WorldWideScience

Sample records for prevent mold growth

  1. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  2. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2014-02-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils.  Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  3. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2013-04-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils. Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  4. Mold

    International Nuclear Information System (INIS)

    Kim, Jae Geun; Cheo, Su Cheon

    1988-04-01

    This book consists of three parts, which explains the basic principle of making mold. The first part includes plastic mold with introduction of plastic mold, mold compression, transfer mold, injection mold, heat and cool for mold, runner and gate, making of core and cavity and preparation of mold. The second part indicates die casting mold with zinc die casting mold, aluminum die casting mold, finishing of mold. The third part gives a description of rubber mold with manufacture of rubber mold.

  5. Prevention of leakage of low-melting-point metals from styrofoam molds.

    Science.gov (United States)

    Herman, M W; Robinson, A; Small, R C

    1975-10-01

    Leakage of low-melting-point metals from the underside of polystyrene molds can be prevented by applying a silicone caulking material to the bottom of the mold and pressing the mold on a metal plate before pouring.

  6. Mold

    Science.gov (United States)

    ... are we studying mold? Mold is everywhere and people are concerned about potential health effects, especially effects on respiratory health. People who already have asthma or a respiratory condition ...

  7. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  8. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    International Nuclear Information System (INIS)

    Zhao Guangying; Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin

    2011-01-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  9. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.com [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China); Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China)

    2011-04-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  10. Mold inhibition on unseasoned southern pine

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  11. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    Science.gov (United States)

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  12. Mold Testing or Sampling

    Science.gov (United States)

    In most cases, if visible mold growth is present, sampling is unnecessary. Since no EPA or other federal limits have been set for mold or mold spores, sampling cannot be used to check a building's compliance with federal mold standards.

  13. Assessment of indoor air in Austrian apartments with and without visible mold growth

    Science.gov (United States)

    Haas, D.; Habib, J.; Galler, H.; Buzina, W.; Schlacher, R.; Marth, E.; Reinthaler, F. F.

    Fungal spores are transported across great distances in the outdoor air and are also regularly found indoors. Building conditions and behavior-related problems in apartments may lead to massive growth of mold within a very short period of time. The aim of this study was to evaluate whether the visible growth of mold indoors influences the concentration of fungal spores in the air as well as the variety of their species. Samples were collected from 66 households in Austria. For each sampling, the corresponding outdoor air was measured as reference value. The size of the visible mold growth was categorized in order to correlate the extent of mold growth with the concentration of airborne spores as well as the fungal genera. In order to determine fungal spore concentrations in the air, the one-stage MAS-100 ® air sampler was used. Malt extract agar (MEA) and dichloran glycerol agar (DG18) plates were used as culture media. The total colony forming units (CFU) per m 3 were determined. The fungi were identified from the isolated colonies. The results show that in apartments visibly affected by mold, the median values were significantly higher than those of apartments without visible mold growth. The extent of visible mold growth is significantly correlated with both concentration of fungal spores ( p<0.001) as well as the predominance of Penicillium sp. and Aspergillus sp. ( p<0.001) in indoor air. The total fungal concentration of Penicillium and Aspergillus in the air of apartments is recommended for assessing fungal exposure.

  14. Analysis of improved criteria for mold growth in ASHRAE standard 160 by comparison with field observations

    Science.gov (United States)

    Samuel V. Glass; Stanley D. Gatland II; Kohta Ueno; Christopher J. Schumacher

    2017-01-01

    ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, was published in 2009. The standard sets criteria for moisture design loads, hygrothermal analysis methods, and satisfactory moisture performance of the building envelope. One of the evaluation criteria specifies conditions necessary to avoid mold growth. The current standard requires that...

  15. AKTIVITAS ANTIKAPANG BAKTERI ASAM LAKTAT TERHADAP PERTUMBUHAN KAPANG KONTAMINAN KEJI [Antimycotic Activity of Lactic Acid Bacteria on the Growth of Cheese Contaminating Molds

    OpenAIRE

    S. Styahadi3); L Nuraida2); Fatim Illianingtyas1); B S.L Jenie2)

    2006-01-01

    Local cheese is frequently contaminated by toxigenic molds which is harmful for human health. Lactic acid bacteria have been proven to inhibit the growth of toxigenic mold in some food products. The research was aimed to study the activity of indigenous lactic acid bacteria to inhibit the growth of toxigenic molds in local cheese. The molds studied were isolated from local cheese production (Gouda type). The cheese contaminating molds were identified as Penicillium sp. and Aspergillus sp. Nin...

  16. Development of a Preventive Maintenance Program for Tooling Used in Powder Slush Molding

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Curzio, Edgar [ORNL; Rios, Orlando [ORNL; Marquez Rossy, Andres E [ORNL

    2016-07-19

    ORNL collaborated with Faurecia Interior Systems to investigate the feasibility of developing a thermomagnetic preventive maintenance program for nickel tooling used in powder slush molding. It was found that thermal treatments at temperatures greater than 500°C can anneal strain hardening in nickel tooling and a range of temperatures and times for effective thermal annealing were identified. It was also observed that magnetic fields applied during thermal annealing do not alter the kinetics of strain hardening annealing. The results obtained in this investigation provide a foundation for establishing a preventive maintenance program for nickel tooling.

  17. Environmental Sustainability and Mold Hygiene in Buildings

    Directory of Open Access Journals (Sweden)

    Haoxiang Wu

    2018-04-01

    Full Text Available Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  18. Dusts and Molds

    Science.gov (United States)

    ... limit your exposure by taking these general measures. Think about how they apply in your setting. • Prevent dusts and molds from forming, e.g. drying feeds and cleaning animal areas regularly. • Prevent dusts and molds from becoming ...

  19. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    Science.gov (United States)

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  20. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH.

    Science.gov (United States)

    Dagnas, Stéphane; Onno, Bernard; Membré, Jeanne-Marie

    2014-09-01

    The objective of this study was to quantify the effect of water activity, pH and storage temperature on the growth of Eurotium repens, Aspergillus niger and Penicillium corylophilum, isolated from spoiled bakery products. Moreover, the behaviors of these three mold species were compared to assess whether a general modeling framework may be set and re-used in future research on bakery spoilage molds. The mold growth was modeled by building two distinct Gamma-type secondary models: one on the lag time for growth and another one on the radial growth rate. A set of 428 experimental growth curves was generated. The effect of temperature (15-35 °C), water activity (0.80-0.98) and pH (3-7) was assessed. Results showed that it was not possible to apply the same set of secondary model equations to the three mold species given that the growth rate varied significantly with the factors pH and water activity. In contrast, the temperature effect on both growth rate and lag time of the three mold species was described by the same equation. The equation structure and model parameter values of the Gamma models were also compared per mold species to assess whether a relationship between lag time and growth rate existed. There was no correlation between the two growth responses for E. repens, but a slight one for A. niger and P. corylophilum. These findings will help in determining bakery product shelf-life and guiding future work in the predictive mycology field. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. EVALUATION OF POLLUTION PREVENTION OPTIONS TO REDUCE STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTIC OPEN MOLDING PROCESSES

    Science.gov (United States)

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials, and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To me...

  2. Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods.

    Science.gov (United States)

    Ju, Jian; Xu, Xiaomiao; Xie, Yunfei; Guo, Yahui; Cheng, Yuliang; Qian, He; Yao, Weirong

    2018-02-01

    This study evaluated the minimum inhibition concentration (MIC) and minimum lethal concentration (MLC) of cinnamon and clove essential oils against mold growth on green bean cake and finger citron crisp cake, and also examined the effects of these two essential oils and their application methods on the shelf life of the baked products in normal and vacuum packages by accelerated storage test. The results showed that the MIC of cinnamon and clove essential oils against molds were 0.21-0.83 and 0.21-1.67μL/mL, respectively and the MLC were 0.42-0.83 and 0.83-1.67μL/mL, respectively. In normal package cinnamon and clove essential oils could prolong the shelf life of green bean cake 9-10 and 3-4days, respectively and could prolong the shelf life of finger citron crisp cake 5-6 and 2-3days, respectively. And in vacuum package they were 15-16, 8-9, 10-12 and 7-9days, respectively in turn. Copyright © 2017. Published by Elsevier Ltd.

  3. Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds.

    Science.gov (United States)

    Polizzi, Viviana; Adams, An; De Saeger, Sarah; Van Peteghem, Carlos; Moretti, Antonio; De Kimpe, Norbert

    2012-01-01

    A Penicillium polonicum, an Aspergillus ustus and a Periconia britannica strain were isolated from water-damaged environments and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction followed by GC-MS analysis. The most important MVOCs produced were 2-methylisoborneol, geosmin and daucane-type sesquiterpenes for P. polonicum, 1-octen-3-ol, 3-octanone, germacrene D, δ-cadinene and other sesquiterpenes for A. ustus and the volatile mycotoxin precursor aristolochene together with valencene, α-selinene and β-selinene for P. britannica. Different growth conditions (substrate, temperature, relative humidity) were selected, resembling indoor parameters, to investigate their influence on fungal metabolism in relation with the sick building syndrome and the results were compared with two other fungal strains previously analyzed under the same conditions. In general, the range of MVOCs and the emitted quantities were larger on malt extract agar than on wallpaper and plasterboard, but, overall, the main MVOC profile was conserved also on the two building materials tested. The influence of temperature and relative humidity on growth and metabolism is different for different fungal species, and two main patterns of behavior could be distinguished. Results show that, even at suboptimal conditions for growth, production of fungal volatiles can be significant. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effects of Bonding Wires and Epoxy Molding Compound on Gold and Copper Ball Bonds Intermetallic Growth Kinetics in Electronic Packaging

    Science.gov (United States)

    Gan, C. L.; Classe, F. C.; Chan, B. L.; Hashim, U.

    2014-04-01

    This paper discusses the influence of bonding wires and epoxy mold compounds (EMC) on intermetallic compound (IMC) diffusion kinetics and apparent activation energies ( E aa) of CuAl and AuAl IMCs in a fineline ball grid array package. The objective of this study is to study the CuAl and AuAl IMC growth rates with different epoxy mold compounds and to determine the apparent activation energies of different combination of package bills of materials. IMC thickness measurement has been carried out to estimate the coefficient of diffusion ( D o) and E aa various aging conditions of different EMCs and bonding wires. Apparent activation energies ( E aa) of both wire types were investigated after high temperature storage life tests (HTSL) for both molding compounds. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The E aa obtained for CuAl IMC diffusion kinetics are 1.08 and 1.04 eV with EMC A and EMC B, respectively. For AuAl IMC diffusion kinetics, the E aa obtained are 1.04 and 0.98 eV, respectively, on EMC A and EMC B. These values are close to previous HTSL studies conducted on Au and Cu ball bonds and are in agreement to the theory of HTSL performance of Au and Cu bonding wires.Overall, EMC B shows slightly lower apparent activation energy ( E aa) valueas in CuAl and AuAl IMCs. This proves that the different types of epoxy mold compounds have some influence on IMC growth rates.

  5. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    Science.gov (United States)

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage.

  6. AKTIVITAS ANTIKAPANG BAKTERI ASAM LAKTAT TERHADAP PERTUMBUHAN KAPANG KONTAMINAN KEJI [Antimycotic Activity of Lactic Acid Bacteria on the Growth of Cheese Contaminating Molds

    Directory of Open Access Journals (Sweden)

    S. Styahadi3

    2006-04-01

    Full Text Available Local cheese is frequently contaminated by toxigenic molds which is harmful for human health. Lactic acid bacteria have been proven to inhibit the growth of toxigenic mold in some food products. The research was aimed to study the activity of indigenous lactic acid bacteria to inhibit the growth of toxigenic molds in local cheese. The molds studied were isolated from local cheese production (Gouda type. The cheese contaminating molds were identified as Penicillium sp. and Aspergillus sp. Nine species of indigenous lactic acid bacteria (LAB were tested for antimycotic activities, i.e. Lactobacillus plantarum kik, Lactobacillus plantarum sa, Lactobacillus plantarum pi28a, Lactobacillus plantarum dd, Lactobacillus coryneformis, Lactobacillus brevis, Lactococcus piscium, Leuconostoc mesenteroides, and Leuconostoc paramesenteroides. The research revealed that the promising indigenous LAB which inhibited the contaminating molds was Lb plantarum pi28a. Application of Lb plantarum pi28a on local cheese production could inhibit the growth of Penicillium sp. and Aspergillus sp. up to 12 days.

  7. Gamma irradiation of peanut kernels to control mold growth and to diminish aflatoxin contamination

    International Nuclear Information System (INIS)

    Chiou, R.Y.Y.

    1996-01-01

    Peanut kernels inoculated with Aspergillus parasiticus conidia and uninoculated kernels were gamma irradiated. Levels higher than 2.5 kGy were effective in retarding the outgrowth of A. parasiticus and reducing the population of natural mold contaminants. However, complete elimination of the inoculated mold was not achieved even at the dose of 10 kGy. After 4 weeks incubation of the inoculated kernels in a humidified condition, aflatoxins produced by the surviving A. parasiticus were 69.12, 2.42, 57.36 and 22.28 μg/g, corresponding to the original irradiation levels as 0, 2.5, 5.0 and 10 kGy. When uninoculated peanut kernels were irradiated and stored for 1 year at ambient and frozen conditions, molds were detected only on peanuts irradiated with 2.5 kGy and stored at ambient temperature. Peroxide content of peanut oils prepared from the irradiated peanuts increased with increased irradiation dosage. (author). 5 refs., 1 tab

  8. Mold Flux Crystallization and Mold Thermal Behavior

    Science.gov (United States)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  9. Process and mold for molding foamed plastic articles

    International Nuclear Information System (INIS)

    Baumrucker, E.J.

    1984-01-01

    A method for forming foamed plastic articles which includes the steps of closing a mold; prepressurizing the mold cavity with gas to prevent premature diffusion of blowing gas from the material injected into the cavity; injecting a short shot of molten synthetic resin material containing a blowing agent into the cavity; venting a portion of the prepressurization gas during the injection step; and venting the remaining prepressurization gas from the mold cavity to a vacuum chamber means to allow expansion of the injected foamable resin material within the mold cavity, the vacuum drawing the resin material throughout the mold cavity. In addition, the vacuum chamber is coupled to the mold cavity through plural spaced passageways so that the vacuum is drawn at various locations throughout the cavity to thereby enhance the complete filling of the cavity with the injected material as it expands. The mold is vented following the injection step automatically at the expiration of a predetermined time following the closing of a nozzle of the injection apparatus. A mold for carrying out the process includes improved gas flow means for delivering gas to and venting gas from the mold cavity. The mold also includes improved sealing means for sealing the mold to maintain it in a pressurized state as desired

  10. Algorithm for prevention of molten steel sticking onto mold in continous casting process

    Directory of Open Access Journals (Sweden)

    Blažević, D.

    2008-01-01

    Full Text Available In continuous casting steel production a significant loss reduction – in terms of scrap material, time and money – can be achieved by developing an appropriate algorithm for the prevention of molten steel sticking onto mould. The logic of such algorithm should be simple and manageable to ensure its practical implementation on a computer system via the usage of thermo sensors. This suggests that both the algorithm and the automated data collection can be implemented by means of applicative software. Despite its simplicity, the algorithm should accurately trace physical phenomena in molten steel.

  11. Cemaran Kapang pada Pakan Sapi dan Uji In Vitro Sirih terhadap Pertumbuhan Kapang Aspergillus flavus (MOLD CONTAMINATION IN CATTLE FEED AND IN VITRO ASSAY OF PIPER BETEL AGAINTS GROWTH OF MOLD CONTAMINANT ASPERGILLUS FLAVUS

    Directory of Open Access Journals (Sweden)

    Riza Zainuddin Ahmad

    2017-09-01

    Full Text Available Contamination of mold in feed and Ingridients of feed is important because pathogenic and toxigenic mold will contaminate and cause mycotic and mycotoxicosis on livestock especially cattle. Information regarding the data is required in an attempt to controll of mold contaminant. Base on the previous study piper betel leaf (Piper betle showed high activity as antimold. The aim of this study were to obtain data of mold contamination in cattle feed and ingredients of feed from the provinces of Banten, Lampung, Jakarta and West Java, and to test piper betel as an antimold herbal from traditional medicinal plants originated from Indonesia. Isolation and identification of fungi were conducted on the flour, glycerides, onggok, corn, peanut, coconut, coffee, concentrates, lamtoro, pineapple, rice, grass, palm, cassava, tofu lees, fish meal, bone meal from the provinces of Banten, Lampung, Jakarta and West Java. Isolation was done by plating the samples on agar medium, The mold have grown on media was identified. Feed that has been mixed with the extracts and powders plus mold inoculum was incubated. After 3=7 days incubation, colony forming unit (CFU of the mixtures were counted. The results showed that the majority of feed contaminated with mold, but still below the threshold. The mold contamination in wheat flour, corn, concentrates and tofu lees exceeds from the threshold. Aspergillus sp, A. amstelodami, A. clavatus, A. Candidus, A. flavus, A. fumigatus, A. glaucus, A. niger, Cladosporium sp., Curvularia sp., Fusarium sp., Hyphomycetes sp., Mycelia sterilata, Mucor sp., Paecilomyces sp., Penicillium sp., and Rhizopus sp. Penicillium sp were most commonly found in the feed as much as 2.56 x 107 CFU. At a concentration of 10%. in vitro test showed that the piper betel leaf in powder form is more effective than extract form to inhibit the growth of A.flavus The conclusion of this study was flour, corn, concentrates and tofu lees contaminated by molds

  12. Mold and Health

    Science.gov (United States)

    Molds have the potential to cause health problems. Molds produce allergens (substances that can cause allergic reactions) and irritants. Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals.

  13. Molds in the Environment

    Science.gov (United States)

    ... on Facebook Tweet Share Compartir Molds in the Environment What are molds? What are some of the ... molds found? Molds are found in virtually every environment and can be detected, both indoors and outdoors, ...

  14. Molding device and method for nuclear fuel molding product

    International Nuclear Information System (INIS)

    Nomata, Terumitsu; Masubuchi, Yukio; Kawasaki, Etsuko; Shimizu, Sayoko.

    1993-01-01

    A large diameter through hole and a small diameter through hole are formed in a stepped shape passing through the central portion of a die. The die is attached to a press molding device. A lower small diameter punch is inserted into the smaller diameter through hole of the die, and nuclear fuel powders are filled in the small diameter through hole. Then, nuclear fuel powders are pressurized and compressed by an upper small diameter punch and the lower small diameter punch to mold a center molding product having a small diameter. Then, the lower small diameter punch is caused to slide upwardly to raise the center molding product in the large diameter through hole. Nuclear fuel powders are filled in the gap of the large diameter through hole in this state and pressed by a punch to mold them. With such procedures, a nuclear fuel molding product having a predetermined shape having the center molding product as a center can be obtained. The density distribution of the obtained nuclear fuel molding product is uniform. Accordingly, the nuclear fuel pellet after sintering is prevented from saddle-shaped deformation. (I.N.)

  15. Selection of antifungal protein-producing molds from dry-cured meat products.

    Science.gov (United States)

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  16. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    Science.gov (United States)

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  17. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    Science.gov (United States)

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  18. Molds on Food: Are They Dangerous?

    Science.gov (United States)

    ... on forgotten bologna, fuzzy green dots on bread, white dust on Cheddar, coin-size velvety circles on fruits, and furry growth on the surface of jellies. When a food shows heavy mold growth, "root" threads have invaded ...

  19. CO2laser-induced bump formation and growth on polystyrene for multi-depth soft lithography molds

    KAUST Repository

    Li, Huawei

    2012-10-19

    This paper reports the process of creating bumps on the surface of polystyrene (PS) induced by a CO2laser at low powers. The paper also outlines the procedure for growing bumps induced by multiple laser scans on the aforementioned bumps. These bumps result from the net volume gain of the laser heat-affected zone on the PS rather than from a deposition process, and the expansion of the heat-affected zone on PS was verified by measuring the hardness change using nanoindentation. The bumps have a much smoother surface than microchannels fabricated with laser cutting; depending on the laser power, they have heights ranging from hundreds of nanometers to 42m. The laser scanning speed and scan times along with this technique offer a fast and low-cost alternative for fabricating molds for multi-depth PDMS microfluidic devices. © 2012 IOP Publishing Ltd.

  20. Analysis of cracking in glass molds made of cast iron

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2014-09-01

    The cracking in the parts of cast iron molds intended for glass is considered, and this cracking substantially affects the operation of glass-blowing equipment, maintainability, and the replacement of mold sets. The processes that cause cracking in the parts of glass molds and initiate crack growth are studied.

  1. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  2. Adenylyl cyclase is required for cAMP production, growth, conidial germination, and virulence in the citrus green mold pathogen Penicillium digitatum.

    Science.gov (United States)

    Wang, Weili; Wang, Mingshuang; Wang, Jiye; Zhu, Congyi; Chung, Kuang-Ren; Li, Hongye

    2016-11-01

    Penicillium digitatum is the causative agent of green mold decay on citrus fruit. The cAMP-mediated signaling pathway plays an important role in the transduction of extracellular signals and has been shown to regulate a wide range of developmental processes and pathogenicity in fungal pathogens. We cloned and characterized a Pdac1 gene of P. digitatum, which encodes a polypeptide similar to fungal adenylyl cyclases. Using a loss-of-function mutation in the Pdac1 gene we demonstrated a critical requirement for hyphal growth and conidial germination. Deletion of Pdac1 resulted in decreased accumulation of cAMP and down-regulation of genes encoding a G protein α subunit, both catalytic and regulatory subunits of PKA, and two transcriptional regulators StuA and Som1. Fungal mutants lacking Pdac1 produced abundant conidia, which failed to germinate effectively and displayed an elevated sensitivity to heat treatment. Pdac1 mutant failed to utilize carbohydrates effectively and thus displayed severe growth retardation on rich and synthetic media. Slow growth seen in the Pdac1 mutants could be due to a defect in nutrient sensing and acquisition. Quantitative RT-PCR analysis revealed that Pdac1 was primarily expressed at the early stage of infection. Fungal pathogenicity assayed on citrus fruit revealed that P. digitatum strains impaired for Pdac1 delayed lesion formation. Our results highlight important regulatory roles of adenylyl cyclase-mediated cAMP production in P. digitatum and provide insights into the critical role of cAMP in fungal growth, development and virulence. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Interactive Mold House Tour

    Science.gov (United States)

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  4. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  5. A new insight into foaming mechanisms in injection molding via a novel visualization mold

    Directory of Open Access Journals (Sweden)

    V. Shaayegan

    2016-06-01

    Full Text Available The complex mechanisms of bubble nucleation and dynamics in foam injection molding have not been uncovered despite many previous efforts due to the non-steady stop-and-flow nature of injection molding and the non-uniform temperature and pressure distributions in the mold. To this end, a new visualization mold was designed and manufactured for the direct observation of bubble nucleation and growth/collapse in foam injection molding. A reflective prism was incorporated into the stationary part of the injection mold with which the nucleation and growth behaviors of bubbles were successfully observed. The mechanisms of bubble nucleation in low- and high-pressure foam injection molding, with and without the application of gas-counter pressure, was investigated. We identified how the inherently non-uniform cell structure is developed in low-pressure foam injection molding with gate-nucleated bubbles, and when and how cell nucleation occurs in high-pressure foam injection molding with a more uniform pressure drop.

  6. Application of atmospheric-pressure argon plasma jet for bread mold decontamination

    Science.gov (United States)

    Thonglor, P.; Amnuaycheewa, P.

    2017-09-01

    Atmospheric-pressure argon plasma (APAP) is a promising non-thermal technology for microbial control and prevention minimally affecting quality of foods. Effect of APAP jet on the growth of bread molds, including two Aspergillus sp., Rhizopus stolonifer, and Penicillium roqueforti, isolated from white bread were investigated. The molds were isolated, verified, cultured to fully grown on potato dextrose agar (PDA), and subsequently treated with APAP jet using plasma generating power at 24 W for 5, 10, and 20 min, respectively. The inhibition of mold growth was investigated by comparing fungal dry weights and the effect on fungal cell structure was observed using compound light microscope. The results indicated that the 20-min treatment time is most effective in retarding the growth of the three bread molds. However, this level of generating power did not lead to destruction of the cellular structures for all the four fungi. Plasma generating power and treatment time are significant parameters determining the success of bread mold decontamination and further investigation on real bread matrix is needed.

  7. Mold contamination and air handling units.

    Science.gov (United States)

    Wilson, Stephen C; Palmatier, Robert N; Andriychuk, Larysa A; Martin, Jared M; Jumper, Cynthia A; Holder, Homer W; Straus, David C

    2007-07-01

    An investigation was conducted on selected locations in air handling units (AHUs) to (a) identify common mold species found on these locations, (b) determine whether some locations (and subsets) featured mold growth sites more frequently than others, (c) ascertain whether the operating condition of AHUs is related to mold contamination, and (d) provide a basis for a microbial sampling protocol for AHUs. A total of 566 tape lifts and 570 swab samples were collected from the blower wheel fan blades, insulation, cooling coil fins, and ductwork from 25 AHUs. All AHU conditions were numerically rated using a heating, ventilation and air-conditioning (HVAC) survey. Results showed that Cladosporium sp. fungi were commonly recovered in terms of growth sites and deposited spores, and they were found mainly in the blower wheel fan blades, the ductwork, and the cooling coil fins. Subsections of the fan blades, insulation, and cooling coil fins showed no preferred area for mold growth sites. Other organisms such as Penicillium sp., Aspergillus sp., and Paecilomyces sp. were recovered from the cooling coil fins and insulation. Because of the widespread prevalence of Cladosporium sp., there was no relationship between mold growth and operating condition. However, the presence of different species of molds in locations other than the blower wheel blades may indicate that the AHU condition is not optimal. A suggested microbial sampling protocol including interpretations of sample results is presented.

  8. Development of new model of mold oscillator in continuous casting

    International Nuclear Information System (INIS)

    Kang, G. P.; Shin, G.; Kang, C. G.

    2007-01-01

    To develop the hydraulic mold oscillator in continuous casting machine, the guiding mechanism of mold was studied. The main topics of this study were to design the guiding mechanism of mold which oscillates to prevent the sticking and to reduce the friction resistant force between the solidified shell and mold on casting. We studied many guiding types to analyze the features of worldwide mold oscillator and developed the new model of hydraulic mold oscillator. On the basis of the mold oscillating experiment, the capability of guiding system was proofed by the position error measuring system. The experiment was carried out up to 50∼500 cpm frequencies and 2∼10 mm stroke in the variable waveform and the casting results was analyzed by the oscillation mark of slab surface which was formed unavoidably by oscillation

  9. An easy mold

    International Nuclear Information System (INIS)

    Kim, Nam Hun; Choe, Jong Sun

    1988-04-01

    This book deals with an easy mold, which introduces what is a mold kinds and classification of mold. It gives descriptions of easy theories such as basic knowledge on shearing work, clearance, power for punching and shear angle, basic knowledge for bending such as transform by bending, the minimal bending radius, spring back, the length of material, flexural strength for bending, fundamental knowledge for drawing work with transform of drawing and limitation of drawing.

  10. Aspirin for the Prevention of Preeclampsia and Intrauterine Growth Restriction.

    Science.gov (United States)

    Roberge, Stephanie; Odibo, Anthony O; Bujold, Emmanuel

    2016-06-01

    Low-dose aspirin (LDA) has been used for several years for the prevention of preeclampsia (PE). LDA started in early pregnancy is associated with improvement of placental implantation. The best evidence suggest that LDA can prevent more than half of PE cases in high-risk women when started before 16 weeks of gestation. Moreover, LDA started in early pregnancy reduces the risk of other placenta-mediated complications such as intrauterine growth restriction (IUGR) and perinatal death. The efficacy of LDA has been demonstrated in women with abnormal first-trimester uterine artery Doppler or with prior history of chronic hypertension or preeclampsia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Understanding the impact of molds on indoor air quality and ...

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  12. Occurrence of Foodborne Pathogens and Molds in Turkish Foods

    Directory of Open Access Journals (Sweden)

    Sebnem Ozturkogu-Budak

    2016-06-01

    Full Text Available A survey of the occurrence of food pathogens like Salmonella, Listeria, Escherichia, Clostridium, Bacillus and Staphylococcus analyses were performed on 301 food samples from 8 different food categories such as dry legumes, milk products, meat products, fish, frozen foods, deserts, nuts and vegetables and fruits. Yeast and mold analyses were also performed on 364 food products from 9 main food categories such as dry legumes, milk products, meat products, seasonings, deserts, nuts, bee products, bakery products and dried fruits produced in Turkey. S. aureus and Salmonella were the most prevalent (1.33% of the six isolated pathogens. The species Cl. perfringens, L. monocytogenes and B. cereus were detected with the ratios of 1.00%, 0.66% and 0.66%, respectively. Total yeast and molds occurrence were 1.65% and 9.06%, respectively. Pathogens were detected in cream cheese, spinach, strawberry and cod fish most prevalently, whereas dried fig, chilli pepper, hazelnut and bakery products were determined as foods prone to the growth of molds. The results of this study suggest that faecal contamination of water needs to be prevented, and the production and storage conditions of food materials should be improved. These findings have implications for the use of these surveillance data in developing evidence-based food policy.

  13. Taxonomic re-evaluation of black koji molds

    NARCIS (Netherlands)

    Hong, S.B.; Yamada, O.; Samson, R.A.

    2013-01-01

    Black koji molds including its albino mutant, the white koji mold, have been widely used for making the distilled spirit shochu in Northeast Asia because they produce citric acid which prevents undesirable contamination from bacteria. Since Inui reported Aspergillus luchuensis from black koji in

  14. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  15. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  16. Nanopattern insert molding

    International Nuclear Information System (INIS)

    Kim, S H; Youn, J R; Jeong, J H

    2010-01-01

    A new method was investigated to produce nanopatterns on polymeric surfaces with high resolution, good productivity, and low cost. It has certain advantages when compared with such conventional techniques as nanoimprint lithography (NIL), hot embossing, and injection molding. Polyvinyl alcohol (PVA) was utilized for preparation of the stamp with nanopatterns on its surface. The nanoimprinted PVA film was inserted into the cavity and the polymer melt was injected into the mold. Nanopatterns with pillars smaller than 100 nm were produced on the polymeric surface. The water soluble PVA film was used as the inserted template to overcome the difficulties of releasing the nanopatterned film from the substrate.

  17. Process for Molding Nonreinforced (Neat) Resins

    Science.gov (United States)

    Dickerson, G. E.

    1983-01-01

    Void free moldings obtained for neat, condensation, thermosetting resins. Thermally and mechanically treat resin prior to molding to reduce amount of volatiles. With volatiles reduced molding temperature and pressure are applied in way to drive out remaining volatiles during molding.

  18. Meer bekend over Black Mold

    NARCIS (Netherlands)

    Duyvesteijn, R.G.E.; Kohrman, E.

    2008-01-01

    In de vollegrondsrozenteelt zorgde Black Mold in 2007 voor een groot aantal mislukte oculaties. In 2008 waren er aanzienlijk minder problemen. Uit onderzoek is meer bekend over de oorzaak en bestrijding van Black Mold.

  19. Mold Image Library

    Science.gov (United States)

    ... away from the foundation. Gutters below grade (below the soil) are protected from damage, while those above grade ... water and mold damage was found on original structure Fix: Area was regraded during construction of an addition so that water drains ... An example of window flashing Applied so ...

  20. Characterization of Injection Molded Structures

    DEFF Research Database (Denmark)

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard

    and limitations. Therefore, it would be difficult to characterize complex, especially hierarchical structures by using only one method. Here we present a combined optical microscopy, scanning electron microscopy (SEM), and scanning probe microscopy study on injection molded structures. These structures are used......-properties relationship of the injection molded polymer samples. These results are very important in optimizing injection molding parameters....

  1. Multi-height structures in injection molded polymer

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2015-01-01

    We present the fabrication process for injection molded multi-height surface structures for studies of wetting behavior. We adapt the design of super hydrophobic structures to the fabrication constrictions imposed by industrial injection molding. This is important since many super hydrophobic...... surfaces are challenging to realize by injection molding due to overhanging structures and very high aspect ratios. In the fabrication process, we introduce several unconventional steps for producing the desired shapes, using a completely random mask pattern, exploiting the diffusion limited growth rates...... of different geometries, and electroforming a nickel mold from a polymer foil. The injection-molded samples are characterized by contact angle hysteresis obtained by the tilting method. We find that the receding contact angle depends on the surface coverage of the random surface structure, while the advancing...

  2. Speeding the growth of primary mental health prevention

    OpenAIRE

    Wissow, Lawrence S

    2015-01-01

    While there is a strong case for primary prevention of mental health problems, relatively little mental health scholarship has been devoted to it in the last decade. Efforts to accelerate prevention scholarship could potentially benefit from strengthening pathways for interdisciplinary research; developing new training and working models for mental health professionals; developing a common language for public, policy, and scientific discussion of prevention; learning how to measure the common...

  3. Speeding the growth of primary mental health prevention.

    Science.gov (United States)

    Wissow, Lawrence S

    2015-01-01

    While there is a strong case for primary prevention of mental health problems, relatively little mental health scholarship has been devoted to it in the last decade. Efforts to accelerate prevention scholarship could potentially benefit from strengthening pathways for interdisciplinary research; developing new training and working models for mental health professionals; developing a common language for public, policy, and scientific discussion of prevention; learning how to measure the common outcomes of heterogeneous interventions tailored to diverse communities.

  4. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  5. Molded optics design and manufacture

    CERN Document Server

    Schaub, Michael

    2007-01-01

    While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as

  6. Dissolution of mega-voids in resin transfer molding

    OpenAIRE

    Clark, Paul Nordstrom

    2007-01-01

    Resin transfer molding (RTM) is a common composite manufacturing process. Voids are a common defect encountered in RTM components. A new type of void, the 'Mega-Void', has been identified and addressed by this research. To produce acceptable RTM components requires that the mega-void be eliminated either through prevention or through dissolution. The latter is the topic of this research. Three process parameters affecting mega-void dissolution are researched; 1) Preform/mold vacuum , 2) Resin...

  7. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds

    Directory of Open Access Journals (Sweden)

    Márcia Maria Rosa-Magri

    2011-02-01

    Full Text Available Yeasts isolated from sugar cane and maize rhizosphere, leaves and stalks were screened against the phytopathogenic molds Colletotrichum sublineolum and Colletotrichum graminicola, both causal agents of the anthracnose disease in sorghum and maize, respectively. Strains identified as Torulaspora globosa and Candida intermedia were able to inhibit the mold growth, with the first species also exhibiting killer activity. No previous report on the application and potentiality of these yeasts as biocontrol agents were found neither the killer phenotype in Torulaspora globosa.

  8. Injection Compression Molding of Replica Molds for Nanoimprint Lithography

    Directory of Open Access Journals (Sweden)

    Keisuke Nagato

    2014-03-01

    Full Text Available As a breakthrough in the cost and durability of molds for nanoimprint lithography (NIL, replica molds are fabricated by injection compression molding (ICM. ICM is commonly used for optical disks such as DVDs or Blu-ray disks and is also a practical fabrication method for nanostructures. In this paper, I successfully demonstrated the fabrication of cycloolefin polymer replica molds with structures smaller than 60 nm by ICM. Furthermore, ultraviolet (UV-NIL using these replica molds was demonstrated. UV-cured resist was replicated over an area of 60 mm diameter. The degree of replication by UV-NIL in the first usage of each replica mold had good repeatability. Because ICM is a high-throughput, low-cost process, the replica mold can be disposed of after a certain time for UV-NIL. This method leads to a high-integrity UV-NIL process of patterned media because multiple large-area replica molds can be fabricated simultaneously.

  9. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  10. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    Science.gov (United States)

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Mold Materials For Permanent Molding of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  12. Mold and Indoor Air Quality in Schools

    Science.gov (United States)

    ... Us Share Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar Mold and Moisture: Double Trouble for Schools ... An excerpt follows: Common Moisture Sources Found in Schools Moisture problems in school buildings can be caused ...

  13. Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma.

    Science.gov (United States)

    Andersen, Nicholas J; Nickoloff, Brian J; Dykema, Karl J; Boguslawski, Elissa A; Krivochenitser, Roman I; Froman, Roe E; Dawes, Michelle J; Baker, Laurence H; Thomas, Dafydd G; Kamstock, Debra A; Kitchell, Barbara E; Furge, Kyle A; Duesbery, Nicholas S

    2013-09-01

    Angiosarcoma is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. As a model for human angiosarcoma, we studied primary cells and tumorgrafts derived from canine hemangiosarcoma (HSA), which is also an endothelial malignancy with similar presentation and histology. Primary cells isolated from HSA showed constitutive extracellular signal-regulated kinase (ERK) activation. The mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor CI-1040 reduced ERK activation and the viability of primary cells derived from visceral, cutaneous, and cardiac HSA in vitro. HSA-derived primary cells were also sensitive to sorafenib, an inhibitor of B-Raf and multireceptor tyrosine kinases. In vivo, CI-1040 or PD0325901 decreased the growth of cutaneous cell-derived xenografts and cardiac-derived tumorgrafts. Sorafenib decreased tumor size in both in vivo models, although cardiac tumorgrafts were more sensitive. In human angiosarcoma, we noted that 50% of tumors stained positively for phosphorylated ERK1/2 and that the expression of several MEK-responsive transcription factors was upregulated. Our data showed that MEK signaling is essential for the growth of HSA in vitro and in vivo and provided evidence that the same pathways are activated in human angiosarcoma. This indicates that MEK inhibitors may form part of an effective therapeutic strategy for the treatment of canine HSA or human angiosarcoma, and it highlights the use of spontaneous canine cancers as a model of human disease.

  14. Microcellular nanocomposite injection molding process

    Science.gov (United States)

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  15. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  16. Recombinant vascular endothelial growth factor 121 injection for the prevention of fetal growth restriction in a preeclampsia mouse model.

    Science.gov (United States)

    Sulistyowati, Sri; Bachnas, Muhammad Adrianes; Anggraini, Nuri Dyah; Yuliantara, Eric Edwin; Prabowo, Wisnu; Anggraini, Nutria Widya Purna; Pramono, Mochammad Besari Adi; Adityawarman; Dachlan, Erry Gumilar; Andonotopo, Wiku

    2017-02-01

    To discover the potential role of recombinant VEGF121 (rVEGF121) injection for the prevention of fetal growth restriction in a preeclampsia (PE) mouse model (Mus musculus). This is an experimental study of 30 pregnant mice that were randomly divided into three groups: normal, PE, and PE with rVEGF121 injection. The PE mouse model was created by injecting anti Qa-2 10 ng iv, which is deleterious to Qa-2 expression (homologous to HLA-G), from the first to the fourth day of gestation. PE was validated by measuring serum levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor(PIGF) and also by kidney histopathology. Recombinant VEGF121 was given on the ninth day until the 11th day of pregnancy; mice were terminated on the 16th day. Fetal weights were acquired with a Denver analytical balance. Serum levels of sFlt-1 and PlGF were measured using enzyme-linked immunosorbent assay (ELISA). The data were statistically analyzed via analysis of variance (ANOVA). On average, fetal birth weight was 0.7150 g in the normal group, 0.4936 g in the PE group, and 0.6768 g in the PE with rVEGF121 injection group. ANOVA showed significant growth restriction in the PE group (P=0.006), confirming the use of anti Qa-2 as a suitable PE model. Kidney histopathology results, sFlt-1 levels, and PlGF levels also demonstrated that anti Qa-2 consistently conferred hallmarks of PE in mice. Vascular endothelial growth factor (VEGF) injection prevented fetal growth restriction; comparable fetal weights were observed between the PE model with VEGF treatment and the normal group (P=0.610) but differed from the untreated PE group (P=0.021). Injection of rVEGF121 has the potential to prevent fetal growth restriction in a newly proposed PE mouse model.

  17. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  18. Study on Effects of Mold Temperature on the Injection Molded Article

    OpenAIRE

    Han J.-H.; Kim Y.-C.

    2017-01-01

    This is a study of the effects of temperature of injection mold on the injection molded article. By supplying water of the proper temperature in the cooling line of mold in the cooling process, the mold was the appropriate temperature, and the deformation of the injection molded article was examined according to the mold temperature. In this study, we conducted simulation analysis and experiments, and the results were analyzed. The minimum deformation of the injection molded article model obt...

  19. Alerting the immune system via stromal cells is central to the prevention of tumor growth

    DEFF Research Database (Denmark)

    Navikas, Shohreh

    2013-01-01

    Anticancer immunotherapies are highly desired. Conversely, unwanted inflammatory or immune responses contribute to oncogenesis, tumor progression, and cancer-related death. For non-immunogenic therapies to inhibit tumor growth, they must promote, not prevent, the activation of anticancer immune...... responses. Here, the central immunoregulatory role of brain-specific stromal cells and neurons as well as their ability to maintain an immunological balance and prevent the development of glioblastoma is discussed....

  20. Optimizing the fabrication process of a high-efficiency blazed grating through diamond scribing and molding

    International Nuclear Information System (INIS)

    Lee, ChaBum; Woo, Do-Kyun; Lee, Sun-Kyu; Kuriyagawa, Tsunemoto

    2010-01-01

    This paper presents the experimental investigation of an optimal hot embossing process to prevent the nanoscale thermal deformation of microstructures replicated from the electroless Ni mold fabricated by the diamond tool-interfered scribing method. A polymer-based PMMA was replicated from the mold with the blazed profile: period 2.0 µm and depth 0.2 µm. The molding conditions, the applying pressure (P m ), molding temperature (T m ) and demolding temperature (T d ) were chosen as experiment parameters. In terms of the quality of surface smoothness, profile, sharp edge, surface roughness and optical performance of the replica, the conditions, P m = 0.9 MPa, T m = 150 °C and T d = 20 °C, showed a best results. From optical testing, diffraction efficiency of the replica was measured, 87.6%, and the replica molded in other conditions showed a noticeable efficiency drop due to the molding error.

  1. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...

  2. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  3. Foaming morphology control of microcellular injection molded parts with gas counter pressure and dynamic mold temperature control

    Science.gov (United States)

    Shiu, Tai-Yi; Huang, Chao-Tsai; Chang, Rong-Yu; Hwang, Shyh-Shin

    2014-05-01

    Microcellular injection molding process is a promising solution for products with special requirements such as weight reduction, extra thin wall, high dimensional stability, clamping force reduction, etc. Despite microcellular foaming application used in reciprocating screw injection molding machine was built more than a decade, some limitations, such as poor surface quality or poor foaming control, confine the usage of this technology. Earlier CAE simulation tool for microcellular injection molding was not successful due to insufficient physical and computational considerations, limited by complicated bubble growth mechanism; so that, an economic and efficient tool for examining foaming quality of injection foaming product was lack. In this study, a recent developed three-dimensional simulation tool is used to predict injection foaming process. Predictions are carried out with commodity polypropylene and polystyrene with nitrogen and carbon dioxide supercritical fluids (SCFs). Comparisons of simulations between microcellular injection molding with and without counter pressure are discussed to provide insights into the correlation of surface quality and cell size distribution near the surface of product. Furthermore, comparisons between simulation predictions and experimental results of molding process, which is featured with dynamic mold temperature and gas counter pressure, are given for understanding quality improvement by controlling foaming morphology, and benefit of industrial application.

  4. Microcellular Injection Molding Using Helium

    International Nuclear Information System (INIS)

    Jeon, Byung Joo; Kim, Hak Bin; Cha, Sung Woon

    2007-01-01

    In comparison with conventional foaming process microcellular injection molding process has advantages such as small bubble size, the removal of sink mark, scale reliability, and weight lightening. So microcellular injection molded parts are applied to electrical product and automobile part. Conventional microcellular foaming process used carbon dioxide and nitrogen as a foaming agent. And it has been never researched and applied about microcellular injection molding process using helium. In this paper, we did a microcellular injection molding process using helium based on previous research result and made samples. From this we can certificate the possibility of microcellular continuous process using helium. Helium is lighter and faster in diffusion than carbon dioxide or nitrogen so through this technique, it can be solved the problem such as spray or labeling

  5. Mold Cleanup in Your Home

    Science.gov (United States)

    If you found mold in your household, you will want to clean it up. Some considerations on how you will clean it up depend on the size of the area, the contaminated materials, and any additional health concerns.

  6. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  7. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan

    2015-01-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process...

  8. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    In today´s industry, applications involving surface patterning of sub-μm to nanometer scale structures have shown a high growth potential. To investigate the injection molding capability of replicating sub-μm surface texture on a large scale area, a 30x80 mm2 tool insert with surface structures...... having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  9. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...... the molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  10. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  11. EFFECT OF TETRACYCLINES ON THE INTRACELLULAR AMINO ACIDS OF MOLDS.

    Science.gov (United States)

    FREEMAN, B A; CIRCO, R

    1963-07-01

    Freeman, Bob A. (University of Chicago, Chicago, Ill.) and Richard Circo. Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86:38-44. 1963.-The tetracycline antibiotics were shown to alter the amino acid metabolism of molds whose growth is not markedly affected. Eight molds were grown in the presence of these antiobiotics; four exhibited a general reduction in the concentration of the intracellular amino acids, except for glutamic acid and alanine. In most of these four cultures, the tetracyclines also caused the complete disappearance of arginine, lysine, proline, phenylalanine, and tyrosine from the intracellular amino acid pool. The significance of these observations and the usefulness of the method in the study of the mechanisms of antibiotic action are discussed.

  12. Effective Control of Molds Using a Combination of Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Ariana Auyeung

    Full Text Available Molds are filamentous fungi able to grow on a variety of surfaces, including constructed surfaces, food, rotten organic matter, and humid places. Mold growth is characterized by having an unpleasant odor in enclosed or non-ventilated places and a non-aesthetic appearance. They represent a health concern because of their ability to produce and release mycotoxins, compounds that are toxic to animals and humans. The aim of this study was to evaluate commercial nanoparticles (NPs that can be used as an additive in coatings and paints to effectively control the growth of harmful molds. Four different NPs were screened for their antifungal activities against the mycotoxin producing mold strains Aspergillus flavus and A. fumigatus. The minimal inhibitory concentrations of the NPs were determined in broth media, whereas an agar diffusion test was used to assess the antimold activity on acrylic- and water-based paints. The cytotoxic activity and the inflammatory response of the NPs were also evaluated using the established human derived macrophage cell line THP-1. Results showed that a combination of mix metallic- and ZnO-NPs (50:10 μg/mL effectively inhibited the fungal growth when exposed to fluorescent light. Neither cytotoxic effect nor inflammatory responses were recorded, suggesting that this combination can be safely used in humid or non-ventilated environments without any health concerns.

  13. The biflavonoid amentoflavone inhibits neovascularization preventing the activity of proangiogenic vascular endothelial growth factors

    DEFF Research Database (Denmark)

    Tarallo, Valeria; Lepore, Laura; Marcellini, Marcella

    2011-01-01

    collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation...... as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area...... crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop...

  14. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Pan Gao

    Full Text Available The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC. Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  15. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    Science.gov (United States)

    Gao, Pan; Qin, Jiaxing; Li, Delong; Zhou, Shanyue

    2018-01-01

    The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  16. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  17. Eerste bevindingen onderzoek Black Mold

    NARCIS (Netherlands)

    Werd, de H.A.E.

    2008-01-01

    In de zomer van 2007 veroorzaakte de ziekte Black Mold grote schade in de rozenteelt. Omdat er weinig bekend is over preventie en bestrijding hebben PPO Bomen en Cultus Agro Advies een onderzoeksproject gestart, waarvan de eerste resultaten inmiddels bekend zijn.

  18. Is Mold the New Asbestos?

    Science.gov (United States)

    Colgan, Craig

    2003-01-01

    Mold and indoor air quality (IAQ) are matters of major concern to architects and their educational clients. The Environmental Protection Agency's Indoor Air Quality Tools for Schools program offers help to districts seeking to tackle IAQ issues. Strengthening community relations is one way to be ready in case of a bad environmental or IAQ report.…

  19. Injection Molding of Plastics from Agricultural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  20. Planning an Injection Mold Design Training Program.

    Science.gov (United States)

    Allyn, Edward P.

    With the increased use of plastics worldwide the shortage of trained personnel in moldmaking and design for plastic injection molds is becoming critical. Local schools and community colleges should provide courses in mold design and mold making, since most workers presently learn while working under experienced designers on the job. Following this…

  1. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    Science.gov (United States)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  2. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  3. The Shrinkage Behavior and Surface Topographical Investigation for Micro Metal Injection Molding

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2014-01-01

    Metal injection molding (MIM) is a near net shape manufacturing technology that can produce highly complex and dimensionally stable parts for high end engineering applications. Despite the recent growth and industrial interest, micro metal molding is yet to be the field of extensive research...... especially when it is compared with micro molding of thermoplastics. The current paper presents a thorough investigation on the process of metal injection molding where it systematically characterizes the effects of important process conditions on the shrinkage and surface quality of molded parts with micro...... features. Effects of geometrical factors like feature dimensions and distance from the gate on the replication quality are studied. The influence of process conditions on the achievable roughness for the final metal parts is discussed based on the experimental findings. The test geometry is characterized...

  4. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells.

    Science.gov (United States)

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that activation of MAPK pathways by sulforaphane is unlikely to mediate sulforaphane-induced growth inhibition. Sulforaphane did not generate significant levels of intracellular ROS. Pretreatment with thiol reducers, but not ROS scavengers, prevented sulforaphane-induced growth inhibition. Furthermore, diamide, a thiol-oxidizing agent, enhanced both growth inhibition and cell death induced by sulforaphane, suggesting that the effect of sulforaphane on cell growth may be related to oxidation of protein thiols or change in cellular redox status. Our data indicate that supplementation with thiol-reducing agents should be avoided when sulforaphane is used to treat cancer.

  5. Long-term consequences of nutrition and growth in early childhood and possible preventive interventions.

    Science.gov (United States)

    Adair, Linda S

    2014-01-01

    Maternal nutritional deficiencies and excesses during pregnancy, and faster infant weight gain in the first 2 years of life are associated with increased risk of noncommunicable diseases (NCDs) in adulthood. The first 1,000 days of life (from conception until the child reaches age 2 years) represent a vulnerable period for programming of NCD risk, and are an important target for prevention of adult disease. This paper takes a developmental perspective to identify periconception, pregnancy, and infancy nutritional stressors, and to discuss mechanisms through which they influence later disease risk with the goal of informing age-specific interventions. Low- and middle-income countries need to address the dual burden of under- and overnutrition by implementing interventions to promote growth and enhance survival and intellectual development without increasing chronic disease risk. In the absence of good evidence from long-term follow-up of early life interventions, current recommendations for early life prevention of adult disease presume that interventions designed to optimize pregnancy outcomes and promote healthy infant growth and development will also reduce chronic disease risk. These include an emphasis on optimizing maternal nutrition prior to pregnancy, micronutrient adequacy in the preconception period and during pregnancy, promotion of breastfeeding and high-quality complementary foods, and prevention of obesity in childhood and adolescence. © 2014 Nestec Ltd., Vevey/S. Karger AG, Basel.

  6. Implementation of Molding Constraints in Topology Optimization

    DEFF Research Database (Denmark)

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  7. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  8. Precision injection molding of freeform optics

    Science.gov (United States)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  9. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...

  10. Parent Prevention Communication Profiles and Adolescent Substance Use: A Latent Profile Analysis and Growth Curve Model

    Science.gov (United States)

    Choi, Hye Jeong; Miller-Day, Michelle; Shin, YoungJu; Hecht, Michael L.; Pettigrew, Jonathan; Krieger, Janice L.; Lee, JeongKyu; Graham, John W.

    2017-01-01

    This current study identifies distinct parent prevention communication profiles and examines whether youth with different parental communication profiles have varying substance use trajectories over time. Eleven schools in two rural school districts in the Midwestern United States were selected, and 784 students were surveyed at three time points from the beginning of 7th grade to the end of 8th grade. A series of latent profile analyses were performed to identify discrete profiles/subgroups of substance-specific prevention communication (SSPC). The results revealed a 4-profile model of SSPC: Active-Open, Passive-Open, Active-Silent, and Passive-Silent. A growth curve model revealed different rates of lifetime substance use depending on the youth’s SSPC profile. These findings have implications for parenting interventions and tailoring messages for parents to fit specific SSPC profiles. PMID:29056872

  11. Deep data science to prevent and treat growth faltering in Maya children.

    Science.gov (United States)

    Varela-Silva, M I; Bogin, B; Sobral, J A G; Dickinson, F; Monserrat-Revillo, S

    2016-06-01

    The Maya people are descended from the indigenous inhabitants of southern Mexico, Guatemala and adjacent regions of Central America. In Guatemala, 50% of infants and children are stunted (very low height-for-age), and some rural Maya regions have >70% children stunted. A large, longitudinal, intergenerational database was created to (1) provide deep data to prevent and treat somatic growth faltering and impaired neurocognitive development, (2) detect key dependencies and predictive relations between highly complex, time-varying, and interacting biological and cultural variables and (3) identify targeted multifactorial intervention strategies for field testing and validation. Contributions to this database included data from the Universidad del Valle de Guatemala Longitudinal Study of Child and Adolescent Development, child growth and intergenerational studies among the Maya in Mexico and studies about Maya migrants in the United States.

  12. Crystal Growth Inhibitors for the Prevention of L-Cystine Kidney Stones Through Molecular Design

    Energy Technology Data Exchange (ETDEWEB)

    Rimer, Jeffrey D.; An, Zhihua; Zhu, Zina; Lee, Michael H.; Goldfarb, David S.; Wesson, Jeffrey A.; Ward, Michael D. (NY Univ.); (MCW)

    2010-11-12

    Crystallization of L-cystine is a critical step in the pathogenesis of cystine kidney stones. Treatments for this disease are somewhat effective but often lead to adverse side effects. Real-time in situ atomic force microscopy (AFM) reveals that L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) dramatically reduce the growth velocity of the six symmetry-equivalent {l_brace}100{r_brace} steps because of specific binding at the crystal surface, which frustrates the attachment of L-cystine molecules. L-CDME and L-CME produce L-cystine crystals with different habits that reveal distinct binding modes at the crystal surfaces. The AFM observations are mirrored by reduced crystal yield and crystal size in the presence of L-CDME and L-CME, collectively suggesting a new pathway to the prevention of L-cystine stones by rational design of crystal growth inhibitors.

  13. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    Receptor Tyrosine Kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  14. Preventing microbial growth on pall-rings when upgrading biogas using absorption with water wash

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Anna

    2006-07-15

    For produced biogas to be usable as vehicle fuel it has to be upgraded to a higher energy content. This is accomplished by elevation of the methane concentration through removal of carbon dioxide. Absorption with water wash is the most common upgrading method used in Sweden today. The upgrading technique is based on the fact that carbon dioxide is more soluble in water than methane. Upgrading plants that utilises this method have problems with microbial growth in the system. This growth eventually leads to a stop in operation due to the gradually drop in upgrading capacity. The aim of this thesis were to evaluate the possibility to through some kind of water treatment maintain an acceptable level of growth or altogether prevent it in order to maintain an acceptable process capacity and thereby avoid the need to clean. Through collection of literature the implementation possibilities were evaluated with regard to efficiency, economic sustainability and if there would be a release of any harmful substances. In order to prevent the microbial growth in the columns the treatment should either focus on removing microorganisms or limit the accessible nutrients. For the single pass system it is concluded that the treatment should reduce the biofilm formation and be employed in an intermittent way. Among the evaluated treatments focusing on the reduction of microorganisms the addition of peracetic acid seems to be the most promising one. For the regenerating system the treatment method could focus on either one. As for the single pass system peracetic acid could be added to reduce the amount of microorganism. To reduce the amount of organic matter an advanced oxidation process could be deployed with the advantage that it also could remove the microorganisms.

  15. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    Science.gov (United States)

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  16. Prevention of hair graying by factors that promote the growth and differentiation of melanocytes.

    Science.gov (United States)

    Endou, Mariko; Aoki, Hitomi; Kobayashi, Tatsushi; Kunisada, Takahiro

    2014-08-01

    Epidermal melanocyte precursors migrate into developing hair follicles to form the melanocyte stem cell system required to supply pigmented melanocytes necessary for hair pigmentation in repetitive hair cycles. Hair graying is caused by irreversible defects in the self-renewal and/or development of follicular melanocyte stem cells in the hair follicles. To investigate the mechanism(s) of hair graying during the normal aging process, we established a hair graying model in mice by repeatedly plucking or shaving trunk hairs. We repeatedly plucked or shaved trunk hairs to induce and accelerate the hair graying and counted the gray hairs. By using this functional model of hair graying in mice, we assessed the effects of genes known to affect melanocyte development, such as Kitl, hepatocyte growth factor (HGF) and endotheline 3 (ET3). After increasing the total numbers of cumulative hair cycles by plucking or shaving, we observed a significant increase in the gray hair of C57BL/6 mice. Kitl expression in the skin was the most effective for preventing hair graying and a significant effect was also confirmed for HGF and ET3 expression. The repeated hair plucking or shaving led to hair graying without any genetic lesion. Kitl is a more effective factor for prevention of hair graying than HGF or ET3. Our simple model of hair graying may provide a basic tool for screening the molecules or reagents preventing the progression of hair graying. © 2014 Japanese Dermatological Association.

  17. What would it take to prevent stunted growth in children in sub-Saharan Africa?

    Science.gov (United States)

    Lartey, Anna

    2015-11-01

    There is increasing agreement among the nutrition community about the use of length/height-for-age as the indicator to monitor the long-term impact of chronic nutritional deficiencies. Stunting, an indicator of linear growth failure, has both long- and short-term consequences affecting growth and development and adult work potential. The number of stunted children in sub-Saharan Africa is expected to increase by 2025 if the current trends remain. Stunting among African children peaks during the complementary feeding period, which coincides with the period when children are no longer on exclusive breastfeeding and infections are frequent. Addressing stunting has become the focus of global efforts. The World Health Assembly in 2012 set a 40 % reduction in the number of stunted children by 2025. To effectively address the issues of stunting in sub-Saharan Africa is it appropriate to examine the issue of what it takes. The WHO Multicentre Growth Reference Study (MGRS) conducted in several regions of the world, including Africa has lessons on what it would take to prevent in African children. The children in the MGRS had good socioeconomic background characteristics reflected by years of maternal education and availability of basic amenities, such as potable water and sanitary conditions. The prescription of exclusive breastfeeding, high-quality diversified diets and attention to care were critical factors contributing to healthy growth for the African children. Preventing stunting in sub-Saharan Africa is possible. It requires governments to put in place policies that would create the conducive environment needed. The complex and multiple causes of stunting offer the opportunity to address stunting in a multisectoral and within a food systems approach. The global resolve to make food systems deliver on healthy diet requires all stakeholders to work together to achieve the global goal of reducing stunting. This review highlights the key elements contributing to adequate

  18. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction.

    Science.gov (United States)

    Al-Wahab, Zaid; Mert, Ismail; Tebbe, Calvin; Chhina, Jasdeep; Hijaz, Miriana; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2015-05-10

    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse model of ovarian cancer. Mice either on RD or HED diet bearing ovarian tumors were treated with 200 mg/kg metformin in drinking water. Metformin treatment in RD and HED mice resulted in a significant reduction in tumor burden in the peritoneum, liver, kidney, spleen and bowel accompanied by decreased levels of growth factors (IGF-1, insulin and leptin), inflammatory cytokines (MCP-1, IL-6) and VEGF in plasma and ascitic fluid, akin to the CR diet mice. Metformin resulted in activation of AMPK and SIRT1 and inhibition of pAkt and pmTOR, similar to CR. Thus metformin can closely mimic CR's tumor suppressing effects by inducing similar metabolic changes, providing further evidence of its potential not only as a therapeutic drug but also as a preventive agent.

  19. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    International Nuclear Information System (INIS)

    Hobæk, Thor Christian; Larsen, Niels B; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J

    2015-01-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes. (paper)

  20. Progress in Titanium Metal Powder Injection Molding

    OpenAIRE

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and im...

  1. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  2. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  3. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  4. Production of polymer injection molding machine

    OpenAIRE

    Zdaniauskis, Ernestas

    2016-01-01

    Production of Polymer Injection Molding Machine The aim of this work is to build a polymer injection molding machine which would match the set criteria: • Small dimensions of the machine. • Low electricity expenditure. • Automatized production process. • Inexpensive molds. In the process of work double two-stage screw-plunger polymer machine was designed and built. The working of the machine is unique: the mold is being heated, therefore, the cycle of polymer injection can consist of a few sm...

  5. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  6. Analysis of optical properties in injection-molded and compression-molded optical lenses.

    Science.gov (United States)

    Wang, Chung Yen; Wang, Pei Jen

    2014-04-10

    Numerical mold-flow simulations and experimental measurements for injection-molded lenses have been investigated in form accuracy on a two-cavity mold with various process conditions. First, form profiles of the molded lenses have been measured together with the corresponding simulated mold-temperature distribution and displacement distribution of the lens in the z direction. A flow-through type layout of cooling channels has been devised for balance of mold-temperature distribution in mold cavities with various parametric distances for assessments in uniformity of temperature distribution. Finally, a compression-molding process is proposed for the post-process of birefringence relaxation as well as adequate form accuracy of lenses. In conclusion, optimization of process parameters to achieve good form accuracy in a multicavity mold with symmetric geometry but nonuniform cooling conditions is difficult. A good design of cooling channels plus optimized process conditions could provide uniform mold-temperature distribution so that molded lenses of good quality would be possible. Then, the profile deviation of lenses could be further compensated by profile geometry corrections. In conclusion, the post-compression-molding process could make birefringence-free plastic lenses with good form accuracy.

  7. Processing strategies for thin wall injection molding

    Science.gov (United States)

    Tantakom, Patraporn

    1998-12-01

    Thin wall injection molding of a thin wall molding grade of polycarbonate and acrylonitrile butadiene styrene were examined in this research. The work investigated the effect of melt and mold temperature on part weight, orientation, tensile strength, flow front profile and flow instability. The HPM H90-V6 injection molding machine, set at its maximum injection velocity was used in the study. A flow simulation was conducted using a commercially available computer program to verify its reliability for thin wall injection molding. Thermal pulse heating systems for heating the mold cavity surfaces prior to injection of the melt were examined. A data acquisition system was designed to record four pressure and four temperature signals inside the mold cavity. Increasing the melt and mold temperatures showed a positive effect on part weight, and tensile strength. However, when the melt temperature was increased beyond the resin's recommended melt temperature, the tensile strength of the part decreased and a change in color to the molded parts were an indication of polymer degradation. As a result, increasing the mold temperature was found to be a better strategy for improving the thin wall molding process. Two systems for thermal pulse heating were examined. One was a high-flow, low-pressure system while the other was a high-flow, high-pressure system. The high-pressure system yielded results that correlated with the calculation, but it required careful design. The low-pressure system showed positive results for heating the cavity surface. The scale-up possibilities of the low pressure system was very appealing. An unexpected melt flow front profile and a melt flow instability for the thin wall part during filling occurred as a result of high shear on the polymer melt in the cavity. The flow front profile was concave and resembled a fishtail curve. At the edge of the part where the shear rate is the highest, the melt viscosity dropped due to the pseudoplastic effects

  8. Weight control and cancer preventive mechanisms: role of insulin growth factor-1-mediated signaling pathways.

    Science.gov (United States)

    Xie, Linglin; Wang, Weiqun

    2013-02-01

    Overweight and obese not only increase the risk of cardiovascular disease and type-2 diabetes mellitus, but are also now known risk factors for a variety of cancers. Weight control, via dietary calorie restriction and/or exercise, has been demonstrated to be beneficial for cancer prevention in various experimental models, but the underlying mechanisms are still not well defined. Recent studies conducted in a mouse skin carcinogenesis model show that weight loss induced a significant reduction of the circulating levels of insulin growth factor (IGF)-1 and other hormones, including insulin and leptin, resulting in reduced IGF-1-dependent signaling pathways, i.e. Ras-MAPK proliferation and protein kinase B-phosphoinositide 3-kinase (Akt-PI3K) antiapoptosis. Selective targeting IGF-1 to Akt/mammalian target of rapamycin and AMP-activated protein kinase pathways, via negative energy balance, might inactivate cell cycle progression and ultimately suppress tumor development. This review highlights the current studies focused on the major role of reducing IGF-1-activated signaling via weight control as a potential cancer preventive mechanism.

  9. Reusable molds for casting U-Zr alloys

    International Nuclear Information System (INIS)

    Chen, P.S.; Stevens, W.C.; Trybus, C.L.

    1992-09-01

    Refractory oxides, carbides, nitrides and sulfides were examined as mold coating materials for use in casting nuclear fuel. The molds require excellent high temperature chemical and mechanical stability combined with reasonable room temperature ductility to allow for fuel removal. Coatings were applied onto quartz and refractory metal coupons using various techniques. Sessile drop tests employing molten U-10%Zr (by weight) at 1550 degrees C were used to characterize coating performance. Results indicate that NbC, TiN, and Y 2 O 3 were non-wetting with U-10%Zr. However, only the Y 2 O 3 coating completely prevented adhesion of the fuel. The paper describes coating methods and details of the sessile drop experiments

  10. Prevention of Dietary-Fat-Fueled Ketogenesis Attenuates BRAF V600E Tumor Growth.

    Science.gov (United States)

    Xia, Siyuan; Lin, Ruiting; Jin, Lingtao; Zhao, Liang; Kang, Hee-Bum; Pan, Yaozhu; Liu, Shuangping; Qian, Guoqing; Qian, Zhiyu; Konstantakou, Evmorfia; Zhang, Baotong; Dong, Jin-Tang; Chung, Young Rock; Abdel-Wahab, Omar; Merghoub, Taha; Zhou, Lu; Kudchadkar, Ragini R; Lawson, David H; Khoury, Hanna J; Khuri, Fadlo R; Boise, Lawrence H; Lonial, Sagar; Lee, Benjamin H; Pollack, Brian P; Arbiser, Jack L; Fan, Jun; Lei, Qun-Ying; Chen, Jing

    2017-02-07

    Lifestyle factors, including diet, play an important role in the survival of cancer patients. However, the molecular mechanisms underlying pathogenic links between diet and particular oncogenic mutations in human cancers remain unclear. We recently reported that the ketone body acetoacetate selectively enhances BRAF V600E mutant-dependent MEK1 activation in human cancers. Here we show that a high-fat ketogenic diet increased serum levels of acetoacetate, leading to enhanced tumor growth potential of BRAF V600E-expressing human melanoma cells in xenograft mice. Treatment with hypolipidemic agents to lower circulating acetoacetate levels or an inhibitory homolog of acetoacetate, dehydroacetic acid, to antagonize acetoacetate-BRAF V600E binding attenuated BRAF V600E tumor growth. These findings reveal a signaling basis underlying a pathogenic role of dietary fat in BRAF V600E-expressing melanoma, providing insights into the design of conceptualized "precision diets" that may prevent or delay tumor progression based on an individual's specific oncogenic mutation profile. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Obesity, chronic disease, and economic growth: a case for "big picture" prevention.

    Science.gov (United States)

    Egger, Garry

    2011-01-01

    The discovery of a form of chronic, low-grade systemic inflammation ("metaflammation") linked with obesity, but also associated with several lifestyle-related behaviours not necessarily causing obesity, suggests a re-consideration of obesity as a direct cause of chronic disease and a search for the main drivers-or cause of causes. Factors contributing to this are considered here within an environmental context, leading to the conclusion that humans have an immune reaction to aspects of the modern techno-industrial environment, to which they have not fully adapted. It is suggested that economic growth-beyond a point-leads to increases in chronic diseases and climate change and that obesity is a signal of these problems. This is supported by data from Sweden over 200 years, as well as "natural" experiments in disrupted economies like Cuba and Nauru, which have shown a positive health effect with economic downturns. The effect is reflected both in human health and environmental problems such as climate change, thus pointing to the need for greater cross-disciplinary communication and a concept shift in thinking on prevention if economic growth is to continue to benefit human health and well-being.

  12. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  13. Plastic molds reduce cost of encapsulating electric cable connectors

    Science.gov (United States)

    Knott, D.

    1964-01-01

    Resin casting of the aluminum master pattern forms a plastic mold for encapsulating a cable connector. An elastomer is injected into the mold and cured. The mold is disassembled leaving an elastomeric encapsulation around the connector.

  14. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl.

    Science.gov (United States)

    Ikematsu, Shuka; Tasaka, Masao; Torii, Keiko U; Uchida, Naoyuki

    2017-03-01

    Secondary growth is driven by continuous cell proliferation and differentiation of the cambium that acts as vascular stem cells, producing xylem and phloem to expand vascular tissues laterally. During secondary growth of hypocotyls in Arabidopsis thaliana, the xylem undergoes a drastic phase transition from a parenchyma-producing phase to a fiber-producing phase at the appropriate time. However, it remains to be fully elucidated how progression of secondary growth is properly controlled. We focused on phenotypes of hypocotyl vasculatures caused by double mutation in ERECTA (ER) and ER-LIKE1 (ERL1) receptor-kinase genes to elucidate their roles in secondary growth. ER and ERL1 redundantly suppressed excessive radial growth of the hypocotyl vasculature during secondary growth. ER and ERL1 also prevented premature initiation of the fiber differentiation process mediated by the NAC SECONDARY WALL THICKENING PROMOTING FACTORs in the hypocotyl xylem. Upon floral transition, the hypocotyl xylem gained a competency to respond to GA in a BREVIPEDICELLUS-dependent manner, which was a prerequisite for fiber differentiation. However, even after the floral transition, ER and ERL1 prevented precocious initiation of the GA-mediated fiber formation. Collectively, our findings reveal that ER and ERL1 redundantly prevent premature progression of sequential events in secondary growth. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    Directory of Open Access Journals (Sweden)

    Poornachandra Papireddy Vinayaka

    2016-09-01

    Full Text Available A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8 as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.

  16. Mechanical Properties of Injection Molded and Compression Molded Samples from Nature-Butadiene Rubber

    Directory of Open Access Journals (Sweden)

    Skrobak Adam

    2016-01-01

    Full Text Available The aim of this paper is to show what extent there is an impact on the mechanical properties (tensile strength and tear strength of a standardized testing sample made of rubber compound based on nature rubber and butadiene rubber produced by injection molding in comparison with a sample produced by classic preparation (cutting out a compression molded plate according to the standard ISO 23529. For realization of this study it was necessary to design and produce an injection mold for all types testing samples. Subsequently, mechanical properties such as the tensile stress-strain and tear strenght of compression molded samples and injection molded samples were studied, compared and discussed.

  17. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  18. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...

  19. Dynamic Feed Control For Injection Molding

    Science.gov (United States)

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  20. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  1. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Science.gov (United States)

    Bajčičák, Martin; Šuba, Roland

    2014-06-01

    The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  2. The use of IR thermography to show the mold and part temperature evolution in injection molding

    Directory of Open Access Journals (Sweden)

    Bula Karol

    2016-12-01

    Full Text Available This study concerns the application of infrared camera for injection molding analysis by measuring temperatures of both injection molded parts and injection mold cavities in a function of injection cycles. The mold with two cavities, differing in thickness (1 and 3 mm, and a cold direct runner was used. Isotactic polypropylene homopolymer was utilized to produce parts. Mold temperature was set at 22°C and controlled by a water chiller. Five measuring points were determined: SP1, SP2 (placed in the 3 mm cavity, SP3, SP4 (located in the 1 mm cavity and SP5 around an injection molding gate. Our investigations showed that the highest temperature is localized around SP2 point and the lowest at SP4. Also, it was proved that even after 62 injection molding cycles, temperatures of cavities were not stable, revealing their further increase with each cycle.

  3. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often...... needed. This is achieved by aligning the mold precisely to the [110] direction of a silicon (100) wafer and etching very close to the (110) surfaces using a DRIE Bosch process. The surface roughness of the sidewalls is then removed with a short etch in KOH + IPA. To achieve this, the parameters for DRIE...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  4. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items...

  5. Comparing suppository mold variability which can lead to dosage errors for suppositories prepared with the same or different molds.

    Science.gov (United States)

    Alexander, Kenneth S; Baki, Gabriella; Hart, Christine; Hejduk, Courtney; Chillas, Stephanie

    2013-01-01

    Suppository molds must be properly calibrated to ensure accurate dosing. There are often slight differences between molds and even in the cavities within a mold. A method is presented for the calibration of standard aluminum 6-, 12-, 50-, or 100-well suppository molds. Ten different molds were tested using water for volume calibration, and cocoa butter for standardization involving establishing the density factor. This method is shown to be straightforward and appropriate for calibrating suppository molds.

  6. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.

    Science.gov (United States)

    Clark, Jessica A; Gan, Heng; Samocha, Alexandr J; Fox, Amy C; Buchman, Timothy G; Coopersmith, Craig M

    2009-09-01

    Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion.

  7. PTH (1-34) and growth hormone in prevention of disuse osteopenia and sarcopenia in rats.

    Science.gov (United States)

    Brent, Mikkel Bo; Brüel, Annemarie; Thomsen, Jesper Skovhus

    2018-05-01

    Osteopenia and sarcopenia develops rapidly during disuse. The study investigated whether intermittent parathyroid hormone (1-34) (PTH) and growth hormone (GH) administered alone or in combination could prevent or mitigate disuse osteopenia and sarcopenia in rats. Disuse was achieved by injecting 4IU botulinum toxin A (BTX) into the right hindlimb musculature of 12-14-week-old female Wistar rats. Seventy-two rats were divided into six groups: 1. Baseline; 2. Ctrl; 3. BTX; 4. BTX+GH; 5. BTX+PTH; 6. BTX+PTH+GH. PTH (1-34) (60μg/kg/day) and GH (5mg/kg/day). The animals were sacrificed after 6weeks of treatment. Sarcopenia was established by histomorphometry, while the skeletal properties were determined using DXA, μCT, mechanical testing, and dynamic bone histomorphometry. Disuse resulted in lower muscle mass (-63%, pPTH fully counteracted the immobilization-induced lower BV/TV, Tb.Th, and distal femoral metaphyseal strength. GH increased muscle mass (+17%, pPTH and GH increased distal femoral metaphyseal bone strength (+45%, pPTH. In conclusion, PTH and GH in combination is more efficient at preventing the disuse-related deterioration of bone strength, density, and micro-architecture than either PTH or GH given as monotherapy. Furthermore, GH, either alone or in combination with PTH, attenuated disuse-induced loss of muscle mass. The combination of PTH and GH resulted in a more effective treatment than PTH and GH as monotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy.

    Directory of Open Access Journals (Sweden)

    Chen-Hsueh Pai

    Full Text Available Preeclampsia (PE is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2 and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl to wild-type mice resulted in elevated placental TXA2 synthase (TXAS and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg, and decreased pup weight (~50% and size (~24%, but these adverse effects were ameliorated in TXAS knockout (KO mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.

  9. Topical Human Epidermal Growth Factor in the Treatment of Senile Purpura and the Prevention of Dermatoporosis.

    Science.gov (United States)

    McKnight, Braden; Seidel, Rachel; Moy, Ron

    2015-10-01

    Senile purpura presents itself as a largely unexplored challenge as it has been long thought of as a benign condition without long-term health sequelae. It is becoming increasingly accepted that skin aging not only results in cosmetic disturbances, but as a functional ones. With modern increases in lifespan, skin atrophy associated with solar damage is presenting as a clinically significant inability to mechanically protect patients. This chronic cutaneous insufficiency/fragility syndrome was recently termed dermatoporosis and senile purpura appears to be a visible marker of early stage dysfunction. To examine the effects of topically human epidermal growth factor on the clinical presence of senile purpura and its effect on skin thickness as measured via cutaneous ultrasound. Six subjects applied human epidermal growth factor morning and night for six weeks. Clinical outcomes were evaluated by comparing initial clinical photos to 6-week photos and performing a blinded investigator's global assessment (IGA). Skin thickness was evaluated via cutaneous ultrasound measurement. Ultrasound measurements indicated a mean skin thickening of 195.2 ± 35.7 um (SEM) over 6 weeks. The average number of purpuric lesions decreased from 15 ± 4.6 (SEM) to 2.3 ± 0.7 (SEM) over that same period. Senile purpura presents itself as a cosmetic disturbance posing significant psychological distress and serves as a marker of the severity of skin thinning. In this study, we demonstrate that topical h-EGF diminishes the appearance of senile purpura by thickening skin and may help prevent the development of late stage dermatoporosis.

  10. Study on Effects of Mold Temperature on the Injection Molded Article

    Directory of Open Access Journals (Sweden)

    Han J.-H.

    2017-06-01

    Full Text Available This is a study of the effects of temperature of injection mold on the injection molded article. By supplying water of the proper temperature in the cooling line of mold in the cooling process, the mold was the appropriate temperature, and the deformation of the injection molded article was examined according to the mold temperature. In this study, we conducted simulation analysis and experiments, and the results were analyzed. The minimum deformation of the injection molded article model obtained by supplying 50°C water in the cooling line is 0.003 mm, and the maximum deformation was 0.813 mm. Injection molded article models obtained by supplying 20°C water were found to be a minimum of 0.002 mm, with deformation of up to 0.761 mm. When comparing both conditions, the error rate of injection molded article obtained by supplying 20°C water in the mold cooling line was lower by about 0.18%.

  11. Genetic analysis for sooty mold resistance and heart of palm yield in Archontophoenix

    Directory of Open Access Journals (Sweden)

    Bovi Marilene Leão Alves

    2004-01-01

    Full Text Available Archontophoenix palms, utilized both as ornamental species and as a source of high-quality heart of palm, are susceptible to sooty mold, a disease coupled with aphid infestation, which affects photosynthesis and causes unpleasant, darkish palm appearance. Scoring rates for sooty mold resistance and three growth traits were assessed under field conditions in 24 open-pollinated half-sibs families, 28 months after planting, aiming to identify genetic variability for sooty mold resistance; estimate genetic parameters for this trait and plant height, diameter and number of leaves; estimate genetic and phenotypic correlation for the four traits and evaluate selection methods for heart of palm production through multi-trait index selection based on growth traits. There were genetic differences among families for all traits. The low coefficient of variation for sooty mold (9.48% indicates that the visual rating method adopted was effective and feasible for comparing aphid plus sooty mold infestation levels in Archontophoenix. Narrow sense heritability estimates were low and medium for growth traits (0.10, 0.26 and 0.26 for leaves number, plant diameter and height, respectively and very high (0.91 for sooty mold resistance. Genetic correlation was found between sooty mold resistance and plant height. This positive relationship indicates that culling of very susceptible palms can be done possibily without interference in the follow up indirect selection for heart of palm yield. Some selection strategies were presented, showing that possible genetic gain could range from 6.23 to 11.83%, depending on the selection method adopted and on the effective restriction of the population size.

  12. Phase I study of transforming growth factor-beta 3 mouthwashes for prevention of chemotherapy-induced mucositis

    NARCIS (Netherlands)

    Wymenga, ANM; van der Graaf, WTA; Hofstra, LS; Spijkervet, FKL; Timens, W; Timmer-Bosscha, H; Sluiter, WJ; van Buuren, AHJAW; Mulder, NH; de Vries, EGE

    The purpose of this study was to establish the safety and tolerability of recombinant transforming growth factor-beta 3 (TGF-beta 3; CGP 46614) mouthwashes intended for prevention of chemotherapy-induced mucositis. Local effects were especially analyzed by objective and subjective measurements of

  13. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  14. Probiotics prevent growth deficit of colon wall strata of malnourished rats post-lactation.

    Science.gov (United States)

    Lima, Dirlene P; Azevedo, Jorge F de; Hermes-Uliana, Catchia; Alves, Gilberto; Sant'ana, Débora M G; Araújo, Eduardo J A

    2012-09-01

    The objective of this study was to analyze morphometrically the colon wall strata of malnourished rats supplemented with probiotics. Sixteen recently weaned Wistar rats (Rattus norvegicus) were distributed into four groups: animals that received commercial chow (G1, n = 4); animals that received the same feed as G1 and were supplemented with probiotics (G2, n = 4); animals that received chow with 4% of proteins (G3, n = 4); animals that received the same feed as G3 and were supplemented with probiotics (G4, n = 4). After 12 weeks, the proximal colon was collected and submitted to histological processing. Three-µm cuts were stained with H.E., Periodic Acid Schifff (P.A.S.) + diasthasis solution and Alcian Blue (A.B.) pH 2.5 and pH 1.0. The morphometric analysis of the intestinal wall showed that the supplementation with ABT-4 probiotic culture prevents the growth deficit of colon wall strata that normally occurs in malnourished rats right after lactation. Besides, no alteration was observed in the proportion of the number of globet cells in relation to the number of enterocytes in malnourished rats, regardless of the supplementation with probiotics.

  15. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization

    Directory of Open Access Journals (Sweden)

    Rui Manuel Almeida Machado

    2017-05-01

    Full Text Available Salinity is a major problem affecting crop production all over the world: 20% of cultivated land in the world, and 33% of irrigated land, are salt-affected and degraded. This process can be accentuated by climate change, excessive use of groundwater (mainly if close to the sea, increasing use of low-quality water in irrigation, and massive introduction of irrigation associated with intensive farming. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m−1 in saturated soil extracts and vegetable salt tolerance decreases when saline water is used for irrigation. The objective of this review is to discuss the effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization can prevent soil and water salinization and mitigate the adverse effects of salinity.

  16. Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats

    Directory of Open Access Journals (Sweden)

    Tian Ya-ping

    2010-07-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD, which is characterized by hepatic steatosis, can be reversed by early treatment. Several case reports have indicated that the administration of recombinant growth hormone (GH could improve fatty liver in GH-deficient patients. Here, we investigated whether chronic exogenous GH levels could improve hepatic steatosis induced by a high-fat diet in rats, and explored the underlying mechanisms. Results High-fat diet-fed rats developed abdominal obesity, fatty liver and insulin resistance. Chronic exogenous GH improved fatty liver, by reversing dyslipidaemia, fat accumulation and insulin resistance. Exogenous GH also reduced serum tumour necrosis factor-alpha (TNF-alpha levels, and ameliorated hepatic lipid peroxidation and oxidative stress. Hepatic fat deposition was also reduced by exogenous GH levels, as was the expression of adipocyte-derived adipokines (adiponectin, leptin and resistin, which might improve lipid metabolism and hepatic steatosis. Exogenous GH seems to improve fatty liver by reducing fat weight, improving insulin sensitivity and correcting oxidative stress, which may be achieved through phosphorylation or dephosphorylation of a group of signal transducers and activators of hepatic signal transduction pathways. Conclusions Chronic exogenous GH has positive effects on fatty liver and may be a potential clinical application in the prevention or reversal of fatty liver. However, chronic secretion of exogenous GH, even at a low level, may increase serum glucose and insulin levels in rats fed a standard diet, and thus increase the risk of insulin resistance.

  17. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth.

    Science.gov (United States)

    Sun, Ye; Ju, Meihua; Lin, Zhiqiang; Fredrick, Thomas W; Evans, Lucy P; Tian, Katherine T; Saba, Nicholas J; Morss, Peyton C; Pu, William T; Chen, Jing; Stahl, Andreas; Joyal, Jean-Sébastien; Smith, Lois E H

    2015-09-22

    Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial SOCS3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling. Copyright © 2015, American Association for the Advancement of Science.

  18. Obesity, Chronic Disease, and Economic Growth: A Case for “Big Picture” Prevention

    Directory of Open Access Journals (Sweden)

    Garry Egger

    2011-01-01

    Full Text Available The discovery of a form of chronic, low-grade systemic inflammation (“metaflammation” linked with obesity, but also associated with several lifestyle-related behaviours not necessarily causing obesity, suggests a re-consideration of obesity as a direct cause of chronic disease and a search for the main drivers—or cause of causes. Factors contributing to this are considered here within an environmental context, leading to the conclusion that humans have an immune reaction to aspects of the modern techno-industrial environment, to which they have not fully adapted. It is suggested that economic growth—beyond a point—leads to increases in chronic diseases and climate change and that obesity is a signal of these problems. This is supported by data from Sweden over 200 years, as well as “natural” experiments in disrupted economies like Cuba and Nauru, which have shown a positive health effect with economic downturns. The effect is reflected both in human health and environmental problems such as climate change, thus pointing to the need for greater cross-disciplinary communication and a concept shift in thinking on prevention if economic growth is to continue to benefit human health and well-being.

  19. Blockade of Vascular Endothelial Growth Factor Receptor 1 Prevents Inflammation and Vascular Leakage in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Jianbo He

    2015-01-01

    Full Text Available Diabetic retinopathy (DR is a leading cause of blindness in working age adults. The objective of this study is to investigate the effects of vascular endothelial growth factor receptor 1 (VEGFR1 blockade on the complications of DR. Experimental models of diabetes were induced with streptozotocin (STZ treatment or Insulin2 gene mutation (Akita in mice. Protein expression and localization were examined by western blots (WB and immunofluorescence (IF. mRNA expression was quantified by PCR array and real-time PCR. The activity of VEGFR1 signaling was blocked by a neutralizing antibody called MF1. Vascular leakage was evaluated by measuring the leakage of [3H]-mannitol tracer into the retina and the IF staining of albumin. VEGFR1 blockade significantly inhibited diabetes-related vascular leakage, leukocytes-endothelial cell (EC adhesion (or retinal leukostasis, expression of intercellular adhesion molecule- (ICAM- 1 protein, abnormal localization and degeneration of the tight junction protein zonula occludens- (ZO- 1, and the cell adhesion protein vascular endothelial (VE cadherin. In addition, VEGFR1 blockade interfered with the gene expression of 10 new cytokines and chemokines: cxcl10, il10, ccl8, il1f6, cxcl15, ccl4, il13, ccl6, casp1, and ccr5. These results suggest that VEGFR1 mediates complications of DR and targeting this signaling pathway represents a potential therapeutic strategy for the prevention and treatment of DR.

  20. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    Science.gov (United States)

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  2. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  3. The shrinkage behavior and surface topographical investigation for micro metal injection molding

    Science.gov (United States)

    Islam, A.; Giannekas, N.; Marhöfer, D. M.; Tosello, G.; Hansen, H. N.

    2015-05-01

    Metal injection molding (MIM) is a near net shape manufacturing technology that can produce highly complex and dimensionally stable parts for high end engineering applications. Despite the recent growth and industrial interest, micro metal molding is yet to be the field of extensive research especially when it is compared with micro molding of thermoplastics. The current paper presents a thorough investigation on the process of metal injection molding where it systematically characterizes the effects of important process conditions on the shrinkage and surface quality of molded parts with micro features. Effects of geometrical factors like feature dimensions and distance from the gate on the replication quality are studied. The influence of process conditions on the achievable roughness for the final metal parts is discussed based on the experimental findings. The test geometry is characterized by 2½D surface structures containing thin ribs of different aspect ratios and thicknesses in the sub-mm dimensional range. The test parts were molded from Catamold 316L with a conventional injection molding machine. Afterwards, the parts were de-binded and sintered to produce the final test samples. Among the different process parameters studied, the melt temperature was the most influential parameters for better replication and dimensional stability of the final part. The results presented in the paper clearly show that the shrinkage in metal part is not uniform in the micro scale. It depends on the feature dimensions and also on the process conditions. A thin section of the part exhibits higher relative shrinkage compared with a thicker section. Based on these findings, it can be concluded that a micro part molded by MIM process will have higher relative shrinkage compared to a macro part made with the same process.

  4. Effects of fast mold temperature evolution on micro features replication quality during injection molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, M.; Speranza, V.

    2017-01-01

    The growing demand to manufacture, with high accuracy, functional structures in the micro and sub-micrometer range polymer based microsystem products calls for reliable mass production processes. Being injection molding (IM) the preferential technology employed for polymer mass fabrication and mold...... temperature one of the most relevant process parameter to enhance polymer replication at the micro meter scale, the present study investigates effects of fast mold temperature evolution on final replication quality of produced injection molded parts. Micro features master geometries were produced by UV...... effect and let the surface to cool down soon after. This heating device allowed to maintain mold temperature at a constant value for a time that could be equal to the filling time or longer. A fully characterized isotactic polypropylene was used as the polymer material during the injection molding...

  5. Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, Matteo; Speranza, V.

    2016-01-01

    The growing demand to manufacture, with high accuracy, functional structures in the micro and sub-micro meterrange polymer based microsystem products calls for reliable mass production processes. Being injection molding (IM) the preferential technology employed for polymer mass fabrication and mold...... temperature one of the most relevant process parameter to enhance polymer replication at the micro meter scale, the present study investigates effects of fast mold temperature evolution on final replication quality of produced injection molded parts. Micro features master geometries were produced by UV...... and let the surface to cool down soon after. This heating device allowed to maintain mold temperature at a constant value for a time that could be equal to the filling time or longer. A fully characterized isotactic polypropylene was used as the polymer material during the injection molding experiments...

  6. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    user

    molding. 1. Introduction. Injection molding is one of the major net shape forming processes for thermoplastic polymers. Over 30% of all the plastic parts manufactured are by injection molding. Injection molding is ideally suited for manufacturing large quantities of mass produced plastic parts of complex shapes and sizes.

  7. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  8. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  9. Solving depressions formed during production of plastic molding

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2015-07-01

    Full Text Available This article deals with improvement of design properties of molded plastic parts. It can be achieved by modifying construction of metal injection mold and optimization of parameters in injection process. The subject of our examination was depressions formed on molded plastic parts which are inacceptable in the process of approval. The problem which has arisen was solved in two phases. The first phase consisted in alteration of injection mold design – enlargement of injection molding gate. In the second phase, we have changed the location of injection molding gate. After performing constructional modifications, new molded plastic parts were manufactured and assessed.

  10. Facts about Stachybotrys chartarum and Other Molds

    Science.gov (United States)

    ... leakage may have occurred in roofs, pipes, walls, plant pots, or where there has been flooding, they ... molds. People with immune suppression or underlying lung disease are more susceptible to fungal infections. Top of Page How do you know ...

  11. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    This PhD thesis concerns the development of superhydrophobic surfaces fabricated by injection molding. Today, injection molding is the prevalent production method for consumer plastic products. However, concerns regarding the environmental impact of a plastic production are increasing, especially...... because the use of potentially toxic self-cleaning coatings is used worldwide in a larger and larger scale. In this context, the work in this PhD project could be seen as a scientific effort towards reducing toxic compounds in manufactured plastic parts by developing injecting molded surfaces......° for structured surfaces with a drop roll-off angle of less than 2°. Thereby, it is shown that an extremely water repellant surface can be injection molded directly with clear perspectives for more environmental and healthier plastic consumer products....

  12. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  13. National Allergy Bureau Pollen and Mold Report

    Science.gov (United States)

    ... Search AAAAI National Allergy Bureau Pollen and Mold Report Date: May 01, 2018 Location: San Antonio (2), ... 30/2018 ( click here to view ). Our Allergen Report Email Service can automatically email you daily pollen ...

  14. Modelling and monitoring in injection molding

    DEFF Research Database (Denmark)

    Thyregod, Peter

    2001-01-01

    This thesis is concerned with the application of statistical methods in quality improvement of injection molded parts. The methods described are illustrated with data from the manufacturing of parts for a medical device. The emphasis has been on the variation between cavities in multi-cavity molds....... >From analysis of quality measurements from a longer period of manufacturing, it was found that differences in cavities was that source of variation with greatest influence on the lenght of the molded parts. The other large contribution to the lenght varation was the different machine settings. Samples...... taken within the same machine set-point did not cause great variation compared to the two preceding sources of variation. A simple graphical approach is suggested for finding patterns in the cavity differences. Applying this method to data from a 16 cavity mold, a clear connection was found between...

  15. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    OpenAIRE

    Bajčičák Martin; Šuba Roland

    2014-01-01

    The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum tempe...

  16. Increasing the resistance of common bean to white mold through recurrent selection

    Directory of Open Access Journals (Sweden)

    Monik Evelin Leite

    2016-02-01

    Full Text Available ABSTRACT White mold, caused by Sclerotinea sclerotiorum (Lib. de Bary is one of the most important diseases of the common bean (Phaseolus vulgaris L. worldwide. Physiological resistance and traits related to disease avoidance such as architecture contribute to field resistance. The aim of this study was to verify the efficiency of recurrent selection in physiological resistance to white mold, “Carioca” grain type and upright habit in common bean. Thirteen common bean lines with partial resistance to white mold were intercrossed by means of a circulant diallel table, and seven recurrent selection cycles were obtained. Of these cycles, progenies of the S0:1, S0:2 and S0:3 generations of cycles III, IV, V and VI were evaluated. The best (8 to 10 progenies of the seven cycles were also evaluated, in two experiments, one in the greenhouse and one in the field. Lattice and/or randomized block experimental designs were used. The traits evaluated were: resistance to white mold by the straw test method, growth habit and grain type. The most resistant progenies were selected based on the average score of resistance to white mold. Subsequently, they were evaluated with regard to grain type and growth habit. Recurrent selection allowed for genetic progress of about 11 % per year for white mold resistance and about 15 % per year for the plant architecture. There was no gain among cycles for grain type. Progeny selection and recurrent selection were efficient for obtaining progenies with a high level of resistance to white mold with “Carioca” grain type and upright habit.

  17. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    Science.gov (United States)

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  18. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  19. Integrated mold/surface-micromachining process

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  20. EFFECTIVENESS OF CELLULAR INJECTION MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2013-06-01

    Full Text Available In a study of cellular injection, molding process uses polyvinylchloride PVC. Polymers modified with introducing blowing agents into them in the Laboratory of the Department of Technologies and Materiase of Technical University of Kosice. For technological reasons, blowing agents have a form of granules. In the experiment, the content of the blowing agent (0–2,0 % by mass fed into the processed polymer was adopted as a variable factor. In the studies presented in the article, the chemical blowing agents occurring in the granulated form with a diameter of 1.2 to 1.4 mm were used. The view of the technological line for cellular injection molding and injection mold cavity with injection moldings are shown in Figure 1. The results of the determination of selected properties of injection molded parts for various polymeric materials, obtained with different content of blowing agents, are shown in Figures 4-7. Microscopic examination of cross-sectional structure of the moldings were obtained using the author's position image analysis of porous structure. Based on analysis of photographs taken (Figures 7, 8, 9 it was found that the coating containing 1.0% of blowing agents is a clearly visible solid outer layer and uniform distribution of pores and their sizes are similar.

  1. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  2. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    OpenAIRE

    Li Yuanyuan; Wang Meng; Guo Yuchao

    2015-01-01

    This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  3. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  4. Exploration of Islamic medicine plant extracts as powerful antifungals for the prevention of mycotoxigenic Aspergilli growth in organic silage

    DEFF Research Database (Denmark)

    Tayel, Ahmed A.; Salem, Mohammed F.; El-Tras, Wael F.

    2011-01-01

    Feed contamination with mycotoxins is a major risk factor for animals and humans as several toxins can exist as residues in meat and milk products, giving rise to carry-over to consumers via ingestion of foods of animal origin. The starting point for prevention, in this chain, is to eliminate...... the growth of mycotoxigenic fungi in the animal forage. Ten plant extracts, recommended in Islamic medicine, were evaluated as antifungal agents against mycotoxigenic Aspergilli, i.e. Aspergillus flavus and A. ochraceus, growth in organic maize silage....

  5. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical...

  6. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Science.gov (United States)

    2010-07-01

    ... lb/ton. 522 lb/ton. 7. centrifugal casting—CR/HS a. resin application with the mold closed, and the mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during...

  7. Fatty acid-based formulations for wood protection against mold and sapstain

    Science.gov (United States)

    Carol A. Clausen; Robert D. Coleman; Vina W. Yang

    2010-01-01

    Safer, highly effective biocides providing long-term protection of mold growth on wood-based materials is of interest to the wood protection industry. Moldicide formulations containing synergistic combinations of ingredients derived from natural sources are commonly recognized as a promising approach for the next generation of wood protectants. Although fatty acid (FA...

  8. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  9. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    Science.gov (United States)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  10. Glass molding of 3mm diameter aspheric plano-convex lens

    Science.gov (United States)

    Sung, Hayeong; Hue, Myung sang; Lee, Giljae; Ryu, Geunman; Kim, Dongguk; Yang, Suncheol

    2017-10-01

    The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.

  11. Interaction with Penicillium expansum enhances Botrytis cinerea growth in grape juice medium and prevents patulin accumulation in vitro.

    Science.gov (United States)

    Morales, H; Paterson, R R M; Venâncio, A; Lima, N

    2013-05-01

    Interactions between fungi occur when they grow on the same host plant. This is the case of Botrytis cinerea and Penicillium expansum on grape. P. expansum is also responsible for production of the mycotoxin patulin. In this study, the influence of the interaction between both fungi on fungal growth parameters was studied as well as the effect on the accumulation of patulin by P. expansum. For that purpose, spores of B. cinerea and P. expansum were inoculated together (mixed inoculum), and the parameters growth rate, time for growth and patulin accumulation were assessed. The presence of P. expansum conidia shortened the time for growth of mixed inoculum colonies which, at the end of incubation, were B. cinerea-like. Although some P. expansum growth was observed in mixed inoculum colonies, very low levels of patulin were observed. In assays carried out in patulin-spiked medium, B. cinerea was capable to metabolize the mycotoxin. The capabilities of B. cinerea to shorten time for growth and prevent patulin accumulation are competing abilities that facilitate grape colonization. © 2013 The Society for Applied Microbiology.

  12. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: natural approaches for the prevention and management of ankylosing spondylitis.

    Science.gov (United States)

    Winnett, V; Sirdaarta, J; White, A; Clarke, F M; Cock, I E

    2017-04-01

    A wide variety of herbal remedies are used in traditional Australian medicine to treat inflammatory disorders, including autoimmune inflammatory diseases. One hundred and six extracts from 40 native Australian plant species traditionally used for the treatment of inflammation and/or to inhibit bacterial growth were investigated for their ability to inhibit the growth of a microbial trigger for ankylosing spondylitis (K. pneumoniae). Eighty-six of the extracts (81.1%) inhibited the growth of K. pneumoniae. The D. leichardtii, Eucalyptus spp., K. flavescens, Leptospermum spp., M. quinquenervia, Petalostigma spp., P. angustifolium, S. spinescens, S. australe, S. forte and Tasmannia spp. extracts were effective K. pneumoniae growth inhibitors, with MIC values generally <1000 µg/mL. The T. lanceolata peppercorn extracts were the most potent growth inhibitors, with MIC values as low as 16 µg/mL. These extracts were examined by non-biased GC-MS headspace analysis and comparison with a compound database. A notable feature was the high relative abundance of the sesquiterpenoids polygodial, guaiol and caryophyllene oxide, and the monoterpenoids linalool, cineole and α-terpineol in the T. lanceolata peppercorn methanolic and aqueous extracts. The extracts with the most potent K. pneumoniae inhibitory activity (including the T. lanceolata peppercorn extracts) were nontoxic in the Artemia nauplii bioassay. The lack of toxicity and the growth inhibitory activity of these extracts against K. pneumoniae indicate their potential for both preventing the onset of ankylosing spondylitis and minimising its symptoms once the disease is established.

  13. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    Science.gov (United States)

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  14. A refrigeration temperature of 4 degrees C does not prevent static growth of Yersinia pestis in heart infusion broth.

    Science.gov (United States)

    Torosian, Stephen D; Regan, Patrick M; Doran, Tara; Taylor, Michael A; Margolin, Aaron

    2009-09-01

    Multiple barriers such as inspections, testing, and proper storage conditions are used to minimize the risk of contaminated food. Knowledge of which barriers, such as refrigeration, are effective in preventing pathogen growth and persistence, can help direct the focus of efforts during food sampling. In this study, the doubling times were evaluated for 10 strains of Yersinia pestis of different genetic background cultured in heart infusion broth (HIB) kept at 4 degrees C +/- 1 degrees C under static conditions. Nine out of the 10 strains were able to grow at 4 degrees C +/- 1 degrees C. Apparent doubling times for 7 of the strains ranged from 41 to 50 h. Strain Harbin and strain D1 had apparent doubling times of 65 and 35 h, respectively, and strain O19 Ca-6 did not grow at all. Analysis of variance showed that the averaged growth data (colony forming units per mL) between strains that grew were not significantly different. The data presented here demonstrate that refrigeration alone is not an effective barrier to prevent static growth of Y. pestis in HIB. These findings provide the preliminary impetus to investigate Y. pestis growth in a variety of food matrices that may provide a similar environment as HIB.

  15. Environmental impact estimation of mold making process

    Science.gov (United States)

    Kong, Daeyoung

    Increasing concern of environmental sustainability regarding depletion of natural resources and resulting negative environmental impact has triggered various movements to address these issues. Various regulations about product life cycle have been made and applied to industries. As a result, how to evaluate the environmental impact and how to improve current technologies has become an important issue to product developers. Molds and dies are very generally used manufacturing tools and indispensible parts to the production of many products. However, evaluating environmental impact in mold and die manufacturing is not well understood and not much accepted yet. The objective of this thesis is to provide an effective and straightforward way of environmental analysis for mold and die manufacturing practice. For this, current limitations of existing tools were identified. While conventional life cycle assessment tools provide a lot of life cycle inventories, reliable data is not sufficient for the mold and die manufacturer. Even with comprehensive data input, current LCA tools only provide another comprehensive result which is not directly applicable to problem solving. These issues are critical especially to the mold and die manufacturer with limited resource and time. This thesis addresses the issues based on understanding the needs of mold and die manufacturers. Computer aided manufacturing (CAM) is the most frequently used software tool and includes most manufacturing information including the process definition and sometimes geometric modeling. Another important usage of CAM software tools is problem identification by process simulation. Under the virtual environment, possible problems are detected and solved. Environmental impact can be handled in the same manner. To manufacture molds and dies with minimizing the associated environmental impact, possible environmental impact sources must be minimized before the execution in the virtual environment. Molds and dies

  16. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  17. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  18. Occupational allergic respiratory diseases in garbage workers: relevance of molds and actinomycetes.

    Science.gov (United States)

    Hagemeyer, O; Bünger, J; van Kampen, V; Raulf-Heimsoth, M; Drath, C; Merget, R; Brüning, Th; Broding, H C

    2013-01-01

    Exposures to molds and bacteria (especially actinomycetes) at workplaces are common in garbage workers, but allergic respiratory diseases due to these microorganisms have been described rarely. The aim of our study was a detailed analysis of mold or bacteria-associated occupational respiratory diseases in garbage workers. From 2002 to 2011 four cases of occupational respiratory diseases related to garbage handling were identified in our institute (IPA). Hypersensitivity pneumonitis (HP) was diagnosed in three subjects (cases 1-3, one smoker, two non-smokers), occupational asthma (OA) was diagnosed in one subject (case 4, smoker), but could not be excluded completely in case 2. Cases 1 and 2 worked in composting sites, while cases 3 and 4 worked in packaging recycling plants. Exposure periods were 2-4 years. Molds and actinomycetes were identified as allergens in all cases. Specific IgE antibodies to Aspergillus fumigatus were detected exclusively in case 4. Diagnoses of HP were essentially based on symptoms and the detection of specific IgG serum antibodies to molds and actinomycetes. OA was confirmed by bronchial provocation test with Aspergillus fumigatus in case 4. In conclusion, occupational HP and OA due to molds occur rarely in garbage workers. Technical prevention measures are insufficient and the diagnosis of HP is often inconclusive. Therefore, it is recommended to implement the full repertoire of diagnostic tools including bronchoalveolar lavage and high resolution computed tomography in the baseline examination.

  19. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  20. Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume

    International Nuclear Information System (INIS)

    Xiang, Zhuolin; Wang, Hao; Yen, Shih-Cheng; Lee, Chengkuo; Murugappan, Suresh Kanna; Pastorin, Giorgia

    2015-01-01

    Drawing lithography technology has recently become a popular technique to fabricate (3D) microneedles. The conventional drawing process shows some limitations in fabricating dense, scale-up and small microneedles. In this study, we demonstrate a new drawing lithography process from a self-loading mold which is able to overcome these challenges. Different from the conventional molds which have difficult alignment and loading issues, a released SU-8 membrane is attached onto a SU-8 coated wafer to generate an innovative self-loading mold. The physically distinct SU-8 colloid in this mold successfully avoids the merging of the microneedle tips in the drawing process. Meanwhile, the same SU-8 colloid in mold can provide microneedles with uniform lengths on a large surface area. Furthermore, a low temperature drawing process with this improved technique prevents sharp tips from bending during the solidification stage. Remarkably, this new drawing lithography technology can fabricate microneedles with various lengths and they are strong enough to penetrate the outermost skin layer, namely the stratum corneum. The spacing between two adjacent microneedles is optimized to maximize the penetration rate through the skin. Histology images and drug diffusion testing demonstrate that microchannels are successfully created and the drugs can permeate the tissue under the skin. The fabricated microneedles are demonstrated to deliver insulin in vivo and lower blood glucose levels, suggesting future possible applications for minimally invasive transdermal delivery of macromolecules. (paper)

  1. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  2. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation.

    Science.gov (United States)

    Kim, Ju Hyun; Lee, Soo Hee; Kim, Choul Sung; Lim, Eun Kyung; Choi, Ki Hyuck; Kong, Hyun Gi; Kim, Dae Wook; Lee, Seon-Woo; Moon, Byung Ju

    2007-03-01

    Bacillus licheniformis N1 is a biological control agent to control gray mold diseases caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were generated and evaluated for the activity to control strawberry gray mold. The wettable powder type formulation N1E was selected in pot experiments with remarkable disease control activity on both strawberry leaves and flowers. The N1E formulation contained 400 g of corn starch, 50 ml of olive oil, and 50 g of sucrose per a liter of bacterial fermentation culture. Optimum dilution of N1E to appropriately control the strawberry gray mold appeared to be 100-fold dilution in plastic house artificial infection experiments. The significant reduction of symptom development in the senescent leaves was apparent by the treatment of N1E at 100-fold dilution when N1E was applied before Bo. cinerea inoculation, but not after the inoculation. Both artificial infection experiments in a plastic house and natural infection experiments in the farm plastic house under production conditions revealed that the disease severity of gray mold on strawberry leaves and flowers was significantly reduced by N1E treatment. The disease control value of N1E on strawberry leaves was 81% under production conditions, as compared with the 61.5% conferred by a chemical fungicide, iprodione. This study suggests that our previously generated formulation of B. licheniformis N1 will be effective to control strawberry gray mold by its preventive activity.

  3. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy, typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.

  4. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F

    2005-01-01

    The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees....... In conclusion this is, to our knowledge, the first study to successfully conduct a human exposure to a highly controlled dose of fungal material aerosolized directly from wet building materials. This short-term exposure to high concentrations of two different molds induced no more reactions than exposure...... to placebo in eight sensitive school employees. However, a statistical type II error cannot be excluded because of the small sample size. PRACTICAL IMPLICATIONS: In this double blind, placebo controlled study of mold exposure changes in symptoms, objective measurements and blood samples were small and mostly...

  5. Probiotics prevent growth deficit of colon wall strata of malnourished rats post-lactation

    Directory of Open Access Journals (Sweden)

    Dirlene P. Lima

    2012-09-01

    Full Text Available The objective of this study was to analyze morphometrically the colon wall strata of malnourished rats supplemented with probiotics. Sixteen recently weaned Wistar rats (Rattus norvegicus were distributed into four groups: animals that received commercial chow (G1, n = 4; animals that received the same feed as G1 and were supplemented with probiotics (G2, n = 4; animals that received chow with 4% of proteins (G3, n = 4; animals that received the same feed as G3 and were supplemented with probiotics (G4, n = 4. After 12 weeks, the proximal colon was collected and submitted to histological processing. Three-µm cuts were stained with H.E., Periodic Acid Schifff (P.A.S. + diasthasis solution and Alcian Blue (A.B. pH 2.5 and pH 1.0. The morphometric analysis of the intestinal wall showed that the supplementation with ABT-4 probiotic culture prevents the growth deficit of colon wall strata that normally occurs in malnourished rats right after lactation. Besides, no alteration was observed in the proportion of the number of globet cells in relation to the number of enterocytes in malnourished rats, regardless of the supplementation with probiotics.Objetivou-se analisar morfometricamente os estratos da parede do cólon de ratos desnutridos e suplemen-tados com probióticos. Utilizaram-se 16 ratos (Rattus norvegicus Wistar, recém-desmamados, distribuídos em quatro grupos: animais que receberam a ração comercial (G1, n = 4; animais que receberam a mesma ração do grupo G1 e que foram suplementados com probióticos (G2, n = 4; animais que receberam uma ração com 4% de proteínas (G3, n = 4; animais que receberam a mesma ração do grupo G3 e que foram suplementados com probióticos (G4, n = 4. Após 12 semanas, o cólon foi coletado e submetido a rotina de processamento histológico. Cortes de 3µm foram corados com H.E., Periodic Acid Schifff (P.A.S. + solução de diástase e Alcian Blue (A.B. pH 2,5 e pH 1,0. A análise morfométrica da parede

  6. Interfacial reaction between zirconium alloy and graphite mold/yttrium oxide ceramic mold

    Directory of Open Access Journals (Sweden)

    Xie Huasheng

    2014-03-01

    Full Text Available Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are difficult to determine. In the present work, the interfacial reactions between zirconium casting and casting mold were studied. The zirconium alloy was melted in a vacuum arc skull furnace and then cast into the graphite mold and ceramic mold, respectively. The zirconium casting samples were characterized using SEM, EDS and XRD with an emphasis on the chemical diffusion of elements. A reaction layer was observed at the casting surface. Chemical analysis shows that chemical elements C, O and Y from the mold are diffused into the molten zirconium, and new phases, such as ZrC, Zr3O, YO1.335 and Y6ZrO11, are formed at the surface. In addition, an end product of zirconium valve cast in a yttria mold has a compact structure and good surface quality.

  7. The Elastic Mold Deformation During the Filling and Packing Stage of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Stefan Kleindel

    2014-03-01

    Full Text Available The accurate numerical prediction of the mold filling process of long and thin walled parts is dependent on numerous factors. This paper investigates the effect of various influencing variables on the filling pattern by means of simulation and experimental validation. It was found that mold temperature, process settings and venting conditions have little effect on the predicted filling pattern. However, in the actual case study, the filling behavior observed during the experiments was significantly different compared to the numerical prediction. A structural finite element analysis of the moving mold half showed an unacceptable large deformation of the mold plates under injection pressure. A very good correlation between simulation and experiment was attained after improving the stiffness of the mold. Therefore it can be concluded, that the elasticity of the mold may have a significant influence on the filling pattern when long and thin walled products are considered. Furthermore, it was shown, that even an apparently stiff mold can exhibit a distinct deformation during filling and packing stage.

  8. Antimicrobial Assay of Soil Mold Isolates from Wonorejo Surabaya

    Directory of Open Access Journals (Sweden)

    Septia Arisanti

    2012-11-01

    Full Text Available This study was aimed to an examine antimicrobial activity of 34 soil molds isolates from the Wonorejo Surabaya on the growth of Gram negatif bacteria (Escherichia coli and Coliform Bacteria Group, Gram positif bacteria (Bacillus subtilis and yeast (Saccharomyces cerevisiae. Antimicrobial ability detected with modification of dual culture antagonism assay in Potato Dextrose Agar (PDA medium. The result showed that genus Aspergillus, Scopulariopsis, Penicillium, Paecilomyces, Fusarium, and Trichoderma were able to inhibit E. coli; while genus Aspergillus, Scopulariopsis, Penicillium, Paecilomyces, Exophiala, Stachybotrys, and Acremonium inhibit B. subtilis; further on only genus Aspergillus could inhibit group of Coliform bacteria; and genus Scopulariopsis, Penicillium, Trichoderma, and Absidia inhibited the growth of yeast S. cerevisiae.

  9. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction

    OpenAIRE

    Al-Wahab, Zaid; Mert, Ismail; Tebbe, Calvin; Chhina, Jasdeep; Hijaz, Miriana; Morris, Robert T.; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R.; Rattan, Ramandeep

    2015-01-01

    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse ...

  10. Use of computers in mold design

    International Nuclear Information System (INIS)

    Keenan, R.E.; Erickson, W.C.

    1978-01-01

    A NASA computer code, CINDA-3G, is used in conjunction with a heat mesher code to study the transient thermodynamic cooling of a hemispherical casting. The casting is cooled by a recirculating liquid tin system. The objective is to design a mold and cooling system so that directional solidification of the hemisphere proceeds from equator to pole. The primary means of analyzing the results of the computer simulation is through computer-generated 16 mm color film. After several refinements in design, directional solidification of the hemisphere is attained. In addition, and as a result of this research, a complete system for improving the design of virtually any mold is presented

  11. Birefringence characterization of injection molded microplates

    Science.gov (United States)

    Adhikari, Achyut; Asundi, Anand

    2015-03-01

    Birefringence affects the quality of image analysis in injection molded micro-plates. Depending upon their manufacturing / production processes and the type of material, different plates exhibit varying amounts of birefringence. This birefringence is attributed to residual stress generated during the molding process. Polarimeter is the standard tool for birefringence distribution visualization and quantification. Broad chemical resistance and high mechanical stability of the plates are the desirable properties that can be characterized by birefringence measurement. Birefringence, expressed in nm/cm is light retardance (nm) after passing through a sample with certain thickness (cm). Low or uniform birefringence plates provide high-resolution demonstrating higher performance, hence suitable for bio-chemical analysis.

  12. PSA (:60) Moho/ Hongos (Mold)

    Centers for Disease Control (CDC) Podcasts

    2017-10-25

    Este anuncio de servicio público de 60 segundos habla sobre la importancia de eliminar el moho (hongos) después de una emergencia.  Created: 10/25/2017 by Centers for Disease Control and Prevention (CDC).   Date Released: 10/25/2017.

  13. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  14. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts...... with the two different molding technologies. Focus of the experimental work was the assessment of the IM and ICM processes capabilities to replicate different channels widths (240 nm, 440 nm and 1040 nm) at different positions from the gate based on the deviations of their dimensions from the corresponding...

  15. Reduction of Injection Pressure for Thin Walled Molding using the Laser Metal Sintered Mold

    OpenAIRE

    米山, 猛; 内藤, 圭亮; 阿部, 諭; 宮丸, 充

    2010-01-01

    Using milling combined laser metal sintering, porous surface has been fabricated on the thin walled cavity closed by the surrounded thick cavity in the injection mold. Resin flows into the cavity of 2mm thick at first around the thin part and then flows into the thin cavity of 0.2mm thick with 11mm square by packing pressure. The packing pressure for filling the thin part was compared among laser metal sintered mold with or without porous surface, steel mold with or without porous block. The ...

  16. EPA Scientists Develop Research Methods for Studying Mold Fact Sheet

    Science.gov (United States)

    In 2002, U.S. Environmental Protection Agency researchers developed a DNA-based Mold Specific Quantitative Polymerase Chain Reaction method (MSQPCR) for identifying and quantifying over 100 common molds and fungi.

  17. Molding of Aluminum Foams by Using Hot Powder Extrusion

    Directory of Open Access Journals (Sweden)

    Yoshitaka Tanino

    2012-06-01

    Full Text Available In order to form aluminum foams directly from powder, a combined process of hot powder extrusion and molding is proposed. Aluminum powder mixed with a foaming agent is extruded into the mold through the die heated to a temperature higher than the melting point, and the mold is filled with the aluminum foam. When a stainless steel pipe is used for a simple mold, an aluminum foam bar is obtained of which the relative density varies between 0.2 and 0.3. The molding of aluminum foam by using three types of mold shape shows the influence of gravity and friction. The effect of gravity is significant when a large step exists at the connection between the mold inlet and the die outlet, and friction is dominant in cases where foam is mold in a narrow space.

  18. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  19. Neural Responses to Injury: Prevention, Protection and Repair; Volume 7: Role Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury

    National Research Council Canada - National Science Library

    Bazan, Nicolas

    1996-01-01

    ...: Prevention, Protection, and Repair, Subproject: Role of Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury, are as follows: Species Rat(Albino Wistar), Number Allowed...

  20. Progress in Titanium Metal Powder Injection Molding.

    Science.gov (United States)

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  1. Progress in Titanium Metal Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  2. A REVOLUTION IN MOLD IDENTIFICATION AND ENUMERATION

    Science.gov (United States)

    More than 100 assay were developed to identify and quantify indoor molds using quantitiative PCR (QPCR) assays. This technology incorporates fluorigenic 5' nuclease (TaqMan�) chemistry directed at the nuclear ribosomal RNA operon internal transcribed spacer regions (ITS1 or ITS2...

  3. Improved mold release for filled-silicone compounds

    Science.gov (United States)

    Accountius, O. E.

    1973-01-01

    Ceramic and filled-plastic materials used for fabrication of tiles are relatively brittle and easily break as they are being removed from molds. Dusting mold surfaces with commercially available glass microspheres provides mold release superior to existing spray releases. Glass-microsphere dusting also permits removal of uncured tile which has very little strength.

  4. 21 CFR 874.3430 - Middle ear mold.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle ear...

  5. Study of injection molded microcellular polyamide-6 nanocomposites

    Science.gov (United States)

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  6. Influence of a Family-Focused Substance Use Preventive Intervention on Growth in Adolescent Depressive Symptoms

    Science.gov (United States)

    Mason, W. Alex; Kosterman, Rick; Hawkins, J. David; Haggerty, Kevin P.; Spoth, Richard L.; Redmond, Cleve

    2007-01-01

    Preparing for the Drug Free Years (PDFY) is a preventive intervention that targets parenting behaviors, family interaction patterns, and adolescent substance use, factors that have been shown to predict depression among teenagers. Effects of PDFY on trajectories of self-reported adolescent depressive symptoms from 6th through 12th grade were…

  7. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  8. Maternal L-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in an ovine model.

    Science.gov (United States)

    Sawant, Onkar B; Wu, Guoyao; Washburn, Shannon E

    2015-06-01

    Prenatal alcohol exposure is known to cause fetal growth restriction and disturbances in amino acid bioavailability. Alterations in these parameters can persist into adulthood and low birth weight can lead to altered fetal programming. Glutamine has been associated with the synthesis of other amino acids, an increase in protein synthesis and it is used clinically as a nutrient supplement for low birth weight infants. The aim of this study was to explore the effect of repeated maternal alcohol exposure and L-glutamine supplementation on fetal growth and amino acid bioavailability during the third trimester-equivalent period in an ovine model. Pregnant sheep were randomly assigned to four groups, saline control, alcohol (1.75-2.5 g/kg), glutamine (100 mg/kg, three times daily) or alcohol + glutamine. In this study, a weekend binge drinking model was followed where treatment was done 3 days per week in succession from gestational day (GD) 109-132 (normal term ~147). Maternal alcohol exposure significantly reduced fetal body weight, height, length, thoracic girth and brain weight, and resulted in decreased amino acid bioavailability in fetal plasma and placental fluids. Maternal glutamine supplementation successfully mitigated alcohol-induced fetal growth restriction and improved the bioavailability of glutamine and glutamine-related amino acids such as glycine, arginine, and asparagine in the fetal compartment. All together, these findings show that L-glutamine supplementation enhances amino acid availability in the fetus and prevents alcohol-induced fetal growth restriction.

  9. Hypergravity prevents seed production in Arabidopsis by disrupting pollen tube growth

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.X.; Allen, J.; van Loon, J.J.W.A.

    2009-01-01

    How tightly land plants are adapted to the gravitational force (g) prevailing on Earth has been of interest because unlike many other environmental factors, g presents as a constant force. Ontogeny of mature angiosperms begins with an embryo that is formed after tip growth by a pollen tube delivers

  10. Logging damage in thinned, young-growth true fir stands in California and recommendations for prevention.

    Science.gov (United States)

    Paul E. Aho; Gary Fiddler; Mike. Srago

    1983-01-01

    Logging-damage surveys and tree-dissection studies were made in commercially thinned, naturally established young-growth true fir stands in the Lassen National Forest in northern California. Significant damage occurred to residual trees in stands logged by conventional methods. Logging damage was substantially lower in stands thinned using techniques designed to reduce...

  11. Prevention of Yersinia enterocolitica growth in red-blood-cell concentrates

    NARCIS (Netherlands)

    Pietersz, R. N.; Reesink, H. W.; Pauw, W.; Dekker, W. J.; Buisman, L.

    1992-01-01

    In response to concern about Yersinia enterocolitica contamination of blood products, we have studied the effects on Y enterocolitica growth of holding whole blood at 22 degrees C for 20 h and then removing leucocytes. Thirty pools of three bags of blood were inoculated with Y enterocolitica (2 x

  12. Multilevel micro-structuring of glassy carbon molds for precision glass molding

    Science.gov (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-09-01

    Replication techniques for diffractive optical elements (DOEs) in soft materials such as plastic injection molding are state of the art. For precision glass molding in glasses with high transition temperatures, molds with extreme thermal resistivity, low chemical reactivity and high mechanical strength are needed. Glassy Carbon can be operated up to 2000°C making it possible to mold almost all glasses including Fused Silica with a transition temperatures above 1060°C. For the structuring of Glassy Carbon wafers photolithography and a RIE process is used. We have developed a process using Si as a hard mask material. If the flow rates of the etching gases O2 and SF6 are chosen properly, high selectivity of GC to Si 19:1 can be achieved, which provides excellent conditions to realize high resolution elements with feature size down to 1 micron and fulfills requirements for optical applications. We fabricated several multilevel GC molds with 8 levels of structuring. Two different optical functionalities were implemented: 6x6 array beamsplitter and 1x4 linear beamsplitter. The molds were applied for precision glass molding of a low Tg glass L-BAL 42 (from Ohara) with a transition temperature of 565°C. Their optical performance was measured. A more detailed analysis of the impact of mold fabrication defects on optical performance is done. Rigorous coupled wave analysis simulations are performed, where we included fabrication constrains such as duty cycle, edge depth errors, wall verticality and misalignment errors. We will compare the results with the design specifications and discuss the influence of fabrication errors introduced during the different process steps.

  13. The Determination of National Growth Charts to Prevent and Manage Malnutrition in Iranian Children: Necessity and Importance

    International Nuclear Information System (INIS)

    Abtahi, Mitra; Doustmohammadian, Aazam; Pouraram, Hamed

    2014-01-01

    Full text: Objectives: Standard height and weight charts are the most important evaluation tools for the assessment of growth and development of children which could be further used to develop preventive interventions both in individual and epidemiologic assessments in the community. Children of different populations differ a lot in size and shape, resulting from differences in their genetic pattern, their needs and interaction of these two. Regarding the existence of different standards, it seems that a national standard can provide a more accurate functional individual and social evaluation tool and many problems will be solved in case of availability of an Iranian standard for comparison of children’s height, weight, and their growth follow-ups. One of these problems is the abnormal results regarding mal nourishment, overweight, or obesity in Iranian children. Considerable rate of childhood malnutrition in Iran and other countries necessitates the implementation of interventional programs including development of local growth charts to prevent and manage malnutrition in the community. This study was undertaken with the aim of reviewing different current growth curves, their advantages and disadvantages, and performing a review of the studies conducted in Iran and other countries on determination of weight and height standards. Methods: In order to collect materials for this review, a detailed search of Scientific Information Database (SID), Iran Medex, MEDLINE, Pub Med, and Web of Science was carried out for the time period 2005-2011 using the keywords: national standard, height, weight, children, and growth chart. Initially, we reviewed international standards of weight and height. Results: The results of performed studies in European and Asian countries showed that the height and weight curves of these children were different from WHO and NCHS growth standards. The finding of growth trend study of Iranian children showed that the mean height and weight of

  14. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  15. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    Science.gov (United States)

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  16. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Cho, Dong-Woo; Kang, Hyun-Wook

    2014-01-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  17. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells

    OpenAIRE

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    ABSTRACT The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that act...

  18. Nanotechnology and mesenchymal stem cells with chondrocytes in prevention of partial growth plate arrest in pigs

    Czech Academy of Sciences Publication Activity Database

    Plánka, L.; Srnec, R.; Rauser, P.; Starý, D.; Filová, Eva; Jančář, J.; Juhásová, Jana; Křen, J.; Nečas, A.; Gál, P.

    2012-01-01

    Roč. 156, č. 2 (2012), s. 128-134 ISSN 1213-8118 R&D Projects: GA MZd(CZ) NS9896 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50450515 Institutional support: RVO:68378041 ; RVO:67985904 Keywords : mesenchymal stem cells * growth plate defect * bone bridge Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.990, year: 2012

  19. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis.

    Science.gov (United States)

    Roberge, Stéphanie; Nicolaides, Kypros; Demers, Suzanne; Hyett, Jon; Chaillet, Nils; Bujold, Emmanuel

    2017-02-01

    Preeclampsia and fetal growth restriction are major causes of perinatal death and handicap in survivors. Randomized clinical trials have reported that the risk of preeclampsia, severe preeclampsia, and fetal growth restriction can be reduced by the prophylactic use of aspirin in high-risk women, but the appropriate dose of the drug to achieve this objective is not certain. We sought to estimate the impact of aspirin dosage on the prevention of preeclampsia, severe preeclampsia, and fetal growth restriction. We performed a systematic review and meta-analysis of randomized controlled trials comparing the effect of daily aspirin or placebo (or no treatment) during pregnancy. We searched MEDLINE, Embase, Web of Science, and Cochrane Central Register of Controlled Trials up to December 2015, and study bibliographies were reviewed. Authors were contacted to obtain additional data when needed. Relative risks for preeclampsia, severe preeclampsia, and fetal growth restriction were calculated with 95% confidence intervals using random-effect models. Dose-response effect was evaluated using meta-regression and reported as adjusted R 2 . Analyses were stratified according to gestational age at initiation of aspirin (≤16 and >16 weeks) and repeated after exclusion of studies at high risk of biases. In all, 45 randomized controlled trials included a total of 20,909 pregnant women randomized to between 50-150 mg of aspirin daily. When aspirin was initiated at ≤16 weeks, there was a significant reduction and a dose-response effect for the prevention of preeclampsia (relative risk, 0.57; 95% confidence interval, 0.43-0.75; P preeclampsia (relative risk, 0.47; 95% confidence interval, 0.26-0.83; P = .009; R 2 , 100%; P = .008), and fetal growth restriction (relative risk, 0.56; 95% confidence interval, 0.44-0.70; P 16 weeks, there was a smaller reduction of preeclampsia (relative risk, 0.81; 95% confidence interval, 0.66-0.99; P = .04) without relationship with aspirin

  20. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...... and especially suitable for rapid prototyping and mold geometry testing....

  1. Testing single point incremental forming molds for thermoforming operations

    Science.gov (United States)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  2. Simulation and Design of a plastic injection mold

    OpenAIRE

    Teklehaimanot, Samson Seged

    2012-01-01

    Injection molding is one of the most important processes in the plastic manufacturing industry. More than one-third of all plastic materials are injection molded, And the mold is one of the main components in the injection molding process. The aim of this engineering thesis is to show detailed steps on how to design a complete mold and using the simulation software to analyze the material flow and defects in the product. The product design for this project is a joint credit card and USB flash...

  3. Stationary biofilm growth normalizes mutation frequencies and mutant prevention concentrations in Pseudomonas aeruginosa from cystic fibrosis patients.

    Science.gov (United States)

    García-Castillo, M; del Campo, R; Baquero, F; Morosini, M-I; Turrientes, M-C; Zamora, J; Cantón, R

    2011-05-01

    Bacterial biofilms play an important role in the persistent colonization of the respiratory tract in cystic fibrosis (CF) patients. The trade-offs among planktonic or sessile modes of growth, mutation frequency, antibiotic susceptibility and mutant prevention concentrations (MPCs) were studied in a well-defined collection of 42 CF Pseudomonas aeruginosa isolates. MICs of ciprofloxacin, tobramycin, imipenem and ceftazidime increased in the biofilm mode of growth, but not the MPCs of the same drugs. The mutation frequency median was significantly higher in planktonic conditions (1.1 × 10(-8)) than in biofilm (9.9 × 10(-9)) (p 0.015). Isolates categorized as hypomutable increased their mutation frequency from 3.6 × 10(-9) in the planktonic mode to 6 × 10(-8) in biofilm, whereas normomutators (from 9.4 × 10(-8) to 5.3 × 10(-8)) and hypermutators (from 1.6 × 10(-6) to 7.7 × 10(-7)) decreased their mutation frequencies in biofilm. High and low mutation frequencies in planktonic growth converge into the normomutable category in the biofilm mode of growth of CF P. aeruginosa, leading to stabilization of MPCs. This result suggests that once the biofilm mode of growth has been established, the propensity of CF P. aeruginosa populations to evolve towards resistance is not necessarily increased. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  4. Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods.

    Science.gov (United States)

    Rodríguez, Alicia; Rodríguez, Mar; Andrade, María J; Córdoba, Juan J

    2012-04-02

    A multiplex real-time PCR (qPCR) method to quantify aflatoxin, ochratoxin A (OTA) and patulin producing molds in foods was developed. For this, the primer pairs F/R-omt, F/R-npstr and F/R-idhtrb and the TaqMan probes, OMTprobe, NPSprobe and IDHprobe targeting the omt-1, otanpsPN and idh genes involved in aflatoxin, OTA and patulin biosynthesis, respectively, were used. The functionality of the developed qPCR method was demonstrated by the high linear relationship of the standard curves constructed with the omt-1, otanpsPN and idh gene copies and threshold cycle (Ct) values for the respective producing molds tested to quantify aflatoxin, OTA and patulin producing molds. The ability of the optimized qPCR protocol to quantify producing molds was evaluated in different artificially inoculated foods (fruits, nuts, cereals and dry-ripened meat and cheese products). Efficiency values ranged from 81 to 110% in all inoculated foods. The detection limit was between 3 and 1logcfu/g for aflatoxin, OTA and patulin producing molds. The developed multiplex qPCR was shown be an appropriate tool for sensitive quantification of growth of toxigenic fungi in foods throughout the incubation time. Thus, the multiplex qPCR is a useful, rapid and efficient method to quantify simultaneously aflatoxin, OTA and patulin producing molds in food products. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Wavelet Packet Decomposition to Characterize Injection Molding Tool Damage

    Directory of Open Access Journals (Sweden)

    Tomaž Kek

    2016-02-01

    Full Text Available This paper presents measurements of acoustic emission (AE signals during the injection molding of polypropylene with new and damaged mold. The damaged injection mold has cracks induced by laser surface heat treatment. Standard test specimens were injection molded, commonly used for examining the shrinkage behavior of various thermoplastic materials. The measured AE burst signals during injection molding cycle are presented. For injection molding tool integrity prediction, different AE burst signals’ descriptors are defined. To lower computational complexity and increase performance, the feature selection method was implemented to define a feature subset in an appropriate multidimensional space to characterize the integrity of the injection molding tool and the injection molding process steps. The feature subset was used for neural network pattern recognition of AE signals during the full time of the injection molding cycle. The results confirm that acoustic emission measurement during injection molding of polymer materials is a promising technique for characterizing the integrity of molds with respect to damage, even with resonant sensors.

  6. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  7. Direct molding of pavement tiles made of ground tire rubber

    Science.gov (United States)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  8. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  9. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice.

    Science.gov (United States)

    Arcidiacono, Maria Vittoria; Yang, Jing; Fernandez, Elvira; Dusso, Adriana

    2015-03-01

    In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5' regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-α, a powerful EGFR-activator, and the VDR reductions observed in WT mice. In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice

    Science.gov (United States)

    Arcidiacono, Maria Vittoria; Yang, Jing; Fernandez, Elvira; Dusso, Adriana

    2015-01-01

    Background In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. Methods A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5′ regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). Results Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-α, a powerful EGFR-activator, and the VDR reductions observed in WT mice. Conclusion In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia. PMID:25324357

  11. Effect of ureteral reimplantation on prevention of urinary tract infection and renal growth in infants with primary vesicoureteral reflux

    International Nuclear Information System (INIS)

    Matsumoto, Fumi; Tohda, Akira; Shimada, Kenji

    2004-01-01

    We retrospectively reviewed the results of ureteral reimplantation in infants with primary vesicoureteral reflux (VUR) to evaluate the effect on prevention of urinary tract infection (UTI) and renal growth. From July 1991 to December 2001, a total of 205 infants (180 boys and 25 girls) with primary VUR underwent ureteral reimplantation at the Department of Urology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan. Indications for surgery were high-grade reflux (grade IV-V), breakthrough UTI and non-compliance of medical treatment. Age at surgery raged from 1 to 11 months (mean, 6.4 months). Ureteral reimplantation was performed according to Cohen's method. Only two of 336 refluxing ureters required ureteral tailoring. Follow-up ranged from 12 to 110 months (mean, 64 months). Surgical outcome, frequency of UTI and individual renal growth measured by 99m Tc-dimercaptosuccinic acid (DMSA) scintigraphy was evaluated. Postoperative ultrasound and voiding cystourethrography showed neither residual reflux nor ureterovesical obstruction. Contralateral low grade reflux occurred in six of 74 patients (8.1%) who had unilateral reflux preoperatively. After reimplantation, 10 patients documented 13 febrile UTI. Eleven of the 13 episodes occurred early in the postoperative period (<6 months). Frequency of febrile UTI reduced from 0.23538 before surgery to 0.00894 and 0.00081 per patient per month at 6 and 12 months after surgery, respectively. No development of renal scarring was seen in postoperative DMSA scan. Changes of differential renal function was <0.05 in all patients. The present results show ureteral reimplantation in infants is safe and very effective for the prevention of UTI. After surgical treatment in infancy, individual renal growth of children with primary VUR is stable. (authors)

  12. Experimental data for insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) in prevention of radiation myelopathy

    International Nuclear Information System (INIS)

    Nieder, C.; Price, R.E.; Rivera, B.; Andratschke, N.; Kian Ang, K.

    2002-01-01

    Background: Current models of radiation myelopathy provide a rationale for growth factor-based prevention strategies. Thus, we tested whether insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) alone or in combination modulate radiation tolerance of the rat cervical spinal cord. Materials and Methods: The cervical spinal cord of 68 adult Fisher F344 rats received a total dose of 30-36 Gy, given as a single fraction of 16 Gy followed by a second radiation dose of 14-20 Gy. Continuous intrathecal infusion of bFGF (44 rats) or saline (24 rats) into the cisterna magna was given concomitantly. A further experiment included 14 additional rats which were treated with subcutaneous injection of IGF-1 parallel to irradiation with a total dose of 34 Gy or 36 Gy. 20 rats received combined treatment, i.e. intrathecal infusion of bFGF plus subcutaneous injection of IGF-1, starting 24 hours before irradiation (total dose 33 Gy or 36 Gy) for a total of 4 days. Animals were followed until myelopathy developed or for a maximum of 12 months. Histopathologic examinations were performed post mortem. Results: Treatment with bFGF alone or IGF-1 alone increased the median time to myelopathy significantly. In the 36-Gy group, after combination treatment a comparable prolongation of latency was seen. Moreover, rats treated with 33 Gy and combined bFGF plus IGF-1 showed a significantly reduced risk of myelopathy, too (p = 0.0015). (orig.) [de

  13. JUSTIFICATION OF RATIONAL KINEMATIC CHARACTERISTICS OF MOLDING VIBRATING TABLE

    Directory of Open Access Journals (Sweden)

    P. G. Anofriev

    2016-12-01

    Full Text Available Purpose. One of the efficient ways to obtain castings of complex shape is lost foam casting (LFC in the evacuated molds (containers. Upgrading the quality of this casting method requires improvement of molding techniques. The molding process involves layer-by-layer vibratory compaction of sand in the containers. Most of the lines of LFC sections are equipped with vibrating tables with inertia oscillators driven by induction motors, operating at nominal speed. A promising way of improving the molding technique is the rational setting of the following parameters of vibrating table: vibration displacement, velocity and acceleration. These parameters are determined by the elastic-mass characteristics of the system «vibrating table – mold» and perturbing forces created by inertia oscillators. The aim of the study is to determine the rational range of setting the parameters of oscillators at which the qualitative layer-by-layer compaction of the molding sand in the mold takes place. Methodology. The efficiency criterion for setting characteristics of the vibrating table there were taken the values of averaged accelerations of 6.5 – 7.5 m/s2 corresponding to maximum compaction degree of dry molding sand and the range of acceleration values 9 – 9.5 m/s2 for giving the sand «pseudo-yielding». For the study it was developed a mathematical model of oscillations of the movable part of vibrating table with two types of casting containers for steady and transient operation modes. Findings. In the process of research of the mold oscillations it was calculated the natural frequencies of oscillations at different elastic-mass characteristics of the system using a mathematical model. It was constructed the frequency response of displacements and accelerations of the moving part of the table with container filled with molding sand layer-by-layer. Originality. The author proposes a method of determining the range of frequency setting of inertial

  14. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    International Nuclear Information System (INIS)

    Park, Keun; Lee, Sang-Ik

    2010-01-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  15. Residual stress measurement for injection molded components

    Directory of Open Access Journals (Sweden)

    Achyut Adhikari

    2016-07-01

    Full Text Available Residual stress induced during manufacturing of injection molded components such as polymethyl methacrylate (PMMA affects the mechanical and optical properties of these components. These residual stresses can be visualized and quantified by measuring their birefringence. In this paper, a low birefringence polariscope (LBP is used to measure the whole-field residual stress distribution of these injection molded specimens. Detailed analytical and experimental study is conducted to quantify the residual stress measurement in these materials. A commercial birefringence measurement system was used to validate the results obtained to our measurement system. This study can help in material diagnosis for quality and manufacturing purpose and be useful for understanding of residual stress in imaging or other applications.

  16. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  17. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  18. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    Science.gov (United States)

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  19. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats.

    Science.gov (United States)

    Goodspeed, Danielle; Seferovic, Maxim D; Holland, William; Mcknight, Robert A; Summers, Scott A; Branch, D Ware; Lane, Robert H; Aagaard, Kjersti M

    2015-03-01

    Intrauterine growth restriction (IUGR) confers heritable alterations in DNA methylation, rendering risk of adult metabolic syndrome (MetS). Because CpG methylation is coupled to intake of essential nutrients along the one-carbon pathway, we reasoned that essential nutrient supplementation (ENS) may abrogate IUGR-conferred multigenerational MetS. Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation causing IUGR in F1. Among the F2 generation, IUGR lineage rats were underweight at birth (6.7 vs. 8.0 g, P adulthood (p160: 613 vs. 510 g; P 30% elevated, P 5-fold less central fat mass, normal hepatic glucose efflux, and >70% reduced circulating triglycerides and very-LDLs compared with IUGR control-fed F2 offspring (P supplementation along the one-carbon pathway abrogates adult morbidity and associated epigenomic modifications of IGF-1 in a rodent model of multigenerational MetS. © FASEB.

  20. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  1. Gastroresistant capsular device prepared by injection molding.

    Science.gov (United States)

    Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Palugan, Luca; Gazzaniga, Andrea

    2013-01-20

    In the present work, the possibility of manufacturing by injection molding (IM) a gastro-resistant capsular device based on hydroxypropyl methyl cellulose acetate succinate (HPMCAS) was investigated. By performing as an enteric soluble container, such a device may provide a basis for the development of advantageous alternatives to coated dosage forms. Preliminarily, the processability of the selected thermoplastic polymer was evaluated, and the need for a plasticizer (polyethylene glycol 1500) in order to counterbalance the glassy nature of the molded items was assessed. However, some critical issues related to the physical/mechanical stability (shrinkage and warpage) and opening time of the device after the pH change were highlighted. Accordingly, an in-depth formulation study was carried out taking into account differing release modifiers potentially useful for enhancing the dissolution/disintegration rate of the capsular device at intestinal pH values. Capsule prototypes with thickness of 600 and 900 μm containing Kollicoat(®) IR and/or Explotab(®) CLV could be manufactured, and a promising performance was achieved with appropriate gastric resistance in pH 1.2 medium and break-up in pH 6.8 within 1h. These results would support the design of a dedicated mold for the development of a scalable manufacturing process. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process.

    Science.gov (United States)

    de Cássia Martins Salomão, Beatriz; Muller, Chalana; do Amparo, Hudson Couto; de Aragão, Gláucia Maria Falcão

    2014-01-01

    Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  3. Casting of electron field defining apertures: Casting with the metal mold kits

    International Nuclear Information System (INIS)

    Dea, D.; San Luis, E.

    1988-01-01

    Cerrobend alloy casts are made to define the desired electron field shapes. These custom casts are fabricated for the selected electron applicator size that has been chosen for the patient. When the cast is placed into that selected electron applicator, it will block out areas that are not to be treated. When an all metal mold assembly was used for the fabrication of these casts, the lip region of the cast which is used to accurately align the cast in the actual treatment applicator, had an irregular edge that prevented an accurate alignment of the cast. To eliminate the irregular edges on the lip region of the cast, the metal mold assembly was heated to approximately 80-85 degrees C before the molten cerrobend alloy was poured into it. The heating of the metal mold assembly helps eliminate the irregular edges on the lip region of the cast. Unfortunately it also created new flaws such as holes, dents, cracks and/or crystallization of the cast as it solidified. These flaws were controlled by cooling the metal mold assembly and the cast immediately after the pouring of the molten cerrobend alloy, evenly with water

  4. Guidelines for Selection and Justification of Computeraided Engineering (CAE) Software for Plastic Injection Molding

    OpenAIRE

    Serna Vázquez, Livier

    2004-01-01

    The present research focuses on the use of plastic injection simulation in part design. CAE analysis for injection molding can be used at three different levels: parts design, mold design and molding process troubleshooting. Injection molded plastic parts include the following elements: material, part design, mold design and process. The injection molding process involves many considerations such as part geometry, material, mold design and process variables. The simulation module being consid...

  5. Fast prototyping of injection molded polymer microfluidic chips

    International Nuclear Information System (INIS)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels B

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC) without any signs of failure or release. The key parameters to avoid mold failure are maximum adhesion strength of the epoxy to the nickel insert and minimum interfacial energy of the epoxy pattern to the molded polymer. Optimal molding of microstructures with vertical sidewalls was found for nickel inserts pre-coated by silicon oxide before applying the structured epoxy, followed by coating of the epoxy by a fluorocarbon layer prior to injection molding. Further improvements in the mold stability were observed after homogeneous coating of the patterned epoxy by a second reflowed layer of epoxy, likely due to the resulting reduction in sidewall steepness. We employed the latter method for injection molding bondable polymer microfluidic chips with integrated conducting polymer electrode arrays that permitted the culture and on-chip analysis of cell spreading by impedance spectroscopy

  6. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    Science.gov (United States)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  7. Survey and Screening of Fungicide for the Control of Tomato Black Leaf Mold Pseudocercospora fuligena

    Directory of Open Access Journals (Sweden)

    Mun Haeng Lee

    2015-06-01

    Full Text Available Tomato black leaf molds were collected from the six metropolitan cities, which were occurred mainly from the end of August until November. There was no significant difference on the fungal growth between potato dextrose agar and tomato-oatmeal agar media. The mycelial growth of the fungus was robust at a relatively high temperature, from 28 to 30°C. The suppression rates of hyphal growth ranged from 17-98% on the media supplemented with four different chemicals such as difenoconazole, fluquinconazole and prochloraz manganese complex, metconazole, and flutianil and there is no different suppression rates of the fungicides on the tested Pseudocercospora fuligena isolates.

  8. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p mite allergens (p = 0.084), but have higher efficacy when compared to the chemical method on dust mite allergens (p = 0.002). There is no statistically significant difference in the efficacy for reducing mold in carpet (p > 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  9. Effect of Selenium on Control of Postharvest Gray Mold of Tomato Fruit and the Possible Mechanisms Involved

    Science.gov (United States)

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S.; Lin, Zhi-Qing; Zhu, Zhu; Liu, Ying; Yuan, Linxi; Li, Miao

    2016-01-01

    Selenium (Se) has important benefits for crop growth and stress tolerance at low concentrations. However, there is very little information on antimicrobial effect of Se against the economically important fungus Botrytis cinerea. In the present study, using sodium selenite as Se source, we investigated the effect of Se salts on spore germination and mycelial growth of the fungal pathogen in vitro and gray mold control in harvested tomato fruit. Se treatment at 24 mg/L significantly inhibited spore germination of the fungal pathogen and effectively controlled gray mold in harvested tomato fruit. Se treatment at 24 mg/L seems to induce the generation of intracellular reactive oxygen species in the fungal spores. The membrane integrity damage was observed with fluorescence microscopy following staining with propidium iodide after treatment of the spores with Se. These results suggest that Se has the potential for controlling gray mold rot of tomato fruits and might be useful in integrated control against gray mold disease of postharvest fruits and vegetables caused by B. cinerea. The mechanisms by which Se decreased gray mold decay of tomato fruit may be directly related to the severe damage to the conidia plasma membrane and loss of cytoplasmic materials from the hyphae. PMID:26779128

  10. Effect of Selenium on Control of Postharvest Gray Mold of Tomato Fruit and the Possible Mechanisms Involved.

    Science.gov (United States)

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S; Lin, Zhi-Qing; Zhu, Zhu; Liu, Ying; Yuan, Linxi; Li, Miao

    2015-01-01

    Selenium (Se) has important benefits for crop growth and stress tolerance at low concentrations. However, there is very little information on antimicrobial effect of Se against the economically important fungus Botrytis cinerea. In the present study, using sodium selenite as Se source, we investigated the effect of Se salts on spore germination and mycelial growth of the fungal pathogen in vitro and gray mold control in harvested tomato fruit. Se treatment at 24 mg/L significantly inhibited spore germination of the fungal pathogen and effectively controlled gray mold in harvested tomato fruit. Se treatment at 24 mg/L seems to induce the generation of intracellular reactive oxygen species in the fungal spores. The membrane integrity damage was observed with fluorescence microscopy following staining with propidium iodide after treatment of the spores with Se. These results suggest that Se has the potential for controlling gray mold rot of tomato fruits and might be useful in integrated control against gray mold disease of postharvest fruits and vegetables caused by B. cinerea. The mechanisms by which Se decreased gray mold decay of tomato fruit may be directly related to the severe damage to the conidia plasma membrane and loss of cytoplasmic materials from the hyphae.

  11. Research capacity for childhood obesity prevention in Latin America: an area for growth.

    Science.gov (United States)

    Parra, Diana C; Vorkoper, Susan; Kohl, Harold W; Caballero, Benjamin; Batis, Carolina; Jauregui, Alejandra; Mason, Jessica; Pratt, Michael

    2017-07-01

    The rise of childhood obesity in Latin America calls for research capacity to understand, monitor and implement strategies, policies and programmes to address it. The objective of the study was to assess current research capacity in Latin America related to childhood obesity, nutrition and physical activity. We conducted a search of peer-reviewed articles on childhood obesity in Latin America with at least one Latin American author from 2010 to May 2015. We coded 484 published articles for author affiliation, study subjects' nationality, research topic and study design and extracted a series of networks per research topic, study design and collaborating country for each of the countries. Obesity is the most frequently explored topic. Nutrition and obesity are somewhat better developed compared with physical activity and sedentary behaviour. There are numerous observational and cross-sectional studies, indicating either a lack of capacity required for more complex research or the extent of the problem and associated factors is still unknown. The low number of intervention studies and the near absence of policy articles suggest a void in research capacity. For childhood obesity, there is a clear need to build research capacity that documents the current state of the problem and design evidence-based prevention and intervention efforts. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

  12. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    International Nuclear Information System (INIS)

    Giboz, Julien; Mélé, Patrice; Copponnex, Thierry

    2009-01-01

    The skin–core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin–core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities

  13. Development of radiation hazard prevention action using fermented foods and growth factors

    International Nuclear Information System (INIS)

    Watanabe, Atsumitsu

    2004-01-01

    For investigation of the digestive tract death, three groups of mice which are raised with fermented foods, growth factors and expression vectors are irradiated by x-ray doses of 0, 8, 10, and 12 Gy. Survival rate curves of the mice groups are obtained by each of the irradiation doses. The small intestines, which are taken out of the irradiated mice, are stained. Numbers of regenerated gland foramen on the inside surface of the small intestine are counted. Soybeam pastes on different degrees of maturity are given to the mice. The number of regenerated gland foramen in the mice which are raised with fully matured soybean paste, increases clearly in comparison with that in the mice which are raised with early fermented soybean paste. Yogurt in Caucasus district is studied for the radiation protective effects, also. Effects of mushroom (MAK) and Agaricus are searched for the regeneration of gland foramen and the survival rate of the mice. A mixture of animal cell expression vector (VEGF) and cationic DNA cell introducing medicine (DMRIE) is injected into abdominal cavity of mice. The mice are irradiated after injection of the gene with 10 and 12 Gy. The number of regenerated grand foramen in the gene-injected group increases significantly in comparison with that in non-medication group. (M. Suetake)

  14. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth.

    Science.gov (United States)

    Di Gioia, Diana; Mazzola, Giuseppe; Nikodinoska, Ivana; Aloisio, Irene; Langerholc, Tomaz; Rossi, Maddalena; Raimondi, Stefano; Melero, Beatriz; Rovira, Jordi

    2016-10-17

    In meat fermented foods, Clostridium spp. growth is kept under control by the addition of nitrite. The growing request of consumers for safer products has led to consider alternative bio-based approaches, the use of protective cultures being one of them. This work is aimed at checking the possibility of using two Lactobacillus spp. strains as protective cultures against Clostridium spp. in pork ground meat for fermented salami preparation. Both Lactobacillus strains displayed anti-clostridia activity in vitro using the spot agar test and after co-culturing them in liquid medium with each Clostridium strain. Only one of them, however, namely L. plantarum PCS20, was capable of effectively surviving in ground meat and of performing anti-microbial activity in carnis in a challenge test where meat was inoculated with the Clostridium strain. Therefore, this work pointed out that protective cultures can be a feasible approach for nitrite reduction in fermented meat products. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Obstructive sleep apnea prevents the expected difference in craniofacial growth of boys and girls

    Directory of Open Access Journals (Sweden)

    Maria Ligia Juliano

    2013-01-01

    Full Text Available OBJECTIVES: It was to compare cephalometric measures of mouth-breather boys and girls and with the cephalometric pattern observed in obstructive sleep apnea syndrome (OSAS patients. METHODS: Craniofacial measurements of lateral cephalometric radiographs obtained from 144 children aged 7-14 years were compared between boys and girls, and both were compared to cephalometric pattern of OSAS patients. RESULTS: Mouth-breather boys and girls had no gender differences regarding to craniofacial morphology while nose-breather boys and girls showed those expected differences. Nose-breather boys presented a more retruded mandible and proinclined upper incisor when compared to nose-breather girls, but mouth-breather boys and girls had no differences. The measure NS.GoGn was the only variable with an interaction with gender and breathing. CONCLUSIONS: There were no cephalometric difference in mouth breather-boys and girls related to normal growth, suggesting that oral breathing make the same craniofacial morphology and both have craniofacial morphology close to that of OSAS patients.

  16. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    Science.gov (United States)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  17. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    Science.gov (United States)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  18. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    Science.gov (United States)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  19. An integrated solution for mold shape modification in precision glass molding to compensate refractive index change and geometric deviation

    Science.gov (United States)

    Su, Lijuan; Wang, Fei; He, Peng; Dambon, Olaf; Klocke, Fritz; Yi, Allen Y.

    2014-02-01

    In precision glass molding, refractive index change and geometric deviation (or curve change as often referred to in industry) occurred during molding process can result in substantial amount of aberrations. Previously, refractive index change and geometric deviation were investigated in separate studies by the authors. However, optical performance of a molded glass lens depends on both refractive index and geometry. In order to mold lenses with optimal performance, both refractive index change and geometric deviation have to be taken into consideration simultaneously and compensated. This paper presented an integrated compensation procedure for modifying molds to compensate both refractive index change and geometric deviation. Group refractive index change predicted by the finite element method simulation was used to provide a modified geometry design for a desired lens. Geometric deviations of molded glass lenses with the modified design were analyzed with a previously developed numerical simulation approach, which is used to modify the mold shape. This procedure was validated by molding a generic aspherical glass lens. Both geometry and optical measurement results confirmed that the molded lens performed as specified by the original design. It also demonstrated that finite element method assisted compensation procedure can be used to predict the final optical performance of compression molded glass components. This research provided an opportunity for optics manufacturers to achieve better performance lens while maintaining lower cost and a shorter cycle time.

  20. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity.

    Directory of Open Access Journals (Sweden)

    Michael S Bonkowski

    Full Text Available Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15% CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30% CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.

  1. Antimicrobial activity of transition metal acid MoO{sub 3} prevents microbial growth on material surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zollfrank, Cordt, E-mail: cordt.zollfrank@ww.uni-erlangen.de [University of Erlangen-Nuremberg, Department of Materials Science and Engineering 3-Glass and Ceramics, Martensstr. 5, D-91058 Erlangen (Germany); Gutbrod, Kai [University of Erlangen-Nuremberg, Department of Materials Science and Engineering 3-Glass and Ceramics, Martensstr. 5, D-91058 Erlangen (Germany); Wechsler, Peter [LEONI Kabel GmbH, Stieberstrasse 5, D-91154 Roth (Germany); Guggenbichler, Josef Peter [Laboratory for the Development of Healthcare Products, Leitweg 23, A-6345 Koessen (Austria)

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H{sub 2}MoO{sub 4}), which is based on molybdenum trioxide (MoO{sub 3}). The modification of various materials (e.g. polymers, metals) with MoO{sub 3} particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: Black-Right-Pointing-Pointer The presented modifications of materials surfaces with MoO{sub 3} are non-cytotoxic and decrease biofilm growth and bacteria transmission. Black-Right-Pointing-Pointer The material is insensitive towards emerging resistances of bacteria. Black-Right-Pointing-Pointer Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  2. Pharmacological Inhibition of Transforming Growth Factor β Signaling Decreases Infection and Prevents Heart Damage in Acute Chagas' Disease▿

    Science.gov (United States)

    Waghabi, Mariana C.; de Souza, Elen M.; de Oliveira, Gabriel M.; Keramidas, Michelle; Feige, Jean-Jacques; Araújo-Jorge, Tania C.; Bailly, Sabine

    2009-01-01

    Chagas' disease induced by Trypanosoma cruzi infection is an important cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. We previously reported that transforming growth factor β (TGF-β) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. This prompted us to evaluate the therapeutic action of an inhibitor of TGF-β signaling (SB-431542) administered during the acute phase of experimental Chagas' disease. Male Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically for the following 30 days. SB-431542 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that SB-431542 treatment was effective in protecting the cardiac conduction system. By 14 day postinfection, enzymatic biomarkers of tissue damage indicated that muscle injury was decreased by SB-431542 treatment, with significantly lower blood levels of aspartate aminotransferase and creatine kinase. In conclusion, inhibition of TGF-β signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic agent for acute and chronic Chagas' disease that warrants further clinical exploration. PMID:19738024

  3. Effects of Hibiscus sabdariffa Linn. on insulin-like growth factor binding protein 3 (IGFBP-3 to prevent overtraining syndrome

    Directory of Open Access Journals (Sweden)

    Ermita I.I. Ilyas

    2015-01-01

    Full Text Available Background: Excessive physical exercises (overtraining can increase the production of reactive oxygen species (ROS. One of the indicators of overtraining syndrome is a decrease in insulin-like growth factor binding protein 3 (IGFBP-3. Administration of Hibiscus sabdariffa Linn., a powerful antioxidant, is expected to boost endogenous antioxidants, and thus prevents overtraining. The aim of this study is to determine the effect of H. sabdariffa on IGFBP-3 levels in rats under ”overtraining physical excersice”.Methods: This experimental study was conducted on 30 male rats (Rattus norvegicus 200-250 grams, randomly allocated into 5 groups: 1 control group (C; 2 control with H. sabdariffa (C-Hib; 3 mild aerobic exercise (A-Ex; 4 overtraining exercise (OT; 5 overtraining exercise with H. Sabdariffa (OT-Hib. H. sabdariffa (400 mg/kg/d, 11 weeks were administered orally via syringe cannula. IGFBP-3 was measured by using ELISA (Cusa bio kit and data were analyzed with ANOVA test.Results: Plasma level of IGFBP-3 in the C and OT groups were 17.4 ± 10 mIU/L, the lowest in OT groups (10.7 ± 9.9 mIU/L and the OT-Hib group had the highest level (31.5 ± 6.2 mIU/L. There was significant difference of the level IGFBP-3 in OT groups with A-Ex groups (10.7 ± 9.9 vs 23.5 ± 9.7 mIU/L; p < 0,05. The significant difference was also observed in the level of IGFBP 3 between C groups and the OT-Hib groups (17.4 ± 10 vs 31.5 ± 6.2; p < 0.05.Conclusion: Administration of H. sabdariffa can prevent the decrease of IGFBP-3 levels in overtraining rats, indicating its role in preventing overtraining syndrome.

  4. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    Science.gov (United States)

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF - cells) or the presence (EGF + cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF - but not in EGF + cells. In EGF - cells, Tl(I) decreased mitochondrial potential, enhanced H 2 O 2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF - cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF - and EGF + cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF - cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF - and EGF + cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  5. Parents' beliefs about appropriate infant size, growth and feeding behaviour: implications for the prevention of childhood obesity

    Directory of Open Access Journals (Sweden)

    Swift Judy A

    2010-11-01

    Full Text Available Abstract Background A number of risk factors are associated with the development of childhood obesity which can be identified during infancy. These include infant feeding practices, parental response to infant temperament and parental perception of infant growth and appetite. Parental beliefs and understanding are crucial determinants of infant feeding behaviour; therefore any intervention would need to take account of their views. This study aimed to explore UK parents' beliefs concerning their infant's size, growth and feeding behaviour and parental receptiveness to early intervention aimed at reducing the risk of childhood obesity. Method Six focus groups were undertaken in a range of different demographic localities, with parents of infants less than one year of age. The focus groups were audio-recorded, transcribed verbatim and thematic analysis applied using an interpretative, inductive approach. Results 38 parents (n = 36 female, n = 2 male, age range 19-45 years (mean 30.1 years, SD 6.28 participated in the focus groups. 12/38 were overweight (BMI 25-29.99 and 8/38 obese (BMI >30. Five main themes were identified. These were a parental concern about breast milk, infant contentment and growth; b the belief that the main cause of infant distress is hunger is widespread and drives inappropriate feeding; c rationalisation for infants' larger size; d parental uncertainty about identifying and managing infants at risk of obesity and e intentions and behaviour in relation to a healthy lifestyle. Conclusions There are a number of barriers to early intervention with parents of infants at risk of developing obesity. Parents are receptive to prevention prior to weaning and need better support with best practice in infant feeding. In particular, this should focus on helping them understand the physiology of breast feeding, how to differentiate between infant distress caused by hunger and other causes and the timing of weaning. Some parents also need

  6. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...

  7. Residual orientation in injection micro-molded samples

    International Nuclear Information System (INIS)

    Healy, John; Edward, Graham H.; Knott, Robert B.

    2006-01-01

    The orientation of polymer chains after injection molding is usually studied using techniques that measure the average orientation of molecular segments. Small-angle neutron scattering (SANS) is a technique for measuring the overall chain orientation and is very sensitive to molecular anisotropy. In this study, a blend of a commercial general-purpose polystyrene and deuterated polystyrene was injection micro-molded under a variety of molding conditions. SANS was then used to measure the residual orientation of the deuterated chains. As expected, the molecular orientation decreased with increasing mold temperature and increased with decreasing mold thickness. However, for these micro-moldings, the residual orientation decreased with increasing injection velocity. The measured orientation also appears to be Q-dependent indicating that the average residual orientation of short-chain segments may not necessarily reflect the overall chain conformation

  8. Replication of optical microlens arrays using photoresist coated molds

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Dam-Hansen, Carsten; Stubager, Jørgen

    2016-01-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating...... with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from...... the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after...

  9. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  10. A molding technique for use in internal dosimetry studies

    International Nuclear Information System (INIS)

    Aissi, A.; Tsakeres, F.S.; Poston, J.W.

    1982-01-01

    A method is described for producing molds which can be used in the construction of volumetric organ dosimeters. These negative organ molds are formed by wrapping quick-setting plaster bandages around a silicon-treated hardwood organ mold. The cast is cut in two and after further setting time is ready to contain the tissue equivalent materials and thermoluminescent powders. Such volumetric dosimeters will be useful for comparing experimental and calculated internal dosimetry results. (U.K.)

  11. Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution

    DEFF Research Database (Denmark)

    Speranzaa, Vito; Liparotia, Sara; Calaon, Matteo

    2017-01-01

    The production of polymeric components with functional structures in the micrometer and sub-micrometer range is a complex challenge for the injection molding process, since it suffers the use of low cavity surface temperatures that induce the fast formation of a frozen layer, thus preventing...... was sufficient to obtain accurate replication, with adequate surface temperatures. In the case of nano-features, the replication accuracy was affected by the morphology developed on the molding surface, that is aligned along the flow direction with dimensions comparable with the dimension of the nano...

  12. Characterization of wood-based molding bonded with citric acid

    OpenAIRE

    Umemura, Kenji; Ueda, Tomohide; Kawai, Shuichi

    2012-01-01

    The wood-based moldings were fabricated by using only citric acid as an adhesive. The mechanical properties, water resistances, thermal properties and chemical structure were investigated. Wood powder obtained from Acacia mangium was mixed with citric acid under certain weight ratios (0-40 wt%), and each powder mixture was molded using two types of metal molds at 200 °C and 4MPa for 10 min. The modulus of rupture (MOR) and the modulus of elasticity (MOE) values of the wood-based molding conta...

  13. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect...

  14. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2011-01-01

    Process monitoring of microinjection molding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency with regard to parts' quality. Quality factors related to mold cavity air evacuation can provide...... mounted inside the mold. The influence of four μIM parameters, melt temperature, mold temperature, injection speed, and resistance to air evacuation, on two air flow-related output parameters is investigated by carrying out a design of experiment study. The results provide empirical evidences about...

  15. A hybrid optimization approach in non-isothermal glass molding

    Science.gov (United States)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  16. Applying simulation to optimize plastic molded optical parts

    Science.gov (United States)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  17. Thermal monitoring of the thermoplastic injection molding process with FBGs

    Science.gov (United States)

    Alberto, Nélia J.; Nogueira, Rogério N.; Neto, Victor F.

    2014-08-01

    Injection molding is an important polymer processing method for manufacturing plastic components. In this work, the thermal monitoring of the thermoplastic injection molding is presented, since temperature is a critical parameter that influences the process features. A set of fiber Bragg gratings were multiplexed, aiming a two dimensional monitoring of the mold. The results allowed to identify the different stages of the thermoplastic molding cycle. Additionally, the data provide information about the heat transfer phenomena, an important issue for the thermoplastic injection sector, and thus for an endless number of applications that employ this type of materials.

  18. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [ORNL; Lloyd, Peter D. [ORNL

    2018-02-01

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  19. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  20. Weld line morphology of injection molded polypropylene

    Science.gov (United States)

    Mielewski, Deborah Frances

    One of the main goals of this research was to develop an understanding of the specific cause(s) of mechanical weakness at weld lines in injection molded plastic parts. In this study, a variety of techniques have been used to evaluate polypropylene weld lines: optical microscopy, electron microscopy, x-ray photoelectron microscopy, Fourier transform infrared spectroscopy and mechanical property measurements. Optical microscopy results showed that the weld line penetrates about 10 microns into the sample, and that the crystalline morphology near the weld line was very different than in the polymer further removed. Transmission electron microscopy was used to determine that the material at the weld line was of slightly different density and stained differently than the rest of the polypropylene material. X-ray photoelectron spectroscopy (XPS) determined that the material at the flow front was enriched in elemental sulfur and oxygen, which helped identify it as an antioxidant additive. Finally, FTIR was used to confirm that the flow front tip was enriched in the antioxidant material by comparing spectra of the neat antioxidant. The data cumulatively demonstrate that a low concentration (polypropylene system studied. Other low concentration additives were also found to accumulate at polypropylene weld lines, also making the interface weak. Even an incompatible, higher surface free energy polymer, polystyrene, when added at low concentration to polypropylene, was found to accumulate at the weld line. Therefore, surface free energy was found not to play a role in these accumulations. Homogeneous elongation was found not to reproduce the enrichments observed. The mechanism by which low concentration additives accumulate at flow fronts is speculated to involve incompatible droplets experiencing a stress gradient due to the elongation gradient at the flow front during fountain flow which "pushes" them out toward the free surface. In addition, large concentrations of the heat

  1. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  2. Injection-molded capsular device for oral pulsatile release: development of a novel mold.

    Science.gov (United States)

    Zema, Lucia; Loreti, Giulia; Macchi, Elena; Foppoli, Anastasia; Maroni, Alessandra; Gazzaniga, Andrea

    2013-02-01

    The development of a purposely devised mold and a newly set up injection molding (IM) manufacturing process was undertaken to prepare swellable/erodible hydroxypropyl cellulose-based capsular containers. When orally administered, such devices would be intended to achieve pulsatile and/or colonic time-dependent delivery of drugs. An in-depth evaluation of thermal, rheological, and mechanical characteristics of melt formulations/molded items made of the selected polymer (Klucel® LF) with increasing amounts of plasticizer (polyethylene glycol 1500, 5%-15% by weight) was preliminarily carried out. On the basis of the results obtained, a new mold was designed that allowed, through an automatic manufacturing cycle of 5 s duration, matching cap and body items to be prepared. These were subsequently filled and coupled to give a closed device of constant 600 μm thickness. As compared with previous IM systems having the same composition, such capsules showed improved closure mechanism, technological properties, especially in terms of reproducibility of the shell thickness, and release performance. Moreover, the ability of the capsular container to impart a constant lag phase before the liberation of the contents was demonstrated irrespective of the conveyed formulation. Copyright © 2012 Wiley Periodicals, Inc.

  3. Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology

    Science.gov (United States)

    Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.

    2015-05-01

    Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.

  4. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  5. Mold temperature measurement for glass-pressing processes

    International Nuclear Information System (INIS)

    Holman, R.A.

    1985-01-01

    The largest use of radiation thermometers within Corning Glass Works is for mold temperature measurement for the glass-pressing process. Pressing television panels at today's high quality would be very difficult without a mold temperature measurement system and the computer manipulation of the quality control data to supervise the mold temperature control loop. The most critical part of a television panel is the inside surface curvature. The ideal surface is usually defined as a spherical surface. The tolerance for a normal TV panel is +-0.30 mm (+-0.012 in.). High resolution display panels are more critical, having a dimensional tolerance only one half as large as TV panels. Panel curvature is a direct (but negative) function of mold temperature. Every 1 0 C increase in mold temperature results in the panel center being 0.025 mm (0.001 in.) shorter (flatter). Random dimensional variations within a panel take up most of the dimensional tolerance. The result is that each mold is controlled to its own individual temperature set point, +-1 0 C. Hot panel and cold panel curvature measurements are correlated by a process computer and used to update the mold temperature set points. The same computer adjusts the mold cooling air to maintain the required mold temperatures. From the temperature measurement standpoint, the significant problem is the changing emissivity of the mold surface when the mold is new or reconditioned. The selection of a radiation thermometer with a short wavelength was an obvious choice to minimize the effect of emissivity variations

  6. Deformation behavior in 3D molding: experimental and simulation studies

    International Nuclear Information System (INIS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Hurst, Steven M; Park, Sunggook; Kim, Jinsoo

    2012-01-01

    Three-dimensional (3D) molding is a simple and effective technique using a modified hot embossing process to produce large area, hierarchical 3D micro/nanostructures in polymer substrates. However, the use of a thin intermediate polydimethylsiloxane (PDMS) stamp inevitably causes dimensional changes in the 3D molded channel, with respect to those in the brass mold protrusion and the intermediate PDMS stamp structures. Here we investigate the deformation behavior of the 3D molded poly(methyl methacrylate) (PMMA) substrate and the intermediate PDMS stamp in 3D molding through both experimentation and numerical simulation. Depending on the height, period and aspect ratio of the brass mold protrusions and the thickness of the intermediate PDMS stamp, strain contours of the intermediate PDMS stamp layer along the periphery of the 3D molded channels are varying, which leads to a nonuniform elongation of the imprinted structures in the 3D molded channel. Increasing the height and decreasing the period of brass mold protrusions leads to higher total strain of the intermediate PDMS stamp. It was found that for high aspect ratio brass mold protrusions the maximum strain of the intermediate layer occurs in the bottom center of the 3D channels. However, with decreasing aspect ratio of the brass mold protrusion the highest elongation occurs at the bottom corners of the channel causing less elongation of the intermediate PDMS stamp and imprinted structures on the bottom surface of the 3D channel. These experimental results are in good agreement with the results obtained from the numerical simulation performed with a simple 2D model. (paper)

  7. Application of risk analysis and quality control methods for improvement of lead molding process

    Directory of Open Access Journals (Sweden)

    H. Gołaś

    2016-10-01

    Full Text Available The aim of the paper is to highlight the significance of implication of risk analysis and quality control methods for the improvement of parameters of lead molding process. For this reason, Fault Mode and Effect Analysis (FMEA was developed in the conceptual stage of a new product TC-G100-NR. However, the final product was faulty (a complete lack of adhesion of brass insert to leak regardless of the previously defined potential problem and its preventive action. It contributed to the recognition of root causes, corrective actions and change of production parameters. It showed how these methods, level of their organization, systematic and rigorous study affect molding process parameters.

  8. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  9. Lighting molded optics: Design and manufacturing

    Directory of Open Access Journals (Sweden)

    Kočárková H.

    2013-05-01

    Full Text Available Proper design and manufacturing of glass molded lenses need to be performed in several steps. The whole process from customer requirements to f nal functional product is shown on two examples - a lens for street light and a lens for spot light with narrow lighting angle. After discussing customer requirements, optical design is made. Thanks to various commercial softwares with optimization, manufacturer of the lens can work as well as a designer which enables simplif cation and acceleration of lens manufacturing, since limitations of the manufacturing process are considered during creation of the design. When the prototype is made, its functionality needs to be evaluated. This work shows measurement of light distribution for street light lens in a dark room using goniometer and measurement of light intensity for spot lens f xed on an optical bench. These measurements can reveal the root cause in case of lens malfunction, which enables to optimize manufacturing process or modify lens design accordingly. Designing, manufacturing and evaluation of molded optics under one roof enables creation of easily manufacturable design and fast solution of problems.

  10. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  11. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  12. 21 CFR 177.2410 - Phenolic resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phenolic resins in molded articles. 177.2410... as Components of Articles Intended for Repeated Use § 177.2410 Phenolic resins in molded articles... articles intended for repeated use in contact with nonacid food (pH above 5.0), in accordance with the...

  13. Injection molded polymeric hard X-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  14. ASTHMATIC HUMAN SERUM IGE-REACTIVITY WITH MOLD EXTRACTS

    Science.gov (United States)

    Although molds have demonstrated the ability to induce allergic asthma-like responses in mouse models, their role in human disease is unclear. This study was undertaken to provide insight into the prevalence of human IgE-reactivity and identify the target mold protein(s). The st...

  15. IGE IN ASTHMATIC HUMAN SERA IS REACTIVE AGAINST MOLD EXTRACTS

    Science.gov (United States)

    Molds have been associated with various health effects including asthma, but their role in induction of asthma is unclear. However, the presence of mold-specific IgE indicates their capacity to induce allergic responses and possibly exacerbate asthma symptoms. This study was und...

  16. Integrated lithographic molding for microneedle-based devices

    NARCIS (Netherlands)

    Lüttge, Regina; Berenschot, Johan W.; de Boer, Meint J.; Altpeter, Dominique M.; Vrouwe, E.X.; Elwenspoek, Michael Curt; van den Berg, Albert

    This paper presents a new fabrication method consisting of lithographically defining multiple layers of high aspect-ratio photoresist onto preprocessed silicon substrates and release of the polymer by the lost mold or sacrificial layer technique, coined by us as lithographic molding. The process

  17. Performance Characteristics of Borate Fatty Acid Formulations as Mold Inhibitors

    Science.gov (United States)

    Robert D. Coleman; Vina Yang; Carol A. Clausen

    2013-01-01

    The combination of boric acid (BA) or disodium octaborate tetrahydrate (DOT) and a fatty acid (FA) such as heptanoic, octanoic, and nonanoic acids (C7–C9) is an effective treatment solution for protecting wood structures against mold. BA or DOT alone have substantial potency against insects and decay fungi, but have negligible or no mold inhibitor activity. However,...

  18. Evaluation of Additive Manufacturing for High Volume Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    ORNL worked with TruDesign, LLC to develop viable coating solutions to enable the use of large scale 3D printing for both low-temperature and high-temperature composite molds. This project resulted in two commercial products and successfully demonstrated the use of printed molds for autoclave processing for the first time.

  19. Applications of nanocomposites and woodfiber plastics for microcellular injection molding

    Science.gov (United States)

    Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield

    2003-01-01

    The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...

  20. Bestrijden en voorkomen van de oculatieschimmel Black Mold in roos

    NARCIS (Netherlands)

    Werd, de H.A.E.; Breeuwsma, S.J.; Meijer, H.; Wijk, van D.; Pijpers, H.

    2008-01-01

    Black Mold veroorzaakt afsterving van jonge oculaties in de teelt van rozenstruiken. Middels een enquête onder telers, een korte literatuurstudie en infectieproeven is een inventariserend onderzoek gedaan naar de factoren die het optreden van Black Mold beïnvloeden. Op basis van de infectieproeven

  1. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity.

    Science.gov (United States)

    Wang, Xin; Sun, Kang; Tan, Yanping; Wu, Shanshan; Zhang, Jinsong

    2014-07-01

    Peritoneal implantation of cancer cells, particularly postoperative seeding metastasis, frequently occurs in patients with primary tumors in the stomach, colon, liver, and ovary. Peritoneal carcinomatosis is associated with poor prognosis. In this work, we evaluated the prophylactic effect of intraperitoneal administration of selenium (Se), an essential trace element and a putative chemopreventive agent, on peritoneal implantation of cancer cells. Elemental Se nanoparticles were injected into the abdominal cavity of mice, into which highly malignant H22 hepatocarcinoma cells had previously been inoculated. Se concentrations in the cancer cells and tissues, as well as the efficacy of proliferation inhibition and safety, were evaluated. Se was mainly concentrated in cancer cells compared to Se retention in normal tissues, showing at least an order of magnitude difference between the drug target cells (the H22 cells) and the well-recognized toxicity target of Se (the liver). Such a favorable selective distribution resulted in strong proliferation suppression without perceived host toxicity. The mechanism of action of the Se nanoparticle-triggered cytotoxicity was associated with Se-mediated production of reactive oxygen species, which impaired the glutathione and thioredoxin systems. Our results suggest that intraperitoneal administration of Se is a safe and effective means of preventing growth of cancer cells in the peritoneal cavity for the above-mentioned high-risk populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Development of the computer-aided process planning (CAPP) system for polymer injection molds manufacturing

    OpenAIRE

    J. Tepić; V. Todić; D. Lukić; M. Milošević; S. Borojević

    2011-01-01

    Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-...

  3. Rotational molding: A review of the models and materials

    Directory of Open Access Journals (Sweden)

    K. O. Ogila

    2017-10-01

    Full Text Available This article surveys recent and not so recent literature in the field of rotational molding. The mechanisms of heat transfer, sintering and bubble removal are evaluated; as are degradation and dimensional stability. The parameters that affect the surface finish are highlighted and a number of the control systems available to the rotational molding process are mentioned. Improvements in molds and machinery, and the extent to which they reduce cycle times are also described. Finally, the range of materials available to the rotational molding process is examined and recent developments are highlighted. Of particular interest is the rotational molding of liquid polymer systems; which are shown to possess great potential for fulfilling many of rotational molding’s surface quality requirements while simultaneously reducing cycle times.

  4. Smart plastic functionalization by nanoimprint and injection molding

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Thamdrup, Lasse Højlund; Smistrup, Kristian

    2015-01-01

    In this paper, we present a route for making smart functionalized plastic parts by injection molding with sub-micrometer surface structures. The method is based on combining planar processes well known and established within silicon micro and sub-micro fabrication with proven high resolution...... and high fidelity with truly freeform injection molding inserts. The link between the planar processes and the freeform shaped injection molding inserts is enabled by the use of nanoimprint with flexible molds for the pattern definition combined with unidirectional sputter etching for transferring...... the pattern. With this approach, we demonstrate the transfer of down to 140 nm wide holes on large areas with good structure fidelity on an injection molding steel insert. The durability of the sub-micrometer structures on the inserts have been investigated by running two production series of 102,000 and 73...

  5. THE DURABILITY OF LARGE-SCALE ADDITIVE MANUFACTURING COMPOSITE MOLDS

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K [ORNL; Love, Lonnie J [ORNL; Duty, Chad [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Vaidya, Uday [University of Tennessee, Knoxville (UTK); Pipes, R. Byron [Purdue University; Kunc, Vlastimil [ORNL

    2016-01-01

    Oak Ridge National Laboratory s Big Area Additive Manufacturing (BAAM) technology permits the rapid production of thermoplastic composite molds using a carbon fiber filled Acrylonitrile-Butadiene-Styrene (ABS) thermoplastic. Demonstration tools (i.e. 0.965 m X 0.559 m X 0.152 m) for composite part fabrication have been printed, coated, and finished with a traditional tooling gel. We present validation results demonstrating the stability of thermoplastic printed molds for room temperature Vacuum Assisted Resin Transfer Molding (VARTM) processes. Arkema s Elium thermoplastic resin was investigated with a variety of reinforcement materials. Experimental results include dimensional characterization of the tool surface using laser scanning technique following demolding of 10 parts. Thermoplastic composite molds offer rapid production compared to traditionally built thermoset molds in that near-net deposition allows direct digital production of the net geometry at production rate of 45 kg/hr.

  6. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed based...... on a test geometry integrating different aspect ratios of small structures. Acrylonitrile butadiene styrene (ABS) was used as material, and different mold temperatures were tested. The replicated test objects were measured by means of an optical coordinate measuring machine (CMM). On the basis...

  7. Validation of three-dimensional micro injection molding simulation accuracy

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    the simulation accuracy (i.e. decrease deviations from experimental values): injection speed profile, cavity injection pressure, melt and mold temperatures, three-dimensional mesh parameters, and material rheological characterization. Quality factors investigated for the quantitative comparisons were: short shot...... length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must......Data analysis and simulations on micro-molding experiments have been conducted. Micro molding simulations have been executed taking into account actual processing conditions implementation in the software. Various aspects of the simulation set-up have been considered in order to improve...

  8. Injection molding of bushes made of tribological PEEK composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  9. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  10. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  11. Injection molding and debinding of micro gears fabricated by micro powder injection molding

    Science.gov (United States)

    Ni, Xin-lei; Yin, Hai-qing; Liu, Lin; Yi, Shan-jie; Qu, Xuan-hui

    2013-01-01

    Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at relatively low cost. However, scaling down to such a level produces challenges in injection molding and debinding. Micro gears were fabricated by μPIM from in-house feedstock. The effect of injection speed and injection pressure on the replication of the micro gear cavity was investigated. Solvent debinding and thermal debinding processes were discussed. The results show that micro gears can be successfully fabricated under the injection pressure of 70 MPa and the 60% injection speed. Either too low or too high injection speed can cause incomplete filling of micro gears. The same is the case with too low injection pressure. Too high injection pressure can bring cracks. Solvent debinding of micro gears was performed in a mixture of petroleum ether and ethanol. Subsequently, micro gears were successfully debound by a multistep heating schedule.

  12. New materials to manufacture casting molds

    International Nuclear Information System (INIS)

    Luhleich, H.

    1980-01-01

    A report is given on an improved filler-binder mixing method in the manufacture of artificial graphite, the so-called coat-mix process. The individual graphite-filler grains are coated completely with uniform binder coatings (phenol formaldehyde resin) in a continuous process. Methanol is used as solvent for the resin. In a modified further development of the process, the use of organic solvents can be disregarded by dissolving the binder resin in caustic soda and injecting the slurry into water diluted acid. The manufacture of casting molds from coat-mix powders, their properties and industrial application are given. Finally, the advantages of using carbon bodies of coal-mix material for conversion to silicon carbide are indicated. (IHOE) [de

  13. Ozone reaction on slime mold. [Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, F.

    1972-01-01

    To determine the effect of ozone, the motive force responsible for protoplasmic streaming in the slime mold, Physarum polycephalum was measured by the Double chamber method which was developed by Kamiya. The effects of ozone on the motive force were investigated by comparison of the Dynamoplasmogram of controls with that of ozone exposure. In the case of high concentration exposure, thickening of plasmagel, inversion of the period of flow and reduction of the extreme point were observed. Succinoxidase of exposed homogenates showed stronger activity than that of controls. It is certain that the Pasteur reaction takes place when plasmodium is kept under high ozone exposure condition. It appears that ozone inhibited a part of the process of glycolysis. 32 references, 8 figures.

  14. Mold heating and cooling microprocessor conversion

    Science.gov (United States)

    Hoffman, D. P.

    1995-07-01

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessor board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.

  15. IMAGE ANALYSIS DEDICATED TO POLYMER INJECTION MOLDING

    Directory of Open Access Journals (Sweden)

    David Garcia

    2011-05-01

    Full Text Available This work follows the general framework of polymer injection moulding simulation whose objectives are the mastering of the injection moulding process. The models of numerical simulation make it possible to predict the propagation of the molten polymer during the filling phase from the positioning of one point of injection or more. The objective of this paper is to propose a particular way to optimize the geometry of mold cavity in accordance with physical laws. A direct correlation is pointed out between geometric parameters issued from skeleton transformation and Hausdorff's distance and results provided by implementation of a classical model based on the Hele-Shaw equations which are currently used in the main computer codes of polymer injection.

  16. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F

    2005-01-01

    The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees...... with a positive histamine release test to Penicillium chrysogenum were exposed double- blinded to either placebo, approximately 600,000 spores/m3 air of P. chrysogenum or approximately 350,000 spores/m3 of Trichoderma harzianum for 6 min on three separate days. A statistically significant rise in symptoms from...... mucous membranes appeared from the 9-graded symptom scale after exposure to T. harzianum or placebo. Dichotomizing the data, whether the participants experienced at least a two-step rise on the symptom scale or not, gave borderline increase in mucous membrane symptoms after exposure to P. chrysogenum...

  17. Specific mold filling characteristics of highly filled phenolic injection molding compounds

    OpenAIRE

    Scheffler, Thomas; Englich, Sascha; Gehde, Michael

    2016-01-01

    Thermosets show excellent mechanical properties and chemical resistance (for most automotive fluids) even at high temperatures up to 300 °C. Furthermore they can be highly efficient processed by injection molding. So they should be particularly suited for e.g. under the bonnet applications. However, the reality shows that thermosets are, except fiber reinforced composites, heavily underrepresented in technical applications. E.g. thermosetting components only account 0,2 % to a vehicle’s weigh...

  18. Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Dominguez, Jessica A; Vithayathil, Paul J; Khailova, Ludmila; Lawrance, Christopher P; Samocha, Alexandr J; Jung, Enjae; Leathersich, Ann M; Dunne, W Michael; Coopersmith, Craig M

    2011-10-01

    Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.

  19. Changes of musculoskeletal deformity in severely disabled children using the custom molded fitting chair.

    Science.gov (United States)

    Kim, Myeong Ok; Lee, Jun Ho; Yu, Ju Young; An, Pil Suk; Hur, Do Hang; Park, Eun Seo; Kim, Jae Hong

    2013-02-01

    To know the effectiveness of a custom molded fitting chair between pre- and post-chair status through comparison of musculoskeletal indices in severely disabled children. We researched 34 severely disabled patients who had used a custom molded fitting chair continuously for more than a year. There were 27 cerebral palsy patients and 7 patients with other kinds of diseases that affect the brain such as chromosomal disease or metabolic disease. By radiographic studies, Cobb's angle, the femoral neck-shaft angle of the femur, and Reimers migration percentage were measured. The indices are analyzed before and after application. The average period of application was 24 months. There was a significant reduction in the angles of femur neck-shaft, 163.4 degree before and 158.2 degree after the use of the chair (pchair status was not statistically significant. Seventeen of 33 children showed reduced Cobb's angle. Also, 19 of 37 showed a reduced degree of dislocation of the hip joints. In spite of the use of a custom molded fitting chair, a significant improvement did not emerge for musculoskeletal deformity indices in severely disabled children. However, there was no significant aggravation of Cobb's angle or Reimers migration percentage in developing children. Therefore, it is thought be helpful to prevent rapid aggravation of musculoskeletal deformities.

  20. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    Science.gov (United States)

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  1. The wear rates and performance of three mold insert materials

    International Nuclear Information System (INIS)

    Zhong, Z.W.; Leong, M.H.; Liu, X.D.

    2011-01-01

    In this study, a rapidly solidified aluminum alloy was compared with beryllium copper and 6061 aluminum alloys in terms of their wear rates, hardness and performance as mold insert materials. A Vickers hardness measuring machine and a tribometer were used to determine the hardness values and wear rates of the materials. Three sets of mold inserts were made of these materials, and the insert surfaces and the molded plastic lens surfaces were characterized using a scanning electron microscope and a surface profilometer, respectively. The investigation results indicate that the BeCu alloy has the lowest wear rate, while aluminum 6061-T6 has the highest wear rate. Although the rapidly solidified aluminum alloy is not as hard as the BeCu alloy, the differences between their wear rates and hardness values are not as great as the differences between aluminum 6061-T6 and the BeCu alloy. The results also indicate that the rapidly solidified aluminum alloy performs much better than aluminum 6061-T6 in molding of plastic lenses and is comparable to the BeCu alloy. It is able to attain finer surfaces of the molded plastic lenses. This is an important finding, and this means that the rapidly solidified aluminum alloy can replace the BeCu alloy as a good mold insert material, because beryllium (Be) is a toxic element. The finding gives the industry a better choice for selection of mold insert materials.

  2. Growth hormone deficiency - children

    Science.gov (United States)

    ... childhood. The pediatrician will most often draw the child's growth curve on a growth chart . Children with growth ... Most cases are not preventable. Review your child's growth chart ... child's growth rate, evaluation by a specialist is recommended.

  3. A Method for Growing Bio-memristors from Slime Mold.

    Science.gov (United States)

    Miranda, Eduardo Reck; Braund, Edward

    2017-11-02

    Our research is aimed at gaining a better understanding of the electronic properties of organisms in order to engineer novel bioelectronic systems and computing architectures based on biology. This specific paper focuses on harnessing the unicellular slime mold Physarum polycephalum to develop bio-memristors (or biological memristors) and bio-computing devices. The memristor is a resistor that possesses memory. It is the 4th fundamental passive circuit element (the other three are the resistor, the capacitor, and the inductor), which is paving the way for the design of new kinds of computing systems; e.g., computers that might relinquish the distinction between storage and a central processing unit. When applied with an AC voltage, the current vs. voltage characteristic of a memristor is a pinched hysteresis loop. It has been shown that P. polycephalum produces pinched hysteresis loops under AC voltages and displays adaptive behavior that is comparable with the functioning of a memristor. This paper presents the method that we developed for implementing bio-memristors with P. polycephalum and introduces the development of a receptacle to culture the organism, which facilitates its deployment as an electronic circuit component. Our method has proven to decrease growth time, increase component lifespan, and standardize electrical observations.

  4. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  5. Red Mold Rice Mitigates Oral Carcinogenesis in 7,12-Dimethyl-1,2-Benz[a]anthracene-Induced Oral Carcinogenesis in Hamster

    Directory of Open Access Journals (Sweden)

    Ruei-Lan Tsai

    2011-01-01

    Full Text Available The prevalence of oral tumor has exponentially increased in recent years; however, the effective therapies or prevention strategies are not sufficient. Red mold rice is a traditional Chinese food, and several reports have demonstrated that red mold rice had an anti-tumor effect. However, the possible anti-tumor mechanisms of the red mold rice are unclear. In this study, we examined the anti-tumor effect of red mold rice on 7,12-dimethyl-1,2-benz[a]anthracene (DMBA-induced oral tumor in hamster. The ethanol extract of red mold rice (RMRE treatment significantly decreases the levels of DMBA-induced reactive oxygen species, nitro oxide and prostaglandin E2 than those of the lovastatin-treated group (P < .001. Moreover, RMRE decreases the formation of oral tumor induced by DMBA. Monacolin K, monascin, ankaflavin or other red mold rice metabolites had been reported to decrease inflammation and oxidative stress and exerted anti-tumor effects. Therefore, we evaluated the anti-inflammation and anti-oxidative stress effects of monacolin K, monascin, ankaflavin and citrinin in lipopolysaccharide-treated RAW264.7 cells. We found that RMRE reduced the LPS-induced nitrite levels in RAW264.7 cells better than monacolin K, monascin, ankaflavin or citrinin (P < .05.

  6. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  7. The analysis of injection molding defects caused by gate vestiges

    Directory of Open Access Journals (Sweden)

    T. Tabi

    2015-04-01

    Full Text Available Issues of product safety are the most serious problems of an injection molded product due to their risk to human health. Such a safety problem can be the needle-shaped vestige at the gate zone of injection molded products, called a gate vestige. Only observations of the formation of gate vestiges can be found in the literature, but the processing parameters influencing their dimensions, especially their height have not been studied yet. Our goal was to study the effect of various injection molding processing parameters and gate constructions on gate vestige formation.

  8. Fungi in Ontario maple syrup & some factors that determine the presence of mold damage.

    Science.gov (United States)

    Frasz, Samantha L; Miller, J David

    2015-08-17

    Maple syrup is a high value artisanal product produced mainly in Canada and a number of States primarily in the northeast USA. Mold growth (Wallemia sebi) on commercial product was first reported in syrup in 1908. Since then, few data have been published. We conducted a systematic examination for fungi in maple syrup from 68 producers from all of the syrup-producing areas of Ontario, Canada. The mean pH of the samples was pH 6.82, sugar content averaged 68.0±0.89 °Brix and aw averaged 0.841±0.011. Some 23 species of fungi were isolated based on morphology and molecular techniques. The most common fungus in the maple syrup samples was Eurotium herbariorum, followed by Penicillium chrysogenum, Aspergillus penicillioides, Aspergillus restrictus, Aspergillus versicolor and two species of Wallemia. Cladosporium cladosporioides was also common but only recovered when fungi known from high sugar substrates were also present in the mold damaged sample. The rarely reported yeast Citeromyces matrinsis was found in samples from three producers. There appear to be three potential causes for mold damage observed. High aw was associated with about one third of the mold damage. Independently, cold packing (bottling at ~25 °C) was a risk factor. However, syrup of good quality and quite low aw values was contaminated. We hypothesize that sanitation in the bottling line and other aspects of the bottling process may be partial explanations. Clarifying this requires further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

    International Nuclear Information System (INIS)

    Saha, Biswajit; Lee, Junghoon; Toh, Wei Quan; Liu, Erjia; Tor, Shu Beng; Hardt, David E

    2016-01-01

    Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes. (topical review)

  10. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    Science.gov (United States)

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  11. Nonsteroidal Anti-inflammatory Drugs (NSAIDS) Inhibit the Growth and Reproduction of Chaetomium globosum and Other Fungi Associated with Water-Damaged Buildings.

    Science.gov (United States)

    Dalmont, Kelsey; Biles, Charles L; Konsure, Heather; Dahal, Sujita; Rowsey, Tyler; Broge, Matthew; Poudyal, Shubhra; Gurung, Tara; Shrestha, Sabina; Biles, Caleb L; Cluck, Terry; Howard, Alisha

    2017-12-01

    Indoor mold due to water damage causes serious human respiratory disorders, and the remediation to homes, schools, and businesses is a major expense. Prevention of mold infestation of building materials would reduce health problems and building remediation costs. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit yeasts and a limited number of filamentous fungi. The purpose of this research was to determine the possible inhibitory activity of nonsteroidal anti-inflammatory drugs (NSAIDs) on germination, fungal growth, and reproduction of Chaetomium globosum and other important filamentous fungi that occur in water-damaged buildings. Several NSAIDs were found to inhibit C. globosum germination, growth, and reproduction. The most effective NSAIDs inhibiting C. globosum were ibuprofen, diflunisal, and diclofenac. Fusarium oxysporum, Fusarium solani, Aspergillus niger, and Stachybotrys atra were also tested on the various media with similar results obtained. However, F. oxysporum and A. niger exhibited a higher level of resistance to aspirin and NaSAL when compared to the C. globosum isolates. The inhibition exhibited by NSAIDs was variable depending on growth media and stage of fungal development. These compounds have a great potential of inhibiting fungal growth on building materials such as gypsum board. Formulations of sprays or building materials with NSAID-like chemical treatments may hold promise in reducing mold in homes and buildings.

  12. Method of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture

    Science.gov (United States)

    Steinbach, John (Inventor)

    1989-01-01

    A silicone rubber vacuum bag for use in composite article manufacture is reusably sealed to a mold, without mechanical clamping means. The mold-mating portion of the bag is primed with a silicone rubber adhesive, which is cured thereto, and a layer of semiadhesive sealer is applied between the primed mold-mating portion of the bag and the mold.

  13. 40 CFR 63.5728 - What standards must I meet for closed molding resin operations?

    Science.gov (United States)

    2010-07-01

    ... molding resin operations? 63.5728 Section 63.5728 Protection of Environment ENVIRONMENTAL PROTECTION... Standards for Closed Molding Resin Operations § 63.5728 What standards must I meet for closed molding resin operations? (a) If a resin application operation meets the definition of closed molding specified in § 63...

  14. The use of birefringence for predicting the stiffness of injection molded polycarbonate discs

    NARCIS (Netherlands)

    Neves, N.M.; Pouzada, A.S.; Voerman, J.H.D.; Powell, P.C.

    1998-01-01

    Polycarbonate discs were injection molded with different sets of molding conditions. The parameters studied were the flow rate, melt- and mold-temperature. The discs were subjected to three point support flexural tests. Those tests are specially intended for injection molded discs because of their

  15. Ground Testing of the EMCS Seed Cassette for Biocompatibility with the Cellular Slime Mold, Dictyostelium Discoideum

    Science.gov (United States)

    Hanely, Julia C.; Reinsch, Sigrid; Myers, Zachary A.; Freeman, John; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David G.

    2014-01-01

    The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. To expand the use of flight verified hardware for various model organisms, we performed ground experiments to determine whether ARC EMCS Seed Cassettes could be adapted for use with cellular slime mold for future space flight experiments. Dictyostelium is a cellular slime mold that can exist both as a single-celled independent organism and as a part of a multicellular colony which functions as a unit (pseudoplasmodium). Under certain stress conditions, individual amoebae will aggregate to form multicellular structures. Developmental pathways are very similar to those found in Eukaryotic organisms, making this a uniquely interesting organism for use in genetic studies. Dictyostelium has been used as a genetic model organism for prior space flight experiments. Due to the formation of spores that are resistant to unfavorable conditions such as desiccation, Dictyostelium is also a good candidate for use in the EMCS Seed Cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membranes contains dried growth medium. The goals of this study were to (1) verify that Dictyostelium are capable of normal growth and development on PES membranes, (2) develop a method for dehydration of Dictyostelium spores with successful recovery and development after rehydration, and (3) successful mock rehydration experiments in cassettes. Our results show normal developmental progression in two strains of Dictyostelium discoideum on PES membranes with a bacterial food source. We have successfully performed a mock rehydration of spores with developmental progression from aggregation to slug formation, and production of morphologically normal spores within 9 days of rehydration. Our results indicate that experiments on the ISS using the slime mold, Dictyostelium discoideum could potentially be performed in the flight verified hardware of

  16. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    Science.gov (United States)

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  17. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone.

    Science.gov (United States)

    Pinna, Daniela; Salvadori, Barbara; Galeotti, Monica

    2012-04-15

    In this study, some mixtures of consolidants or water-repellent products and biocides developed to prevent biological growth, were tested over time on three stone substrates with different bioreceptivity. The performance of both traditional (tetraethylorthosilicate, methylethoxy polysiloxane, Paraloid B72, tributyltin oxide, dibutyltin dilaurate) and innovative compounds (copper nanoparticles) was assessed using colour measurements, the water absorption by contact sponge method, and observation under stereo and optical microscopes. The application of the mixtures had also the purpose of controlling re-colonization on stone after a conservation treatment. The study site was the archaeological Area of Fiesole; the mixtures were applied in situ to sandstone, marble and plaster which had been cleaned beforehand. An innovative aspect of the study is that, by using non-invasive methods, it also permitted monitoring the mixtures' effectiveness in preventing biological growth. The monitoring results made it possible to assess the bioreceptivity of the treated stones (sandstone, marble, plaster) over a period of almost three years. The results showed that the mixtures of consolidants or water-repellent products with biocides were effective in preventing biological growth on both a substrate with low bioreceptivity like plaster and a substrate with high bioreceptivity such as marble. The innovative mixture of nano-Cu particles with a water-repellent yielded good results in terms of preventing biological colonization. Moreover, they apparently did not affect the substrates' colour. Mixtures of nano-Cu particles with a consolidant and a water-repellent hold great promise for preventing re-colonization of stone after conservation treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Precision glass molding technology for low Tg glasses

    Science.gov (United States)

    Yang, Hong; Wang, Zhibin; Zhang, Yunlong; Zhang, Feng; Tian, Minqiang; Shao, Xinzheng

    2017-02-01

    Precision glass molding (PGM) technology is a cost-effective manufacturing process for high precision optical elements with complex surfaces. With this processing technology, one or more pieces of lenses may be produced through one-step molding. Due to the high efficiency of the replicative process, PGM has found wide applications in high volume production of optical elements. At present, it has been well developed and widely used in mass industry production in Japan and South Korea, but in China PGM technology research is still in the elementary stage. To develop the PGM technology, we need to conquer several technical difficulties, such as the melting technology of low Tg glasses, highprecision mold design and the corresponding machining technology and the coating technology for the molds. In this paper, we discussed the PGM technology as a complete manufacturing process, focused on the technical difficulties mentioned above, and introduced the development directions for this technology in China.

  19. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  20. Exposure to Mold Toxin Linked to Gallbladder Cancer Risk

    Science.gov (United States)

    A study by the National Cancer Institute reports an association between a marker of exposure to aflatoxin, a poisonous chemical produced by a type of mold, and gallbladder cancer in a population of men and women in Shanghai, China.

  1. Printable Version of Mold Remediation in Schools and Commercial Buildings

    Science.gov (United States)

    This document presents guidelines for the remediation/cleanup of mold and moisture problems in schools and commercial buildings; these guidelines include measures designed to protect the health of building occupants and remediators.

  2. A new instrument for statistical process control of thermoset molding

    International Nuclear Information System (INIS)

    Day, D.R.; Lee, H.L.; Shepard, D.D.; Sheppard, N.F.

    1991-01-01

    The recent development of a rugged ceramic mold mounted dielectric sensor and high speed dielectric instrumentation now enables monitoring and statistical process control of production molding over thousands of runs. In this work special instrumentation and software (ICAM-1000) was utilized that automatically extracts critical point during the molding process including flow point, viscosity minimum gel inflection, and reaction endpoint. In addition, other sensors were incorporated to measure temperature and pressure. The critical point as well as temperature and pressure were then recorded during normal production and then plotted in the form of statistical process control (SPC) charts. Experiments have been carried out in RIM, SMC, and RTM type molding operations. The influence of temperature, pressure chemistry, and other variables has been investigated. In this paper examples of both RIM and SMC are discussed

  3. Powder Injection Molding of Ceramic Engine Components for Transportation

    Science.gov (United States)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar

    2012-03-01

    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  4. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Safe communities in China as a strategy for injury prevention and safety promotion programmes in the era of rapid economic growth.

    Science.gov (United States)

    Wang, Shu-Mei; Dalal, Koustuv

    2013-02-01

    Due to its rapid economic development, China is facing a huge health, social, and economic burden resulting from injuries. The study's objective was to examine Safe Communities in China as a strategy for injury prevention and safety promotion programmes in the era of rapid economic growth. Literature searches in English and Chinese, which included grey literature, were performed on the Chinese Journal Full-text Search System and Medline, using the words "Safe Community", "injury", "economics", and "prevention". The results showed that the existing 35 recognized members of the International Safe Community Network have not placed due emphasis on suicide prevention, which is one of the leading problems in both rural and urban China. A few groups, such as children, the elderly, cyclists, and pedestrians, have received due emphasis, while other vulnerable groups, such as migrant workers, motorcyclists, students, players, and farmers have not received the necessary attention from the Safe Community perspective. As the evidence describes, Safe Communities in China can be a very effective strategy for injury prevention, but four aspects need to be strengthened in the future: (1) establish and strengthen the policy and regulations in terms of injury prevention at the national level; (2) create a system to involve professional organizations and personnel in projects; (3) consider the economic development status of different parts of China; and (4) intentional injury prevention should receive greater attention.

  6. Differential effect of ethanol and hydrogen peroxide on barrier function and prostaglandin E2 release in differentiated Caco-2 cells: selective prevention by growth factors.

    Science.gov (United States)

    Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro

    2009-02-01

    The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.

  7. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  8. Engineering Design Handbook Rotational Molding of Plastic Powders

    Science.gov (United States)

    1975-04-15

    plastic com- pounds which have been finely pulverized for use in fluidized bed coating, rotational G-4 AMCP 706-312 molding, and various...powder of 35 mesh generally is used in rotational molding rather than extruder grade pellets or granules . There are limitations on lower...resins are 2 hr at 250CF in a dehumidifying oven equipped with a desiccant bed . The air in the oven should have a dew point of -20°F or lower. For

  9. CAE for Injection Molding — Past, Present and the Future

    Science.gov (United States)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE

  10. Material flow data for numerical simulation of powder injection molding

    Science.gov (United States)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  11. Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Leu Ing-Chi

    2011-01-01

    Full Text Available Abstract In this article, a simple and cost-effective method to create patterned nanoindentations on Al surface via mold-assisted chemical etching process is demonstrated. This report shows the reaction-diffusion method which formed nanoscale shallow etch pits by the absorption/liberation behaviors of chemical etchant in poly(dimethylsiloxane stamp. During subsequent anodization, it was possible to obtain the ordered nanopore arrays with 277 nm pitch that were guided by the prepatterned etch pits. The prepatterned etch pits obtained can guide the growth of AAO nanopores during anodization and facilitate the preparation of ordered nanopore arrays.

  12. Mold-filling experiments for validation of modeling encapsulation. Part 1, "wine glass" mold.

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Jaime N.; Grillet, Anne Mary; Altobelli, Stephen A. (New Mexico Resonance, Albuquerque, NM); Cote, Raymond O.; Mondy, Lisa Ann

    2005-06-01

    The C6 project 'Encapsulation Processes' has been designed to obtain experimental measurements for discovery of phenomena critical to improving these processes, as well as data required in the verification and validation plan (Rao et al. 2001) for model validation of flow in progressively complex geometries. We have observed and recorded the flow of clear, Newtonian liquids and opaque, rheologically complex suspensions in two mold geometries. The first geometry is a simple wineglass geometry in a cylinder and is reported here in Part 1. The results in a more realistic encapsulation geometry are reported in Part 2.

  13. Classification of buildings mold threat using electronic nose

    Science.gov (United States)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  14. Wear resistance of injection-molded thermoplastic denture base resins

    Science.gov (United States)

    Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo V. J.; Vallittu, Pekka K.; Takahashi, Yutaka

    2016-01-01

    Abstract Objective This study investigated the wear resistance of injection-molded thermoplastic denture base resins using nanoindentation instrument. Materials and methods Six injection-molded thermoplastic denture base resins (two polyamides, two polyesters, one polycarbonate, one polymethylmethacrylate [PMMA]) and a PMMA conventional heat-polymerized denture-based polymer control were tested. Elastic modulus, hardness, wear depth, and roughness were calculated using a nanoindentation instrument. Results Elastic modulus and hardness of the injection-molded thermoplastic denture base resins were significantly lower than those of the PMMA conventional heat-polymerized denture-based polymer. Wear depth of polycarbonate and PMMA conventional heat-polymerized denture-based polymer were significantly higher than that of other injection-molded thermoplastic denture base resins. The roughness of injection-molded thermoplastic denture base resins was significantly more than that of PMMA conventional heat-polymerized denture-based polymer after testing. Conclusions Wear resistance of injection-molded thermoplastic denture base was low compared to PMMA conventional heat-polymerized denture-based polymers. PMID:28642909

  15. Mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus: therapeutic and evolutionary implications.

    Science.gov (United States)

    Neubauer, Michael; Zhu, Zhaojun; Penka, Mirjam; Helmschrott, Christoph; Wagener, Nikola; Wagener, Johannes

    2015-12-01

    Mitochondria within eukaryotic cells continuously fuse and divide. This phenomenon is called mitochondrial dynamics and crucial for mitochondrial function and integrity. We performed a comprehensive analysis of mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus. Phenotypic characterization of respective mutants revealed the general essentiality of mitochondrial fusion for mitochondrial genome maintenance and the mold's viability. Surprisingly, it turned out that the mitochondrial rhomboid protease Pcp1 and its processing product, s-Mgm,1 which are crucial for fusion in yeast, are dispensable for fusion, mtDNA maintenance and viability in A. fumigatus. In contrast, mitochondrial fission mutants show drastically reduced growth and sporulation rates and increased heat susceptibility. However, reliable inheritance of mitochondria to newly formed conidia is ensured. Strikingly, mitochondrial fission mutants show a significant and growth condition-dependent increase in azole resistance. Parallel disruption of fusion in a fission mutant partially rescues growth and sporulation defects and further increases the azole resistance phenotype. Taken together, our results indicate an emerging dispensability of the mitochondrial rhomboid protease function in mitochondrial fusion, the suitability of mitochondrial fusion machinery as antifungal target and the involvement of mitochondrial dynamics in azole susceptibility. © 2015 John Wiley & Sons Ltd.

  16. Control of apple blue mold by Pichia pastoris recombinant strains expressing cecropin A.

    Science.gov (United States)

    Ren, Xueyan; Kong, Qingjun; Wang, Huili; Yu, Ting; Tang, Ya-Jie; Zhou, Wen-Wen; Zheng, Xiaodong

    2012-06-01

    Recombinant Pichia pastoris yeasts expressing cecropin A (GS115/CEC), was evaluated for the control of the blue mold of apple caused by Penicillium expansum due to cecropin A peptide's effective antimicrobial effects on P. expansum spores by the thiazolyl blue (MTT) assay. Then, the protein concentration was determined and it was expressed at high levels up to 14.2 mg/L in the culture medium. Meanwhile, the population growth was assayed in vivo. The population growth of recombinant strain GS115/CEC was higher than that of non-transformed strain GS115 in red Fuji apples wounds. Recombinant yeast strains GS115/CEC significantly inhibited growth of germinated P. expansum spores in vitro and inhibited decay development caused by P. expansum in apple fruits in vivo when compared with apple fruits inoculated with sterile water or the yeast strain GS115/pPIC (plasmid pPIC9k transformed in GS115). This study demonstrated the potential of expression of the antifungal peptide in yeast for the control of postharvest blue mold infections on pome fruits.

  17. Detection of pre-symptomatic rose powdery-mildew and gray-mold diseases based on thermal vision

    Science.gov (United States)

    Jafari, M.; Minaei, S.; Safaie, N.

    2017-09-01

    Roses are the most important plants in ornamental horticulture. Roses are susceptible to a number of phytopathogenic diseases. Among the most serious diseases of rose, powdery mildew (Podosphaera pannosa var. rosae) and gray mold (Botrytis cinerea) are widespread which require considerable attention. In this study, the potential of implementing thermal imaging to detect the pre-symptomatic appearance of these fungal diseases was investigated. Effects of powdery mildew and gray mold diseases on rose plants (Rosa hybrida L.) were examined by two experiments conducted in a growth chamber. To classify the healthy and infected plants, feature selection was carried out and the best extracted thermal features with the largest linguistic hedge values were chosen. Two neuro-fuzzy classifiers were trained to distinguish between the healthy and infected plants. Best estimation rates of 92.55% and 92.3% were achieved in training and testing the classifier with 8 clusters in order to identify the leaves infected with powdery mildew. In addition, the best estimation rates of 97.5% and 92.59% were achieved in training and testing the classifier with 4 clusters to identify the gray mold disease on flowers. Performance of the designed neuro-fuzzy classifiers were evaluated with the thermal images captured using an automatic imaging setup. Best correct estimation rates of 69% and 80% were achieved (on the second day post-inoculation) for pre-symptomatic appearance detection of powdery mildew and gray mold diseases, respectively.

  18. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  19. A simple method for analysing the effects of algae on the growth of Lemna and preventing algal growth in duckweed bioassays

    NARCIS (Netherlands)

    Szabo, S.; Roijackers, R.M.M.; Scheffer, M.

    2003-01-01

    A simple novel method for indoor culture experiments with small floating water plants, such as Lemnaceae, is described. Experiments demonstrate that the method allows for longer lasting culture experiments with Lemna, avoiding algal growth and self-shading of fronds by overcrowding. This is achieved

  20. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hannon, Patrick R., E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P{sub 4}) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P{sub 4}, androstenedione (A), testosterone (T), estrone (E{sub 1}), and 17β-estradiol (E{sub 2}) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E{sub 2}. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P{sub 4}, A, T, and E{sub 1} that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. - Highlights: • Mono-OH MXC inhibited antral follicle steroidogenesis, growth, and survival. • Pregnenolone partially restored steroidogenesis

  1. The use of chitosan in protecting wooden artifacts from damage by mold fungi

    Directory of Open Access Journals (Sweden)

    Rehab El-Gamal

    2016-11-01

    Conclusions: The growth of fungi on the treated wood samples decreased with increasing the concentration of chitosan. Hence, it was demonstrated that chitosan prevented fungal growth, and its use could be recommended for the protection of archeological wooden artifacts.

  2. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  3. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor.

    Science.gov (United States)

    Craig, Zelieann R; Hannon, Patrick R; Flaws, Jodi A

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P4) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P4, androstenedione (A), testosterone (T), estrone (E1), and 17β-estradiol (E2) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E2. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P4, A, T, and E1 that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. © 2013.

  4. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    Science.gov (United States)

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  5. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A.

    Science.gov (United States)

    Liu, Xiaoping; Wang, Jiye; Gou, Ping; Mao, Cungui; Zhu, Zeng-Rong; Li, Hongye

    2007-11-01

    Aureobasidin A (AbA), an antifungal cyclic depsipeptide antibiotic produced by Aureobasidium pullulans R106, has previously been shown to be effective against a wide range of fungi and protozoa. Here we report the inhibitory effects of AbA on spore germination, germ tuber elongation and hyphal growth of five pathogenic fungi including Penicillium digitatum, P. italicum, P. expansum, Botrytis cinerea and Monilinia fructicola, which are major pathogens causing postharvest diseases of a variety of fruits. AbA inhibited five pathogenic fungi by reducing conidial germination rates, delaying conidial germination initiation, restricting elongation of germ tuber and mycelium, as well as inducing abnormal alternations of morphology of germ tubes and hyphae of these fungi. The sensitivity of these fungi to AbA was pathogen species-dependent. P. digitatum was the most sensitive and M. fructicola the least. Importantly, AbA at 50 microg/ml was effective in controlling the citrus green mold and in reducing the strawberry gray mold incidence and severity, caused by P. digitatum and B. cinerea, respectively, after artificial inoculation. AbA and/or its analogs, therefore, hold promise as relatively safe and promising fungicide candidates to control postharvest decays of fruits, because AbA targets the inositol phosphorylceramide (IPC) synthase, an enzyme essential for fungi but absent from mammals.

  6. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  7. Mycotoxicoses in animals caused by secondary metabolites of molds

    Directory of Open Access Journals (Sweden)

    Nešić Ksenija

    2005-01-01

    Full Text Available It is estimated that at least 25% of grain and other cereals are today contaminated with known mycotoxins, while a large number of them are probably contaminated with as yet unidentified mycotoxins. Mycotoxins produce mold mycea, and it is believed that over 220 species have this characteristic. A large number of different mycotoxins has been identified so far, of which only a small number are of medicinal, nutritive and economic significance (aflatoxins, ochratoxins, trichotecenes, zearalenon. The listed mycotoxins present secondary metabolites, primarily the species Aspergillus, Fusarium and Penicillinum. Mycotoxicoses pose a nutritive-medical, but also a diagnostic problem, because certain mycotoxins cause changes in a number of organs. Diseases caused by mycotoxins are not contagious, they are connected with food and/or specific feed, they are similar to avitaminoses, they are not treated with antibiotics or other medicines, and they do not cause an immunological response in the organism because they are of small molecular mass so that animals are permanently protected from their effects. The content of mycotoxins in food and/or feed in practical conditions more often causes the appearance of chronic mycotoxicoses, and the effects of smaller quantities over a longer time period are the same as of bigger quantities over a short period. The early or timely establishment of the presence of mycotoxins in food and the subsequent elimination of the contaminated food from use can aleviate the negative effects, but a certain time period is required for the elimination of the resorbed quantities of mycotoxins and the disappearance of the harmful effect. That is why constant and multilevel monitoring of sanitary hygiene of feed must be practiced in production conditions in order to secure a swift and efficient reaction, as currently the only manner for the successful prevention of the harmful effects of mycotoxins.

  8. Orientation of Carbon Fibers in Copper matrix Produced by Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Irfan Shirazi M.

    2014-07-01

    Full Text Available Fiber orientation is a big challenge in short fiber reinforced composites. Powder injection molding (PIM process has some intrinsic fiber alignment associated with it. During PIM process fibers in skin region of moldings are aligned as these regions experience higher shear flow caused by the mold walls. Fibers in the core region remain randomly aligned as these regions are far from mold walls and experience lesser shear flow. In this study short carbon fiber (CF reinforced copper matrix composite was developed by PIM process. Two copper composite feedstock formulations were prepared having 5 vol% and 10 vol% CFs and a wax based binder system. Fiber orientation was controlled during injection molding by using a modified mold that has a diverging sprue. The sprue creates converging flow when feedstock enters into the mold cavity. Fiber orientation was analysed after molding using FESEM. The orientation of fibers can be controlled by controlling flow of feedstock into the mold.

  9. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1

    Science.gov (United States)

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2016-01-01

    Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P supplementation increased (P adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia. PMID:26718412

  10. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth.

    Science.gov (United States)

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2016-02-01

    It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P supplementation increased (P adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.

  11. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    Science.gov (United States)

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Factors affecting growth and pigmentation of Penicillium caseifulvum

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Haasum, I.; Steenstrup, L.D.

    2002-01-01

    and the trace metals Fe, Cu, Zn, Mn on yellow color formation, metabolite production and mold growth. Multivariate statistical analysis showed that the most important factor affecting yellow color formation was pH. The most pronounced formation of yellow color, supported by highest amount of colored metabolites......, appeared at low pH (pH 4). Mold growth was not correlated to the yellow color formation. Salt concentration was the most important factor affecting mold growth and length of lag phase. Production of secondary metabolites was strongly influenced by both pH and salt concentration. The screening results were......Color formation, metabolite production and growth of Penicillium caseifulvum were studied in order to elucidate factors contributing to. yellow discoloration of Blue Cheese caused by the mold. A screening experiment was set up to study the effect of pH, concentration of salt (NaCl), P, K, N, S, Mg...

  13. Factors affecting growth and pigmentation of Penicillium caseifulvum

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Haasum, I.; Steenstrup, L.D.

    2002-01-01

    Color formation, metabolite production and growth of Penicillium caseifulvum were studied in order to elucidate factors contributing to. yellow discoloration of Blue Cheese caused by the mold. A screening experiment was set up to study the effect of pH, concentration of salt (NaCl), P, K, N, S, Mg...... and the trace metals Fe, Cu, Zn, Mn on yellow color formation, metabolite production and mold growth. Multivariate statistical analysis showed that the most important factor affecting yellow color formation was pH. The most pronounced formation of yellow color, supported by highest amount of colored metabolites......, appeared at low pH (pH 4). Mold growth was not correlated to the yellow color formation. Salt concentration was the most important factor affecting mold growth and length of lag phase. Production of secondary metabolites was strongly influenced by both pH and salt concentration. The screening results were...

  14. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.

    Science.gov (United States)

    Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Cho, Chuloh; Park, Hae-Jun

    2016-10-03

    Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Digital modeling of lithium ingot formation in metal mold

    International Nuclear Information System (INIS)

    Cherepanov, A.N.; Popov, V.N.; Tibilov, V.S.; Valov, P.M.

    2004-01-01

    A two-dimensional mathematical model is developed for the process of lithium melt solidification in metal mold with regard to shrinkage phenomena on phase transition. Based on this model a computer program is designed to calculate cooling and crystallization parameters of the metal after filling the mold. Numerical experiments are performed aimed to determine the duration of complete crystallization of the casting, crystallization front velocity and shape as well as the morphology of shrinkage cavity at various parameters of the process: metal heating-up before pouring-in, initial temperature of the mold, the thickness of its wall. When metal solidifying in a thin-wall mold (δ w = 3 mm) the crystallization is of practically unidirectional nature. The surface of solidified casting top end has an insignificant concavity. In a thick-wall mold (δ w = 25 mm) the metal solidifies from both bottom and lateral faces with the result that a narrow but deep enough shrinkage cavity is formed in a head end of the casting [ru

  16. Fabrication of corrugated artificial insect wings using laser micromachined molds

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Wood, Robert J

    2010-01-01

    This paper describes the fabrication of an artificial insect wing with a rich set of topological features by micromolding a thermosetting resin. An example 12 mm long hoverfly-like wing is fabricated with 50–125 µm vein heights and 100 µm corrugation heights. The solid veins and membrane were simultaneously formed and integrated by a single molding process. Employing a layered laser ablation technique, three-dimensional molds were created with 5 µm resolution in height. Safe demolding of the wing was achieved with a water-soluble sacrificial layer on the mold. Measured surface profiles of the wing matched those of the molds, demonstrating the high replication accuracy of this molding process. Using this process, the morphological features of insect wings can be replicated at-scale with high precision, enabling parametric experiments of the functional morphology of insect wings. This fabrication capability also makes it possible to create a variety of wing types for micro air vehicles on scales similar to insects.

  17. An investigation into the injection molding of PMR-15 polyimide

    Science.gov (United States)

    Colaluca, M. A.

    1984-01-01

    The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.

  18. Measuring mechanical stresses on inserts during injection molding

    Directory of Open Access Journals (Sweden)

    Martina Heinle

    2015-05-01

    Full Text Available Assembly molding presents an interesting approach to innovative product solutions. Here, individual components can be simultaneously positioned, affixed, and provided with a casing. However, while overmolding elements in the mold cavity with hot polymer melt, high mechanical loads occur on, in some cases, very sensitive components such as electronic devices. For the design of such systems, it is important to know these stresses, the influences on their quantities, and mathematical options for their prediction. In this article, a new measurement method for determining the forces acting on a small element in the cavity during the injection molding process in three dimensions is presented. Therefore, a new installation method for a force sensor was developed. The results in this article concentrate on force changes during one molding cycle. Our research shows that there are different mechanical load spectra in the different phases of the molding process. For example, the force component in flow direction on an element in the cavity is positive in the direction of the flow during filling. However, after the filling step, the force becomes negative due to the contraction of the injected material and results in a continuously increasing permanent force.

  19. Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.

    2010-11-15

    Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis. For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias. The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication

  20. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice

    Science.gov (United States)

    Gerasimova, Maria; Rose, Michael A.; Masuda, Takahiro; Satriano, Joseph; Mayoux, Eric; Koepsell, Hermann; Thomson, Scott C.; Rieg, Timo

    2013-01-01

    Our previous work has shown that gene knockout of the sodium-glucose cotransporter SGLT2 modestly lowered blood glucose in streptozotocin-diabetic mice (BG; from 470 to 300 mg/dl) and prevented glomerular hyperfiltration but did not attenuate albuminuria or renal growth and inflammation. Here we determined effects of the SGLT2 inhibitor empagliflozin (300 mg/kg of diet for 15 wk; corresponding to 60–80 mg·kg−1·day−1) in type 1 diabetic Akita mice that, opposite to streptozotocin-diabetes, upregulate renal SGLT2 expression. Akita diabetes, empagliflozin, and Akita + empagliflozin similarly increased renal membrane SGLT2 expression (by 38–56%) and reduced the expression of SGLT1 (by 33–37%) vs. vehicle-treated wild-type controls (WT). The diabetes-induced changes in SGLT2/SGLT1 protein expression are expected to enhance the BG-lowering potential of SGLT2 inhibition, and empagliflozin strongly lowered BG in Akita (means of 187–237 vs. 517–535 mg/dl in vehicle group; 100–140 mg/dl in WT). Empagliflozin modestly reduced GFR in WT (250 vs. 306 μl/min) and completely prevented the diabetes-induced increase in glomerular filtration rate (GFR) (255 vs. 397 μl/min). Empagliflozin attenuated increases in kidney weight and urinary albumin/creatinine ratio in Akita in proportion to hyperglycemia. Empagliflozin did not increase urinary glucose/creatinine ratios in Akita, indicating the reduction in filtered glucose balanced the inhibition of glucose reabsorption. Empagliflozin attenuated/prevented the increase in systolic blood pressure, glomerular size, and molecular markers of kidney growth, inflammation, and gluconeogenesis in Akita. We propose that SGLT2 inhibition can lower GFR independent of reducing BG (consistent with the tubular hypothesis of diabetic glomerular hyperfiltration), while attenuation of albuminuria, kidney growth, and inflammation in the early diabetic kidney may mostly be secondary to lower BG. PMID:24226524

  1. Molding 4.0 - The Economics of an Injection Molding As-a-Service Business Model

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Tonetti, Marco Alessandro; Tosello, Guido

    During the last few years, the term Industry 4.0 or The Fourth Industrial Revolution, made its appearance and spread across industries. While it is accepted that the term broadly refers to a set of recent innovations with potential to disrupt value and process chains, the heterogeneity of actors...... involved contributes to a hazy definition of the phenomenon. In this work, Industry 4.0 is analyzed by analyzing into its influence on the plastics industry, with a focus on the injection molding technology. A new business model for the plastic industry is proposed, which fosters closer cooperation...... the paradigm of Industry 4.0 is able to disrupt the industry by decreasing machine downtime and offering remarkable improvements in machine up-time. The present research aims to highlighting some of the opportunities for the plastic industry enabled by the implementation of an Internet of Things architecture....

  2. Discussion on compact mechanism of air-stream and synchro-formed clamp plate impact molding

    Directory of Open Access Journals (Sweden)

    Zhenling WANG

    2004-11-01

    Full Text Available Applying the air impact molding method to mold the complicated pattern with wider opening surface and deeper concave, there always exist vaulted phenomenon and lower compactibility of sand mold over the entrance and the concave regions. Using the air-stream and synchro-formed clamp plate impact molding, however, this problem will be preferably solved. In this paper, the compact mechanism of the new molding method and the effect of some configuration factors, such as the area flowed by compressed air and the highness of the protruding block displacement around the diffluent clamp plate, on the compactibility of sand mold were discussed.

  3. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured...

  4. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  5. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, F.; Funatsu, A.; Yazawa, H. [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  6. Inhibitory effect of snake venom toxin on NF-κB activity prevents human cervical cancer cell growth via increase of death receptor 3 and 5 expression.

    Science.gov (United States)

    Lee, Hye Lim; Park, Mi Hee; Hong, Ji Eun; Kim, Dae Hwan; Kim, Ji Young; Seo, Hyen Ok; Han, Sang-Bae; Yoon, Joo Hee; Lee, Won Hyoung; Song, Ho Sueb; Lee, Ji In; Lee, Ung Soo; Song, Min Jong; Hong, Jin Tae

    2016-02-01

    We previously found that snake venom toxin inhibits nuclear factor kappa B (NF-κB) activity in several cancer cells. NF-κB is implicated in cancer cell growth and chemoresistance. In our present study, we investigated whether snake venom toxin (SVT) inhibits NF-κB, thereby preventing human cervical cancer cell growth (Ca Ski and C33A). SVT (0-12 μg/ml) inhibited the growth of cervical cancer cells by the induction of apoptotic cell death. These inhibitory effects were associated with the inhibition of NF-κB activity. However, SVT dose dependently increased the expression of death receptors (DRs): DR3, DR5 and DR downstream pro-apoptotic proteins. Exploration of NF-κB inhibitor (Phenylarsine oxide, 0.1 μM) synergistically further increased SVT-induced DR3 and DR5 expressions accompanied with further inhibition of cancer cells growth. Moreover, deletion of DR3 and DR5 by small interfering RNA significantly abolished SVT-induced cell growth inhibitory effects, as well as NF-κB inactivation. Using TNF-related apoptosis-inducing ligand resistance cancer cells (A549 and MCF-7), we also found that SVT enhanced the susceptibility of chemoresistance of these cancer cells through down-regulation of NF-κB, but up-regulation of DR3 and DR5. In vivo study also showed that SVT (0.5 and 1 mg/kg) inhibited tumor growth accompanied with inactivation of NF-κB. Thus, our present study indicates that SVT could be applicable as an anticancer agent for cervical cancer, or as an adjuvant agent for chemoresistant cancer cells.

  7. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy.

    Science.gov (United States)

    Smith, Jonathan M; Steel, David H W

    2015-08-07

    Postoperative vitreous cavity haemorrhage (POVCH) is a significant complication following vitrectomy for proliferative diabetic retinopathy (PDR). It delays visual recovery and can make further treatment difficult if the view of the fundus is significantly obscured. A number of interventions to reduce the incidence of POVCH have been proposed, including the perioperative use of anti-vascular endothelial growth factor (anti-VEGF). Anti-VEGFs reduce vascular proliferation and the vascularity of neovascular tissue, which is often the source of bleeding following vitrectomy. This updated review aimed to summarise the effects of anti-VEGF use to reduce the occurrence of POVCH after vitrectomy surgery for PDR. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 4), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to May 2015), PubMed (January 1966 to May 2015), EMBASE (January 1980 to May 2015), Latin American and Caribbean Health Sciences (LILACS) (January 1982 to May 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 26 May 2015. We included all randomised controlled trials (RCTs) and quasi-RCTs that looked at the use of anti-VEGFs and the incidence of POVCH in people undergoing vitrectomy for PDR. Both review authors independently assessed and extracted the data. We used standard methodological procedures expected by Cochrane.The primary outcomes of the review were the incidence of early and late POVCH following perioperative anti-VEGF administration. Secondary outcomes included best-corrected visual acuity at six months following

  8. Growth and structure of a young Aleppo pine planted forest after thinning for diversification and wildfire prevention

    Directory of Open Access Journals (Sweden)

    J. Ruiz-Mirazo

    2013-04-01

    Full Text Available Aim of study: In the Mediterranean, low timber-production forests are frequently thinned to promote biodiversity and reduce wildfire risk, but few studies in the region have addressed such goals. The aim of this research was to compare six thinning regimes applied to create a fuelbreak in a young Aleppo pine (Pinus halepensis Mill. planted forest.Area of study: A semiarid continental high plateau in south-eastern Spain.Material and Methods: Three thinning intensities (Light, Medium and Heavy were combined with two thinning methods: i Random (tree selection, and ii Regular (tree spacing. Tree growth and stand structure measurements were made four years following treatments.Main results: Heavy Random thinning successfully transformed the regular tree plantation pattern into a close-to-random spatial tree distribution. Heavy Regular thinning (followed by the Medium Regular and Heavy Random regimes significantly reduced growth in stand basal area and biomass. Individual tree growth, in contrast, was greater in Heavy and Medium thinnings than in Light ones, which were similar to the Control.Research highlights: Heavy Random thinning seemed the most appropriate in a youngAleppo pine planted forest to reduce fire risk and artificial tree distribution simultaneously. Light Regular thinning avoids understocking the stand and may be the most suitable treatment for creating a fuelbreak when the undergrowth poses a high fire risk.Keywords: Pinus halepensis; Mediterranean; Forest structure; Tree growth; Wildfire risk; Diversity.

  9. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  10. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... position was measured on the polymer μ-parts to evaluate filling behavior of the polymer melt flowing through μ-features. Experimental results obtained under different processing conditions were evaluated to correlate the process parameter levels influence on the selected responses. Results showed...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  11. Long fiber polymer composite property calculation in injection molding simulation

    Science.gov (United States)

    Jin, Xiaoshi; Wang, Jin; Han, Sejin

    2013-05-01

    Long fiber filled polymer composite materials have attracted a great attention and usage in recent years. However, the injection and compression molded long fiber composite materials possess complex microstructures that include spatial variations in fiber orientation and length. This paper presents the recent implemented anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation distribution[1] and a newly developed fiber breakage model[2] for predicting fiber length distribution in injection and compression molding simulation, and Eshelby-Mori-Tanaka model[3,4] with fiber-matrix de-bonding model[5] have been implemented to calculate the long fiber composite property distribution with predicted fiber orientation and fiber length distributions. A validation study on fiber orientation, fiber breakage and mechanical property distributions are given with injection molding process simulation.

  12. Injection molding tools with micro/nano-meter pattern

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for embedded a micrometer and/or nanometer pattern into an injection molding tool. In a first main aspect, a micro/nanometer structured imprinting device is applied in, or on, an active surface so as to transfer the micro/nanometer patterned structure...... to the tool while the imprinting device is, at least partly, within a cavity of the injection molding tool. In a second main aspect, a base plate with a micro/nanometer structured pattern positioned on an upper part is positioned on the active surface within the tool, the lower part of the base plate facing...... the tool, the active surface receiving the base plate being non-planar on a macroscopic scale. Both aspects enable a simple and effective way of transferring the pattern, and the pattern may be transferred on the active working site of tool immediately prior to molding without the need for extensive...

  13. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  14. Computer aided design of an injection mold for a gear

    OpenAIRE

    Bragado Cuesta, Samuel

    2017-01-01

    Realización del diseño de un molde de inyección plástica para un engranaje. Cálculo del material necesario al igual que dimensiones del molde. Realización del molde mediante el programa CATIA V5 con el ensamblaje y la realización de los planos. Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica en la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de Fabricación Grado en Ingeniería Mecáni...

  15. Method for Molding Structural Parts Utilizing Modified Silicone Rubber

    Science.gov (United States)

    Weiser, Erik S. (Inventor); Baucom, Robert M. (Inventor); Snoha, John J. (Inventor)

    1998-01-01

    This invention improves upon a method for molding structural parts from preform material. Preform material to be used for the part is provided. A silicone rubber composition containing entrained air voids is prepared. The silicone rubber and preform material assembly is situated within a rigid mold cavity used to shape the preform material to die desired shape. The entire assembly is heated in a standard heating device so that the thermal expansion of the silicone rubber exerts the pressure necessary to force the preform material into contact with the mold container. The introduction of discrete air voids into the silicone rubber allows for accurately controlled pressure application on the preform material at the cure temperature.

  16. Casting metal microstructures from a flexible and reusable mold

    Science.gov (United States)

    Cannon, Andrew H.; King, William P.

    2009-09-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10-100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool.

  17. Use of silicone hearing aid mold material in laryngotracheal reconstruction.

    Science.gov (United States)

    Heman-Ackah, Yolanda D; Sataloff, Robert T

    2005-10-01

    Endolaryngeal stenting in patients with irregularly shaped larynges can be challenging. In such cases, the use of a moldable yet reasonably rigid endolaryngeal stent is desirable. The purpose of this report is to describe our experience with silicone hearing aid material as a moldable endolaryngeal stent in a patient with an atypically shaped larynx. A patient with relapsing polychondritis that resulted in complete stenosis of the subglottic airway underwent laryngotracheal reconstruction. Moldable silicone, commonly used to prepare ear canal molds for hearing aids, was molded into the neo-endolarynx to serve as a custom-made endolaryngeal stent. The patient tolerated the moldable silicone stent well and had a patent airway with epithelialization 8 months after removal. Silicone mold material is a suitable substance for endolaryngeal stenting. It conforms to the configuration of the individual's airway, is tolerated well, can be removed relatively easily, and is a useful alternative to prefabricated stents in laryngotracheal reconstruction.

  18. Customized mold radiotherapy with prosthetic apparatus for oral cancers

    International Nuclear Information System (INIS)

    Noguchi, Tadahide; Tsuchiya, Yoshiyuki; Hayasaka, Junichi; Itoh, Hiroto; Jinbu, Yoshinori; Kusama, Mikio; Takahashi, Satoru; Nakazawa, Masanori

    2014-01-01

    Eight patients (6 males, 2 females; median age, 78 years; age range, 31-94 years) were treated by mold radiotherapy with a prosthetic apparatus for oral cancers between October 2006 and March 2013. The primary sites were the tongue in 3 cases, hard palate and buccal mucosa in 2 cases each, and oral floor in 1 case. The type of treatment consisted of radical radiotherapy and palliative radiotherapy in 2 cases each, and preoperative radiotherapy, postoperative radiotherapy, additional radiotherapy after external beam radiotherapy and systemic chemotherapy in 1 case each. Patients received 40-50 Gy in 8-10 fractions with mold radiotherapy. Two patients who received radical radiotherapy showed no signs of recurrence or metastasis. The present therapy contributed to patients' palliative, postoperative, and preoperative therapy. Mold radiotherapy with a prosthetic appliance was performed safely and was a useful treatment for several types of oral cancer. (author)

  19. Injection Molding and its application to drug delivery.

    Science.gov (United States)

    Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Gazzaniga, Andrea

    2012-05-10

    Injection Molding (IM) consists in the injection, under high pressure conditions, of heat-induced softened materials into a mold cavity where they are shaped. The advantages the technique may offer in the development of drug products concern both production costs (no need for water or other solvents, continuous manufacturing, scalability, patentability) and technological/biopharmaceutical characteristics of the molded items (versatility of the design and composition, possibility of obtaining solid molecular dispersions/solutions of the active ingredient). In this article, process steps and formulation aspects relevant to IM are discussed, with emphasis on the issues and advantages connected with the transfer of this technique from the plastics industry to the production of conventional and controlled-release dosage forms. Moreover, its pharmaceutical applications thus far proposed in the primary literature, intended as either alternative manufacturing strategies for existing products or innovative systems with improved design and performance characteristics, are critically reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Treatment principles for the management of mold infections.

    Science.gov (United States)

    Kontoyiannis, Dimitrios P; Lewis, Russell E

    2014-11-06

    Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  2. CT use for nasopharingeal molds realization in endocavitary brachytherapy

    International Nuclear Information System (INIS)

    Lopez, J. Torrecilla; Crispin, V.; Chust, M.; Guinot, J.; Arribas, L.; Mengual, J.; Carrasco, P.; Miragall, E.; Hernandez, A.; Guardino, C.; Carrascosa, M.; Cardenal, R.; Casana, M.; Prats, C.

    1996-01-01

    Purpose: We present the following procedure for the making of individual molds with dental silicone for endocavitary brachytherapy of nasopharingeal cancer aided by CT scan. Procedure: Head immobilization during the realization of nasopharynx CT. Planification of treatment using these CT images, to determine the optimum position of radioactive sources. Printing on paper CT images with the nasopharynx contoured walls and the radioactive sources position. Realization of the mold in plastiline with the aid of the cuts of printer paper cut out with the nasopharynx form. Obtaining of the negative of the mold of plastiline by means of the use of alginate. Placement of two number 20 rectal rigid catheters with metal malleable bars inside them, in order to give them an adequate form in relation to the previous carried out planning. Filling in of alginato negative, where rectal catheters were placed, with Provil MCD Bayer Dental, a silicone based material for precision impression. We recommend to crossing the catheters' end with a number 2 silk thread to secure the catheter. An end of the silk thread is left outside the mold in order to help the extraction at the end of application. We advise to carry out a neuroleptic anaesthesia for its insertion, for the purpose of achieving a soft palate suitable relaxation. It makes the insertion easier. Repeat CT with the mold and phantoms in position to know a definitive dose distribution calculation. Conclusion: This method avoids the necessity of general anaesthesia in the realization of individual molds of nasopharyx for endocavitary brachytherapy and it improves the implant dosimetry

  3. Applying dynamic mold temperature control to cosmetic package design

    Directory of Open Access Journals (Sweden)

    Hsiao Shih-Wen

    2017-01-01

    Full Text Available Owing to the fashion trend and the market needs, this study developed the eco-cushion compact. Through the product design and the advanced process technology, many issues have improved, for instance, the inconvenience of transportation, the lack of multiuse capability, the increase of costs, and the low yield rate. The eco-cushion compact developed in this study was high quality, low cost, and meets the requirements of the eco market. The study aimed at developing a reusable container. Dynamic mold temperature control was introduced in the injection modeling process. The innovation in the product was its multi-functional formula invention, eco-product design, one-piece powder case design, and multifunctional design in the big powder case, mold flow and development of dynamic mold temperature control. Finally, through 3D drawing and modeling, and computer assistance for mold flow and verification to develop and produce models. During the manufacturing process, in order to solve the problems of tightness and warping, development and manufacture of dynamic mold temperature control were introduced. This decreased the injection cycle and residual stress, and deformation of the products has reduced to less than 0.2 mm, and the air tightness increased. In addition, air leakage was less than 2% and the injection cycle decreased to at least 10%. The results of the study can be extended and applied on the future design on cosmetic package and an alternative can be proposed to solve the problems of air tightness and warping. In this study, dynamic mold temperature control is considered as a design with high price-performance ratio, which can be adopted on industrial application for practical benefit and improvement.

  4. Oxide Formation In Metal Injection Molding Of 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jang Jin Man

    2015-06-01

    Full Text Available The effects of sintering condition and powder size on the microstructure of MIMed parts were investigated using water-atomized 316L stainless steel powder. The 316L stainless steel feedstock was injected into micro mold with micro features of various shapes and dimensions. The green parts were debound and pre-sintered at 800°C in hydrogen atmosphere and then sintered at 1300°C and 1350°C in argon atmosphere of 5torr and 760torr, respectively. The oxide particles were formed and distributed homogeneously inside the sample except for the outermost region regardless of sintering condition and powder size. The width of layer without oxide particles are increased with decrease of sintering atmosphere pressure and powder size. The fine oxides act as the obstacle on grain growth and the high sintering temperature causes severe grain growth in micro features due to larger amount of heat gain than that in macro ones.

  5. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.

    Science.gov (United States)

    Choi, Gyung Ja; Kim, Jin-Cheol; Jang, Kyoung Soo; Cho, Kwang Yun; Kim, Heung Tae

    2008-01-01

    A fungal strain BCP, which parasitizes Botrytis cinerea gray mold pathogen, was isolated and identified as Acremonium strictum. BCP strain overgrew the colonies of B. cinerea and caused severe lysis of the host hyphae. Frequent penetration and hyphal growth of A. strictum BCP inside the mycelia of B. cinerea were observed under light microscopy. In addition, some morphological abnormalities such as granulation and vacuolation of the cytoplasm were observed in mycelia and spores of B. cinerea. In dual culture test, A. strictum BCP strongly inhibited the mycelial growth of several plant pathogenic fungi as well as B. cinerea. To our knowledge, this is the first report on mycoparasitism of Acremonium species on B. cinerea.

  6. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [ORNL; Chesser, Phillip C. [ORNL; Lind, Randall F. [ORNL; Sallas, Matthew R. [ORNL; Love, Lonnie J. [ORNL

    2018-01-01

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. and the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.

  7. Meta-Analyses of the Associations of Respiratory Health Effectswith Dampness and Mold in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Lei-Gomez, Quanhong; Mendell, Mark J.

    2006-01-01

    The Institute of Medicine (IOM) of the National Academy of Sciences recently completed a critical review of the scientific literature pertaining to the association of indoor dampness and mold contamination with adverse health effects. In this paper, we report the results of quantitative meta-analysis of the studies reviewed in the IOM report. We developed point estimates and confidence intervals (CIs) to summarize the association of several respiratory and asthma-related health outcomes with the presence of dampness and mold in homes. The odds ratios and confidence intervals from the original studies were transformed to the log scale and random effect models were applied to the log odds ratios and their variance. Models were constructed both accounting for the correlation between multiple results within the studies analyzed and ignoring such potential correlation. Central estimates of ORs for the health outcomes ranged from 1.32 to 2.10, with most central estimates between 1.3 and 1.8. Confidence intervals (95%) excluded unity except in two of 28 instances, and in most cases the lower bound of the CI exceeded 1.2. In general, the two meta-analysis methods produced similar estimates for ORs and CIs. Based on the results of the meta-analyses, building dampness and mold are associated with approximately 30% to 80% increases in a variety of respiratory and asthma-related health outcomes. The results of these meta-analyses reinforce the IOM's recommendation that actions be taken to prevent and reduce building dampness problems.

  8. Fiber-Based, Injection-Molded Optofluidic Systems

    DEFF Research Database (Denmark)

    Matteucci, Marco; Triches, Marco; Nava, Giovanni

    2015-01-01

    We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow...... optical fibers in a quick and precise manner, with a lateral alignment accuracy of 2.7 ± 1.8 μm. We report the production, assembly methods, and the characterization of the resulting injection-molded chips for Lab-on-Chip (LoC) applications. We demonstrate the versatility of this technology by carrying...

  9. Emergence of the Molds Other than Aspergillus in Immunocompromised Patients.

    Science.gov (United States)

    Arif, Sana; Perfect, John R

    2017-09-01

    Immunocompromised patients are at high risk for invasive fungal infections (IFIs); although Aspergillus remains the most common IFI caused by molds, other fungi, such as Mucorales, dematiaceous molds, and Fusarium spp, are being seen with increasing frequency. Presentations can vary, but sinopulmonary and disseminated infections are common. Our understanding of the pathogenesis of these infections is rudimentary. Fungal cultures and histopathology remain the backbone of diagnostics, as no good serologic markers are available. Polymerase chain reaction tests are being developed but currently remain investigational. Management of these infections is usually multidisciplinary, requiring surgical debridement along with antifungal therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fabrication of Functional Plastic Parts Using Nanostructured Steel Mold Inserts

    Directory of Open Access Journals (Sweden)

    Nicolas Blondiaux

    2017-06-01

    Full Text Available We report on the fabrication of sub-micro and nanostructured steel mold inserts for the replication of nanostructured immunoassay biochips. Planar and microstructured stainless steel inserts were textured at the sub-micron and nanoscale by combining nanosphere lithography and electrochemical etching. This allowed the fabrication of structures with lateral dimensions of hundreds of nanometers and aspect ratios of up to 1:2. Nanostructured plastic parts were produced by means of hot embossing and injection molding. Surface nanostructuring was used to control wettability and increase the sensitivity of an immunoassay.

  11. Automatic design of conformal cooling channels in injection molding tooling

    Science.gov (United States)

    Zhang, Yingming; Hou, Binkui; Wang, Qian; Li, Yang; Huang, Zhigao

    2018-02-01

    The generation of cooling system plays an important role in injection molding design. A conformal cooling system can effectively improve molding efficiency and product quality. This paper provides a generic approach for building conformal cooling channels. The centrelines of these channels are generated in two steps. First, we extract conformal loops based on geometric information of product. Second, centrelines in spiral shape are built by blending these loops. We devise algorithms to implement the entire design process. A case study verifies the feasibility of this approach.

  12. The study and fabrication of DLC micropattern on roll mold

    Science.gov (United States)

    Kwon, Young Woo; Lee, Tae Dong; Park, Yeong Min; Cho, Hyun; Kim, Jin Kon; Kim, Tae Gyu

    2015-03-01

    Diamond-like carbon (DLC) coating is becoming a promising protective coating layers due to its superior properties. In this study, instead of protective coating, DLC film was applied as the only component for micropattern then etched with lithography and lift-off process selectively. Furthermore, DLC film has been fabricated on aluminum roll mold. Then UV curing resin was applied to form the pattern on the polyethylene terephthalate (PET) film. The dimension and formation of the DLC micropattern on roll mold were analyzed. Moreover, the Raman spectroscopic of nitrogen-doped DLC film was analyzed.

  13. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  14. Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles.

    Science.gov (United States)

    Gladis, F; Eggert, A; Karsten, U; Schumann, R

    2010-01-01

    As algal growth on man-made surfaces impacts their appearance, biocides and surfaces with self-cleaning properties are widely used in the building and paint industries. The objective of this study was to evaluate the antialgal activity of two biocides (triazine and isothiazoline) and photocatalytic nanoparticles of zinc oxide (20-60 nm). An aeroterrestrial green, microalgal strain of the genus Stichococcus was chosen as the test organism. By comparing a set of different structural and physiological performance parameters, lethal and also sublethal (chronic) effects were determined. Even though the herbicide triazine effectively inhibited growth (EC50 = 1.6 micromol l(-1)) and photosynthetic performance, structural properties (eg membrane integrity) were unaffected at the EC100 (250 micromol l(-1)), hence this herbicide did not kill the algal cells. In contrast, and due to their multiple modes of action, isothiazoline and the photocatalytic nanoparticles (the latter activated with low UV radiation) severely impacted all performance and structural parameters.

  15. The effect of probiotics on broiler growth and intestinal morphology when used to prevent Campylobacter jejuni colonization

    Directory of Open Access Journals (Sweden)

    Lavinia Ştef

    2015-05-01

    Full Text Available The aim of this work was to establish the effect of probiotic microorganisms on growth performance and intestinal changes caused by Campylobacter jejuni colonization.In this respect, we used four probiotic microorganisms, namely: Lactobacillus paracasei JR, L. rhamnosus 15b, Y L. lactis and L. lactis FOA.The administration of probiotic microorganisms in different combinations and in different periods of growth does not significantly influence the bioproductive indices of broilers,that is,the total gain, feed intake and FCR (p>0.05. After studying the intestinal mucosa, it was concluded that the four microorganisms administered in broilers’s food determineschanges in the mucosa, inhibiting the development of Campylobacter jejuni,by the presence of smaller caliciform cells and the presence ofreduced leukocyte infiltration in the chorion of the mucosal.

  16. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    Science.gov (United States)

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neutralization of IL-8 prevents the induction of dermatologic adverse events associated with the inhibition of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Houtkamp, Mischa; Schuurhuis, Danita H

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance to treatm......Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance...... repeat dose treatment with HuMab-10F8, a neutralizing human antibody against IL-8, reduced the rash. Inhibition of IL-8 can therefore ameliorate dermatological adverse events induced by treatment with EGFR inhibitors....

  18. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  19. Quantifying mold biomass on gypsum board: Comparison of ergosterol and beta-N-acetylhexosaminidase as mold biomass parameters

    DEFF Research Database (Denmark)

    Reeslev, M.; Miller, M.; Nielsen, Kristian Fog

    2003-01-01

    Two mold species, Stachybotrys chartarum and Aspergillus versicolor, were inoculated onto agar overlaid with cellophane, allowing determination of a direct measurement of biomass density by weighing. Biomass density, ergosterol content, and beta-N-acetylhexosaminidase (3.2.1.52) activity were...... monitored from inoculation to stationary phase. Regression analysis showed a good linear correlation to biomass density for both ergosterol content and beta-N-acetylhexosaminidase activity. The same two mold species were inoculated onto wallpapered gypsum board, from which a direct biomass measurement...... density from ergosterol content and beta-N-acetylhexosaminidase activity were determined. The CFs were used to estimate the biomass density of the molds grown on gypsum board. The biomass densities estimated from ergosterol content and beta-N-acetylhexosaminidase activity data gave similar results...

  20. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  1. Affordable, Precision Reflector Mold Technology (PDRT08-029), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in replication mold technology that reduce material costs, grinding time, and polishing time would enable fabrication of large, precision molds and possibly...

  2. Farmer's Lung: Causes and Symptoms of Mold and Dust Induced Respiratory Illness

    Science.gov (United States)

    ... Youth VCE Publications / 442 / 442-602 Farmer's Lung: Causes and Symptoms of Mold and Dust Induced Respiratory ... Date August 18, 2014 Available As Farmer's Lung: Causes and Symptoms of Mold and Dust Induced Respiratory ...

  3. Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    Science.gov (United States)

    Lyu, Peisheng; Wang, Wanlin; Long, Xukai; Zhang, Kaixuan; Gao, Erzhuo; Qin, Rongshan

    2018-02-01

    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed.

  4. WHO 2006 child growth standards: implications for the prevalence of stunting and underweight-for-age in a birth cohort of Gabonese children in comparison to the Centers for Disease Control and Prevention 2000 growth charts and the National Center for Health Statistics 1978 growth references

    NARCIS (Netherlands)

    Schwarz, Norbert G.; Grobusch, Martin P.; Decker, Marie-Luise; Goesch, Julia; Poetschke, Marc; Oyakhirome, Sunny; Kombila, Davy; Fortin, Julien; Lell, Bertrand; Issifou, Saadou; Kremsner, Peter G.; Klipstein-Grobusch, Kerstin

    2008-01-01

    OBJECTIVES: To assess the proportion of children being stunted and underweight-for-age at 3, 9 and 15 months in Lambaréné, Gabon, using the WHO child growth standards released in 2006 as compared with the Centers for Disease Control and Prevention (CDC) 2000 and the National Center for Health

  5. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    International Nuclear Information System (INIS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-01-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  6. The effect of mold materials on the overlay accuracy of a roll-to-roll imprinting system using UV LED illumination within a transparent mold

    International Nuclear Information System (INIS)

    Choi, Sungwoo; Kook, YunHo; Kim, ChulHo; Yoo, SoonSung; Park, Kwon-Shik; Kim, Seok-min; Kang, Shinill

    2016-01-01

    Although several studies on the roll-to-roll (R2R) imprinting process have reported achieving flexible electronics, improving the alignment accuracy in the overlay process of R2R imprinting is recognized as the biggest problem for the commercialization of this technology. For an overlay technique with high alignment accuracy, it is essential to develop a roll mold with high positional accuracy. In this study, a method for fabricating a roll mold with high positional accuracy is proposed by wrapping a thin glass substrate flexible mold around the transparent roll base, because it can provide higher mechanical strength and thermal stability than a conventional polymer substrate. To confirm the usability of the proposed process, the prepared roll mold was used to fabricate a test pattern of thin-film transistor backplane for a rollable display. The positional and overlay accuracy of the roll mold with the proposed thin glass substrate flexible mold were compared with the roll mold with a conventional polymer substrate flexible mold. Large-area transparent flexible molds with a size of 470  ×  370 mm were fabricated by an ultraviolet (UV) imprinting process on thin glass and polyethylene terephthalate substrates, and these flexible molds were wrapped around a roll base of 125 mm radius through a precision alignment process. After an anti-adhesion treatment and the wrapping process, the roll mold with the polymer substrate showed a ∼180 μ m positional error, whereas the thin glass substrate showed a ∼30 μ m positional error. After the overlay process using the R2R imprinting system with the alignment system, an average overlay error of ∼3 μ m was obtained when the thin glass flexible wrapped roll mold was used, whereas a ∼22 μ m overlay error was obtained when the polymer substrate flexible wrapped roll mold was used. (paper)

  7. Allergy prevention.

    Science.gov (United States)

    Muche-Borowski, Cathleen; Kopp, Matthias; Reese, Imke; Sitter, Helmut; Werfel, Thomas; Schäfer, Torsten

    2010-09-01

    The further increase of allergies in industrialized countries demands evidence-based measures of primary prevention. The recommendations as published in the guideline of 2004 were updated and consented on the basis of a systematic literature search. Evidence from the period February 2003-May 2008 was searched in the electronic databases Cochrane and MEDLINE as well as in reference lists of recent reviews and by contacting experts. The retrieved citations were screened for relevance first by title and abstract and in a second step as full paper. Levels of evidence were assigned to each included study and the methodological quality of the studies was assessed as high or low. Finally the revised recommendations were formally consented (nominal group process) by representatives of relevant societies and organizations including a self-help group. Of originally 4556 hits, 217 studies (4 Cochrane Reviews, 14 meta-analyses, 19 randomized controlled trials, 135 cohort and 45 case-control studies) were included and critically appraised. Grossly unchanged remained the recommendations on avoiding environmental tobacco smoke, breast-feeding over 4 months (alternatively hypoallergenic formulas for children at risk), avoiding a mold-promoting indoor climate, vaccination according to current recommendations, and avoidance of furry pets (especially cats) in children at risk. The recommendation on reducing the house dust mite allergen exposure as a measure of primary prevention was omitted and the impact of a delayed introduction of supplementary food was reduced. New recommendations were adopted concerning fish consumption (during pregnancy / breast-feeding and as supplementary food in the first year), avoidance of overweight, and reducing the exposure to indoor and outdoor air pollutants. The revision of this guideline on a profound evidence basis led to (1) a confirmation of existing recommendations, (2) substantial revisions, and (3) new recommendations. Thereby it is possible

  8. Comparison Of Simulation Results When Using Two Different Methods For Mold Creation In Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Kaushikbhai C. Parmar

    2017-04-01

    Full Text Available Simulation gives different results when using different methods for the same simulation. Autodesk Moldflow Simulation software provide two different facilities for creating mold for the simulation of injection molding process. Mold can be created inside the Moldflow or it can be imported as CAD file. The aim of this paper is to study the difference in the simulation results like mold temperature part temperature deflection in different direction time for the simulation and coolant temperature for this two different methods.

  9. Injection molding of iPP samples in controlled conditions and resulting morphology

    International Nuclear Information System (INIS)

    Sessa, Nino; De Santis, Felice; Pantani, Roberto

    2015-01-01

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy

  10. Study on the performance of MoS2 modified PTFE composites by molding process

    Science.gov (United States)

    Ma, Weiqiang; Hou, Genliang; Bi, Song; Li, Ping; Li, Penghui

    2017-10-01

    MoS2 filled PTFE composites were prepared by cold pressing and sintering molding. The compressive and creep properties of composite materials were analyzed by controlling the size of molded composites during molding. The results show that the composites have the best compressive and creep resistance when the molding pressure is 55 MPa in the MoS2 composites with 15% mass fraction, which is a practical reference for the preparation of MoS2-modified PTFE composites.

  11. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    Science.gov (United States)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  12. The developmental impact of two first grade preventive interventions on aggressive/disruptive behavior in childhood and adolescence: an application of latent transition growth mixture modeling.

    Science.gov (United States)

    Petras, Hanno; Masyn, Katherine; Ialongo, Nick

    2011-09-01

    We examine the impact of two universal preventive interventions in first grade on the growth of aggressive/disruptive behavior in grades 1-3 and 6-12 through the application of a latent transition growth mixture model (LT-GMM). Both the classroom-centered and family-centered interventions were designed to reduce the risk for later conduct problems by enhancing the child behavior management practices of teachers and parents, respectively. We first modeled growth trajectories in each of the two time periods with separate GMMs. We then associated latent trajectory classes of aggressive/disruptive behavior across the two time periods using a transition model for the corresponding latent class variables. Subsequently, we tested whether the interventions had direct effects on trajectory class membership in grades 1-3 and 6-12. For males, both the classroom-centered and family-centered interventions had significant direct effects on trajectory class membership in grades 6-12, whereas only the classroom-centered intervention had a significant effect on class membership in grades 1-3. Significant direct effects for females were confined to grades 1-3 for the classroom-centered intervention. Further analyses revealed that both the classroom-centered and family-centered intervention males were significantly more likely than control males to transition from the high trajectory class in grades 1-3 to a low class in grades 6-12. Effects for females in classroom-centered interventions went in the hypothesized direction but did not reach significance. © Society for Prevention Research 2011

  13. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine.

    Science.gov (United States)

    Laue, Pauline; Bährs, Hanno; Chakrabarti, Shumon; Steinberg, Christian E W

    2014-06-01

    Allelochemical action against planktonic phototrophs is one central issue in freshwater ecology and quality management. To determine some basic mechanisms of this toxic action, we exposed the coccal green alga, Desmodesmus armatus, and the coccal cyanobacterium, Microcystis aeruginosa, in a batch culture well-supplied with carbon dioxide to increasing concentrations of the polyphenols tannic acid and gallic acid and the alkaloid gramine. The phototrophs were checked after 2d and at the end of the culture for biomass-based growth rates, cell volume, maximum quantum yield of photosystem II (ΦPSIImax), chlorophyll a content (chla) after 2d and at the end of the culture, and lipid peroxidation only at the end of the culture. During the culture, the pH rose from 7.64 to 10.95, a pH characteristic of eutrophic freshwater bodies during nuisance algal blooms. All xenobiotics reduced the growth rate, ΦPSIImax, and chla during the first 2d with M. aeruginosa being more sensitive to the polyphenols than D. armatus. The efficacy of the polyphenols declined with increasing pH, indicating potential polymerization and corresponding reduced bioavailability of the polyphenols. In contrast to the polyphenols, gramine increased its toxic action over time, independent of the prevailing pH. All exposures caused slight to severe lipid peroxidation (LPO) in the phototrophs. Hence, one mechanism of growth inhibition may be oxidative stress-mediated reduction in photosynthesis. The presented results suggest that in successful field trials with leachate, the prevailing environmental conditions may inactivate polyphenols and xenobiotics other than polyphenols may be more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform

    Science.gov (United States)

    Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin

    2018-04-01

    Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.

  15. Leach and mold resistance of essential oil metabolites

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Purified primary metabolites from essential oils were previously shown to be bioactive inhibitors of mold fungi on unleached Southern pine sapwood, either alone or in synergy with a second metabolite. This study evaluated the leachability of these compounds in Southern pine that was either dip- or vacuum-treated. Following laboratory leach tests, specimens were...

  16. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    Handling of numerous processing variables to control defects is a mammoth task that costs time, effort and money. This paper presents a simple and efficient way to study the influence of injection molding variables on sink marks using Taguchi approach. Using the Taguchi approach, optimal parameter settings and the ...

  17. Phase structure evolution during compression molding of compatibilized polymer blends

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Dimzoski, Bojan; Michálková, Danuše

    2012-01-01

    Roč. 51, č. 10 (2012), s. 2026-2033 ISSN 0022-2348 R&D Projects: GA AV ČR IAA200500903 Institutional research plan: CEZ:AV0Z40500505 Keywords : coalescence * compatibilization * compression molding Subject RIV: BJ - Thermodynamics Impact factor: 0.628, year: 2012

  18. Modified Silicone-Rubber Tooling For Molding Composite Parts

    Science.gov (United States)

    Baucom, Robert M.; Snoha, John J.; Weiser, Erik S.

    1995-01-01

    Reduced-thermal-expansion, reduced-bulk-modulus silicone rubber for use in mold tooling made by incorporating silica powder into silicone rubber. Pressure exerted by thermal expansion reduced even further by allowing air bubbles to remain in silicone rubber instead of deaerating it. Bubbles reduce bulk modulus of material.

  19. Introducing cellulose nanocrystals in sheet molding compounds (SMC)

    Science.gov (United States)

    Amir Asadi; Mark Miller; Sanzida Sultana; Robert J. Moon; Kyriaki Kalaitzidou

    2016-01-01

    The mechanical properties of short glass fiber/epoxy composites containing cellulose nanocrystals (CNC) made using sheet molding compound (SMC) manufacturing method as well as the rheological and thermomechanical properties of the CNC-epoxy composites were investigated as a function of the CNC content. CNC up to 1.4 wt% were dispersed in the epoxy to produce the resin...

  20. System for control of electroslag casting in a collar mold

    International Nuclear Information System (INIS)

    McEnerney , J.W.; Dewey, B.R.; Hutton, J.T.; David, S.A.

    1980-01-01

    This report describes the initial development of an electroslag casting control system. The main emphasis of our work and the results reported herein deal with the attempts to develop techniques for locating and controlling the liquid slag-metal interface. Thermocouples embedded in the mold wall provide a simple but accurate means for locating the interface

  1. Accelerated Colorimetric Micro-assay for Screening Mold Inhibitors

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2014-01-01

    Rapid quantitative laboratory test methods are needed to screen potential antifungal agents. Existing laboratory test methods are relatively time consuming, may require specialized test equipment and rely on subjective visual ratings. A quantitative, colorimetric micro-assay has been developed that uses XTT tetrazolium salt to metabolically assess mold spore...

  2. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  3. influence of molding water content on shear strength characteristic

    African Journals Online (AJOL)

    eobe

    INFLUENCE OF MOLDING WATER CONTENT ON SHEAR STRENGTH OF COMPACTED CEMENT KILN DUST, K. J. Osinub. K. J. Osinub. K. J. Osinubi, et al. Nigerian Journal of Technology,. Vol. 34, No. 2, April 2015 267 pavements or as waste containment materials. Therefore, recent studies have been geared towards.

  4. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  5. A flexible mold for double curved precast concrete elements

    NARCIS (Netherlands)

    Schipper, H.R.; Vambersky, J.N.J.A.

    2010-01-01

    The manufacturing of double curved precast concrete elements is still expensive, due to the high costs and limited possibilities for repetitive use of the molds or formwork. The goal of a PhD project recently initiated at TU Delft is to develop a production method that overcomes these difficulties

  6. Bestrijding Black Mold in geoculeerde rozenteelt 2008-2009

    NARCIS (Netherlands)

    Duyvesteijn, R.G.E.; Smits, A.P.; Werd, de H.A.E.; Breeuwsma, S.J.; Bent, van der J.; Meijer, H.; Kohrman, E.; Wijk, van D.; Boer, de M.

    2010-01-01

    Black Mold (Chalaropsis thielavioides) is een schimmel die in 2007 veel schade heeft veroorzaakt in de struikrozen. De schimmel infecteert de oculatiewond met als gevolg dat het oculatieoog niet aanslaat. Op sommige percelen ging tot wel 70% van de enten verloren. In een tweejarig PT project is

  7. Influence of Molding Water Content on Shear Strength Characteristic ...

    African Journals Online (AJOL)

    A laboratory investigation was carried out to determine the shear strength characteristics of compacted cement kiln dust treated lateritic soils for use in liners and covers with up to 12.5% cement kiln dust by dry weight of soil. Specimens were prepared at molding water contents of -2, 0, +2 and +4% of the optimum moisture ...

  8. Improved anti-stiction coating of SU-8 molds

    DEFF Research Database (Denmark)

    Lange, Jacob Moresco; Clausen, Casper Hyttel; Svendsen, Winnie Edith

    2010-01-01

    We have developed a simple method for the improved release of embossed poly(methyl methacrylate) (PMMA) as well as casted poly(dimethyl siloxane) (PDMS) from a SU-8 mold using vapor phase deposition of 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (FDTS). We have further investigated if prior breakag...

  9. New sources of grain mold resistance among accessions from Sudan

    Science.gov (United States)

    Fifty-nine sorghum accessions from Sudan were evaluated in replicated plots at Isabela, Puerto Rico, for resistance against Fusarium thapsinum, one of the causal agents of grain mold. The environmental conditions during this study, especially at and after physiological maturity were optimal for gra...

  10. Mold Susceptibility of Rapidly Renewable Building Materials Used in Wall Construction

    Science.gov (United States)

    2007-12-01

    definitive standards or regulations exist concerning mold, and due to a general fear of the unknown because of a lack of common knowledge of mold...Force Base, VA: United States Air Force Headquarter Air Combat Command. Pascoe, Elaine. (1999). Slime Molds and Fungi. Woodbridge, CT

  11. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Science.gov (United States)

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  12. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  13. Micro/nanoimprinting of glass under high temperature using a CVD diamond mold

    International Nuclear Information System (INIS)

    Komori, M; Uchiyama, H; Takebe, H; Kusuura, T; Kobayashi, K; Kuwahara, H; Tsuchiya, T

    2008-01-01

    For micro/nanoimprinting of glass, the appropriate combination of glass and mold material was clarified by an adhesion test using chemical vapor deposition (CVD) diamond, silicon, glassy carbon and sintered nitride ceramics as the mold material, and Pyrex, TEMPAX and BK7 as the glass material. The result of the adhesion test shows that CVD diamond is suitable for imprinting with a wide variety of glass materials under various temperature conditions. The method of fabricating the CVD diamond mold using focused ion beam (FIB) was examined, and it was clarified that the grain boundary of CVD diamond has little effect on the surface condition. Glass micro/nanoimprinting was performed using the CVD diamond mold. The effect of the molding conditions, such as the molding temperature and mold-release temperature, on the height of glass transcription was clarified. The effects of pattern size and shape were also investigated. On the basis of the results, a method of selecting the molding conditions to obtain the desired transcript height was developed. In this research, the entire flow of glass micro/nanoimprinting, including mold material selection, the mold fabrication process and molding process, was proposed experimentally, and the selection method of the molding conditions was shown

  14. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  15. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Science.gov (United States)

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  16. Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Masks

    NARCIS (Netherlands)

    Nijland, Maarten; George, A.; Thomas, S.; Houwman, Evert Pieter; Xia, J.; Blank, David H.A.; Rijnders, Augustinus J.H.M.; Koster, Gertjan; ten Elshof, Johan E.

    2014-01-01

    A process is developed that combines soft lithographic molding with pulsed laser deposition (PLD) to make heteroepitaxial patterns of functional perovskite oxide materials. Micro- and nanostructures of sacrificial ZnO are made by micro molding in capillaries (MiMiC) and nano transfer molding,

  17. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.

    Science.gov (United States)

    Zhang, Jian; Jia, Jinpeng; Kim, Jimin P; Shen, Hong; Yang, Fei; Zhang, Qiang; Xu, Meng; Bi, Wenzhi; Wang, Xing; Yang, Jian; Wu, Decheng

    2017-05-01

    Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease

    Science.gov (United States)

    de Oliveira, Fabiane L.; Araújo-Jorge, Tania C.; de Souza, Elen M.; de Oliveira, Gabriel M.; Degrave, Wim M.; Feige, Jean-Jacques

    2012-01-01

    Background Chagas disease induced by Trypanosoma cruzi (T. cruzi) infection is a major cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. Transforming Growth Factor beta (TGFß) has been involved in several regulatory steps of T. cruzi invasion and in host tissue fibrosis. GW788388 is a new TGFß type I and type II receptor kinase inhibitor that can be orally administered. In the present work, we studied its effects in vivo during the acute phase of experimental Chagas disease. Methodology/Principal Findings Male Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically. We found that this compound given once 3 days post infection (dpi) significantly decreased parasitemia, increased survival, improved cardiac electrical conduction as measured by PR interval in electrocardiography, and restored connexin43 expression. We could further show that cardiac fibrosis development, evaluated by collagen type I and fibronectin expression, could be inhibited by this compound. Interestingly, we further demonstrated that administration of GW788388 at the end of the acute phase (20 dpi) still significantly increased survival and decreased cardiac fibrosis (evaluated by Masson's trichrome staining and collagen type I expression), in a stage when parasite growth is no more central to this event. Conclusion/Significance This work confirms that inhibition of TGFß signaling pathway can be considered as a potential alternative strategy for the treatment of the symptomatic cardiomyopathy found in the acute and chronic phases of Chagas disease. PMID:22720109

  19. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  20. 17β-estradiol-induced growth of triple-negative breast cancer cells is prevented by the reduction of GPER expression after treatment with gefitinib.

    Science.gov (United States)

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2017-02-01

    Triple-negative breast cancers (TNBCs) are neither susceptible to endocrine therapy due to a lack of estrogen receptor α expression nor trastuzumab. TNBCs frequently overexpress epidermal growth factor receptor (EGFR) and membrane bound estrogen receptor, GPER. To a certain extent the growth of TNBCs is stimulated by 17β-estradiol via GPER. We analyzed whether inhibition of EGFR by gefitinib reduces the expression of GPER and subsequent signal transduction in TNBC cells. Dependence of proliferation on 17β-estradiol was determined using Alamar Blue assay. Expression of GPR30 and activation of c-src, EGFR and cAMP-responsive element binding (CREB) protein by 17β-estradiol was analyzed by western blotting. Expression of c-fos, cyclin D1 and aromatase was determined using RT-PCR. Gefitinib reduced GPER expression concentration‑ and time‑dependently. In HCC70 cells, GPER expression was reduced to 15±11% (p<0.05) after treatment with 200 nM gefitinib for four days, and in HCC1806 cells GPER expression was reduced to 39±5% (p<0.01) of the control. 17β-estradiol significantly increased the percentage of HCC1806 cells within 7 days to 145±29% of the control (HCC70, 110±8%). This increase in cell growth was completely prevented in both TNBC cell lines after GPR30 expression was downregulated by treatment with 200 nM gefitinib. In HCC1806 cells, activation of c-src was increased by 17β-estradiol to 350±50% (p<0.01), and gefitinib reduced src activation to 110%. Similar results were obtained in the HCC70 cells. Phosphorylation of EGFR increased to 240±40% (p<0.05) in the HCC1806 cells treated with 17β-estradiol (HCC70, 147±25%). Gefitinib completely prevented this activation. Phosphorylation of CREB and induction of c-fos, cyclin D1 and aromatase expression by 17β-estradiol were all prevented by gefitinib. These experiments conclusively show that reduction of GPER expression is a promising therapeutic approach for TNBC.

  1. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  2. Experimental Study on the Application as the Mold Release Agent of a Chemically Adsorbed Fluorocarbon Film

    Science.gov (United States)

    Yamamoto, Hiroyuki; Ohkubo, Yuji; Ogawa, Kazufumi; Utsumi, Kunihiro

    In this study, the use of an extremely thin and chemically adsorbed fluorocarbon film with no influences on the dimension accuracy of the mold geometries on an injection mold (The thickness is about 1 nanometer order.) was experimentally studied as a great releasing agent to reduce the ejection resistance without any influences on the dimensional accuracy of the mold geometries. As a result, this surface treatment on the mold was practically confirmed not only to be very beneficial for the polymers those are difficult to release from the mold surface such as silicone, urethane and elastomers, but also to be useful for making high precision products such as optical components and chemical chips.

  3. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  4. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    Science.gov (United States)

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  5. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-01-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  6. Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action.

    Science.gov (United States)

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2015-09-01

    Cinnamic acid (CA) is an organic acid and is widely used in food industry as a common food additive. Previous studies showed that CA has the antimicrobial activity in vitro, but little is known about the effect of CA on controlling the fruit decay in vivo. In present study, we showed that application of CA was significantly effective on controlling the gray mold of table grape caused by Botrytis cinerea. CA can directly inhibit the mycelial growth of B. cinerea on potato dextrose agar plates. The mechanisms by which CA inhibited fungal growth were assayed by staining the spores with fluorescent dyes propidium iodide and 7-dichlorodihydrofluorescein diacetate, respectively. The results indicated that CA can damage the integrity of plasma membrane and induce the intracellular reactive oxygen species level of B. cinerea which were responsible for the reduction of growth rate. Meanwhile, CA treatment significantly stimulated the activities of peroxidase and polyphenol oxidase which were closely related to the resistance of plant. Taken together, this study suggested that CA was effective on controlling the gray mold of table grape in postharvest period by inhibiting the growth of pathogen and inducing the resistance of host.

  7. Chemo prevention of Tea Polyphenols against Tumor Growth of Hepato-Colon Cancer Induced by Azoxy methane in Rats

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.

    2008-01-01

    This investigation was conducted to evaluate the chemo prevention of tea polyphenols as anticancer agent in rats which were injected with azoxy methane (AOM) which is a potent hepato-colon carcinogen agents in rodents. The obtained data revealed a significant elevation in serum tumor markers, carcino-embryonic antigen (CEA), alpha-fetoprotein (AFP) and cancer antigen (CA 1 9.9) in carcinogenic rats in comparison to their corresponding normal control ones. Also, there was a significant increase in the content of cytochrome P 4 50 and the activity of alcohol dehydrogenase (ADH) in both liver and colon as well as a significant elevation in the activities of methoxyresorufin-O-dealkylase (MRD), ethoxyresorutin-O-dealkylase (ERD) and pentoxyresorufin-O- dealkylase (PRD) in liver microsomes. While, glutathione content (GSH) and glutathione peroxidase (Gp x ) activity were decreased significantly in liver and colon as a result of cancer induction. On the other hand, the supplementation of black or green tea before induction of cancer in rats led to a considerable correction in all previous parameters studied. These amelioration effects dependent on magic biochemical properties of flavanols (catechins) and type of tea. In conclusion, tea polyphenols have appreciable anti-cancer efficacy on hepato colon cancer in rats. The underlying mechanisms of through which tea counteracted hepato-colon cancer were discussed

  8. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor

    Science.gov (United States)

    Yoda, Kazutoyo; Miyazawa, Kenji; Hosoda, Masataka; Hiramatsu, Masaru; Yan, Fang; He, Fang

    2014-01-01

    Background Fermented milk is considered one of the best sources for efficient consumption of probiotic strains by hosts to promote good health. The purpose of this study was to investigate the effects of orally administering LGG-fermented milk (LGG milk) on intestinal inflammation and injury and to study the mechanisms of LGG milk's action. Methods LGG milk and non-LGG-fermented milk (non-LGG milk) were administered through gavage to mice before and during dextran sodium sulfate (DSS)-induced intestinal injury and colitis. Inflammatory/injury score and colon length were assessed. Intestinal epithelial cells were treated with the soluble fraction of LGG milk to detect its effects on the epidermal growth factor receptor (EGFR) and its down stream target, Akt activation, cytokine-induced apoptosis, and hydrogen peroxide (H2O2)-induced disruption of tight junctions. Results LGG milk treatment significantly reduced DSS-induced colonic inflammation and injury, and colon shortening in mice, compared to that in non-LGG milk-treated and untreated mice. The soluble fraction of LGG milk, but not non-LGG milk, stimulated activation of EGFR and Akt in a concentration-dependent manner, suppressed cytokine-induced apoptosis, and attenuated H2O2-induced disruption of tight junction complex in the intestinal epithelial cells. These effects of LGG milk were blocked by the EGFR kinase inhibitor. LGG milk, but not non-LGG milk, contained two soluble proteins, p40 and p75, which have been reported to promote survival and growth of intestinal epithelial cells through activation of EGFR. Depletion of p40 and p75 from LGG milk abolished the effects of LGG milk on prevention of cytokine-induced apoptosis and H2O2-induced disruption of tight junctions. Conclusions These results suggest that LGG milk may regulate intestinal epithelial homeostasis and potentially prevent intestinal inflammatory diseases through activation of EGFR by LGG-derived proteins. PMID:23468308

  9. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor.

    Science.gov (United States)

    Yoda, Kazutoyo; Miyazawa, Kenji; Hosoda, Masataka; Hiramatsu, Masaru; Yan, Fang; He, Fang

    2014-02-01

    Fermented milk is considered one of the best sources for efficient consumption of probiotic strains by hosts to promote good health. The purpose of this study was to investigate the effects of orally administering LGG-fermented milk (LGG milk) on intestinal inflammation and injury and to study the mechanisms of LGG milk's action. LGG milk and non-LGG-fermented milk (non-LGG milk) were administered through gavage to mice before and during dextran sodium sulfate (DSS)-induced intestinal injury and colitis. Inflammatory/injury score and colon length were assessed. Intestinal epithelial cells were treated with the soluble fraction of LGG milk to detect its effects on the epidermal growth factor receptor (EGFR) and its downstream target, Akt activation, cytokine-induced apoptosis, and hydrogen peroxide (H2O2)-induced disruption of tight junctions. LGG milk treatment significantly reduced DSS-induced colonic inflammation and injury, and colon shortening in mice, compared to that in non-LGG milk-treated and -untreated mice. The soluble fraction of LGG milk, but not non-LGG milk, stimulated the activation of EGFR and Akt in a concentration-dependent manner, suppressed cytokine-induced apoptosis, and attenuated H2O2-induced disruption of tight junction complex in the intestinal epithelial cells. These effects of LGG milk were blocked by the EGFR kinase inhibitor. LGG milk, but not non-LGG milk, contained two soluble proteins, p40 and p75, that have been reported to promote survival and growth of intestinal epithelial cells through the activation of EGFR. Depletion of p40 and p75 from LGG milk abolished the effects of LGG milk on prevention of cytokine-induced apoptosis and H2O2-induced disruption of tight junctions. These results suggest that LGG milk may regulate intestinal epithelial homeostasis and potentially prevent intestinal inflammatory diseases through activation of EGFR by LGG-derived proteins.

  10. Alveolar Molding Effect in Infants With Unilateral Cleft Lip and Palate: Comparison of Two- and Three-Dimensional Measurements.

    Science.gov (United States)

    Lim, Won Hee; Park, Eun Woo; Chae, Hwa Sung; Kwon, Soon Man; Jung, Hoi-In; Baek, Seung-Hak

    2017-06-01

    The purpose of this study was to compare the results of two- (2D) and three-dimensional (3D) measurements for the alveolar molding effect in patients with unilateral cleft lip and palate. The sample consisted of 23 unilateral cleft lip and palate infants treated with nasoalveolar molding (NAM) appliance. Dental models were fabricated at initial visit (T0; mean age, 23.5 days after birth) and after alveolar molding therapy (T1; mean duration, 83 days). For 3D measurement, virtual models were constructed using a laser scanner and 3D software. For 2D measurement, 1:1 ratio photograph images of dental models were scanned by a scanner. After setting of common reference points and lines for 2D and 3D measurements, 7 linear and 5 angular variables were measured at the T0 and T1 stages, respectively. Wilcoxon signed rank test and Bland-Altman analysis were performed for statistical analysis. The alveolar molding effect of the maxilla following NAM treatment was inward bending of the anterior part of greater segment, forward growth of the lesser segment, and decrease in the cleft gap in the greater segment and lesser segment. Two angular variables showed difference in statistical interpretation of the change by NAM treatment between 2D and 3D measurements (ΔACG-BG-PG and ΔACL-BL-PL). However, Bland-Altman analysis did not exhibit significant difference in the amounts of change in these variables between the 2 measurements. These results suggest that the data from 2D measurement could be reliably used in conjunction with that from 3D measurement.

  11. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    Science.gov (United States)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  12. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  13. Molding and Spring-Back Effect Analysis for Large Arc of ITER Side Correction Coils

    International Nuclear Information System (INIS)

    Wen Wei; Wu Jiefeng; Xia Shibo; Li Bo; Chen Wenge

    2010-01-01

    A finite element analysis (FEM) simulation model for large arc of International Thermonuclear Experimental Reactor (ITER) Side correction coils by molding was established.Processes including molding and spring-back effect after being molded were simulated. The distribution of stress, strain on the inner and outer faces of conductor were gained, and the value of spring-back after being molded was obtained. One set of molding equipment was designed and manufactured, and the value of spring-back with molds of different radiuses by using this equipment was obtained. The experimental results show that the FEM simulation model is correct and molding is a feasible method for the manufacturing of ITER Side correction coils. (authors)

  14. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  15. [Acidic fibroblast growth factor for preventing motor endplate degeneration and muscular atrophy after motor nerve injury: a morphological and electrophysiological study].

    Science.gov (United States)

    Yang, Shao-an; Jin, An-min; Zou, Xiao-ying; Xiao, Xiao-tao; Xiao, Sha

    2006-03-01

    To explore measures to prevent motor endplate degeneration and muscular atrophy after motor nerve injury. Thirty Sprague-Dawley rats were randomized into 3 equal groups. In two of the groups, the right common peroneal nerves of the rats were transected and immediately sutured with implantation of collagen gel carrier of acidic fibroblast growth factor (aFGF) or the empty carrier into the denervated tibialis anterior muscles. In the control group, the transected nerves were sutured without implantation. Six weeks after the operation, morphological and electrophysiological examinations were performed. In the control rats and those with empty collagen gel carrier implantation, obvious motor endplate degeneration and muscular atrophy occurred, which were not obvious in rats receiving aFGF carrier implantation. The decrement of repetitive nerve stimulation was significantly greater in the former two groups than in the latter. Implantation of collagen gel carrier of aFGF may prevent motor endplate degeneration and facilitate functional recovery of the neuromuscular junction after motor nerve injury.

  16. Enoxaparin for the prevention of preeclampsia and intrauterine growth restriction in women with a prior history - an open-label randomised trial (the EPPI trial): study protocol.

    Science.gov (United States)

    Groom, K M; McCowan, L M; Stone, P R; Chamley, L C; McLintock, C

    2016-11-22

    Preeclampsia and intrauterine fetal growth restriction (IUGR) are two of the most common causes of maternal and perinatal morbidity and mortality. Current methods of predicting those at most risk of these conditions remain relatively poor, and in clinical practice past obstetric history remains the most commonly used tool. Aspirin and, in women at risk of preeclampsia only, calcium have been demonstrated to have a modest effect on risk reduction. Several observational studies and randomised trials suggest that low molecular weight heparin (LMWH) therapy may confer some benefit. This is a multicentre open label randomised controlled trial to determine the effect of the LMWH, enoxaparin, on the prevention of recurrence of preeclampsia and/or IUGR in women at high risk due to their past obstetric history in addition to standard high risk care for all participants. A singleton pregnancy >6 +0 and 12 weeks having; (1) preeclampsia delivered preeclampsia). The primary outcome is preeclampsia and/or SGA prevention of placental mediated conditions. ACTRN12609000699268 Australian New Zealand Clinical Trials Registry. Date registered 13/Aug/2009 (prospective registration).

  17. Treatment of erythrocytes with the 2-cys peroxiredoxin inhibitor, Conoidin A, prevents the growth of Plasmodium falciparum and enhances parasite sensitivity to chloroquine.

    Directory of Open Access Journals (Sweden)

    Mariana Brizuela

    Full Text Available The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2, which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl-1,4-dioxide-quinoxaline; BBMQ, has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ, an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.

  18. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies.

    Science.gov (United States)

    McCannel, Colin A

    2011-04-01

    To report the rates of endophthalmitis and the spectrum of causative organisms after intravitreal injection of anti-vascular endothelial growth factor agents and possible prevention strategies. Meta-analysis of the U.S. literature from 2005 to 2009 reporting endophthalmitis bacterial isolates after intravitreal injection of anti-vascular endothelial growth factor agents and comparison with reports of endophthalmitis bacterial isolates after intraocular surgery in the United States. Endophthalmitis after intravitreal injection occurred in 52 of 105,536 injections (0.049%) (95% confidence interval [CI], 0.038-0.065%). Among 50 cases of endophthalmitis with bacterial culture isolates, 24 (48.0% [95% CI, 34.8-61.5%]) were culture negative and 26 (52% [95% CI, 38.5-65.2%]) were culture positive. Among the 26 culture-positive isolates, causative organisms were coagulase-negative Staphylococcus in 17 cases (65.4% [95% CI, 46.0-80.6%]), Streptococcus species in 8 cases (30.8% [95% CI, 16.5-50.2%]), and Bacillus cereus in 1 case (3.8% [95% CI, 0.9-19.0%]). Streptococcus species were significantly more frequent after intravitreal injection than after intraocular surgery in the Endophthalmitis Vitrectomy Study (29 of 226 isolates, 9.0% [95% CI, 6.3-12.6%], P = 0.005), a report on clear corneal cataract surgery endophthalmitis (6 of 73 isolates, 8.2% [95% CI, 3.9-16.8%], P = 0.022), and a report on postvitrectomy endophthalmitis with no cases of Streptococcus species. Streptococcal isolates are approximately three times more frequent after intravitreal anti-vascular endothelial growth factor injection than after intraocular surgery. Strategies to consider minimizing oropharyngeal droplet transmission may include avoiding talking, coughing, and sneezing or wearing surgical masks.

  19. Measurement of solidification and melting behavior of resin in injection molding and detection of flaws molded parts by using ultrasonic waves

    International Nuclear Information System (INIS)

    Nishiwaki, Nobuhiko; Hori, Sankei; Arai, Takeshi; Yoshida, Keniti; Mineo, Kazusige

    1997-01-01

    Injection molding of thermoplastics is widely used in many industries. However, it is not so easy to design the mold and to determine the optimal injection conditions. Therefore, a number of CAR mold design software packages for simulating the injection molding process have been developed. In order to confirm the results obtained from CAE, it is necessary to compare the numerical results with the experimental ones. In practice, the filling behavior has been observed with an optical visualization technique, but the solidification behavior of melted resin filled into the cavity has not yet been observed. It has been indirectly detected by measuring the pressure in the mold cavity. On the other hand, the melting behavior of solid resin in the barrel of an infection molding machine has influence on the quality of a molded part. Therefore, it is important to observe the melting behavior of solid resin in the barrel. In this study a method for measuring the solidification behavior in the cavity and the melting behavior in the barrel have been developed by using ultrasonic waves. Moreover, a method of detecting a flaw or a different material included in the molded part has been developed by using ultrasonic waves. Especially, a flaw close to the surface of the molded part can be detected by separating the flaw echo from the surface echo of the molded part. It was determined that the thickness of the solid layer of the melted resin filled into the cavity can be measured by using ultrasonic waves. The melting behavior of the resin on the barrel surface can be observed by measuring the amplitude of the reflected echo on the interface between the barrel and resin. Moreover, the flaw close to the surface of the molded part can be detected by using the ultrasonic waves.

  20. Baseline placental growth factor levels for the prediction of benefit from early aspirin prophylaxis for preeclampsia prevention.

    Science.gov (United States)

    Moore, Gaea S; Allshouse, Amanda A; Winn, Virginia D; Galan, Henry L; Heyborne, Kent D

    2015-10-01

    Placental growth factor (PlGF) levels early in pregnancy are lower in women who ultimately develop preeclampsia. Early initiation of low-dose aspirin reduces preeclampsia risk in some high risk women. We hypothesized that low PlGF levels may identify women at increased risk for preeclampsia who would benefit from aspirin. Secondary analysis of the MFMU High-Risk Aspirin study including singleton pregnancies randomized to aspirin 60mg/d (n=102) or placebo (n=72), with PlGF collected at 13w 0d-16w 6d. Within the placebo group, we estimated the probability of preeclampsia by PlGF level using logistic regression analysis, then determined a potential PlGF threshold for preeclampsia prediction using ROC analysis. We performed logistic regression modeling for potential confounders. ROC analysis indicated 87.71pg/ml as the threshold between high and low PlGF for preeclampsia-prediction. Within the placebo group high PlGF weakly predicted preeclampsia (AUC 0.653, sensitivity/specificity 63%/66%). We noted a 2.6-fold reduction in preeclampsia with aspirin in the high-PlGF group (12.15% aspirin vs 32.14% placebo, p=0.057), but no significant differences in preeclampsia in the low PlGF group (21.74% vs 15.91%, p=0.445). Unlike other studies, we found that high rather than low PlGF levels were associated with an increased preeclampsia risk. Low PlGF neither identified women at increased risk of preeclampsia nor women who benefitted from aspirin. Further research is needed to determine whether aspirin is beneficial in women with high PlGF, and whether the paradigm linking low PlGF and preeclampsia needs to be reevaluated. High-risk women with low baseline PlGF, a risk factor for preeclampsia, did not benefit from early initiation of low-dose aspirin. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.