WorldWideScience

Sample records for prevent cold-shock membrane

  1. Use of spin labels and electron spin resonance spectroscopy to characterize membranes of bovine sperm: effect of butylated hydroxytoluene and cold shock

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstedt, R.H.; Amann, R.P.; Rucinsky, T.; Morse, P.D. II; Lepock, J.; Snipes, W.; Keith, A.D.

    1976-05-01

    Spin label probes were used in conjunction with measurements of metabolic rate and electron microscopy to characterize bovine sperm membranes. Aqueous compartments, membrane hydrocarbon zones and lipid : water interfaces were studied separately using appropriate spin labels. For sperm suspended in aqueous medium, the cold shock associated with rapid cooling from room temperature to 0/sup 0/ increased membrane permeability. This membrane damage was readily detected using spin labels but was not detected using thin section electron microscopy. This change was prevented by the addition of butylated hydroxy toluene (BHT). BHT provided partial protection against further damage caused by freezing sperm on solid CO/sub 2/. ESR techniques provide a rapid means to quantify the changes in sperm membranes occurring during the epididymal maturation of sperm and subsequent events within the female tract leading to fertilization. The technique also could be used to assess damage to sperm, ova or embryos during preparation for storage in cryoprotective diluents.

  2. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  3. Cold Shock Proteins: a Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia

    Directory of Open Access Journals (Sweden)

    Riikka Keto-Timonen

    2016-07-01

    Full Text Available Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp as a response to rapid temperature downshift (cold shock. During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0ºC and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.

  4. RNA-Seq-based analysis of the physiologic cold shock-induced changes in Moraxella catarrhalis gene expression.

    Directory of Open Access Journals (Sweden)

    Violeta Spaniol

    Full Text Available BACKGROUND: Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS: In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION: Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.

  5. RESEARCH NOTE Identification of genes involved in cold-shock ...

    Indian Academy of Sciences (India)

    Navya

    2017-01-04

    Jan 4, 2017 ... A rapid decline in temperature poses a major challenge for poikilothermic fish, as their entire metabolism depends on ambient temperature. We compared the gene expression of rainbow trout (Oncorhynchus mykiss) having undergone such a cold shock (0 °C) to a control (5 °C) using microarrays and ...

  6. Differential cold-shock resistance among acclimated European mussel populations

    NARCIS (Netherlands)

    Jansen, J.M.; Wendelaar Bonga, S.E.; Hummel, H.

    2007-01-01

    To study differential cold-shock resistance of marine mussel populations (Mytilus spp.) from different climatic regions in Europe, we sampled 12 populations, ranging from 43 to 58°N. Minimum critical temperatures for aerobic metabolism (CTmin) were determined before and after 3 months of common

  7. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... was observed only in bacterial strains isolated from temperate region and negligible or no expression was observed in bacterial ... immunological tool for the identification of CSP from diversified microorganisms. Key words: Cold shock ..... the Cyanobacterium Anabaena variables M3.Nucleic acid Res., 23:.

  8. Influence of selected factors on bovine spermatozoa cold shock resistance

    Directory of Open Access Journals (Sweden)

    Luděk Stádník

    2015-01-01

    Full Text Available The objectives of this study were to determine the effects of sire, extender, and addition of Low Density Lipoprotein (LDL to extenders used on the percentage rate of spermatozoa survival after cold shock. Two groups of extenders were compared: without LDL addition (control variants and LDL enriched (experimental variants. Three extenders were used: AndroMed®, Bioxcell®, and Triladyl®. Experimental variants included 4–8% LDL addition into the AndroMed® and Bioxcell® extenders, and 6–10% LDL addition into the Triladyl® extender. In total, 12 samples of fresh semen were collected from 4 bulls during a period of 8 weeks. Bovine spermatozoa cold shock resistance (1 ± 1 °C, 10 min was evaluated by the percentage rate of live sperm using eosin-nigrosine staining immediately and after heat incubation (37 ± 1 °C, 120 min. The results showed the effect of sire as important and individual differences between selected sires in their sperm resistance against cold shock were confirmed. AndroMed® and Bioxcell® were found to be providing better protection of bull semen to cold shock compared to Triladyl® due to lower decline of live sperm proportion. Our results detected a positive effect of LDL addition on sperm resistance against cold shock, especially on lower decrease of live sperm percentage rate after 120 min of the heat test (P < 0.05. Further studies are needed to assess the optimal concentration of LDL in various kinds of extenders as well to state ideal time and temperature conditions for ensuring LDL reaction with sperm.

  9. Cold Shock as a Screen for Genes Involved in Cold Acclimatization in Neurospora crassa.

    Science.gov (United States)

    Watters, Michael K; Manzanilla, Victor; Howell, Holly; Mehreteab, Alexander; Rose, Erik; Walters, Nicole; Seitz, Nicholas; Nava, Jacob; Kekelik, Sienna; Knuth, Laura; Scivinsky, Brianna

    2018-03-21

    When subjected to rapid drops of temperature (cold shock), Neurospora responds with a temporary shift in its morphology. This report is the first to examine this response genetically. We report here the results of a screen of selected mutants from the Neurospora knockout library for alterations in their morphological response to cold shock. Three groups of knockouts were selected to be subject to this screen: genes previously suspected to be involved in hyphal development as well as knockouts resulting in morphological changes; transcription factors; and genes homologous to E. coli genes known to alter their expression in response to cold shock. A total of 344 knockout strains were subjected to cold shock. Of those, 118 strains were identified with altered responses. We report here the cold shock morphologies and GO categorizations of strains subjected to this screen. Of strains with knockouts in genes associated with hyphal growth or morphology, 33 of 131 tested (25%) showed an altered response to cold shock. Of strains with knockouts in transcription factor genes, 30 of 145 (20%) showed an altered response to cold shock. Of strains with knockouts in genes homologous to E. coli genes which display altered levels of transcription in response to cold shock, a total of 55 of 68 tested (81%) showed an altered cold shock response. This suggests that the response to cold shock in these two organisms is largely shared in common. Copyright © 2018, G3: Genes, Genomes, Genetics.

  10. Physiologic cold shock of Moraxella catarrhalis affects the expression of genes involved in the iron acquisition, serum resistance and immune evasion

    Directory of Open Access Journals (Sweden)

    Schaller André

    2011-08-01

    Full Text Available Abstract Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.

  11. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.

    Science.gov (United States)

    Kuhn, Emanuele

    2012-11-01

    Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in

  12. Cold-shock induced changes in the interrenal tissue of a fresh water tropical teleost, Colisa fasciatus.

    Science.gov (United States)

    Agrawal, U; Srivastava, A K

    1978-01-01

    Interrenal tissue of Colisa is present in the head kidney as a collar around the right posterior cardinal vein. In the latter, a sphincter-like structure was observed. The adrenocortical cells are organized in irregularly grouped lobules, each lobule having a small lumen at its centre. There are usually 1-3 layers of such lobules around the vein. The chromaffin cells are interspersed between the adrenocortical cells and are readily identified because of their large size and almost transparent cytoplasm. Both the adrenocortical and chromaffin cells are irregular in shape with a single nucleus. Distinct hypertrophy of the adrenal cortical cells and their nuclei is observed at 171 minutes and 267 to 363 minutes following cold-shock (about +2 degrees C). Extrusion of the nucleoli through the nuclear membrane is noticed at 315 minutes. These changes indicate activation of the pituitary-interrenal axis subsequent to the stress of cold-shock. Size of the chromaffin cells and of their nuclei decreased at 75, 123 and 315 minutes post shock, suggesting release of catecholamines leading to the activation of the pituitary-interrenal axis.

  13. CAROTENOID INVOLVEMENT IN THE REGULATION OF Spirodela polyrhiza (L. Schleid RESISTANCE TO COLD SHOCK

    Directory of Open Access Journals (Sweden)

    Sofronova V.E.

    2006-03-01

    Full Text Available Effect of short-time (15 sec, 5, 15, 30 min cold stress (0,1-0,2oC at 0,1 μmol photons м-2 s-1 over the Spirodela polyrhiza (L. Schleid carotenoid composition cultivated under the laboratory conditions has been studied. It is found that the sum of carotenoid pigments of Spirodela polyrhiza (L. does not change and averages 206,9 ± 11,5 mkg/g in fresh weight. Pool increase of lutein+zeaxanthin (by 5-8% has been observed in response to a short-time Spirodela polyrhiza cooling with simultaneous decrease of violaxanthin content (by 16%. Violaxanthin de-epoxidation occurs in the minute time spans and the depth of conversion does not depend on the cold shock duration. The data obtained indicate that pigments of the violaxanthin cyclemay participate in realization of transitory emergency protection systems of photosynthetic apparatus by increasing the share of thermal energy dissipation of the absorbed light and preventing singlet oxygenformation.

  14. Involvement of the Sieve Element Cytoskeleton in Electrical Responses to Cold Shocks1[W

    Science.gov (United States)

    Hafke, Jens B.; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J.E.

    2013-01-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca2+-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca2+ influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La3+ in keeping with the involvement of Ca2+ channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca2+ influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  15. The Cold Shock Domain of YB-1 Segregates RNA from DNA by Non-Bonded Interactions.

    Directory of Open Access Journals (Sweden)

    Vladislav Kljashtorny

    Full Text Available The human YB-1 protein plays multiple cellular roles, of which many are dictated by its binding to RNA and DNA through its Cold Shock Domain (CSD. Using molecular dynamics simulation approaches validated by experimental assays, the YB1 CSD was found to interact with nucleic acids in a sequence-dependent manner and with a higher affinity for RNA than DNA. The binding properties of the YB1 CSD were close to those observed for the related bacterial Cold Shock Proteins (CSP, albeit some differences in sequence specificity. The results provide insights in the molecular mechanisms whereby YB-1 interacts with nucleic acids.

  16. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  17. Cold Shocking at 5 o C AND 7 o C in Triploid Production: Effects on ...

    African Journals Online (AJOL)

    Production of genetically improved fast growing triploid Clarias gariepinus was carried out through cold shock application of fertilized eggs at 5oc and 7oc.The effects of the shock application on embryo survival, hatching time, hatchability and fry performance (fry survival and weight at critical growth stages) of Clarias ...

  18. The use of cold shock in inducing triploidy in African mud catfish ...

    African Journals Online (AJOL)

    study was conducted to induce triploidy in African mud catfish Clarias gariepinus using cold shock. The fertilized eggs were exposed at one temperature regime of 0°C with varied shock treatments of 0, 15, 25 and 30 min. Some 3 min after fertilization, the success of triploidy was determined by the presence or absence of ...

  19. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Malmendal, Anders; Sørensen, Jesper

    2007-01-01

    study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive...

  20. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  1. Transcriptomic analysis of (group I Clostridium botulinum ATCC 3502 cold shock response.

    Directory of Open Access Journals (Sweden)

    Elias Dahlsten

    Full Text Available Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  2. Deinococcus gobiensis cold shock protein improves salt stress tolerance of escherichia coli

    International Nuclear Information System (INIS)

    Jiang Shijie; Wang Jin; Yang Mingkun; Chen Ming; Zhang Wei; Luo Xuegang

    2013-01-01

    The Deinococcus gobiensis I-0, an extremely radiation-resistant bacterium, isolated from the Gobi, has superior resistance to abiotic stress (e.g radiation, oxidation, dehydration and so on). The two cold-shock proteins encoded by csp1 (Dgo C A1136) and csp2 (Dgo P A0041) were identified in the complete genome sequence of D. gobiensis. In this study, we showed that D. gobiensis Csp1 protected Escherichia coli cells against cold shock and other abiotic stresses such as salt and osmotic shocks. The quantitative real-time PCR assay shows that the expression of trehalose synthase (otsA, otsB) was up-regulated remarkably under salt stress in the csp1-expressing strain, while no difference in the expression of the genes involved in trehalose degradation (treB and treC). The results suggested that Csp1 caused the accumulation of the trehalose was a major feature for improving tolerance to salt stress in E. coli. (authors)

  3. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  4. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  5. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingshan [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Nettleship, Joanne E.; Sainsbury, Sarah [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  6. Use of spin labels to evaluate effects of cold shock and osmolality on sperm

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstedt, R.H.; Keith, A.D.; Snipes, W.; Amann, R.P.; Arruda, D.; Griel, L.C. Jr.

    1978-05-01

    Spin labels were used to evaluate the effects of butylated hydroxytoluene (BHT), rapid cooling to 0/sup 0/C and osmolality on the integrity of sperm membranes. In vitro incubation of rabbit sperm with 0.5 mM BHT prior to artificial insemination did not alter the fertilizing ability of the sperm. Sperm from 6 species were ranked in terms of susceptibility to membrane damage caused by rapid cooling to 0/sup 0/C. The integrity of bull and ram sperm membranes was destroyed by the rapid cooling; BHT protected membranes of these spermatozoa from cold-induced lysis. Boar sperm membranes were porous after rapid cooling and BHT did not prevent this membrane damage. Membranes of rabbit and rooster sperm were not damaged by rapid cooling to 0/sup 0/C. Stallion sperm could not be analyzed because their membranes were altered by addition of reagents necessary to use the technique. The responses of bull, ram and rabbit sperm membranes to hyper- and hypo-osmotic conditions were determined. Hypotonic treatment (less than 200 mOsm) resulted in a 50 percent expansion of the volume of the aqueous compartment of sperm while hypertonic (700 mOsm) conditions compressed the volume of the aqueous compartment to 25 to 30 percent of the volume measured at 300 mOsm. Bull sperm, but not rabbit or ram sperm, responded as ''perfect osmometers'' between 300 and 700 mOsm.

  7. Cold Shock Proteins of Lactococcus lactis MG1363 Are Involved in Cryoprotection and in the Production of Cold-Induced Proteins

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Frenkiel, Hélène; Vos, Willem M. de; Kuipers, Oscar P.; Abee, Tjakko

    2001-01-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are

  8. Fuel-Cell Structure Prevents Membrane Drying

    Science.gov (United States)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  9. Cold-shock eliminates female nucleus in fertilized eggs to induce androgenesis in the loach (Misgurnus anguillicaudatus, a teleost fish

    Directory of Open Access Journals (Sweden)

    Morishima Kagayaki

    2011-11-01

    Full Text Available Abstract Background Androgenesis (all-male inheritance is generally induced by means of irradiating the eggs to inactivate the maternal genome, followed by fertilization with normal sperm. In fish, the conventional technique for induced androgenesis has been applied for rapid fixation to traits, recovery of cryopreserved genotypes, sex-control, etc. A new method of androgenesis that eliminates the need to irradiate the egg was proposed using the loach, Misgurnus anguillicaudatus (a teleost fish. Results When the eggs of wild-type females were fertilized with sperm of albino or orange phenotype males and cold-shocked at 0 to 3°C for 60 min duration just after fertilization, generally more than 30% (with a peak of 100% of the hatched progeny were androgenotes. While a few of them were the normal diploid, most of them turned out to be abnormal haploid. All-male inheritance was verified by the expression of the recessive color trait (albino or orange and microsatellite genotypes comprising only paternally derived alleles. Nuclear behavior after the cold-shock treatment was traced by microscopic observation of DAPI (4'6-diamidino-2-phenylindole-stained samples and hematoxylin-eosin stained histological sections, and the extrusion of egg (maternal nucleus was observed in eggs treated in the optimum timing. Conclusion In this paper, we demonstrate that cold-shock treatment (at 0 and 3°C of loach eggs for 60 min just after fertilization successfully induces androgenetic haploid development. The most likely mechanism of cold-shock induced androgenesis is an elimination of the egg nucleus together along with the second polar body and subsequent development of a decondensed sperm nucleus or male pronucleus.

  10. Sperm production and mating potential of males after a cold shock on pupae of the parasitoid wasp Dinarmus basalis (Hymenoptera: Pteromalidae).

    Science.gov (United States)

    Lacoume, Sandrine; Bressac, Christophe; Chevrier, Claude

    2007-10-01

    For ectothermic species, temperature is a key environmental factor influencing several aspects of their physiology and ecology, acting particularly on reproduction. To measure the consequences of a severe thermal stress during development on male reproduction, a cold shock (1h at -18 degrees C) was tested on Dinarmus basalis pupae. D. basalis (Hymenoptera: Pteromalidae) is a parasitoid wasp in which sperm management in both male and female is of prime importance. After a cold shock, developmental success was reduced, with a quarter of cold-shocked males not emerging correctly. The stress effects were estimated at the level of sperm stock in seminal vesicles of males at different ages and on the ability of 2-day-old males to access females in single and multiple mating and in male-male competition. Cold-shocked males had a reduced sperm stock compared to control males and this difference persisted with age. The rate of sperm production was similar in both groups. The consequences of a cold shock on male reproductive ability were perceptible in multiple mating and male-male competition but not in single mating. Cold-shocked males were at a disadvantage, inseminating fewer females and copulating less frequently. Finally, male pupae of D. basalis were able to withstand severe temperature stresses and their reproductive functions were partially preserved.

  11. Prevention of calcium-induced membrane structural alterations in erythrocyte membranes by flunarizine

    NARCIS (Netherlands)

    Thomas, Peter G.; Zimmermann, A.G.; Verkleij, A.J.

    1988-01-01

    The calcium antagonist flunarizine is shown to be able to prevent particle aggregation, membrane aggregation and blebbing resulting from elevated calcium concentrations. The anti-ischemic effects of flunarizine may therefore result in part from its ability to directly interfere with calcium-membrane

  12. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  13. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning.

    Science.gov (United States)

    Kim, Lan Hee; Jung, Yongmoon; Kim, Sung-Jo; Kim, Chang-Min; Yu, Hye-Weon; Park, Hee-Deung; Kim, In S

    2015-01-01

    Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml(-1), 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.

  14. Indole prevents Escherichia coli cell division by modulating membrane potential

    Science.gov (United States)

    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane. PMID:22387460

  15. Indole prevents Escherichia coli cell division by modulating membrane potential

    OpenAIRE

    Chimerel, Catalin; Field, Christopher M.; Pi?ero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3?5?mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological proces...

  16. {sup 15}N relaxation study of the cold shock protein CspB at various solvent viscosities

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Markus; Jacob, Maik H. [Universitaet Bayreuth, Laboratorium fuer Biochemie (Germany); Schindler, Thomas [Hoffmann LaRoche AG (Switzerland); Balbach, Jochen [Universitaet Bayreuth, Laboratorium fuer Biochemie (Germany)], E-mail: jochen.balbach@uni-bayreuth.de

    2003-11-15

    For a detailed NMR study of the dynamics of the cold shock protein CspB from Bacillus subtilis, we determined {sup 15}N transverse and longitudinal relaxation rates and heteronuclear nuclear Overhauser effects at different solvent viscosities. Up to a relative viscosity of 2, which is equivalent to 27% ethylene glycol (EG), the overall correlation time follows the linear Stokes-Einstein equation. At a relative viscosity of 6 (70% EG) the correlation time deviates from linearity by 30%, indicating that CspB tumbles at a higher rate as expected from the solvent viscosity probably due to a preferential binding of water molecules at the protein surface. The corresponding hydrodynamic radii, determined by NMR diffusion experiments, show no variation with viscosity. The amplitudes of intramolecular motions on a sub-nanosecond time scale revealed by an extended Lipari-Szabo analysis were mainly independent of the solvent viscosity. The lower limit of the NMR 'observation window' for the internal correlation time shifts above 0.5 ns at 70% EG, which is directly reflected in the experimentally derived internal correlation times. Chemical exchange contributions to the transverse relaxation rates derived from the Lipari-Szabo approach coincide with the experimentally determined values from the transverse {sup 1}H-{sup 15}N dipolar/{sup 15}N chemical shift anisotropy relaxation interference. These contributions originate from fast protein folding reactions on a millisecond timescale, which get retarded at increased solvent viscosities.

  17. Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock

    Directory of Open Access Journals (Sweden)

    Naclerio Gino

    2006-02-01

    Full Text Available Abstract Background Heat and cold shock response are normally considered as independent phenomena. A small amount of evidence suggests instead that interactions may exist between them in two Lactococcus strains. Results We show the occurrence of molecular relationships between the mechanisms of cold and heat adaptations in Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermentation, where it undergoes both types of stress. We observed that cryotolerance is increased when cells are pre-incubated at high temperature. In addition, the production of a protein, identified as ClpL, a member of the heat-shock ATPase family Clp A/B, is induced at both high and low temperature. A knock-out clpL mutant is deficient in both heat and cold tolerance. However lack of production of this protein does not abolish the positive effect of heat pre-treatment towards cryotolerance. Conclusion Dual induction of ClpL by cold and heat exposure of cells and reduced tolerance to both temperature shocks in a clpL mutant indicates that the two stress responses are correlated in S. thermophilus. However this protein is not responsible by itself for cryotolerance of cells pre-treated at high temperature, indicating that ClpL is necessary for the two phenomena, but does not account by itself for the relationships between them.

  18. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.

  19. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat

    Czech Academy of Sciences Publication Activity Database

    Kalapos, S.; Dobrev, Petre; Nagy, T.; Vítámvás, P.; Gyorgyey, J.; Kocsy, G.; Marincs, F.; Galiba, G.

    2016-01-01

    Roč. 253, DEC (2016), s. 86-97 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : complex phytohormone responses * abscisic-acid biosynthesis * frost-resistance * stress responses * gene-expression * chromosome 5a * triticum-monococcum * regulatory network * basal resistance * abiotic stresses * ABA-Signalling * Carbon metabolism * Freezing-tolerance * Gene ontology * Plant hormones * Short-term cold-shock * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.437, year: 2016

  20. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister (Hemiptera, Reduviidae

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2002-01-01

    Full Text Available Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion or death (apoptosis, necrosis responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h or cold (5 or 0°C, 1 h shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature. As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  1. Fouling Issues in Membrane Bioreactors (MBRs for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies

    Directory of Open Access Journals (Sweden)

    Petros K. Gkotsis

    2014-10-01

    Full Text Available Membrane fouling is one of the most important considerations in the design and operation of membrane systems as it affects pretreatment needs, cleaning requirements, operating conditions, cost and performance. Given that membrane fouling represents the main limitation to membrane process operation, it is unsurprising that the majority of membrane material and process research and development conducted is dedicated to its characterization and amelioration. This work presents the fundamentals of fouling issues in membrane separations, with specific regard to membrane fouling in Membrane Bioreactors (MBRs and the most frequently applied preventive-control strategies. Feed pretreatment, physical and chemical cleaning protocols, optimal operation of MBR process and membrane surface modification are presented and discussed in detail. Membrane fouling is the major obstacle to the widespread application of the MBR technology and, therefore, fouling preventive-control strategies is a hot issue that strongly concerns not only the scientific community, but industry as well.

  2. Role of Membrane Lipid Fatty Acids in Sperm Cryopreservation

    Directory of Open Access Journals (Sweden)

    Rajes Mandal

    2014-01-01

    Full Text Available Lipid is an important constituent of cell membrane. Membrane lipid composition of spermatozoa has been correlated to different function. Many researchers have related membrane lipid with survival success after cryopreservation or cold shock. Sperm maturation and acrosome reactions are natural phenomenon, but cryopreservation or cold shock is not. Therefore, sperm cells are not programmed for such change and undergo stress. So the change in membrane lipid composition due to cold shock or cryopreservation may be looked upon as response of spermatozoa to a certain stressed condition. A significant body of research worked on the relationship between membrane lipid and fatty acid composition and ability of cell to tolerate adverse change in temperature. However, as the approach of different research groups was different, it is very difficult to compare the changes. Studies have been done with different species, ejaculated/seminal or epididymal sperm. Lipid analyses have been done with whole cell membrane isolated by different methods. Fatty acids estimated were from whole cell, plasma membrane, head membrane, or phospholipids. The cryopreservation condition, media composition, and diluents/cryoprotectants were also different. At this onset a comprehensive review is needed to cover changes of sperm membrane lipid composition of different species under different cryopreservation conditions.

  3. Is vitamin C able to prevent premature rupture of membranes?

    OpenAIRE

    Citra Aryanti

    2016-01-01

    Premature rupture of membranes (PROM) is leakage of amniotic fluid through ruptured chorioamniotic membranes that occur before starting the labor pain at any gestational age. This is one of the most common problems in obstetrics with many adverse pregnancy outcomes. Main and final mechanisms of membrane rupture is disturbances in its collagen content metabolism. Vitamin C is found to stabilize the cross link triple helix collagen structure and scavange oxidant that involved in PPROM. Associat...

  4. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    Science.gov (United States)

    Ray, Swagat; Anderson, Emma C

    2016-03-03

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.

  5. Omega-3 fatty acids, membrane remodeling and cancer prevention.

    Science.gov (United States)

    Fuentes, Natividad R; Kim, Eunjoo; Fan, Yang-Yi; Chapkin, Robert S

    2018-04-12

    Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Streptococcal Disease Prevention and Management of Preterm Premature Rupture of Membranes

    Directory of Open Access Journals (Sweden)

    Nina E. Glass

    2005-01-01

    Full Text Available Objective: To identify opportunities to reduce overuse of antibiotics for prevention of perinatal group B streptococcal (GBS disease and management of preterm premature rupture of membranes (pPROM.

  7. The Role of Cold-Shock Proteins in Low-Temperature Adaptation of Food-Related Bacteria

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Rombouts, Frank M.; Kuipers, Oscar P.; Vos, Willem M. de; Abee, T.

    2000-01-01

    There is a considerable interest in the cold adaptation of food-related bacteria, including starter cultures for industrial food fermentations, food spoilage bacteria and food-borne pathogens. Mechanisms that permit low-temperature growth involve cellular modifications for maintaining membrane

  8. [Ketoconazole and clindamycin efficacy vs oral clindamycin in premature membranes rupture prevention].

    Science.gov (United States)

    Castillo Huerta, Eugenio; Garibay Valencia, Miguel; Mirabent-González, Felio

    2008-07-01

    Vulvovaginitis is one of the main causes of premature membrane rupture. To evaluate effectiveness of a combination of ketoconazole (400 mg) and clindamycin (100 mg) in vaginal tablets, compared with clindamicyn alone (600 mg/daily) orally, for six days, to prevent premature membrane rupture in patients with vulvovaginitis. Longitudinal, prospective, comparative, randomized, double-blind, double-dummy study in patients older than 18 years, during them third trimester of normoevolutive pregnancy with symptomatic vulvovaginitis. Patients were monitored as out patient. Genital secretion culture and fresh studies were made. Signs and symptoms were evaluated in regular intervals: 4, 7 and 11 days. Pregnancy control was performed every three weeks, until childbirth or premature membrane rupture. 105 patients were included: 53 in the group of ketoconazole and clindamicyn (1), and 52 in the group of clindamycin alone (2). Symptoms were similar in both groups of treatment, without statistically significant differences. A case of group 2 has premature membrane rupture (p = 0.495). C. albicans was cultured in 35% of group 2 and in 11% of group 2. No adverse events with treatments were reported. The combination of ketoconazole and cindamycin was effective to prevent premature membrane rupture in patients with vulvovaginitis.

  9. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  10. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane.

    Science.gov (United States)

    Kappachery, Sajeesh; Paul, Diby; Yoon, Jeyong; Kweon, Ji Hyang

    2010-08-01

    Reverse osmosis (RO) membrane systems are widely used in water purification plants. Reduction in plant performance due to biofilm formation over the membrane is an inherent problem. As quorum sensing (QS) mechanisms of microorganisms have been reported to be involved in the formation of biofilm, ways are sought for quorum quenching (QQ) and thereby prevention of biofilm formation. In this study using a chemostat culture run for seven days in a CDC reactor it was found that a natural QQ compound, vanillin considerably suppressed bacterial biofilm formation on RO membrane. There was 97% reduction in biofilm surface coverage, when grown in the presence of vanillin. Similarly, the average thickness, total biomass and the total protein content of the biofilm that formed in the presence of vanillin were significantly less than that of the control. However vanillin had no effect on 1-day old pre-formed biofilm.

  11. Cost effective purification of intein based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E. coli GJ1158

    Directory of Open Access Journals (Sweden)

    Seetha Ram Kotra

    2014-03-01

    Full Text Available Objective:Synthetic cationic antimicrobial peptide (SC-AMP is an important and upcoming therapeutic molecule against onventional antibiotics. In this study, an attempt was made to purify the SC-AMP without the enzymatic cleavage of the affinity tag, by using an intein-based system. Methods:The intein sequence was amplified from pTYB11 vector using PCR methodologies and the N-terminal of intein was ligated with SC-AMP. The designed construct, intein-SC-AMP was cloned into MCS region of cold shock expression vector, pCOLDI and the recombinant peptide was purified on a chitin affinity column by cleaving intein with 50 mM DTT without applying enzymatic cleavage. Later the peptide was quantified and its antibacterial activity of the purified peptide was studied using well diffusion method. Results: Initially, intein-SC-AMP was expressed as a fusion protein in both IPTG inducible E. coli BL21(DE3 and salt inducible E. coli GJ1158. Single step purification using CBD (chitin binding domain - intein tag in salt inducible E. coli GJ1158, yields the SC-AMP in the soluble form at a oncentration of 208 mg/L. The antibacterial activity and minimal inhibitory concentration (MIC of the purified SC-AMP was studied against both Gram positive and Gram negative microorganisms. Conclusion: For the first time, single step purification of soluble SC-AMP was carried out using chitin-binding domain affinity tag in salt inducible E. coli GJ1158 without an application of enzymatic cleavage. J Microbiol Infect Dis 2014;4(1:13-19

  12. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G

    2008-01-01

    and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance...... acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster. Udgivelsesdato: 2008-Mar...

  13. The Role of Vitamin C in Prevention of Preterm Premature Rupture of Membranes

    Science.gov (United States)

    Ghomian, Nayereh; Hafizi, Leili; Takhti, Zahra

    2013-01-01

    Background Preterm premature rupture of membranes (PPROM) is one of the most important complications of the pregnancy and cause perinatal morbidity and mortality. History of PPROM is a risk factor of recurrent PPROM. Vitamin C plays an important role in collagen metabolism and increases resistance maintenance of the chorioamniotic membranes. Objectives The aim of this study is to evaluate the role of vitamin C supplementation in prevention of PPROM in women with a positive history of PPROM. Patients and Methods This clinical trial study was performed on 170 pregnant women with the history of PPROM, with singleton pregnancy and gestational age 14 weeks in Imam-Reza Hospital, Mashhad University of Medical Sciences during 2008 to 2010. They were randomly divided into two groups. The case patients received 100 mg vitamin C daily from 14th weeks of gestation. PPROM occurrence was compared between two groups as an indicator of the protective effect of vitamin C supplements. Results PPROM occurred in 44.7% of controls and 31.8% of cases (P < 0.05). PROM occurred in 34.1% of controls and 18.8% of cases (P < 0.05). Pregnancy was terminated at term gestation in 21.2% of controls and 49.4% of cases (P < 0.05). Rupture of membranes was significantly decreased in the case group. Conclusions Vitamin C supplementations after 14th weeks of gestation can prevent from PPROM in women with the history of PPROM. PMID:23682322

  14. Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module.

    Science.gov (United States)

    Biswas, Pritam; Bandyopadhyaya, Rajdip

    2017-04-01

    Biofouling significantly decreases membrane performance. So silver nanoparticle (Ag-NP) was impregnated selectively on a sulfonated polyethersulfone (SPES) membrane and its efficacy was tested in a continuous, cross-flow membrane module. The main challenges are: (i) to prevent biofouling on the membrane surface, (ii) achieve zero bacterial cell (E. coli) count in the permeate water, (iii) maintain Ag concentration in the permeate stream within the permissible limit of drinking water and (iv) maintain a high tensile strength of the membrane to prevent mechanical failure. Addressing these factors would ensure a long and productive service-life of the membrane. To this end, 10 4 CFU/ml of E. coli cell-suspension was passed through the Ag-SPES membrane of 150μm total thickness, which has a narrow (1.74μm thickness), upper surface of Ag-NPs. We achieved zero E. coli cell-count and a minimum (10μg/L) Ag concentration in the permeate stream; simultaneously increasing the tensile strength from 2.78MPa to 3.92MPa due to Ag-NP impregnation. Thus, for a continuous inlet flow of E. coli contaminated water, the membrane module could deliver an almost constant permeate flow rate of 3.45L per hour, due to complete E. coli cell-killing. Simultaneously, Ag concentration in permeate stream is well-below the WHO's recommended limit of 100μg/L, for potable quality water. Therefore, the Ag-SPES membrane can be used as an anti-biofouling membrane in a continuous operational mode. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin; Kuzmenko, Ivan; Nikaido, Hiroshi; Gidalevitz, David

    2015-12-01

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwas prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.

  16. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-01-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt max of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  17. Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in Yersinia enterocolitica.

    Science.gov (United States)

    Horstman, N Kaye; Darwin, Andrew J

    2012-08-01

    The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the mislocalization of pore-forming secretin proteins. However, why secretins are toxic to psp null strains, whereas some other Psp inducers are not, has not been explained. Furthermore, previous work has led to the confounding and disputable suggestion that PspA is not involved in mitigating secretin toxicity. Here we have established a correlation between the amount of secretin toxicity in a psp null strain and the extent of cytoplasmic membrane permeability to large molecules. This leads to a morphological change resembling cells undergoing plasmolysis. Furthermore, using novel strains with dis-regulated Psp proteins has allowed us to obtain unequivocal evidence that PspA is not required for secretin-stress tolerance. Together, our data suggest that the mechanism by which secretin multimers kill psp null cells is by causing a profound defect in the cytoplasmic membrane permeability barrier. This allows lethal molecular exchange with the environment, which the PspB and PspC proteins can prevent. © 2012 Blackwell Publishing Ltd.

  18. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.

  19. Prevention of epidural scarring after microdiscectomy: a randomized clinical trial comparing gel and expanded polytetrafluoroethylene membrane.

    Science.gov (United States)

    Ivanic, Gerd M; Pink, Peter T; Schneider, Frank; Stuecker, Markus; Homann, Nicolaus C; Preidler, Klaus W

    2006-09-01

    A randomized clinical trial compared two materials used to prevent epidural scarring after microdiscectomy. To determine whether ADCON-L Gel (ALG) or Preclude Spinal Membrane (PSM) was more effective in preventing scarring, reducing pain, and improving quality of life postoperatively. Postdiscectomy syndrome may result from epidural scarring. Various materials have been used in attempts to prevent this problem, but none have provided optimal results. Previous laboratory and clinical studies have found ALG and PSM to be effective, but none compared the two materials. Thirty-one patients undergoing primary microdiscectomy were randomly assigned to receive either ALG or PSM. Postoperatively, patients were evaluated by magnetic resonance imaging (MRI), with contrast, for volume and rostral-caudal extent of scar tissue and nerve root involvement. Back and leg pain and quality of life were assessed by neurologic examinations and standardized patient surveys. Findings at any reoperations were recorded. Results in the PSM (n = 18) and ALG (n = 13) groups were compared statistically. No operative or postoperative complications occurred. Two patients in each group required reoperation. MRI at 6 months showed no, mild or mild-moderate scarring in most patients, with no significant differences between the ALG and PSM groups in scar volume and extent or nerve root involvement. Neurologic examinations and patient surveys showed substantial reductions in pain over time in both groups but no significant differences between groups. PSM was easy to see and remove at reoperation. PSM and ALG are equally effective in preventing epidural scarring associated with postdiscectomy syndrome.

  20. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions.

    Science.gov (United States)

    Kessler, Martina; Esser, Eva; Groll, Jürgen; Tessmar, Jörg

    2016-11-01

    A bilateral barrier membrane for the prevention of postsurgical adhesions was developed. Thereby, a smooth PLA side was supposed to keep the affected tissues glidingly separated, while a mucoadhesive side made of alginate was meant to keep the barrier resident on the site of injury so that suturing becomes redundant or at least the membrane stays long enough to facilitate surgical handling. Because hydrophilic alginate and lipophilic PLA films show only low cohesion, solution electrospun meshes of PLA and PLA-PEG-PLA triblock copolymers with varying poly(ethylene glycol) [PEG] content were investigated as cohesion promoter to avoid an easy separation of the functionally different layers. Using direct electrospinning onto the PLA film, a modified contact surface of the mesh was created, which allowed the tested alginate solutions (3%, 5%) to infiltrate to different extents. Thereby, an increasing content of hydrophilic PEG within the mesh copolymer and a lower alginate concentration facilitated the infiltration. As a result, the PLA film with a PLA35k-PEG10k-PLA35k (racemic PLA chains) mesh and an alginate layer cast from a 3% alginate solution appeared to be the most effective combination as examined by means of a t peel test, a mucoadhesion test, a tensile test and optical evaluations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1563-1570, 2016. © 2015 Wiley Periodicals, Inc.

  1. Is there evidence that barrier membranes prevent bone resorption in autologous bone grafts during the healing period? A systematic review

    NARCIS (Netherlands)

    Gielkens, Pepijn F. M.; Bos, Ruud R. M.; Raghoebar, Gerry M.; Stegenga, Boudewijn

    2007-01-01

    Introduction: Autologous bone is considered the "reference standard" for bone-grafting procedures. A barrier membrane covering an autologous bone graft (guided bone regeneration [GBR]) is expected to prevent graft resorption. Good clinical results have been reported for GBR, although potential

  2. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    Science.gov (United States)

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  3. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control.

    Science.gov (United States)

    Mikhaylin, Sergey; Bazinet, Laurent

    2016-03-01

    The environmentally friendly ion-exchange membrane (IEM) processes find more and more applications in the modern industries in order to demineralize, concentrate and modify products. Moreover, these processes may be applied for the energy conversion and storage. However, the main drawback of the IEM processes is a formation of fouling, which significantly decreases the process efficiency and increases the process cost. The present review is dedicated to the problematic of IEM fouling phenomena. Firstly, the major types of IEM fouling such as colloidal fouling, organic fouling, scaling and biofouling are discussed along with consideration of the main factors affecting fouling formation and development. Secondly, the review of the possible methods of IEM fouling characterization is provided. This section includes the methods of fouling visualization and characterization as well as methods allowing investigations of characteristics of the fouled IEMs. Eventually, the reader will find the conventional and modern strategies of prevention and control of different fouling types. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. [Prevention of epidural fibrosis. Initial experiences with non-resorbable membrane].

    Science.gov (United States)

    Ivanic, G M; Wild, A; Pink, T P; Homann, N C

    2002-05-01

    Scars around the neural structures after opening the spinal canal are common and severe problems in spine surgery. This paper presents the use of a special membrane to avoid epidural scarring in two cases.

  5. Prevention and management of silica scaling in membrane distillation using pH adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Bush, John A.; Vanneste, Johan; Gustafson, Emily M.; Waechter, Christopher A.; Jassby, David; Turchi, Craig S.; Cath, Tzahi Y.

    2018-05-01

    Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustment was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.

  6. Opportunities to Reduce Overuse of Antibiotics for Perinatal Group B Streptococcal Disease Prevention and Management of Preterm Premature Rupture of Membranes

    Directory of Open Access Journals (Sweden)

    Stephanie Schrag

    2005-01-01

    Full Text Available Objective: To identify opportunities to reduce overuse of antibiotics for prevention of perinatal group B streptococcal (GBS disease and management of preterm premature rupture of membranes (pPROM.

  7. Interactions of egg yolk lipoprotein fraction with boar spermatozoa assessed with a fluorescent membrane probe.

    Directory of Open Access Journals (Sweden)

    Łukasz Zasiadczyk

    2010-08-01

    Full Text Available The interactions of a fluorescent membrane probe, 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS, with boar spermatozoa were followed through the use of lipoprotein fraction of ostrich egg yolk (LPFo. Semen samples, extended in Kortowo 3 (K3 extender, were supplemented with 2% or 5% LPFo and stored for 3h at 16 degrees C. Additionally, cold shock-treated spermatozoa (1h at 4 degrees C were stored in K3 extender supplemented with LPFo for 3h at 16 degrees C. In each boar, the fluorescent enhancement of ANS was observed in K3-extended semen supplemented with LPFo, prior to storage. Following storage, there was a significant increase in LPFo-ANS fluorescence, particularly in the sperm membrane overlying the head and midpiece regions. There were significant differences among the boars with respect to the sperm populations defined by the LPFo-ANS fluorescence. Sperm viability was not significantly affected during the storage period. Furthermore, the proportions of spermatozoa defined by the different patterns of LPFo-ANS fluorescence were low and remained unchanged after storage of cold shock-treated spermatozoa with 2% or 5% LPFo, suggesting irreversible damage to the sperm membrane architecture. These findings indicate that the ANS fluorescent probe could be used to shed more light on the nature of the interactions between LPFo and sperm membrane following semen preservation. Such valuable information could contribute to the development of an optimal protocol for cryopreservation of boar semen.

  8. MEMBRANE-OXYGENATOR PREVENTS LUNG REPERFUSION INJURY IN CANINE CARDIOPULMONARY BYPASS

    NARCIS (Netherlands)

    GU, YJ; WANG, YS; CHIANG, BY; GAO, XD; YE, CX; WILDEVUUR, CRH

    The effect of blood activation on lung reperfusion injury during cardiopulmonary bypass was investigated in 20 dogs with the use of a bubble oxygenator (n = 10) or a membrane oxygenator (n = 10). In the bubble oxygenator group, significant leukocyte and platelet right to left atrium gradients were

  9. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    Science.gov (United States)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  10. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  11. [Clinical application of hydrogel membrane of silicone rubber for preventing adhesion in orthopedics].

    Science.gov (United States)

    Fang, Y E; Shi, T; Mei, B; Yin, Z; Su, J

    1998-09-01

    Grafting hydrogels onto silicone rubber membranes were prepared by radiation technique for medical application. This material is characterized by high purity, hydrophilia, formation of stable hydrogel after water absorption, good biocompatibility, etc. Clinical application was initiated on the basis of animal experiments. The material was used in 47 cases of joint and tendon injuries, in 9 cases of rheumatoid arthritis, and in 4 other cases; totaling 60 cases. All patients were followed up for three and a half years after surgical operation. A general effectiveness of above 86% was noted.

  12. A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation.

    Science.gov (United States)

    Kim, Donghwa; Sun, Mei; He, Lili; Zhou, Qing-Hua; Chen, Jun; Sun, Xia-Meng; Bepler, Gerold; Sebti, Said M; Cheng, Jin Q

    2010-03-12

    The Akt pathway is frequently hyperactivated in human cancer and functions as a cardinal nodal point for transducing extracellular and intracellular oncogenic signals and, thus, presents an exciting target for molecular therapeutics. Here we report the identification of a small molecule Akt/protein kinase B inhibitor, API-1. Although API-1 is neither an ATP competitor nor substrate mimetic, it binds to pleckstrin homology domain of Akt and blocks Akt membrane translocation. Furthermore, API-1 treatment of cancer cells results in inhibition of the kinase activities and phosphorylation levels of the three members of the Akt family. In contrast, API-1 had no effects on the activities of the upstream Akt activators, phosphatidylinositol 3-kinase, phosphatidylinositol-dependent kinase-1, and mTORC2. Notably, the kinase activity and phosphorylation (e.g. Thr(P)(308) and Ser(P)(473)) levels of constitutively active Akt, including a naturally occurring mutant AKT1-E17K, were inhibited by API-1. API-1 is selective for Akt and does not inhibit the activation of protein kinase C, serum and glucocorticoid-inducible kinase, protein kinase A, STAT3, ERK1/2, or JNK. The inhibition of Akt by API-1 resulted in induction of cell growth arrest and apoptosis selectively in human cancer cells that harbor constitutively activated Akt. Furthermore, API-1 inhibited tumor growth in nude mice of human cancer cells in which Akt is elevated but not of those cancer cells in which it is not. These data indicate that API-1 directly inhibits Akt through binding to the Akt pleckstrin homology domain and blocking Akt membrane translocation and that API-1 has anti-tumor activity in vitro and in vivo and could be a potential anti-cancer agent for patients whose tumors express hyperactivated Akt.

  13. Cold shock on the wood fuel industry

    International Nuclear Information System (INIS)

    Queyrel, A.

    2008-01-01

    The development of the wood fuel industry represents one of the pillars of the European energy plan, and in particular of the French energy policy, as it fulfills both objectives of development of renewable energy sources and CO 2 balance. The wood fuel industry supplies 6% of the French energy consumption and has permitted to save more than 9 million tons of petroleum equivalent. However, the conclusions of the European project CARBOSOL stress on the strong health impacts of wood-fueled combustion systems, in particular in the case of domestic individual systems and appliances. The combustion of biomass (fireplaces and agriculture) is responsible for 50 to 70% of the winter carbon pollution in Europe. The situation of collective or industrial wood-fueled facilities is different since pollution control solutions can be more easily implemented. (J.S.)

  14. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    Science.gov (United States)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  15. Physiological stress responses in the warm-water fish matrinxã (Brycon amazonicus subjected to a sudden cold shock Respostas fisiológicas ao estresse do peixe de águas tépidas matrinxã (Brycon amazonicus submetido à queda brusca de temperatura

    Directory of Open Access Journals (Sweden)

    Luis Antonio Kioshi Aoki Inoue

    2008-12-01

    Full Text Available The present work evaluated several aspects of the generalized stress response [endocrine (cortisol, metabolic (glucose, hematologic (hematocrit and hemoglobin and cellular (HSP70] in the Amazonian warm-water fish matrinxã (Brycon amazonicus subjected to an acute cold shock. This species farming has been done in South America, and growth and feed conversion rates have been interesting. However, in subtropical areas of Brazil, where the water temperature can rapidly change, high rates of matrinxã mortality have been associated with abrupt decrease in the water temperature. Thus, we subjected matrinxã to a sudden cold shock by transferring the fish directly to tanks in which the water temperature was 10ºC below the initial conditions (cold shock from 28ºC to 18ºC. After 1h the fish were returned to the original tanks (28ºC. The handling associated with tank transfer was also imposed on control groups (not exposed to cold shock. While exposure to cold shock did not alter the measured physiological conditions within 1h, fish returned to the ambient condition (water at 28º C significantly increased plasma cortisol and glucose levels. Exposure to cold shock and return to the warm water did not affect HSP70 levels. The increased plasma cortisol and glucose levels after returning the fish to warm water suggest that matrinxã requires cortisol and glucose for adaptation to increased temperature.O presente trabalho avaliou as principais respostas fisiológicas e celulares [endócrino (cortisol, metabólico (glicose, hematológico (hematócrito and hemoglobina e celular (HSP70] ao estresse de um peixe de águas tépidas, o matrinxã (Brycon amazonicus , quando submetido a um choque térmico frio abrupto. Essa espécie vem sendo amplamente cultivada na América do Sul por apresentar excelentes índices zootécnicos de crescimento e conversão alimentar. Entretanto, os produtores rurais encontram limitações no manejo do matrinxã, quando criado em

  16. Rasagiline prevents cyclosporine A-sensitive superoxide flashes induced by PK11195, the initial signal of mitochondrial membrane permeabilization and apoptosis.

    Science.gov (United States)

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2016-05-01

    Rasagiline, a neuroprotective inhibitor of type B monoamine oxidase, prevented PK111195-induced apoptosis in SH-SY5Y cells through inhibition of mitochondrial apoptosis signaling (J Neural Transm 120:1539-1551, 2013, J Neural Transm 122:1399-1407, 2015). This paper presents that PK11195 induced superoxide flashes, the transit production burst, mediated by cyclosporine A-sensitive membrane permeability transition. Rasagiline prevented superoxide flashes, calcium efflux, and cell death by PK11195. Regulation of the initial pore formation at the inner mitochondrial membrane was confirmed as the decisive mechanism of neuroprotection by rasagiline.

  17. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice; Smit, John; Jiao, Yongqin

    2016-09-23

    ABSTRACT

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in

  18. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  19. Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice

    Directory of Open Access Journals (Sweden)

    Michael H. Norris

    2018-01-01

    Full Text Available Burkholderia mallei is a host-adapted Gram-negative mammalian pathogen that causes the severe disease glanders. Glanders can manifest as a rapid acute progression or a chronic debilitating syndrome primarily affecting solipeds and humans in close association with infected animals. In USA, B. mallei is classified as one of the most important bacterial biothreat agents. Presently, there is no licensed glanders vaccine available for humans or animals. In this work, outer membrane vesicles (OMVs were isolated from three attenuated biosafe bacterial strains, Burkholderia pseudomallei Bp82, B. thailandensis E555, and B. thailandensis TxDOH and used to vaccinate mice. B. thailandensis OMVs induced significantly higher antibody responses that were investigated. B. mallei specific serum antibody responses were of higher magnitude in mice vaccinated with B. thailandensis OMVs compared to levels in mice vaccinated with B. pseudomallei OMVs. OMVs derived from biosafe strains protected mice from acute lethal glanders with vesicles from the two B. thailandensis strains affording significant protection (>90% up to 35 days post-infection with some up to 60 days. Organ loads from 35-day survivors indicated bacteria colonization of the lungs, liver, and spleen while those from 60 days had high CFUs in the spleens. The highest antibody producing vaccine (B. thailandensis E555 OMVs also protected C57BL/6 mice from acute inhalational glanders with evidence of full protection.

  20. Ultra Structural Characterisation of Tetherin - a Protein Capable of Preventing Viral Release from the Plasma Membrane

    Directory of Open Access Journals (Sweden)

    Ravindra K. Gupta

    2010-04-01

    Full Text Available Tetherin is an antiviral restriction factor made by mammalian cells to protect them from viral infection. It prevents newly formed virus particles from leaving infected cells. Its antiviral mechanism appears to be remarkably uncomplicated. In 2 studies published in PLoS Pathogens electron microscopy is used to support the hypothesis that the tethers that link HIV-1 virions to tetherin expressing cells contain tetherin and are likely to contain tetherin alone. They also show that the HIV-1 encoded tetherin antagonist that is known to cause tetherin degradation, Vpu, serves to reduce the amount of tetherin in the particles thereby allowing their release.

  1. Safety and efficacy of distal perfusion catheterization to prevent limb ischemia after common femoral artery cannulation for extracorporeal membrane oxygenation

    International Nuclear Information System (INIS)

    Jeon, Chang Ho; Seong, Nak Jong; Yoon, Chang Jin

    2016-01-01

    The extracorporeal membrane oxygenation (ECMO) cannula has the potential for obstructing flow to the lower limb, thus causing severe ischemia and possible limb loss. We evaluated the safety and clinical efficacy of percutaneous distal perfusion catheterization in preventing limb ischemia. Between March 2013 and February 2015, 28 patients with distal perfusion catheterization after ECMO were included in this retrospective study. The technical success was evaluated by Doppler ultrasound at the popliteal level after saline injection via distal perfusion catheter. Clinical success was assessed when at least one of the following conditions was met: restoration of continuous peripheral limb oximetry value or presence of distal arterial pulse on Doppler ultrasound evaluation or resolution of early ischemic sign after connecting the catheter with ECMO. Twenty-six patients with early ischemia were successfully cannulated with a distal perfusion catheter (92.8%). Clinical success was achieved in 12/28 (42.8%) patients; 8/10 (80.0%) patients with survival duration exceeding 7 days and 4/18 (22.2%) patients with survival duration less than 7 days, respectively. A percutaneous distal perfusion catheter placement was a feasible tool with safety and efficacy in preventing lower limb ischemia for patients with prolonged common femoral arterial cannulation for ECMO

  2. Safety and efficacy of distal perfusion catheterization to prevent limb ischemia after common femoral artery cannulation for extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chang Ho; Seong, Nak Jong; Yoon, Chang Jin [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-06-15

    The extracorporeal membrane oxygenation (ECMO) cannula has the potential for obstructing flow to the lower limb, thus causing severe ischemia and possible limb loss. We evaluated the safety and clinical efficacy of percutaneous distal perfusion catheterization in preventing limb ischemia. Between March 2013 and February 2015, 28 patients with distal perfusion catheterization after ECMO were included in this retrospective study. The technical success was evaluated by Doppler ultrasound at the popliteal level after saline injection via distal perfusion catheter. Clinical success was assessed when at least one of the following conditions was met: restoration of continuous peripheral limb oximetry value or presence of distal arterial pulse on Doppler ultrasound evaluation or resolution of early ischemic sign after connecting the catheter with ECMO. Twenty-six patients with early ischemia were successfully cannulated with a distal perfusion catheter (92.8%). Clinical success was achieved in 12/28 (42.8%) patients; 8/10 (80.0%) patients with survival duration exceeding 7 days and 4/18 (22.2%) patients with survival duration less than 7 days, respectively. A percutaneous distal perfusion catheter placement was a feasible tool with safety and efficacy in preventing lower limb ischemia for patients with prolonged common femoral arterial cannulation for ECMO.

  3. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    Science.gov (United States)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  4. Halofuginone- and Chitosan-Coated Amnion Membranes Demonstrate Improved Abdominal Adhesion Prevention

    Directory of Open Access Journals (Sweden)

    Scott Washburn

    2010-01-01

    Full Text Available Our objective was to determine whether coating the amniotic membrane with halofuginone, a type 1 collagen synthase inhibitor, with or without the hemostasis-inducing substance chitosan, reduced the number and severity of adhesions in the rat uterine horn injury model. Sixty retired breeder Sprague-Dawley rats underwent midline laparotomy and a zone of ischemia was created in the left uterine horn of each animal. Rats were randomized to one of six treatment groups: (1 untreated control, (2 oxidized regenerated cellulose (Interceed® (ORC, (3 plain amnion, (4 amnion coated on both sides with 0.5% solution of halofuginone (HAH, (5 amnion coated on one side with 0.5% halofuginone and on the other side with chitosan (CAH, or (6 amnion coated on both sides with chitosan (CAC. The zone of ischemia in each left uterine horn was wrapped in each treatment. Rats were sacrificed 2 weeks after laparotomy, and adhesions were counted and scored for severity. Data were analyzed using Chi square and a p <0.05 was considered significant. Our results showed that there were no differences in the percentage of animals with adhesions in the untreated, ORC, plain amnion, or CAC groups. No adhesions formed in any animal in the HAH group and only 14% of the animals developed adhesions to the uterine horn in the CAH group (p < 0.05. The percentage of animals with moderate and severe adhesions did not differ between untreated controls and the ORC groups, but were significantly reduced in all four of the amnion groups: plain amnion, HAH, CAH, and CAC (p < 0.05. Amnion coated with halofuginone alone or in combination with chitosan reduced the percentage of animals with adhesions, as well as the percentage of animals with moderate and severe adhesions compared to untreated controls and the ORC group in the rat uterine horn injury model. Amnion alone or coated with chitosan reduced the percentage of rats with moderate and severe adhesions, but not the percentage of rats with

  5. Studies on the prevention of respiratory distress syndrome of infants due to hyaline membrane disease with plasminogen.

    Science.gov (United States)

    Ambrus, C M; Choi, T S; Weintraub, D H; Eisenberg, B; Staub, H P; Courey, N G; Foote, R J; Goplerud, D; Moesch, R V; Ray, M; Bross, I D; Jung, O S; Mink, I B; Ambrus, J L

    1975-07-01

    Hyaline membrane disease (HMD) is leading single cause of death of newborn, premature infants. The "hyaline membranes" consist chiefly of fibrin. The clinical manifestation of HMD is the respiratory distress syndrome (RDS). Infants with RDS were treated with urokinase-activated human plasmin in a previous clinical trial. Survival rate was increased in the plasmin treated group as compared to the placebo recipients. However, cost and difficulty in the preparation of the enzyme made this treatment impractical. We, as well as others, have shown the premature infants lack serum plasminogen; thus they are unable to develop effective fibrinolysis and are defenseless against pulmonary fibrin deposition. Therefore, plamsinogen was tested as a possible preventive agent in RDS due to HMD. In a double blind, randomized study, infants between 1 and 2.5 kg birth weight received plasminogen or placebo shortly after birth, and were then followed for development of RDS. After 100 infants were entered into the study, the code was broken and results were evaluated to assure safety of the procedure. Among the 100 infants, 51 received placebo, 49 received plasminogen. Among the infants who received placebo, seven developed mild, and ten developed severe respiratory distress; of these ten, five died with histopathologically documented HMD. Two infants died from causes other than HMD. Among the 49 infants treated with plasminogen, 13 developed mild and three developed severe respiratory distress. There was no death due to HMD. Two deaths were due to other causes. Factors placing the infant at risk from HMD (degree of prematurity, sex, cesarean section, bleeding episodes during pregnancy, maternal diabetes) were found to be evenly distributed between control and treated groups. Since completing the first phase of the study, data of an additional 277 infants has become available. Although the code was not broken in this series, a preliminary look at mortality data in comparison with

  6. Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes

    OpenAIRE

    Persico, Mathieu; Bazinet, Laurent

    2017-01-01

    Peptide adsorption occurring on conventional anion- and cation-exchange membranes is one of the main technological locks in electrodialysis (ED) for hydrolysate demineralization. Hence, the peptide fouling of monovalent anion (MAP) and monovalent cation (MCP) permselective membranes was studied and compared to conventional membranes (AMX-SB and CMX-SB). It appeared that the main peptide sequences responsible for fouling were TPEVDDEALEKFDK, VAGTWY and VLVLDTDYK for both anionic membranes; and...

  7. Membrane omega-3 Fatty Acid deficiency as a preventable risk factor for comorbid coronary heart disease in major depressive disorder.

    Science.gov (United States)

    McNamara, Robert K

    2009-01-01

    Major depression disorder (MDD) significantly increases the risk for coronary heart disease (CHD) which is a leading cause of mortality in patients with MDD. Moreover, depression is frequently observed in a subset of patients following acute coronary syndrome (ACS) and increases risk for mortality. Here evidence implicating omega-3 (n-3) fatty acid deficiency in the pathoaetiology of CHD and MDD is reviewed, and the hypothesis that n-3 fatty acid deficiency is a preventable risk factor for CHD comorbidity in MDD patients is evaluated. This hypothesis is supported by cross-national and cross-sectional epidemiological surveys finding an inverse correlation between n-3 fatty acid status and prevalence rates of both CHD and MDD, prospective studies finding that lower dietary or membrane EPA+DHA levels increase risk for both MDD and CHD, case-control studies finding that the n-3 fatty acid status of MDD patients places them at high risk for emergent CHD morbidity and mortality, meta-analyses of controlled n-3 fatty acid intervention studies finding significant advantage over placebo for reducing depression symptom severity in MDD patients, and for secondary prevention of cardiac events in CHD patients, findings that n-3 fatty acid status is inversely correlated with other documented CHD risk factors, and patients diagnosed with MDD after ACS exhibit significantly lower n-3 fatty acid status compared with nondepressed ACS patients. This body of evidence provides strong support for future studies to evaluate the effects of increasing dietary n-3 fatty acid status on CHD comorbidity and mortality in MDD patients.

  8. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  9. Effect of Human Amniotic Membrane on Prevention of Colorectal Anastomosis Leakage in Cases with Neoadjuvant Radiotherapy: An Experimental Animal Study

    Directory of Open Access Journals (Sweden)

    Sam Moslemi

    2016-11-01

    Full Text Available Background: Radiotherapy is one of the most important factors which results in negative effects on wound healing and increases anastomosis leakage. Diverting loop ileostomy has been usually performed after colorectal anastomosis in cases of colorectal cancer with a history of neoadjuvant radiotherapy to decrease the chance of leakage. Considering the side effects of diverting loop ileostomy, the objective of the present study is to investigate the effect of human amniotic membrane (HAM on colorectal anastomosis leakage after neo-adjuvant radiotherapy. Methods: In this experimental animal study, 20 crossbreed rabbits were randomly divided into two groups (case group: 13 rabbits, control group: 7 rabbits after receiving an equal dose of external beam radiation. Four weeks after irradiation, resection of 4 cm of colorectal segment and end-to-end single layer anastomosis were conducted. In the case group, a 2×2 cm wrap of HAM applied around the site of anastomosis. Eight weeks later, all the survived rabbits were sacrificed. A segment of anastomotic sites was resected in all expired and survived rabbits and sent for pathological evaluation. Mann-Whitney U Test (SPSS for Windows, Ver. 16, Chicago, IL was applied to analyze healing scores between the two groups. Results: Due to anastomosis dehiscence, 5 rabbits expired in the control group, but all the 13 rabbits (case group survived after 8 weeks and showed no leakage. In addition, pathological evaluation revealed significant epithelialization and neovascularization in the case group. Statistically, healing score was higher in the case group rather than the control group (P<0.001. Conclusion: To prevent post irradiation colorectal anastomosis leakage, the use of HAM might play a significant role and a feasible technical approach.

  10. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane.

    Science.gov (United States)

    Tsakiridis, T; Vranic, M; Klip, A

    1994-11-25

    In muscle and fat tissues, insulin stimulates glucose transport through the translocation of glucose transporter proteins from an intracellular storage pool to the plasma membrane. The mechanism of this translocation is unknown. We have examined the possible role of the actin microfilament network in the stimulation of glucose transport by insulin and on the distribution of glucose transporters, in differentiated L6 rat skeletal muscle cells. Insulin (10(-7) M for 30 min) caused a major reorganization of the actin network of differentiated L6 myotubes. Cytochalasin D, a widely used inhibitor of actin filament formation, caused a dose- and time-dependent disassembly of the actin network, which was associated with an 80% inhibition of the insulin stimulation of glucose transport, without affecting the basal rate of glucose uptake. L6 myotubes express three glucose transporter isoforms, named GLUT1, GLUT3, and GLUT4. Disassembly of the actin network by cytochalasin D did not affect the number of basal glucose transporters in the plasma membrane but reduced the content of all three glucose transporters in intracellular membranes and prevented their appearance at the plasma membrane response to insulin. The inhibitory effect of cytochalasin D treatment on the insulin stimulation of glucose transport occurred downstream of tyrosine phosphorylation of the insulin receptor substrate-1 and of binding of phosphatidylinositol 3-kinase to the insulin receptor substrate-1. Using immunoprecipitation of intact membranes, we detected specific association of the actin-binding protein spectrin with GLUT4 glucose transporter-containing vesicles. We conclude that an intact actin network is required for the correct intracellular localization of glucose transporters, as well as for their incorporation into the plasma membrane in response to insulin. A direct interaction may exist between the actin network and the glucose transporter vesicles which may be mediated through a spectrin

  11. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation.

    Science.gov (United States)

    Shalumon, K T; Sheu, Chialin; Chen, Chih-Hao; Chen, Shih-Heng; Jose, Gils; Kuo, Chang-Yi; Chen, Jyh-Ping

    2018-04-05

    The possibility of endowing an electrospun anti-adhesive barrier membrane with multi-functionality, such as lubrication, prevention of fibroblast attachment and anti-infection and anti-inflammation properties, is highly desirable for the management of post-surgical tendon adhesion. To this end, we fabricated core-shell nanofibrous membranes (CSNMs) with embedded silver nanoparticles (Ag NPs) in the poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) shell and hyaluronic acid (HA)/ibuprofen in the core. HA imparted a lubrication effect for smooth tendon gliding and reduced fibroblast attachment, while Ag NPs and ibuprofen functioned as anti-infection and anti-inflammation agents, respectively. CSNMs with a PEG/PCL/Ag shell (PPA) and HA core containing 0% (H/PPA), 10% (HI10/PPA), 30% (HI30/PPA) and 50% (HI50/PPA) ibuprofen were fabricated through co-axial electrospinning and assessed through microscopic, spectroscopic, thermal, mechanical and drug release analyses. Considering nutrient passage through the barrier, the microporous CSNMs exerted the same barrier effect but drastically increased the mass transfer coefficients of bovine serum albumin compared with the commercial anti-adhesive membrane SurgiWrap®. Cell attachment/focal adhesion formation of fibroblasts revealed effective reduction of initial cell attachment on the CSNM surface with minimum cytotoxicity (except HI50/PPA). The anti-bacterial effect against both Gram-negative and Gram-positive bacteria was verified to be due to the Ag NPs in the membranes. In vivo studies using H/PPA and HI30/PPA CSNMs and SurgiWrap® in a rabbit flexor tendon rupture model demonstrated the improved efficacy of HI30/PPA CSNMs in reducing inflammation and tendon adhesion formation based on gross observation, histological analysis and functional assays. We conclude that HI30/PPA CSNMs can act as a multifunctional barrier membrane to prevent peritendinous adhesion after tendon surgery. A multi-functional anti-adhesion barrier

  12. Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments.

    Science.gov (United States)

    Colin, Julie; Thomas, Mélanie H; Gregory-Pauron, Lynn; Pinçon, Anthony; Lanhers, Marie-Claire; Corbier, Catherine; Claudepierre, Thomas; Yen, Frances T; Oster, Thierry; Malaplate-Armand, Catherine

    2017-06-01

    Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  14. Analysis of functional damages of membrane receptor by radiation exposure and development of the damage preventive method by modifying the membrane lipids

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Fumio; Tanaka, Yasuhito; Asano, Toshihiko; Ogura, Atsuro; Suzuki, Osamu; Matsuda, Junichiro [National Inst. of Health, Tokyo (Japan)

    1997-02-01

    The influences of radiation exposure on the body were evaluated with ligand-binding ability of a receptor on biomembrane, which is a highly sensitive and essential indicator for human body. The present study aimed to establish a model system for ligand-receptor binding reactions and analyze the effects of {gamma}-ray radiation on the systems. When a macrophage cell line RAW 264.7 was exposed to {gamma}-ray, active oxygen (O{sub 2}{sup -}) producing capacity was significantly increased when compared to non-exposed cells at a dose ranging 1.3-2.6 Gy but decreased at 5.3 Gy or more, whereas the producing ability of nitrogen monoxide radical was not affected by the radiation. Then, radiation effects on cell surface receptor was examined using a monocyte cell line, U937. The distributions of CD14 and CD4 were not changed by radiation, but the TNF{alpha} receptor was increased dose-dependently. When the membrane lipids were modified by using bovine serum albumin bound eicosapentaenoic acid (BSA-EPA), the increase of TNF{alpha} expression caused by radiation did not occur, while the expression was decreased when modified with BSA bound arachidonic acid (BSA-AA). (M.N.)

  15. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  16. Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation

    Directory of Open Access Journals (Sweden)

    Elena Simone

    2018-01-01

    Full Text Available In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM; and particle vision and measurement (PVM were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.

  17. Prevention of preterm birth based on short cervix: symptomatic women with preterm labor or premature prelabor rupture of membranes.

    Science.gov (United States)

    Ness, Amen

    2009-10-01

    The diagnosis of preterm labor (PTL) is challenging, especially in women whose cervical dilatation is 15 mm. Transvaginal ultrasound CL can also be performed in the presence of ruptured membranes and predicts latency. Although additional data are needed, the evidence so far suggests that the use of transvaginal ultrasound CL and fetal fibronectin can be used to better identify and manage women with PTL likely to have an imminent preterm delivery, and to avoid interventions in women who would not.

  18. Local mucous membrane lesions caused by irradiation of the oropharynx can be prevented by a dental shield

    International Nuclear Information System (INIS)

    Schratter-Sehn, A.U.; Vienna Univ.; Schmidt, W.F.O.; Kaercher, K.H.; Kielhauser, R.; Langer, H.

    1992-01-01

    In patients with metallic dental fillings radiation therapy to the oral cavity can cause mucous membrane lesions, which are more severe than expected. They appear as circumscribed erosions, opposite to metallic fillings and are caused by an increase in radiation dose through secondary radiation due to the higher density and atomic number of the filling material. This dose increase can be directly measured with 0.1 mm thin sheets of graphite-loaded TLD's (LiF, Vinten). For Co-60 gamma rays a commercial amalgam filling caused a dose increase by a factor of 1.7. The half value layer for this additional radiation was measured to be approximately 0.4 mm tissue. In order to avoid painful mucous membrane ulcerations which are even more a problem if hyperfractionated treatment schedules are used, we constructed individual dental shields for each patient. As shielding material we used a dental impression material (Optosil P + , Bayer). This method was tested in 35 patients, in all of them circumscribed mucous membrane ulcerations could be avoided. The method proved to be fast and simple and was very well tolerated by all patients. (orig.) [de

  19. Thy28 partially prevents apoptosis induction following engagement of membrane immunoglobulin in WEHI-231 B lymphoma cells.

    Science.gov (United States)

    Toyota, Hiroko; Jiang, Xiao-Zhou; Asakura, Hideki; Mizuguchi, Junichiro

    2012-03-01

    Thy28 protein is conserved among plants, bacteria, and mammalian cells. Nuclear Thy28 protein is substantially expressed in testis, liver, and immune cells such as lymphocytes. Lymphocyte apoptosis plays a crucial role in homeostasis and formation of a diverse lymphocyte repertoire. In this study, we examined whether Thy28 affects induction of apoptosis in WEHI-231 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Once they were established, the Thy28-overexpressing WEHI-231 cells showed similar expression levels of IgM and class I major histocompatibility complex (MHC) molecule compared with controls. The Thy28-overexpressing cells were considerably resistant to loss of mitochondrial membrane potential (ΔΨm), caspase-3 activation, and increase in annexin-positive cells upon mIg engagement. These changes were concomitant with an increase in G1 phase associated with upregulation of p27(Kip1). The anti-IgM-induced sustained activation of c-Jun N-terminal kinase (JNK), which was associated with late-phase hydrogen peroxide (H(2)O(2)) production, was partially reduced in the Thy28-expressing cells relative to controls. Taken together, the data suggest that in WEHI-231 B lymphoma cells, Thy28 regulates mIg-mediated apoptotic events through the JNK-H(2)O(2) activation pathway, concomitant with an accumulation of cells in G1 phase associated with upregulation of p27(Kip1) in WEHI-231 B lymphoma cells.

  20. Combined HLA matched limbal stem cells allograft with amniotic membrane transplantation as a prophylactic surgical procedure to prevent corneal graft rejection after penetrating keratoplasty: case report

    Directory of Open Access Journals (Sweden)

    Paolo Capozzi

    2014-09-01

    Full Text Available Purpose. To determine if the use of combined HLA matched limbal stem cells allograft with amniotic membrane transplantation (AMT is a safe and effective prophylactic surgical procedure to prevent corneal graft after penetrating keratoplasty (PK. Methods. We report the case of a 17 years old patient with a history of congenital glaucoma, trabeculectomy and multiple corneal graft rejections, presenting total limbal cell deficiency. To reduce the possibility of graft rejection in the left eye after a new PK, a two step procedure was performed. At first the patient underwent a combined HLA matched limbal stem cells allograft (LAT and AMT and then, 10 months later, a new PK. Results. During 12 months of follow-up, the corneal graft remained stable and smooth, with no sign of graft rejection. Conclusions. In our patient, the prophylactic use of LAT from HLA-matched donors and AMT before PK, may result in a better prognosis of corneal graft survival.

  1. Point-of-use membrane filtration and hyperchlorination to prevent patient exposure to rapidly growing mycobacteria in the potable water supply of a skilled nursing facility.

    Science.gov (United States)

    Williams, Margaret M; Chen, Tai-Ho; Keane, Tim; Toney, Nadege; Toney, Sean; Armbruster, Catherine R; Butler, W Ray; Arduino, Matthew J

    2011-09-01

    Healthcare-associated outbreaks and pseudo-outbreaks of rapidly growing mycobacteria (RGM) are frequently associated with contaminated tap water. A pseudo-outbreak of Mycobacterium chelonae-M. abscessus in patients undergoing bronchoscopy was identified by 2 acute care hospitals. RGM was identified in bronchoscopy specimens of 28 patients, 25 of whom resided in the same skilled nursing facility (SNF). An investigation ruled out bronchoscopy procedures, specimen collection, and scope reprocessing at the hospitals as sources of transmission. To identify the reservoir for RGM within the SNF and evaluate 2 water system treatments, hyperchlorination and point-of-use (POU) membrane filters, to reduce RGM. A comparative in situ study of 2 water system treatments to prevent RGM transmission. An SNF specializing in care of patients requiring ventilator support. RGM and heterotrophic plate count (HPC) bacteria were examined in facility water before and after hyperchlorination and in a subsequent 24-week assessment of filtered water by colony enumeration on Middlebrook and R2A media. Mycobacterium chelonae was consistently isolated from the SNF water supply. Hyperchlorination reduced RGM by 1.5 log(10) initially, but the population returned to original levels within 90 days. Concentration of HPC bacteria also decreased temporarily. RGM were reduced below detection level in filtered water, a 3-log(10) reduction. HPC bacteria were not recovered from newly installed filters, although low quantities were found in water from 2-week-old filters. POU membrane filters may be a feasible prevention measure for healthcare facilities to limit exposure of sensitive individuals to RGM in potable water systems.

  2. [Study on membrane type leaf water evaporation inhibitors for improving effect of preventing diseases and pest controlling of Lycium barbarum].

    Science.gov (United States)

    Wang, Dan-Dan; Lv, Zhe; Xu, Chang-Qing; Liu, Sai; Chen, Jun; Peng, Xiao; Wu, Yan

    2018-01-01

    Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of Lycium barbarum and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and L. barbarum were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of L. barbarum leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of L. barbarum leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of L. barbarum. Copyright© by the Chinese Pharmaceutical Association.

  3. Ablation of plasma membrane Ca(2+)-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophic cardiomyopathy.

    Science.gov (United States)

    Prasad, Vikram; Lorenz, John N; Lasko, Valerie M; Nieman, Michelle L; Jiang, Min; Gao, Xu; Rubinstein, Jack; Wieczorek, David F; Shull, Gary E

    2014-12-01

    The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis.

    Science.gov (United States)

    Zheng, Wei; Warner, Roscoe; Ruggeri, Roger; Su, Chunyan; Cortes, Christian; Skoura, Athanasia; Ward, Jessica; Ahn, Kay; Kalgutkar, Amit; Sun, Dexue; Maurer, Tristan S; Bonin, Paul D; Okerberg, Carlin; Bobrowski, Walter; Kawabe, Thomas; Zhang, Yanwei; Coskran, Timothy; Bell, Sammy; Kapoor, Bhupesh; Johnson, Kent; Buckbinder, Leonard

    2015-05-01

    Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti-glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. [Prevention of spontaneous preterm birth (excluding preterm premature rupture of membranes): Guidelines for clinical practice - Text of the Guidelines (short text)].

    Science.gov (United States)

    Sentilhes, L; Sénat, M-V; Ancel, P-Y; Azria, E; Benoist, G; Blanc, J; Brabant, G; Bretelle, F; Brun, S; Doret, M; Ducroux-Schouwey, C; Evrard, A; Kayem, G; Maisonneuve, E; Marcellin, L; Marret, S; Mottet, N; Paysant, S; Riethmuller, D; Rozenberg, P; Schmitz, T; Torchin, H; Langer, B

    2016-12-01

    To determine the measures to prevent spontaneous preterm birth (excluding preterm premature rupture of membranes)and its consequences. The PubMed database, the Cochrane Library and the recommendations from the French and foreign obstetrical societies or colleges have been consulted. In France, premature birth concerns 60,000 neonates every year (7.4 %), half of them are delivered after spontaneous onset of labor. Among preventable risk factors of spontaneous prematurity, only cessation of smoking is associated to a decrease of prematurity (level of evidence [LE] 1). This is therefore recommended (grade A). Routine screening and treatment of vaginal bacteriosis in general population is not recommended (grade A). Asymptomatic women with single pregnancy without history of preterm delivery and a short cervix between 16 and 24 weeks is the only population in which vaginal progesterone is recommended (grade B). A history-indicated cerclage is not recommended in case of only past history of conisation (grade C), uterine malformation (Professional consensus), isolated history of pretem delivery (grade B) or twin pregnancies in primary (grade B) or secondary (grade C) prevention of preterm birth. A history-indicated cerclage is recommended for single pregnancy with a history of at least 3 late miscarriages or preterm deliveries (grade A).). In case of past history of a single pregnancy delivery before 34 weeks gestation (WG), ultrasound cervical length screening is recommended between 16 and 22 WG in order to propose a cerclage in case of lengthpremature rupture of membranes. Maintenance tocolysis is not recomended (grade B). Antenatal corticosteroid administration is recommended to every woman at risk of preterm delivery before 34 weeks of gestation (grade A). After 34 weeks, evidences are not consistent enough to recommend systematic antenatal corticosteroid treatment (grade B), however, a course might be indicated in the clinical situations associated with the

  6. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  7. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    Expression of CSPs was observed only in bacterial strains isolated from temperate region and negligible or no expression was observed in bacterial strains isolated from arid zones. Therefore this anti-CRPF8 can be used as immunological tool for the identification of CSP from diversified microorganisms.

  8. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... Ps. fluorescens MTCC 665 and its mutants were incubated on trypticase soya peptone (TSP) broth composed of 0.5% soya peptone, 1.5% peptone, and 0.5% NaCl (pH-7.0) or TSP agar (TSP broth + 2% w/v agar). All other strains were incubated on nutrient broth composed of 0.5% peptone and 0.3% beef ...

  9. The importance of cold shock proteins in Xylella fastidiosa virulence

    Science.gov (United States)

    Xylella fastidiosa (Xf), causal agent of Pierce’s Disease (PD) of grapevine, is mainly prevalent in warmer climates. Subjecting Xf-infected grapevines to cold temperatures can, in many cases, effectively eliminate the bacterial population, a phenomenon known as cold curing. However, very little is k...

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  11. Statins and Cancer Prevention

    Science.gov (United States)

    ... cell membrane integrity, cell signaling, protein synthesis, and cell cycle progression, all of which are potential areas of intervention to arrest the cancer process. What are the ... at the NCI Division of Cancer Prevention Web site at http://prevention. ...

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  14. Elastic membranes in confinement.

    Science.gov (United States)

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).

  15. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  16. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Guo, Yan; Cuin, Tracey A.

    2007-01-01

    Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an ......Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report...

  17. Role of membrane potential on artificial transformation of E. coli with plasmid DNA.

    Science.gov (United States)

    Panja, Subrata; Saha, Swati; Jana, Bimal; Basu, Tarakdas

    2006-12-15

    The standard method of transformation of Escherichea coli with plasmid DNA involves two important steps: cells are first suspended in 100mM CaCl(2) at 0 degrees C (in which DNA is added), followed by the administration of a heat-pulse from 0 to 42 degrees C for 90s [Cohen, S., Chang, A., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria. Proc. Natl. Acad. Sci. U.S.A., 69, 2110-2114]. The first step makes the cells competent for uptake of DNA and the second step is believed to facilitate the DNA entry into the cells by an unknown mechanism. In this study, the measure of membrane potential of the intact competent cells, at different steps of transformation process, either by the method of spectrofluorimetry or that of flow cytometry, indicates that the heat-pulse step (0-->42 degrees C) heavily decreases the membrane potential. A subsequent cold shock (42-->0 degrees C) raises the potential further to its original value. Moreover, the efficiency of transformation of E. coli XL1 Blue cells with plasmid pUC19 DNA remains unaltered when the heat-pulse step is replaced by the incubation of the DNA-adsorbed competent cells with 10 microM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 90s at 0 degrees C. Since the CCCP, a well-known protonophore, reduces membrane potential by dissipating the proton-motive-force (PMF) across E. coli plasma membrane, our experimental results suggest that the heat-pulse step of the standard transformation procedure facilitates DNA entry into the cells by lowering the membrane potential.

  18. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  19. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  20. Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria.

    Science.gov (United States)

    Naoi, Makoto; Maruyama, Wakako; Yi, Hong

    2013-11-01

    Rasagiline protects neuronal cells from cell death caused by various lines of insults. Its neuroprotective function is due to suppression of mitochondrial apoptosis signaling and induction of neuroprotective genes, including Bcl-2 and neurotrophic factors. Rasagiline inhibits the mitochondrial membrane permeabilization, an initial stage in apoptosis, but the mechanism has been elusive. In this paper, it was investigated how rasagiline regulates mitochondrial death cascade in apoptosis induced in SH-SY5Y cells by PK11195, a ligand of the outer membrane translocator protein of 18 kDa. Rasagiline prevented release of cytochrome c (Cyt-c), and the following caspase 3 activation, ATP depletion and apoptosis, but did not inhibit the mitochondrial membrane potential collapse, in contrast to Bcl-2 overexpression. Rasagiline stabilized the mitochondrial contact site and suppressed Cyt-c release into cytoplasm, which should be the critical point for the regulation of apoptosis. Monoamine oxidase was not associated with anti-apoptotic activity of rasagiline in PK11195-induced apoptosis.

  1. Local mucous membrane lesions caused by irradiation of the oropharynx can be prevented by a dental shield. Praevention lokaler Schleimhautlaesionen waehrend Oropharynx-Bestrahlung durch einen Plombenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Schratter-Sehn, A.U. (Kaiser-Franz-Josef-Spital, Vienna (Austria). Abt. fuer Strahlentherapie Vienna Univ. (Austria). Universitaetsklinik fuer Strahlentherapie und Strahlenbiologie); Schmidt, W.F.O.; Kaercher, K.H. (Vienna Univ. (Austria). Universitaetsklinik fuer Strahlentherapie und Strahlenbiologie); Kielhauser, R. (Kaiser-Franz-Josef-Spital, Vienna (Austria). Abt. fuer Strahlentherapie); Langer, H. (Kaiser-Franz-Josef-Spital, Vienna (Austria). Abt. fuer Zahnheilkunde)

    1992-01-01

    In patients with metallic dental fillings radiation therapy to the oral cavity can cause mucous membrane lesions, which are more severe than expected. They appear as circumscribed erosions, opposite to metallic fillings and are caused by an increase in radiation dose through secondary radiation due to the higher density and atomic number of the filling material. This dose increase can be directly measured with 0.1 mm thin sheets of graphite-loaded TLD's (LiF, Vinten). For Co-60 gamma rays a commercial amalgam filling caused a dose increase by a factor of 1.7. The half value layer for this additional radiation was measured to be approximately 0.4 mm tissue. In order to avoid painful mucous membrane ulcerations which are even more a problem if hyperfractionated treatment schedules are used, we constructed individual dental shields for each patient. As shielding material we used a dental impression material (Optosil P{sup +}, Bayer). This method was tested in 35 patients, in all of them circumscribed mucous membrane ulcerations could be avoided. The method proved to be fast and simple and was very well tolerated by all patients. (orig.).

  2. Modification of membrane cholesterol and desmosterol in chicken spermatozoa improves post-thaw survival and prevents impairment of sperm function after cryopreservation.

    Science.gov (United States)

    Ushiyama, Ai; Tajima, Atsushi; Ishikawa, Naoto; Asano, Atsushi

    2017-09-26

    During cryopreservation, spermatozoa are subjected to cryodamage that leads to a decline in fertilisation ability. Due to the complex nature of this process, the initial trigger for cryodamage remains unknown. Recently, we demonstrated that cryopreservation induces early apoptotic changes characterised by phosphatidylserine (PS) translocation via sterol loss from the plasma membrane of chicken spermatozoa. This led us to hypothesise that sterol incorporation into membranes minimises cryodamage, thereby improving the quality of cryopreserved chicken spermatozoa. In the present study, treating spermatozoa with 1.5mgmL-1 cholesterol- and 3mgmL-1 desmosterol-loaded cyclodextrin (CLC and DLC respectively) increased post-thaw survival and motility. These effects appeared to be highly dependent the amount of sterol loaded into the spermatozoa. Localisation experiments confirmed the incorporation of exogenous cholesterol into the sperm head region. Detection of PS translocation showed that elevation of these sterols inhibited early apoptotic changes, thereby enhancing post-thaw survival. Furthermore, CLC and DLC treatment suppressed spontaneous acrosome reaction after cryopreservation, preserving the ability of spermatozoa to undergo acrosome reactions in response to physiological stimulation. These results demonstrate that loading sterols into chicken spermatozoa before cryopreservation enhances their quality by inhibiting early apoptotic changes and spontaneous acrosome reactions. The present study provides new mechanistic insight into cryodamage in chicken spermatozoa.

  3. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  4. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  5. Synergistic efficiency of the desilication of brackish underground water in Saudi Arabia by coupling γ-radiation and Fenton process: Membrane scaling prevention in reverse osmosis process

    Science.gov (United States)

    Aljohani, Mohammed S.

    2017-12-01

    One of the main water resources in arid Saudi Arabia is underground water. However, this brackish water has high silica content which can cause a recalcitrant deposit on the membrane in the reverse osmosis units during its desalination. In this study, we examined the synergistic efficiency of the removal of silica from the Buwaib water sample, when combining two advanced oxidation processes, γ-irradiation and the Fenton process, using hydrogen peroxide and zero valent metal iron as source of Fe3+. This latter adsorbs effectively on silica and co-precipitate. The influence of absorbed dose, iron dosage and pH effect were investigated. This preliminary study showed that these attractive and effective hybrid processes are very efficient in removing silica.

  6. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  7. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability.

    Science.gov (United States)

    Wang, Zhangxin; Lin, Shihong

    2017-04-01

    Membrane distillation (MD) has been identified as a promising technology to desalinate the hypersaline wastewaters from fracking and other industries. However, conventional hydrophobic MD membranes are highly susceptible to fouling and/or wetting by the hydrophobic and/or amphiphilic constituents in these wastewaters of complex compositions. This study systematically investigates the impact of the surface wetting properties on the membrane wetting and/or fouling behaviors in MD. Specifically, we compare the wetting and fouling resistance of three types of membranes of different wetting properties, including hydrophobic and omniphobic membranes as well as composite membranes with a hydrophobic substrate and a superhydrophilic top surface. We challenged the MD membranes with hypersaline feed solutions that contained a relatively high concentration of crude oil with and without added synthetic surfactants, Triton X-100. We found that the composite membranes with superhydrophilic top surface were robustly resistant to oil fouling in the absence of Triton X-100, but were subject to pore wetting in the presence of Triton X-100. On the other hand, the omniphobic membranes were easily fouled by oil-in-water emulsion without Triton X-100, but successfully sustained stable MD performance with Triton X-100 stabilized oil-in-water emulsion as the feed solution. In contrast, the conventional hydrophobic membranes failed readily regardless whether Triton X-100 was present, although via different mechanisms. These findings are corroborated by contact angle measures as well as oil-probe force spectroscopy. This study provides a holistic picture regarding how a hydrophobic membrane fails in MD and how we can leverage membranes with special wettability to prevent membrane failure in MD operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Curcumin Pretreatment Prevents Potassium Dichromate-Induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity, and Membrane Permeability Transition Pore Opening

    Directory of Open Access Journals (Sweden)

    Wylly Ramsés García-Niño

    2013-01-01

    Full Text Available Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7 in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w. before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.. Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction.

  9. Curcumin Pretreatment Prevents Potassium Dichromate-Induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity, and Membrane Permeability Transition Pore Opening

    Science.gov (United States)

    García-Niño, Wylly Ramsés; Tapia, Edilia; Zazueta, Cecilia; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Vega-García, Claudia Cecilia; Pedraza-Chaverrí, José

    2013-01-01

    Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7) in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w.) before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.). Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction. PMID:23956771

  10. Phase 1 testing of detoxified LPS/group B meningococcal outer membrane protein vaccine with and without synthetic CPG 7909 adjuvant for the prevention and treatment of sepsis.

    Science.gov (United States)

    Cross, Alan S; Greenberg, Nancy; Billington, Melissa; Zhang, Lei; DeFilippi, Christopher; May, Ryan C; Bajwa, Kanwaldeep K

    2015-11-27

    Gram-negative bacteria (GNB) are a leading cause of nosocomial infection and sepsis. Increasing multi-antibiotic resistance has left clinicians with fewer therapeutic options. Antibodies to GNB lipopolysaccharide (LPS, or endotoxin) have reduced morbidity and mortality as a result of infection and are not subject to the resistance mechanisms deployed by bacteria against antibiotics. In this phase 1 study, we administered a vaccine that elicits antibodies against a highly conserved portion of LPS with and without a CpG oligodeoxynucleotide (ODN) TLR9 agonist as adjuvant. A vaccine composed of the detoxified LPS (dLPS) from E. coli O111:B4 (J5 mutant) non-covalently complexed to group B meningococcal outer membrane protein (OMP). Twenty healthy adult subjects received three doses at 0, 29 and 59 days of antigen (10 μg dLPS) with or without CPG 7909 (250 or 500 μg). Subjects were evaluated for local and systemic adverse effects and laboratory findings. Anti-J5 LPS IgG and IgM antibody levels were measured by electrochemiluminesence. Due to premature study termination, not all subjects received all three doses. All vaccine formulations were well-tolerated with no local or systemic events of greater than moderate severity. The vaccine alone group achieved a ≥ 4-fold "responder" response in IgG and IgM antibody in only one of 6 subjects. In contrast, the vaccine plus CPG 7909 groups appeared to have earlier and more sustained (to 180 days) responses, greater mean-fold increases, and a higher proportion of "responders" achieving ≥ 4-fold increases over baseline. Although the study was halted before all enrolled subjects received all three doses, the J5dLPS/OMP vaccine, with or without CpG adjuvant, was safe and well-tolerated. The inclusion of CpG increased the number of subjects with a ≥ 4-fold antibody response, evident even after the second of three planned doses. A vaccine comprising J5dLPS/OMP antigen with CpG adjuvant merits further investigation. Clinical

  11. Cell Membrane Coating Nanotechnology.

    Science.gov (United States)

    Fang, Ronnie H; Kroll, Ashley V; Gao, Weiwei; Zhang, Liangfang

    2018-03-27

    Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of nanomaterials available, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. Here, a comprehensive overview is provided on an emerging platform: cell-membrane-coating nanotechnology. As a fundamental unit of biology, cells carry out a wide range of functions, including the remarkable ability to interface and interact with their surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment existing nanocarriers. Further, the introduction of a natural membrane substrate onto nanoparticles surfaces has enabled additional applications beyond those traditionally associated with nanomedicine. Despite its relative youth, there exists an impressive body of literature on cell membrane coating, which is covered here in detail. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this developing technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  13. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  14. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  15. The Influence of Barrier Membranes on Autologous Bone Grafts

    NARCIS (Netherlands)

    Gielkens, P. F. M.; Schortinghuis, J.; de Jong, J. R.; Paans, A. M. J.; Ruben, J. L.; Raghoebar, G. M.; Stegenga, B.; Bos, R. R. M.

    2008-01-01

    In implant dentistry, there is continuing debate regarding whether a barrier membrane should be applied to cover autologous bone grafts in jaw augmentation. A membrane would prevent graft remodeling with resorption and enhance graft incorporation. We hypothesized that membrane coverage does not

  16. Water desalination using carbon-nanotube-enhanced membrane distillation.

    Science.gov (United States)

    Gethard, Ken; Sae-Khow, Ornthida; Mitra, Somenath

    2011-02-01

    Carbon nanotube (CNT) enhanced membrane distillation is presented for water desalination. It is demonstrated that the immobilization of the CNTs in the pores of a hydrophobic membrane favorably alters the water-membrane interactions to promote vapor permeability while preventing liquid penetration into the membrane pores. For a salt concentration of 34 000 mg L(-1) and at 80 °C, the nanotube incorporation led to 1.85 and 15 times increase in flux and salt reduction, respectively.

  17. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  18. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  19. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  20. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  1. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  2. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  3. Diagnostic Modalities in Premature Rupture of Membranes

    OpenAIRE

    Fatma Eskicioğlu; Esra Bahar Gur

    2015-01-01

    Objectives: Rupture of membranes prior to the onset of labor is known as Premature Rupture of Membranes (PROM). Early and correct diagnosis is crucial in order to prevent fetal and maternal risks that can be life threatening. We aimed to investigate the diagnostic ability of the tests in PROM. Materials and Methods: Nitrazine test, fern test, amnio-dye test, biochemical tests (insulin-like growth factor binding protein-1 and placental alpha microglobulin-1) were evaluated in terms of effec...

  4. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  5. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  6. Choking Prevention

    Science.gov (United States)

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & Prevention Safety & Prevention Safety and Prevention Immunizations At Home ...

  7. Does chlorination of seawater reverse osmosis membranes control biofouling?

    Science.gov (United States)

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  9. Expression of the Csp protein family upon cold shock and production of tetracycline in Streptomyces aureofaciens

    Czech Academy of Sciences Publication Activity Database

    Mikulík, Karel; Quoc, Khanh-Hoang; Halada, Petr; Bezoušková, Silvia; Benada, Oldřich; Běhal, Vladislav

    1999-01-01

    Roč. 265, č. 2 (1999), s. 305-310 ISSN 0006-291X R&D Projects: GA ČR GA203/98/0422 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.161, year: 1999

  10. Cold Shock Exoribonuclease R (VacB) is Involved in Aeromonas hydrophila Pathogenesis

    Science.gov (United States)

    In this study, we cloned and sequenced a virulence-associated gene (vacB) from a clinical isolate SSU of Aeromonas hydrophila. We identified this gene based on our recently annotated genome sequence of the environmental isolate ATCC 7966T of A. hydrophila and the vacB gene of Shi...

  11. Cold Shock Exoribonuclease R(VacB) is involved in Aeromonas hydrophila Virulence

    Science.gov (United States)

    In this study, we cloned and sequenced a virulence-associated gene (vacB) from a clinical isolate SSU of Aeromonas hydrophila. We identified this gene based on our recently annotated genome sequence of the environmental isolate ATCC 7966T of A. hydrophila and the vacB gene of Shi...

  12. Identification of genes involved in cold-shock response in rainbow ...

    Indian Academy of Sciences (India)

    Author Affiliations. ANDREAS BORCHEL1 2 MARIEKE VERLEIH1 ALEXANDER REBL1 TOM GOLDAMMER1. Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, ...

  13. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    Science.gov (United States)

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  14. Triploidy induction in Nile tilapia, Oreochromis niloticus L. using pressure, heat and cold shocks

    Digital Repository Service at National Institute of Oceanography (India)

    Hussain, M.G.; Chatterji, A.; McAndrew, B.J.; Johnstone, R.

    stream_size 7 stream_content_type text/plain stream_name Theor_Appl_Genet_81_6.pdf.txt stream_source_info Theor_Appl_Genet_81_6.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  15. Identification of genes involved in cold-shock response in rainbow ...

    Indian Academy of Sciences (India)

    Andreas Borchel

    2017-08-30

    Oncorhynchus mykiss). ANDREAS BORCHEL1,2, MARIEKE VERLEIH1, ALEXANDER REBL1 and TOM GOLDAMMER1∗. 1Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2,.

  16. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  17. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  18. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  19. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  20. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  2. Transmembrane Signalling: Membrane messengers

    Science.gov (United States)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  3. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  4. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  5. Membrane contactor applications

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.

    2008-01-01

    In a membrane contactor the membrane separation is completely integrated with an extraction or absorption operation in order to exploit the benefits of both technologies fully. Membrane contactor applications that have been developed can be found in both water and gas treatment. Several recently

  6. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  7. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  8. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  9. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....

  10. The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane

    DEFF Research Database (Denmark)

    Kwaaitaal, Mark Adrianus Cornelis J; Nielsen, Mads Eggert; Böhlenius, Henrik

    2017-01-01

    Many filamentous plant pathogens place specialized feeding structures, called haustoria, inside living host cells. As haustoria grow, they are believed to manipulate plant cells to generate a specialized, still enigmatic extrahaustorial membrane (EHM) around them. Here, we focused on revealing pr....... This raises the prospect that an unconventional secretory pathway from the ER may provide this membrane's material. Understanding these processes will assist future approaches to providing resistance by preventing EHM generation....

  11. Flux flow and cleaning enhancement in a spiral membrane element ...

    African Journals Online (AJOL)

    The effect of backpulsing, into the permeate space of a 2.5 inch spiral wrap membrane, on the prevention of fouling (flux enhancement) was investigated experimentally. These experiments were performed using a 500 mg∙ℓ-1 dextrin solution and a 100 000 MCWO polypropylene membrane, with a feed pressure of 100 kPa ...

  12. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh

    2017-01-19

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti-fouling layer can include a stimuli responsive layer and a dynamic protective layer applied over the stimuli responsive layer that can be a coating on a surface of the membrane. The stimuli responsive polymer layer can act as an adhesive prior to coating with the dynamic protective layer to aid in adhering the dynamic protective layer to the membrane surface. The dynamic protective layer can be formed by suitable nanoparticles that can prevent adhesion of foulants directly to the membrane surface. The stimuli responsive layer can be responsive to physio- chemical stimuli to cause a release of the stimuli responsive layer and the dynamic protective layer including foulants from the membrane.

  13. Silk fibroin membrane used for guided bone tissue regeneration.

    Science.gov (United States)

    Cai, Yurong; Guo, Junmao; Chen, Cen; Yao, Chenxue; Chung, Sung-Min; Yao, Juming; Lee, In-Seop; Kong, Xiangdong

    2017-01-01

    With the aim to develop a novel membrane with an appropriate mechanical property and degradation rate for guided bone tissue regeneration, lyophilized and densified silk fibroin membrane was fabricated and its mechanical behavior as well as biodegradation property were investigated. The osteoconductive potency of the silk fibroin membranes were evaluated in a defect rabbit calvarial model. Silk fibroin membrane showed the modulated biodegradable and mechanical properties via ethanol treatment with different concentration. The membrane could prevent soft tissue invasion from normal tissue healing, and the amounts of new bone and defect closure with silk fibroin membrane were similar to those of commercially available collagen membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Treating boar sperm with cholesterol-loaded cyclodextrins or cyclodextrins prior to cryopreservation: effects on post-thaw in vitro sperm quality of sperm cryopreserved in different freezing extenders.

    OpenAIRE

    BLANCH TORRES, EVA

    2016-01-01

    [EN] Cryopreserved boar sperm is not used extensively for artificial insemination due to poor fertility rates of the sperm after freezing and thawing. The sperm membrane is damaged when cooled from body temperature to 5 ºC (cold shock), as well as during the freeze-thaw process. Increasing the cholesterol content of boar sperm membranes could increase their post-thaw survival, similarly to other species that are cold shock sensitive. Cholesterol can be easily added to sperm membranes using ch...

  15. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  16. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  17. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  18. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  19. Rape prevention

    Science.gov (United States)

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention website. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. www.cdc.gov/std/tg2015/sexual- ...

  20. Dengue Prevention

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Prevention Recommend on Facebook Tweet Share Compartir This photograph ... medications to treat a dengue infection. This makes prevention the most important step, and prevention means avoiding ...

  1. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  2. Plague Prevention

    Science.gov (United States)

    ... Healthcare Professionals Clinicians Public Health Officials Veterinarians Prevention History of Plague Resources FAQ Prevention Recommend on Facebook Tweet Share Compartir Reduce rodent habitat around your ...

  3. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  4. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  5. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  6. Polyarylether composition and membrane

    Science.gov (United States)

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  7. Golgi GRASPs: moonlighting membrane tethers

    Directory of Open Access Journals (Sweden)

    Jarvela T

    2012-05-01

    Full Text Available Timothy Jarvela, Adam D LinstedtDepartment of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USAAbstract: The identification of mammalian Golgi reassembly stacking proteins (GRASPs 15 years ago was followed by experiments implicating them in diverse functions, including two differing structural roles in Golgi biogenesis and at least two distinct roles in the secretion of proteins. GRASP55 and GRASP65 are localized to cis and medial/trans Golgi cisternae, respectively. They are both required for stacking of Golgi membranes in a Golgi reassembly assay. Depletion of either GRASP from cultured cells prevents the linking of Golgi membranes into their normal ribbon-like network. While GRASPs are not required for transport of secretory cargo per se, they are required for ER-to-Golgi transport of certain specific cargo, such as those containing a C-terminal valine motif. Surprisingly, GRASPs also promote secretion of cargo by the so-called unconventional secretory pathway, which bypasses the Golgi apparatus where the GRASPs reside. Furthermore, regulation of GRASP activity is now recognized for its connections to cell cycle control, development, and disease. Underlying these diverse activities is the structurally conserved N-terminal GRASP domain whose crystal structure was recently determined. It consists of a tandem array of atypical PSD95–DlgA–Zo–1 (PDZ domains, which are well-known protein–protein interaction motifs. The GRASP PDZ domains are used to localize the proteins to the Golgi as well as GRASP-mediated membrane tethering and cargo interactions. These activities are regulated, in part, by phosphorylation of the large unstructured C-terminal domain.Keywords: GRASP, review, membrane, tether, PDZ domain, secretory chaperone, unconventional secretion

  8. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  9. Membrane protein expression triggers chromosomal locus repositioning in bacteria

    Science.gov (United States)

    Libby, Elizabeth A.; Roggiani, Manuela; Goulian, Mark

    2012-01-01

    It has long been hypothesized that subcellular positioning of chromosomal loci in bacteria may be influenced by gene function and expression state. Here we provide direct evidence that membrane protein expression affects the position of chromosomal loci in Escherichia coli. For two different membrane proteins, we observed a dramatic shift of their genetic loci toward the membrane upon induction. In related systems in which a cytoplasmic protein was produced, or translation was eliminated by mutating the start codon, a shift was not observed. Antibiotics that block transcription and translation similarly prevented locus repositioning toward the membrane. We also found that repositioning is relatively rapid and can be detected at positions that are a considerable distance on the chromosome from the gene encoding the membrane protein (>90 kb). Given that membrane protein-encoding genes are distributed throughout the chromosome, their expression may be an important mechanism for maintaining the bacterial chromosome in an expanded and dynamic state. PMID:22529375

  10. Metabolic control of the membrane fluidity in .i.Bacillus subtilis./i. during cold adaptation

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Jemiola-Rzeminska, M.; Elhottová, Dana; Strzalka, K.; Konopásek, I.

    2008-01-01

    Roč. 1778, č. 2 (2008), s. 445-453 ISSN 0005-2736 R&D Projects: GA MŠk LC06066 Grant - others:Karlova univerzita Praha(CZ) 189/2005/B-Bio/PrF Institutional research plan: CEZ:AV0Z60660521 Keywords : Bacillus * fatty acid synthesis regulation * cold shock Subject RIV: EH - Ecology, Behaviour Impact factor: 4.180, year: 2008

  11. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  12. Porous ceramic membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  13. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  14. Membrane module assembly

    Science.gov (United States)

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  15. Application of expanded inert polytetrafluorethylene membrane in prevention of post laminectomy fibrosis in wistar rats Estudo do uso da membrana de politetrafluoroetileno inerte expandido para a prevenção da fibrose pós laminectomia em ratos wistar

    Directory of Open Access Journals (Sweden)

    Tarcísio Eloy Pessoa Barros Filho

    2003-04-01

    Full Text Available Post laminectomy fibrosis in spine surgery has been responsible for a high rate of failure in a short or long term. Many of this patients develop chronic or recurrent pain after surgery of discal herniation, canal stenosis etc. Although there some doubts about the etiology of this problem, it was known that fibrosis interfere with the normal mobility of roots and spinal cord. This factor is considered as the most important aspect in the genesis of the surgical failures. To avoid postoperative fibrosis, a lot of materials of interposition between posterior spine muscles and dura mater were studied, without good response. This paper studied comparatively post laminectomy fibrosis in Wistar rats with the addition of the following materials to avoid it: control group (without interposition and expanded inert polytetrafluoroethylene membrane (Preclude Spinal Membrane®. It was observed that accurate surgical technique apparently is an important factor to prevent the formation of abundant scar tissue and that the expanded inert polytetrafluoroethylene membrane is an inert material.A fibrose pós laminectomia em cirurgias da coluna vertebral tem sido responsabilizada por um grande percentual das falhas nestas cirurgias, tanto a curto quanto a longo prazo. Muitos dos pacientes desenvolvem sintomas de dor crônica ou recorrente após tratamento cirúrgico de hérnias de disco, estenose de canal, etc. Apesar de ainda existirem dúvidas quanto à fisiopatologia do problema, sabe-se que a fibrose interfere na mobilidade normal das raízes e da medula espinal, fator este responsabilizado como o principal na gênese das falhas cirúrgicas. Para se evitar a fibrose pós-cirúrgica, vários materiais de interposição entre a musculatura posterior da coluna e a dura-máter foram estudados, sem grandes resultados. Neste trabalho foi feito o estudo da membrana de politetrafluoroetileno inerte expandido (Preclude Spinal Membrane® comparando-se a mesma com grupo

  16. Membrane projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  17. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  18. The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane

    Science.gov (United States)

    Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul

    2018-02-01

    The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.

  19. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... it sufficiently stable in a final application. Here, I specifically discuss the feasibility of developing osmotic biomimetic MIP membranes, but the technical issues are of general concern in the design of biomimetic membranes capable of supporting selective transmembrane fluxes....

  20. Fabricating PFPE Membranes for Capillary Electrophoresis

    Science.gov (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  1. Preventing Addiction.

    Science.gov (United States)

    Moore, Susan Fordney

    The purpose of this paper is to provide the beginning counselor with an overview of prevention concepts. Prevention is a relatively new emphasis in community efforts to stem the rising costs of substance abuse and other high-risk behaviors. The paper discusses agent, host, and environmental prevention models and how they relate to causal theories…

  2. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  3. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  4. PERSISTENT PUPILLARY MEMBRANE OR ACCESSORY IRIS MEMBRANE?.

    Science.gov (United States)

    Gavriş, Monica; Horge, Ioan; Avram, Elena; Belicioiu, Roxana; Olteanu, Ioana Alexandra; Kedves, Hanga

    2015-01-01

    Frequently, in literature and curent practice, accessory iris membrane (AIM) and persistant pupillary membrane (PPM) are confused. Both AIM and PPM are congenital iris anomalies in which fine or thick iris strands arrise form the collarette and obscure the pupil. AIM, which is also called iris duplication, closely resembles the normal iris tissue in color and thickness and presents a virtual second pseudopupil aperture in the centre while PPM even in its extreme forms presents as a translucent or opaque membranous structure that extends across the pupil and has no pseudopupil. Mydriatiscs, laser treatment or surgery is used to clear the visual axis and optimize visual development. Surgical intervention is reserved for large, dense AIMs and PPMs. Our patient, a 29 year old male, has come with bilateral dense AIM, bilateral compound hyperopic astigmatism, BCVA OD = 0.6, BCVA OS = 0.4, IOP OU = 17 mmHg. To improve the visual acuity of the patient we decided to do a bilateral membranectomy, restoring in this way transparency of the visual axis. After surgery, the visual acuity improved to BCVA OD= 0.8, BCVA OS=0.8.

  5. Supported liquid membrane battery separators

    Science.gov (United States)

    Pemsler, J. P.; Dempsey, M. D.

    1984-07-01

    The feasibility of using a supported liquid membrane (SLM) as a separator in the nickel-zinc battery was investigated. In particular, SLM separators should prevent zinc dendirte growth from shorting out the cell and might also alleviate capacity loss due to zinc electrode shape changes. A number of ion exchange/solvent modifier systems for incorporation into SLMs were developed under a previous LBL contract. SLMs prepared with hese reagents exhibited resistances in the range of 0.4 to 10 ohm sq cm, selectivity transported hydroxyl ions over zincate ions by a factor of 10 to the 6th power to 10 to the 7th power, and possessed electrochemical and chemical stability in alkaline electrolytes. In order to evaluate these SLM separators under conditions closely resembling a commercial Ni-Zn cell, an accelerated cycle life test was devised using commercial electrodes.

  6. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  7. Extracorporeal membrane oxygenation

    Science.gov (United States)

    Extracorporeal membrane oxygenation (ECMO) is a treatment that uses a pump to circulate blood through an artificial lung back into the bloodstream of a very ill baby. This system provides heart-lung bypass support ...

  8. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  9. Biglycan and decorin differentially regulate signaling in the fetal membranes

    Science.gov (United States)

    Wu, Zhiping; Horgan, Casie E.; Carr, Olivia; Owens, Rick T.; Iozzo, Renato V.; Lechner, Beatrice E.

    2014-01-01

    Preterm birth is the leading cause of newborn mortality in the United States and about one third of cases are caused by preterm premature rupture of fetal membranes, a complication that is frequently observed in patients with Ehlers-Danlos Syndrome. Notably, a subtype of Ehlers-Danlos Syndrome is caused by expression of abnormal biglycan and decorin proteoglycans. As compound deficiency of these two small leucine-rich proteoglycans is a model of preterm birth, we investigated the fetal membranes of Bgn−/−;Dcn−/− double-null and single-null mice. Our results showed that biglycan signaling supported fetal membrane remodeling during early gestation in the absence of concomitant changes in TGFβ levels. In late gestation, biglycan signaling acted in a TGFβ–dependent manner to aid in membrane stabilization. In contrast, decorin signaling supported fetal membrane remodeling at early stages of gestation in a TGFβ–dependent manner, and fetal membrane stabilization at later stages of gestation without changes in TGFβ levels. Furthermore, exogenous soluble decorin was capable of rescuing the TGFβ signaling pathway in fetal membrane mesenchymal cells. Collectively, these findings provide novel targets for manipulation of fetal membrane extracellular matrix stability and could represent novel targets for research on preventive strategies for preterm premature rupture of fetal membranes. PMID:24373743

  10. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  12. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  13. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  14. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  15. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

    International Nuclear Information System (INIS)

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  16. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  17. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes

  18. Prevention: Exercise

    Medline Plus

    Full Text Available ... Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen ...

  19. Prevention: Exercise

    Medline Plus

    Full Text Available ... Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic Exercise ...

  20. Prevention: Exercise

    Medline Plus

    Full Text Available ... Watchful Waiting and Education Injection Treatments for Spinal Pain Epidural Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 ...

  1. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  2. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  3. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  4. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  5. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  6. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence spectrosc......Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...... spectroscopy approaches provide very valuable structurally and dynamically related information on membranes, they generally produce mean parameters from data collected on bulk solutions of many vesicles and lack direct information on the spatial organization at the level of single membranes, a quality that can...... be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction...

  7. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  8. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal.

    Science.gov (United States)

    Laurito, Domenico; Cugnetto, Riccardo; Lollobrigida, Marco; Guerra, Fabrizio; Vestri, Annarita; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    This study aimed to evaluate the efficacy of an exposed high-density polytetrafluoroethylene (d-PTFE) membrane in preventing epithelial migration in postextraction sockets. For this purpose, a histologic description of the newly formed soft tissue underlying the membrane is presented. The periodontal status of the adjacent teeth was also evaluated to assess the gingival response. Ten premolar extraction sockets were treated. After tooth extraction, the sockets were filled with nanocrystalline hydroxyapatite and covered with d-PTFE membranes. Subperiosteal pockets were created to ensure the stability of the membranes. Membranes were left intentionally exposed and were atraumatically removed after 28 days. At that time, a bioptic specimen of the newly formed soft tissue under the membranes was taken. All the histologic samples showed a dense connective tissue without epithelial cells and no signs of foreign body reaction. No significant variation of the periodontal indices was observed on the teeth adjacent to the extraction sites. The study results indicate that exposed d-PTFE membranes can prevent epithelial migration in healing sockets without consequences on the periodontal health.

  9. Poison Prevention

    Science.gov (United States)

    ... Prevention Listen Español Text Size Email Print Share Poison Prevention Page Content Article Body Post the Poison Help number 1-800-222-1222 on the ... or empty container of a toxic substance, call Poison Help immediately. More than a million American children ...

  10. Liver plasma membranes: an effective method to analyze membrane proteome.

    Science.gov (United States)

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  11. Membranes and pathophysiological mineralization.

    Science.gov (United States)

    Roszkowska, Monika; Strzelecka-Kiliszek, Agnieszka; Magne, David; Pikula, Slawomir; Bessueille, Laurence

    Vascular calcification accompanies the pathological process of atherosclerotic plaque formation. Artery calcification results from trans-differentiation of vascular smooth muscle cells (VSMCs) into cells resembling mineralization-competent cells such as osteoblasts and chondrocytes. The activity of tissue-nonspecific alkaline phosphatase (TNAP), a GPI-anchored enzyme necessary for physiological mineralization, is induced in VSMCs in response to inflammation. TNAP achieves its mineralizing function being anchored to plasma membrane of mineralizing cells and to the surface of their derived matrix vesicles (MVs), and numerous important reports indicate that membranes play a crucial role in initiating the crystal formation. In this review, we would like to highlight various functions of lipids and proteins associated to membranes at different stages of both physiological mineralization and vascular calcification, with an emphasis on the pathological process of atherosclerotic plaque formation.

  12. Characterization of graphene membranes

    Science.gov (United States)

    O'Hern, Sean; Lee, Jongho; Jain, Tarun; Karnik, Rohit; Idrobo, Juan; Laoui, Tahar; Atieh, Motaz

    2011-11-01

    Graphene, which exhibits very high breaking strength, atomistic thickness, and the ability to maintain stable nanometer-scale pores, has the potential to be a superior membrane material in both liquid- and gas-phase separation processes. We have recently demonstrated high-quality transfer of ~1 cm2 LPCVD graphene from copper foil to 200 nm polycarbonate track etch membranes with less than 0.3% of the area constituting holes or tears in the graphene, which is essential for characterizing transport through graphene. Through gallium ion bombardment we have introduced nanometer-scale pores in the transferred graphene and will report on the molecular and ionic transport through these membranes. Funded by the Center for Clean Energy and Water at MIT and KFUPM.

  13. Anti-glycophorin C induces mitochondrial membrane depolarization and a loss of extracellular regulated kinase 1/2 protein kinase activity that is prevented by pretreatment with cytochalasin D: implications for hemolytic disease of the fetus and newborn caused by anti-Ge3.

    Science.gov (United States)

    Micieli, Jonathan A; Wang, Duncheng; Denomme, Gregory A

    2010-08-01

    Anti-glycophorin C (GPC), blood group antibodies of which cause hemolytic disease of the fetus and newborn (HDFN), is a potent inhibitor of erythroid progenitor cell growth. The cellular mechanism for growth inhibition has not been characterized. K562 cells were incubated in the presence of either anti-GPC, an immunoglobulin G isotype control, an inhibitor of actin polymerization called cytochalasin D with anti-GPC, or cytochalasin D alone. The JC-1 cationic dye was used to detect mitochondrial depolarization and the activity of the mitogen-activated protein kinases was assessed by Western blotting. Anti-GPC inhibits the activity of extracellular regulated kinase (ERK)1/2 within 10 minutes but does not alter the activity of p38 or c-Jun N-terminal kinase. After 24 hours there was a significant loss of mitochondrial membrane potential compared to isotype control–treated cells. Both the ERK1/2 inhibition and the loss of mitochondrial potential were prevented by pretreatment with cytochalasin D. A cell surface antibody can cause anemia by altering the signaling pathways in erythroid cells by promoting depolarization of mitochondria via cytoskeletal rearrangement. The observation that neonates with anti-GPC HDFN are unresponsive to erythropoietin can be explained by the antibody inhibiting a protein kinase through which this hematopoietic growth factor achieves its effects.

  14. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  15. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  16. Fouling resistant membrane spacers

    KAUST Repository

    Ghaffour, Noreddine

    2017-10-12

    Disclosed herein are spacers having baffle designs and perforations for efficiently and effectively separating one or more membrane layers a membrane filtration system. The spacer (504) includes a body (524) formed at least in part by baffles (520) that are interconnected, and the baffles define boundaries of openings or apertures (525) through a thickness direction of the body of the spacer. Alternatively or additionally, passages or perforations (526A, 526B) may be present in the spacer layer or baffles for fluid flow there through, with the passages and baffles having a numerous different shapes and sizes.

  17. Mitigating leaks in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O' Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  18. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  19. Carbon membranes for efficient water-ethanol separation

    Science.gov (United States)

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  20. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  1. Dimensional analysis of membrane distillation flux through fibrous membranes

    Science.gov (United States)

    Mauter, Meagan

    We developed a dimensional-analysis-based empirical modeling method for membrane distillation (MD) flux that is adaptable for novel membrane structures. The method makes fewer simplifying assumptions about membrane pore geometry than existing theoretical (i.e. mechanistic) models, and allows selection of simple, easily-measureable membrane characteristics as structural parameters. Furthermore, the model does not require estimation of membrane surface temperatures; it accounts for convective heat transfer to the membrane surface without iterative fitting of mass and heat transfer equations. The Buckingham-Pi dimensional analysis method is tested for direct contact membrane distillation (DCMD) using non-woven/fibrous structures as the model membrane material. Twelve easily-measured variables to describe DCMD operating conditions, fluid properties, membrane structures, and flux were identified and combined into eight dimensionless parameters. These parameters were regressed using experimentally-collected data for multiple electrospun membrane types and DCMD system conditions, achieving R2 values >95%. We found that vapor flux through isotropic fibrous membranes can be estimated using only membrane thickness, solid fraction, and fiber diameter as structural parameters. Buckingham-Pi model DCMD flux predictions compare favorably with previously-developed empirical and theoretical models, and suggest this simple yet theoretically-grounded empirical modeling method can be used practically for predicting MD vapor flux from membrane structural parameters.

  2. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  3. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    Science.gov (United States)

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-03

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  4. Microencapsulation within crosslinked polyethyleneimine membranes.

    Science.gov (United States)

    Poncelet, D; Alexakis, T; Poncelet de Smet, B; Neufeld, R J

    1994-01-01

    A microencapsulation technique is proposed involving the formation of a polyethyleneimine (PEI) membrane crosslinked by an acid dichloride. The membranes were formed at pH 8 in a non-polar solvent, conditions which are better suited for the encapsulation of biocatalysts or fragile biochemicals than those using polyamide membranes. The mean diameter and size distribution of the PEI microcapsules were similar to that observed with nylon membranes. The resultant microcapsules were spherical, free-flowing with a strong membrane. The mass of membrane was seen to be independent of the reaction time (1-4 min), insensitive to the PEI concentration and proportional to the concentration of crosslinking agent.

  5. Preventive analgesia

    DEFF Research Database (Denmark)

    Dahl, Jørgen B; Kehlet, Henrik

    2011-01-01

    This paper will discuss the concepts of pre-emptive and preventive analgesia in acute and persistent postsurgical pain, based on the most recent experimental and clinical literature, with a special focus on injury-induced central sensitization and the development from acute to chronic pain. Recent...... of preventive analgesia for persistent postoperative pain are promising. However, clinicians must be aware of the demands for improved design of their clinical studies in order to get more conclusive answers regarding the different avenues for intervention. Summary: The concept of preventive analgesia is still...

  6. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available In this paper the authors compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a homogeneous thickness, or it is shaped resulting in an inhomogeneous cross...

  8. Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins.

    Science.gov (United States)

    Ma, Ze-Wei; Liu, Dong-Xiang

    2017-12-21

    Humanin (HN) is a 24-residue peptide identified from the brain of a patient with Alzheimer's disease (AD). HN has been found to protect against neuronal insult caused by Aβ peptides or transfection of familial AD mutant genes. In order to elucidate the molecular mechanisms of HN neuroprotection, we explored the effects of HN on the association of Bax or Bid with lipid bilayers and their oligomerization in the membrane. By using single-molecule fluorescence and Förster resonance energy transfer techniques, we showed that Bax was mainly present as monomers, dimers and tetramers in lipid bilayers, while truncated Bid (tBid) enhanced the membrane association and tetramerization of Bax. HN (100 nmol/L) inhibited the self-association and tBid-activated association of Bax with the bilayers, and significantly decreased the proportion of Bax in tetramers. Furthermore, HN inhibited Bid translocation to lipid bilayers. HN could bind with Bax and Bid either in solution or in the membrane. However, HN could not pull the proteins out of the membrane. Based on these results, we propose that HN binds to Bax and cBid in solution and inhibits their translocation to the membrane. Meanwhile, HN interacts with the membrane-bound Bax and tBid, preventing the recruitment of cytosolic Bax and its oligomerization in the membrane. In this way, HN inhibits Bax pore formation in mitochondrial outer membrane and suppresses cytochrome c release and mitochondria-dependent apoptosis.

  9. Hydrogen-selective membrane

    Science.gov (United States)

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  10. Fusion of biological membranes

    Indian Academy of Sciences (India)

    small hemifusion diaphragm. To obtain a direct view of the fusion process, we have carried out extensive simulations of two bilayers, composed of block copolymers, which are immersed in a solvent which favors one of the blocks. As in the biological case, the membranes are placed under tension. This is essential as fusion ...

  11. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological ... The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in ...

  12. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  13. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Abstract. The process of membrane fusion has been examined by Monte Carlo simu- lation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by tran- sient leakage. This prediction has recently been verified.

  14. Extracorporeal membrane oxygenation (ECMO)

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is increasingly being employed in South African intensive care units for the management of patients with refractory hypoxaemia and for haemodynamic support, particularly following cardiothoracic procedures. ECMO is expensive, however, and there is a danger that this ...

  15. Fusion of biological membranes

    Indian Academy of Sciences (India)

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent ...

  16. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  18. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  19. Membrane fission by protein crowding.

    Science.gov (United States)

    Snead, Wilton T; Hayden, Carl C; Gadok, Avinash K; Zhao, Chi; Lafer, Eileen M; Rangamani, Padmini; Stachowiak, Jeanne C

    2017-04-18

    Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.

  20. Dialysis membranes for blood purification.

    Science.gov (United States)

    Sakai, K

    2000-01-01

    All of the artificial membranes in industrial use, such as a reverse-osmosis membrane, dialysis membrane, ultrafiltration membrane, microfiltration membrane and gas separation membrane, also have therapeutic applications. The most commonly used artificial organ is the artificial kidney, a machine that performs treatment known as hemodialysis. This process cleanses the body of a patient with renal failure by dialysis and filtration, simple physicochemical processes. Hemodialysis membranes are used to remove accumulated uremic toxins, excess ions and water from the patient via the dialysate, and to supply (deficit) insufficient ions from the dialysate. Dialysis membranes used clinically in the treatment of patients with renal failure account for by far the largest volume of membranes used worldwide; more than 70 million square meters are used a year. Almost all dialyzers now in use are of the hollow-fiber type. A hollow-fiber dialyzer contains a bundle of approximately 10000 hollow fibers, each with an inner diameter of about 200 microm when wet. The membrane thickness is about 20-45 microm, and the length is 160-250 mm. The walls of the hollow fibers function as the dialysis membrane. Various materials, including cellulose-based materials and synthetic polymers, are used for dialysis membranes. This paper reviews blood purification, hemodialysis and dialysis membranes.

  1. Prevention: Exercise

    Medline Plus

    Full Text Available ... Exercise Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back Pain Preventing Osteoporosis Back ... in very slightly. Hold a ball directly in front of you. Keep your abdominal muscles tight and ...

  2. Prevention: Exercise

    Medline Plus

    Full Text Available ... Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic ... Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back Pain Preventing Osteoporosis Back Pain ...

  3. Prevent Shingles

    Science.gov (United States)

    ... Submit What's this? Submit Button Past Emails Prevent Shingles Language: English (US) Español (Spanish) Recommend on Facebook ... that can result in vision loss. Older Adults & Shingles As you get older, you are more likely ...

  4. Prevention: Exercise

    Medline Plus

    Full Text Available ... Epidural Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! ...

  5. Prevention: Exercise

    Medline Plus

    Full Text Available ... and Education Injection Treatments for Spinal Pain Epidural Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle ... Z Spine Specialists Videos 9 for Spine Epidural Steroid Injections Exercise: The Backbone of Spine Treatment Spondylolisthesis ...

  6. Prevention: Exercise

    Medline Plus

    Full Text Available ... A SPECIALIST Prevention Strengthening Exercise Committee Exercise Committee Core Strengthening Many popular forms of exercise focus on ... acute pain, you should stop doing it. Transverse Core Strengthening This strengthens the muscles that cross from ...

  7. Prevention: Exercise

    Medline Plus

    Full Text Available ... Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient ... the floor; rotate from side to side. Repeat 10 times. Check with your physician; if you are ...

  8. Prevention: Exercise

    Medline Plus

    Full Text Available ... Pregnancy and Back Pain Preventing Osteoporosis Back Pain Basics Book RESOURCES Patient ... popular forms of exercise focus on core strengthening, or building the muscles that provide support for your body. Pilates, yoga and martial arts ...

  9. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  10. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  11. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  12. HIV Prevention

    Centers for Disease Control (CDC) Podcasts

    2012-02-01

    Dr. Kevin Fenton, Director of CDC’s National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, talks about steps people can take to protect their health from HIV.  Created: 2/1/2012 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 2/1/2012.

  13. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  14. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  15. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  16. Cheap Thin Film Oxygen Membranes

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite...

  17. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application.

    NARCIS (Netherlands)

    Yang, F.; Both, S.K.; Yang, X.; Walboomers, X.F.; Jansen, J.A.

    2009-01-01

    In dental practice, membranes are used as a barrier to prevent soft tissue ingrowth and create space for slowly regenerating periodontal and bony tissues. The aim of this study was to develop a biodegradable membrane system which can be used for guided tissue or bone regeneration. Three types of

  18. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane

    NARCIS (Netherlands)

    Schug, Z. T.; Gonzalvez, F.; Houtkooper, R. H.; Vaz, F. M.; Gottlieb, E.

    2011-01-01

    Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this

  19. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    NARCIS (Netherlands)

    Song, J.; Remmers, S.J.; Shao, J.; Kolwijck, E.; Walboomers, X.F.; Jansen, J.A.; Leeuwenburgh, S.C.; Yang, F.

    2016-01-01

    To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver

  20. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis

    NARCIS (Netherlands)

    Lauder, Sarah N; Allen-Redpath, Keith; Slatter, David A; Aldrovandi, Maceler; O'Connor, Anne; Farewell, Daniel; Percy, Charles L; Molhoek, Jessica E; Rannikko, Sirpa; Tyrrell, Victoria J; Ferla, Salvatore; Milne, Ginger L; Poole, Alastair W; Thomas, Christopher P; Obaji, Samya; Taylor, Philip R; Jones, Simon A.; de Groot, Phillip G; Urbanus, Rolf T; Hörkkö, Sohvi; Uderhardt, Stefan; Ackermann, Jochen; Vince Jenkins, P; Brancale, Andrea; Krönke, Gerhard; Collins, Peter W; O'Donnell, Valerie B

    2017-01-01

    Blood coagulation functions as part of the innate immune system by preventing bacterial invasion, and it is critical to stopping blood loss (hemostasis). Coagulation involves the external membrane surface of activated platelets and leukocytes. Using lipidomic, genetic, biochemical, and mathematical

  1. Glial membranes at the node of Ranvier prevent neurite outgrowth

    DEFF Research Database (Denmark)

    Huang, Jeffrey K; Phillips, Greg R; Roth, Alejandro D

    2005-01-01

    of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes...

  2. Method to prevent sulfur accumulation in membrane electrode assembly

    Science.gov (United States)

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  3. Reconciliation of opposing views on membrane-sugar interactions

    DEFF Research Database (Denmark)

    Andersen, Heidi D.; Wang, Chunhua; Arleth, Lise

    2011-01-01

    It is well established that small sugars exert different types of stabilization of biomembranes both in vivo and in vitro. However, the essential question of whether sugars are bound to or expelled from membrane surfaces, i.e., the sign and size of the free energy of the interaction, remains...... unresolved, and this prevents a molecular understanding of the stabilizing mechanism. We have used small-angle neutron scattering and thermodynamic measurements to show that sugars may be either bound or expelled depending on the concentration of sugar. At low concentration, small sugars bind quite strongly...... to a lipid bilayer, and the accumulation of sugar at the interface makes the membrane thinner and laterally expanded. Above â¼0.2 M the sugars gradually become expelled from the membrane surface, and this repulsive mode of interaction counteracts membrane thinning. The dual nature of sugar...

  4. Chitosan cushioned phospholipid membrane and its application in imaging ellipsometry based-biosensor

    International Nuclear Information System (INIS)

    Zhang Yibang; Chen Yanyan; Jin Gang

    2011-01-01

    Chitosan cushion can support the air stability of phospholipid membrane, but the problem of serum solubility of phospholipid membrane prevents it from use in serum detection applications. Poly (ethylene glycol) (PEG) shielding promises both stability and non-specific adsorption resistance for phospholipid membrane. An air stable phospholipid membrane microarray has been successfully fabricated on chitosan modified silicon wafer. We have demonstrated the potential application of PEGylated phospholipid membrane in imaging ellipsometry-based protein biosensor. Because of the strong resistance against non-specific adsorption of serum, antigens are immobilized onto the membrane surface through chemical activation and further bind their antibodies without using blocking agent. Taking advantage of the multiple and parallel reaction capabilities of microfluidic reactor system, we have assayed the binding by varying both the density of antigen on the membrane surface and the concentration of antibody in solution.

  5. Fundamental and Applied Studies of Polymer Membranes

    Science.gov (United States)

    Imbrogno, Joseph

    Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We

  6. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  7. Building membrane nanopores

    Science.gov (United States)

    Howorka, Stefan

    2017-07-01

    Membrane nanopores--hollow nanoscale barrels that puncture biological or synthetic membranes--have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.

  8. Aquaporin-2 membrane targeting

    DEFF Research Database (Denmark)

    Olesen, Emma T B; Fenton, Robert A

    2017-01-01

    The targeting of the water channel aquaporin-2 (AQP2) to the apical plasma membrane of kidney collecting duct principal cells is regulated mainly by the antidiuretic peptide hormone arginine vasopressin (AVP). This process is of crucial importance for the maintenance of body water homeostasis....... In this brief review we assess the role of cyclic adenosine monophosphate (cAMP) and discuss the emerging concept that type 2 AVP receptor (V2R)-mediated AQP2 trafficking is cAMP-independent. the ability of the kidney to concentrate the urine and thereby maintain body water homeostasis depends on targeting....... For example, 1) stimulation with the nonspecific AC activator forskolin increases AQP2 membrane accumulation in a mouse cortical collecting duct cell line [e.g., Norregaard et al. (16)]; 2) cAMP increases CD water permeability (15); 3) the cAMP-activated protein kinase A (PKA) can phosphorylate AQP2 on its...

  9. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  10. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    OpenAIRE

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become more attractive and feasible, due to advantages provided by the combination with regard to developments for energy-efficient wastewater treatment. The major drawbacks of MBR technology are related w...

  11. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  12. Polymer electrolyte membrane fuel cell control with feed-forward ...

    African Journals Online (AJOL)

    Feed-forward and feedback control is developed in this work for Polymer electrolyte membrane (PEM) fuel cell stacks. The feed-forward control is achieved using different methods, including look-up table, fuzzy logic and neural network, to improve the fuel cell stack breathing control and prevent the problem of oxygen ...

  13. Prevalence ofhyaline membrane disease in black and white low ...

    African Journals Online (AJOL)

    one of white low-birth-weight infants were en- rolled at Baragwanath and Johannesburg Hospi- ... The prevalence of respiratory distress caused by hyaline membrane dis·ease (HMD) in pre- .... ticoid treatment for prevention of the respiratory distress syndrome in premarure infants. Pediamcs 1972; 50: 515-825. 12.

  14. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  16. Fabrication and characterization of magnetic nanoparticle composite membranes

    Science.gov (United States)

    Cruickshank, Akeem Armand

    To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size in each batch was approximately 24.6 nm. Once these nanoparticles were incorporated into a membrane (5 wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 +/-1.23 microm. Comparisons between the 0 and 5 wt. % loading of particles into the membranes indicated that the elastic modulus of the composite decreased with increasing particle concentration. The pressure- central deflection of the membranes could not be predicated by prior models and variation between magnetic and pneumatic pressure-deflection curves was quantified. Attempts to fabricate membranes with above 5 wt. % nanoparticles were not successful (no gelation). Fourier Transform Infrared (FTIR) spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing might have prevented crosslinking.

  17. Novicidin interactions with phospholipid membranes

    DEFF Research Database (Denmark)

    Balakrishnan, Vijay Shankar

    Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting...... with liposomes. The lipid-induced changes in the peptide due to membrane binding, and the peptide-induced changes in the membrane properties were investigated using various spectroscopic and calorimetric methods, and the structural and thermodynamic aspects of peptide-lipid interactions are discussed. This helps...... in understanding not only the antimicrobial nature of Novicidin, but also sheds light on the membrane-peptide interactions....

  18. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  19. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  20. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  1. Embryonic epithelial membrane transporters.

    Science.gov (United States)

    Horster, M

    2000-12-01

    Embryonic epithelial membrane transporters are organized into transporter families that are functional in several epithelial organs, namely, in kidney, lung, pancreas, intestine, and salivary gland. Family members (subtypes) are developmentally expressed in plasma membranes in temporospatial patterns that are 1) similar for one subtype within different organs, like aquaporin-1 (AQP1) in lung and kidney; 2) different between subtypes within the same organ, like the amiloride-sensitive epithelial sodium channel (ENaC) in lung; and 3) apparently matched among members of different transporter families, as alpha-ENaC with AQP1 and -4 in lung and with AQP2 in kidney. Finally, comparison of temporal expression patterns in early embryonic development of transporters from different families [e.g., cystic fibrosis transmembrane conductance regulator (CFTR), ENaC, and outer medullary potassium channel] suggests regulatory activating or inactivating interactions in defined morphogenic periods. This review focuses on embryonic patterns, at the mRNA and immunoprotein level, of the following transporter entities expressed in epithelial cell plasma membranes: ENaC; the chloride transporters CFTR, ClC-2, bumetanide-sensitive Na-K-Cl cotransporter, Cl/OH, and Cl/HCO(3); the sodium glucose transporter-glucose transporter; the sodium/hydrogen exchanger; the sodium-phosphate cotransporter; the ATPases; and AQP. The purpose of this article is to relate temporal and spatial expression patterns in embryonic and in early postnatal epithelia to developmental changes in organ structure and function.

  2. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  3. Neutrons and model membranes

    Science.gov (United States)

    Fragneto, G.

    2012-11-01

    Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.

  4. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  6. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  7. Bullying Prevention

    Science.gov (United States)

    Kemp, Patrice

    2016-01-01

    The focus of the milestone project is to focus on bridging the gap of bullying and classroom instruction methods. There has to be a defined expectations and level of accountability that has to be defined when supporting and implementing a plan linked to bullying prevention. All individuals involved in the student's learning have to be aware of…

  8. Prevention: Exercise

    Medline Plus

    Full Text Available ... Strengthen Your Core! Stretching/Flexibility Aerobic Exercise Cervical Exercise Strength Training for the Elderly Other Back Pack Safety Pregnancy and Back Pain Preventing Osteoporosis Back Pain Basics Book RESOURCES ... The Backbone of Spine Treatment Spondylolisthesis BLOG FIND ...

  9. Prevent Pneumonia

    Centers for Disease Control (CDC) Podcasts

    2015-08-06

    CDC’s Matthew Westercamp explains what pneumonia is, its symptoms, and how to prevent it.  Created: 8/6/2015 by National Center for Immunization and Respiratory Diseases (NCIRD), Division of Bacterial Diseases (DBD), Respiratory Diseases Branch (RDB).   Date Released: 8/6/2015.

  10. HIV Prevention

    Science.gov (United States)

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... Collapse All Is abstinence the only 100% effective HIV prevention option? Yes. Abstinence means not having oral, ...

  11. Prevention: Exercise

    Medline Plus

    Full Text Available ... Information Feature Articles Patient Q&A Success Stories Definitions Anatomy of the Spine Definitions A-Z Spine Specialists Videos 9 for Spine Epidural Steroid Injections Exercise: The Backbone of Spine Treatment Spondylolisthesis BLOG FIND A SPECIALIST Prevention ...

  12. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  13. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  14. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  15. Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure

    NARCIS (Netherlands)

    Wemekamp-Kamphuis, H.H.; Karatzas, A.K.; Wouters, J.A.; Abee, T.

    2002-01-01

    Listeria monocytogenes is a psychrotrophic food-borne pathogen that is problematic for the food industry because of its ubiquitous distribution in nature and its ability to grow at low temperatures and in the presence of high salt concentrations. Here we demonstrate that the process of adaptation to

  16. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  17. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  18. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  19. [Juvenile idiopathic epiretinal membrane].

    Science.gov (United States)

    Kontopoulou, K; Krause, S; Fili, S; Hayvazov, S; Schilling, H; Kohlhaas, M

    2016-07-01

    Idiopathic epiretinal membrane (iERM) is very rare in adolescent patients. The pathogenesis remains unclear although the role of hyalocytes is of major importance. The clinical features in young patients are different from those in older patients. We describe a case of iERM in a 15-year-old girl who presented with metamorphopsia of the right eye. This case report presents the basis for the decision for surgical treatment as well as the clinical features at follow-up examination 9 months after surgery.

  20. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  1. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  2. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.

    Science.gov (United States)

    Xue, Jiajia; He, Min; Liu, Hao; Niu, Yuzhao; Crawford, Aileen; Coates, Phil D; Chen, Dafu; Shi, Rui; Zhang, Liqun

    2014-11-01

    Infection is the major reason for guided tissue regeneration/guided bone regeneration (GTR/GBR) membrane failure in clinical application. In this work, we developed GTR/GBR membranes with localized drug delivery function to prevent infection by electrospinning of poly(ε-caprolactone) (PCL) and gelatin blended with metronidazole (MNA). Acetic acid (HAc) was introduced to improve the miscibility of PCL and gelatin to fabricate homogeneous hybrid nanofiber membranes. The effects of the addition of HAc and the MNA content (0, 1, 5, 10, 20, 30, and 40 wt.% of polymer) on the properties of the membranes were investigated. The membranes showed good mechanical properties, appropriate biodegradation rate and barrier function. The controlled and sustained release of MNA from the membranes significantly prevented the colonization of anaerobic bacteria. Cells could adhere to and proliferate on the membranes without cytotoxicity until the MNA content reached 30%. Subcutaneous implantation in rabbits for 8 months demonstrated that MNA-loaded membranes evoked a less severe inflammatory response depending on the dose of MNA than bare membranes. The biodegradation time of the membranes was appropriate for tissue regeneration. These results indicated the potential for using MNA-loaded PCL/gelatin electrospun membranes as anti-infective GTR/GBR membranes to optimize clinical application of GTR/GBR strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  4. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    Directory of Open Access Journals (Sweden)

    Vedat Uyak

    2014-01-01

    Full Text Available The objective of this study was to investigate powdered activated carbon (PAC contribution to natural organic matter (NOM removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters.

  5. Gas separations using inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Egan, B.Z.; Singh, S.P.N. (Oak Ridge National Lab., TN (United States)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (United States))

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  6. Cell invasion through basement membrane

    OpenAIRE

    Morrissey, Meghan A; Hagedorn, Elliott J; Sherwood, David R

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recent...

  7. Inorganic membranes and catalytic reactors

    OpenAIRE

    Rangel, Maria do Carmo

    1997-01-01

    Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for i...

  8. Catalytic Membrane Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  9. Conical Nanopore PC Membranes

    International Nuclear Information System (INIS)

    Clochard, M. C.

    2006-01-01

    Template synthesis can be considered an alternative to conventional lithography methods. It is one way of providing a panel of nanoscale metallic wires, tubes or organic polymeric devices. Our interest is focused on track-etched membranes produced from swift heavy ions bombardment of polymer films. In comparison with self-assembly of block copolymers, this bottom-up approach has the advantage of being economic, it is not time-consuming and it allows track formation of diverse geometries. Tailoring of the conical nanopore tip opening would have a tremendous impact on sensing domain, as well as on fundamental understanding of perpendicular giant magneto Resistance properties observed in metallic multilayered cylindrical nanowires. By combining low-energy heavy ion beam radiation effects with asymmetric etching, the etching temperature and time can be tuned to prepare conical nanopores of controlled geometry from 0.5 to 1μm at the base to a few nanometers at the top. Asymmetric etching onto PC films was pH-monitored at various temperatures in the range of 65 degree to 80 degree. Fluence impact onto track etch pores was also investigated. The pore shape characterization was achieved by electronic microscopy measurements on membrane surfaces and on electrodeposited nanowires. We have also observed a difference in the conical shape of replicated nanowires. Some showed sting shapes and others displayed shell shapes depending on whether a neutralizing agent was used during etching or not

  10. EUV lithography imaging using novel pellicle membranes

    Science.gov (United States)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  11. Characterization of Polymeric Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Simoncic, B.

    2007-11-01

    Full Text Available As membrane processes are increasingly used in industrial applications, there is a growing interest in methods of membrane characterization. Traditional membrane characteristics, such as cut-off value and pore size distribution, are being supplemented by membrane surface characteristics, such as charge density or zeta potential and hydrophobicity. This study, therefore, characterizes the three different polymeric membranes used (NFT-50, DL and DK. The molecular mass cut-off (MMCO value was determined using a set of reference solutes within the molecular range 150-600 Da, whereas streaming potential measurements enabled quantification of the surface charge characteristics. Hydrophobicity was studied using contact angle measurements. The results indicated that even though all three membranes had very similar layer compositions which consisted of poly(piperazneamide, as top layers they showed different values of measured quantitive. The NFT-50 membrane had the lowest MMCO value and the most hydrophilic membrane surface, followed by DK and DL. Membrane fouling as measured by flux reduction was determined by streaming potential measurements and accompanied by a positive change in zeta potential.

  12. Track membranes, production, properties, applications

    International Nuclear Information System (INIS)

    Oganesjan, Yu.Ts.

    1994-01-01

    The problems of producing track membranes on heavy ion beams of the Flerov Laboratory are considered. The parameters of the running accelerators and equipment for the irradiation of polymer foils are presented. The process of production of track membranes based on different polymeric materials and various applications of the membranes are described. Special attention is given to the principally new applications and devices developed at the Laboratory. This report presents the results obtained by a big group of scientists and engineers working in the field of elaboration, investigation and application of track membranes (author). 21 refs, 20 figs, 1 tab

  13. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  14. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  15. Challenges in commercializing biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine Elkjær

    2015-01-01

    The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One...... of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments...... relevant for biomimetic aquaporin membranes....

  16. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  17. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  18. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  19. Support influence on the properties of the alumina ceramic membranes

    International Nuclear Information System (INIS)

    Clar, C.; Scian, A.N.; Aglietti, E.F.

    2003-01-01

    The ceramic substrates used as supports for the formation of a top layer membrane must meet several requirements.Some of them are: have an average pore size and a suitable surface rugosity to obtain a homogenous top layer preventing the penetration of the membrane precursor particles into the support pores.This work analyzes the performance of the three α-Al 2 O 3 supports, with different average pore sizes and surface textures, for the formation of a membrane top layer by the dipcoating technique from colloids in suspension of aluminum basic acetate and later thermal treatment at 1000degC.The pore size distribution of the supports, the support-membrane systems and the top layer membrane was obtained by the mercury intrusion porosimetry technique.The microstructural differences of the supports and the top layer thickness were observed by MEB.It could be observed that for numerous deposits the membrane layer pore size obtained is independent on the support used and that the thickness of the last layer is lower for the greater pore size supports.The possibility of an intermediate layer between the support and the top layer was considered in every case

  20. Allergy prevention.

    Science.gov (United States)

    Muche-Borowski, Cathleen; Kopp, Matthias; Reese, Imke; Sitter, Helmut; Werfel, Thomas; Schäfer, Torsten

    2010-09-01

    The further increase of allergies in industrialized countries demands evidence-based measures of primary prevention. The recommendations as published in the guideline of 2004 were updated and consented on the basis of a systematic literature search. Evidence from the period February 2003-May 2008 was searched in the electronic databases Cochrane and MEDLINE as well as in reference lists of recent reviews and by contacting experts. The retrieved citations were screened for relevance first by title and abstract and in a second step as full paper. Levels of evidence were assigned to each included study and the methodological quality of the studies was assessed as high or low. Finally the revised recommendations were formally consented (nominal group process) by representatives of relevant societies and organizations including a self-help group. Of originally 4556 hits, 217 studies (4 Cochrane Reviews, 14 meta-analyses, 19 randomized controlled trials, 135 cohort and 45 case-control studies) were included and critically appraised. Grossly unchanged remained the recommendations on avoiding environmental tobacco smoke, breast-feeding over 4 months (alternatively hypoallergenic formulas for children at risk), avoiding a mold-promoting indoor climate, vaccination according to current recommendations, and avoidance of furry pets (especially cats) in children at risk. The recommendation on reducing the house dust mite allergen exposure as a measure of primary prevention was omitted and the impact of a delayed introduction of supplementary food was reduced. New recommendations were adopted concerning fish consumption (during pregnancy / breast-feeding and as supplementary food in the first year), avoidance of overweight, and reducing the exposure to indoor and outdoor air pollutants. The revision of this guideline on a profound evidence basis led to (1) a confirmation of existing recommendations, (2) substantial revisions, and (3) new recommendations. Thereby it is possible

  1. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  2. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  3. Effect of temperature shocks on membrane fouling in membrane bioreactors

    NARCIS (Netherlands)

    Brink, van den P.; Satpradit, O.A.; Bentem, van A.; Zwijnenburg, A.; Temmink, B.G.; Loosdrecht, M.C.M.

    2011-01-01

    Temperature is known to influence the biological performance of conventional activated sludge systems. In membrane bioreactors (MBRs), temperature not only affects the bioconversion process but is also shown to have an effect on the membrane performance. Four phenomena are generally reported to

  4. Taming Membranes : Functional Immobilization of Biological Membranes in Hydrogels

    NARCIS (Netherlands)

    Kusters, Ilja; Mukherjee, Nobina; de Jong, Menno R.; Tans, Sander; Kocer, Armagan; Driessen, Arnold J. M.

    2011-01-01

    Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally

  5. Prevention of ligneous conjunctivitis by topical and subconjunctival fresh frozen plasma.

    Science.gov (United States)

    Tabbara, Khalid F

    2004-08-01

    To present a case of ligneous conjunctivitis where the recurrence of membranous conjunctivitis was prevented by subconjunctival and topical instillation of fresh frozen plasma. Interventional case report. A case of ligneous conjunctivitis with multiple recurrences since the age of 3 years developed recurrent membranous conjunctivitis after transconjunctival levator recession. Blood plasminogen activity was determined. The membrane was excised, and the membrane reappeared 4 days later. The patient was treated with excision of the membrane and subconjunctival injection of fresh frozen plasma and topical fresh frozen plasma. Plasminogen activity of the fresh frozen plasma was normal. Plasminogen blood functional activity was 52% (normal is 80%-120%). The patient had complete remission with no recurrences of membranous conjunctivitis after topical and subconjunctival fresh frozen plasma. Prophylactic use of topical and subconjunctival fresh frozen plasma may help in the prevention of membranes in susceptible patients with plasminogen deficiency.

  6. Membrane-protein integration and the role of the translocation channel.

    Science.gov (United States)

    Rapoport, Tom A; Goder, Veit; Heinrich, Sven U; Matlack, Kent E S

    2004-10-01

    Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the channel to open across the membrane and to release laterally hydrophobic transmembrane segments of nascent membrane proteins into lipid. Many aspects of membrane-protein integration remain controversial and poorly understood, but new structural data provide testable hypotheses. We propose a model of how the channel recognizes transmembrane segments, orients them properly with respect to the plane of the membrane and releases them into lipid. We also discuss how the channel would prevent small molecules from crossing the lipid bilayer while it is integrating proteins.

  7. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  8. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    William A. Arnold; Edward L. Cussler

    2007-01-01

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe 0 ) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe 0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu 2+ ) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe 0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  9. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  10. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  11. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  12. Membrane controlled anaerobic digestion

    Science.gov (United States)

    Omstead, D. R.

    In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  13. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  14. Polyvinylidene fluoride/siloxane nanofibrous membranes for long-term continuous CO2 -capture with large absorption-flux enhancement.

    Science.gov (United States)

    Lin, Yi-Feng; Wang, Chi-Sen; Ko, Chia-Chieh; Chen, Chien-Hua; Chang, Kai-Shiun; Tung, Kuo-Lun; Lee, Kueir-Rarn

    2014-02-01

    In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous polyvinylidene fluoride (PVDF)/siloxane nanofibrous layers that are modified with hydrophobic fluoroalkylsilane (FAS) functional groups and successfully coated onto a macroporous Al2 O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PVDF nanofibrous membranes, the PVDF/siloxane nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The PVDF/siloxane nanofibrous layer in highly porous FAS-modified membranes can prevent the wetting of the membrane by the amine absorbent; this extends the periods of continuous CO2 absorption and results in a high CO2 absorption flux with a minimum of 500 % enhancement over that of the uncoated membranes. This study suggests the potential use of an FAS-modified PVDF/siloxane nanofibrous membrane in a membrane contactor system for CO2 absorption. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  16. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  17. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor

    Science.gov (United States)

    Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong

    2018-04-01

    Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.

  18. Electro-catalytic membrane reactors and the development of bipolar membrane technology

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2004-01-01

    Membrane reactors are currently under extensive research and development. Hardly any concept, however, is realized yet in practice. Frequently, forgotten as membrane reactors are electro-catalytic membrane reactors where electrodes perform chemical conversations and membranes separate the locations

  19. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  20. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...

  1. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli

    2017-06-16

    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  2. Inorganic membranes for pervaporation technology

    NARCIS (Netherlands)

    Sekulic, J.; Luiten-Olieman, Maria W.J.; Luiten, M.W.J.; ten Elshof, Johan E.; Benes, Nieck Edwin; Keizer, Klaas

    2002-01-01

    The aim of this work is the development of inorganic membranes that will enable broad application of pervaporation/vapour permeation technology in the chemical industry. This can be achieved by improvement of the existing microporous membranes and the development of new types with enhanced

  3. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...... and the rejection coefficient. The second model is a stationary model for the flux of solvent and solute in a hollow fibre membrane. In the model we solve the time independent equations for transport of solvent and solute within the hollow fibre. Furthermore, the flux of solute and solvent through the membrane...

  4. Membranes and Films from Polymers.

    Science.gov (United States)

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  5. Nitrocellulose Membrane: The New Canvas.

    Science.gov (United States)

    Kurien, Jasmin R; Kurien, Bianca A

    2015-01-01

    The use of nitrocellulose membranes for invisible ink-messaging or marking for orientation purposes has been carried out with diluted alkaline phosphatase, followed by development with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate and chemiluminescence detection systems. Here, we show that nitrocellulose membrane can serve as a canvas for art using alkaline phosphatase and NBT/BCIP detection method.

  6. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  7. Membranes for Enhanced Emulsification Processes

    NARCIS (Netherlands)

    Güell, Carme; Ferrando, Montse; Schroen, C.G.P.H.

    2016-01-01

    The use of membrane technology for the production of single and double emulsions has been proven feasible for a wide range of systems. The low energy requirements and mild process conditions (shear stress and temperature) of membrane emulsification (ME) compared to conventional processes makes it of

  8. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal. Final Report

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  9. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  10. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  11. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  12. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    OpenAIRE

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before emission to the atmosphere. Commercial dehydration processes such as the use of a condenser or a desiccant system have several disadvantages and membrane technology is an attractive, energy efficient a...

  13. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene.

    Science.gov (United States)

    Thompson, J E; Mayak, S; Shinitzky, M; Halevy, A H

    1982-04-01

    The lipid microviscosity of microsomal membranes from senescing cut carnation (Dianthus caryophyllus L. cv. White Sim) flowers rises with advancing senescence. The increase in membrane microviscosity is initiated within 3 to 4 days of cutting the flowers and coincides temporally with petal-inrolling denoting the climacteric-like rise in ethylene production. Treatment of young cut flowers with aminoethoxyvinylglycine prevented the appearance of petal-inrolling and delayed the rise in membrane microviscosity until day 9 after cutting. When freshly cut flowers or aminoethoxyvinylglycine-treated flowers were exposed to exogenous ethylene (1 microliter per liter), the microviscosity of microsomal membranes rose sharply within 24 hours, and inrolling of petals was clearly evident. Thus, treatment with ethylene accelerates membrane rigidification. Silver thiosulphate, a potent anti-ethylene agent, delayed the rise in microsomal membrane microviscosity even when the flowers were exposed to exogenous ethylene. Membrane rigidification in both naturally senescing and ethylene-treated flowers was accompanied by an increased sterol:phospholipid ratio reflecting the selective loss of membrane phospholipid that accompanies senescence. The results collectively indicate that the climacteric-like surge in ethylene production during senescence of carnation flowers facilitates physical changes in membrane lipids that presumably lead to loss of membrane function.

  14. Development of advanced membrane process for treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Lee, Kune Woo; Choi, W. K.; Lee, J. W.; Jung, G. H.

    2002-01-01

    The followings were studied through the project entitled 'Development of advanced membrane process for treatment of radioactive liquid wastes'. 1. Surface modification technique of microfiltration membrane. Microporous hydrophobic polypropylene(PP) membrane were modified by radiation-induced grafting using hydrophilic monomers such as arylic acid(AAc), 2-hydroxyethyl methacrylate(HEMA) and styrenesulfonic acid(SSS). The effect of grafting conditions was investigated. Also, copolymeric condition of AAc and EGDMA for nylon membrane was studied. The structure of grafted PP membrane was examined by using FTIR-ATR spectroscopy, SEM and contact angle. The grafted membrane was characterized by measureing the water flux, the ion exchange capacity or the binding capacity of the metal ions. A study on the permeation behavior of simulated waste water containing oil emulsion and characterization of membrane fouling was carried out in the crossflow membrane filtration process using capillary type PP microfiltration membrane modified by radiation induced grafting of HEMA. The effects of various operating parameters were investigated. 2. Electrofiltration Technology. In this section, the process conditions for fouling prevention of membrane by evaluating the effects of operational parameters such as external electric field strength, crossflow velocity, transmembrane pressure, etc. on the permeate flux in electrofiltration were established and the process applicability for oil emulsion wastes containing surfactant using parallel plate type electrofiltration module was evaluated

  15. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  16. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  17. Nanoporous Membrane Technologies for Pathogen Collection, Separation, and Detection

    National Research Council Canada - National Science Library

    Lee, Sang W; Shang, Hao; Lee, Gil U; Griffin, Matthew T; Fulton, Jack

    2003-01-01

    Partial contents: Nanoporous Membranes, Membrane Chemistries, Characterization of Membrane Chemistries,Protein Fouling, Collector,Gas and Liquid Permeabilities, Membrane Permeabilities in the Presence of Water...

  18. Membranes and theoretical modeling of membrane distillation: a review.

    Science.gov (United States)

    Khayet, Mohamed

    2011-05-11

    Membrane distillation (MD) is one of the non-isothermal membrane separation processes used in various applications such desalination, environmental/waste cleanup, food, etc. It is known since 1963 and is still being developed at laboratory stage for different purposes and not fully implemented in industry. An abrupt increase in the number of papers on MD membrane engineering (i.e. design, fabrication and testing in MD) is seen since only 6 years ago. The present paper offers a comprehensive MD state-of-the-art review covering a wide range of commercial membranes, MD membrane engineering, their MD performance, transport mechanisms, experimental and theoretical modeling of different MD configurations as well as recent developments in MD. Improved MD membranes with specific morphology, micro- and nano-structures are highly demanded. Membranes with different pore sizes, porosities, thicknesses and materials as well as novel structures are required in order to carry out systematic MD studies for better understanding mass transport in different MD configurations, thereby improving the MD performance and looking for MD industrialization. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  20. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  1. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  2. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  3. Dietary fats and membrane function: implications for metabolism and disease.

    Science.gov (United States)

    Hulbert, A J; Turner, N; Storlien, L H; Else, P L

    2005-02-01

    aspects of mental health. The understanding of dietary lipid profile and its influence on membrane function in relation to metabolic dysregulation has exciting potential for the prevention and treatment of a range of prevalent disease states.

  4. Universal Behavior of Membranes with Sterols

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Brief, E.

    2006-01-01

    ) is obtained from deuterium nuclear magnetic resonance. We compare these results, along with data for membrane-bending rigidity, to explore the relationship between membrane hydrophobic thickness and elastic properties. Together, such diverse approaches demonstrate that membrane properties are affected...

  5. Membrane species mobility under in-lipid-membrane forced convection.

    Science.gov (United States)

    Hu, Shu-Kai; Huang, Ling-Ting; Chao, Ling

    2016-08-17

    Processing and managing cell membrane proteins for characterization while maintaining their intact structure is challenging. Hydrodynamic flow has been used to transport membrane species in supported lipid bilayers (SLBs) where the hydrophobic cores of the membrane species can be protected during processing. However, the forced convection mechanism of species embedded in lipid bilayers is still unclear. Developing a controlled SLB platform with a practical model to predict the membrane species mobility in the platform under in-lipid-membrane forced convection is imperative to ensure the practical applicability of SLBs in processing and managing membrane species with various geometrical properties. The mobility of membrane species is affected by the driving force from the aqueous environment in addition to the frictions from the lipid bilayer, in which both lipid leaflets may exhibit different speeds relative to that of the moving species. In this study, we developed a model, based on the applied driving force and the possible frictional resistances that the membrane species encounter, to predict how the mobility under in-lipid-membrane forced convection is influenced by the sizes of the species' hydrophilic portion in the aqueous environment and the hydrophobic portion embedded in the membrane. In addition, we used a microfluidic device for controlling the flow to arrange the lipid membrane and the tested membrane species in the desirable locations in order to obtain a SLB platform which can provide clear mobility responses of the species without disturbance from the species dispersion effect. The model predictions were consistent with the experimental observations, with the sliding friction coefficient between the upper leaflet and the hydrophilic portion of the species as the only regressed parameter. The result suggests that not only the lateral drag frictions from the lipid layers but also the sliding frictions between the species and the lipid layer planes

  6. Artificial membranes for membrane protein purification, functionality and structure studies.

    Science.gov (United States)

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  7. Treating and Preventing Burns

    Science.gov (United States)

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & Prevention Safety & Prevention Safety and Prevention Immunizations At Home ...

  8. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  9. Relapse prevention.

    Science.gov (United States)

    Hall, S M; Wasserman, D A; Havassy, B E

    1991-01-01

    Although knowledge about relapse prevention is still at an early stage, the extant data highlight the importance of several constructs. 1. Motivation for abstinence remains central. The construct itself is often clouded because of its association with mystical notions such as willpower and self-control. We know that manipulation of environmental events can increase motivation. These interventions are effective, however, only as long as the contingencies are in effect. We need to develop and evaluate strategies for transferring contingency management to the natural environment, that is, to institutions and groups that can perpetuate them for the long term. Also, clarification of the kinds of abstinence goals needed to prevent relapse is important. 2. Coping skills have been studied by several investigators, but research on these, except for job-finding skills, is not encouraging. The skills usually taught may be too basic. Skills training oriented to complex targets, such as building nondrug-using networks, may be useful and should be further explored. 3. Social support is clearly important, yet we do not know how best to use it to promote abstinence. The little research available suggests that both familial and nonfamilial systems should be mobilized. We need to define abstinence-promoting supportive behaviors, identify and engage important support systems in treatment, and help patients expand their nondrug-using contacts. 4. Negative affect may be causally related to relapse. We need to continue efforts to identify dysphoric patients and develop interventions to ameliorate dysphoria concurrent with drug abuse treatment (cf. Zweben and Smith 1989). 5. Drug cue reactivity and extinction to drug cues have been demonstrated in the laboratory. What is needed in this promising line of research are (1) investigation of cues and cue-reactivity phenomena in the natural environment or in conditions closely mimicking that environment and (2) extinction methods that transfer

  10. Cell invasion through basement membrane

    Science.gov (United States)

    Morrissey, Meghan A; Hagedorn, Elliott J; Sherwood, David R

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recently discovered that invadopodia breach basement membrane during anchor cell invasion in C. elegans, a genetically and visually tractable in vivo invasion event. Further, we found that the netrin receptor DCC localizes to the initial site of basement membrane breach and directs invasion through a single gap in the matrix. In this commentary, we examine how the dynamics and structure of AC-invadopodia compare with in vitro invadopodia and how the netrin receptor guides invasion through a single basement membrane breach. We end with a discussion of our surprising result that the anchor cell pushes the basement membrane aside, instead of completely dissolving it through proteolysis, and provide some ideas for how proteases and physical displacement may work together to ensure efficient and robust invasion. PMID:24778942

  11. Membrane bioreactors: present and prospects.

    Science.gov (United States)

    Chang, H N; Furusaki, S

    1991-01-01

    Membrane bioreactors have a very handy in-situ separation capability lacking in other types of bioreactors. Combining various functions of membrane separations and biocatalyst characteristics of enzymes, microbial cells, organelles, animal and plant tissues can generate quite a number of membrane bioreactor systems. The cell retaining property of membranes and selective removal of inhibitory byproducts makes high cell density culture possible and utilizes enzyme catalytic activity better, which leads to high productivity of bioreactors. Enzyme reactions utilizing cofactors and hydrolysis of macromolecules are advantageous in membrane bioreactors. Anaerobic cell culture may be efficiently carried out in membrane cell recycle systems, while aerobic cultures work well in dual hollow fiber reactors. Animal and plant cells have much a better chance of success in membrane reactors because of the protective environment of the reactor and the small oxygen uptake rate of these cells. Industrial use of these reactors are still in its infancy and limited to enzyme and animal tissue culture, but applications will expand as existing problems are resolved.

  12. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  13. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  14. Ultrastructure of Reissner's membrane in the rabbit

    DEFF Research Database (Denmark)

    Qvortrup, K.; Rostgaard, Jørgen; Bretlau, P.

    1994-01-01

    Anatomy, Reissner's membrane, electron microscopy, tubulocisternal endoplasmic reticulum, subsurface cisterns, rabbit......Anatomy, Reissner's membrane, electron microscopy, tubulocisternal endoplasmic reticulum, subsurface cisterns, rabbit...

  15. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  16. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    -like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...... of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes...

  17. Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen

    2011-01-01

    humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out...

  18. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    Science.gov (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  19. The influence of antiscalants on biofouling of RO membranes in seawater desalination.

    Science.gov (United States)

    Sweity, Amer; Oren, Yoram; Ronen, Zeev; Herzberg, Moshe

    2013-06-15

    Antiscalants are surface active polyelectrolyte compounds commonly used in reverse osmosis (RO) desalination processes to avoid membrane scaling. In spite of the significant roles of antiscalants in preventing membrane scaling, they are prone to enhance biofilm growth on RO membranes by either altering membrane surface properties or by serving as nutritional source for microorganisms. In this study, the contribution of antiscalants to membrane biofouling in seawater desalination was investigated. The effects of two commonly used antiscalants, polyphosphonate- and polyacrylate-based, were tested. The effects of RO membrane (DOW-Filmtec SW30 HRLE-400) exposure to antiscalants on its physico-chemical properties were studied, including the consequent effects on initial deposition and growth of the sessile microorganisms on the RO membrane surface. The effects of antiscalants on membrane physico-chemical properties were investigated by filtration of seawater supplemented with the antiscalants through flat-sheet RO membrane and changes in surface zeta potential and hydrophobicity were delineated. Adsorption of antiscalants to polyamide surfaces simulating RO membrane's polyamide layer and their effects on the consequent bacterial adhesion was tested using a quartz crystal microbalance with dissipation monitoring technology (QCM-D) and direct fluorescent microscopy. A significant increase in biofilm formation rate on RO membranes surface was observed in the presence of both types of antiscalants. Polyacrylate-based antiscalant was shown to enhance initial cell attachment as observed with the QCM-D and a parallel plate flow cell, due to rendering the polyamide surface more hydrophobic. Polyphosphonate-based antiscalants also increased biofilm formation rate, most likely by serving as an additional source of phosphorous to the seawater microbial population. A thicker biofilm layer was formed on the RO membrane when the polyacrylate-based antiscalant was used. Following

  20. Iron-complexed adsorptive membrane for As(V) species in water

    International Nuclear Information System (INIS)

    Shinde, Rakesh N.; Das, Sadananda; Acharya, R.; Rajurkar, N.S.; Pandey, Ashok K.

    2012-01-01

    Highlights: ► Functionalized membrane was prepared by graft polymerization in host membrane. ► Fe 3+ ions fixed in membrane made it selective for As(V) ions. ► As(V) preconcentrated selectively in membrane samples was quantified by INAA. ► As(V) in ground water sample was easily quantified in 2–3 ppb using membrane. ► Total inorganic arsenic could be quantified by oxidation of As(III) to As(V). - Abstract: Selective preconcentration of a target analyte in the solid phase is an effective route not only to enhance detection limit of the conventional analytical method but also for elimination of interfering matrix. An adsorptive membrane was developed for selective preconcentration and quantification of ultra-trace (ppb) amounts of As(V) present in a variety of aqueous samples. The precursor membrane was prepared by UV-initiator induced graft polymerization of sulphate and phosphate bearing monomers (1:1 mol proportion) in pores of the host microporous poly(propylene) membrane. Fe 3+ ions were loaded in the precursor membrane to make it selective for As(V) ions. The presence of phosphate functional groups prevent leaching of Fe 3+ ions from the membrane when it comes in contact with solution like seawater having high ionic strength. The optimized membrane was characterized in terms of its physical structure, chemical structure and experimental conditions affecting As(V) uptake in the membrane. The possibility of quantifying total preconcentration of As content was also explored by converting As(III) to As(V). To quantify As(V), the membrane samples were subjected to instrumental neutron activation analysis (INAA). The studies carried in the present work showed that quantification of inorganic arsenic species in natural water samples is easily possible in 2–3 ppb concentration range.

  1. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  2. Polio and Prevention

    Science.gov (United States)

    ... Photo Collections Videos Polio Today → Polio + Prevention Polio + Prevention Polio and prevention Polio is a crippling and ... a child for life. Learn more about polio + prevention The Virus The Vaccines The Communities Related resources ...

  3. Diabetes Prevention Program (DPP)

    Science.gov (United States)

    ... Recruiting Patients & Families Consortia, Networks & Centers Reports & Planning Diabetes Prevention Program (DPP) The NIDDK-sponsored Diabetes Prevention ... Diabetes Prevention Program for those who are eligible. Diabetes Prevention Program (DPP) DPP Goal The DPP looked ...

  4. Membrane fluidity in the presence of membrane-binding peptides

    Science.gov (United States)

    Burrola Gabilondo, Beatriz; Losert, Wolfgang; Randazzo, Paul

    2009-03-01

    Arf proteins are GTP-ases that participate in vesicle trafficking inside cells. They are able to interact with membranes through their N-terminus when they are bound to GTP, and they detach from the membrane when GTP is hydrolyzed. The N-terminus of Arf1 (amino acids 2-17) folds into an amphipathic helix that can insert into lipid bilayers. Arf1 is also myristoylated; it has myristic acid, a 14-carbon fatty acid `tail', attached to it. We set out to test the hypothesis that the binding of the myristoylated N-terminus of Arf1 to lipid membranes changes the mechanical properties of the membrane, in ways that myristic acid alone or amphipathic peptides alone do not. We use three reporter molecules embedded in vesicles, whose fluorescence emission spectrum depends on the properties of the environment in which they are found, to measure three distinct aspects of membrane fluidity: Bispyrene is sensitive to lateral motion along the membrane, Prodan's emission gives a measure of the packing of the head groups, and DPH polarization reflects the packing of the hydrophobic tails. We will present effects found for four molecules (myristic acid, myristoylated and non-myristoylated N-terminus of Arf1, and the ALPS domain of KES) in a concentration-dependent manner, and discuss the importance of these results in the vesicle-trafficking picture.

  5. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  6. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  7. Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation.

    Science.gov (United States)

    Lu, Kang Jia; Zuo, Jian; Chang, Jian; Kuan, Hong Nan; Chung, Tai-Shung

    2018-04-03

    Management of produced water from shale gas production is a global challenge. Vacuum membrane distillation (VMD) is considered a promising solution because of its various advantages. However, low-surface-tension species in produced water can easily deposit on the membrane surface and cause severe fouling or wetting problems. To solve the problems, an omniphobic polyvinylidene difluoride (PVDF) hollow-fiber membrane has been developed via silica nanoparticle deposition followed by a Teflon AF 2400 coating in this study. The resultant membrane shows good repellency toward various liquids with different surface tensions and chemistries, including water, ethylene glycol (EG), cooking oil, and ethanol. It also exhibits stable performance in 7 h VMD tests with a feed solution containing up to 0.6 mM of sodium dodecyl sulfate (SDS). In addition, the effects of surface energy and surface morphology as well as nanoparticle size on membrane omniphobicity have been systematically investigated. This work may provide valuable guidance to molecularly design omniphobic VMD membranes for produced water treatment.

  8. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  9. Modulation of TRESK background K+ channel by membrane stretch.

    Directory of Open Access Journals (Sweden)

    Gerard Callejo

    Full Text Available The two-pore domain K(+ channel TRESK is expressed in dorsal root ganglion and trigeminal sensory neurons where it is a major contributor to background K(+ current. TRESK acts as a break to prevent excessive sensory neuron activation and decreases in its expression or function have been involved in neuronal hyperexcitability after injury/inflammation, migraine or altered sensory perception (tingling, cooling and pungent burning sensations. All these effects have implicated this channel in nociception and mechanotransduction. To determine the role of TRESK in sensory transduction, we studied its sensitivity to changes in membrane tension (stretch in heterologous systems, F-11 cells and trigeminal neurons. Laminar shear stress increased TRESK currents by 22-30%. An increase in membrane tension induced by cell swelling (hypotonic medium produced a reversible elevation of TRESK currents (39.9%. In contrast, cell shrinkage (hypertonic solution produced the opposite effect. Membrane crenators or cup-formers produced equivalent effects. In trigeminal sensory neurons, TRESK channels were mechanically stimulated by negative pressure, which led to a 1.51-fold increase in channel open probability. TRESK-like currents in trigeminal neurons were additively inhibited by arachidonic acid, acidic pH and hypertonic stimulation, conditions usually found after tissue inflammation. Our results show that TRESK is modulated by changes in cell membrane tension and/or cell volume. Several key players released during inflammation or tissue injury could modulate sensory neuron activation through small changes in membrane tension.

  10. Understanding carbon nanotube channel formation in the lipid membrane

    Science.gov (United States)

    Choi, Moon-ki; Kim, Hyunki; Lee, Byung Ho; Kim, Teayeop; Rho, Junsuk; Kim, Moon Ki; Kim, Kyunghoon

    2018-03-01

    Carbon nanotubes (CNTs) have been considered a prominent nano-channel in cell membranes because of their prominent ion-conductance and ion-selectivity, offering agents for a biomimetic channel platform. Using a coarse-grained molecular dynamics simulation, we clarify a construction mechanism of vertical CNT nano-channels in a lipid membrane for a long period, which has been difficult to observe in previous CNT-lipid interaction simulations. The result shows that both the lipid coating density and length of CNT affect the suitable fabrication condition for a vertical and stable CNT channel. Also, simulation elucidated that a lipid coating on the surface of the CNT prevents the CNT from burrowing into the lipid membrane and the vertical channel is stabilized by the repulsion force between the lipids in the coating and membrane. Our study provides an essential understanding of how CNTs can form stable and vertical channels in the membrane, which is important for designing new types of artificial channels as biosensors for bio-fluidic studies.

  11. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of

  12. Characterization of polyacrylonitrile ultrafiltration membranes

    NARCIS (Netherlands)

    Germic, J.; Germic, J.; Ebert, K.; Ebert, K.; Bouma, R.H.B.; Bouma, R.H.B.; Borneman, Zandrie; Mulder, M.H.V.; Strathmann, H.

    1997-01-01

    Various methods have been used to characterize ultrafiltration membranes, such as gas flux measurements, (field emission) scanning electron microscopy, permporometry and liquid-liquid displacement. Significant differences in the pore size distributions determined from permporometry and liquid-liquid

  13. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    IAS Admin

    hemophagocytic syndrome) and metabolic (diabe- tes) disorders [2, 23, 33]. Mutations in the genes of the basic secretory protein machinery lead to a number of membrane trafficking diseases such as Charcot–Marie–Tooth disease, Cohen.

  14. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  15. [Effect of extracted ZG from gardenia on Hep-2 cell membrane post infected with parainfluenza virus type 1 (PIV-1)].

    Science.gov (United States)

    Guo, Shan-Shan; Huang, Yang; Zhao, Ye; Gao, Ying-Jie; Gong, Wen-Feng; Cui, Xiao-Lan

    2007-09-01

    In order to study the anti-viral mechanism of extracted ZG from Gardenia, the effect of extracted ZG on Hep-2 cell membrane potential, Na -K+-ATPase activity and membrane fluidity post infected with parainfluenza virus type 1 (PIV-1) was observed. Acetylcholine which was fluorescent labeled with DiBAC4 (3) was taken as positive control to observe the changes of membrane potential and was measured by flow cytometer. The phosphorus determination method and spectrophotometer were used to measure the Na+-K+-ATPase activity of Hep-2 cell membrane post PIV-1 infection. Hep-2 cell membrane phospholipids was labeled with fluorescent NBD-C6-HPC and membrane fluidity was measured by confocal laser scanning microscope. The results demonstated that after PIV-1 infection the Hep-2 cell membrane potential decreased significantly and the membrane was in the state of hyperpolarization, Na+-K+-ATPase activity increased and membrane fluidity decreased significantly. There was no apparent interferring effect of extracted ZG on the changes of membrane potential and Na+-K+-ATPase activity post PIV-1 infection, while membrane fluidity was improved significantly. Acetylcholine improved the state of hyperpolarization. The changes of membrane potential, Na -K+-ATPase activity and membrane fluidity might be the biomechanism of PIV-1 infectoin. The extracted ZG improved membrane fluidity to prevent from PIV-1 infection by protecting the cell membrane, which was probably the mechanism of anti-PIV-1 activity of the extracted ZG, but ZG probably had nothing to do with membrane potential and Na+-K+-ATPase activity.

  16. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  17. Static and Dynamic Membrane Structures

    Directory of Open Access Journals (Sweden)

    Sergiu Ivanov

    2012-10-01

    Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.

  18. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  19. Hybrid membranes for fuel cells

    Science.gov (United States)

    Bochkareva, S. S.; Shashkina, S. S.

    2018-01-01

    Fuel cells are a very efficient, reliable, durable, and environmentally friendly energy source. Membranes for fuel cells were developed based on nitrogen-containing high-molecular compounds and organic–inorganic composites. Their electrical conductivities were measured. The influence of a silicon block of composites on the proton exchange properties of membranes was proved.The comparative characterization of the studied materials was performed.

  20. Androgen Receptor Localizes to Plasma Membrane by Binding to Caveolin-1 in Mouse Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Qiong Deng

    2017-01-01

    Full Text Available The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.

  1. Membrane structure in disease and drug therapy

    National Research Council Canada - National Science Library

    Zimmer, G

    2000-01-01

    ...) interaction with membranous transport systems (opening or closing of ion or substrate channels); (2) reaction with receptors; (3) activation or inhibition of membrane enzymes; or (4) cytosolic membranous signaling and exchange. These consequences within the membrane influence intracellular wellbeing: life is possible only if a bala...

  2. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  3. Nanomaterial-enabled membranes for water treatment

    Science.gov (United States)

    Rogensues, Adam Roy

    Incorporating engineered nanomaterials as components of synthetic membranes can improve their separation performance and endow membranes with additional functions. This work explores two approaches to the design of membranes modified with nanomaterials. In the first chapter, exfoliated graphite nanoplatelets (xGnP) decorated with gold nanoparticles were embedded in a polysulfone matrix to fabricate phase inversion nanocomposite membranes. The cast membranes were evaluated as flow-through membrane reactors in experiments on the catalytic reduction of 4-nitrophenol. The nanocomposite membranes were not as catalytically efficient as those fabricated by modifying anodized alumina membranes polyelectrolyte multilayers (PEMs) containing gold nanoparticles. However, because of the facility of membrane casting by phase inversion and new opportunities enabled by the demonstrated hierarchy-based approach to nanocomposite membrane design, such membrane may hold commercial promise. In the second part of the study, the practicability of PEM-based nanofiltration was evaluated under conditions of precipitative fouling (i.e. scaling) by calcium sulfate. Polyelectrolytes were deposited onto 50 kDa polyethersulfone membranes to create PEM-based nanofiltration membranes. The prepared membranes were compared with the commercial NF270 membrane in terms of flux and rejection performance, as well as the morphology of gypsum crystals formed on the membrane surface. None of the PEM coatings tested inhibited scale formation.

  4. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  5. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  6. Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication

    OpenAIRE

    Dom?nech, Berta; Mu?oz, Maria; Muraviev, Dmitri N; Macan?s, Jorge

    2011-01-01

    Metal nanoparticles are known as highly effective catalysts although their immobilization on solid supports is frequently required to prevent aggregation and to facilitate the catalyst application, recovery, and reuse. This paper reports the intermatrix synthesis of Pd0 nanoparticles in sulfonated polyethersulfone with Cardo group membranes and their use as nanocomposite catalytic membrane reactors. The synthesized polymer and the corresponding nanocomposite were characterized by spectr...

  7. Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein

    OpenAIRE

    Chin, Wei-Chih; Lin, Kuo-Hsing; Chang, Jui-Jen; Huang, Chieh-Chen

    2013-01-01

    Background Though n-butanol has been proposed as a potential transportation biofuel, its toxicity often causes oxidative stress in the host microorganism and is considered one of the bottlenecks preventing its efficient mass production. Results To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengers for reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein ...

  8. Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane Reactors.

    Science.gov (United States)

    Yu, Yifu; Wu, Xue-Jun; Zhao, Meiting; Ma, Qinglang; Chen, Junze; Chen, Bo; Sindoro, Melinda; Yang, Jian; Han, Shikui; Lu, Qipeng; Zhang, Hua

    2017-01-09

    The incorporation of metal-organic frameworks (MOFs) into membrane-shaped architectures is of great importance for practical applications. The currently synthesized MOF-based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF-based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF-based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.

    Science.gov (United States)

    Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias

    2015-08-07

    We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

  10. Interaction of hexachlorophene and other compounds with spin-labeled brain membranes.

    Science.gov (United States)

    Rakhit, G; Hanig, J P

    1984-04-30

    Experiments reported here demonstrate that hexachlorophene influences oxidation-reduction events inside the brain membrane, possibly via a free radical mechanism. This was shown by nitroxide spin label quenching inside the rat cerebellum membrane bilayer due to the interaction between hexachlorophene and peroxidase-hydrogen peroxide system. Prior addition of antioxidants, e.g., vitamin E or butylated hydroxytoluene, prevented such membrane-bound fatty acid spin label reduction, presumably due to their free radical scavenging abilities. The 5-doxyl stearic acid spin probe attached to the brain membranes did not exhibit any detectable changes in their ESR spectra nor, consequently, in the microviscosity of the membranes when exposed to up to 40 mM hexachlorophene.

  11. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    Science.gov (United States)

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  12. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  13. Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms.

    Science.gov (United States)

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2018-02-01

    Biochar, a natural sourced carbon-rich material, has been used commonly in particle shape for carbon sequestration, soil fertility and environmental remediation. Here, we report a facile approach to fabricate freestanding biochar composite membranes for the first time. Wood biochars pyrolyzed at 300 °C and 700 °C were blended with polyvinylidene fluoride (PVdF) in three percentages (10%, 30% and 50%) to construct membranes through thermal phase inversion process. The resultant biochar composite membranes possess high mechanical strength and porous structure with uniform distribution of biochar particles throughout the membrane surface and cross-section. The membrane pure water flux was increased with B300 content (4825-5411 ± 21 L m -2 h -1 ) and B700 content (5823-6895 ± 72 L m -2 h -1 ). The membranes with B300 were more hydrophilic with higher surface free energy (58.84-60.31 mJ m -2 ) in comparison to B700 (56.32-51.91 mJ m -2 ). The biochar composite membranes indicated promising adsorption capacities (47-187 mg g -1 ) to Rhodamine B (RhB) dye. The biochar membranes also exhibited high retention (74-93%) for E. coli bacterial suspensions through filtration. After simple physical cleaning, both the adsorption and sieving capabilities of the biochar composite membranes could be effectively recovered. Synergistic mechanisms of biochar/PVdF in the composite membrane are proposed to elucidate the high performance of the membrane in pollutant management. The multifunctional biochar composite membrane not only effectively prevent the problems caused by directly using biochar particle as sorbent but also can be produced in large scale, indicating great potential for practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    International Nuclear Information System (INIS)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-01-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  15. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  16. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Superhydrophobic Membrane Contactor for Acid Gas Removal

    Science.gov (United States)

    Faiqotul Himma, Nurul; Gede Wenten, I.

    2017-07-01

    Gas-liquid membrane contactor has gained a great attention as an alternative to conventional absorption columns in acid gas removal from natural gas or post-combustion. The membrane contactor offers high mass transfer area and excellent operational flexibility. However, hydrophobic microporous membranes commonly used are still susceptible to wetting by liquid absorbents, leading to the deterioration of absorption performance in long-term operation. Therefore, many studies were recently directed to improve the membrane wetting resistant by endowing superhydrophobicity. This article then presents a review on superhydrophobic membrane development and its application for acid gas removal using membrane contactor. An overview of gas-liquid membrane contactor is firstly presented, followed by the preparation of superhydrophobic membranes. The performances of superhydrophobic membranes in acid gas absorption are then discussed, and the recommendation for future research is finally outlined. This review may provide an insight into the further development of superhydrophobic membrane contactor.

  18. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  19. Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication

    Science.gov (United States)

    Domènech, Berta; Muñoz, Maria; Muraviev, Dmitri N.; Macanás, Jorge

    2011-06-01

    Metal nanoparticles are known as highly effective catalysts although their immobilization on solid supports is frequently required to prevent aggregation and to facilitate the catalyst application, recovery, and reuse. This paper reports the intermatrix synthesis of Pd0 nanoparticles in sulfonated polyethersulfone with Cardo group membranes and their use as nanocomposite catalytic membrane reactors. The synthesized polymer and the corresponding nanocomposite were characterized by spectroscopic and microscopic techniques. The catalytic efficiency of catalytic membranes was evaluated by following the reduction of p-nitrophenol in the presence of NaBH4.

  20. Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication

    Directory of Open Access Journals (Sweden)

    Macanás Jorge

    2011-01-01

    Full Text Available Abstract Metal nanoparticles are known as highly effective catalysts although their immobilization on solid supports is frequently required to prevent aggregation and to facilitate the catalyst application, recovery, and reuse. This paper reports the intermatrix synthesis of Pd0 nanoparticles in sulfonated polyethersulfone with Cardo group membranes and their use as nanocomposite catalytic membrane reactors. The synthesized polymer and the corresponding nanocomposite were characterized by spectroscopic and microscopic techniques. The catalytic efficiency of catalytic membranes was evaluated by following the reduction of p-nitrophenol in the presence of NaBH4.

  1. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    International Nuclear Information System (INIS)

    Shamsuddin Ilias

    2005-01-01

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  2. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  3. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Changes in the Factor VIII C2 domain upon membrane binding determined by hydrogen-deuterium exchange MS.

    Science.gov (United States)

    Pantazatos, Dionysios; Gessner, Christopher R; Woods, Virgil L; Gilbert, Gary E

    2014-08-01

    Factor VIII enhances the catalytic activity of Factor IXa in a membrane-bound enzyme complex and both proteins are necessary to prevent haemophilia. Tandem lectin-like C domains mediate the membrane binding of Factor VIII and membrane-interactive residues have been identified. However, the available data provide little insight into the dynamic changes that occur upon membrane binding. We used time-based hydrogen-deuterium exchange MS to evaluate the dynamics of FVIII-C2 (Factor VIII C2 domain) alone and when membrane bound. The results confirm the participation of previously identified membrane-interactive loops in the binding mechanism. In addition, they indicate that a long peptide segment, encompassing a membrane-interactive loop and strands of the β-barrel core, is remarkably dynamic prior to membrane binding. The flexibility is reduced following membrane binding. In addition, regions that interact with the A1 and C1 domains have reduced solvent exchange. Thus the isolated C2 domain has extensive flexibility that is subject to stabilization and could be related to interactions between domains as well as between Factor VIII and Factor IXa or Factor X. These results confirm that the proposed membrane-binding loops of the FVIII-C2 interact with the membrane in a manner that leads to protection from solvent exposure.

  5. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  6. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  7. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration.

    Science.gov (United States)

    Cho, Wan Jin; Kim, Jun Ho; Oh, Se Heang; Nam, Hyun Hee; Kim, Jin Man; Lee, Jin Ho

    2009-11-01

    A novel guided bone regeneration (GBR) membrane was fabricated by an immersion precipitation of poly (glycolic-co-lactic acid) (PLGA)/Pluronic F127 solution impregnated in an electrospun polycaprolactone (PCL)/Tween 80 nanofiber mesh. The prepared PCL/Tween 80 nanofiber mesh-embedded PLGA/Pluronic F127 membrane (hydrophilized PCL/PLGA hybrid membrane) had nano-size pores on the top side (which can prevent from fibrous connective tissue infiltration but allow permeation of oxygen and nutrients) and micro-size pores on the bottom side (which can improve adhesiveness with bone). From the comparisons of mechanical properties (tensile and suture pullout strengths), model nutrient (FITC-labeled bovine serum albumin) permeability, and bone regeneration behavior using a rat model (skull bone defect) of the hybrid membrane with those of PLGA/Pluronic F127 membrane (asymmetrically porous, hydrophilized PLGA membrane), PCL/Tween 80 nanofiber mesh (electrospun, hydrophilized PCL nanofiber mesh), and a commercialized GBR membrane, Bio-Gide (collagen type I/III membrane), it was observed that the PCL/PLGA hybrid membrane seems to be highly desirable as a GBR membrane for the selective permeability caused by its unique morphology and osteoconductivity provided by several tens micro-size pores of the bottom side as well as the excellent mechanical strengths by the hybridization of porous PLGA membrane and PCL nanofiber mesh. (c) 2008 Wiley Periodicals, Inc.

  8. Reconstitutions of mitochondrial inner membrane remodeling.

    Science.gov (United States)

    Barbot, Mariam; Meinecke, Michael

    2016-10-01

    Biological membranes exhibit function-related shapes, leading to a plethora of complex and beautiful cell and cell organellar morphologies. Most if not all of these structures have evolved for a particular physiological reason. The shapes of these structures are formed by physical forces that operate on membranes. To create particular shaped cells and cell organelles, membranes must undergo deformations which are determined by the structure and elasticity of the membrane and this process is most probable driven by proteins, lipids and/or interplay of both Zimmerberg and Kozlov (2006). Therefore, an important question of current cell biology in conjunction with physics and mathematics is to elucidate the functional cause for these different membrane morphologies as well as how they are formed. One of the most peculiar membrane shapes is observed in mitochondria. These organelles are surrounded by two membranes and especially the convoluted inner membrane displays a complex ultra-structure. A molecular understanding of how this membrane is shaped is missing to a large extent. Unlike membrane remodeling in classical curvature-dependent processes like clathrin-mediated endocytosis, mitochondria are most likely shaped by integral membrane proteins. Following, we will review the current knowledge of inner mitochondrial membrane architecture and discuss recent findings and advances in understanding the factors that shape this membrane. We will address pending questions especially with regard to the experimentally challenging nature of investigating membrane bending by hydrophobic integral membrane proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Gas transmission through microporous membranes

    Science.gov (United States)

    Turel, Tacibaht

    2008-10-01

    An ideal protective clothing material should be a good barrier against harmful gases or vapor while allowing moisture vapor and air passage through the material. In the study and design of barrier materials, one of the critical issues is to balance these requirements, which may sometimes be mutually exclusive. Therefore it is critical to understand the macroscopic and microscopic structure of the attack mechanisms as well as the barrier materials and the transport phenomena in such systems. In this study, air and gas transmission through barrier systems consisting of porous membranes was investigated experimentally and a molecular-level probabilistic model was constructed to evaluate the effect of various parameters on the gas flow. The effect of membrane parameters such as porosity, pore size distribution, thickness as well as gas parameters such as molecule diameters were examined at single layer as well as multiple layers. To understand the gas behavior for harmful chemicals and to ensure safety during experimental studies, mimics of such gases were obtained which were comparable to the actual gases in shape, molecular weight and other chemical properties. Air, ammonia and several mimic gases of harmful chemical agents were studied. Beta-pinene was used as a mimic of sarin and prenol was used as a mimic of nitrogen mustard. Gas transmission experiments were conducted on polyester, nylon and polypropylene membranes each of which had different porosity and pore size distributions. Experiments were done at different pressure values and a comparison was made between permeability testing machines based on volumetric and manometric principles as to their ability to accommodate high permeability membranes. Physical and chemical adsorption of such gases on porous membranes was also investigated after the addition of active elements on the membrane surfaces which can interact with the gas molecules. An experimental setup was developed to measure concentration changes

  10. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    of divalent ions such as calcium and iron. Furthermore, it was shown that the ratio between cations and EPS was important for the fouling potential of the sludge. A high ratio between divalent ions and EPS reduced membrane fouling as soluble EPS were adsorbed and bound within the sludge flocs. Strong compact...... flocs reduced membrane fouling, and more compact and strong flocs were formed if the concentration of divalent ions were high. Sludge was fractionated by centrifugation providing supernatant with soluble EPS and colloidal particles but without flocs. Filtration test on untreated sludge and supernatant...

  11. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  12. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  13. Mid-Atlantic Microbial Pathogenesis Meeting

    Science.gov (United States)

    2005-12-01

    changes in temperature. To maintain membrane fluidity during cold shock, E. coli incorporates unsaturated lipids into the outer membrane. To determine...corresponding acyl-homoserine lactone autoinducer; N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and N-(butanoyl)-L-homoserine lactone (C4-HSL

  14. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  15. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measuremen...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...... and stoichiometric (structural) definitions of non-specific binding or partitioning are emphasized, and it is concluded that this distinction is important for weak, but not for strong, interactions....

  16. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations......, as model systems to understand the fundamental properties of biomembranes. The properties of lipid bilayers can be studied at different time and length scales. For some properties it is sufficient to envision a membrane as an elastic sheet, while for others it is important to take into account the details...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  17. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  18. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  19. Synthetic Biomimetic Membranes and Their Sensor Applications

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2012-07-01

    Full Text Available Synthetic biomimetic membranes provide biological environments to membrane proteins. By exploiting the central roles of biological membranes, it is possible to devise biosensors, drug delivery systems, and nanocontainers using a biomimetic membrane system integrated with functional proteins. Biomimetic membranes can be created with synthetic lipids or block copolymers. These amphiphilic lipids and polymers self-assemble in an aqueous solution either into planar membranes or into vesicles. Using various techniques developed to date, both planar membranes and vesicles can provide versatile and robust platforms for a number of applications. In particular, biomimetic membranes with modified lipids or functional proteins are promising platforms for biosensors. We review recent technologies used to create synthetic biomimetic membranes and their engineered sensors applications.

  20. Uranium preconcentration from seawater using adsorptive membranes

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, A.K.; Manchanda, V.K.; Athawale, A.A.

    2009-01-01

    Uranium recovery from bio-aggressive but lean feed like seawater is a challenging problem as it requires in situ preconcentration of uranium in presence of huge excess of competing ions with fast sorption kinetics. In our laboratory, widely used amidoxime membrane (AO-membrane) was evaluated for uranium sorption under seawater conditions. This study indicated that AO-membrane was inherently slow because of the complexation chemistry involved in transfer of U(VI) from (UO 2 (CO 3 ) 3 ) 4 - to AO sites in membrane. In order to search better options, several chemical compositions of membrane were scanned for their efficacy for uranium preconcentration from seawater, and concluded that EGMP-membrane offers several advantages over AO-membrane. In this paper, the comparison of EGMP-membrane with AO-membrane for uranium sorption under seawater conditions has been reviewed. (author)

  1. Stomach (Gastric) Cancer Prevention

    Science.gov (United States)

    ... likely as white men to die from stomach cancer. Stomach Cancer Prevention Key Points Avoiding risk factors and increasing ... factors and increasing protective factors may help prevent stomach cancer. Avoiding cancer risk factors may help prevent certain ...

  2. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    International Nuclear Information System (INIS)

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2014-01-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  3. Membrane bending by protein-protein crowding.

    Science.gov (United States)

    Stachowiak, Jeanne C; Schmid, Eva M; Ryan, Christopher J; Ann, Hyoung Sook; Sasaki, Darryl Y; Sherman, Michael B; Geissler, Phillip L; Fletcher, Daniel A; Hayden, Carl C

    2012-09-01

    Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.

  4. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  5. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane structure, comprising in said order a first electronically conducting layer, an ionically conducting layer, and a second electronically conducting layer, characterized in that the first and second electronically conducting layers are internally short...... circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...... structure; and impregnating the electronically conducting layers with a catalyst material or catalyst precursor material....

  6. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    The treatment of radioactive wastes is necessary taking into account the potential hazard of radioactive substances to human health and surrounding environment. The choice of appropriate technology depends on capital and operational costs, wastes amount and their characteristics, appointed targets of the process, e.g. the values of decontamination factors and volume reduction coefficients. The conventional technologies applied for radioactive waste processing, such as precipitation coupled with sedimentation, ion exchange and evaporation have many drawbacks. These include high energy consumption and formation of secondary wastes, e.g. the sludge from sediment tanks, spent ion exchange adsorbents and regeneration solutions. There are also many limitations of such processes, i.e. foaming and drop entrainment in evaporators, loses of solvents and production of secondary wastes in solvent extraction or bed clogging in ion exchange columns. Membrane processes as the newest achievement of the process engineering can successfully supersede many non-effective, out-of-date methods. But in some instances they can also complement these methods whilst improving the parameters of effluents and purification economy. This monograph presents own research data on the application of recent achievements in the area of membrane processes for solving selected problems in nuclear technology. Relatively big space was devoted to the use of membrane processing of low and intermediate radioactive liquid wastes because of numerous applications of these processes in nuclear centres over the world and also because of the interests of the author that was reflected by her recent research projects and activity. This work presents a review on the membrane methods recently introduced into the nuclear technology against the background of the other, commonly applied separation techniques, with indications of the possibilities and prospects for their further developments. Particular attention was paid

  7. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  8. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    Science.gov (United States)

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  9. Membrane potentials of membranes with fixed ionic sites

    NARCIS (Netherlands)

    van den Berg, Albert; van der Wal, P.D.; van der Wal, P.D.; Skowronska-ptasinska, M.; Sudhölter, E.J.R.; Sudholter, Ernst; Bergveld, Piet; Reinhoudt, David

    1990-01-01

    A theoretical model has been developed to simulate the formation of a membrane potential as a function of physically accessible parameters. The description is an extension of the well-known Teorell-Meyer-Sievers (TMS) model, now including free and fixed ionic sites and free and fixed neutral

  10. Efficient preparation and analysis of membrane and membrane protein systems

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector

    2016-01-01

    Roč. 1858, č. 10 (2016), s. 2468-2482 ISSN 0005-2736 Institutional support: RVO:61388963 Keywords : tools and software * membrane building * protein insertion * molecular dynamics * lipid bilayer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  11. STUDI MEMBRAN KITOSAN DARI KULIT LOBSTER BAMBU SEBAGAI MEMBRAN FILTRASI

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Putri Windari

    2016-02-01

    Full Text Available The study of the extraction and characterization of chitosan from skin waste of Bamboo Lobster (Panulirus versicolor has been done. Chitosan is extracted using conventional method, namely the initial process: cleaning and drying (pretreatment, demineralization, deproteination, and deacetylation. The chitosan obtained has been used to prepare chitosan membrane 2% with acetic acid 1% as solvent. The membrane prepared by phase inversion method withprecipitation through solvent evaporation. The prepared membranes were characterized by FTIR spectrophotometer, Nova 1200e by BJH method and filtration method. The results obtained that degree of deacetylation (DD of chitosan is 70.016%. The thickness of the membrane is 0.361 mm. The FTIR spectra show that functional groups obtained are -NH, -CH, C=O, C-O and -CN. From BJH method obtained that the pore radius is 1.69 nm and pore density is 8.95 x 105pores/m3. From the filtration method obtained that at each pressure, 80-85 kPa and 90-100 kPa, the PWF values are 381.232 and 454.545 L/m2.h, respectively.

  12. Membrane distillation : a new approach using composite membranes

    NARCIS (Netherlands)

    Franken, Antonius Christianus Maria

    1988-01-01

    In this thesis several aspects of the membrane distillation process and the thermally driven pervaporation process have been described. Both processes differ essentially from each other as far as their mechanism of separation and their applicability is concerned. From a practical point of view,

  13. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2017-01-01

    Roč. 8, č. 17 (2017), s. 4308-4313 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : giant unilamellar vesicles * single-molecule tracking * lipid bilayer membranes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016

  14. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  15. In Vitro and In Vivo Study of a Novel Porcine Collagen Membrane for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2016-11-01

    Full Text Available For years, in order to improve bone regeneration and prevent the need of a second stage surgery to remove non-resorbable membranes, biological absorbable membranes have gradually been developed and applied in guided tissue regeneration (GTR. The present study’s main objective was to achieve space maintenance and bone regeneration using a new freeze-dried developed porcine collagen membrane, and compare it with an already commercial collagen membrane, when both were used with a bovine xenograft in prepared alveolar ridge bone defects. Prior to surgery, the membrane’s vitality analysis showed statistically significant higher cell proliferation in the test membrane over the commercial one. In six beagle dogs, commercial bone xenograft was packed in lateral ridge bone defects prepared in the left and right side and then covered with test porcine collagen membrane or commercial collagen membrane. Alveolar height changes were measured. Histomorphometric results, in vitro and in vivo properties indicated that the new porcine collagen membrane is biocompatible, enhances bone xenograft osteoconduction, and reduces the alveolar ridge height reabsorption rate.

  16. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  17. Predicting inhomogeneous water absorption in an ionic diblock polymer membrane

    Science.gov (United States)

    Herbst, Daniel; Witten, Thomas

    2013-03-01

    Fuel cells convert fuel directly into electrical power. Their performance depends on a permeable (yet strong) membrane to allow ion conduction (while preventing combustion). Anion-exchange membrane fuel-cells are especially economical to produce, but technological hurdles currently limit durability and OH- conductivity of the membrane. One solution to these problems is a diblock morphology. Layers of stiff hydrophobic polymer provide structure, while interspersed layers of polyelectrolyte provide avenues for conduction. Previously, little was known about the structure within the conducting layer. We adapted Scheutjens-Fleer polymer-brush theory to a lamellar geometry. The calculation tells where the polyelectrolytes congregate within a lamella, and hence how conduction occurs. This talk focuses on a new diblock material, PMB-PVBTMA. We show how the features of the material determine the intra-lamellar structure. We conclude that at low humidity, the bulkiness of PVBTMA causes it to adopt a near-uniform distribution within the conducting block. At high humidity, however, a phase separation may induce abrupt water channels. Understanding the architecture within the conducting layer will help guide research into better anion-exchange membranes materials. The authors would like to thank the Army Research Office for support of this research under the MURI #W911NF-10-1-0520.

  18. Solvent-resistant microporous polymide membranes

    Science.gov (United States)

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  19. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  20. [Prevention of complications fixed restorations in prosthetic patients with hypertension].

    Science.gov (United States)

    2014-04-01

    The author on the basis of clinical and laboratory methods justified, that the use of locally cream "Solcoseryl-Denta" persons suffering from arterial hypertension, increase the speed of recovery of normal epithelial layer of the cells of the mucous membranes of the oral cavity, and, consequently, prevents the development of complications in prosthetics. On the basis of research identified the need in developing a method of prevention of inflammatory complications in prosthetic patients with arterial hypertension.

  1. A Model for Membrane Fusion

    Science.gov (United States)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  2. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  3. Stability of supported liquid membranes

    NARCIS (Netherlands)

    Neplenbroek, Antonius Maria

    1989-01-01

    This thesis deals with the stability of supported liquid membranes (SLMs). The use of SLMs, in which an extraction liquid containing a carrier is immobilized in the pores of a microporous support, has recently been introduced as a promising new separation technique. Some advantages ascribed to this

  4. Membrane adsorbers : development and applications

    NARCIS (Netherlands)

    Avramescu, M.E.

    2002-01-01

    Bioaffinity separation principally asks for membranes that show a good compatibility to the targeted biological fluids, provide coupling sites for (bio)ligands and posses a hydrophilic surface to reduce non-specific adsorption caused by hydrophobic atraction. Due to its good blood compatibility and

  5. Preparation of gas selective membranes

    Science.gov (United States)

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  6. The Plasma Membrane Calcium Pump

    Science.gov (United States)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  7. Guanidinium Pairing Facilitates Membrane Translocation

    Czech Academy of Sciences Publication Activity Database

    Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  8. Comparative antioxidant capacity, membrane stabilization ...

    African Journals Online (AJOL)

    Comparative antioxidant capacity, membrane stabilization, polyphenol composition and cytotoxicity of the leaf and stem of Cissus multistriata. ... standard anti-inflammatory drug (Indomethacin) used. The extracts are less toxic to the cell (Arthenia salina) with their LC/EC50 higher than that of standard potassium dichromate ...

  9. Challenges in Commercializing Biomimetic Membranes.

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-11-05

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  10. PREMATURE RUPTURE OF THE MEMBRANES*

    African Journals Online (AJOL)

    In patients presenting with premature rupture of the membranes there are two factors which influence the foetal morbidity and mortality. These factors are prema- turity and intra-uterine infection. The purpose of this analysis was to elucidate which factor carried the greater risk to the foetus. Recently there has been a spate of.

  11. Extracorporeal membrane oxygenation (ECMO) | Richards ...

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is increasingly being employed in South African intensive care units for the management of patients with refractory hypoxaemia and for haemodynamic support, particularly following cardiothoracic procedures. ECMO is expensive, however, and there is a danger that this ...

  12. Basement membrane proteoglycans and development

    DEFF Research Database (Denmark)

    Couchman, J R; Abrahamson, D R; McCarthy, K J

    1993-01-01

    -CSPG was only strongly expressed in the vasculature invading late comma stage glomeruli, and later in presumptive and mature Bowman's capsule. Over the first six to eight weeks, the capillary basement membranes contained BM-CSPG, but in gradually decreasing amounts until it became completely undetectable...

  13. Osmosis and the Marvelous Membrane.

    Science.gov (United States)

    Cocanour, Barbara; Bruce, Alease S.

    1985-01-01

    Shows how the natural membrane of a decalcified chicken egg can demonstrate the principle of osmosis within a single class period. Various glucose and saline solutions used, periods of time, physiological effects experiments, and correction for differences in initial weights are noted. (DH)

  14. Intelligent Membranes: Dream or Reality?

    Science.gov (United States)

    Gugliuzza, Annarosa

    2013-07-15

    Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of "sense to act", stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  15. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  16. Comparative antioxidant capacity, membrane stabilization ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... In this present study, a comparative evaluation of the antioxidant capacities, phenol and polyphenol composition, membrane stabilization, and cytotoxicity to brine shrimps (Arthemia salina) of the leaf and stem extracts of Cissus multistriata were carried out. 2,2- Diphenyl-1-picryl hydrazyl (DPPH) radical.

  17. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    IAS Admin

    investigators were awarded the Nobel Prize in Physiology or. Medicine in 2013. Introduction. Membrane Transport: In the eukaryotic cell, a majority of proteins are made in the cytosol. But the transmembrane and secretory proteins are synthesized in an organelle called the rough endoplasmic reticulum (ER). These proteins ...

  18. Membrane microdomains in immunoreceptor signaling

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav; Hrdinka, Matouš

    2014-01-01

    Roč. 588, č. 15 (2014), s. 2392-2397 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : membrane raft * microdomain * immunoreceptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.169, year: 2014

  19. Intelligent Membranes: Dream or Reality?

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2013-07-01

    Full Text Available Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of “sense to act”, stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  20. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications.

    Science.gov (United States)

    Dong, Xueliang; Jin, Wanqin; Xu, Nanping; Li, Kang

    2011-10-21

    Catalytic membrane reactors which carry out separation and reaction in a single unit are expected to be a promising approach to achieve green and sustainable chemistry with less energy consumption and lower pollution. This article presents a review of the recent progress of dense ceramic catalytic membranes and membrane reactors, and their potential applications in energy and environmental areas. A basic knowledge of catalytic membranes and membrane reactors is first introduced briefly, followed by a short discussion on the membrane materials including their structures, composition and strategies for material development. The configuration of catalytic membranes, the design of membrane reaction processes and the high temperature sealing are also discussed. The performance of catalytic membrane reactors for energy and environmental applications are summarized and typical catalytic membrane reaction processes are presented and discussed. Finally, current challenges and difficulties related to the industrialization of dense ceramic membrane reactors are addressed and possible future research is also outlined.