04-01

    Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudil-treated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  13. Recovery of oxidative stress-induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel.

    Science.gov (United States)

    Cheng, Yung-Hsin; Lin, Feng-Huei; Wang, Chien-Ying; Hsiao, Chen-Yuan; Chen, Hung-Ching; Kuo, Hsin-Yu; Tsai, Ting-Fen; Chiou, Shih-Hwa

    2016-10-01

    Aging-related oxidative stress is considered a major risk factor of cardiovascular diseases (CVD) and could be associated with mitochondrial dysfunction and reactive oxygen species (ROS) overproduction. Cisd2 is an outer mitochondrial membrane protein and plays an important role in controlling the lifespan of mammals. Ferulic acid (FA), a natural antioxidant, is able to improve cardiovascular functions and inhibit the pathogenetic CVD process. However, directly administering therapeutics with antioxidant molecules is challenging because of stability and bioavailability issues. In the present study, thermosensitive chitosan-gelatin-based hydrogel containing FA was used to treat Cisd2-deficient (Cisd2(-/-)) cardiomyocytes (CM) derived from induced pluripotent stem cells of Cisd2(-/-) murine under oxidative stress. The results revealed that the developed hydrogel could provide a sustained release of FA and increase the cell viability. Post-treatment of FA-loaded hydrogel effectively decreased the oxidative stress-induced damage in Cisd2(-/-) CM via increasing catalase activity and decreasing endogenous reactive oxygen species (ROS) production. The in vivo biocompatibility of FA-loaded hydrogel was confirmed in subcutaneously injected rabbits and intramyocardially injected Cisd2(-/-) mice. These results suggest that the thermosensitive FA-loaded hydrogel could rescue Cisd2(-/-) CM from oxidative stress-induced damage and may have potential applications in the future treatment of CVD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Clovamide-rich extract from Trifolium pallidum reduces oxidative stress-induced damage to blood platelets and plasma.

    Science.gov (United States)

    Kolodziejczyk, Joanna; Olas, Beata; Wachowicz, Barbara; Szajwaj, Barbara; Stochmal, Anna; Oleszek, Wieslaw

    2011-09-01

    Numerous plants (including clovers) have been widely used in folk medicine for the treatment of different disorders. This in vitro study was designed to examine the antioxidative effects of the clovamide-rich fraction, obtained from aerial parts of Trifolium pallidum, in the protection of blood platelets and plasma against the nitrative and oxidative damage, caused by peroxynitrite (ONOO(-)). Carbonyl groups and 3-nitrotyrosine in blood platelet and plasma proteins were determined by ELISA tests. Thiol groups level was estimated by using 5,5'-dithio-bis(2-nitro-benzoic acid, DTNB). Plasma lipid peroxidation was measured spectrophotometrically as the production of thiobarbituric acid reactive substances. The results from our work indicate that clovamide-rich T. pallidum extract may reveal the protective properties in the prevention against oxidative stress. The presence of clovamide-rich T. pallidum extract (12.5-100 μg/ml) partly inhibited ONOO(-)-mediated protein carbonylation and nitration. All the used concentrations of T. pallidum extract reduced lipid peroxidation in plasma. The antioxidative action of the tested extract in the protection of blood platelet lipids was less effective; the extract at the lowest final concentration (12.5 μg/ml) had no protective effect against lipid peroxidation. The present results indicate that the extract from T. pallidum is likely to be a source of compounds with the antioxidative properties, useful in the prevention against the oxidative stress-related diseases.

  15. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  16. PRMT1 and PRMT4 Regulate Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage in SIRT1-Dependent and SIRT1-Independent Manners

    Directory of Open Access Journals (Sweden)

    Dong-Il Kim

    2015-01-01

    Full Text Available Oxidative stress-induced retinal pigment epithelial (RPE cell damage is involved in the progression of diabetic retinopathy. Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs has emerged as an important histone modification involved in diverse diseases. Sirtuin (SIRT1 is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H2O2-induced oxidative stress. H2O2 treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H2O2 treatment, PRMT1 or PRMT4 overexpression increased RPE cell damage. Moreover, the H2O2-induced RPE cell damage was attenuated by PRMT1 or PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4 in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased SIRT1 could be therapeutic approaches for diabetic retinopathy.

  17. Quercetin reduces manic-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice.

    Science.gov (United States)

    Kanazawa, Luiz K S; Vecchia, Débora D; Wendler, Etiéli M; Hocayen, Palloma de A S; Dos Reis Lívero, Francislaine A; Stipp, Maria Carolina; Barcaro, Inara M R; Acco, Alexandra; Andreatini, Roberto

    2016-10-01

    Quercetin is a known antioxidant and protein kinase C (PKC) inhibitor. Previous studies have shown that mania involves oxidative stress and an increase in PKC activity. We hypothesized that quercetin affects manic symptoms. In the present study, manic-like behavior (hyperlocomotion) and oxidative stress were induced by 24h paradoxical sleep deprivation (PSD) in male Swiss mice. Both 10 and 40mg/kg quercetin prevented PSD-induced hyperlocomotion. Quercetin reversed the PSD-induced decrease in glutathione (GSH) levels in the prefrontal cortex (PFC) and striatum. Quercetin also reversed the PSD-induced increase in lipid peroxidation (LPO) in the PFC, hippocampus, and striatum. Pearson's correlation analysis revealed a negative correlation between locomotor activity and GSH in the PFC in sleep-deprived mice and a positive correlation between locomotor activity and LPO in the PFC and striatum in sleep-deprived mice. These results suggest that quercetin exerts an antimanic-like effect at doses that do not impair spontaneous locomotor activity, and the antioxidant action of quercetin might contribute to its antimanic-like effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females.

    Science.gov (United States)

    Knight, W E; Rickard PhD, N S

    2001-01-01

    Previous research suggests that while subjective anxiety is reduced by relaxing music, the effect of music on physiological stress indices is less consistent. In the current study, the effect of relaxing music on participants' subjective and physiological response to stress was explored, with attention paid to methodological factors and mediating variables that might have contributed to inconsistencies in previous studies. Undergraduate students (43 females & 44 males) were exposed to a cognitive stressor task involving preparation for an oral presentation either in the presence of Pachelbel's Canon in D major, or in silence. Measures of subjective anxiety, heart rate, blood pressure, cortisol, and salivary IgA were obtained during rest and after presentation of the stressor. The stressor caused significant increases in subjective anxiety, heart rate, and systolic blood pressure in male and female controls. These stress-induced increases were each prevented by exposure to music, and this effect was independent of gender. Music also enhanced baseline salivary IgA levels in the absence of any stress-induced effects. These findings provide experimental support for claims that music is an effective anxiolytic treatment, the robustness of which is demonstrated by retention of the effect in the presence of a range of potentially mediating variables.

  19. Cytoprotective effects of 12-oxo phytodienoic acid, a plant-derived oxylipin jasmonate, on oxidative stress-induced toxicity in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Taki-Nakano, Nozomi; Ohzeki, Hiromitsu; Kotera, Jun; Ohta, Hiroyuki

    2014-12-01

    Jasmonates are plant lipid-derived oxylipins that act as key signaling compounds when plants are under oxidative stress, but little is known about their functions in mammalian cells. Here we investigated whether jasmonates could protect human neuroblastoma SH-SY5Y cells against oxidative stress-induced toxicity. The cells were pretreated with individual jasmonates for 24h and exposed to hydrogen peroxide (H2O2) for 24h. Before the resulting cytotoxicity, intracellular reactive oxygen species (ROS) levels, and mitochondrial membrane potential were measured. We also measured intracellular glutathione (GSH) levels and investigated changes in the signaling cascade mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) in cells treated with 12-oxo phytodienoic acid (OPDA). Among the jasmonates, only OPDA suppressed H2O2-induced cytotoxicity. OPDA pretreatment also inhibited the H2O2-induced ROS increase and mitochondrial membrane potential decrease. In addition, OPDA induced the nuclear translocation of Nrf2 and increased intracellular GSH level and the expression of the Nrf2-regulated phase II antioxidant enzymes heme oxygenase-1, NADPH quinone oxidoreductase 1, and glutathione reductase. Finally, the cytoprotective effects of OPDA were reduced by siRNA-induced knockdown of Nrf2. These results demonstrated that among jasmonates, only OPDA suppressed oxidative stress-induced death of human neuroblastoma cells, which occurred via activation of the Nrf2 pathway. Plant-derived oxylipin OPDA may have the potential to provide protection against oxidative stress-related diseases. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice.

    Science.gov (United States)

    Lívero, F A R; Stolf, Aline Maria; Dreifuss, Arturo Alejandro; Bastos-Pereira, Amanda Leite; Chicorski, Raphaella; de Oliveira, Liana Gomes; de Souza, Carlos Eduardo Alves; Fabossi, Isabella Aviles; Rabitto, I S; Gremski, Luiza Helena; Henneberg, Raílson; Telles, José Ederaldo Queiroz; Oude Elferink, Ronald P J; Acco, Alexandra

    2014-06-25

    Excessive ethanol consumption can lead to development of hepatic steatosis. Since the FXR receptor regulates adipose cell function and liver lipid metabolism, the aim of this work was to examine the effects of the FXR agonist 6ECDCA on alcoholic liver steatosis development and on oxidative stress induced by ethanol consumption. Swiss mice (n=24) received a low-protein diet (6%) and a liquid diet containing 10% ethanol or water for 6weeks. In the last 15days mice received oral treatment with 6ECDCA (3mgkg(-1)) or 1% tween (vehicle). The experimental groups (n=6) were: water+tween, water+6ECDCA, ethanol+tween and ethanol+6ECDCA. Moreover, as a diet control, we used a basal group (n=6), fed by a normal-proteic diet (23%) and water. After the treatment period, the animals were anesthetized for sample collection to perform plasma biochemistry assays, hepatic oxidative stress assays, hepatic cholesterol and triglycerides measurements, liver histology and hepatic gene expression. Ethanol associated with low-protein diet induced hepatic oxidative stress, increased plasma transaminases and induced hepatic lipid accumulation. Many of these parameters were reversed by the administration of 6ECDCA, including amelioration of lipid accumulation and lipoperoxidation, and reduction of reactive oxygen species. These effects were possibly mediated by regulation of Srebpf1 and FAS gene expression, both reduced by the FXR agonist. Our data demonstrated that 6ECDCA reverses the accumulation of lipids in the liver and decreases the oxidative stress induced by ethanol and low-protein diet. This FXR agonist is promising as a potential therapy for alcoholic liver steatosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Attenuating Effect of Zinc and Vitamin E on the Intestinal Oxidative Stress Induced by Silver Nanoparticles in Broiler Chickens.

    Science.gov (United States)

    Song, Zhigang; Lv, Jiadong; Sheikhahmadi, Ardashir; Uerlings, Julie; Everaert, Nadia

    2017-12-01

    Silver nanoparticles (AgNPs) have been increasingly used as antimicrobial and disinfectant. However, intestinal model studies have shown that AgNPs induce oxidative stress. Hence, this study aims to investigate the effects of dietary supplemental zinc (Zn) and vitamin E (VE; α-tocopherol acetate) on attenuating AgNP-induced intestinal oxidative stress in broiler chickens. The chickens were divided into two groups as follows: (1) control group fed with a corn-soybean meal basal diet and (2) nano group, received drinking water containing 1000 mg/kg AgNPs. All the nano-exposed birds were divided into six dietary treatment groups, namely, the basal diets supplemented with (1) 60 mg/kg Zn as ZnSO 4 , (2) 120 mg/kg Zn, (3) 100 mg/kg VE, (4) 200 mg/kg VE, (5) 60 mg/kg Zn and 100 mg/kg VE, and (6) 120 mg/kg Zn and 200 mg/kg VE. Results showed that the AgNPs significantly reduced the body weights of the broilers after 42 days of oral administration of AgNPs (P < 0.05), and this effect was not alleviated by any of the dietary treatments. The activity of superoxide dismutase (CuZn-SOD) increased in all the AgNP-treated birds (P < 0.05); however, CuZn-SOD did not increase in birds fed with basal diet supplemented with 200 mg/kg VE. In this treatment, the VE exerted an antioxidant effect to prevent the activation of the CuZn-SOD enzyme. Furthermore, supplementing Zn increased the activities of catalase and glutathione peroxidase in the jejunal mucosa (P < 0.05), which were accompanied with increased malondialdehyde levels (P < 0.05) in the broilers. AgNP exposure resulted in a significant messenger RNA (mRNA) upregulation of toll-like receptor 4 (TLR4) and TLR2-1 in the jejunal mucosa (P < 0.05). However, supplemental ZnVE did not reduce TLRs' mRNA expression, except for the diminished TLR2-1 mRNA levels in birds fed with basal diet supplemented with 120 mg/kg Zn and 200 mg/kg VE. We concluded that although dietary Zn and VE supplementation did not

  2. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Anamika Basu

    Full Text Available Prostate cancer (PCa mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3, whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.

  3. Protective Effect of Curcumin Against Oxidative Stress-Induced Injury in Rats with Parkinson’s Disease Through the Wnt/ β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yun-Liang Wang

    2017-10-01

    Full Text Available Background/Aims: The study aimed to investigate the protective effect of curcumin against oxidative stress-induced injury of Parkinson’s disease (PD through the Wnt/β-catenin signaling pathway in rats. Methods: The successfully established PD rat models and normal healthy rats were randomly assigned into the 6-hydroxydopamine (6-OHDA, the curcumin (Cur and the control groups. Immunohistochemistry was used to detect the positive expression of tyrosine hydroxylase (TH, dopamine transporter (DAT and glial fibrillary acidic protein (GFAP. Deutocerebrum primary cells were extracted and classified into the control, 6-OHDA, Cur (5, 10, 15 µmol/L, Dickkopf-1 (DKK-1 and Cur + DKK-1 groups. MTT assays, adhesion tests and TUNEL staining were used to assess cell viability, adhesion and apoptosis, respectively. Western blotting and qRT-PCR were used to examine the protein and mRNA expressions of Wnt3a and β-catenin and the c-myc and cyclinD1 mRNA expressions. Results: TH and DAT expressions in the Cur group were elevated and GFAP was reduced compared with the 6-OHDA group. Curcumin enhanced viability, survival and adhesion and attenuated apoptosis of deutocerebrum primary cells by activating the Wnt/β-catenin signaling pathway. Higher Wnt3a and β-catenin mRNA and protein expressions and c-myc and cyclinD1 mRNA expressions, enhanced superoxide dismutase (SOD and glutathione peroxidase (GSH-Px contents, decreased malondialdehyde (MDA content and elevated mitochondrial membrane potential (∆ψm were found in the 10 and 15 µmol/L Cur groups compared with the 6-OHDA group. However, opposite tendencies were found in the Cur + DKK-1 group compared to the 10 µmol/L Cur group. Conclusion: This study suggests that curcumin could protect against oxidative stress-induced injury in PD rats via the Wnt/β-catenin signaling pathway.

  4. Low voltage stress-induced leakage current and traps in ultrathin oxide (1.2 2.5 nm) after constant voltage stresses

    Science.gov (United States)

    Petit, C.; Zander, D.

    2007-10-01

    It has been shown that the low voltage gate current in ultrathin oxide metal-oxide-semiconductor devices is very sensitive to electrical stresses. Therefore, it can be used as a reliability monitor when the oxide thickness becomes too small for traditional electrical measurements to be used. In this work, we present a study on n-MOSCAP devices at negative gate bias in the direct tunneling (DT) regime. If the low voltage stress-induced leakage current (LVSILC) depends strongly on the low sense voltages, it also depends strongly on the stress voltage magnitude. We show that two LVSILC peaks appear as a function of the sense voltage in the LVSILC region and that their magnitude, one compared to the other, depends strongly on the stress voltage magnitude. One is larger than the other at low stress voltage and smaller at high stress voltage. From our experimental results, different conduction mechanisms are analyzed. To explain LVSILC variations, we propose a model of the conduction through the ultrathin gate oxide based on two distinctly different trap-assisted tunneling mechanisms: inelastic of gate electron (INE) and trap-assisted electron (ETAT).

  5. Presence of encircling granulosa cells protects against oxidative stress-induced apoptosis in rat eggs cultured in vitro.

    Science.gov (United States)

    Tiwari, Meenakshi; Tripathi, Anima; Chaube, Shail K

    2017-01-01

    Increased oxidative stress (OS) due to in vitro culture conditions can affect the quality of denuded eggs during various assisted reproductive technologies (ARTs). Presence of intact granulosa cells may protect eggs from OS damage under in vitro culture conditions. The present study was aimed to investigate whether encircling granulosa cells could protect against hydrogen peroxide (H 2 O 2 )-induced egg apoptosis in ovulated cumulus oocyte complexes (COCs) cultured in vitro. The OS was induced by exposing COCs as well as denuded eggs with various concentrations of H 2 O 2 for 3 h in vitro. The morphological changes, total reactive oxygen species (ROS) as well as catalase expression, Bax/Bcl-2, cytochrome c levels and DNA fragmentation were analysed in COCs as well as denuded eggs. Our results suggest that H 2 O 2 treatment induced morphological apoptotic features in a concentration-dependent manner in denuded eggs cultured in vitro. The 20 µM of H 2 O 2 treatment induced OS by elevating total ROS level, reduced catalase and Bcl-2 expression levels with overexpression of Bax and cytochrome c and induced DNA fragmentation in denuded eggs cultured in vitro. The presence of encircling granulosa cells protected H 2 O 2 -induced morphological apoptotic features by preventing the increase of Bax, cytochrome c expression levels and DNA fragmentation in associated egg. However, 20 µM of H 2 O 2 was sufficient to induce peripheral granulosa cell apoptosis in COCs and degeneration in few denuded eggs cultured in vitro. Taken together our data suggest that the presence of encircling granulosa cells could be beneficial to protect ovulated eggs from OS damage under in vitro culture conditions during various ART programs.

  6. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  7. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  8. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-01-01

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H 2 O 2 ), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H 2 O 2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H 2 O 2 -activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H 2 O 2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H 2 O 2 -stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes

  9. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Grahame Thomas J

    2012-06-01

    Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer

  10. Mechanical-tactile stimulation (MTS) during neonatal stress prevents hyperinsulinemia despite stress-induced adiposity in weanling rat pups

    OpenAIRE

    Moyer-Mileur, Laurie J.; Haley, Shannon; Gulliver, Kristina; Thomson, Anne; Slater, Hillarie; Barrett, Brett; Joss-Moore, Lisa A.; Callaway, Christopher; McKnight, Robert A.; Moore, Barry; Lane, Robert H.

    2011-01-01

    Stress in early life negatively influences growth quality through perturbations in body composition including increased fat mass. At term (40 weeks) preterm infants have greater fat mass and abdominal visceral adipose tissue than term-born infants. Mechanical-tactile stimulation (MTS) attenuates the stress response in preterm infants and rodents. We tested the hypothesis that MTS, administered during an established model of neonatal stress, would decrease stress-driven adiposity and prevent a...

  11. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  12. Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts.

    Science.gov (United States)

    Van Beersel, Guillaume; Tihon, Eliane; Demine, Stéphane; Hamer, Isabelle; Jadot, Michel; Arnould, Thierry

    2013-02-07

    NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology.

  13. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity.

    Science.gov (United States)

    Qiao, Shuxi; Dennis, Michael; Song, Xiufeng; Vadysirisack, Douangsone D; Salunke, Devika; Nash, Zachary; Yang, Zhifen; Liesa, Marc; Yoshioka, Jun; Matsuzawa, Shu-Ichi; Shirihai, Orian S; Lee, Richard T; Reed, John C; Ellisen, Leif W

    2015-04-28

    Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1(-/-) mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy.

  14. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster

    NARCIS (Netherlands)

    Vermeulen, CJ; Van De Zande, L; Bijlsma, R

    2005-01-01

    There is increasing support for the notion that genetic variation for lifespan, both within and between species, is correlated with variation in the efficiency of the free radical scavenging system and the ability to withstand oxidative stress. In Drosophila, resistance to dietary paraquat, a free

  15. Supplementation with fish oil and coconut fat prevents prenatal stress-induced changes in early postnatal development.

    Science.gov (United States)

    Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F

    2011-08-01

    Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. 7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1

    Directory of Open Access Journals (Sweden)

    Ki Cheon Kim

    2013-01-01

    Full Text Available The modified guanine base 8-oxoguanine (8-oxoG is abundantly produced by oxidative stress, can contribute to carcinogenesis, and can be removed from DNA by 8-oxoguanine DNA glycosylase-1 (OGG1, which acts as an 8-oxoG glycosylase and endonuclease. This study investigated the mechanism by which 7,8-dihydroxyflavone (DHF inhibits oxidative stress-induced 8-oxoG formation in hamster lung fibroblasts (V79-4. DHF significantly reduced the amount of 8-oxoG induced by hydrogen peroxide (H2O2 and elevated the levels of OGG1 mRNA and protein. DHF increased the binding of nuclear factor erythroid 2-related factor 2 (Nrf2 to antioxidant response element sequences in the upstream promoter region of OGG1. Moreover, DHF increased the nuclear levels of Nrf2, small Maf proteins, and the Nrf2/small Maf complex, all of which are decreased by H2O2 treatment. Likewise, the level of phosphorylated Akt, which activates Nrf2, was decreased by H2O2 treatment but restored by DHF treatment. The levels of OGG1 and nuclear translocation of Nrf2 protein were decreased upon treatment with PI3K inhibitor or Akt inhibitor, and DHF treatment did not restore OGG1 and nuclear Nrf2 levels in these inhibitor-treated cells. Furthermore, PI3K and Akt inhibitors abolished the protective effects of DHF in cells undergoing oxidative stress. These data indicate that DHF induces OGG1 expression via the PI3K-Akt pathway and protects cells against oxidative DNA base damage by activating DNA repair systems.

  17. Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas.

    Science.gov (United States)

    Khaksar, Mohammad Reza; Rahimifard, Mahban; Baeeri, Maryam; Maqbool, Faheem; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Moeini-Nodeh, Shermineh; Kebriaeezadeh, Abbas; Abdollahi, Mohammad

    2017-05-01

    Diazinon is a kind of organophosphorus (OP) compound that is broadly used against different species of insects and pests. Oxidative stress can occur at very early stages of diazinon exposure and the pancreas is one of the main target organs for toxicity by diazinon. The aim of this study was to evaluate the protective effects of cerium oxide nanoparticles (CeO 2 NPs) and yttrium oxide nanoparticles (Y 2 O 3 NPs) against the pancreatic damage from sub-acute exposure of diazinon. Diazinon at a dose of 70mg/kg/day was given through gavage to rats once a day. Along with diazinon, trace amounts of CeO 2 NPs and Y 2 O 3 NPs (35mg/kg and 45mg/kg per day, respectively) were administered by intraperitoneal injection once a day for 2 weeks. Animals weight and blood glucose were measured during the treatment, and oxidative stress biomarkers, diabetes physiology, function and viability of cells were investigated at the end of the treatment in serum and pancreas tissues. Apoptosis of islets was examined by the flow cytometry. The high blood glucose level and significant weight loss resulting from diazinon were modified as a result of the application of the NPs. A significant recovery in oxidative stress markers, pro-insulin, insulin, C-peptide, adenosine diphosphate/adenosine triphosphate (ATP/ADP) ratio, caspase-3 and -9 activities and apoptosis-necrosis in the islets was observed. In conclusion, administration of CeO 2 NPs or Y 2 O 3 NPs only or their combination with suitable and defined dose will help to overcome the consequences from oxidant agents. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Oxidative stress induced apoptosis of human lung carcinoma (A549) cells by a novel copper nanorod formulation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Valodkar, Mayur; Nagar, Padamanabhi S; Devkar, Ranjitsinh V; Thakore, Sonal

    2011-11-01

    This study elucidates the process of synthesis of copper (Cu) nanorods using almond skin extract as stabilizing cum capping agent. These nanorods were (about 200 nm long and 40 nm wide) characterized by transmission electron microscopy (TEM). Further, cytotoxicity potential of these nanorods was evaluated in A549 cells (Human lung carcinoma cell line) via cell viability assay and extracellular lactate dehydrogenase (LDH) release. Also, reduced glutathione (GSH), lipid peroxidation (LPO), cellular oxidative stress (Rhodamine 123 florescence) and apoptosis (Annexin V FITC/Propidium iodide staining) were also investigated in control and treated cells. Results indicated that Cu nanorods induced apoptotic death of cancer cells by induction of oxidative stress, depletion of cellular antioxidants and mitochondrial dysfunction. This study reports a novel process of synthesis of almond skin extract capped Cu nanorods and its potential as an anticancer agent against A549 lung carcinoma cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Hydrodynamic stress induces monoterpenoid oxindole alkaloid accumulation by Uncaria tomentosa (Willd) D. C. cell suspension cultures via oxidative burst.

    Science.gov (United States)

    Trejo-Tapia, Gabriela; Sepúlveda-Jiménez, Gabriela; Trejo-Espino, José Luis; Cerda-García-Rojas, Carlos M; de la Torre, Mayra; Rodríguez-Monroy, Mario; Ramos-Valdivia, Ana C

    2007-09-01

    Uncaria tomentosa cell suspension cultures were grown in a 2-L stirred tank bioreactor operating at a shear rate gamma(.)(avg)=86 s(-1). The cultures showed an early monophasic oxidative burst measured as H2O2 production (2.15 micromol H2O2 g(-1) dw). This response was followed by a transient production of monoterpenoid oxindole alkaloids (178 +/- 40 microg L(-1) at 24 h). At the stationary phase (144 h), the increase of the shear rate gamma(.)(avg) up to 150 s(-1) and/or oxygen tension up to 85% generated H2O2, restoring oxindole alkaloid production. U. tomentosa cells cultured in Erlenmeyer flasks also exhibited the monophasic oxidative burst but the H2O2 production was 16-fold lower and the alkaloids were not detected. These cells exposed to H2O2 generated in situ produced oxindole alkaloids reaching a maximum of 234 +/- 40 microg L(-1). A positive correlation was observed between the oxindole alkaloid production and the endogenous H2O2 level. On the other hand, addition of 1 microM diphenyleneiodonium (NAD(P)H oxidase inhibitor) or 10 microM sodium azide (peroxidases inhibitor) reduced both H2O2 production and oxindole alkaloids build up, suggesting that these enzymes might play a role in the oxidative burst induced by the hydrodynamic stress.

  20. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  1. Prenatal stress-induced increases in hippocampal von Willebrand factor expression are prevented by concurrent prenatal escitalopram.

    Science.gov (United States)

    Neigh, Gretchen N; Nemeth, Christina L; Kelly, Sean D; Hardy, Emily E; Bourke, Chase; Stowe, Zachary N; Owens, Michael J

    2017-04-01

    Prenatal stress has been linked to deficits in neurological function including deficient social behavior, alterations in learning and memory, impaired stress regulation, and susceptibility to adult disease. In addition, prenatal environment is known to alter cardiovascular health; however, limited information is available regarding the cerebrovascular consequences of prenatal stress exposure. Vascular disturbances late in life may lead to cerebral hypoperfusion which is linked to a variety of neurodegenerative and psychiatric diseases. The known impact of cerebrovascular compromise on neuronal function and behavior highlights the importance of characterizing the impact of stress on not just neurons and glia, but also cerebrovasculature. Von Willebrand factor has previously been shown to be impacted by prenatal stress and is predictive of cerebrovascular health. Here we assess the impact of prenatal stress on von Willebrand factor and related angiogenic factors. Furthermore, we assess the potential protective effects of concurrent anti-depressant treatment during in utero stress exposure on the assessed cerebrovascular endpoints. Prenatal stress augmented expression of von Willebrand factor which was prevented by concurrent in utero escitalopram treatment. The functional implications of this increase in von Willebrand factor remain elusive, but the presented data demonstrate that although prenatal stress did not independently impact total vascularization, exposure to chronic stress in adulthood decreased blood vessel length. In addition, the current study demonstrates that production of reactive oxygen species in the hippocampus is decreased by prenatal exposure to escitalopram. Collectively, these findings demonstrate that the prenatal experience can cause complex changes in adult cerebral vascular structure and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes.

    Science.gov (United States)

    Rashid, Kahkashan; Chowdhury, Sayantani; Ghosh, Sumit; Sil, Parames C

    2017-11-01

    The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg -1 body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg -1 body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oxidative stress-induced glomerular mineralocorticoid receptor activation limits the benefit of salt reduction in Dahl salt-sensitive rats.

    Directory of Open Access Journals (Sweden)

    Kento Kitada

    Full Text Available Mineralocorticoid receptor (MR antagonists attenuate renal injury in salt-sensitive hypertensive rats with low plasma aldosterone levels. We hypothesized that oxidative stress causes MR activation in high-salt-fed Dahl salt-sensitive rats. Furthermore, we determined if MR activation persisted and induced renal injury, even after switching from a high- to a normal-salt diet.High-salt feeding for 4 weeks increased dihydroethidium fluorescence (DHE, an oxidant production marker, p22phox (a NADPH oxidase subunit and serum and glucocorticoid-regulated kinase-1 (SGK1, an MR transcript in glomeruli, compared with normal-salt feeding, and these changes persisted 4 weeks after salt withdrawal. Tempol treatment (0.5 mmol/L during high-salt feeding abolished the changes in DHE fluorescence, p22phox and SGK1. Dietary salt reduction after a 4-week high-salt diet decreased both blood pressure and proteinuria, but was associated with significantly higher proteinuria than in normal control rats at 4 weeks after salt reduction. Administration of tempol during high-salt feeding, or eplerenone, an MR antagonist (100 mg/kg/day, started after salt reduction, recovered proteinuria to normal levels at 4 weeks after salt reduction. Paraquat, a reactive oxygen species generator, enhanced MR transcriptional activity in cultured rat mesangial cells and mouse podocytes.These results suggest that oxidative stress plays an important role in glomerular MR activation in Dahl salt-sensitive rats. Persistent MR activation even after reducing salt intake could limit the beneficial effects of salt restriction.

  4. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages.

    Science.gov (United States)

    Kim, Mi Jin; Kim, Dae Won; Park, Jung Hwan; Kim, Sang Jin; Lee, Chi Hern; Yong, Ji In; Ryu, Eun Ji; Cho, Su Bin; Yeo, Hyeon Ji; Hyeon, Jiye; Cho, Sung-Woo; Kim, Duk-Soo; Son, Ora; Park, Jinseu; Han, Kyu Hyung; Cho, Yoon Shin; Eum, Won Sik; Choi, Soo Young

    2013-10-01

    Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1-SIRT2 protein. Purified PEP-1-SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H₂O₂)-induced cell death and cytotoxicity. Also, transduced PEP-1-SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1-SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1-SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1-SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1-SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Protective action of a hexane crude extract of Pterodon emarginatus fruits against oxidative and nitrosative stress induced by acute exercise in rats

    Directory of Open Access Journals (Sweden)

    Alfredo Patrícia P

    2005-08-01

    Full Text Available Abstract Background The aim of the present work was to evaluate the effect of a hexane crude extract (HCE of Pterodon emarginatus on the oxidative and nitrosative stress induced in skeletal muscle, liver and brain of acutely exercised rats. Methods Adult male rats were subjected to acute exercise by standardized contractions of the tibialis anterior (TA muscle (100 Hz, 15 min and treated orally with the HCE (once or three times with a fixed dose of 498 mg/kg, before and after acute exercise. Serum creatine kinase activity was determined by a kinetic method and macrophage infiltration by histological analyses of TA muscle. Lipid peroxidation was measured as malondialdehyde (MDA levels. Nitric oxide production was evaluated by measuring nitrite formation, using Griess reagent, and nitrotyrosine was assessed by western blotting. Results Serum creatine kinase activities in the controls (111 U/L increased 1 h after acute exercise (443 U/L. Acute exercise also increased the infiltration of macrophages into TA muscle; lipid peroxidation levels in TA muscle (967%, liver (55.5% and brain (108.9%, as well as the nitrite levels by 90.5%, 30.7% and 60%, respectively. The pattern of nitrotyrosine formation was also affected by acute exercise. Treatment with HCE decreased macrophage infiltration, lipid peroxidation, nitrite production and nitrotyrosine levels to control values. Conclusion Acute exercise induced by functional electrical stimulation in rats resulted in increase in lipid peroxidation, nitrite and nitrotyrosine levels in brain, liver and skeletal muscle. The exercise protocol, that involved eccentric muscle contraction, also caused some muscle trauma, associated with over-exertion, leading to inflammation. The extract of P. emarginatus abolished most of these oxidative processes, thus confirming the high antioxidant activity of this oil which infusions are used in folk medicine against inflammatory processes.

  6. The Oxidative Stress-Induced Increase in the Membrane Expression of the Water-Permeable Channel Aquaporin-4 in Astrocytes Is Regulated by Caveolin-1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Chongshan Bi

    2017-12-01

    Full Text Available The reperfusion of ischemic brain tissue following a cerebral stroke causes oxidative stress, and leads to the generation of reactive oxygen species (ROS. Apart from inflicting oxidative damage, the latter may also trigger the upregulation of aquaporin 4 (AQP4, a water-permeable channel expressed by astroglial cells of the blood-brain barrier (BBB, and contribute to edema formation, the severity of which is known to be the primary determinant of mortality and morbidity. The mechanism through which this occurs remains unknown. In the present study, we have attempted to address this question using primary astrocyte cultures treated with hydrogen peroxide (H2O2 as a model system. First, we showed that H2O2 induces a significant increase in AQP4 protein levels and that this is inhibited by the antioxidant N-acetylcysteine (NAC. Second, we demonstrated using cell surface biotinylation that H2O2 increases AQP4 cell-surface expression independently of it’s increased synthesis. In parallel, we found that caveolin-1 (Cav1 is phosphorylated in response to H2O2 and that this is reversed by the Src kinase inhibitor 4-Amino-5-(4-chlorophenyl-7-(t-butylpyrazolo[3,4-d]pyrimidine (PP2. PP2 also abrogated the H2O2-induced increase in AQP4 surface levels, suggesting that  the phosphorylation of tyrosine-14 of Cav1 regulates  this  process. We  further  showed  that dominant-negative Y14F and phosphomimetic Y14D mutants caused a decrease and increase in AQP4 membrane expression respectively, and that the knockdown of Cav1 inhibits the increase in AQP4 cell-surface, expression following H2O2 treatment. Together, these findings suggest that oxidative stress-induced Cav1 phosphorylation modulates AQP4 subcellular distribution and therefore may indirectly regulate AQP4-mediated water transport.

  7. Salicylic Acid Ameliorates the Effects of Oxidative Stress Induced by Water Deficit in Hydroponic Culture of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Rozita Kabiri

    2012-08-01

    Full Text Available Osmotic stress associated with drought, and salinity is a serious problem that inhibits the growth of plants, mainly due to disturbance of the balance between production of ROS and antioxidant defense and causing oxidative stress. The results obtained in the last few years strongly prove that salicylic acid could be a very promising and protective compound for the reduction of biotic and abiotic stresses in sensitive of crops, because under certain conditions, it has been found to mitigate the damaging effects of various stress factors in plants. In this research, salicylic acid was used in control, and drought stressed plants, and the role of this compound in reduction of oxidative damages in Nigella plant was investigated. Data presented in this study indicated that SA application through the root medium brought on the increased levels of drought tolerance in black cumin seedlings. Plants pre-treated with SA exhibited slight injury symptoms whereas those that were not pre-treated with SA had moderate damage and lost considerable portions of their foliage. SA very profoundly inducing the activity of CAT, APX and GPX in plants, which led to reduction in H2O2 content, lipid peroxidation (MDA and LOX activity so it seems that the application of SA greatly improves the dehydration tolerance through elevated activities of antioxidant systems or may be the expression of genes encoding some ROS-scavenging enzymes under drought stress, which would maintain the redox homeostasis and integrity of cellular components.

  8. Protective effect of atmospheric pressure plasma on oxidative stress-induced neuronal injuries: an in vitro study

    International Nuclear Information System (INIS)

    Yan, Xu; Jia, Mei; Li, Jiaxin; Yuan, Fang; Qiao, Yajun; Ouyang, Jiting

    2017-01-01

    Atmospheric pressure plasma jet (APPJ) can produce biological active species for biomedical applications. This work proves direct evidence of the protective effects of APPJ against oxidative stress. SH-SY5Y cells, a commonly used cell model for the study of neurotoxicity and neuroprotection, were treated with APPJ for different durations. Then, cells were exposed to 200 µ M H 2 O 2 for 24 h and cell viability was measured using a CCK-8 kit. Changes in cell apoptosis were further confirmed by calcein-AM fluorescence imaging and flow cytometry. Extracellular NO production was detected using the Griess method. The results showed that APPJ protected SH-SY5Y from H 2 O 2 -induced apoptosis in a time-dependent manner. Moreover, extracellular NO production was significantly increased with the APPJ treatment. The results show in vitro that APPJ treatment could protect SH-SY5Y cells from oxidative stress by reducing cell apoptosis, which might be related to the reactive nitrogen species induced by the APPJ treatment. Our results indicate that the APPJ may have therapeutic potential as a novel ‘NO donor drug’ in neuroprotection and in the treatment of neurodegenerative diseases. (paper)

  9. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  10. Protective effect of canolol from oxidative stress-induced cell damage in ARPE-19 cells via an ERK mediated antioxidative pathway

    Science.gov (United States)

    Dong, Xin; Li, Zhongrui; Wang, Wei; Zhang, Wenjie; Liu, Shuizhong; Fang, Jun; Maeda, Hiroshi; Matsukura, Makoto

    2011-01-01

    Purpose Oxidative stress damage to retinal pigment epithelial (RPE) cells is thought to play a critical role in the pathogenesis of age-related macular degeneration (AMD). This study was conducted to investigate the protective effect of canolol against oxidative stress-induced cell death in ARPE-19 cells and its underlying mechanism. Methods ARPE-19 cells, a human retinal pigment epithelial cell line, were subjected to oxidative stress with 150 μM t-butyl hydroxide (t-BH) in the presence/absence of canolol in different concentrations. Cell viabilities were monitored by a 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) assay. The apoptosis was measured by flow cytometry using Annexin V-FITC and PI staining and intracellular reactive oxygen species (ROS) levels were measured by a fluorescence spectrophotometer. Gene expression of NF-E2-related factor (Nrf-2), heme oxygenase-1 (HO-1), catalase and glutathione S-transferase-pi (GST-pi) were measured by a reverse transcription polymerase chain reaction (RT–PCR) assay. Activation of the extracellular signal regulated kinase (ERK) protein was evaluated by western blot analysis. Results Canolol showed relatively high safety for ARPE-19 cells and recovered the cell death caused by t-BH dose-dependently at a concentration of 50–200 μM. Canolol also reduced t-BH-induced intracellular ROS generation and thus protected ARPE-19 cells from cell apoptosis. HO-1, catalase, GST-pi, and Nrf-2 were elevated in ARPE-19 cells after treatment with different concentrations of canolol for 24 h. Finally, canolol was found to activate extracellular signal regulated kinase (ERK) phosphorylation in ARPE-19 cells under the condition, with or without t-BH. Conclusions Canolol protected ARPE-19 cells from t-BH-induced oxidative damage and the protective mechanism was associated, at least partly, with the upregulation (activation) of antioxidative enzymes, probably through an ERK mediated pathway. This suggests that

  11. Region-specific nitric oxide production in cytosolic and mitochondrial compartments of the rat brain tissues following chronic stress-induced depression-like behavior

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. To study subcellular nitrergic response in the rat brain regions following chronic stress-induced depression-like behavior. Methods. An animal model of depression induced by chronic circadian stress (CCS established in our laboratory was used. The L-arginine, L-citrulline and reactive nitrogen species (RNS levels were determined spectrophotometrically. Results. Immediately after CCS and four days later, a depression-like behavior of rats was observed and accompanied by a substantial persistent elevation of the L-arginine, L-citrulline and RNS levels with a simultaneous up-regulation of the inducible nitric oxide synthase (iNOS in both cytosolic and mitochondrial compartments of the rat prefrontal cortex, striatum, hippocampus, and hypothalamus, and a down-regulation of their cytosolic constitutive NOS isoforms (cNOS, mitochondrial cNOS was not significantly changed, with the exception for hypothalamus, in which the latter dropped. Conclusions. Compromised balance of the L-arginine levels and NO synthesis in both mitochondria and cytosol in the limbic brain appears to be implicated in the pathogenesis of depression and pathological anxiety.

  12. Influence of the Form of Administration of Chlorogenic Acids on Oxidative Stress Induced by High fat Diet in Rats.

    Science.gov (United States)

    Budryn, G; Zaczyńska, D; Żyżelewicz, D; Grzelczyk, J; Zduńczyk, Z; Juśkiewicz, J

    2017-06-01

    Green coffee is one of health-promoting supplements of the diet, applied in the form of either preparations or enriched food products. Its positive impact is manifested by mitigation of the development of certain tumors, e.g., in the colon and liver, and type 2 diabetes. Many studies proved that chlorogenic acids are the main active substances in green coffee. The bioavailability of these compounds depends among others on their interactions with other components of the diet, mainly proteins. When they are used as food ingredients, their bioavailability is additionally decreased because of the decomposition or interactions with other ingredients during food processing. The undesirable changes may be limited among others by microencapsulation, for example with β-cyclodextrin. In this study, rats were fed the pro-oxidative high fat diet, which was supplemented with chlorogenic acids from green coffee that were used in four forms such as: a purified extract, complexes of chlorogenic acids and β-cyclodextrin, and bread supplemented with either the extract or the β-cyclodextrin inclusion complex. Chlorogenic acids added to bread because of the reduced absorption from the crumb in the small intestine and increased passage to the colon, contributed to the beneficial modification of enzymatic activities of intestinal microbiota. When added directly to the diet, they contributed to the improved antioxidant status in the liver and kidneys, lowered glucose level and increased HDL level. A high ratio of reduced to oxidized glutathione in the liver and a high concentration of antioxidants in the blood serum were observed after administration of chlorogenic acids in the form of inclusion complexes with β-cyclodextrin, indicating that microencapsulation increased their bioaccessibility due to the limited interactions with other components of the diet.

  13. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species--Alexandrium tamarense.

    Directory of Open Access Journals (Sweden)

    Huajun Zhang

    Full Text Available Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the mechanism involved in BS01 inhibition of algal growth. Transmission electron microscope analysis revealed that there were some chloroplast abnormalities in response to BS01 supernatant. The decrease in cellular-soluble protein content suggested that cell growth was greatly inhibited at high concentration of BS01 supernatant. The increase in the levels of reactive oxygen species (ROS and malondialdehyde contents following exposure to BS01 supernatant indicated that algal cells suffered from oxidative damage. The content of pigment was significantly decreased after 12 h treatment, which indicated that the accumulation of ROS destroyed pigment synthesis. Moreover, the decrease of Fv/Fm ratio suggested that in the photosynthetic system, the dominant sites producing ROS were destroyed by the supernatant of the BS01 culture. The activities of the antioxidant enzymes including superoxide dismutase and peroxidase increased in a short time and decreased slightly with increasing exposure time. A real-time PCR assay showed changes in the transcript abundances of two photosynthetic genes, psbA and psbD. The results showed that BS01 supernatant reduced the expression of the psbA gene after 2 h exposure, but the expression of the psbD gene was increased at concentrations of 1.0 and 1.5%. Our results demonstrated that the expression of the psbA gene was inhibited by the BS01 supernatant, which might block the electron transport chain, significantly enhancing ROS level and excess activity of the antioxidant system. The accumulation of ROS destoryed pigment synthesis and membrane integrity, and inhibited or

  14. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana.

    Science.gov (United States)

    Tang, Yulin; He, Rong; Zhao, Jian; Nie, Guangli; Xu, Lina; Xing, Baoshan

    2016-05-01

    Microarray analysis of toxicogenomic effects of CuO NPs on Arabidopsis thaliana was conducted. Arabidopsis growth was significantly inhibited by CuO NPs (10 and 20 mg/L). CuO NPs (10 and 20 mg/L) caused significant root damage after short-time (0-2 h) exposure while their corresponding Cu(2+) ions (0.80 and 1.35 mg/L) did not show any root damage. After longer exposure times (1 and 2 days), Cu(2+) ions induced obvious root damage, indicating that released Cu(2+) ions from CuO NPs contributed partial toxicity during CuO NPs exposure. After CuO NPs (10 mg/L) exposure for 2 h, reactive oxygen species (ROS) generation in root tips was much higher than that in the corresponding Cu(2+) ions (0.8 mg/L) treatment. The gene ontology categories identified from microarray analysis showed that CuO NPs (10 mg/L) caused 1658 differentially expressed genes (p 3). Of these, 1035 and 623 genes were up-regulated and down-regulated, respectively. 47 genes among all the up-regulated genes were response to oxidative stress, in which 19 genes were also related to "response to abiotic stimulus" and 12 genes were involved in the phenylpropanoid biosynthesis of the KEGG metabolic pathway. The expression of all the selected genes (RHL41, MSRB7, BCB, PRXCA, and MC8) measured using quantitative RT-PCR was consistent with the microarray analysis. CuO NPs contributed much stronger up-regulation of oxidative stress-related genes than the corresponding Cu(2+) ions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Potential Therapeutic Effect of Ferulic Acid in Mitigating Oxidative Stress Induced by γ-Irradiation in Male Rats

    International Nuclear Information System (INIS)

    Gawish, R.A.; Fahmy, H.A.; Nada, A.S.; Sallam, A.M.; EL-Mesallamy, H.O.

    2016-01-01

    The Testis is considered as one of the most sensitive organs in the body to ionizing radiation because of the rapidly dividing germinal epithelium. Seminal oxidative stress (OS) causes damage of the sperm plasma membrane and loss of its DNA integrity, therefore, the need for an effective therapeutic agent is evident. The present study investigated the mechanism(s) of potential therapeutic effect of ferulic acid (FA) on radiation-induced testicular damage. Mature male albino rats were either exposed to single dose γ-radiation (5Gy) and/ or treated with FA (50 mg/ kg body wt, orally), daily for seven days post-irradiation. FA significantly reversed OS effects of γ-rays that was evidenced by increasing malondialdehyde (MDA) and decreasing ferric reducing antioxidant power (FRAP) and catalase (CAT) activity. In addition, alterations in some trace elements such as zinc (Zn), cupper (Cu), iron (Fe) and manganese (Mn) were observed. Furthermore, sperm head abnormalities noticeably increased in the γ-irradiated group; in contrast, FA treatment ameliorated these alterations. In conclusion, FA exhibited curative effect against radiation induced testicular damage.

  16. Oxidative Stress Induced in Nurses by Exposure to Preparation and Handling of Antineoplastic Drugs in Mexican Hospitals: A Multicentric Study

    Directory of Open Access Journals (Sweden)

    Leobardo Manuel Gómez-Oliván

    2014-01-01

    Full Text Available The impact of involuntary exposure to antineoplastic drugs (AD was studied in a group of nurses in diverse hospitals in Mexico. The results were compared with a group of unexposed nurses. Anthropometric characteristics and the biochemical analysis were analyzed in both groups. Also, lipid peroxidation level (LPX, protein carbonyl content (PCC, and activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx were evaluated in blood of study participants as oxidative stress (OS biomarkers. The group of occupationally exposed (OE nurses consisted of 30 individuals ranging in age from 25 to 35 years. The control group included 30 nurses who were not occupationally exposed to the preparation and handling of AD and whose anthropometric and biochemical characteristics were similar to those of the OE group. All biomarkers evaluated were significantly increased (P<0.5 in OE nurses compared to the control group. Results show that the assessment of OS biomarkers is advisable in order to evaluate exposure to AD in nurses.

  17. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Qian, Hui-Min; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Tang, Lan-Feng; Zhou, Dong; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Liao; Huang, Xiao-Ming

    2015-07-01

    The time and temperature dependence of threshold voltage shift under positive-bias stress (PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτstress = 0.72 eV for the PBS process and an average effective energy barrier Eτrecovery = 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

  18. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  19. Glutathionylation of the L-type Ca2+ Channel in Oxidative Stress-Induced Pathology of the Heart

    Directory of Open Access Journals (Sweden)

    Victoria P. A. Johnstone

    2014-10-01

    Full Text Available There is mounting evidence to suggest that protein glutathionylation is a key process contributing to the development of pathology. Glutathionylation occurs as a result of posttranslational modification of a protein and involves the addition of a glutathione moiety at cysteine residues. Such modification can occur on a number of proteins, and exerts a variety of functional consequences. The L-type Ca2+ channel has been identified as a glutathionylation target that participates in the development of cardiac pathology. Ca2+ influx via the L-type Ca2+ channel increases production of mitochondrial reactive oxygen species (ROS in cardiomyocytes during periods of oxidative stress. This induces a persistent increase in channel open probability, and the resulting constitutive increase in Ca2+ influx amplifies the cross-talk between the mitochondria and the channel. Novel strategies utilising targeted peptide delivery to uncouple mitochondrial ROS and Ca2+ flux via the L-type Ca2+ channel following ischemia-reperfusion have delivered promising results, and have proven capable of restoring appropriate mitochondrial function in myocytes and in vivo.

  20. Effects of dietary supplementation with vitamin C and vitamin E and their combination on growth performance, some biochemical parameters, and oxidative stress induced by copper toxicity in broilers.

    Science.gov (United States)

    Cinar, Miyase; Yildirim, Ebru; Yigit, A Arzu; Yalcinkaya, Ilkay; Duru, Ozkan; Kisa, Uçler; Atmaca, Nurgul

    2014-05-01

    This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg + 250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.

  1. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    Science.gov (United States)

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  2. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    2009-07-01

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  3. Inorganic mercury causes pancreatic β-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    International Nuclear Information System (INIS)

    Chen Yawen; Huang Chunfa; Yang Chingyao; Yen Chengchieh; Tsai Kehsung; Liu Shinghwa

    2010-01-01

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic β-cells. Mercury chloride (HgCl 2 ) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic β-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl 2 significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl 2 -induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl 2 increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl 2 possessed ability in apoptosis induction. HgCl 2 also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl 2 could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl 2 could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl 2 -induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl 2 -treated HIT-T15 cells. Taken together, these results suggest that HgCl 2 -induced oxidative stress causes pancreatic β-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.

  4. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    International Nuclear Information System (INIS)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-01-01

    NAD + -dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H 2 O 2 . Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H 2 O 2 , Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H 2 O 2 -induced apoptosis through the upregulation of catalase. H 2 O 2 induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H 2 O 2 -induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels

  5. Oxidative stress induced by palytoxin in human keratinocytes is mediated by a H{sup +}-dependent mitochondrial pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pelin, Marco, E-mail: marco.pelin@phd.units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Ponti, Cristina, E-mail: cponti@units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Sosa, Silvio, E-mail: silvio.sosa@econ.units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Gibellini, Davide, E-mail: davide.gibellini@unibo.it [Department of Haematology and Oncological Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna (Italy); Florio, Chiara, E-mail: florioc@units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Tubaro, Aurelia, E-mail: tubaro@units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy)

    2013-01-01

    In the last decades, massive blooms of palytoxin (PLTX)-producing Ostreopsis cf. ovata have been observed along Mediterranean coasts, usually associated to human respiratory and cutaneous problems. At the molecular level, PLTX induces a massive intracellular Na{sup +} influx due to the transformation of Na{sup +}/K{sup +} ATPase in a cationic channel. Recently, we have demonstrated that Na{sup +} overload is the crucial step in mediating overproduction of reactive oxygen species (ROS) and cell death in human HaCaT keratinocytes, tentatively explaining PLTX-induced skin irritant effects. In the present study the molecular mechanisms of ROS production induced by PLTX-mediated Na{sup +} intracellular overload have been investigated. In HaCaT cells, PLTX exposure caused accumulation of superoxide anion, but not of nitric oxide or peroxynitrite/hydroxyl radicals. Even if RT-PCR and western blot analysis revealed an early NOX-2 and iNOS gene and protein over-expressions, their active involvement seemed to be only partial since selective inhibitors did not completely reduce O{sub 2}{sup −} production. A significant role of other enzymes (COX-1, COX-2, XO) was not evidenced. Nigericin, that counteracts Na{sup +}-mediated H{sup +}-imbalance, dissipating ΔpH across mitochondrial inner membrane, and the uncouplers DNP significantly reduced O{sub 2}{sup −} production. These inhibitions were synergistic when co-exposed with complex-I inhibitor rotenone. These results suggest a novel mechanism of O{sub 2}{sup −} production induced by PLTX-mediated ionic imbalance. Indeed, the H{sup +} intracellular overload that follows PLTX-induced intracellular Na{sup +} accumulation, could enhance ΔpH across mitochondrial inner membrane, that seems to be the driving force for O{sub 2}{sup −} production by reversing mitochondrial electron transport. Highlights: ► PLTX induces superoxide (O{sub 2}{sup −}) production by reversing mitochondrial transport chain. ► The mechanism of

  6. The CRF₁ receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: comparison with paroxetine and d-cycloserine.

    Science.gov (United States)

    Philbert, Julie; Beeské, Sandra; Belzung, Catherine; Griebel, Guy

    2015-02-15

    The selective CRF₁ (corticotropin releasing factor type 1) receptor antagonist SSR125543 has been previously shown to attenuate the long-term behavioral and electrophysiological effects produced by traumatic stress exposure in mice. Sleep disturbances are one of the most commonly reported symptoms by people with post-traumatic stress disorder (PTSD). The present study aims at investigating whether SSR125543 (10 mg/kg/day/i.p. for 2 weeks) is able to attenuate sleep/wakefulness impairment induced by traumatic stress exposure in a model of PTSD in mice using electroencephalographic (EEG) analysis. Effects of SSR125543 were compared to those of the 5-HT reuptake inhibitor, paroxetine (10 mg/kg/day/i.p.), and the partial N-methyl-d-aspartate (NMDA) receptor agonist, d-cycloserine (10 mg/kg/day/i.p.), two compounds which have demonstrated clinical efficacy against PTSD. Baseline EEG recording was performed in the home cage for 6h prior to the application of two electric foot-shocks of 1.5 mA. Drugs were administered from day 1 post-stress to the day preceding the second EEG recording session, performed 14 days later. Results showed that at day 14 post-stress, shocked mice displayed sleep fragmentation as shown by an increase in the occurrence of both non-rapid eye movement (NREM) sleep and wakefulness bouts. The duration of wakefulness, NREM and REM sleep were not significantly affected. The stress-induced effects were prevented by repeated administration of SSR125543, paroxetine and D-cycloserine. These findings confirm further that the CRF₁ receptor antagonist SSR125543 is able to attenuate the deleterious effects of traumatic stress exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice.

    Science.gov (United States)

    Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah

    2017-07-17

    Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a

  8. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells

    Directory of Open Access Journals (Sweden)

    Jae-Myung Yoo

    2017-04-01

    Full Text Available N-acetyl serotonin (NAS as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB and cAMP response element-binding protein (CREB as well as expression of brain-derived neurotrophic factor (BDNF, whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(PH quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30 mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases.

  9. Protective effect of chlorophyllin and lycopene from water spinach extract on cytotoxicity and oxidative stress induced by heavy metals in human hepatoma cells.

    Science.gov (United States)

    Yang, Ui-Jeong; Park, Tae-Sik; Shim, Soon-Mi

    2013-01-01

    The purpose of this study was to examine the inhibitory effects of ethanol extract of water spinach (EEWS) containing chlorophyll and lycopene on cytotoxicity and oxidative stress in liver induced by heavy metals. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay and dichlorofluorescein (DCF) assay were conducted to measure cytotoxicity and inhibition of reactive oxygen species (ROS), respectively. Cytotoxicity was prevented at a concentration of 11.7 mg/L of EEWS. Both sodium copper chlorophyllin (SCC) and lycopene in EEWS were identified by ultraperformance liquid chromatography-photodiode array-electrospray ionization-mass spectroscopy (UPLC-PDA-ESI-MS/MSn) as major components at m/z 722.64 and 535.45, respectively. The concentrations of SCC and lycopene were 0.12 and 0.04 mg from 100 g of dried powder, respectively. Approximately 99% cytotoxicity induced by Cd was inhibited by EEWS. However, the inhibitory effect attributed to generation of ROS was similar with SCC, lycopene, and EEWS. Our results indicated that EEWS was effective in reducing cytotoxicity and oxidative stress produced by heavy metals in a HepG2 cell. Data suggest that the possible mechanism underlying the preventive action of SCC might be associated with diminished absorption of metal ions by chelating and blocking metal-mediated generation of ROS, while lycopene effects may be attributed to its high number of conjugated dienes that act as most potent singlet oxygen quenchers.

  10. Protective Effect of D-Limonene against Oxidative Stress-Induced Cell Damage in Human Lens Epithelial Cells via the p38 Pathway.

    Science.gov (United States)

    Bai, Jie; Zheng, Yi; Wang, Gang; Liu, Ping

    2016-01-01

    Oxidative stress, as mediated by ROS, is a significant factor in initiating the development of age-associated cataracts; D-limonene is a common natural terpene with powerful antioxidative properties which occurs naturally in a wide variety of living organisms. It has been shown to have antioxidant effect; we found that D-limonene can effectively prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the inhibitory effects of D-limonene is the inhibition of HLECs apoptosis. In the present study, we used confocal-fluorescence microscopy, flow cytometry analysis, Hoechst staining, H2DCFDA staining, transmission electron microscopy, and immunoblot analysis; the results revealed that slightly higher concentrations of D-limonene (125-1800 μM) reduced the H2O2-induced ROS generation and inhibited the H2O2-induced caspase-3 and caspase-9 activation and decreased the Bcl-2/Bax ratio. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Thus, we conclude that D-limonene could effectively protect HLECs from H2O2-induced oxidative stress and that its antioxidative effect is significant, thereby increasing the cell survival rate.

  11. Protective effects of protein transduction domain-metallothionein fusion proteins against hypoxia- and oxidative stress-induced apoptosis in an ischemia/reperfusion rat model.

    Science.gov (United States)

    Lim, Kwang Suk; Cha, Min-Ji; Kim, Jang Kyoung; Park, Eun Jeong; Chae, Ji-Won; Rhim, Taiyoun; Hwang, Ki-Chul; Kim, Yong-Hee

    2013-08-10

    Ischemic heart diseases caused by insufficient oxygen supply to the cardiac muscle require pharmaceutical agents for the prevention of the progress and recurrence. Metallothionein (MT) has a potential as a protein therapeutic for the treatment of this disease due to its anti-oxidative effects under stressful conditions. In spite of its therapeutic potential, efficient delivery systems need to be developed to overcome limitations such as low transduction efficiency, instability and short half-life in the body. To enhance intra-cellular transduction efficiency, Tat sequence as a protein transduction domain (PTD) was fused with MT in a recombinant method. Anti-apoptotic and anti-oxidative effects of Tat-MT fusion protein were evaluated under hyperglycemia and hypoxia stress conditions in cultured H9c2 cells. Recovery of cardiac functions by anti-apoptotic and anti-fibrotic effects of Tat-MT was confirmed in an ischemia/reperfusion (I/R) rat myocardial infarction model. Tat-MT fusion protein effectively protected H9c2 cells under stressful conditions by reducing intracellular ROS production and inhibiting caspase-3 activation. Tat-MT fusion protein inhibited apoptosis, reduced fibrosis area and enhanced cardiac functions in I/R. Tat-MT fusion protein could be a promising therapeutic for the treatment of ischemic heart diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    Directory of Open Access Journals (Sweden)

    Mariane Wohlenberg

    2014-04-01

    Full Text Available In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4. The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract.

  13. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    Science.gov (United States)

    Wohlenberg, Mariane; Almeida, Daniela; Bokowski, Liane; Medeiros, Niara; Agostini, Fabiana; Funchal, Cláudia; Dani, Caroline

    2014-01-01

    In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4). The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS) were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD) activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT) activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract. PMID:26784867

  14. Pathway of programmed cell death and oxidative stress induced by β-hydroxybutyrate in dairy cow abomasum smooth muscle cells and in mouse gastric smooth muscle.

    Directory of Open Access Journals (Sweden)

    Wulin Tian

    Full Text Available The administration of exogenous β-hydroxybutyrate (β-HB, as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.

  15. Pathway of programmed cell death and oxidative stress induced by β-hydroxybutyrate in dairy cow abomasum smooth muscle cells and in mouse gastric smooth muscle.

    Science.gov (United States)

    Tian, Wulin; Wei, Teng; Li, Bin; Wang, Zhe; Zhang, Naisheng; Xie, Guanghong

    2014-01-01

    The administration of exogenous β-hydroxybutyrate (β-HB), as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA) and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs) were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.

  16. Entacapone is an Antioxidant More Potent than Vitamin C and Vitamin E for Scavenging of Hypochlorous Acid and Peroxynitrite, and the Inhibition of Oxidative Stress-Induced Cell Death.

    Science.gov (United States)

    Chen, Aaron Y; Lü, Jian-Ming; Yao, Qizhi; Chen, Changyi

    2016-03-01

    BACKGROUND Entacapone (ENT), a clinical drug for the treatment of Parkinson's disease, has been shown to have antioxidant effects, but little is known about its antioxidant mechanisms. The objective of the current study was to determine the antioxidant activity of ENT against different species of oxidants and compared it with that of vitamin C and vitamin E. We also determined the effect of ENT on oxidative stress-induced cell death in human umbilical vein endothelial cells (HUVECs). MATERIAL AND METHODS The total antioxidant activities of ENT, vitamin C and vitamin E were determined with a standard DPPH-scavenging assay. Specific assays to determine ENT's scavenging activity on hypochlorous acid (HOCl), peroxynitrite (ONOO-), and hydrogen peroxide (H2O2), and the chelating effect on Fe(II) were used. H2O2-induced cell death in HUVECs was determined with the MTT assay. RESULTS ENT (10 and 20 µM) scavenged 60% and 83% of DPPH activity, respectively. These percentages were greater than those resulting from using the same concentrations of vitamin C and vitamin E. ENT's HOCl-scavenging activity was concentration-dependent and 8 to 20 times stronger than those of vitamin C and vitamin E. ENT's ONOO--scavenging activity was 8% to 30% stronger than that of vitamin C. However, ENT, vitamin C, and vitamin E were not able to directly scavenge H2O2, and did not show any chelating effect on Fe(II). Importantly ENT, but not vitamin C or vitamin E, inhibited H2O2-induced cell death in HUVECs. CONCLUSIONS ENT is an antioxidant that can scavenge toxic HOCl and ONOO- species and inhibit oxidative stress-induced cell death more effectively than vitamin C and vitamin E. ENT may have new clinical applications as an antioxidant in the treatment of ROS-induced diseases including cardiovascular disease, cancer, and neurodegenerative diseases.

  17. Honey prevents neurobehavioural deficit and oxidative stress induced by lead acetate exposure in male Wistar rats- a preliminary study.

    Science.gov (United States)

    Abdulmajeed, Wahab Imam; Sulieman, Habeeb Bolakale; Zubayr, Maymunah Oloruntosin; Imam, Aminu; Amin, Abdulbasit; Biliaminu, Sikiru Abayomi; Oyewole, Lukuman Aboyeji; Owoyele, Bamidele Victor

    2016-02-01

    This research sought to investigate the possible neuroprotective effects of honey against lead (Pb)-induced neurotoxicity. Twenty four male Wistar rats were divided into four groups: Control group that received 1 ml/kg distilled orally for 28 days; while groups II-IV received 0.2% lead in drinking water and 1 ml/kg of distilled water, 1 ml/kg of honey, 1.5 ml/kg of honey respectively for 28 days. Anxiety and exploratory activities were determined in the open field test. Memory function was determined using Morris water maze after which the animals were sacrificed. The brains were then excised, homogenized and Lipid peroxidation (MDA), Superoxide dismutase (SOD), Catalase, Glutathione (GSH) and Glutathione -S- Transferase (GST) activities were determined in the brains. Results showed that lead exposure causes decrease in locomotor and exploratory activities; increase anxiety, memory impairment, lipid peroxidation and decrease antioxidant activities. However, co-administration of honey with lead inhibited neurotoxicity as indicated by the improvement in memory function as evidenced by decreased latency period and increased in time spent in target quadrant in honey-fed rats compared to the lead-exposed animals. Furthermore, honey increased locomotion, exploration and decreased anxiety in lead-exposed rats as indicated by the frequency of rearing, freezing duration and the number of line crossed by animals. Also administration of honey improves antioxidant activities as shown by increased brain SOD, GST and GSH activities compared to the lead-treated groups but no significant effect on MDA level. It can be concluded that honey has neuroprotective effects against lead-induced cognitive deficit probably by enhancing antioxidant activities.

  18. (-)Epigallocatechin-3-gallate decreases the stress-induced impairment of learning and memory in rats.

    Science.gov (United States)

    Soung, Hung-Sheng; Wang, Mao-Hsien; Tseng, Hsiang-Chien; Fang, Hsu-Wei; Chang, Kuo-Chi

    2015-08-18

    Stress induces reactive oxygen species (ROS) and causes alterations in brain cytoarchitecture and cognition. Green tea has potent antioxidative properties especially the tea catechin (-) epigallocatechin-3-gallate (EGCG). These powerful antioxidative properties are able to protect against various oxidative damages. In this study we investigated the impact of stress on rats' locomotor activity, learning and memory. Many tea catechins, including EGCG, were examined for their possible therapeutic effects in treating stress-induced impairment. Our results indicated that locomotor activity was decreased, and the learning and memory were impaired in stressed rats (SRs). EGCG treatment was able to prevent the decreased locomotor activity as well as improve the learning and memory in SRs. EGCG treatment was also able to reduce the increased oxidative status in SRs' hippocampi. The above results suggest a therapeutic effect of EGCG in treating stress-induced impairment of learning and memory, most likely by means of its powerful antioxidative properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Nuclear factor κB inhibitor BAY 11-7082 suppresses oxidative stress induced by endothelin-1 (ET-1 in rat kidney

    Directory of Open Access Journals (Sweden)

    Agata Kowalczyk

    2015-12-01

    Full Text Available Aim: The aim of the study was to evaluate the effect of BAY 11-7082, an NF-κB inhibitor, on basal and ET-1-induced production of reactive oxygen species (ROS, TNF-α and p65 protein in rat kidney.Material/Methods: The experimental animals were divided into five groups (n=7 receiving: 1 saline (control; 2 and 3 ET-1 in a dose of 3 μg/kg body weight (b.w. or 12.5 μg/kg b.w.; 4 BAY 11-7082 (10 mg/kg b.w.; 5 BAY 11-7082 (10 mg/kg b.w. and ET-1 (12.5 μg/kg b.w., respectively. In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS, H2O2, TNF-α, p65 protein and GSH/GSSG ratio were determined.Results: ET-1 resulted in a dose-dependent increase in TBARS and hydrogen peroxide (H2O2 levels, and a decrease in GSH/GSSG ratio when compared to the controls. BAY 11-7082 administered 1 h before ET-1 administration at a dose of 12.5 μg/kg resulted in a decrease (P<0.001 in TBARS and H2O2 levels and an increase (P<0.001 in GSH/GSSG ratio compared to the ET-1 groups. The level of TNF-α was increased (P<0.001 in the presence of ET-1, while BAY 11-7082 reduced the TNF-α level (P<0.001. The rats receiving BAY 11-7082 showed a decrease in NF-κB p65 protein level in the nuclear fraction and an increase in the cytoplasmic fraction.Conclusions: The results suggest that BAY 11-7082 plays a protective role against ET-1 induced oxidative stress in kidney tissue. These actions of BAY 11-7082 may result from reduced activity of NF-κB signaling pathways. Inhibition of the NF-κB pathway may be a promising strategy for preventing the progression of kidney damage.

  20. High Density Lipoprotein Protects Mesenchymal Stem Cells from Oxidative Stress-Induced Apoptosis via Activation of the PI3K/Akt Pathway and Suppression of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    2012-12-01

    Full Text Available The therapeutic effect of transplantation of mesenchymal stem cells (MSCs in myocardial infarction (MI appears to be limited by poor cell viability in the injured tissue, which is a consequence of oxidative stress and pro-apoptotic factors. High density lipoprotein (HDL reverses cholesterol transport and has anti-oxidative and anti-apoptotic properties. We, therefore, investigated whether HDL could protect MSCs from oxidative stress-induced apoptosis. MSCs derived from the bone marrow of rats were pre-incubated with or without HDL, and then were exposed to hydrogen peroxide (H2O2 in vitro, or were transplanted into experimentally infarcted hearts of rats in vivo. Pre-incubation of MSCs with HDL increased cell viability, reduced apoptotic indices and resulted in parallel decreases in reactive oxygen species (ROS in comparison with control MSCs. Each of the beneficial effects of HDL on MSCs was attenuated by inhibiting the PI3K/Akt pathway. Preconditioning with HDL resulted in higher MSC survival rates, improved cardiac remodeling and better myocardial function than in the MSC control group. Collectively, these results suggest that HDL may protect against H2O2-induced apoptosis in MSCs through activation of a PI3K/Akt pathway, and by suppressing the production of ROS.

  1. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.

    Science.gov (United States)

    Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne

    2006-07-01

    Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.

  2. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Sukanya Saha

    2016-03-01

    General significance: Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  3. Serum oxidative stress-induced repression of Nrf2 and GSH depletion: a mechanism potentially involved in endothelial dysfunction of young smokers.

    Directory of Open Access Journals (Sweden)

    Anna Fratta Pasini

    Full Text Available Although oxidative stress plays a major role in endothelial dysfunction (ED, the role of glutathione (GSH, of nuclear erythroid-related factor 2 (Nrf2 and of related antioxidant genes (ARE are yet unknown. In this study we combined an in vivo with an in vitro model to assess whether cigarette smoking affects flow-mediated vasodilation (FMD, GSH concentrations and the Nrf2/ARE pathway in human umbilical vein endothelial cells (HUVECs.52 healthy subjects (26 non-smokers and 26 heavy smokers were enrolled in this study. In smokers we demonstrated increased oxidative stress, i.e., reduced concentrations of GSH and increased concentrations of oxidation products of the phospholipid 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC in serum and in peripheral blood mononuclear cells (PBMC, used as in vivo surrogates of endothelial cells. Moreover we showed impairment of FMD in smokers and a positive correlation with the concentration of GSH in PBMC of all subjects. In HUVECs exposed to smokers' serum but not to non-smokers' serum we found that oxidative stress increased, whereas nitric oxide and GSH concentrations decreased; interestingly the expression of Nrf2, of heme oxygenase-1 (HO-1 and of glutamate-cysteine ligase catalytic (GCLC subunit, the rate-limiting step of synthesis of GSH, was decreased. To test the hypothesis that the increased oxidative stress in smokers may have a causal role in the repression of Nrf2/ARE pathway, we exposed HUVECs to increasing concentrations of oxPAPC and found that at the highest concentration (similar to that found in smokers' serum the expression of Nrf2/ARE pathway was reduced. The knockdown of Nrf2 was associated to a significant reduction of HO-1 and GCLC expression induced by oxPAPC in ECs.In young smokers with ED a novel further consequence of increased oxidative stress is a repression of Nrf2/ARE pathway leading to GSH depletion.

  4. Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase.

    Science.gov (United States)

    Bonifacio, Aurenivia; Carvalho, Fabrício E L; Martins, Marcio O; Lima Neto, Milton C; Cunha, Juliana R; Ribeiro, Carolina W; Margis-Pinheiro, Marcia; Silveira, Joaquim A G

    2016-08-20

    The maintenance of H2O2 homeostasis and signaling mechanisms in plant subcellular compartments is greatly dependent on cytosolic ascorbate peroxidases (APX1 and APX2) and peroxisomal catalase (CAT) activities. APX1/2 knockdown plants were utilized in this study to clarify the role of increased cytosolic H2O2 levels as a signal to trigger the antioxidant defense system against oxidative stress generated in peroxisomes after 3-aminotriazole-inhibited catalase (CAT). Before supplying 3-AT, silenced APX1/2 plants showed marked changes in their oxidative and antioxidant profiles in comparison to NT plants. After supplying 3-AT, APX1/2 plants triggered up-expression of genes belonging to APX (OsAPX7 and OsAPX8) and GPX families (OsGPX1, OsGPX2, OsGPX3 and OsGPX5), but to a lower extent than in NT plants. In addition, APX1/2 exhibited lower glycolate oxidase (GO) activity, higher CO2 assimilation, higher cellular integrity and higher oxidation of GSH, whereas the H2O2 and lipid peroxidation levels remained unchanged. This evidence indicates that redox pre-acclimation displayed by silenced rice contributed to coping with oxidative stress generated by 3-AT. We suggest that APX1/2 plants were able to trigger alternative oxidative and antioxidant mechanisms involving signaling by H2O2, allowing these plants to display effective physiological responses for protection against oxidative damage generated by 3-AT, compared to non-transformed plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    Science.gov (United States)

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  6. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    Science.gov (United States)

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  7. Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort.

    Directory of Open Access Journals (Sweden)

    Shannon Rose

    Full Text Available There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs derived from children with autistic disorder (AD as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ, an agent that increases intracellular reactive oxygen species (ROS. Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32% of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and

  8. Resveratrol Attenuates Oxidative Stress Induced by Balloon Injury in the Rat Carotid Artery Through Actions on the ERK1/2 and NF-Kappa B Pathway

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2013-02-01

    Full Text Available Background/Aim: Oxidative stress plays a critical role in pathogenesis of the neointimal arterial hyperplasia. The aim of the study was to evaluate effects of resveratrol (RSV on the vascular hyperplasia stimulated by oxidative damage. Methods: Balloon vascular injury was induced in rats that were intraperitonealy exposed to resveratrol (1 mg/kg on 7 or 14 days after surgical procedure. Animals were euthanized on 7 or 14 days after operation. The blood level of 8-iso-prostaglandin F2α, arterial morphology as well as expression of monocyte chemotactic protein-1 and interleukin-6 in carotid wall were measured. Vascular smooth muscle cells (VSMCs were isolated from the thoracic aorta. Cellular proliferation and migration assays, reactive oxygen species (ROS, superoxide dismutase (SOD and NADPH oxidative activity, protein level of β-actin, histone H3, NF-ĸB p65, IĸB, ERK1/2, phospho-ERK1/2, phospho-p38 as well as NF-ĸB transcription activity were evaluated in-vitro after angiotensin II stimulation and resveratrol (50-200 µmol/L treatment. Results: Significant decreases in neointimal/medial area, serum prostaglandin level and genes expression were found in rats treated with resveratrol, when compared to the control group. Significant changes were also revealed for proliferation and migration rates, ROS level, as well as SOD, NADPH oxidase, ERK1/2 phosphorylation and NF-ĸB transcriptional activity in cell cultures exposed to highest dose of resveratrol. Insignificant changes were observed for NF-kappaB p65 translocation and IĸB degradation, p38 phosphorylation in MAPK pathway. Conclusion: Resveratrol significantly suppressed the neointimal hyperplasia after balloon injury through inhibition of oxidative stress and inflammation by blocking the ERK1/2/NF-kappa B pathway.

  9. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Lee Sook-Jeong

    2010-10-01

    Full Text Available Abstract Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the

  10. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression.

    Science.gov (United States)

    Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Park, Hye Rim; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek

    2015-06-26

    The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease.

  11. Protective activity of the Uncaria tomentosa extracts on human erythrocytes in oxidative stress induced by 2,4-dichlorophenol (2,4-DCP) and catechol.

    Science.gov (United States)

    Bors, Milena; Bukowska, Bożena; Pilarski, Radosław; Gulewicz, Krzysztof; Oszmiański, Jan; Michałowicz, Jaromir; Koter-Michalak, Maria

    2011-09-01

    The purpose of this study was to evaluate the effect of the ethanolic and aqueous extracts of Uncaria tomentosa on human erythrocytes and additionally the assessment of protective effect of these extracts on hemolysis induction, hemoglobin oxidation, and changes in the level of reactive oxygen species (ROS) and lipid peroxidation, which were provoked by selected xenobiotics, i.e. 2,4-dichlorophenol (2,4-DCP) and catechol. All tested extracts, even at a very high concentration of 500 μg/ml were not toxic to the erythrocytes because they did not cause lipid peroxidation, increase methemoglobin and ROS levels nor provoked hemolysis. The results of this study also revealed protective effect of extracts of U. tomentosa. The extracts studied depleted the extent of hemoglobin oxidation and lipid peroxidation as well as decreased the level of ROS and hemolysis, which was provoked by 2,4-DCP. No protective activity of the extracts against catechol action, which is a precursor of semiquinones in cell was found. A difference in the effect of the extracts studied was observed. Ethanol-based extracts revealed more pronounced ability to inhibit oxidation processes in human erythrocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions

    Directory of Open Access Journals (Sweden)

    Francisco Javier Corpas

    2014-12-01

    Full Text Available NADPH is an essential reductive coenzyme in biosynthetic processes such as cell growth, proliferation and detoxification in eukaryotic cells. It is required by antioxidative systems such as the ascorbate-glutathione cycle and is also necessary for the generation of superoxide radicals by plant NADPH oxidases and for the generation of nitric oxide (NO by L-arginine-dependent nitric oxide syntase. This coenzyme is principally re-generated by a group of NADP-dehydrogenases enzymes including glucose-6-phosphate dehydrogenase (G6PDH and 6-phosphogluconate dehydrogenase (6PGDH, both belonging to the pentose phosphate pathway, the NADP-malic enzyme (NADP-ME and NADP-isocitrate dehydrogenase (NADP-ICDH. In this study, current perspectives on these enzymes in higher plants under different stress situations are reviewed and it is also pointed out that this group of NADPH-generating dehydrogenases is a key element in supporting the mechanism of response to nitro-oxidative stress situations.

  13. Early Psychological Counseling for the Prevention of Posttraumatic Stress Induced by Acute Coronary Syndrome: The MI-SPRINT Randomized Controlled Trial.

    Science.gov (United States)

    von Känel, Roland; Barth, Jürgen; Princip, Mary; Meister-Langraf, Rebecca E; Schmid, Jean-Paul; Znoj, Hansjörg; Herbert, Claudia; Schnyder, Ulrich

    2018-01-01

    Acute coronary syndrome (ACS)-induced posttraumatic stress disorder (PTSD) and clinically significant PTSD symptoms (PTSS) are found in 4 and 12% of patients, respectively. We hypothesized that trauma-focused counseling prevents the incidence of ACS-induced PTSS. Within 48 h of hospital admission, 190 patients with high distress during ACS were randomized to a single-session intervention of either trauma-focused counseling or an active control intervention targeting the general role of stress in patients with heart disease. Blind interviewer-rated PTSS (primary outcome) and additional health outcomes were assessed at 3 months of follow-up. Trial results about prevalence were compared with data from previous studies on the natural incidence of ACS-induced PTSS/PTSD. Intention-to-treat analyses revealed no difference in interviewer-rated PTSS between trauma-focused counseling (mean, 11.33; 95% Cl, 9.23-13.43) and stress counseling (9.88; 7.36-12.40; p = 0.40), depressive symptoms (6.01, 4.98-7.03, vs. 4.71, 3.65-5.77; p = 0.08), global psychological distress (5.15, 4.07-6.23, vs. 3.80, 2.60-5.00; p = 0.11), and the risk for cardiovascular-related hospitalization/all-cause mortality (OR, 0.67; 95% CI, 0.37-1.23). Self-rated PTSS indicated less beneficial effects with trauma-focused (6.54; 4.95-8.14) versus stress counseling (3.74; 2.39-5.08; p = 0.017). The completer analysis (154 cases) confirmed these findings. The prevalence rates of interviewer-rated PTSD (0.5%, 1/190) and self-rated PTSS were in this trial much lower than in meta-analyses and observation studies from the same cardiology department. Benefits were not seen for trauma-focused counseling when compared with an active control intervention. Nonetheless, in distressed ACS patients, individual, single-session, early psychological counseling shows potential as a means to prevent posttraumatic responses, but trauma-focused early treatments should probably be avoided. © 2018 S. Karger AG, Basel.

  14. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    Science.gov (United States)

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. The Mood Stabilizer Lithium Potentiates the Antidepressant-Like Effects and Ameliorates Oxidative Stress Induced by Acute Ketamine in a Mouse Model of Stress

    Science.gov (United States)

    Scheuing, Lisa; Liu, Guangping; Liao, Hsiao-Mei; Linares, Gabriel R.; Lin, Dora

    2015-01-01

    Background: Evidence suggests that mammalian target of rapamycin activation mediates ketamine’s rapid but transient antidepressant effects and that glycogen synthase kinase-3β inhibits this pathway. However, ketamine has associated psychotomimetic effects and a high risk of abuse. The mood stabilizer lithium is a glycogen synthase kinase-3 inhibitor with strong antisuicidal properties. Here, we used a mouse stress model to investigate whether adjunct lithium treatment would potentiate ketamine’s antidepressant-like effects. Methods: Mice received chronic restraint stress and long-term pre- or postketamine lithium treatment in drinking water. The effects of lithium on ketamine-induced antidepressant-like effects, activation of the mammalian target of rapamycin/brain-derived neurotrophic factor signaling pathways, oxidative stress, and dendritic spine density in the brain of mice were investigated. Results: Subtherapeutic (600mg/L) lithium-pretreated mice exhibited an antidepressant-like response to an ineffective ketamine (2.5mg/kg, intraperitoneally) challenge in the forced swim test. Both the antidepressant-like effects and restoration of dendritic spine density in the medial prefrontal cortex of stressed mice induced by a single ketamine (50mg/kg) injection were sustained by postketamine treatment with 1200mg/L of lithium for at least 2 weeks. These benefits of lithium treatments were associated with activation of the mammalian target of rapamycin/brain-derived neurotrophic factor signaling pathways in the prefrontal cortex. Acute ketamine (50mg/kg) injection also significantly increased lipid peroxidation, catalase activity, and oxidized glutathione levels in stressed mice. Notably, these oxidative stress markers were completely abolished by pretreatment with 1200mg/L of lithium. Conclusions: Our results suggest a novel therapeutic strategy and justify the use of lithium in patients who benefit from ketamine. PMID:25548109

  16. Protective Role of Nuclear Factor E2-Related Factor 2 against Acute Oxidative Stress-Induced Pancreatic β-Cell Damage

    Directory of Open Access Journals (Sweden)

    Jingqi Fu

    2015-01-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of pancreatic β-cell dysfunction that occurs in both type 1 and type 2 diabetes. Nuclear factor E2-related factor 2 (NRF2 is a master regulator in the cellular adaptive response to oxidative stress. The present study found that MIN6 β-cells with stable knockdown of Nrf2 (Nrf2-KD and islets isolated from Nrf2-knockout mice expressed substantially reduced levels of antioxidant enzymes in response to a variety of stressors. In scramble MIN6 cells or wild-type islets, acute exposure to oxidative stressors, including hydrogen peroxide (H2O2 and S-nitroso-N-acetylpenicillamine, resulted in cell damage as determined by decrease in cell viability, reduced ATP content, morphology changes of islets, and/or alterations of apoptotic biomarkers in a concentration- and/or time-dependent manner. In contrast, silencing of Nrf2 sensitized MIN6 cells or islets to the damage. In addition, pretreatment of MIN6 β-cells with NRF2 activators, including CDDO-Im, dimethyl fumarate (DMF, and tert-butylhydroquinone (tBHQ, protected the cells from high levels of H2O2-induced cell damage. Given that reactive oxygen species (ROS are involved in regulating glucose-stimulated insulin secretion (GSIS and persistent activation of NRF2 blunts glucose-triggered ROS signaling and GSIS, the present study highlights the distinct roles that NRF2 may play in pancreatic β-cell dysfunction that occurs in different stages of diabetes.

  17. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism.

    Science.gov (United States)

    Antoniou, Chrystalla; Chatzimichail, Giannis; Xenofontos, Rafaella; Pavlou, Jan J; Panagiotou, Evangelia; Christou, Anastasis; Fotopoulos, Vasileios

    2017-05-01

    Recent reports have uncovered the multifunctional role of melatonin in plant physiological responses under optimal and suboptimal environmental conditions. In this study, we explored whether melatonin pretreatment could provoke priming effects in alfalfa (Medicago sativa L.) plants subsequently exposed to prolonged drought stress (7 days), by withholding watering. Results revealed that the rhizospheric application of melatonin (10 μmol L -1 ) remarkably enhanced the drought tolerance of alfalfa plants, as evidenced by the observed plant tolerant phenotype, as well as by the higher levels of chlorophyll fluorescence and stomatal conductance, compared with nontreated drought-stressed plants. In addition, lower levels of lipid peroxidation (MDA content) as well as of both H 2 O 2 and NO contents in primed compared with nonprimed stressed plants suggest that melatonin pretreatment resulted in the systemic mitigation of drought-induced nitro-oxidative stress. Nitro-oxidative homeostasis was achieved by melatonin through the regulation of reactive oxygen (SOD, GR, CAT, APX) and nitrogen species (NR, NADHde) metabolic enzymes at the enzymatic and/or transcript level. Moreover, melatonin pretreatment resulted in the limitation of cellular redox disruption through the regulation of the mRNA levels of antioxidant and redox-related components (ADH, AOX, GST7, GST17), as well via osmoprotection through the regulation of proline homeostasis, at both the enzymatic (P5CS) and gene expression level (P5CS, P5CR). Overall, novel results highlight the importance of melatonin as a promising priming agent for the enhancement of plant tolerance to drought conditions through the regulation of nitro-oxidative and osmoprotective homeostasis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO1, and eNOS.

    Science.gov (United States)

    Carlomosti, Fabrizio; D'Agostino, Marco; Beji, Sara; Torcinaro, Alessio; Rizzi, Roberto; Zaccagnini, Germana; Maimone, Biagina; Di Stefano, Valeria; De Santa, Francesca; Cordisco, Sonia; Antonini, Annalisa; Ciarapica, Roberta; Dellambra, Elena; Martelli, Fabio; Avitabile, Daniele; Capogrossi, Maurizio Colognesi; Magenta, Alessandra

    2017-08-20

    Reactive oxygen species (ROS) play a pivotal role in different pathologic conditions, including ischemia, diabetes, and aging. We previously showed that ROS enhance miR-200c expression, causing endothelial cell (EC) apoptosis and senescence. Herein, we dissect the interaction among miR-200c and three strictly related proteins that modulate EC function and ROS production: sirtuin 1 (SIRT1), endothelial nitric oxide synthase (eNOS), and forkhead box O1 (FOXO1). Moreover, the role of miR-200c on ROS modulation was also investigated. We demonstrated that miR-200c directly targets SIRT1, eNOS, and FOXO1; via this mechanism, miR-200c decreased NO and increased the acetylation of SIRT1 targets, that is, FOXO1 and p53. FOXO1 acetylation inhibited its transcriptional activity on target genes, that is, SIRT1 and the ROS scavengers, catalase and manganese superoxide dismutase. In keeping, miR-200c increased ROS production and induced p66Shc protein phosphorylation in Ser-36; this mechanism upregulated ROS and inhibited FOXO1 transcription, reinforcing this molecular circuitry. These in vitro results were validated in three in vivo models of oxidative stress, that is, human skin fibroblasts from old donors, femoral arteries from old mice, and a murine model of hindlimb ischemia. In all cases, miR-200c was higher versus control and its targets, that is, SIRT1, eNOS, and FOXO1, were downmodulated. In the mouse hindlimb ischemia model, anti-miR-200c treatment rescued these targets and improved limb perfusion. Innovation and Conclusion: miR-200c disrupts SIRT1/FOXO1/eNOS regulatory loop. This event promotes ROS production and decreases NO, contributing to endothelial dysfunction under conditions of increased oxidative stress such as aging and ischemia. Antioxid. Redox Signal. 27, 328-344.

  19. Genotoxic and oxidative stress-inducing effects of deltamethrin in the erythrocytes of a freshwater biomarker fish species, Channa punctata Bloch.

    Science.gov (United States)

    Ansari, Rizwan A; Kaur, Manpreet; Ahmad, Firoz; Rahman, Shakilur; Rashid, Hina; Islam, Fakhrul; Raisuddin, Sheikh

    2009-10-01

    Deltamethrin, an alpha-cyano class of pyrethroid insecticide is used in insect pest control and antimalaria programs in several countries including India. Although various toxic manifestations of deltamethrin are reported in mammals, its ecotoxicologic dimensions are not adequately researched in ecologically and commercially important fishes. In this study, we report genotoxic effect of deltamethrin in a biomarker fish Channa punctata (Bloch). Adult fish were exposed to three concentrations of technical grade deltamethrin (0.4, 0.8, and 1.2 microg/L) for 48 and 72 h. Ethyl methane sulfonate was used as a positive control. Fish were analyzed for induction of micronucleus (MN), nuclear abnormalities (NAs), and oxidative stress biomarkers in erythrocytes. Deltamethrin significantly induced MN and NAs accompanied by increased lipid peroxidation. Activity of antioxidant enzyme superoxide dismutase was significantly decreased but an increase was observed in reduced glutathione level after 72 h of exposure. The NAs in exposed fish included blebbed, lobed and notched nuclei, and binucleated erythrocytes. Our findings suggest that oxidative stress may, in part, be contributing to deltamethrin-induced genotoxic damage to erythrocytes. Although MN induction is a nonspecific biomarker, it may provide an indication of pollution load of deltamethrin in the affected fish population when used as part of suite of other biomarkers.

  20. Activation of Na+-K+-ATPase with DRm217 attenuates oxidative stress-induced myocardial cell injury via closing Na+-K+-ATPase/Src/Ros amplifier.

    Science.gov (United States)

    Yan, Xiaofei; Xun, Meng; Dou, Xiaojuan; Wu, Litao; Zhang, Fujun; Zheng, Jin

    2017-04-01

    Reduced Na + -K + -ATPase activity has close relationship with cardiomyocyte death. Reactive oxygen species (ROS) also plays an important role in cardiac cell damage. It has been proved that Na + -K + -ATPase and ROS form a feed-forward amplifier. The aim of this study was to explore whether DRm217, a proved Na + /K + -ATPase's DR-region specific monoclonal antibody and direct activator, could disrupt Na + -K + -ATPase/ROS amplifier and protect cardiac cells from ROS-induced injury. We found that DRm217 protected myocardial cells against hydrogen peroxide (H 2 O 2 )-induced cardiac cell injury and mitochondrial dysfunction. DRm217 also alleviated the effect of H 2 O 2 on inhibition of Na + -K + -ATPase activity, Na + -K + -ATPase cell surface expression, and Src phosphorylation. H 2 O 2 -treatment increased intracellular ROS, mitochondrial ROS and induced intracellular Ca 2+ , mitochondrial Ca 2+ overload. DRm217 closed Na + -K + -ATPase/ROS amplifier, alleviated Ca 2+ accumulation and finally inhibited ROS and mitochondrial ROS generation. These novel results may help us to understand the important role of the Na + -K + -ATPase in oxidative stress and oxidative stress-related disease.

  1. Role of p16INK4a and BMI-1 in oxidative stress-induced premature senescence in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Cristina Mas-Bargues

    2017-08-01

    Full Text Available Human dental pulp stem cells (hDPSCs are a source for cell therapy. Before implantation, an in vitro expansion step is necessary, with the inconvenience that hDPSCs undergo senescence following a certain number of passages, loosing their stemness properties. Long-term in vitro culture of hDPSCs at 21% (ambient oxygen tension compared with 3–6% oxygen tension (physiological oxygen tension caused an oxidative stress-related premature senescence, as evidenced by increased β-galactosidase activity and increased lysil oxidase expression, which is mediated by p16INK4a pathway. Furthermore, hDPSCs cultured at 21% oxygen tension underwent a downregulation of OCT4, SOX2, KLF4 and c-MYC factors, which was recued by BMI-1 silencing. Thus, p16INK4a and BMI-1 might play a role in the oxidative stress-associated premature senescence. We show that it is important for clinical applications to culture cells at physiological pO2 to retain their stemness characteristics and to delay senescence.

  2. Melatonin Attenuates Noise Stress-induced Gastrointestinal Motility Disorder and Gastric Stress Ulcer: Role of Gastrointestinal Hormones and Oxidative Stress in Rats.

    Science.gov (United States)

    Zhang, Lei; Gong, Ji T; Zhang, Hu Q; Song, Quan H; Xu, Guang H; Cai, Lei; Tang, Xiao D; Zhang, Hai F; Liu, Fang-E; Jia, Zhan S; Zhang, Hong W

    2015-03-30

    There are increasing evidences for gastrointestinal motility disorder (GIMD) and gastric stress ulcer induced by noise stress. The present study was to investigate the reversed effect of melatonin on GIMD and gastric stress ulcer induced by noise stress and potential mechanism. Noise stress was induced on rats, and melatonin (15 mg/kg) was administered to rats by intraperitoneal injection. Differences were assessed in gastric residual rate (GRR), small intestine propulsion rate (SPR), Guth injury score, cortisol, gastrointestinal hormones (calcitonin-gene-related peptide and motilin) and oxidative stress markers (superoxide dismutase and malondialde hyde) in blood plasma as well as gastric mucosa homogenate with or without melatonin. The pathological examination of gastric mucosa was also performed. The GRR and SPR were improved by noise stress compared with control (P stress ulcer. Moreover, the levels of cortisol, motilin and malondialdehyde in blood plasma and ma-londialdehyde in gastric mucosa homogenate were increased by noise stress (P stress ulcer induced by noise stress. The underlying mechanism may be involved in oxidative stress and gastrointestinal hormones.

  3. Preventive and therapeutic effects of physical exercise on bleomycin-induced lung injury and oxidative stress

    Directory of Open Access Journals (Sweden)

    Ricardo Aurino Pinho

    2009-09-01

    Full Text Available Studies have shown that regular physical exercise of moderate intensity is an important tool for the control of pulmonary oxidative stress. The objective of this study was to examine the preventive and therapeutic effect of physical exercise on oxidative stress in the lungs of mice exposed to bleomycin (BLM. Thirty-six male mice (CF1, 30-35 g received a single endotracheal dose of BLM (2.5 U/kg body weight dissolved in 0.25 mL 0.9% NaCl or saline (0.9% NaCl and were divided into six groups (n=6: untrained saline or BLM, preventive training saline or BLM, and therapeutic training saline or BLM. The trained groups underwent a program of progressive exercise on a treadmill for 8 weeks (up to 17 m.min-1, 50 min.day-1. The preventive group started the exercise program 62 days before the administration of BLM and the therapeutic group 62 days after the administration of BLM. All animals were killed by decapitation 48 hours after the experimental period, and the right lung was surgically removed for the determination of biochemical parameters. Hydroxyproline content, TBARS level, protein carbonylation, and superoxide dismutase (SOD and catalase (CAT activities were analyzed. The results showed that preventive and therapeutic training led to a significant reduction in hydroxyproline content and inhibited the increase in oxidative damage to lipids and proteins. However, only therapeutic training decreased SOD and CAT activities in mice exposed to BLM. The results suggest that preventive and therapeutic physical exercise is able to minimize pulmonary oxidative stress induced by BLM.

  4. Preventive and therapeutic effects of physical exercise on bleomycin-induced lung injury and oxidative stress

    Directory of Open Access Journals (Sweden)

    Ricardo Aurino Pinho

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n4p415 Studies have shown that regular physical exercise of moderate intensity is an important tool for the control of pulmonary oxidative stress. The objective of this study was to examine the preventive and therapeutic effect of physical exercise on oxidative stress in the lungs of mice exposed to bleomycin (BLM. Thirty-six male mice (CF1, 30-35 g received a single endotracheal dose of BLM (2.5 U/kg body weight dissolved in 0.25 mL 0.9% NaCl or saline (0.9% NaCl and were divided into six groups (n=6: untrained saline or BLM, preventive training saline or BLM, and therapeutic training saline or BLM. The trained groups underwent a program of progressive exercise on a treadmill for 8 weeks (up to 17 m.min-1, 50 min.day-1. The preventive group started the exercise program 62 days before the administration of BLM and the therapeutic group 62 days after the administration of BLM. All animals were killed by decapitation 48 hours after the experimental period, and the right lung was surgically removed for the determination of biochemical parameters. Hydroxyproline content, TBARS level, protein carbonylation, and superoxide dismutase (SOD and catalase (CAT activities were analyzed. The results showed that preventive and therapeutic training led to a significant reduction in hydroxyproline content and inhibited the increase in oxidative damage to lipids and proteins. However, only therapeutic training decreased SOD and CAT activities in mice exposed to BLM. The results suggest that preventive and therapeutic physical exercise is able to minimize pulmonary oxidative stress induced by BLM.

  5. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Lee, Min-Chul; Kim, Duck-Hyun; Han, Jeonghoon; Hwang, Dae-Sik; Souissi, Sami; Lee, Su-Jae; Shin, Kyung-Hoon; Park, Heum Gi; Lee, Jae-Seong

    2017-01-01

    Microplastic pollution causes a major concern in the marine environment due to their worldwide distribution, persistence, and adverse effects of these pollutants in the marine ecosystem. Despite its global presence, there is still a lack of information on the effect of microplastics on marine organisms at the molecular level. Herein we demonstrated ingestion and egestion of nano- (0.05 μm) and micro-sized (0.5 and 6 μm) polystyrene microbeads in the marine copepod Paracyclopina nana, and examined molecular responses to exposure to microbeads with in vivo endpoints such as growth rate and fecundity. Also, we proposed an adverse outcome pathway for microplastic exposure that covers molecular and individual levels. This study provides the first insight into the mode of action in terms of microplastic-induced oxidative stress and related signaling pathways in P. nana.

  6. Brazilian Pampa Biome Honey Protects Against Mortality, Locomotor Deficits and Oxidative Stress Induced by Hypoxia/Reperfusion in Adult Drosophila melanogaster.

    Science.gov (United States)

    Cruz, L C; Ecker, A; Dias, R S; Seeger, R L; Braga, M M; Boligon, A A; Martins, I K; Costa-Silva, D G; Barbosa, N V; Cañedo, A D; Posser, T; Franco, J L

    2016-02-01

    We aimed to investigate the potential beneficial effects of the Brazilian Pampa biome honey in a Drosophila-based hypoxia model. Adult flies were reared in standard medium in the presence or absence of honey (at a final concentration of 10 % in medium). Then, control flies (4 % sucrose in medium) and honey-treated flies were submitted to hypoxia. Subsequently, flies were analyzed for mortality, neurolocomotor behavior (negative geotaxis), mitochondrial/oxidative stress parameters and expression of hypoxia/stress related genes by RT-qPCR. The HPLC analysis revealed the presence of phenolics and flavonoids in the studied honey. Caffeic acid was the major compound followed by p-coumaric acid and kaempferol. The presence of such compounds was correlated with a substantial antioxidant activity in vitro. Flies subjected to hypoxia presented marked mortality, locomotor deficits and changes in oxidative stress and mitochondrial activity parameters. Honey treatment was able to completely block mortality and locomotor phenotypes. In addition, honey was able to reverse ROS production and hypoxia-induced changes in mitochondrial complex I and II activity. Hypoxia also induced an up-regulation in mRNA expression of Sima (HIF-1), NFκβ, NRF2, HOX, AKT-1, InR, dILP2, dILP5 and HSP27. Honey treatment was not able to modulate changes in the tested genes, indicating that its protective effects involve additional mechanisms other than transcriptional activity of hypoxia-driven adaptive responses in flies. Our results demonstrated, for the first time, the beneficial effects of honey against the deleterious effects of hypoxia/reperfusion processes in a complex organism.

  7. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  8. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-01-01

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H 2 O 2 )-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H 2 O 2 addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H 2 O 2 according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H 2 O 2 -induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H 2 O 2 were blocked by the ERK inhibitor PD98059. Catalase addition prevented H 2 O 2 -induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H 2 O 2 -induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H 2 O 2 -induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H 2 O 2 , BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H 2 O 2 -induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE in C6 cells. However, BE treatment was unable to protect C6 cells from C2-ceramide

  9. Evidence supporting neuroprotective effect of adipose derived stem cells on PC12 cells against oxidative stress induced by H2O2.

    Science.gov (United States)

    Ghorabi, M T; Aliaghaei, A; Sadeghi, Y; Shaerzadeh, F; Rad, A A; Mohamadi, R; J Ebrahimi, M

    2017-03-31

    Adipose-derived stem cells (ADSCs) are a population of cells derived from adipose tissue. ADSCs exhibit multilineage development potential and are able to secrete various factors, which influence adjacent cells. The present study examined the protective effect of ADSC's conditioned media (ADSC-CM) on PC12 cells exposed to H2O2, an oxidative injury model. After isolation, ADSCs were cultured and their osteogenic and adipogenic differentiation confirmed. Then, PC12 cells were co-treated with ADSC-CM and H2O2. Next, the effects of ADSC-CM on neurite outgrowth and cell differentiation in the presence of H2O2 were determined. Moreover, cell viability and apoptotic cell death percentage were evaluated using MTT assay, Hoechst staining and flow cytometry. Our results indicated the neuroprotective effects of ADSC-CM on morphological and morphometrical properties of neuron-like PC12 cells. Additionally, the profound decrease in percentage of apoptotic cells confirmed the protective effects of conditioned media from ADSCs that may be related to the release of trophic factors.

  10. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis.

    Science.gov (United States)

    Verma, Suresh K; Panda, Pritam Kumar; Jha, Ealisha; Suar, Mrutyunjay; Parashar, S K S

    2017-10-24

    This study investigates the in vivo cytotoxicity of ZnO nanoparticles synthesized at industrial scale with embryonic Zebrafish. Industrial synthesis of ZnO nanoparticles was mimicked at lab scale by high energy ball milling technique by milling bulk ZnO particles for 15 h. Synthesized 7 h and 10 h ZnO nanoparticles showed significant alteration of size, zeta potential and optical properties in comparison to Bulk ZnO. Mortality and hatching rate in Zebrafish embryos were influenced by these alterations. Size and charge dependent effect of ZnO nanoparticles exposure on physiology and development of Zebrafish embryos were evident by malfunctioned organ development and abnormal heartbeat rate. Similar dependency on quenching of ROS due to influential hydrogen bond interaction with glycine residue of Sod1 oxidative stress protein and increased apoptosis were observed in cells. The study revealed the mechanism of cytotoxicity in exposed embryonic Zebrafish as an effect of accumulation and internalization inside cells instigating to generation of hypoxic condition and interference with the normal adaptive stress regulation signaling pathways leading towards enhanced apoptosis. The study revealed hidden size and charge dependent in vivo cytotoxicity mechanism of ZnO nanoparticles in Zebrafish embryos insight of the environmental and clinical importance of attention on industrially synthesized ZnO nanoparticles.

  11. N-Acetylcysteine Supplementation Controls Total Antioxidant Capacity, Creatine Kinase, Lactate, and Tumor Necrotic Factor-Alpha against Oxidative Stress Induced by Graded Exercise in Sedentary Men

    Directory of Open Access Journals (Sweden)

    Donrawee Leelarungrayub

    2011-01-01

    Full Text Available Aim of this study was to evaluate the effects of short-term (7 days N-acetylcysteine (NAC at 1,200 mg daily supplementation on muscle fatigue, maximal oxygen uptake (VO2max, total antioxidant capacity (TAC, lactate, creatine kinase (CK, and tumor necrotic factor-alpha (TNF-α. Twenty-nine sedentary men (13 controls; 16 in the supplement group from a randomized control were included. At before and after supplementation, fatigue index (FI was evaluated in the quadriceps muscle, and performed a graded exercise treadmill test to induce oxidative stress, and as a measure of VO2max. Blood samples were taken before exercise and 20 minutes after it at before and after supplementation, to determine TAC, CK, lactate, and TNF-α levels. Results showed that FI and VO2max increased significantly in the supplement group. After exercise decreased the levels of TAC and increased lactate, CK, and TNF-α of both groups at before supplementation. After supplementation, lactate, CK, and TNF-α levels significantly increased and TAC decreased after exercise in the control group. Whereas the TAC and lactate levels did not change significantly, but CK and TNF-α increased significantly in the supplement group. Therefore, this results showed that NAC improved the muscle fatigue, VO2max, maintained TAC, controlled lactate production, but had no influence on CK and TNF-α.

  12. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    Science.gov (United States)

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  13. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    Science.gov (United States)

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini

    2015-12-01

    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. [Ca2+]i Elevation and Oxidative Stress Induce KCNQ1 Protein Translocation from the Cytosol to the Cell Surface and Increase Slow Delayed Rectifier (IKs) in Cardiac Myocytes*

    Science.gov (United States)

    Wang, Yuhong; Zankov, Dimitar P.; Jiang, Min; Zhang, Mei; Henderson, Scott C.; Tseng, Gea-Ny

    2013-01-01

    Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca2+]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes. PMID:24142691

  15. [Ca2+]i elevation and oxidative stress induce KCNQ1 protein translocation from the cytosol to the cell surface and increase slow delayed rectifier (IKs) in cardiac myocytes.

    Science.gov (United States)

    Wang, Yuhong; Zankov, Dimitar P; Jiang, Min; Zhang, Mei; Henderson, Scott C; Tseng, Gea-Ny

    2013-12-06

    Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca(2+)]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes.

  16. Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections.

    Science.gov (United States)

    Roy, Upal; Barber, Paul; Tse-Dinh, Yuk-Ching; Batrakova, Elena V; Mondal, Debasis; Nair, Madhavan

    2015-01-01

    Multi-Drug Resistance Proteins (MRPs) are members of the ATP binding cassette (ABC) drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV) used in highly active antiretroviral therapy (HAART) and antibacterial agents used in Tuberculus Bacilli (TB) therapy. Due to their role in efflux of glutathione (GSH) conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9) have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function, and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.

  17. Role of MRP Transporters in Regulating Antimicrobial Drug Inefficacy and Oxidative Stress-induced Pathogenesis during HIV-1 and TB Infections

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-09-01

    Full Text Available Multi-Drug Resistance Proteins (MRPs are members of the ATP binding cassette (ABC drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV used in highly active antiretroviral therapy (HAART and antibacterial agents used in Tuberculus Bacilli (TB therapy. Due to their role in efflux of glutathione (GSH conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9 have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters.

  18. Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Dorval, J.; Hontela, A.

    2003-01-01

    The role of antioxidants in maintaining the functional integrity of adrenocortical cells during in vitro exposure to endosulfan, an organochlorine pesticide, was investigated in rainbow trout (Oncorhynchus mykiss). Aminotriazole (ATA), an inhibitor of catalase (CAT), L-buthionine sulfoximine (L-BSO), an inhibitor of glutathione (GSH) synthesis, and N-acetyl cysteine (NAC), a glutathione precursor, were used to investigate the role of CAT and GSH redox cycle in protection against the adrenal toxicity of endosulfan, a pesticide that impairs cell viability (LC 50 366 μM) and cortisol secretion (EC 50 19 μM) in a concentration-related manner. Pretreatment with ATA and L-BSO enhanced the toxicity of endosulfan (LC 50 and EC 50 , respectively, 302 and 2.6 μM with ATA, 346 and 3.1 μM with L-BSO), while pretreatment with NAC had no significant effect on cell viability and increased the EC 50 of endosulfan to 51 μM. CAT activity was significantly reduced following exposure to endosulfan when cells were pretreated with ATA. Pretreatment with L-BSO significantly decreased glutathione peroxidase (GPx) activity and reduced glutathione (GSH) levels in a concentration-related manner following exposure to endosulfan, while GSH levels were significantly higher in NAC pretreated cells compared to untreated cells. Finally, pretreatment with ATA and L-BSO increased, while pretreatment with NAC decreased, lipid hydroperoxides (LOOH) levels. CAT, GPx, and GSH were identified as important antioxidants in maintaining the function and integrity of rainbow trout adrenocortical cells and ATA, L-BSO, and NAC were identified as effective modulators of CAT and GSH redox cycle. Moreover, this study suggests that the glutathione redox cycle may be more efficient than catalase in protecting adrenocortical cells against endosulfan-induced oxidative stress

  19. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs. © 2013 The Japanese Urological Association.

  20. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    This study pertains to the potential ability of zinc, used as nutritional supplements, to alternate oxidative stress induced by nickel. Male rats were randomly divided into four groups of eight each. Group I served as the controls; group II received in their drinking water ZnSO4 (227 mg/l); group III received NiSO4 (2 ...

  1. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO)

    Science.gov (United States)

    Magierowska, Katarzyna; Magierowski, Marcin; Surmiak, Marcin; Adamski, Juliusz; Mazur-Bialy, Agnieszka Irena; Pajdo, Robert; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2016-01-01

    Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1–10 mg/kg oral gavage (i.g.)), RuCl3 (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1–10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with NG-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO’s hyperemic and anti-inflammatory properties, but is independent of NO. PMID:27023525

  2. The Protective Role of Carbon Monoxide (CO Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO

    Directory of Open Access Journals (Sweden)

    Katarzyna Magierowska

    2016-03-01

    Full Text Available Carbon monoxide (CO produced by heme oxygenase (HO-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II dimer (CORM-2 causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1–10 mg/kg oral gavage (i.g., RuCl3 (1 mg/kg i.g., zinc protoporphyrin IX (ZnPP (10 mg/kg intraperitoneally (i.p., hemin (1–10 mg/kg i.g. and CORM-2 (1 mg/kg i.g. combined with NG-nitro-l-arginine (l-NNA, 20 mg/kg i.p., 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p., indomethacin (5 mg/kg i.p., SC-560 (5 mg/kg i.g., and celecoxib (10 mg/kg i.g. affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS. Gastric blood flow (GBF, the number of gastric lesions and gastric CO and nitric oxide (NO contents, blood carboxyhemoglobin (COHb level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α, tumor necrosis factor α (TNF-α, cyclooxygenase (COX-2 and inducible NO synthase (iNOS were determined. CORM-2 (1 mg/kg i.g. and hemin (10 mg/kg i.g. significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO’s hyperemic and anti-inflammatory properties, but is independent of NO.

  3. Effect of melatonin on myocardial oxidative stress induced by experimental obstructive jaundice Efecto de la melatonina en el estrés oxidativo del miocardio en un modelo experimental de obstrucción biliar

    Directory of Open Access Journals (Sweden)

    A. Cruz

    2009-07-01

    Full Text Available Objective: melatonin has been demonstrated to have active antioxidant properties in different tissues during experimental cholestasis. The aim of this research was to study myocardial oxidative stress on obstructive jaundice, and to analyze the effect of melatonin on myocardial oxidative lesions. Material and methods: we achieved cholestasis by ligature and sectioning of the main bile duct. Melatonin was administered intraperitoneally (500 µg/kg/day. We measured malondialdehyde (MDA, reduced glutathione (GSH, catalase (CAT, superoxide dismutase (SOD and glutathione peroxydase (GPx antioxidant enzyme levels in the heart tissue. Results: obstructive cholestasis increased MDA and decreased GSH as well as all antioxidant enzymes. Melatonin administration significantly decreased MDA values, and increased GSH and antioxidant enzymes on the icteric animal myocardium. Conclusions: melatonin treatment prevents oxidative stress in the cardiac tissue as induced by experimental cholestasis.

  4. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.

    Science.gov (United States)

    Wang, You-Sheng; Yang, Zhi-Min

    2005-12-01

    Nitric oxide (NO) as a key signaling molecule has been involved in mediation of various biotic and abiotic stress-induced physiological responses in plants. In the present study, we investigated the effect of NO on Cassia tora L. plants exposed to aluminum (Al). Plants pre-treated for 12 h with 0.4 mM sodium nitroprusside (SNP), an NO donor, and subsequently exposed to 10 microM Al treatment for 24 h exhibited significantly greater root elongation as compared with the plants without SNP treatment. The NO-promoted root elongation was correlated with a decrease in Al accumulation in root apexes. Furthermore, oxidative stress associated with Al treatment increased lipid peroxidation and reactive oxygen species, and the activation of lipoxygenase and antioxidant enzymes was reduced by NO. Such effects were confirmed by the histochemical staining for the detection of peroxidation of lipids and loss of membrane integrity in roots. The ameliorating effect of NO was specific, because the NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] completely reversed the effect of NO on root growth in the presence of Al. These results indicate that NO plays an important role in protecting the plant against Al-induced oxidative stress.

  6. Dietary Supplementation of Almond Prevents Oxidative Stress by Advocating Antioxidants and Attenuates Impaired Aversive Memory in Male Rats.

    Science.gov (United States)

    Batool, Zehra; Tabassum, Saiqa; Siddiqui, Rafat Ali; Haider, Saida

    2018-03-01

    Scopolamine, an anti-muscarinic agent, has been shown to induce amnesia and oxidative stress similar to that observed in the older age. The present study was designed to determine the relationship between the oxidative status and memory improvement in scopolamine injected rats pre-administered with almonds. Rats (n = 8) in the almond group were administered orally with 400 mg/kg almond suspension for 28 days daily before the intraperitoneal injection of scopolamine (0.5 mg/kg). Passive avoidance task (PAT) was used to assess memory function at the end of treatment. The present study revealed that scopolamine injection significantly impaired the memory function in rats pre-treated with saline which was accompanied by increased oxidative stress as evident by increased brain malondialdehyde (MDA) levels and reduced activities of antioxidant enzymes as compared to healthy controls. Pre-treatment with almond significantly ameliorated scopolamine-induced oxidative stress and memory dysfunction. These findings suggest that dietary supplementation with almonds may have a beneficial effect in reducing the risk of oxidative stress-induced memory loss and delaying or preventing the onset of age-related memory impairment.

  7. The role of Fas ligand protein in the oxidative stress induced by azoxymethane on crypt colon of rats O papel da proteína ligante Fas no estresse oxidativo induzido pelo azoximetano em criptas do colo de ratos

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Maksoud Bussuan

    2010-12-01

    Full Text Available PURPOSE: To study the protein Fas ligand (FasL on the expression of apoptosis, using a model of oxidative stress induced by azoxymethane (AOM, in the crypt of colon in rats. METHODS: Wistar rats (n=14 were assigned into two groups: control (n=7 and AOM (n=7. A single subcutaneous administration of AOM (5mg/kg or saline solution was performed at the beginning of third week and after three hours samples of proximal colon were collected. The expression of FasL was quantified (Software ImageLab in percentage of areas in the top, base and all crypt. Results were expressed as mean ± sd (Shapiro-Wilks test and t Student test (p OBJETIVO: Avaliar o marcador de apoptose Fas ligante (FasL em um modelo de estresse oxidativo induzido pelo azoximetano (AOM na cripta de cólon em ratos. MÉTODOS: 14 ratos Wistar foram distribuídos em dois grupos: controle (n=7 e AOM (n=7. A AOM (5mg/kg ou solução salina foi aplicada via subcutânea e a coleta de amostras de colo proximal ocorreu 3 horas após. A FasL foi quantificada pelo percentual de áreas no topo, base e toda a cripta. Os resultados foram submetidos aos testes de Shapiro-Wilks e t de Student (p < 0,05. RESULTADOS: No grupo GC, não houve diferença significativa entre a expressão da FasL no topo (10,75 ± 3,33 e base (11,14 ± 3,53 da cripta (p=0,34293740. No grupo AOM não houve diferença significativa entre a expressão da FasL no topo (8,86 ± 4,19 e base (8,99 ± 4,08 e cripta (p=0,78486003. No grupo GC (10,95 ± 3,43 e AOM (8,92 ± 4,13, houve uma diferença significativa da expressão da FasL (p=0,026466821. Redução significativa na expressão da FasL ocorreu nos em GC (10,75 ± 3,33 e AOM (8,86 ± 4,19 no topo da cripta (p = 0,00003755*. Foi observada diminuição significativa em GC (11,14 ± 3,53 e AOM (8,99 ± 4,08 na base da cripta (p=0,00000381**. CONCLUSÃO: Azoximetano induziu o estresse oxidativo identificado pela diminuição significativa da expressão da FasL, embora não haja

  8. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  9. Reorientation in combined stress induced martensite?

    International Nuclear Information System (INIS)

    Sittner, P.; Tokuda, M.

    1995-01-01

    The thermoelastic martensitic transformation induced by independent external forces has been investigated in combined tension-torsion experiments with Cu-Al-Zn-Mn SMA hollow bar polycrystals. When the nonproportional change of the applied stress (reloading) occurs at low volume fraction of stress induced martensite phase, the shape of the experimental transformation path suggests, that the forward or reverse stress induced martensitic transformations take place, depending whether the mechanical energy is being supplied or released. At higher volume fraction of martensite, the deformation behavior upon reloading becomes more complex, suggesting a possible role of martensite to martensite transformations or reorientation processes. (orig.)

  10. Cholinergic Modulation of Restraint Stress Induced Neurobehavioral ...

    African Journals Online (AJOL)

    The involvement of the cholinergic system in restraint stress induced neurobehavioral alterations was investigated in rodents using the hole board, elevated plus maze, the open field and the light and dark box tests. Restraint stress (3h) reduced significantly (p<0.05) the number of entries and time spent in the open arm, ...

  11. Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Sampuda, Katherine M; Riley, Mason; Boyd, Lynn

    2017-04-19

    Environmental stress can affect the viability or fecundity of an organism. Environmental stressors may affect the genome or the proteome and can cause cellular distress by contributing to protein damage or misfolding. This study examines the cellular response to environmental stress in the germline of the nematode, C. elegans. Salt stress, oxidative stress, and starvation, but not heat shock, induce the relocalization of ubiquitin, proteasome, and the TIAR-2 protein into distinct subnuclear regions referred to as stress induced nuclear granules (SINGs). The SINGs form within 1 h of stress initiation and do not require intertissue signaling. K48-linked polyubiquitin chains but not K63 chains are enriched in SINGs. Worms with a mutation in the conjugating enzyme, ubc-18, do not form SINGs. Additionally, knockdown of ubc-20 and ubc-22 reduces the level of SING formation as does knockdown of the ubiquitin ligase chn-1, a CHIP homolog. The nuclear import machinery is required for SING formation. Stressed embryos containing SINGs fail to hatch and cell division in these embryos is halted. The formation of SINGs can be prevented by pre-exposure to a brief period of heat shock before stress exposure. Heat shock inhibition of SINGs is dependent upon the HSF-1 transcription factor. The heat shock results suggest that chaperone expression can prevent SING formation and that the accumulation of damaged or misfolded proteins is a necessary precursor to SING formation. Thus, SINGs may be part of a novel protein quality control system. The data suggest an interesting model where SINGs represent sites of localized protein degradation for nuclear or cytosolic proteins. Thus, the physiological impacts of environmental stress may begin at the cellular level with the formation of stress induced nuclear granules.

  12. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice.

    Science.gov (United States)

    Wang, Yuchan; Kan, Hongwei; Yin, Yanyan; Wu, Wangyang; Hu, Wen; Wang, Mingming; Li, Weiping; Li, Weizu

    2014-05-01

    Alzheimer's disease (AD) is one of the major neurological diseases of the elderly. Chronic stress, which can induce atrophy and functional impairments in several key brain areas such as the frontal cortex and hippocampus, plays an important role in the generation and progression of AD. Currently, there are no effective drug treatment options for preventing chronic stress induced learning and memory impairments and neuronal damage. Ginsenoside Rg1 (Rg1) is a steroidal saponin abundantly contained in ginseng. This study explored the neuroprotective effects of Rg1 on chronic restraint stress (CRS) induced learning and memory impairments in a mouse model. Our results showed that Rg1 (5mg/kg) significantly protected against learning and memory impairments induced by CRS in a Morris water maze. Besides, Rg1 (2, 5mg/kg) was able to decrease ROS generation and attenuate the neuronal oxidative damage in the frontal cortex and hippocampus CA1 in mice. Additionally, the inhibition of NOX2, p47phox and RAC1 expression is also involved in the action mechanisms of Rg1 in this experimental model. This study provided an experimental basis for the clinical application of Rg1 in chronic stress induced neuronal oxidative damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Pursuit of oxidation behavior for conjugated polyenoyl glycerols and establishment of their novel oxidation prevention method.

    Science.gov (United States)

    Kuge, Yohko; Kanda, Ayato; Hara, Setsuko

    2009-01-01

    Although conjugated oils are paid much attentions to their interesting physiological properties such as anticancer, anti-arteriosclerosis, anti-hypertension activities, loss in body fat etc, there is few information on their oxidation behavior. In the present work, their oxidation behavior and oxidation prevention method were evaluated to utilize as functional foods or drugs. As results, an oxidation behavior of conjugated oils was different from that of corresponding non-conjugated oils, and conjugated oils were supposed to form not only hydroperoxides but also kinds of cyclic peroxides as primary oxidation products in the autoxidation. In a thermal oxidation, polymerization reaction might be prior to decomposition reaction owing to form a large quantity of more polymerized products in conjugated oils. Solidification of conjugated oils by thermal oxidation was prevented for long time by addition of tocopherol, and optimal addition amounts of tocopherol into conjugated oils were 1,000 ppm either in autoxidation or thermal oxidation. Equi-molar of phosphatidyl ethanolamine showed synergistic effect slightly on 1,000 ppm tocopherol for preventing thermal oxidation of conjugated oil.

  14. Oxidative stress in Alzheimer disease: a possibility for prevention.

    Science.gov (United States)

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Surgical stress induced depressive and anxiety like behavior are improved by dapsone via modulating NADPH oxidase level.

    Science.gov (United States)

    Zhang, Tao; Tian, Xiaosheng; Wang, Qiudian; Tong, Yawei; Wang, Hecheng; Li, Zhengqian; Li, Lunxu; Zhou, Ting; Zhan, Rui; Zhao, Lei; Sun, Yang; Fan, Dongsheng; Lu, Lin; Zhang, Jing; Jin, Yinglan; Xiao, Weizhong; Guo, Xiangyang; Chui, Dehua

    2015-01-12

    Surgical stress induced depression and anxiety like behavior are common complications among aged individuals suffering from surgery. Recent studies proposed that accumulation of oxidative stress is involved in the etiology of stress induced depression and anxiety. Dapsone possesses antioxidant properties, however, whether dapsone is effective in modulating surgical stress induced brain oxidative damage remains uncertain. The present study aimed to investigate the effect of dapsone on surgical stress induced depressive and anxiety like behavior, and brain oxidative stress in a well-established surgical stress model. Depressive and anxiety like behavior accompanied by elevated brain oxidative stress were observed in aged mice underwent abdominal surgery. Pretreatment with 5 mg/kg dapsone significantly improved the behavioral disorder and ameliorated brain oxidative stress in this model. Further investigation, revealed that surgical stress increased brain NADPH oxidase level, while pretreatment with dapsone abrogated the elevation of NADPH oxidase triggered by surgical stress. These findings suggest that dapsone is effective in improving surgical stress induced brain oxidative damage via down-regulating NADPH oxidase level in aged mice. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Simón Quetzalcoatl Rodríguez-Lara

    2016-01-01

    Full Text Available Ischemia/reperfusion (I/R lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.

  17. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    Science.gov (United States)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  18. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content

    OpenAIRE

    Rosalie , Rémy; Joas , Jacques; Deytieux-Belleau , Christelle; Vulcain , Emmanuelle; Payet , Bertrand; Dufossé , Laurent; Léchaudel , Mathieu

    2015-01-01

    International audience; The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H 2 O 2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrig...

  19. Bee products prevent agrichemical-induced oxidative damage in fish.

    Directory of Open Access Journals (Sweden)

    Daiane Ferreira

    Full Text Available In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™ and a group that was exposed to 0.88 mg L(-1 of TEB alone (corresponding to 16.6% of the 96-h LC50. We show that waterborne bee products, including royal jelly (RJ, honey (H, bee pollen (BP and propolis (P, reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST are increased.

  20. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    Science.gov (United States)

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  1. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion.

    Science.gov (United States)

    Hu, Yuan; Zhang, Miao; Chen, Yunyun; Yang, Ying; Zhang, Jun-Jian

    2018-01-11

    Whether intermittent fasting (IF) treatment after stroke can prevent its long-term detrimental effects remains unknown. Here, we investigate the effects of postoperative IF on cognitive deficits and its underlying mechanisms in a permanent two-vessel occlusion (2VO) vascular dementia rat model. Rats were subjected to either IF or ad libitum feeding 1 week after 2VO surgery. The cognition of rats was assessed using the novel object recognition (NOR) task and Morris water maze (MWM) 8 weeks after surgery. After behavioral testing, hippocampal malondialdehyde (MDA) and glutathione (GSH) concentrations, superoxide dismutase (SOD) activity, gene expression of antioxidative enzymes, inflammatory protein levels, and microglia density were determined. Postoperative IF significantly ameliorated the cognitive performance of 2VO rats in the NOR and MWM tests. Cognitive enhancement paralleled preservation of the PSD95 and BDNF levels in the 2VO rat hippocampus. Mechanistically, postoperative IF mitigated hippocampal oxidative stress in 2VO rats, as indicated by the reduced MDA concentration and mRNA and the protein levels of the reactive oxygen species-generating enzyme nicotinamide adenine dinucleotide phosphate oxidase 1. IF treatment also preserved the GSH level and SOD activity, as well as the levels of their upstream regulating enzymes, resulting in preserved antioxidative capability. In addition, postoperative IF prevented hippocampal microglial activation and elevation of sphingosine 1-phosphate receptor 1 and inflammatory cytokines in 2VO rats. Our results suggest that postoperative IF suppresses neuroinflammation and oxidative stress induced by chronic cerebral ischemia, thereby preserving cognitive function in a vascular dementia rat model.

  2. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.

    Science.gov (United States)

    Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu

    2015-07-20

    The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. [Progress of stress-induced flowering in plants].

    Science.gov (United States)

    Zhang, Min; Zhu, Jiaxu; Wang, Lei; Xu, Miaoyun

    2016-10-25

    Plants tend to flower earlier if placed under stress conditions. Those stress factors include drought, high salinity, low temperature, high- or low-intensity light, and ultraviolet light. This phenomenon has been called stress-induced flowering. Stress-induced plant flowering might be helpful for species preservation. Thus, stress-induced flowering might have biological significance and should be considered as important as other plant flowering control strategy. Here, history of stress-induced flowering, metabolic regulation and molecular regulation mechanisms in plants were reviewed. Potential perspective was discussed.

  4. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  5. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  6. Plasma Lipoproteins as Mediators of the Oxidative Stress Induced by UV Light in Human Skin: A Review of Biochemical and Biophysical Studies on Mechanisms of Apolipoprotein Alteration, Lipid Peroxidation, and Associated Skin Cell Responses

    Directory of Open Access Journals (Sweden)

    Paulo Filipe

    2013-01-01

    Full Text Available There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL and low-density lipoprotein (LDL as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces •Trp and O2•- radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO• by α-tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α-tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α-tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α-tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  7. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jia-Wei [Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin 300072 (China); Beijing Institute of Radiation Medicine, Beijing 100850 (China); Liu, Jing [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Kong, Xiang-Zhen [Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin 300072 (China); Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Shou-Guo [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Xiao-Hui [Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China); Yu, Miao; Zhan, Yi-Qun; Li, Wei; Xu, Wang-Xiang [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Tang, Liu-Jun [Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China); Ge, Chang-Hui [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Lin, E-mail: wanlin07@sina.com [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Li, Chang-Yan, E-mail: happylichy@yahoo.com.cn [Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China); Yang, Xiao-Ming, E-mail: xmyang2@nic.bmi.ac.cn [Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin 300072 (China); Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China)

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6

  8. Severity of Stress Induced Factors Among Students in Tertiary ...

    African Journals Online (AJOL)

    The thrust of this study was to assess the serverity of ten main stress induced factors among students in tertiary institutions in llorin metropolis. A total of 600 respondents participated in the study. The findings revealed that financial, family, infrastructure!, academic and social relationship stress induced factors were ranked as ...

  9. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  10. Amelioration of oxidative stress-induced phenotype loss of parvalbumin interneurons might contribute to the beneficial effects of environmental enrichment in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Sun, Xiao R; Zhang, Hui; Zhao, Hong T; Ji, Mu H; Li, Hui H; Wu, Jing; Li, Kuan Y; Yang, Jian J

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, which is characterized by anxiety- and depression-like behaviors and cognitive impairment. However, the underlying mechanisms remain elusive. Parvalbumin (PV) interneurons that are susceptible to oxidative stress are a subset of inhibitory GABAergic neurons regulating the excitability of pyramidal neurons, while dysfunction of PV interneurons is casually linked to many mental disorders including PTSD. We therefore hypothesized that environmental enrichment (EE), a method of enhanced cognitive, sensory and motor stimulation, can reverse the behavioral impairments by normalizing PV interneurons in a rat model of PTSD induced by inescapable foot shocks (IFS). Behavioral changes were determined by the open field, elevated plus maze, fear conditioning, and Morris water maze tests. The levels of nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), NOX4, PV, glutamic acid decarboxylase 67 (GAD-67), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in the hippocampus and prefrontal cortex were determined. Our results showed that in this PTSD model, rats displayed the anxiety-like behavior, enhanced fear learning behavior, and hippocampus- dependent spatial memory deficit, which were accompanied by the up-regulation of NOX2, 8-OH-dG, and down-regulation of PV and GAD-67. Notably, EE reversed all these abnormalities. These results suggest that restoration of PV interneurons by inhibiting oxidative stress in the hippocampus and prefrontal cortex might represent a mechanism through which EE reverses the behavioral impairments in a rat model of PTSD induced by IFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  12. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  13. Radiation oxidative stress in cancer induction and prevention

    International Nuclear Information System (INIS)

    Meher, Prabodha Kumar; Mishra, Kaushala Prasad

    2017-01-01

    Exposure of cells to ionizing radiation causes generation of intracellular reactive oxygen species (ROS) which are implicated in the mechanism of carcinogenesis. Molecular steps involved in the transformation of normal cells to cancer cells have been enigmatic but generally believed to arise from aberration in cellular redox homeostasis. In normal cell function, a delicate balance is maintained between ROS generated in the metabolic process and level of endogenous antioxidant defense. ROS are known to regulate various cellular functions, such as cell division, signal transduction, and apoptosis. Cells experience oxidative stress when excess production of ROS occurs inside a cell upon exposure to external stress or agents. This redox imbalance affects the cellular functions due to DNA strand breaks, chromosomal aberrations, gene mutations, alteration in signal transduction, and inhibition of apoptosis leading to induction of cancer and other diseases. Radiation-induced ROS are involved in initiation and promotion of carcinogenesis. Therefore, detoxification of ROS by exogenous antioxidants including dietary polyphenols offers an important strategy for cancer prevention. Recent research results have shown that resistance of cancer stem cells to therapies is linked to low level of ROS. Interestingly, in vitro and in vivo experiments have reported that radiotherapy- and chemotherapy-induced ROS in cytosol sensitize the tumor cells to death, resulting in tumor growth retardation. This review is an attempt to delineate mechanisms of ROS in carcinogenesis and prevention by dietary compounds. Natural polyphenols and dietary antioxidants hold potential to prevent cancer. Interventions in ROS-mediated signal alteration, apoptosis activation, and modulation of epigenetic processes may offer effective cancer prevention strategy. (author)

  14. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists.

    Science.gov (United States)

    Varma, Shambhu D; Kovtun, Svitlana; Hegde, Kavita R

    2011-07-01

    Cataract is a significant cause of visual disability with relatively high incidence. It has been proposed that such high incidence is related to oxidative stress induced by continued intraocular penetration of light and consequent photochemical generation of reactive oxygen species, such as superoxide and singlet oxygen and their derivatization to other oxidants, such as hydrogen peroxide and hydroxyl radical. The latter two can also interact to generate singlet oxygen by Haber-Weiss reaction. It has been proposed that in addition to the endogenous enzymatic antioxidant enzymes, the process can be inhibited by many nutritional and metabolic oxyradical scavengers, such as ascorbate, vitamin E, pyruvate, and xanthine alkaloids, such as caffeine. Initial verification of the hypothesis has been done primarily by rat and mouse lens organ culture studies under ambient as well as ultraviolet (UV) light irradiation and determining the effect of such irradiation on its physiology in terms of its efficiency of active membrane transport activity and the levels of certain metabolites such as glutathione and adenosine triphosphate as well as in terms of apoptotic cell death. In vivo studies on the possible prevention of oxidative stress and cataract formation have been conducted by administering pyruvate and caffeine orally in drinking water and by their topical application using diabetic and galactosemic animal models. Photosensitized damage to lens caused by exposure to visible light and UVA has been found to be significantly prevented by ascorbate and pyruvate. Caffeine has been found be effective against UVA and UVB. Oral or topical application of pyruvate has been found to inhibit the formation of cataracts induced by diabetes and galactosemia. Caffeine has also been found to inhibit cataract induced by sodium selenite and high levels of galactose. Studies with diabetes are in progress. Various in vitro and in vivo studies summarized in this review strongly support the

  15. Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple.

    Science.gov (United States)

    Tan, Yanxiao; Yang, Yingli; Li, Chao; Liang, Bowen; Li, Mingjun; Ma, Fengwang

    2017-06-01

    Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that prevent the catalysis of papain-like cysteine proteases. The action of cystatins in stress tolerance has been studied intensively, but relatively little is known about their functions in plants during leaf senescence. Here, we examined the potential roles of the apple cystatin, MpCYS4, in leaf photosynthesis as well as the concentrations and composition of leaf proteins when plants encounter natural or stress-induced senescence. Overexpression of this gene in apple rootstock M26 effectively slowed the senescence-related declines in photosynthetic activity and chlorophyll concentrations and prevented the action of cysteine proteinases during the process of degrading proteins (e.g., Rubisco) in senescing leaves. Moreover, MpCYS4 alleviated the associated oxidative damage and enhanced the capacity of plants to eliminate reactive oxygen species by activating antioxidant enzymes such as ascorbate peroxidase, peroxidase, and catalase. Consequently, plant cells were protected against damage from free radicals during leaf senescence. Based on these results, we conclude that MpCYS4 functions in delaying natural and stress-induced senescence of apple leaves. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Oxidative stress induced by torsion of the spermatic cord in young rats Estresse oxidativo induzido por torção do cordão espermático em ratos jovens

    Directory of Open Access Journals (Sweden)

    Sergio Botelho Guimarães

    2007-02-01

    Full Text Available PURPOSE: To evaluate the effects of the oxidative stress in an experimental model of torsion/detorsion of the spermatic cord and the legitimacy of this model for oxidative stress studies. METHODS: Forty-eight male Wistar rats were randomized in two groups (n=24: G-1 (Sham and G-2 (Ischemia/Reperfusion. All rats received intraperitoneal saline injections (2.0 ml, at 21, 9, and 1 h before right spermatic cord torsion or first sham operation. Detorsion or second sham operation was carried out 3 h later followed by testis and blood samples collection (T-0. Additional samples were collected at 1-3-6 h time-points for assessment of testis malonaldehyde, glutathione, and plasma total antioxidant power (TAP. RESULTS: Spermatic cord torsion/detorsion induced a significant increase in testicular malonaldehyde contents and a significant decrease in glutathione concentrations in ischemic rats compared with sham animals. Additional increase in malonaldehyde levels occurred during reperfusion in G-2 rats. TAP was similar in both groups denoting absence of systemic effects in this study. CONCLUSION: Torsion/detorsion of the spermatic cord for 3 h induces significant lipid peroxidation and reduction in glutathione content of the testis and is, therefore, a valid model for studying the oxidative stress effects of the ischemia/reperfusion injury in young rat testis.OBJETIVO: Investigar os efeitos do estresse oxidativo utilizando um modelo experimental de torção/destorção do cordão espermático e a aplicabilidade do modelo para estudo do estresse oxidativo. MÉTODOS: Foram utilizados 48 ratos distribuídos aleatoriamente em dois grupos (n=24: G-1 (Simulado e G-2 (Isquemia/Reperfusão. Todos os animais receberam injeções intraperitoniais de solução salina (2,0 ml 21-9-1 horas antes da torção ou primeira operação simulada. A destorção/segunda operação simulada (T-0 foi realizada após 3 horas, com coleta das amostras (testículo e sangue arterial

  17. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  18. The Different Roles of Glucocorticoids in the Hippocampus and Hypothalamus in Chronic Stress-Induced HPA Axis Hyperactivity

    Science.gov (United States)

    Liu, Xiao; Chen, Chen; Han, Zhou; Wu, Hai-Yin; Jing, Xing; Zhou, Hai-Hui; Suh, Hoonkyo; Zhu, Dong-Ya; Zhou, Qi-Gang

    2014-01-01

    Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression. PMID:24831808

  19. Rosemary as natural antioxidant to prevent oxidation in chicken burgers

    Directory of Open Access Journals (Sweden)

    Daiane PEREIRA

    Full Text Available Abstract Rosemary (Rosmarinus officinalis is known for their sensory characteristics and antioxidant properties, mainly due to the presence of several phenolic compounds. The aim of this work, was determine the antioxidant activity and apply the Rosemary lyophilized extract (RLE in chicken burger, for assess their ability to reduce the lipid oxidation. Total antioxidant capacity and phenolic compounds profile were analyzed by colorimetric tests and liquid chromatography analysis, respectively. Thiobarbituric acid reactive substances assay was used to evaluate the ability of the RLE to prevent lipid peroxidation in chicken burger stored at 4 °C. Three treatments of chicken burgers were prepared (T1 – control, without addition of synthetic antioxidant BHT: butylated hydroxytoluene or RLE, T2 – with addition of BHT, and T3 – experimental, containing RLE. The high contents of total phenolic compounds (40.91 mg GAE g-1: Gallic Acid Equivalent and total flavonoids (24.26 mg QE g-1: Quercetin Equivalents were found in RLE. Rutin was the major phenolic compound identified in the RLE. The RLE showed strong antioxidant capacity and inhibited 48.29% of lipid oxidation (21 days of storage in comparison to the control (T1, with low production of malonaldehyde, which has potential to be used in chicken burgers.

  20. Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoG-DNA glycosylase levels in glial cells.

    Science.gov (United States)

    Kumar, Premranjan; Rao, G Nageswar; Pal, Bibhuti Bhusan; Pal, Arttatrana

    2014-08-01

    Glial cells are very important for normal brain function and alterations in their activity due to hyperglycemia, could contribute to diabetes-related cognitive dysfunction. Oxidative insults often cause rapid changes in almost all cells including glial cells. However, pathophysiologic mechanisms that lead to diabetic complications are not completely elucidated. Therefore, we examined whether elevated glucose levels directly or indirectly disrupt antioxidant defense mechanisms causing alterations in signaling pathways, cell cycle dysregulation, and reactive oxygen/nitrogen species-mediated apoptosis in glial cells. Findings of this study demonstrated that exposure of glial cells to high glucose markedly induces cellular and molecular injuries, as evidenced by elevated levels of reactive oxygen/nitrogen species, biomolecules damage, cell cycle dysregulation, decrease in antioxidant enzymes, and decrease in cell viability. Pretreatment of cells with N-acetyl-L-cysteine reduced high glucose-induced cytotoxicity by increasing the levels of antioxidant enzymes, and decreasing the number of apoptotic cells. Further, at molecular level high glucose treatment resulted in a significant increase in phosphorylation of Akt, MAPKs, tuberin, down regulation of 8-oxoG-DNA glycosylase and increase in 8-hydroxydeoxyguanosine accumulations. Pretreatment of cells with N-acetyl-L-cysteine, phosphatidylinositol3-kinase/Akt and ERK1/2 inhibitors completely abolished the apoptotic effects of high glucose. Moreover, N-acetyl-L-cysteine significantly inhibited reactive oxygen/nitrogen species generation, elevated antioxidants levels, inhibited Akt, ERK1/2, tuberin phosphorylation, decreased 8-hydroxydeoxyguanosine accumulation and upregulated 8-oxoG-DNA glycosylase expression. Our results demonstrate that high glucose induces apoptosis and inhibits proliferation of glial cells, which may be mediated by the phosphorylation of tuberin, down regulation of 8-oxoG-DNA glycosylase and 8

  1. [Hepatoprotective effect of deanol aceglumate on experimental stress-induced gastropathy and diabetes mellitus].

    Science.gov (United States)

    Blinov, D S; Gogina, E D; Krupnova, T S; Balashov, V P; blinova, E V; Sadovnikov, V N; Lebedev, A B; Nikitina, O I

    2012-01-01

    Experiments on mice with streptozotocin-induced diabetes mellitus and stress-induced erosive ulcerous damage of the mucous membrane of stomach showed evidence of the preventive activity of deanol aceglumate in the course of peroral introduction at a dose of 250 mg/kg per 24 h during 4 days. This effect is accompanied by activation of the peristalsis of bowels and by an increase in the blood flow in the wall of stomach.

  2. Zinc stress induces copper depletion in Acinetobacter baumannii.

    Science.gov (United States)

    Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A

    2017-03-11

    The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.

  3. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  4. Stress-Induced Eating Dampens Physiological and Behavioral Stress Responses

    OpenAIRE

    Finch, LE; Tomiyama, AJ

    2014-01-01

    Both psychological and physical stressors induce the secretion of glucocorticoids and insulin, which increase the consumption of palatable high-fat, high-sugar "comfort foods." Chronic engagement in stress-induced eating behavior leads to visceral fat accumulation, which in turn dampens hypothalamic-pituitary-adrenal axis activity. The joint role of stress-induced eating and abdominal fat stores in attenuating physiological stress responses has been well characterized in nonhuman animal model...

  5. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety

    Science.gov (United States)

    McCall, Jordan G.; Al-Hasani, Ream; Siuda, Edward R.; Hong, Daniel Y.; Norris, Aaron J.; Ford, Christopher P.; Bruchas, Michael R.

    2015-01-01

    Summary The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin releasing hormone+ (CRH+) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. PMID:26212712

  6. Oxidative stress induces idiopathic infertility in Egyptian males

    African Journals Online (AJOL)

    Yomi

    2012-01-19

    Jan 19, 2012 ... transferase (GST), glutathione peroxide (GPX) and reduced glutathione (GSH). The TBARS levels were ... GST, SOD and GSH were significantly low in oligospermic patients by 33.33, 39.655 and. 53.16%, respectively while ..... region in India show low incidence of Y-chromosome microdeletion. J. Biosci.

  7. Evaluation of cytotoxicity and oxidative stress induced by alcoholic ...

    African Journals Online (AJOL)

    ... that plays a major role in metabolism, digestion, detoxification, and elimination of substances from the body, the present studies were designed to investigate the possible adverse effect of alcoholic extract of seeds of Lepidium sativum (LSA) and Lepidium sativum seed oil (LSO) on HepG2 cells, a human liver cell line.

  8. Genotoxicity and oxidative stress induced by cadmium and zinc in ...

    African Journals Online (AJOL)

    Then, the comet assay showed a DNA damage increase induced by Cd (0.13 and 0.2 mg/L) as high as 94% over the control level; the effect by Zn (from 0.2 to 2.7 mg/L) was clearly lower, although statistically significant with the high concentrations tested. As regards the two mixtures, we observed a concentration dependent ...

  9. Evaluation of cytotoxicity and oxidative stress induced by alcoholic ...

    African Journals Online (AJOL)

    Maqsood

    dependent manner indicated by decrease in glutathione level, catalase activity, and SOD activity and an ... noids, isothiocynates glycoside, essential aromatic oils, .... Catalase activity. The activity of catalase in cells was assayed following the protocol of Sinha (1972) using H2O2 as substrate. Reaction mixture in a final.

  10. Aqueous Extract of Phyllanthus niruri Leaves Displays In Vitro Antioxidant Activity and Prevents the Elevation of Oxidative Stress in the Kidney of Streptozotocin-Induced Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Nelli Giribabu

    2014-01-01

    Full Text Available P. niruri has been reported to possess antidiabetic and kidney protective effects. In the present study, the phytochemical constituents and in vitro antioxidant activity of P. niruri leaf aqueous extract were investigated together with its effect on oxidative stress and antioxidant enzymes levels in diabetic rat kidney. Results. Treatment of diabetic male rats with P. niruri leaf aqueous extract (200 and 400 mg/kg for 28 consecutive days prevents the increase in the amount of lipid peroxidation (LPO product, malondialdehyde (MDA, and the diminution of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx activity levels in the kidney of diabetic rats. The amount of LPO showed strong negative correlation with SOD, CAT, and GPx activity levels. P. niruri leaf aqueous extract exhibits in vitro antioxidant activity with IC50 slightly lower than ascorbic acid. Phytochemical screening of plant extract indicates the presence of polyphenols. Conclusion. P. niruri leaf extract protects the kidney from oxidative stress induced by diabetes.

  11. Peroxiredoxins prevent oxidative stress during human sperm capacitation

    Science.gov (United States)

    Lee, Donghyun; Moawad, Adel R.; Morielli, Tania; Fernandez, Maria C.

    2017-01-01

    Abstract STUDY QUESTION Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? SUMMARY ANSWER PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. WHAT IS KNOWN ALREADY Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22–30 years old over a period of 1 year. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. MAIN RESULTS AND THE ROLE OF CHANCE TSP and MJ33 prevented sperm

  12. Possible Biomarkers of Chronic Stress Induced Exhaustion - A Longitudinal Study.

    Science.gov (United States)

    Wallensten, Johanna; Åsberg, Marie; Nygren, Åke; Szulkin, Robert; Wallén, Håkan; Mobarrez, Fariborz; Nager, Anna

    2016-01-01

    Vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and monocyte chemotactic protein-1 (MCP-1) have previously been suggested to be potential biomarkers for chronic stress induced exhaustion. The knowledge about VEGF has increased during the last decades and supports the contention that VEGF plays an important role in stress and depression. There is scarce knowledge on the possible relationship of EGF and MCP-1 in chronic stress and depression. This study further examines the role of VEGF, EGF and MCP-1 in women with chronic stress induced exhaustion and healthy women during a follow-up period of two years. Blood samples were collected from 105 women with chronic stress induced exhaustion on at least 50% sick leave for at least three months, at inclusion (T0), after 12 months (T12) and after 24 months (T24). Blood samples were collected at inclusion (T0) in 116 physically and psychiatrically healthy women. The plasma levels of VEGF, EGF and MCP-1 were analyzed using Biochip Array Technology. Women with chronic stress induced exhaustion had significantly higher plasma levels of VEGF and EGF compared to healthy women at baseline, T12 and at T24. There was no significant difference in plasma levels of MCP-1. Plasma levels of VEGF and EGF decreased significantly in women with chronic stress induced exhaustion during the two years follow-up. The replicated findings of elevated levels of VEGF and EGF in women with chronic stress induced exhaustion and decreasing plasma levels of VEGF and EGF during the two years follow-up add important knowledge to the pathophysiology of chronic stress induced exhaustion.

  13. Chronic psychological stress induces vascular inflammation in rabbits.

    Science.gov (United States)

    Lu, Xiao Ting; Liu, Yun Fang; Zhao, Li; Li, Wen Jing; Yang, Rui Xue; Yan, Fang Fang; Zhao, Yu Xia; Jiang, Fan

    2013-01-01

    Psychological stress is associated with a systemic inflammatory response. It is unclear, however, whether psychological stress contributes to vascular inflammation. Here, we examined the effects of unpredictable chronic mild stress (UCMS) on vascular inflammation in rabbits. One hundred rabbits were randomly divided into control and stress groups. UCMS was induced by a set of defined adverse conditions applied in a shuffled order for 4, 8, 12, or 16 weeks, and rabbits were killed 24 h after the end of the UCMS protocol. Expression of different inflammatory molecules was analyzed by real-time polymerase chain reaction, immunohistochemistry, or enzyme-linked immunosorbent assay. UCMS resulted in depression-like behaviors, decreased body weight gain, and hypertension with no significant effects on serum lipids. Aortic mRNA and protein expression for tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibitory factor, and expression of intercellular adhesion molecule-1 (ICAM-1) protein were increased. UCMS increased circulating concentrations of corticosterone, TNF-α, and CRP throughout. Moreover, stress downregulated the expression of endothelial nitric oxide synthase. At 16 weeks of UCMS, macrophage infiltration and lipid accumulation in the subendothelial space were detected in the aorta. In cultured murine vascular smooth muscle cells, treatment with serum from stressed rabbits significantly increased phosphorylation of p38 and c-Jun N-terminal kinase (JNK), and upregulated expression of MCP-1 and ICAM-1 mRNAs, in which the effect was blunted by a TNF-α neutralizing antibody or p38 and JNK inhibitors. Our results indicate that chronic psychological stress induces vascular inflammation via TNF-α and p38/JNK pathways, which may contribute to the development of atherosclerosis.

  14. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  15. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... the swim stress-induced OT response. CONCLUSION: 5-HT(2A), 5-HT(2C) and possibly 5-HT(3) and 5-HT(4) receptors, but not 5-HT(1A) receptors, are involved in the restraint stress-induced AVP secretion. 5-HT does not seem to be involved in the dehydration- or hemorrhage-induced AVP response. The restraint...... stress-induced OT response seems to be mediated via 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors. The dehydration and hemorrhage-induced OT responses are at least mediated by the 5-HT(2A) and 5-HT(2C) receptors. The 5-HT(3) and 5-HT(4) receptors are not involved in stress-induced OT secretion....

  16. Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death.

    Science.gov (United States)

    Illam, Soorya Parathodi; Narayanankutty, Arunaksharan; Raghavamenon, Achuthan C

    2017-07-01

    Virgin coconut oil (VCO), extracted from the fresh coconut kernel, is a food supplement enriched with medium chain saturated fatty acids and polyphenolic antioxidants. It is reported to have several health benefits including lipid lowering, antioxidant and anti-inflammatory activities. The pharmacological benefits of VCO have been attributed to its polyphenol content (VCOP), the mechanistic basis of which is less explored. Liquid chromatography/mass spectroscopy (LC/MS) analysis of VCOP documented the presence of gallic acid, ferulic acid (FA), quercetin, methyl catechin, dihydrokaempferol and myricetin glycoside. Pre-treatment of VCOP at different concentrations (25-100 μg/mL) significantly reduced the H 2 O 2 and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced cell death in HCT-15 cells. Giving further insight to its mechanistic basis, oxidative stress induced alterations in glutathione (GSH) levels and activities of GR (Glutathione-Reductase), GPx (Glutathione-Peroxidase), GST (Glutathione-S-Transferase) and catalase (CAT) were restored to near-normal by VCOP, concomitantly reducing lipid peroxidation. The efficacy of VCOP was similar to that of Trolox and FA added in culture. The study thus suggests that VCOP protects cells from pro-oxidant insults by modulating cellular antioxidant status.

  17. New methods and antioxidants to prevent oxidation of omega-3 oil supplements

    Science.gov (United States)

    Omega-3 oils have gained much attention recently due to their beneficial health effects. However, their polyunsaturated fats (PUFAs) are so prone to oxidation in the presence of oxygen, heat, light, and metal ions that a strong antioxidant is needed to prevent oxidation during manufacturing processe...

  18. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  19. Zinc in the prevention of Fe2initiated lipid and protein oxidation

    Directory of Open Access Journals (Sweden)

    M. PAOLA ZAGO

    2000-01-01

    Full Text Available In the present study we characterized the capacity of zinc to protect lipids and proteins from Fe2+-initiated oxidative damage. The effects of zinc on lipid oxidation were investigated in liposomes composed of brain phosphatidylcholine (PC and phosphatidylserine (PS at a molar relationship of 60:40 (PC:PS, 60:40. Lipid oxidation was evaluated as the oxidation of cis-parinaric acid or as the formation of 2-thiobarbituric acid-reactive substances (TBARS. Zinc protected liposomes from Fe2+ (2.5-50 muM-supported lipid oxidation. However, zinc (50 muM did not prevent the oxidative inactivation of glutamine synthelase and glucose 6-phosphate dehydrogenase when rat brain superntants were oxidized in the presence of 5 muM Fe2+ and 0.5 mM H2O2 .We also studied the interactions of zinc with epicatechin in the prevention of liid oxidation in liposomes. The simulaneous addition of 0.5 muM epicatechin (EC and 50 muM zinc or EC separately. Zinc (50 muM also protecte liposomes from the stimulatory effect of aluminum on Fe2+-initiated lipid oxidation. Zinc could play an important role as an antioxidant in biological systems, replacing iron and other metals with pro-oxidant activity from binding sites and interacting with other components of the oxidant defense system.

  20. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  1. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction.

    Science.gov (United States)

    Sreekumar, Parameswaran G; Ishikawa, Keijiro; Spee, Chris; Mehta, Hemal H; Wan, Junxiang; Yen, Kelvin; Cohen, Pinchas; Kannan, Ram; Hinton, David R

    2016-03-01

    To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress-induced cell death, mitochondrial bioenergetics, and senescence. Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5-10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress-induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress-induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress-induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. Humanin protected RPE cells against oxidative stress-induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD.

  2. Effect of drought stress induced by polyethylene glycol (PEG) on ...

    African Journals Online (AJOL)

    Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn ( Zea mays L.) hybrids. ... Hybrid K3651/1×K166B produced the highest germination percent, germination rate, root length, seedling length and seed vigour, hence this hybrid was the most tolerant hybrid to drought stress.

  3. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  4. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  5. Effect of stress-induced grain growth during room temperature ...

    Indian Academy of Sciences (India)

    The TEM observations reveal that stress-induced grain growth during tensile deformation is significantly suppressed for the nc Ni–Co alloys rich in Co in sharp contrast to those poor in Co. We believe that sufficient solutes could effectively pin grain boundaries making grain boundary motions (e.g. grain boundary migration ...

  6. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  7. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  8. The response of Cyclamen hederifolium to water stress induced by ...

    African Journals Online (AJOL)

    STORAGESEVER

    The response of Cyclamen hederifolium to water stress induced by different irrigation levels. Murat Yıldırım1*, Arda ... stress can affect the stomatal closure and reduce photo- synthesis of New Guinea Impatients and limit total flower- ... MATERIALS AND METHODS. The experiment was carried out in a controlled chamber (4 ...

  9. Chlorophytum borivilianum root extract maintains near normal blood glucose, insulin and lipid profile levels and prevents oxidative stress in the pancreas of streptozotocin-induced adult male diabetic rats.

    Science.gov (United States)

    Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

    2014-01-01

    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes. C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated. C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats. C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes.

  10. Long-term blood pressure control prevents oxidative renal injury.

    Science.gov (United States)

    Lazaro, Alberto; Gallego-Delgado, Julio; Justo, Pilar; Esteban, Vanesa; Osende, Julio; Mezzano, Sergio; Ortiz, Alberto; Egido, Jesus

    2005-01-01

    Arterial hypertension is a leading contributor to the progression of chronic renal disease. Short-term studies had addressed the role of oxidative stress in hypertensive nephropathy. We have now studied oxidative stress and caspase activation in a long-term model of hypertensive renal injury. Nontreated spontaneously hypertensive rats with uninephrectomy displayed severe arterial hypertension over a 36-week follow-up. Uncontrolled high blood pressure in the context of modest renal mass reduction resulted in significant histological renal injury. Blood pressure control by the angiotensin-converting enzyme (ACE) inhibitor, quinapril, or the AT1 receptor antagonist, losartan, decreased the degree of renal injury. Hypertensive renal injury was associated with evidence of activation of the apoptotic pathway (increased activation of caspase-3) and local renal (increased staining for 4-hydroxy-2-nonenal) and systemic [increased serum levels of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha)] lipid oxidation when compared with normotensive control rats. In addition, severe hypertension decreased the renal antioxidant defenses, as exemplified by decreased expression of Cu/Zn superoxide dismutase. Treatment with quinapril or losartan decreased caspase-3 activation, 4-hydroxy-2-nonenal staining, and 8-iso-PGF2alpha levels and increased Cu/Zn superoxide dismutase expression. These results suggest that hypertension-associated oxidative stress and its consequences may be decreased by either ACE inhibition or AT1 receptor antagonist, emphasizing the role of angiotensin II in hypertensive renal damage.

  11. Prevention of sulfide oxidation in sulfide-rich waste rock

    Science.gov (United States)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  12. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    Science.gov (United States)

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.

  13. Lipid oxidation and its prevention; Shishitsu no sanka to sono boshi

    Energy Technology Data Exchange (ETDEWEB)

    Totani, Yoichiro; Hara, Setsuko [Keisei University, Tokyo (Japan)

    1999-03-05

    Oxidation stability is bad for the long-chain polyunsaturated fatty acid, which is a main constituent of the lipid. The oxidation lipid causes the adverse effect for the organism, and various diseases are caused. The oxidation phenomenon of the lipid becomes large problem in the quality control. Recently, Eicosapentaenoic acid Docosahexaenoicacid The bioactivation of which advanced unsaturated lipid as a constituent fatty acid are excellent is noticed. For this, it becomes a largest problem in the utilization that how negotiating thing is possible in respect of the effective antioxidation measure. Here, it wants to introduce present state and problem on mechanisms, measuring methods, prevention method of the lipid oxidation, etc. (NEDO)

  14. Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis.

    Science.gov (United States)

    Lemaire, Valerie; Lamarque, Stephanie; Le Moal, Michel; Piazza, Pier-Vincenzo; Abrous, Djoher Nora

    2006-05-01

    Prenatal stress constitutes a developmental risk factor for later psychopathology. The behavioral disorders are sustained by neurobiological alterations including long-term reduction of hippocampal neurogenesis; its deregulation has been involved in cognitive impairments, mood disorders and addiction. A major goal is to define periods in development and strategies for intervening to prevent the effects of early stressful events. We investigated the ability of a postnatal infantile stimulation to prevent prenatal stress-induced alteration in hippocampal neurogenesis. The influence of postnatal handling on prenatal stress-induced changes in hippocampal neurogenesis was examined in 4 and 26 month-old male rats. Three distinct phases of the neurogenesis were studied: proliferation, survival and neuronal differentiation. Prenatal stress reduced hippocampal cell proliferation all throughout life. Furthermore, the survival rate of newborn cells, the number of immature neurons and the number of differentiated new neurons were reduced in young and old prenatally-stressed rats. All those deleterious effects were counteracted by neonatal handling. These data show that finer aspects of brain shaping can be rewired by environmental influences occurring at sensitive phase of development. They also suggest that infantile stimulation may reverse the appearance of behavioral disorders induced by early life stress.

  15. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...

  16. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were......, but increased OT secretion threefold. Ether vapor or hypoglycemia had no effect on AVP or OT secretion. The restraint stress-induced AVP response was inhibited by pretreatment with the 5-HT(2A+2C) antagonists ketanserin (KET) and LY-53857 (LY) and the 5-HT(3+4) antagonist ICS-205930 (ICS), whereas the 5-HT(1A......) antagonist WAY-100635 (WAY) had no effect. The OT response to restraint stress was inhibited by WAY, KET and LY but not by ICS. KET and LY inhibited OT response to dehydration, and LY inhibited OT response to hemorrhage. Neither of the antagonists affected AVP responses to dehydration or hemorrhage, nor...

  17. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide

    Science.gov (United States)

    2012-01-01

    Background In ancient times, plants were recognized for their medicinal properties. Later, the arrival of synthetic drugs pushed it to the backstage. However, from being merely used for food, plants are now been widely explored for their therapeutic value. The current study explores the potential of skin and flesh extracts from a hard-necked Rocambole variety of purple garlic in preventing cardiomyocyte hypertrophy and cell death. Methods Norepinephrine (NE) was used to induce hypertrophy in adult rat cardiomyocytes pretreated with garlic skin and flesh extracts. Cell death was measured as ratio of rod to round shaped cardiomyocytes. Fluorescent probes were used to measure apoptosis and oxidative stress in cardiomyocytes treated with and without extracts and NE. Pharmacological blockade of nitric oxide (NO) and hydrogen sulfide (H2S) were used to elucidate the mechanism of action of garlic extracts. Garlic extract samples were also tested for alliin and allicin concentrations. Results Exposure of cardiomyocytes to NE induced an increase in cell size and cell death; this increase was significantly prevented upon treatment with garlic skin and flesh extracts. Norepinephrine increased apoptosis and oxidative stress in cardiomyocytes which was prevented upon pretreatment with skin and flesh extracts; NO, and H2S blockers significantly inhibited this beneficial effect. Allicin and alliin concentration were significantly higher in garlic flesh extract when compared to the skin extract. Conclusion These results suggest that both skin and flesh garlic extracts are effective in preventing NE induced cardiomyocyte hypertrophy and cell death. Reduction in oxidative stress may also play an important role in the anti-hypertrophic and anti-apoptotic properties of garlic extracts. These beneficial effects may in part be mediated by NO and H2S. PMID:22931510

  18. Oral administration of Cimicifuga racemosa extract attenuates immobilization stress-induced reactions.

    Science.gov (United States)

    Nadaoka, Isao; Watanabe, Kazuki; Yasue, Masaaki; Sami, Manabu; Kitagawa, Yasushi; Mimaki, Yoshihiro

    2012-01-01

    Dried rhizomes of Cimicifuga racemosa (CR), known as black cohosh, have been widely used as a herbal dietary supplement in the treatment of menopausal symptoms. Here we used experimental mouse stress models to investigate the role of anti-stress food factors, and found that a CR extract had stress-relieving effects. A single oral administration of CR extract (1,000 mg/kg) significantly attenuated plasma corticosterone and aspartate aminotransferase (AST) levels that had increased as a result of enforced immobilization. Bioassay-guided fractionation of the CR extract resulted in the isolation of 10 triterpenes, among which actein, 23-epi-26-deoxyactein, and cimiracemoside F (100 mg/kg, per os) were shown to contribute to the anti-stress effects. Furthermore, the CR extract significantly prevented the development of water immersion stress-induced gastric mucosal ulcers in rats. We propose that the CR extract might be suitable for the prevention and treatment of stress-related disorders.

  19. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  20. Stress-induced eating in women with binge-eating disorder and obesity.

    Science.gov (United States)

    Klatzkin, Rebecca R; Gaffney, Sierra; Cyrus, Kathryn; Bigus, Elizabeth; Brownley, Kimberly A

    2018-01-01

    measuring the motivational versus hedonic aspects of stress-induced eating may expose nuanced eating behaviors that differentiate BED and obesity. If confirmed, our findings would support prevention and treatment strategies that target subsets of women based on obesity and BED status. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  2. Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications.

    Science.gov (United States)

    Daiber, Andreas; Daub, Steffen; Bachschmid, Markus; Schildknecht, Stefan; Oelze, Matthias; Steven, Sebastian; Schmidt, Patrick; Megner, Alexandra; Wada, Masayuki; Tanabe, Tadashi; Münzel, Thomas; Bottari, Serge; Ullrich, Volker

    2013-04-08

    The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite.

  3. Protein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications

    Science.gov (United States)

    Daiber, Andreas; Daub, Steffen; Bachschmid, Markus; Schildknecht, Stefan; Oelze, Matthias; Steven, Sebastian; Schmidt, Patrick; Megner, Alexandra; Wada, Masayuki; Tanabe, Tadashi; Münzel, Thomas; Bottari, Serge; Ullrich, Volker

    2013-01-01

    The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite. PMID:23567270

  4. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Science.gov (United States)

    Greenwood-Van Meerveld, Beverley; Johnson, Anthony C.

    2017-01-01

    Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced

  5. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  6. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... applied after pretreatment with intracerebroventricular infusion of saline or different 5-HT antagonists. RESULTS: Restraint stress (5 min), hypotensive hemorrhage or dehydration for 24 h increased AVP secretion fivefold and OT secretion threefold. Swim stress for 3 min had no effect on AVP secretion...

  7. Effect of St. John's Wort (Hypericum perforatum treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Directory of Open Access Journals (Sweden)

    Prakash Atish K

    2010-05-01

    Full Text Available Abstract Background A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (Hypericum perforatum in restraint stress-induced behavioral and biochemical alterations in mice. Methods Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein subsequently. Results 6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect and oxidative damage as compared to control (restraint stress. Conclusion Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.

  8. Cholesterol oxidation: Health hazard and the role of antioxidants in prevention

    Directory of Open Access Journals (Sweden)

    ALFONSO VALENZUELA

    2003-01-01

    Full Text Available Cholesterol is a molecule with a double bond in its structure and is therefore susceptible to oxidation leading to the formation of oxysterols. These oxidation products are found in many commonly-consumed foods and are formed during their manufacture and/or processing. Concern about oxysterols consumption arises from the potential cytotoxic, mutagenic, atherogenic, and possibly carcinogenic effects of some oxysterols. Eggs and egg-derived products are the main dietary sources of oxysterols. Thermally-processed milk and milk-derived products are another source of oxysterols in our diet. Foods fried in vegetable/animal oil, such as meats and French-fried potatoes, are major sources of oxysterols in the Western diet. Efforts to prevent or to reduce cholesterol oxidation are directed to the use of antioxidants of either synthetic or natural origin. Antioxidants are not only able to inhibit triglyceride oxidation, some of them can also inhibit cholesterol oxidation. Among synthetic antioxidants 2, 6-di-tertiarybutyl-4-methylphenol (BHT, and tertiary butylhydroquinone (TBHQ can efficiently inhibit the thermal-induced oxidation of cholesterol. Some natural antioxidants, such as alpha- and gamma-tocopherol, rosemary oleoresin extract, and the flavonoid quercetin, show strong inhibitory action against cholesterol oxidation.

  9. Mechanisms of Brain Glucocorticoid Resistance in Stress-Induced Psychopathologies.

    Science.gov (United States)

    Merkulov, V M; Merkulova, T I; Bondar, N P

    2017-03-01

    Exposure to stress activates the hypothalamic-pituitary-adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stress- and GR-induced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.

  10. Horizontal stresses induced by vertical processes in planetary lithospheres

    Science.gov (United States)

    Banerdt, W. B.

    1993-01-01

    Understanding the state of stress in the elastic lithosphere is of fundamental importance for planetary geophysics, as it is the link between the observed geologic structures on the surface and the processes which form and modify these structures. As such, it can provide valuable constraints for the difficult problem of determining interior structure and processes. On the Earth, most large scale, organized deformation can be related to lateral tectonics associated with plate dynamics; however, the tectonics on many extraterrestrial bodies (such as the Moon, Mars, and most of the outer-planet satellites) appears to be primarily vertical in nature, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. The largest stress contributions from vertical loading come from the flexure of the lithosphere, which induces both bending moments and membrane stresses. We are concerned here only with nonflexural changes in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. It is also of interest for providing a reference state of stress for interpreting stress measurements in the crust of the Earth.

  11. Stress-induced cardiomyopathy (Takotsubo – broken heart and mind?

    Directory of Open Access Journals (Sweden)

    Redfors B

    2013-04-01

    Full Text Available Björn Redfors, Yangzhen Shao, Elmir Omerovic Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden Abstract: Stress-induced cardiomyopathy (SIC, also known as Takotsubo cardiomyopathy, is characterized by severe but potentially reversible regional left ventricular wall motion abnormalities, ie, akinesia, in the absence of explanatory angiographic evidence of a coronary occlusion. The typical pattern is that of an akinetic apex with preserved contractions in the base, but other variants are also common, including basal or midmyocardial akinesia with preserved apical function. The pathophysiology of SIC remains largely unknown but catecholamines are believed to play a pivotal role. The diverse array of triggering events that have been linked to SIC are arbitrarily categorized as either emotional or somatic stressors. These categories can be considered as different elements of a continuous spectrum, linked through the interface of neurology and psychiatry. This paper reviews our current knowledge of SIC, with focus on the intimate relationship between the brain and the heart. Keywords: stress-induced cardiomyopathy, takotsubo cardiomyopathy, catecholamine, cerebral injury, emotional stress, somatic stress

  12. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders

    Directory of Open Access Journals (Sweden)

    Simeng Gu

    2016-01-01

    Full Text Available Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC/norepinephrine (NE system is regarded as a critical part of the central “stress circuitry,” whose major function is to induce “fight or flight” behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty. The reason for this discrepancy might be that NE is not only for flight (fear, but also for fight (anger. Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. “Adrenaline rush or norepinephrine rush” and fear and anger emotion might act as biomarkers for mental disorders.

  13. Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats.

    Science.gov (United States)

    Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Alam, Md Ashraful

    2015-01-01

    We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis.

  14. PreImplantation Factor (PIF*) endogenously prevents preeclampsia: Promotes trophoblast invasion and reduces oxidative stress.

    Science.gov (United States)

    Barnea, E R; Vialard, F; Moindjie, H; Ornaghi, S; Dieudonne, M N; Paidas, M J

    2016-04-01

    Preeclampsia is a unique pregnancy disorder whose patho-physiology is initiated early in gestation, while clinical manifestations typically occur in mid-to-late pregnancy. Thus, prevention should optimally be initiated in early gestation. The intimate interaction between PIF, secreted early by viable embryos, and its host-mother provides insight into putative mechanisms of preeclampsia prevention. PIF is instrumental at the two critical events underlying preeclampsia. At first, shallow implantation leads to impaired placentation, oxidative stress, protein misfolding, and endothelial dysfunction. Later in gestation, hyper-oxygenation due to overflow of maternally derived oxygenated blood compromises the placenta. The first is likely involved in early preeclampsia occurrence due to reduced effectiveness of trophoblast/uterus interaction. The latter is observed with later-onset preeclampsia, caused by a breakdown in placental blood flow regulation. We reported that 1. PIF promotes implantation, endometrium receptivity, trophoblast invasion and increases pro-tolerance trophoblastic HLA-G expression and, 2. PIF protects against oxidative stress and protein misfolding, interacting with specific targets in embryo, 3. PIF regulates systemic immunity to reduce oxidative stress. Using PIF as an early preventative preeclampsia intervention could ameliorate or even prevent the disease, whose current main solution is early delivery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Prickly Pear Cactus (Opuntia ficus indica var. saboten) Protects Against Stress-Induced Acute Gastric Lesions in Rats

    Science.gov (United States)

    Kim, Seung Hyun; Jeon, Byung Ju; Kim, Dae Hyun; Kim, Tae Il; Lee, Hee Kyoung; Han, Dae Seob; Lee, Jong-Hwan; Kim, Tae Bum; Kim, Jung Wha

    2012-01-01

    Abstract The protective activity of prickly pear cactus (Opuntia ficus indica var. saboten) fruit juice and its main constituent, betanin, were evaluated against stress-induced acute gastric lesions in rats. After 6 h of water immersion restraint stress (WIRS), gastric mucosal lesions with bleeding were induced in Sprague–Dawley rats. Pretreatment of a lyophilized powder containing O. ficus indica var. saboten fruit juice and maltodextrin (OFSM) and betanin significantly reduced stress lesions (800–1600 mg/kg). Both OFSM and betanin effectively prevented the decrease in gastric mucus content as detected by alcian blue staining. In addition, OFSM significantly suppressed WIRS-induced increases in the level of gastric mucosal tumor necrosis factor-α and myeloperoxidase (MPO). Betanin alone was only effective in decreasing MPO. These results revealed the protective activity of OFSM against stress-induced acute gastric lesions and that betanin may contribute to OFSM's gastric protective activity, at least in part. When OFSM and betanin were taken together, OFSM exerted gastroprotective activity against stress-induced gastric lesions by maintaining gastric mucus, which might be related to the attenuation of MPO-mediated damage and proinflammatory cytokine production. PMID:23062184

  16. Allium sativum aqueous extract prevents potassium dichromate-induced nephrotoxicity and lipid oxidation in rats

    Directory of Open Access Journals (Sweden)

    Sergio L. Becerra-Torres

    2014-04-01

    Full Text Available Context: The potassium dichromate (K2Cr2O7 induces nephrotoxicity by oxidative stress mechanisms. Aims: To study the potential protection of an aqueous extract of Allium sativum against the K2Cr2O7-induced nephrotoxicity and lipid oxidation in rats. Methods: Twenty four hours after treatment, biomarkers such as proteinuria, creatinine clearance, malondialdehyde production, specific enzyme activity of gamma glutamyl transpeptidase and alanine aminopeptidase, and renal clearance of para-aminohippuric acid and inulin were measured. Results: The K2Cr2O7 caused significant renal dysfunction, but A. sativum extract prevented this condition by improving all measured biomarkers. Conclusions: A single injection of K2Cr2O7 induced nephrotoxicity in rats, but the supply of an Allium sativum aqueous extract prevented the disorders caused by this metal.

  17. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells.

    Science.gov (United States)

    Gunaseelan, Srithar; Balupillai, Agilan; Govindasamy, Kanimozhi; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugam, Mohana; Thangaiyan, Radhiga; Robert, Beaulah Mary; Prasad Nagarajan, Rajendra; Ponniresan, Veeramani Kandan; Rathinaraj, Pierson

    2017-01-01

    Ultraviolet-B radiation (285-320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages.

  18. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts.

    Science.gov (United States)

    Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh

    2018-04-01

    The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.

  19. Alpha-1 antitrypsin prevents the development of preeclampsia through suppression of oxidative stress

    Directory of Open Access Journals (Sweden)

    Yaling eFeng

    2016-05-01

    Full Text Available Preeclampsia (PE and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.

  20. Alpha-1 Antitrypsin Prevents the Development of Preeclampsia Through Suppression of Oxidative Stress.

    Science.gov (United States)

    Feng, Yaling; Xu, Jianjuan; Zhou, Qin; Wang, Rong; Liu, Nin; Wu, Yanqun; Yuan, Hua; Che, Haisha

    2016-01-01

    Preeclampsia (PE) and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT) played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS, and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.

  1. Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Upregulation of Mitochondrial Glutathione.

    Directory of Open Access Journals (Sweden)

    Douglas Matsunaga

    Full Text Available Humanin (HN is a small mitochondrial-encoded peptide with neuroprotective properties. We have recently shown protection of retinal pigmented epithelium (RPE cells by HN in oxidative stress; however, the effect of HN on endoplasmic reticulum (ER stress has not been evaluated in any cell type. Our aim here was to study the effect of HN on ER stress-induced apoptosis in RPE cells with a specific focus on ER-mitochondrial cross-talk. Dose dependent effects of ER stressors (tunicamycin (TM, brefeldin A, and thapsigargin were studied after 12 hr of treatment in confluent primary human RPE cells with or without 12 hr of HN pretreatment (1-20 μg/mL. All three ER stressors induced RPE cell apoptosis in a dose dependent manner. HN pretreatment significantly decreased the number of apoptotic cells with all three ER stressors in a dose dependent manner. HN pretreatment similarly protected U-251 glioma cells from TM-induced apoptosis in a dose dependent manner. HN pretreatment significantly attenuated activation of caspase 3 and ER stress-specific caspase 4 induced by TM. TM treatment increased mitochondrial superoxide production, and HN co-treatment resulted in a decrease in mitochondrial superoxide compared to TM treatment alone. We further showed that depleted mitochondrial glutathione (GSH levels induced by TM were restored with HN co-treatment. No significant changes were found for the expression of several antioxidant enzymes between TM and TM plus HN groups except for the expression of glutamylcysteine ligase catalytic subunit (GCLC, the rate limiting enzyme required for GSH biosynthesis, which is upregulated with TM and TM+HN treatment. These results demonstrate that ER stress promotes mitochondrial alterations in RPE that lead to apoptosis. We further show that HN has a protective effect against ER stress-induced apoptosis by restoring mitochondrial GSH. Thus, HN should be further evaluated for its therapeutic potential in disorders linked to ER

  2. Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Upregulation of Mitochondrial Glutathione.

    Science.gov (United States)

    Matsunaga, Douglas; Sreekumar, Parameswaran G; Ishikawa, Keijiro; Terasaki, Hiroto; Barron, Ernesto; Cohen, Pinchas; Kannan, Ram; Hinton, David R

    2016-01-01

    Humanin (HN) is a small mitochondrial-encoded peptide with neuroprotective properties. We have recently shown protection of retinal pigmented epithelium (RPE) cells by HN in oxidative stress; however, the effect of HN on endoplasmic reticulum (ER) stress has not been evaluated in any cell type. Our aim here was to study the effect of HN on ER stress-induced apoptosis in RPE cells with a specific focus on ER-mitochondrial cross-talk. Dose dependent effects of ER stressors (tunicamycin (TM), brefeldin A, and thapsigargin) were studied after 12 hr of treatment in confluent primary human RPE cells with or without 12 hr of HN pretreatment (1-20 μg/mL). All three ER stressors induced RPE cell apoptosis in a dose dependent manner. HN pretreatment significantly decreased the number of apoptotic cells with all three ER stressors in a dose dependent manner. HN pretreatment similarly protected U-251 glioma cells from TM-induced apoptosis in a dose dependent manner. HN pretreatment significantly attenuated activation of caspase 3 and ER stress-specific caspase 4 induced by TM. TM treatment increased mitochondrial superoxide production, and HN co-treatment resulted in a decrease in mitochondrial superoxide compared to TM treatment alone. We further showed that depleted mitochondrial glutathione (GSH) levels induced by TM were restored with HN co-treatment. No significant changes were found for the expression of several antioxidant enzymes between TM and TM plus HN groups except for the expression of glutamylcysteine ligase catalytic subunit (GCLC), the rate limiting enzyme required for GSH biosynthesis, which is upregulated with TM and TM+HN treatment. These results demonstrate that ER stress promotes mitochondrial alterations in RPE that lead to apoptosis. We further show that HN has a protective effect against ER stress-induced apoptosis by restoring mitochondrial GSH. Thus, HN should be further evaluated for its therapeutic potential in disorders linked to ER stress.

  3. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...... of protein expression, stress-induced premature senescence and replicative senescence are different phenotypes sharing however similarities. In this study, we identified 30 proteins showing changes of expression level specific or common to replicative senescence and/or stress-induced premature senescence....... These changes affect different cell functions, including energy metabolism, defense systems, maintenance of the redox potential, cell morphology and transduction pathways....

  4. Implication of Oxidative Stress in Small Intestine Disorders, Constipation and Diarrhea: A Mini Review

    Directory of Open Access Journals (Sweden)

    Kaïs Rtibi

    2017-07-01

    Full Text Available Diarrhea pathophysiology and constipation are multifactorial gastrointestinal (GI disorders characterized by intestinal peristalsis disruption of and an irregularity in secretion/absorption process. Oxidative stress, as an imbalance in prooxidants/antioxidants, has recently been recognized as a significant player in these GI disturbances. In this respect, numerous studies were performed and have shown that the deleterious effects on GI tract were accompanied by accumulation of oxidants and depletion of antioxidant system. Antioxidant remedy is necessary in scavenging free radicals and reactive oxygen species preventing oxidative stress-induced GI interruptions.

  5. Stress-induced obesity and the emotional nervous system.

    Science.gov (United States)

    Dallman, Mary F

    2010-03-01

    Stress and emotional brain networks foster eating behaviors that can lead to obesity. The neural networks underlying the complex interactions among stressors, body, brain and food intake are now better understood. Stressors, by activating a neural stress-response network, bias cognition toward increased emotional activity and degraded executive function. This causes formed habits to be used rather than a cognitive appraisal of responses. Stress also induces secretion of glucocorticoids, which increases motivation for food, and insulin, which promotes food intake and obesity. Pleasurable feeding then reduces activity in the stress-response network, reinforcing the feeding habit. These effects of stressors emphasize the importance of teaching mental reappraisal techniques to restore responses from habitual to thoughtful, thus battling stress-induced obesity. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. K(+) starvation inhibits water-stress-induced stomatal closure.

    Science.gov (United States)

    Benlloch-González, María; Arquero, Octavio; Fournier, José María; Barranco, Diego; Benlloch, Manuel

    2008-04-18

    The effect of potassium starvation on stomatal conductance was studied in olive trees and sunflower plants, two major crops with greatly differing botanical characteristics. In both species, K(+) starvation inhibited water-stress-induced stomatal closure. In olive trees, potassium starvation favoured stomatal conductance and transpiration, as well as inhibiting shoot growth, in the three cultivars studied: 'Lechín de Granada', 'Arbequina' and 'Chetoui'. However, 'Lechín de Granada' - generally considered more drought-tolerant than 'Arbequina' and 'Chetoui' - proved less susceptible to potassium starvation. Results for olive trees also suggest genetic variability in olive cultivars in relation to potassium requirements for stem growth and the regulation of water transpiration. The results obtained suggest that inhibition of the stomatal closure mechanism produced by moderate potassium starvation is a widespread plant physiological disorder, and may be the cause of tissue dehydration in many water-stressed crops.

  7. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  8. Stress induced obesity: lessons from rodent models of stress

    Science.gov (United States)

    Patterson, Zachary R.; Abizaid, Alfonso

    2013-01-01

    Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the

  9. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress-induced

  10. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    Science.gov (United States)

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  11. Ability of silybin and its derivatives to prevent protein oxidation in different model systems

    DEFF Research Database (Denmark)

    Purchartová, K.; Baron, C.P.; Křen, V.

    2013-01-01

    to prevent activation of hemoglobin (Hb) to highly reactive hypervalent heme protein species (ferrylHb and perferrylHb) was examined. Indeed, Hb cytotoxicity has been associated with the generation of protein radicals, which are formed when the ferric iron of Hb (Fe3+) is oxidised by H2O2 to (Fe4+) to form...... perferrylHb and ferrylHb, with the later also bearing a radical on its protein. The relationship between the structural properties of silybin and its derivatives and their ability to prevent oxidation of Hb was investigated in model system in the presence or the absence of lipids. The antioxidant activities...... of silybin, dehydrosilybin, 23-O-butanoyl and 23-O-palmitoyl silybin derivatives were correlated with their interaction with Hb species. Results are discussed in relation to the potential of dehydrosilybin, silybin and C4 and C16 derivates to prevent activation of Hb to hypevalent heme protein species....

  12. Fabrication of Zircaloy-4 Fuel Cladding Pipe with Nanostructured Oxide Layer for Prevention of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. J.; Park, J. W.; Kim, H. J.; Cho, S. O. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    There has been an attempt to protect zircaloy fuel cladding by coating SiC. Research on producing oxide layer that can block fuel cladding from water on the surface of zircaloy fuel cladding by means of anodizing to reduce the rate of oxidation of fuel cladding at Loss Of Coolant Accident (LOCA) is an significant ongoing study subject. Applying nanostructured oxide layer to the prevention of thermal deformation of oxide layer was already suggested in our research group, the reasons of which is nanoporous structure is better than nanotube structure in terms of corrosion-resistant structure because nanotube structure can be easily peeled off. In this study, methods which are able to control morphology between nanoporous and nanotube structure were conducted by changing the anodizing conditions. Hence, Using glycerol and ammonium fluoride, Zircaloy-4 was anodized by varying water contents and applied voltage. Zircaloy-4 pipe with nanostructured surface was fabricated by anodization technique. The produced nanostructure is quite even but the thickness of the oxide layer is not even. The nanostructured surface can increase the thermal characteristics of the zircaloy-4 fuel cladding.

  13. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  14. Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots.

    Science.gov (United States)

    Kolbert, Zsuzsanna; Ortega, Leandro; Erdei, László

    2010-01-01

    Nitric oxide (NO) is undoubtedly a potential signal molecule in diverse developmental processes and stress responses. Despite our extensive knowledge about the role of NO in physiological and stress responses, the source of this gaseous molecule is still unresolved. The aim of this study was to investigate the potential role of nitrate reductase (NR) as the source of NO accumulation in the root system of wild-type and NR-deficient nia1, nia2 mutant Arabidopsis plants under osmotic stress conditions induced by a polyethylene glycol (PEG 6000) treatment. Reduction of primary root (PR) length was detected as the effect of osmotic stress in wild-type and NR-deficient plants. We found that osmotic stress-induced lateral root (LR) initiation in wild-type, but not in NR-mutant plants. High levels of NO formation occurred in roots of Col-1 plants as the effect of PEG treatment. The mammalian nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) had no effect on LR initiation or NO generation, while tungstate, an NR inhibitor, inhibited the later phase of osmotic stress-induced NO accumulation and slightly decreased the LR development. In nia1, nia2 roots, the PEG treatment induced the first phase of NO production, but later NO production was inhibited. We conclude that the first phase of PEG-induced NO generation is not dependent on NOS-like or NR activity. It is also suggested that the activity of NR in roots is required for the later phase of osmotic stress-induced NO formation.

  15. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice

    Directory of Open Access Journals (Sweden)

    Nesi RT

    2016-03-01

    Full Text Available Renata Tiscoski Nesi,1 Priscila Soares de Souza,1 Giulia Pedroso dos Santos,1 Anand Thirupathi,1 Bruno T Menegali,1 Paulo Cesar Lock Silveira,1 Luciano Acordi da Silva,1 Samuel Santos Valença,2 Ricardo Aurino Pinho11Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; 2Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, BrazilAbstract: Reactive oxygen species (ROS are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS exposure, and physical exercise (Ex is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30–35 g were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks. After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities. Group comparisons were evaluated by analysis of variance (ANOVA. Results were expressed as mean ± standard deviation, with P<0.05 considered significantly different. Preventive Ex impeded histological changes and increased the enzymatic defense system (SOD and GPx by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.Keywords: exercise

  16. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    Science.gov (United States)

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. Published by Elsevier Inc.

  17. Preventing oxidative stress in rats with aldosteronism by calcitriol and dietary calcium and magnesium supplements.

    Science.gov (United States)

    Goodwin, Kayla D; Ahokas, Robert A; Bhattacharya, Syamal K; Sun, Yao; Gerling, Ivan C; Weber, Karl T

    2006-08-01

    Prominent features of the clinical syndrome of congestive heart failure (CHF) include aldosteronism and the presence of oxidative stress. Secondary hyperparathyroidism (SHPT) accompanies aldosteronism due to increased urinary and fecal excretion of Ca. SHPT accounts for intracellular Ca overloading of diverse cells, including peripheral blood mononuclear cells (PBMC), and the appearance of oxidative stress. Parathyroidectomy or a Ca channel blocker each prevent these responses. Herein, we hypothesized calcitriol, or 1,25(OH)2D3, plus a diet supplemented with Ca and Mg (CMD) would prevent SHPT and Ca overloading of PBMC and thereby oxidative stress in these cells in rats receiving aldosterone/salt treatment (ALDOST). In rats with ALDOST for 4 weeks, without or with CMD, we monitored plasma-ionized [Ca]o and parathyroid hormone (PTH), and PBMC cytosolic-free [Ca]i and H2O2 production. Untreated, age- and gender-matched rats served as controls. Compared to controls, ALDOST led to an expected fall in plasma [Ca]o level with accompanying rise in plasma PTH level and intracellular Ca overloading of PBMC and their increased production of H2O2. CMD prevented SHPT and abrogated intracellular Ca overloading of PBMC and their increased H2O2 production. The appearance of SHPT in aldosteronism, induced by fallen plasma [Ca]o, leads to PTH-mediated Ca overloading of PBMC and their increased production of H2O2. SHPT in rats with aldosteronism can be prevented by calcitriol and a diet supplemented with Ca and Mg. These findings raise the prospect that the SHPT found in CHF could be managed with macro- and micronutrients.

  18. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity

    Directory of Open Access Journals (Sweden)

    Philippe Régnier

    2015-05-01

    Full Text Available Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI+/ion trap-MS characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM. No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.

  19. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress

    Directory of Open Access Journals (Sweden)

    Chiung-Huei Peng

    2018-04-01

    Full Text Available Mulberry (Morus alba leaf has been used in Chinese medicine as the remedy for hyperlipidemia and metabolic disorders. Recent report indicated Mulberry leaf extract (MLE attenuated dyslipidemia and lipid accumulation in high fat diet (HFD-fed mice. Non-alcoholic fatty liver (NAFLD is generally considered as the liver component of metabolic syndrome. The hepatic lipid infiltration induces oxidative stress, and is associated with interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α which are regulated by the leptin and adiponectin. MLE could prevent obesity-related NAFLD via downregulating the lipogenesis enzymes while upregulating the lipolysis markers. Treatment of MLE, especially at 2%, enhanced the expression of superoxide dismutase (SOD and clenched the oxidative stress of liver. MLE decreased the plasma level of leptin but increased adiponectin. The advantage of MLE is supposed mainly attributed to chlorogenic acid derivative. We suggest MLE, with promising outcome of research, could be nutraceutical to prevent obesity and related NAFLD. Keywords: Mulberry leaf, Non-alcoholic fatty liver, Adiponectin, Oxidative stress, Inflammation

  20. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice.

    Science.gov (United States)

    Nesi, Renata Tiscoski; de Souza, Priscila Soares; Dos Santos, Giulia Pedroso; Thirupathi, Anand; Menegali, Bruno T; Silveira, Paulo Cesar Lock; da Silva, Luciano Acordi; Valença, Samuel Santos; Pinho, Ricardo Aurino

    2016-01-01

    Reactive oxygen species (ROS) are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS) exposure, and physical exercise (Ex) is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30-35 g) were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks). After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities). Group comparisons were evaluated by analysis of variance (ANOVA). Results were expressed as mean ± standard deviation, with Psystem (SOD and GPx) by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.

  1. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Science.gov (United States)

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Melatonin Therapy Prevents Programmed Hypertension and Nitric Oxide Deficiency in Offspring Exposed to Maternal Caloric Restriction

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2014-01-01

    Full Text Available Nitric oxide (NO deficiency is involved in the development of hypertension, a condition that can originate early in life. We examined whether NO deficiency contributed to programmed hypertension in offspring from mothers with calorie-restricted diets and whether melatonin therapy prevented this process. We examined 3-month-old male rat offspring from four maternal groups: untreated controls, 50% calorie-restricted (CR rats, controls treated with melatonin (0.01% in drinking water, and CR rats treated with melatonin (CR + M. The effect of melatonin on nephrogenesis was analyzed using next-generation sequencing. The CR group developed hypertension associated with elevated plasma asymmetric dimethylarginine (ADMA, a nitric oxide synthase inhibitor, decreased L-arginine, decreased L-arginine-to-ADMA ratio (AAR, and decreased renal NO production. Maternal melatonin treatment prevented these effects. Melatonin prevented CR-induced renin and prorenin receptor expression. Renal angiotensin-converting enzyme 2 protein levels in the M and CR + M groups were also significantly increased by melatonin therapy. Maternal melatonin therapy had long-term epigenetic effects on global gene expression in the kidneys of offspring. Conclusively, we attributed these protective effects of melatonin on CR-induced programmed hypertension to the reduction of plasma ADMA, restoration of plasma AAR, increase of renal NO level, alteration of renin-angiotensin system, and epigenetic changes in numerous genes.

  3. Adaptogenic potential of Oxitard in experimental chronic stress and chronic unpredictable stress induced dysfunctional homeostasis in rodents.

    Science.gov (United States)

    Kishor, Brajnandan; Rai, Pooja; Bharatia, Rakesh; Kumar, Sanjay; Gupta, Sujeet Kumar; Sinha, Anshuman

    Oxitard, a polyherbal formulation comprising the extracts of Withania somnifera, Mangifera indica, Glycyrrhiza glabra, Daucus carota, Vitis vinifera, powders of Syzygium aromaticum, Yashada bhasma and Emblica officinalis; and oils of Triticum sativum. Current study deals with the assessment of Oxitard (a marketed polyherbal formulation) for its adaptogenic potential in chronic unpredictable stress (CUS) and chronic stress (CS) induced dysfunctional homeostasis in rodents. Animals were immobilized for 2 h every day for ten days to induce CS. In order to induce CUS, animals were employed in a battery of stressors of variable value and duration for ten days. Following administration of Oxitard, stress was induced in the animals. Stress-induced efficient changes were evaluated by assessing organ (adrenal gland) weights, ulcer index, hematological parameters and biochemical levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and catalase (CAT). CS and CUS significantly modified the oxidative stress parameters (increased MDA and decreased GSH). Furthermore, CS and CUS lead to weight reduction, adrenal hypertrophy and gastric ulceration. Pre-treatment with Oxitard (200 and 400 mg/kg, p.o.) significantly modified CS and CUS induced hematological changes, oxidative stress parameters and pathological effects. In conclusion, Oxitard-intervened antioxidant actions are accountable for its adaptogenic effects in stress-induced dysfunctional homeostasis. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  4. Preventing Oxide Adhesion of Liquid Metal Alloys to Enable Actuation in Microfluidic Systems

    Science.gov (United States)

    Joshipura, Ishan; Johnson, Alexander; Ayers, Hudson; Dickey, Michael

    This work explores the wetting behavior of an oxide-coated liquid metal, eutectic alloy of gallium and indium (`EGaIn'), which remains a liquid at room temperature. Liquid metals uniquely combine fluidity with metallic properties. Combined, these properties enable soft, stretchable, and shape reconfigurable electronics with `softer than skin' interfaces. Ga forms spontaneously a thin surface oxide that alters its wetting behavior and makes it difficult to move across surfaces without leaving residue behind. We examine the effects of surface roughness (i.e., Cassie-Baxter state) and lubrication to minimize adhesion of Ga oxide to surfaces. Lubricated surfaces create a `slip-layer' of liquid between the metal and surface that also inhibits wetting. This slip layer allows the metal to move reversibly through microchannels by preventing adhesion of the oxide. The metal may be pumped or moved by using low voltages or pneumatic actuation. Optical microscopy confirms the importance of the slip-layer, which enables non-stick motion of the metal through capillaries. Finally, electrochemical impedance spectroscopy characterizes the electrohydrodynanic motion of EGaIn in capillary systems.

  5. Stress-induced Ageing of Lithium-Ion Batteries.

    Science.gov (United States)

    Held, Marcel; Sennhauser, Urs

    2015-01-01

    Lithium-ion batteries are well established for use in portable consumer products and are increasingly used in high power electro-mobility and photovoltaic storage applications. In hybrid and plug-in electric vehicles degradation and useful lifetime at standard operation conditions are critical parameters in addition to performance and safety. Here stress-induced ageing of commercially available high power battery cells of the type A123 AHR32113M1 Ultra-B, consisting of a LiFePO(4) cathode and a graphite anode have been investigated. A usually accepted capacity loss for electric vehicles of 20% was reached after 8560 stress profiles corresponding to a driving distance of almost 200'000 km. Cycling with a stress profile applying constant power corresponding to the average power and energy of a full stress profile and starting at 60% state of charge showed a much faster capacity loss. Electric impedance measurements show the dependence of the capacity loss and constant phase element at low frequency, indicating Li-ion diffusion blocking in the cathode. Microscopic analysis of anode, separator, and cathode, shows defect formation in bulk material and at interfaces.

  6. Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity.

    Science.gov (United States)

    Graziane, Nicholas M; Polter, Abigail M; Briand, Lisa A; Pierce, R Christopher; Kauer, Julie A

    2013-03-06

    Stress facilitates reinstatement of addictive drug seeking in animals and promotes relapse in humans. Acute stress has marked and long-lasting effects on plasticity at both inhibitory and excitatory synapses on dopamine neurons in the ventral tegmental area (VTA), a key region necessary for drug reinforcement. Stress blocks long-term potentiation at GABAergic synapses on dopamine neurons in the VTA (LTPGABA), potentially removing a normal brake on activity. Here we show that blocking kappa opioid receptors (KORs) prior to forced-swim stress rescues LTPGABA. In contrast, blocking KORs does not prevent stress-induced potentiation of excitatory synapses nor morphine-induced block of LTPGABA. Using a kappa receptor antagonist as a selective tool to test the role of LTPGABA in vivo, we find that blocking KORs within the VTA prior to forced-swim stress prevents reinstatement of cocaine seeking. These results suggest that KORs may represent a useful therapeutic target for treatment of stress-triggered relapse in substance abuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Gallic Acid Protects Against Immobilization Stress-Induced Changes In Wistar Rats

    Directory of Open Access Journals (Sweden)

    Shabir, Ahmad Rather

    2013-02-01

    Full Text Available Background: Stress triggers a wide range of body changes. Herbal medicines are rich in non specific antistress agents.Purpose: The present study was carried out to evaluate the antistress effect of gallic acid (GA, a naturally occurring plant phenol, on immobilization induced-stress in male albino Wistar rats.Methods: The immobilization stress was induced in rats by putting the rats in 20 cm Ч 7 cm plastic tubes for 2 h/day for 21 days. Rats were post orally treated with GA at a dose of 10 mg/kg body weight via intragastric intubations.Results:Treatment with GA significantly increased the food intake, body weight, organ weight (spleen, testis and brain and the significant reduction was found in weight of liver, kidney, heart and adrenal glands, which was altered in stressed rats. GA also significantly reduced the elevated levels of plasma glucose, plasma and tissue cholesterol (CHL, triglycerides (TG, Low Density Lipid (LDL, Very Low Density Lipid (VLDL and also significantly increased the level of High Density Lipid (HDL. A significant decrease in hematological parameters like RBC count, total and differential WBC count was also found which were increased in immobilization stress.Conclusion: GA prevented the stress-induced physiological, biochemical and hematological changes, indicating the preventive effect against stress.

  8. Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis.

    Science.gov (United States)

    Barichello, Tatiana; Simões, Lutiana R; Generoso, Jaqueline S; Sangiogo, Gustavo; Danielski, Lucineia Gainski; Florentino, Drielly; Dominguini, Diogo; Comim, Clarissa M; Petronilho, Fabricia; Quevedo, João

    2014-05-01

    Pneumococcal meningitis is characterized by a severe inflammatory reaction in the subarachnoid and ventricular space of the brain, disruption of the blood-brain barrier, hearing loss, and neurologic sequelae in as many as 27% of surviving patients. Several experimental studies have shown that erythropoietin (EPO) and its receptor are expressed in the central nervous system and have neuroprotective properties through the inhibition of apoptosis, as well as anti-inflammatory, antioxidant, angiogenic, and neurotrophic effects. In the current study, we demonstrated the effect of erythropoietin (EPO) on lipid peroxidation, protein carbonylation, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and behavioral parameters in rats with pneumococcal meningitis. EPO decreased lipid peroxidation and protein carbonylation, and it prevented protein degradation in the hippocampus and frontal cortex. MPO activity was decreased, and both SOD and CAT activity were increased in the first 6 hours after pneumococcal meningitis induction. Novel object recognition memory was impaired in the meningitis group; however, adjuvant treatment with EPO prevented memory impairment during both the short- and long-term retention tests. The meningitis group showed no difference in motor and exploratory activity between training and test sessions in the open-field task, which indicates that habituation memory was impaired; however, adjuvant treatment with EPO prevented habituation memory impairment. Although there are some limitations with respect to the animal model of pneumococcal meningitis, this study suggests that adjuvant treatment with EPO contributed to decreased oxidative stress and prevented cognitive impairment. Copyright © 2014 Mosby, Inc. All rights reserved.

  9. Protective effect of eugenol against restraint stress-induced gastrointestinal dysfunction: Potential use in irritable bowel syndrome.

    Science.gov (United States)

    Garabadu, Debapriya; Shah, Ankit; Singh, Sanjay; Krishnamurthy, Sairam

    2015-07-01

    Eugenol, an essential constituent found in plants such as Eugenia caryophyllata Thunb. (Myrtaceae) is reported to possess neuroprotective and anti-stress activities. These activities can potentially be useful in the treatment of stress-induced irritable bowel syndrome (IBS). The protective effect of eugenol was assessed against restraint stress (RS)-induced IBS-like gastrointestinal dysfunction in rats. Further, its centrally mediated effect was evaluated in this model. Eugenol (12.5, 25, and 50 mg/kg), ondansetron (4.0 mg/kg, p.o.), and vehicle were administered to rats for 7 consecutive days before exposure to 1 h RS. One control group was not exposed to RS-induction. The effect of eugenol (50 mg/kg) with and without RS exposure was evaluated for mechanism of action and per se effect, respectively. The hypothalamic-pituitary-adrenal cortex (HPA)-axis function was evaluated by estimating the plasma corticosterone level. The levels of brain monoamines, namely serotonin, norepinephrine, dopamine, and their metabolites were estimated in stress-responsive regions such as hippocampus, hypothalamus, pre-frontal cortex (PFC), and amygdala. Oxidative damage and antioxidant defenses were also assessed in brain regions. Eugenol (50 mg/kg) reduced 80% of RS-induced increase in fecal pellets similar to that of ondansetron. Eugenol attenuated 80% of stress-induced increase in plasma corticosterone and modulated the serotonergic system in the PFC and amygdala. Eugenol attenuated stress-induced changes in norepinephrine and potentiated the antioxidant defense system in all brain regions. Eugenol protected against RS-induced development of IBS-like gastrointestinal dysfunction through modulation of HPA-axis and brain monoaminergic pathways apart from its antioxidant effect.

  10. Preventive efficacy of bulk and nanocurcumin against lead-induced oxidative stress in mice.

    Science.gov (United States)

    Flora, Gagan; Gupta, Deepesh; Tiwari, Archana

    2013-04-01

    Chronic lead exposure is associated with several health disorders in humans and animals. Lead exposure leads to the generation of reactive oxygen species and depletes body antioxidant enzymes causing damage to various macromolecules and ultimately cell death. Curcumin has been widely recognized to protect against metal toxicity but has major limitations of reduced bioavailability. Nanoencapsulation of curcumin could be an effective strategy to combat lead induced toxic manifestations. The present study investigates the protective efficacy of bulk and nanocurcumin against lead-induced toxicity. Swiss albino mice were daily exposed to lead acetate (25 mg/kg, i.p.) alone and after 1 h treated either with curcumin (15 mg/kg, orally) or nanocurcumin (15 mg/kg, orally) for two consecutive weeks. The preventive efficacy of nanocurcumin was evaluated against various altered biochemical variables suggestive of oxidative stress and lead accumulation in blood and soft tissues. Coadministration of nanocurcumin with lead restored the altered δ-aminolevulinic acid dehydratase activity, glutathione (reduced and oxidized) levels, and also decreased reactive oxygen species, and thiobarbituric acid reactive substances levels. Nanocurcumin due to its possible chelating property and enhanced bioavailability efficiently removed lead from blood and soft tissues compared to bulk curcumin. Results demonstrate the enhanced preventive efficacy of nanocurcumin and suggest an interesting and novel approach for better treatment of lead toxicity.

  11. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    Science.gov (United States)

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  12. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pharmacologic stress-induced stunning: evaluation with quantitative gated SPECT

    International Nuclear Information System (INIS)

    Chun, K. A.; Cho, I. H.; Won, K. J.; Lee, H. W.

    2000-01-01

    The after-effect of pharmacologic stress (adenosine) on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated after pharmacologic stress with Tl-201 and 99m Tc-MIBI SPECT using an automated program in 153 subjects. The subjects were grouped as follows: 1) Tl-201 group (n=35, male 18, female 17, mean age: 58 years); normal scan (n=24), ischemia (n=8) and infarction (n=3). 2) 99m Tc-MIBI group (n=118, male 60, female 58, mean age: 62 years); normal scan (n=73), ischemia (n=20) and infarction (n=25) based on the interpretation of perfusion images. All patients were in sinus rhythm during the study. 1)Tl-201 group; In patients with ischemia (the mean time interval between injection and acquisition is 12.3 min), post-stress LVEF was significantly depressed after adenosine infusion (51.2 ± 6.3% vs 59.8± 8.2%, p 99m Tc-MIBI group; In patients with ischemia (the mean time interval between injection and acquisition is 80 min), post-stress LVEF was significantly depressed after adenosine infusion (p<0.001) and ΔLVEF was 5.1%. Eight patients (40%) showed an increase in LVEF greater than 5% from poststress to rest. Poststress ESV (37.1±17.3 ml) was significantly higher than ESV (31.3±15.5 ml, p<0.001) at rest, but no significant difference in EDV. These results showed that pharmacologic stress induced stunning is well noted in the early quantitative gated SPECT in ischemic patients and also observed in the delayed gated SPECT, even though the rate of stunning is less than the early SPECT

  14. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Stellate ganglion block attenuates chronic stress induced depression in rats.

    Directory of Open Access Journals (Sweden)

    Weiwei Wang

    Full Text Available Stress is a significant factor in the etiology of depression. Stellate ganglion block (SGB has been shown to maintain the stability of the autonomic system and to affect the neuroendocrine system, including the hypothalamic-pituitary-adrenal (HPA axis. The objective of this study was to determine the antidepressant-like effects of SGB on the autonomic system and the HPA axis, apoptosis-related proteins, related spatial learning and memory impairment, and sensorimotor dysfunction.Forty-eight Sprague Dawley rats were assigned to four experimental groups: control + saline (sham group, control + SGB (SGB group, unpredictable chronic mild stress (UCMS + saline (UCMS group, and UCMS + SGB (UCSG group. Stress-induced effects and the function of SGB were assessed using measures of body weight, coat state, sucrose consumption, and behavior in open-field and Y-maze tests. Neuronal damage was assessed histologically using the hematoxylin-eosin (HE staining method, while western blotting was used to investigate changes in the expression of apoptosis-related proteins. Plasma corticotropin-releasing factor (CRF, adrenocorticotropic hormone (ACTH, corticosterone (CORT, noradrenaline and adrenaline were measured to evaluate changes in the autonomic system and HPA axis.SGB treatment significantly improved sensorimotor dysfunction and spatial learning and memory impairment following UCMS. Moreover, UCMS significantly decreased body weight, sucrose preference and anti-apoptotic protein Bcl-2, and increased scores on measures of coat state, adrenal gland weight, levels of CORT, CRF, ACTH, noradrenaline and adrenaline, as well as increased neuronal loss, cell shrinkage, nuclear condensation, and the pro-apoptotic protein Bax. These symptoms were attenuated by treatment with SGB.These findings suggest that SGB can attenuate depression-like behaviors induced by chronic stress. These protective effects appear to be due to an anti-apoptotic mechanism of two stress

  16. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  17. Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-α KO mouse.

    Science.gov (United States)

    Guellich, Aziz; Damy, Thibaud; Conti, Marc; Claes, Victor; Samuel, Jane-Lise; Pineau, Thierry; Lecarpentier, Yves; Coirault, Catherine

    2013-06-01

    Peroxisome proliferator-activated receptor (PPAR)-α deletion induces a profound decrease in MnSOD activity, leading to oxidative stress and left ventricular (LV) dysfunction. We tested the hypothesis that treatment of PPAR-α knockout (KO) mice with the SOD mimetic tempol prevents the heart from pathological remodelling and preserves LV function. Twenty PPAR-α KO mice and 20 age-matched wild-type mice were randomly treated for 8 wk with vehicle or tempol in the drinking water. LV contractile parameters were determined both in vivo using echocardiography and ex vivo using papillary muscle mechanics. Translational and posttranslational modifications of myosin heavy chain protein as well as the expression and activity of major antioxidant enzymes were measured. Tempol treatment did not affect LV function in wild-type mice; however, in PPAR-α KO mice, tempol prevented the decrease in LV ejection fraction and restored the contractile parameters of papillary muscle, including maximum shortening velocity, maximum extent of shortening, and total tension. Moreover, compared with untreated PPAR-α KO mice, myosin heavy chain tyrosine nitration and anion superoxide production were markedly reduced in PPAR-α KO mice after treatment. Tempol also significantly increased glutathione peroxidase and glutathione reductase activities (~ 50%) in PPAR-α KO mice. In conclusion, these findings demonstrate that treatment with the SOD mimetic tempol can prevent cardiac dysfunction in PPAR-α KO mice by reducing the oxidation of contractile proteins. In addition, we show that the beneficial effects of tempol in PPAR-α KO mice involve activation of the glutathione peroxidase/glutathione reductase system.

  18. Involvement of GDH3-encoded NADP+-dependent glutamate dehydrogenase in yeast cell resistance to stress-induced apoptosis in stationary phase cells.

    Science.gov (United States)

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-12-28

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP(+)-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role.

  19. Protective effects of red grape (Vitis vinifera) juice through restoration of antioxidant defense, endocrine swing and Hsf1, Hsp72 levels in heat stress induced testicular dysregulation of Wister rat.

    Science.gov (United States)

    Halder, Soma; Sarkar, Mrinmoy; Dey, Sananda; Kumar Bhunia, Sujay; Ranjan Koley, Alok; Giri, Biplab

    2018-01-01

    Ability of red grape juice (RGJ), a known antioxidant, on testis of adult Wister rat to protect from oxidative stress induced damages by heat stress has been investigated in this study. Heat stress was induced maintaining body and testicular temperature at 43°C for 30min/day for 15 days using a hyperthermia induction chamber. Four groups of rats (n=6 per group) comprising of Group-I (control) -kept at 32°C, Group-II -exposed to heat stress alone, Group-III received RGJ (0.8ml/rat/day) alone and Group-IV -exposed to heat stress and received RGJ at same dose. Analysis of blood and testicular tissue exhibited significant reduction in serum testosterone, testicular superoxide dismutase, testicular catalase and testicular glutathione (all p rise in the level of serum corticosteroid, testicular lipid peroxidase and the apoptotic enzyme caspase-3 of testis (all p < 0.001) were observed along with substantial increase in testicular Hsp72 and Hsf-1, and decrease in 17β-HSD3 were noted in heat stressed rats compared to controls. In Group-IV rats, RGJ administration could restore these parameters to normal levels. The signs of retention were clear in Group-IV rats and found to be significantly different as compared to that of the Group-II rats. In testicular histology of rats exposed to heat stress alone revealed remarkable germ cell degeneration and tubular deformations which were prevented by RGJ treatment (Group-IV). The reduced number of sperm level in Group-II also restored in RGJ treatment (Group-IV). The above results indicate that consumption of RGJ may substantially protect testis from heat stress induce dysfunctions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Early micronutrient supplementation protects against early stress-induced cognitive impairments.

    Science.gov (United States)

    Naninck, Eva F G; Oosterink, J Efraim; Yam, Kit-Yi; de Vries, Lennart P; Schierbeek, Henk; van Goudoever, Johannes B; Verkaik-Schakel, Rikst-Nynke; Plantinga, Josèe A; Plosch, Torsten; Lucassen, Paul J; Korosi, Aniko

    2017-02-01

    Early-life stress (ES) impairs cognition later in life. Because ES prevention is problematic, intervention is needed, yet the mechanisms that underlie ES remain largely unknown. So far, the role of early nutrition in brain programming has been largely ignored. Here, we demonstrate that essential 1-carbon metabolism-associated micronutrients (1-CMAMs; i.e., methionine and B vitamins) early in life are crucial in programming later cognition by ES. ES was induced in male C57Bl/6 mice from postnatal d (P)2-9. 1-CMAM levels were measured centrally and peripherally by using liquid chromatography-mass spectroscopy. Next, we supplemented the maternal diet with 1-CMAM only during the ES period and studied cognitive, neuroendocrine, neurogenic, transcriptional, and epigenetic changes in adult offspring. We demonstrate that ES specifically reduces methionine in offspring plasma and brain. Of note, dietary 1-CMAM enrichment during P2-9 restored methionine levels and rescued ES-induced adult cognitive impairments. Beneficial effects of this early dietary enrichment were associated with prevention of the ES-induced rise in corticosterone and adrenal gland hypertrophy did not involve changes in maternal care, hippocampal volume, neurogenesis, or global/Nr3c1-specific DNA methylation. In summary, nutrition is important in brain programming by ES. A short, early supplementation with essential micronutrients can already prevent lasting effects of ES. This concept opens new avenues for nutritional intervention.-Naninck, E. F. G., Oosterink, J. E., Yam, K.-Y., de Vries, L. P., Schierbeek, H., van Goudoever, J. B., Verkaik-Schakel, R.-N., Plantinga, J. A., Plosch, T., Lucassen, P. J., Korosi, A. Early micronutrient supplementation protects against early stress-induced cognitive impairments. © FASEB.

  1. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Zolla, Gaston; Heimer, Yair M; Barak, Simon

    2010-01-01

    Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.

  2. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  3. Physiological correlates of stress-induced decrements in human perceptual performance.

    Science.gov (United States)

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  4. The Effect of Exercise on Learning and Spatial Memory Following Stress-Induced Sleep Deprivation (Sleep REM in Rats

    Directory of Open Access Journals (Sweden)

    Darkhah

    2016-04-01

    Full Text Available Background Stress induced by sleep deprivation can cause degradation of learning in the acquisition phase, and low-intensity exercise can prevent the negative effects of stress. Objectives The aim of this study was to investigate the moderating role of aerobic exercise on spatial memory and learning following stress-induced insomnia (sleep REM in animal models. Materials and Methods This experimental study was conducted on adult male Wistar rats that were randomly divided into two groups. Both groups were exposed to sleep deprivation induced stress, following which the experimental group was exposed to exercise training (experimental, n = 8; control, n = 8. The stress intervention was undertaken through 24 hours of sleep deprivation using a modified sleep deprivation platform (MMD. The exercise protocol included mild aerobic exercise on a treadmill (30 minutes a day, seven days, and Morris Water Maze (MWM protocols were applied to assess spatial memory and learning. Data were analyzed by an independent t-test and dependent t-test. Results The results showed that, after seven days of aerobic exercise on a treadmill, the experimental group showed better performance escape latency (P < 0.05 and distance traveled (P < 0.05 than the control group in the MWM, while there was no difference between these two groups in the pre-test. Conclusions The role of exercise is greater in the retention than the acquisition phase for recalling past experiences.

  5. Stress-induced breakdown during galvanostatic anodising of zirconium

    International Nuclear Information System (INIS)

    Van Overmeere, Q.; Proost, J.

    2010-01-01

    Although internal stress is frequently being suggested as a plausible reason for oxide breakdown during valve metal anodising, no direct quantitative evidence has been made available yet. In this work, we anodized sputtered zirconium thin films galvanostatically at room temperature in sulphuric acid until breakdown was observed, and simultaneously measured the internal stress evolution in the oxide in situ, using a high-resolution curvature setup. It was found that the higher the magnitude of the observed internal compressive stress in the oxide, the smaller the oxide thickness at which breakdown occurred. The moment of breakdown was identified from a slope change in the cell voltage evolution, indicative for a decrease in anodising efficiency. The latter presumably occurs as a result of oxygen evolution, initiated by the relative increase of the cubic or tetragonal zirconia phase content relative to the monoclinic one. This was evidenced in turn by comparing electron diffractograms, taken in a transmission electron microscope, before and after breakdown. The critical role of internal stress on oxide breakdown during zirconium anodising can therefore be associated with its promoting effect on the densifying phase transformation of monoclinic oxide.

  6. Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress

    OpenAIRE

    Law, Bernard M. H.; Waye, Mary M. Y.; So, Winnie K. W.; Chair, Sek Ying

    2017-01-01

    Previous studies have suggested the potential involvement of oxidative stress in gastrointestinal cancers. In light of this, research efforts have been focused on the potential of dietary antioxidant intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Rice bran, a by-product of rice milling, has been shown to contain an abundance of phytochemicals, which are dietary antioxidants. To date, a number of studies have shown the antioxidative effect of rice bran in...

  7. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-02-09

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Prevention of H2O2 Induced Oxidative Damages of Rat Testis by Thymus algeriensis.

    Science.gov (United States)

    Guesmi, Fatma; Beghalem, Hamida; Tyagi, Amit K; Ali, Manel Ben; Mouhoub, Ramla Ben; Bellamine, Houda; Landoulsi, Ahmed

    2016-04-01

    We evaluate the effects of Thymus algeriensis (TEO) against hydrogen peroxide (H2O2) toxicity on body and testis weight, testis sperm count, testis lipid peroxidation, and antioxidant enzyme activities in rats. Rats were treated with low (LD) and high dose (HD) of H2O2 (0.1 and 1 mmol/L) in the presence or absence of TEO (150 mg/kg). The results exhibited a significant decrease in body weight and testis weight, in total sperm number decrease (P<0.05), sperm motility and percentage of sperm viability, leading to complete arrest, in sperm flagellar beat frequency by the gavage of 1 mmol/L H2O2 compared to controls. The administration of H2O2 resulted in a significant reduction in testis GSH, GPx, CAT, SOD, and GST activity and significant increase (P<0.05) in MDA concentration compared with the untreated control animals. TEO pre-treatment protected testis from the H2O2 generated oxidative stress. These results were confirmed by histological architecture examinations. H2O2 has the ability to alter the sperm function, characteristics and development of testis. However, TEO is an efficient natural agent, which can prevent the testis from H2O2-induced oxidative damage in rats. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin.

    Science.gov (United States)

    Keswani, Sanjay C; Bosch-Marcé, Marta; Reed, Nicole; Fischer, Angela; Semenza, Gregg L; Höke, Ahmet

    2011-03-22

    Nitric oxide (NO) is a signaling molecule that can trigger adaptive (physiological) or maladaptive (pathological) responses to stress stimuli in a context-dependent manner. We have previously reported that NO may signal axonal injury to neighboring glial cells. In this study, we show that mice deficient in neuronal nitric oxide synthase (nNOS-/-) are more vulnerable than WT mice to toxin-induced peripheral neuropathy. The administration of NO donors to primary dorsal root ganglion cultures prevents axonal degeneration induced by acrylamide in a dose-dependent manner. We demonstrate that NO-induced axonal protection is dependent on hypoxia-inducible factor (HIF)-1-mediated transcription of erythropoietin (EPO) within glial (Schwann) cells present in the cultures. Transduction of Schwann cells with adenovirus AdCA5 encoding a constitutively active form of HIF-1α results in amelioration of acrylamide-induced axonal degeneration in an EPO-dependent manner. Mice that are partially deficient in HIF-1α (HIF-1α+/-) are also more susceptible than WT littermates to toxic neuropathy. Our results indicate that NO→HIF-1→EPO signaling represents an adaptive mechanism that protects against axonal degeneration.

  10. Tongxinluo Prevents Endothelial Dysfunction Induced by Homocysteine Thiolactone In Vivo via Suppression of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Aim. To explore whether Chinese traditional medicine, tongxinluo (TXL, exerts beneficial effects on endothelial dysfunction induced by homocysteine thiolactone (HTL and to investigate the potential mechanisms. Methods and Results. Incubation of cultured human umbilical vein endothelial cells with HTL (1 mM for 24 hours significantly reduced cell viabilities assayed by MTT, and enhanced productions of reactive oxygen species. Pretreatment of cells with TXL (100, 200, and 400 μg/mL for 1 hour reversed these effects induced by HTL. Further, coincubation with GW9662 (0.01, 0.1 mM abolished the protective effects of TXL on HTL-treated cells. In ex vivo experiments, exposure of isolated aortic rings from rats to HTL (1 mM for 1 hour dramatically impaired acetylcholine-induced endothelium-dependent relaxation, reduced SOD activity, and increased malondialdehyde content in aortic tissues. Preincubation of aortic rings with TXL (100, 200, and 400 μg/mL normalized the disorders induced by HTL. Importantly, all effects induced by TXL were reversed by GW9662. In vivo analysis indicated that the administration of TXL (1.0 g/kg/d remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats fed with HTL (50 mg/kg/d for 8 weeks. Conclusions. TXL improves endothelial functions in rats fed with HTL, which is related to PPARγ-dependent suppression of oxidative stress.

  11. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage.

    Science.gov (United States)

    Alzoubi, Karem H; Khabour, Omar F; Jaber, Aya G; Al-Azzam, Sayer I; Mhaidat, Nizar M; Masadeh, Majed M

    2014-05-01

    Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human.

  12. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    Science.gov (United States)

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia. Copyright © 2014. Published by Elsevier Ltd.

  13. [Nutritional approaches to modulate oxidative stress that induce Alzheimer's disease. Nutritional approaches to prevent Alzheimer's disease].

    Science.gov (United States)

    Lara, Humberto Herman; Alanís-Garza, Eduardo Javier; Estrada Puente, María Fernanda; Mureyko, Lucía Liliana; Alarcón Torres, David Alejandro; Ixtepan Turrent, Liliana

    2015-01-01

    Alzheimer's disease is the most common cause of dementia in the world; symptoms first appear after age 65 and have a progressive evolution. Expecting an increase on its incidence and knowing there is currently no cure for Alzheimer's disease, it is a necessity to prevent progression. The change in diet due to globalization may explain the growth of the incidence in places such as Japan and Mediterranean countries, which used to have fewer incidences. There is a direct correlation between disease progression and the increased intake of alcohol, saturated fats, and red meat. Therefore, we find obesity and higher serum levels in cholesterol due to saturated fat as a result. A way to decrease the progression of Alzheimer's is through a diet rich in polipheno/es (potent antioxidants), unsaturated fats (monounsaturated and polyunsaturated), fish, vegetable fa t, fruits with low glycemic index, and a moderate consumption of red wine. Through this potent antioxidant diet we accomplish the prevention of dementia and the progression of Alzheimer's disease. This article emphasizes the food and other components that have been demonstrated to decrease the oxidative stress related to these progressive diseases.

  14. Cholesterol oxidized products in foods: potential health hazards and the role of antioxidants in prevention

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    2004-09-01

    Full Text Available Cholesterol is a molecule with a double bond in its structure, and therefore it is susceptible to oxidation leading to the formation of oxysterols. These oxidation products are found in many commonly consumed foods and are formed during their manufacture and/or processing. Concern about the consumption of oxysterols arises from the potentially cytotoxic, mutagenic, atherogenic, and possibly carcinogenic effects of some of them. Eggs and egg-derived products are the main dietary sources of oxysterols. Thermally processed milk and milk-derived products are also another source of oxysterols in our diet. Fried meats, and other miscellaneous foods, such as French fried potatoes, when prepared using vegetable/animal frying oil, are another important source of oxysterols in the western diet. Efforts to prevent or to reduce cholesterol oxidation are directed to the application of antioxidants of either synthetic or natural origin. Antioxidants cannot only inhibit triglyceride oxidation, but some of them can also inhibit cholesterol oxidation. Among synthetic antioxidants, 2,6-di-ter tiarybutyl-4-methylphenol (BHT and ter tiary butylhydroquinone (TBHQ , can eff icient ly inhibit the thermal-induced oxidation of cholesterol. Among natural antioxidants, alpha- and gamma-tocopherol, rosemary extracts, and flavonoid quercetin, show the strongest inhibitory action against cholesterol oxidation.El colesterol es una molécula con un doble enlace en su estructura; por lo tanto es susceptible a la oxidación y su transformación en oxiesteroles. Estos productos de oxidación se encuentran en gran diversidad de alimentos y se forman durante la manufactura y procesamiento. Algunos de los oxiesteroles son potencialmente citotóxicos, mutagénicos, aterogénicos y carcinogénicos. Los huevos y productos derivados del huevo constituyen la principal fuente en la dieta de oxiesteroles. También se encuentran oxiesteroles en derivados lácteos y leche sometida a altas

  15. Pharmacological Correction of Stress-Induced Gastric Ulceration by Novel Small-Molecule Agents with Antioxidant Profile

    Directory of Open Access Journals (Sweden)

    Konstantin V. Kudryavtsev

    2014-01-01

    Full Text Available This study was designed to determine novel small-molecule agents influencing the pathogenesis of gastric lesions induced by stress. To achieve this goal, four novel organic compounds containing structural fragments with known antioxidant activity were synthesized, characterized by physicochemical methods, and evaluated in vivo at water immersion restraint conditions. The levels of lipid peroxidation products and activities of antioxidative system enzymes were measured in gastric mucosa and correlated with the observed gastroprotective activity of the active compounds. Prophylactic single-dose 1 mg/kg treatment with (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline efficiently decreases up to 86% stress-induced stomach ulceration in rats. Discovered small-molecule antiulcer agents modulate activities of gastric mucosa tissue superoxide dismutase, catalase, and xanthine oxidase in concerted directions. Gastroprotective effect of (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline at least partially depends on the correction of gastric mucosa oxidative balance.

  16. Pharmacological correction of stress-induced gastric ulceration by novel small-molecule agents with antioxidant profile.

    Science.gov (United States)

    Kudryavtsev, Konstantin V; Markevich, Anna O; Virchenko, Oleksandr V; Falalyeyeva, Tetyana M; Beregova, Tetyana V; Ostapchenko, Lyudmyla I; Zabolotnev, Dmitry V; Zefirov, Nikolay S

    2014-01-01

    This study was designed to determine novel small-molecule agents influencing the pathogenesis of gastric lesions induced by stress. To achieve this goal, four novel organic compounds containing structural fragments with known antioxidant activity were synthesized, characterized by physicochemical methods, and evaluated in vivo at water immersion restraint conditions. The levels of lipid peroxidation products and activities of antioxidative system enzymes were measured in gastric mucosa and correlated with the observed gastroprotective activity of the active compounds. Prophylactic single-dose 1 mg/kg treatment with (2-hydroxyphenyl)thioacetyl derivatives of L-lysine and L-proline efficiently decreases up to 86% stress-induced stomach ulceration in rats. Discovered small-molecule antiulcer agents modulate activities of gastric mucosa tissue superoxide dismutase, catalase, and xanthine oxidase in concerted directions. Gastroprotective effect of (2-hydroxyphenyl)thioacetyl derivatives of L-lysine and L-proline at least partially depends on the correction of gastric mucosa oxidative balance.

  17. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  18. Mitoprotective antioxidant EUK-134 stimulates fatty acid oxidation and prevents hypertrophy in H9C2 cells.

    Science.gov (United States)

    Purushothaman, Sreeja; Nair, R Renuka

    2016-09-01

    Oxidative stress is an important contributory factor for the development of cardiovascular diseases like hypertension-induced hypertrophy. Mitochondrion is the major source of reactive oxygen species. Hence, protecting mitochondria from oxidative damage can be an effective therapeutic strategy for the prevention of hypertensive heart disease. Conventional antioxidants are not likely to be cardioprotective, as they cannot protect mitochondria from oxidative damage. EUK-134 is a salen-manganese complex with superoxide dismutase and catalase activity. The possible role of EUK-134, a mitoprotective antioxidant, in the prevention of hypertrophy of H9C2 cells was examined. The cells were stimulated with phenylephrine (50 μM), and hypertrophy was assessed based on cell volume and expression of brain natriuretic peptide and calcineurin. Enhanced myocardial lipid peroxidation and protein carbonyl content, accompanied by nuclear factor-kappa B gene expression, confirmed the presence of oxidative stress in hypertrophic cells. Metabolic shift was evident from reduction in the expression of medium-chain acyl-CoA dehydrogenase. Mitochondrial oxidative stress was confirmed by the reduced expression of mitochondria-specific antioxidant peroxiredoxin-3 and enhanced mitochondrial superoxide production. Compromised mitochondrial function was apparent from reduced mitochondrial membrane potential. Pretreatment with EUK-134 (10 μM) was effective in the prevention of hypertrophic changes in H9C2 cells, reduction of oxidative stress, and prevention of metabolic shift. EUK-134 treatment improved the oxidative status of mitochondria and reversed hypertrophy-induced reduction of mitochondrial membrane potential. Supplementation with EUK-134 is therefore identified as a novel approach to attenuate cardiac hypertrophy and lends scope for the development of EUK-134 as a therapeutic agent in the management of human cardiovascular disease.

  19. Stress-Induced Proton Disorder in Hydrous Ringwoodite

    Science.gov (United States)

    Koch-Müller, M.; Rhede, D.; Mrosko, M.; Speziale, S.; Schade, U.

    2008-12-01

    observed up to 30 GPa without any discontinuity and their pressure behaviour (dν/dP) can well be described by linear fits. Molecular vibrations are very sensitive to non-hydrostatic conditions and we interpret the disappearance of the OH-bands as a stress-induced proton disordering in hydrous ringwoodite due to the use of hard pressure transmiting media like CsI or argon without thermal annealing. Thus, our study cannot confirm the phase transition observed by Camorro Perez et al. (2006) in ringwoodite. But as they used Neon as pressure transmitting medium, which is known to become non-hydrostatic at pressure above 16 GPa (Bell and Mao, 1981) we argue that their observation of a sudden disappearance of the OH band may also be related to non-hydrostatic conditions. References Bell P.M. and Mao H.-K. (1981) Carnegie Inst. Wash Yrbk 80: 404-406. Camorro Perez E.M., Daniel I., Chervin J.-C., Dumas P., Bass J.D. and Inoue T. (2006) Phys. Chem. Minerals, 33, 502 - 510. Kudoh Y., Kuribayashi T., Mizohata H., Ohtani E., (2000) Phys. Chem. Mineral. 27, 474-479. Wittlinger J., Fischer R., Wener S., ScheiderJ., Schulz J. (1997) Acta Cryst B53, 745 - 749.

  20. Chest Pain and Mental Stress-Induced Myocardial Ischemia: Sex Differences.

    Science.gov (United States)

    Pimple, Pratik; Hammadah, Muhammad; Wilmot, Kobina; Ramadan, Ronnie; Al Mheid, Ibhar; Levantsevych, Oleksiy; Sullivan, Samaah; Garcia, Ernest V; Nye, Jonathon; Shah, Amit J; Ward, Laura; Mehta, Puja; Raggi, Paolo; Bremner, J Douglas; Quyyumi, Arshed A; Vaccarino, Viola

    2017-12-07

    Mental stress-induced myocardial ischemia is a frequent phenomenon in patients with coronary artery disease. Women with coronary artery disease tend to have more mental stress-induced myocardial ischemia and more chest pain/anginal symptoms than men, but whether the association between mental stress-induced myocardial ischemia and angina burden differs in women and men is unknown. This was a cross-sectional study with experimental manipulation of 950 individuals with stable coronary artery disease. Chest pain/angina frequency in the previous 4 weeks was assessed with the Seattle Angina Questionnaire's angina-frequency subscale. Mental stress-induced myocardial ischemia was assessed with myocardial perfusion imaging during mental stress (standardized public speaking task). Presence of mental stress-induced myocardial ischemia was based on expert readers and established criteria. A conventional (exercise or pharmacologic) stress test was used as a control condition. Overall, 338 individuals (37%) reported angina; 112 (12%) developed mental stress-induced myocardial ischemia, and 256 (29%) developed conventional stress ischemia. Women who reported angina had almost double the probability to develop mental stress-induced myocardial ischemia (19% vs 10%, adjusted prevalence rate ratio, 1.90; 95% confidence interval, 1.04-3.46), whereas there was no such difference in men (11% vs 11%, adjusted prevalence rate ratio, 1.09; 95% confidence interval, 0.66-1.82). No association was found between angina symptoms and conventional stress ischemia for women or men. Results for ischemia as a continuous variable were similar. In women, but not in men, anginal symptoms may be a marker of vulnerability toward ischemia induced by psychologic stress. These results highlight the psychosocial origins of angina in women and may have important implications for the management and prognosis of women with angina. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Hyaluronate acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-10-01

    Full Text Available Yan Zhang, Qin Liu, Ning Yang, Xuegang Zhang Department of Gynecology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, People’s Republic of China Abstract: Postsurgical adhesion formation is the most common complication in abdominal and pelvic surgery. Adhesiolysis is the most commonly applied treatment for adhesion formation but is often followed by adhesion reformation. Therefore, an efficient strategy should be adopted to solve these problems. This study aimed to explore whether hyaluronic acid and oxidized regenerated cellulose (ORC could prevent adhesion formation and reformation. Thirty female Sprague Dawley rats were randomly divided into three groups (n=10 each and subjected to different treatments during the first and second surgery. The control group was treated with isotonic sodium chloride, the ORC group was treated with ORC (1.5×1 cm, and the medical sodium hyaluronate (MSH group was treated with 1% MSH (0.5 mL. At 2 weeks after the first surgery, adhesion scores in the MSH group (1.90±0.99 and the ORC group (1.40±0.97 were significantly lower than those in the control group (3.00±0.82 (P=0.005. Similarly, 2 weeks after the second surgery, adhesion scores in the MSH group (2.00±0.82 and the ORC group (1.50±1.27 were significantly lower than those in the control group (3.50±0.53 (P=0.001. In addition, body weights in the MSH group and the ORC group did not change significantly, whereas the control group showed a consistent decrease in body weight during the experiment. Histological examination revealed that inflammatory infiltration was involved in both adhesion formation and reformation. In conclusion, hyaluronic acid and ORC were both efficient in reducing adhesion formation and reformation in the rat model. Keywords: hyaluronic acid, oxidized regenerated cellulose, adhesion formation, adhesion reformation, rat model 

  2. Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function.

    Science.gov (United States)

    Swamy-Mruthinti, Satyanarayana; Srinivas, Volety; Hansen, John E; Rao, Ch Mohan

    2013-01-01

    Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature in