WorldWideScience

Sample records for prevent cell lysis

  1. Lysis of lysis-inhibited bacteriophage T4-infected cells.

    OpenAIRE

    Abedon, S T

    1992-01-01

    T4 bacteriophage (phage)-infected cells show a marked increase in latent-period length, called lysis inhibition, upon adsorption of additional T4 phages (secondary adsorption). Lysis inhibition is a complex phenotype requiring the activity of at least six T4 genes. Two basic mysteries surround our understanding of the expression of lysis inhibition: (i) the mechanism of initiation (i.e., how secondary adsorption leads to the expression of lysis inhibition) and (ii) the mechanism of lysis (i.e...

  2. Pressure-mediated reduction of ultrasonically induced cell lysis

    International Nuclear Information System (INIS)

    Ciaravino, V.E.; Miller, M.W.; Carstensen, E.L.

    1981-01-01

    Chinese hamster V-79 cells, exposed in polystyrene tubes for 5 min to 1-MHz continuous-wave ultrasound, were lysed more by a 10 than a 5 W/cm 2 intensity. Higher atmospheric pressure was needed to eliminate lysis with the former relative to the latter intensity, but lysis by 10 W/cm 2 was completely climinated with 2 atm of hydrostatic pressure. The reduction in lysis per unit increase in atmospheric pressure was comparable for both ultrasound intensities

  3. Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.

    Science.gov (United States)

    Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto

    2017-07-01

    Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.

  4. Prevention and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase

    Directory of Open Access Journals (Sweden)

    Alakel N

    2017-02-01

    Full Text Available Nael Alakel,1 Jan Moritz Middeke,1 Johannes Schetelig,1,2 Martin Bornhäuser1 1Department of Internal Medicine I, University Hospital Carl Gustav Carus at the Technische Universitaet Dresden, Dresden, 2German Bone Marrow Donor Center DKMS, Tübigen, Germany Abstract: Tumor lysis syndrome (TLS is a potentially life-threatening condition that occurs in oncologic and hematologic patients with large tumor burden, either due to cytotoxic therapy or, less commonly, spontaneously because of massive tumor cell lysis. TLS is clinically characterized by acute renal failure, hyperuricemia, hyperkalemia, hyperphosphatemia, and hypocalcemia. While limited options are available for treating TLS, identifying patients at high risk for developing TLS and prevention in high-risk patients remain an important aspect in the treatment of cancer patients. In general, treatment of TLS consists of intensive hydration, stimulation of diuresis, and, more specifically, in the use of allopurinol and rasburicase. Rasburicase, a recombinant urate oxidase, rapidly and effectively reduces hyperuricemia, which subsequently significantly decreases the risk of acute renal failure and other clinical manifestations of TLS. For this review, a comprehensive literature search using the term “tumor lysis syndrome” and/or “rasburicase” was performed considering articles listed in MEDLINE. Incidence, prevention, and therapy of TLS with a special focus on the role of rasburicase are discussed. We evaluated 120 relevant articles including 35 case reports, 32 clinical trials, and 14 meta-analyses. Keywords: rasburicase, tumor lysis syndrome, hyperuricemia, acute kidney injury

  5. Severe acute tumor lysis syndrome in patients with germ-cell tumors

    Directory of Open Access Journals (Sweden)

    Guilherme Alvarenga Feres

    2008-01-01

    Full Text Available Germ-cell tumors are a high-proliferative type of cancer that may evolve to significant bulky disease. Tumor lysis syndrome is rarely reported in this setting. The reports of three patients with germ-cell tumors who developed severe acute tumor lysis syndrome following the start of their anticancer therapy are presented. All patients developed renal dysfunction and multiorgan failure. Patients with extensive germ-cell tumors should be kept on close clinical and laboratory monitoring. Physicians should be aware of this uncommon but severe complication and consider early admission to the intensive care unit for the institution of measures to prevent acute renal failure.

  6. Defective lysis of streptomycin-resistant escherichia coli cells infected with bacteriophage f2.

    OpenAIRE

    De Mars Cody, J; Conway, T W

    1981-01-01

    A lysis defect was found to account for the failure of a streptomycin-resistant strain of Escherichia coli to form plaques when infected with the male-specific bacteriophage f2. The lysis defect was associated with the mutation to streptomycin resistance. Large amounts of apparently normal bacteriophage accumulated in these cells. Cell-free extracts from both the parental and mutant strains synthesized a potential lysis protein in considerable amounts in response to formaldehyde-treated f2 RN...

  7. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    Science.gov (United States)

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  8. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis

    Directory of Open Access Journals (Sweden)

    Moo-Jung Seo

    2018-02-01

    Full Text Available Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  9. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation.

    Science.gov (United States)

    Di Carlo, Dino; Jeong, Ki-Hun; Lee, Luke P

    2003-11-01

    A highly effective, reagentless, mechanical cell lysis device integrated in microfluidic channels is reported. Sample preparation, specifically cell lysis, is a critical element in 'lab-on-chip' applications. However, traditional methods of cell lysis require purification steps or complicated fabrication steps that a simple mechanical method of lysis may avoid. A simple and effective mechanical cell lysis system is designed, microfabricated, and characterized to quantify the efficiency of cell lysis and biomolecule accessibility. The device functionality is based on a microfluidic filter region with nanostructured barbs created using a modified deep reactive ion etching process. Mechanical lysis is characterized by using a membrane impermeable dye. Three main mechanisms of micro-mechanical lysis are described. Quantitative measurements of accessible protein as compared to a chemically lysed sample are acquired with optical absorption measurements at 280 and 414 nm. At a flow rate of 300 microL min(-1) within the filter region total protein and hemoglobin accessibilities of 4.8% and 7.5% are observed respectively as compared to 1.9% and 3.2% for a filter without nanostructured barbs.

  10. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis

    DEFF Research Database (Denmark)

    Hawkins, C L; Brown, B E; Davies, Michael Jonathan

    2001-01-01

    trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane....... In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin......-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently...

  11. Spatially selecting a single cell for lysis using light-induced electric fields.

    Science.gov (United States)

    Witte, Christian; Kremer, Clemens; Chanasakulniyom, Mayuree; Reboud, Julien; Wilson, Rab; Cooper, Jonathan M; Neale, Steven L

    2014-08-13

    An optoelectronic tweezing (OET) device, within an integrated microfluidic channel, is used to precisely select single cells for lysis among dense populations. Cells to be lysed are exposed to higher electrical fields than their neighbours by illuminating a photoconductive film underneath them. Using beam spot sizes as low as 2.5 μm, 100% lysis efficiency is reached in <1 min allowing the targeted lysis of cells. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Parallel single cell analysis on an integrated microfluidic platform for cell trapping, lysis and analysis

    NARCIS (Netherlands)

    le Gac, Severine; de Boer, Hans L.; Wijnperle, Daniël; Meuleman, W.; Carlen, Edwin; van den Berg, Albert; Kim, Tae Song; Lee, Yoon-Sik; Chung, Taek-Dong; Jeon, Noo Li; Lee, Sang-Hoon; Suh, Kahp-Yang; Choo, Jaebum; Kim, Yong-Kweon

    2009-01-01

    We report here a novel and easily scalable microfluidic platform for the parallel analysis of hundreds of individual cells, with controlled single cell trapping, followed by their lysis and subsequent retrieval of the cellular content for on-chip analysis. The device consists of a main channel and

  13. Novel Cell Wall Hydrolase CwlC from Bacillus thuringiensis Is Essential for Mother Cell Lysis.

    Science.gov (United States)

    Chen, Xiaomin; Gao, Tantan; Peng, Qi; Zhang, Jie; Chai, Yunrong; Song, Fuping

    2018-04-01

    In this study, a sporulation-specific gene (tentatively named cwlC ) involved in mother cell lysis in Bacillus thuringiensis was characterized. The encoded CwlC protein consists of an N-terminal N -acetylmuramoyl-l-alanine amidase (Mur N Ac-LAA) domain and a C-terminal amidase02 domain. The recombinant histidine-tagged CwlC proteins purified from Escherichia coli were able to directly bind to and digest the B. thuringiensis cell wall. The CwlC point mutations at the two conserved glutamic acid residues (Glu-24 and Glu-140) shown to be critical for the catalytic activity in homologous amidases resulted in a complete loss of cell wall lytic activity, suggesting that CwlC is an N -acetylmuramoyl-l-alanine amidase. Results of transcriptional analyses indicated that cwlC is transcribed as a monocistronic unit and that its expression is dependent on sporulation sigma factor K (σ K ). Deletion of cwlC completely blocked mother cell lysis during sporulation without impacting the sporulation frequency, Cry1Ac protein production, and insecticidal activity. Taken together, our data suggest that CwlC is an essential cell wall hydrolase for B. thuringiensis mother cell lysis during sporulation. Engineered B. thuringiensis strains targeting cwlC , which allows the crystal inclusion to remain encapsulated in the mother cell at the end of sporulation, may have the potential to become more effective biological control agents in agricultural applications since the crystal inclusion remains encapsulated in the mother cell at the end of sporulation. IMPORTANCE Mother cell lysis has been well studied in Bacillus subtilis , which involves three distinct yet functionally complementary cell wall hydrolases. In this study, a novel cell wall hydrolase, CwlC, was investigated and found to be essential for mother cell lysis in Bacillus thuringiensis CwlC of B. thuringiensis only shows 9 and 21% sequence identity with known B. subtilis mother cell hydrolases CwlB and CwlC, respectively

  14. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  15. Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells

    Directory of Open Access Journals (Sweden)

    Nikolay A. Maslov

    2011-12-01

    Full Text Available Many conventional biochemical assays are performed using populations of cells to determine their quantitative biomolecular profiles. However, population averages do not reflect actual physiological processes in individual cells, which occur either on short time scales or nonsynchronously. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. Microfluidic chips with arrays of microwells were developed for single-cell chemical lysis in the present study. The cellular occupancy in 30-mm-diameter microwells (91.45% was higher than that in 20-mm-diameter microwells (83.19% at an injection flow rate of 2.8 mL/min. However, most of the occupied 20-mm-diameter microwells contained individual cells. The results of chemical lysis experiments at the single-cell level indicate that cell membranes were gradually lysed as the lysis buffer was injected; they were fully lysed after 12 s. Single-cell chemical lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis.

  16. Defective lysis of streptomycin-resistant escherichia coli cells infected with bacteriophage f2.

    Science.gov (United States)

    De Mars Cody, J; Conway, T W

    1981-01-01

    A lysis defect was found to account for the failure of a streptomycin-resistant strain of Escherichia coli to form plaques when infected with the male-specific bacteriophage f2. The lysis defect was associated with the mutation to streptomycin resistance. Large amounts of apparently normal bacteriophage accumulated in these cells. Cell-free extracts from both the parental and mutant strains synthesized a potential lysis protein in considerable amounts in response to formaldehyde-treated f2 RNA but not in response to untreated RNA. As predicted from the nucleotide sequence of the analogous MS2 phage, the protein synthesized in vitro had the expected molecular weight and lacked glycine. The cistron for the lysis protein overlapped portions of the coat and replicase cistrons and was translated in the +1 reading frame. Initiation at the lysis protein cistron may be favored by translation errors that expose the normally masked initiation site, and streptomycin-resistant ribosomes, known to have more faithful translation properties, may be unable to efficiently synthesize the lysis protein. Images PMID:6783768

  17. Treatment and prevention of tumor lysis syndrome in children. Experience of Associazione Italiana Ematologia Oncologia Pediatrica.

    Science.gov (United States)

    Pession, Andrea; Barbieri, Eveline

    2005-01-01

    Hyperuricemia and tumor lysis syndrome (TLS) are complications that can arise from treatment of rapidly proliferating and drug-sensitive neoplasms. Clinical trials have shown rasburicase, a recombinant urate oxidase to be more effective than allopurinol for the prevention and treatment of malignancy-associated hyperuricemia. We investigated the safety and efficacy of rasburicase in the AIEOP centers' experience. We reviewed the data of 26 children with malignancy at risk for TLS, submitted to treatment (group 1) or prophylaxis (group 2) of acute hyperuricemia with rasburicase (0.20 mg/kg intravenously daily) for a median period of 4 days. Rasburicase produced a significant decrease in uric acid concentrations in all the patients. The control of uric acid levels was obtained in both the groups within 24 h of the first dose with a response rate of 100% (group 1) and 93% (group 2). Normalization of creatinine and phosphorus levels was obtained in 5 and 4 days respectively. Tolerance was excellent without toxicity. These data confirm that rasburicase is a safe, highly and rapidly effective agent in the treatment and prevention of malignancy-associated acute hyperuricemia and could be considered the treatment of choice to prevent tumor lysis syndrome in children at high risk for this metabolic complication.

  18. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  19. Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria.

    Science.gov (United States)

    Berlowska, Joanna; Dudkiewicz, Marta; Kregiel, Dorota; Czyzowska, Agata; Witonska, Izabela

    2015-01-01

    This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  1. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction.

    Science.gov (United States)

    Yun, Sung-Sik; Yoon, Sang Youl; Song, Min-Kyung; Im, Sin-Hyeog; Kim, Sohee; Lee, Jong-Hyun; Yang, Sung

    2010-06-07

    This paper presents a handheld mechanical cell lysis chip with ultra-sharp nano-blade arrays fabricated by simple and cost effective crystalline wet etching of (110) silicon. The ultra-sharp nano-blade array is simply formed by the undercutting of (110) silicon during the crystalline wet etching process. Cells can be easily disrupted by the silicon nano-blade array without the help of additional reagents or electrical sources. Based on the bench-top test of the proposed device, a handheld mechanical cell lysis chip with the nano-blade arrays is designed and fabricated for direct connection to a commercial syringe. The direct connection to a syringe provides rapid cell lysis, easy handling, and minimization of the lysate dead volume. The protein concentration in the cell lysate obtained by the proposed lysis chip is quantitatively comparable to the one prepared by a conventional chemical lysis method.

  2. Mass entrapment and lysis of Mesodinium rubrum cells in mucus threads observed in cultures with Dinophysis

    DEFF Research Database (Denmark)

    Ojamäe, Karin; Hansen, Per Juel; Lips, Inga

    2016-01-01

    The entrapment and death of the ciliate Mesodinium rubrum in the mucus threads in cultures with Dinophysis is described and quantified. Feeding experiments with different concentrations and predator–prey ratios of Dinophysis acuta, Dinophysis acuminata and M. rubrum to study the motility loss...... and aggregate formation of the ciliates and the feeding behaviour of Dinophysis were carried out. In cultures of either Dinophysis species, the ciliates became entrapped in the mucus, which led to the formation of immobile aggregates of M. rubrum and subsequent cell lysis. The proportion of entrapped ciliates...... was influenced by the concentration of Dinophysis and the ratio of predator and prey in the cultures. At high cell concentrations of prey (136 cells mL−1) and predator (100 cells mL−1), a maximum of 17% of M. rubrum cells became immobile and went through cell lysis. Ciliates were observed trapped in the mucus...

  3. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Lysis of bacterial cells in the process of bacteriophage release – canonical and newly discovered mechanisms

    Directory of Open Access Journals (Sweden)

    Wioleta M. Woźnica

    2015-01-01

    Full Text Available The release of phage progeny from an infected bacterium is necessary for the spread of infection. Only helical phages are secreted from a cell without causing its destruction. The release of remaining phages is correlated with bacterial lysis and death. Thus, the understanding of phage lytic functions is crucial for their use in the fight with bacterial pathogens. Bacteriophages with small RNA or DNA genomes encode single proteins which are called amurins and cause lysis by the inhibition of cell wall synthesis. Bacteriophages of double-stranded DNA genomes, which dominate in the environment, encode enzymes that are called endolysins and contribute to lysis by the cleavage of cell wall peptydoglycan. Endolysins that do not contain signal sequences cannot pass the cytoplasmic membrane by themselves. Their access to peptidoglycan is provided by membrane proteins – holins, which can form in the membrane large pores, that are called “holes”. Some endolysins do not require holins for their transport, owing to the presence of the so called SAR sequence at their N-terminus. It enables their transport through the membrane by the bacterial sec system. However, it is not cleaved off, and thus these endolysins remain trapped in the membrane in an inactive form. Their release, which is correlated with the activation, occurs as a result of membrane depolarization and depends on proteins that are called pinholins. Pinholins form in membrane pores that are too small for the passage of endolysins but sufficient for membrane depolarization. Proteins that are called antiholins regulate the timing of lysis, through the blockage of holins action until the end of phage morphogenesis. Additionally, newly identified lytic proteins, spanins, participate in the release of progeny phages from Gram-negative bacteria cells. They cause the destruction of outer cell membrane by its spanning with the cytoplasmic membrane. This is possible after the endolysin

  5. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation

    Science.gov (United States)

    Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra

    2017-12-01

    Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.

  6. On-chip cell lysis by antibacterial non-leaching reusable quaternary ammonium monolithic column.

    Science.gov (United States)

    Aly Saad Aly, Mohamed; Gauthier, Mario; Yeow, John

    2016-02-01

    Reusable antibacterial non-leaching monolithic columns polymerized in microfluidic channels designed for on-chip cell lysis applications were obtained by the photoinitiated free radical copolymerization of diallyldimethylammonium chloride (DADMAC) and ethylene glycol diacrylate (EGDA) in the presence of a porogenic solvent. The microfluidic channels were fabricated in cross-linked poly(methyl methacrylate) (X-PMMA) substrates by laser micromachining. The monolithic columns have the ability to inhibit the growth of, kill and efficiently lyse Gram-positive Micrococcus luteus (Schroeter) (ATCC 4698) and Kocuria rosea (ATCC 186), and Gram-negative bacteria Pseudomonas putida (ATCC 12633) and Escherichia coli (ATCC 35218) by mechanically shearing the bacterial membrane when forcing the cells to pass through the narrow pores of the monolithic column, and simultaneously disintegrating the cell membrane by physical contact with the antibacterial surface of the column. Cell lysis was confirmed by off-chip PCR without the need for further purification. The influence of the cross-linking monomer on bacterial growth inhibition, leaching, lysis efficiency of the monolithic column and its mechanical stability within the microfluidic channel were investigated and analyzed for three different cross-linking monomers: ethylene glycol dimethacrylate (EGDA), ethylene glycol dimethacrylate (EGDMA) and 1,6-hexanediol dimethacrylate (1,6-HDDMA). Furthermore, the bonding efficiency of two X-PMMA substrates with different cross-linking levels was studied. The monolithic columns were shown to be stable, non-leaching, and reusable for over 30 lysis cycles without significant performance degradation or DNA carryover when they were back-flushed between lysis cycles.

  7. Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis

    Science.gov (United States)

    Homma, Tomoyuki; Nuxoll, Austin; Gandt, Autumn Brown; Ebner, Patrick; Engels, Ina; Schneider, Tanja; Götz, Friedrich; Lewis, Kim

    2016-01-01

    Teixobactin represents the first member of a newly discovered class of antibiotics that act through inhibition of cell wall synthesis. Teixobactin binds multiple bactoprenol-coupled cell wall precursors, inhibiting both peptidoglycan and teichoic acid synthesis. Here, we show that the impressive bactericidal activity of teixobactin is due to the synergistic inhibition of both targets, resulting in cell wall damage, delocalization of autolysins, and subsequent cell lysis. We also find that teixobactin does not bind mature peptidoglycan, further increasing its activity at high cell densities and against vancomycin-intermediate Staphylococcus aureus (VISA) isolates with thickened peptidoglycan layers. These findings add to the attractiveness of teixobactin as a potential therapeutic agent for the treatment of infection caused by antibiotic-resistant Gram-positive pathogens. PMID:27550357

  8. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  9. High expression of the c-myc oncogene renders melanoma cells prone to lysis by natural killer cells

    NARCIS (Netherlands)

    Versteeg, R.; Peltenburg, L. T.; Plomp, A. C.; Schrier, P. I.

    1989-01-01

    NK cells kill a wide variety of tumor cells, but usually leave normal cells intact. It was earlier reported that low class I HLA expression can be one of the factors that render target cells relatively susceptible to NK lysis. In this contribution, we show that in human melanomas the class I HLA

  10. Tumor lysis syndrome in children

    International Nuclear Information System (INIS)

    Suarez, Amaranto

    2004-01-01

    Tumor lysis syndrome is a metabolic emergency characterized by electrolyte alteration with or without acute renal failure. It occurs mainly in patients with malignant tumors that have a high growth fraction, or after cytotoxic therapy, as a result of the massive degradation of malignant cells and the release of high amounts of intracellular elements that exceed the capacity of renal excretion. The objective of the treatment is the prevention of nephropathy due to uric acid deposits, and the correction of metabolic acidosis and electrolyte alterations. This paper reviews the incidence, the physiopathology, and the treatment of tumor lysis syndrome in children

  11. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  12. Degradation of RNA during lysis of Escherichia coli cells in agarose plugs breaks the chromosome.

    Directory of Open Access Journals (Sweden)

    Sharik R Khan

    Full Text Available The nucleoid of Escherichia coli comprises DNA, nucleoid associated proteins (NAPs and RNA, whose role is unclear. We found that lysing bacterial cells embedded in agarose plugs in the presence of RNases caused massive fragmentation of the chromosomal DNA. This RNase-induced chromosomal fragmentation (RiCF was completely dependent on the presence of RNase around lysing cells, while the maximal chromosomal breakage required fast cell lysis. Cell lysis in plugs without RNAse made the chromosomal DNA resistant to subsequent RNAse treatment. RiCF was not influenced by changes in the DNA supercoiling, but was influenced by growth temperature or age of the culture. RiCF was partially dependent on H-NS, histone-like nucleoid structuring- and global transcription regulator protein. The hupAB deletion of heat-unstable nucleoid protein (HU caused increase in spontaneous fragmentation that was further increased when combined with deletions in two non-coding RNAs, nc1 and nc5. RiCF was completely dependent upon endonuclease I, a periplasmic deoxyribonuclease that is normally found inhibited by cellular RNA. Unlike RiCF, the spontaneous fragmentation in hupAB nc1 nc5 quadruple mutant was resistant to deletion of endonuclease I. RiCF-like phenomenon was observed without addition of RNase to agarose plugs if EDTA was significantly reduced during cell lysis. Addition of RNase under this condition was synergistic, breaking chromosomes into pieces too small to be retained by the pulsed field gels. RNase-independent fragmentation was qualitatively and quantitatively comparable to RiCF and was partially mediated by endonuclease I.

  13. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    International Nuclear Information System (INIS)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma

  14. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis.

    Science.gov (United States)

    Gupta, R; Saxena, R K; Chaturvedi, P; Virdi, J S

    1995-04-01

    Streptomyces viridificans was found to be a good chitinase producer among nine species of Streptomyces screened. Minimum levels of constitutive enzyme were observed with both simple and complex carbon substrate. Arabinose doubled the enzyme production amongst the various pentoses and hexoses used with chitin. However, with glucose end-product inhibition and catabolite repression were observed. The enzyme tolerated a wide range of temperature (30-55 degrees C) and pH (3-7.5). Among various divalent cations Mn2+ and Hg2+ completely inhibited the purified enzyme while beta-mercaptoethanol stimulated its activity. Crude and purified enzyme had potential for cell wall lysis of many fungal pathogens tested.

  15. Perforin enhances the granulysin-induced lysis of Listeria innocua in human dendritic cells

    Directory of Open Access Journals (Sweden)

    Wagner Carsten A

    2007-08-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes (CTL and natural killer (NK cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC. Results We found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy. Conclusion The results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux.

  16. Perforin enhances the granulysin-induced lysis of Listeria innocua in human dendritic cells.

    Science.gov (United States)

    Walch, Michael; Latinovic-Golic, Sonja; Velic, Ana; Sundstrom, Hanna; Dumrese, Claudia; Wagner, Carsten A; Groscurth, Peter; Ziegler, Urs

    2007-08-16

    Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC) granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC. We found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy. The results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux.

  17. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  18. Alkaline-cell lysis through in-line static mixer reactor for the production of plasmid DNA for gene therapy.

    Science.gov (United States)

    Chamsart, Saethawat; Karnjanasorn, Tanyawat

    2007-02-15

    A state-of-the-art in-line static mixer reactor (ISMR) was invented to lyse E. coli cells and neutralize the cell lysate continuously and efficiently for the extraction of plasmid DNA. It comprised two connected static dynamic mixers, each 0.01 m in diameter and 0.9 m in length, one for lysis and one for neutralization. Cells were lysed using concentrated alkaline with 1% SDS and the lysate was neutralized at feed rates of cell suspension:lysis solution:neutralization solution of 125:250:125, 250:500:250, and 500:1,000:500 mL/min. Distances for the mixtures to reach color homogeneity were dependent on feed rates. The higher the feed rates the shorter the mixing distances and times. However, complete cell lysis and neutralization were independent of color homogeneity. Lysate viscosity and neutralized floc size decreased and floc density increased, as distances and feed rates increased. High plasmid yields were obtained from both lysis and neutralization at feed rate ratios of 125:250:125 and 250:500:250 mL/min within mixing distances or =0.6 m at all feed rates due to a longer exposure to strong alkali and shear flow. This invention showed excellent performance with scaleable potential for the commercial manufacture of plasmid DNA.

  19. Integrated Multifunctional Electrochemistry Microchip for Highly Efficient Capture, Release, Lysis, and Analysis of Circulating Tumor Cells.

    Science.gov (United States)

    Yan, Shuangqian; Chen, Peng; Zeng, Xuemei; Zhang, Xian; Li, Yiwei; Xia, Yun; Wang, Jie; Dai, Xiaofang; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2017-11-21

    The circulating tumor cells (CTCs) in the blood allow the noninvasive analysis of metastatic mechanisms, cancer diagnosis, prognosis, disease monitoring, and precise therapy through "liquid biopsies". However, there is no integrated and robust multifunctional microchip, which not only could highly efficient capture CTCs, but also fast release and lyse cells on one single chip without using other biochemical agents for downstream biomedical analysis. In this work, we integrated the three functions in one electrochemical microchip (echip) by intentionally designing a cactus-like, topologically structured conductive array consisted of a PDMS micropillar-array core and an electroconductive gold coating layer with hierarchical structure. The echip presented a capture efficiency of 85-100% for different cell lines in both buffer solution and whole blood. Moreover, the validity of the echip was further evaluated by using non-small-cell lung cancer patient samples. The electrochemical released cells or lysed-cell solutions could be obtained within 10 min and have been successfully used for mutant detection by DNA sequencing or RT-PCR. The fast release at a relative low voltage (-1.2 V) was originating from an electrochemical cleavage of the Au-S bonds that immobilized antibody on the chip. The electrochemical lysis took place at a high voltage (20 V) with an admirable performance. Thus, the highly integrated multifunctional echip was well demonstrated and promised a significant application in the clinical field.

  20. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    International Nuclear Information System (INIS)

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-01-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51 Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism

  1. Comparison of the efficiency of different methods for the lysis of cells in lab-on-chip systems

    NARCIS (Netherlands)

    Röser, T.; Drese, K.S.; Fütterer, X.; Germar, F. von; Hansen-Hagge, T.E.; Ritzi, M.; Bullema, J.E.; Bolt, P.J.

    2007-01-01

    Quantitative or qualitative examination of DNA has enormous impact on medical, forensic, or genealogical, analysis. The macro as well as micro world knows a panel of different methods for cell lysis that has to happen prior to the purification of the DNA. To our knowledge the efficiency of those

  2. Stabilizing Additives Added during Cell Lysis Aid in the Solubilization of Recombinant Proteins

    Science.gov (United States)

    Leibly, David J.; Nguyen, Trang Nhu; Kao, Louis T.; Hewitt, Stephen N.; Barrett, Lynn K.; Van Voorhis, Wesley C.

    2012-01-01

    Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl2, proline, xylitol, NDSB 201, CTAB and K2PO4) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher. PMID:23285060

  3. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins.

    Directory of Open Access Journals (Sweden)

    David J Leibly

    Full Text Available Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2, proline, xylitol, NDSB 201, CTAB and K(2PO(4 solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40% were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.

  4. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    Science.gov (United States)

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity.

  5. Microphotographs of cyanobacteria documenting the effects of various cell-lysis techniques

    Science.gov (United States)

    Rosen, Barry H.; Loftin, Keith A.; Smith, Christopher E.; Lane, Rachael F.; Keydel, Susan P.

    2011-01-01

    Cyanotoxins are a group of organic compounds biosynthesized intracellularly by many species of cyanobacteria found in surface water. The United States Environmental Protection Agency has listed cyanotoxins on the Safe Drinking Water Act's Contaminant Candidate List 3 for consideration for future regulation to protect public health. Cyanotoxins also pose a risk to humans and other organisms in a variety of other exposure scenarios. Accurate and precise analytical measurements of cyanotoxins are critical to the evaluation of concentrations in surface water to address the human health and ecosystem effects. A common approach to total cyanotoxin measurement involves cell membrane disruption to release the cyanotoxins to the dissolved phase followed by filtration to remove cellular debris. Several methods have been used historically, however no standard protocols exist to ensure this process is consistent between laboratories before the dissolved phase is measured by an analytical technique for cyanotoxin identification and quantitation. No systematic evaluation has been conducted comparing the multiple laboratory sample processing techniques for physical disruption of cell membrane or cyanotoxins recovery. Surface water samples collected from lakes, reservoirs, and rivers containing mixed assemblages of organisms dominated by cyanobacteria, as well as laboratory cultures of species-specific cyanobacteria, were used as part of this study evaluating multiple laboratory cell-lysis techniques in partnership with the U.S. Environmental Protection Agency. Evaluated extraction techniques included boiling, autoclaving, sonication, chemical treatment, and freeze-thaw. Both treated and untreated samples were evaluated for cell membrane integrity microscopically via light, epifluorescence, and epifluorescence in the presence of a DNA stain. The DNA stain, which does not permeate live cells with intact membrane structures, was used as an indicator for cyanotoxin release into the

  6. Study of a novel cell lysis method with titanium dioxide for Lab-on-a-Chip devices.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2011-06-01

    In this paper, a novel method is proposed and demonstrated to be able to lyse gram-negative (E. coli) bacteria cells for Lab-on-a-Chip applications. The proposed method incorporates using titanium dioxide particles as photocatalysts and a miniaturized UV LED array as an excitation light source to perform cell lysis on microchips. The experimental result demonstrates the feasibility of the proposed prototype device. The working device suggests an inexpensive, easy to be fabricated and effective way for microchip cell lysis. The miniaturized UV LED array and the microchip with a reaction chamber can be easily integrated with other functional components to form a customized whole Lab-on-a-Chip system.

  7. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  8. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  9. Staphylococcal α-hemolysin is neurotoxic and causes lysis of brain cells in vivo and in vitro.

    Science.gov (United States)

    Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Tønjum, Tone; Mæhlen, Jan; Antal, Ellen-Ann; Hassel, Bjørnar

    2015-05-01

    Formation of a bacterial brain abscess entails loss of brain cells and formation of pus. The mechanisms behind the cell loss are not fully understood. Staphylococcus aureus, a common cause of brain abscesses, produces various exotoxins, including α-hemolysin, which is an important factor in brain abscess formation. α-Hemolysin may cause cytolysis by forming pores in the plasma membrane of various eukaryotic cells. However, whether α-hemolysin causes lysis of brain cells is not known. Nor is it known whether α-hemolysin in the brain causes cell death through pore formation or by acting as a chemoattractant, recruiting leukocytes and causing inflammation. Here we show that α-hemolysin injected into rat brain causes cell damage and edema formation within 30 min. Cell damage was accompanied by an increase in extracellular concentrations of zinc, GABA, glutamate, and other amino acids, indicating plasma membrane damage, but leukocytic infiltration was not seen 0.5-12h after α-hemolysin injection. This was in contrast to injection of S. aureus, which triggered extensive infiltration with neutrophils within 8h. In vitro, α-hemolysin caused concentration-dependent lysis of isolated nerve endings and cultured astrocytes. We conclude that α-hemolysin contributes to the cell death inherent in staphylococcal brain abscess formation as a pore-forming neurotoxin. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cell Lysis in S. pombe ura4 Mutants Is Suppressed by Loss of Functional Pub1, Which Regulates the Uracil Transporter Fur4.

    Science.gov (United States)

    Nishino, Kohei; Kushima, Misaki; Matsuo, Yuzy; Matsuo, Yasuhiro; Kawamukai, Makoto

    2015-01-01

    Schizosaccharomyces pombe Δura4 cells lyse when grown on YPD medium. A S. pombe non-essential gene deletion library was screened to determine suppressors of the lysis phenotype. Deletion of the pub1 gene, which encoded E3 ubiquitin ligase, strongly suppressed cell lysis in Δura4 cells. The Δpub1 cells displayed high sensitivity to 5-fluorouracil, a toxic analog of uracil, and this sensitivity was suppressed by deletion of fur4, which encoded a uracil transporter. Fur4 localized primarily to the Golgi apparatus and vacuoles in wild-type cells, but localization was predominantly at the plasma membrane in Δpub1 cells. Fur4 was necessary for the utilization of extracellular uracil, cytosine, or UMP. Uracil uptake activity increased in the Δpub1 strain in a Fur4-dependent manner. In addition, uracil starvation was critical for induction of cell lysis of Δura4 strains and uracil supplementation suppressed lysis. In summary, the increased uracil uptake ability of Δpub1 cells, where Fur4 was predominantly localized to the plasma membrane, resulted in suppression of cell lysis in the Δura4 background.

  11. Cell Lysis in S. pombe ura4 Mutants Is Suppressed by Loss of Functional Pub1, Which Regulates the Uracil Transporter Fur4.

    Directory of Open Access Journals (Sweden)

    Kohei Nishino

    Full Text Available Schizosaccharomyces pombe Δura4 cells lyse when grown on YPD medium. A S. pombe non-essential gene deletion library was screened to determine suppressors of the lysis phenotype. Deletion of the pub1 gene, which encoded E3 ubiquitin ligase, strongly suppressed cell lysis in Δura4 cells. The Δpub1 cells displayed high sensitivity to 5-fluorouracil, a toxic analog of uracil, and this sensitivity was suppressed by deletion of fur4, which encoded a uracil transporter. Fur4 localized primarily to the Golgi apparatus and vacuoles in wild-type cells, but localization was predominantly at the plasma membrane in Δpub1 cells. Fur4 was necessary for the utilization of extracellular uracil, cytosine, or UMP. Uracil uptake activity increased in the Δpub1 strain in a Fur4-dependent manner. In addition, uracil starvation was critical for induction of cell lysis of Δura4 strains and uracil supplementation suppressed lysis. In summary, the increased uracil uptake ability of Δpub1 cells, where Fur4 was predominantly localized to the plasma membrane, resulted in suppression of cell lysis in the Δura4 background.

  12. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide

    DEFF Research Database (Denmark)

    Nijhof, I. S.; Lammerts van Bueren, J. J.; van Kessel, B.

    2015-01-01

    killer cell inhibitory receptors with the human monoclonal anti-KIR antibody IPH2102, next to activation of natural killer cells with the immune modulatory drug lenalidomide. In 4-hour antibody-dependent cell-mediated cytotoxicity assays, IPH2102 did not induce lysis of multiple myeloma cell lines......RIIa-131R allele, who bind IgG1 with lower affinity than patients carrying the FcgammaRIIIa-158V allele or the FcgammaRIIa-131H allele. Finally, a further synergistically improved myeloma cell lysis with the daratumumab-IPH2102 combination was observed by adding lenalidomide, which suggests that more...

  13. Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices

    Directory of Open Access Journals (Sweden)

    Philippe Renaud

    2012-08-01

    Full Text Available Here we present an electrical lysis throughput of 600 microliters per minute at high cell density (108 yeast cells per ml with 90% efficiency, thus improving the current common throughput of one microliter per minute. We also demonstrate the extraction of intracellular luciferase from mammalian cells with efficiency comparable to off-chip bulk chemical lysis. The goal of this work is to develop a sample preparation module that can act as a stand-alone device or be integrated to other functions already demonstrated in miniaturized devices, including sorting and analysis, towards a true lab-on-a-chip.

  14. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells.

    Science.gov (United States)

    Zhao, Zhe; Liu, Jinxin; Deng, Yiqin; Huang, Wen; Ren, Chunhua; Call, Douglas R; Hu, Chaoqun

    2018-01-01

    Vibrio alginolyticus is a Gram-negative bacterium that is an opportunistic pathogen of both marine animals and people. Its pathogenesis likely involves type III secretion system (T3SS) mediated induction of rapid apoptosis, cell rounding and osmotic lysis of infected eukaryotic cells. Herein, we report that effector proteins, Val1686 and Val1680 from V. alginolyticus, were responsible for T3SS-mediated death of fish cells. Val1686 is a Fic-domain containing protein that not only contributed to cell rounding by inhibiting Rho guanosine triphosphatases (GTPases), but was requisite for the induction of apoptosis because the deletion mutant (Δval1686) was severely weakened in its ability to induce cell rounding and apoptosis in fish cells. In addition, Val1686 alone was sufficient to induce cell rounding and apoptosis as evidenced by the transfection of Val1686 into fish cells. Importantly, the Fic-domain essential for cell rounding activity was equally important to activation of apoptosis of fish cells, indicating that apoptosis is a downstream event of Val1686-dependent GTPase inhibition. V. alginolyticus infection likely activates JNK and ERK pathways with sequential activation of caspases (caspase-8/-10, -9 and -3) and subsequent apoptosis. Val1680 contributed to T3SS-dependent lysis of fish cells in V. alginolyticus, but did not induce autophagy as has been reported for its homologue (VopQ) in V. parahaemolyticus. Together, Val1686 and Val1680 work together to induce apoptosis, cell rounding and cell lysis of V. alginolyticus-infected fish cells. These findings provide new insights into the mechanism of cell death caused by T3SS of V. alginolyticus.

  15. The Cell Lysis Activity of the Streptococcus agalactiae Bacteriophage B30 Endolysin Relies on the Cysteine, Histidine-Dependent Amidohydrolase/Peptidase Domain

    Science.gov (United States)

    Donovan, David M.; Foster-Frey, Juli; Dong, Shengli; Rousseau, Geneviève M.; Moineau, Sylvain; Pritchard, David G.

    2006-01-01

    The Streptococcus agalactiae bacteriophage B30 endolysin contains three domains: cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), Acm glycosidase, and the SH3b cell wall binding domain. Truncations and point mutations indicated that the Acm domain requires the SH3b domain for activity, while the CHAP domain is responsible for nearly all the cell lysis activity. PMID:16820517

  16. Proliferative and phenotypical characteristics of human adipose tissue-derived stem cells: comparison of Ficoll gradient centrifugation and red blood cell lysis buffer treatment purification methods.

    Science.gov (United States)

    Najar, Mehdi; Rodrigues, Robim M; Buyl, Karolien; Branson, Steven; Vanhaecke, Tamara; Lagneaux, Laurence; Rogiers, Vera; De Kock, Joery

    2014-09-01

    Adult human subcutaneous adipose tissue harbors a multipotent stem cell population, the so-called human adipose tissue-derived mesenchymal stromal cells (AT-MSCs). These cells are able to differentiate in vitro into various cell types and possess immunomodulatory features. Yet procedures to obtain AT-MSCs can vary significantly. The two most extensively used AT-MSC purification techniques are (i) density gradient centrifugation using Ficoll and (ii) red blood cell (RBC) lysis buffer treatment of the stromal vascular fraction. In the context of potential clinical cell therapy, the stem cell yield after purification and upon consecutive passages, as well as the purity of the obtained cell population, are of utmost importance. We investigated the expansion capacity and purity of AT-MSCs purified by both procedures immediately after isolation and upon consecutive passages. We also investigated possible purification-dependent differences in their expression of immune-inhibitory factors and cell adhesion molecules. We found that RBC lysis buffer treatment is a more robust and easier method to purify AT-MSCs than density gradient fractionation. However, the resulting AT-MSC-RBC population contains a significantly higher number of CD34(+) cells, particularly during the first passages after plating. From passage 4 onward, no significant differences could be observed between both populations with respect to the immunophenotype, expansion capacity and expression of immune inhibitory factors and cell adhesion molecules. Our data show that RBC lysis buffer treatment may be a good alternative to density fractionation, providing a faster, more robust and easier method to purify AT-MSCs with biologically preserved characteristics. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Science.gov (United States)

    Fei Cheng; Lin Hou; Keith Woeste; Zhengchun Shang; Xiaobang Peng; Peng Zhao; Shuoxin Zhang

    2016-01-01

    Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high...

  18. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population.

    Science.gov (United States)

    Steinmoen, Hilde; Knutsen, Eivind; Håvarstein, Leiv Sigve

    2002-05-28

    Naturally competent bacteria have the ability to take up free DNA from the surrounding medium and incorporate this DNA into their genomes by homologous recombination. In naturally competent Streptococcus pneumoniae, and related streptococcal species from the mitis phylogenetic group, the competent state is not a constitutive property but is induced by a peptide pheromone through a quorum-sensing mechanism. Recent studies have shown that natural genetic transformation is an important mechanism for gene exchange between streptococci in nature. A prerequisite for effective gene exchange is the presence of streptococcal donor DNA in the environment. Despite decades of study of the transformation process we still do not know how this donor DNA is released from streptococcal cells to the external milieu. Traditionally, it has been assumed that donor DNA originates from cells that die and fall apart from natural causes. In this study we show that induction of the competent state initiates release of DNA from a subfraction of the bacterial population, probably by cell lysis. The majority of the cells induced to competence take up DNA and act as recipients, whereas the rest release DNA and act as donors. These findings show that natural transformation in streptococci provides a natural mechanism for genetic recombination that resembles sex in higher organisms.

  19. Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy

    International Nuclear Information System (INIS)

    Gupta, Neil; Arthos, James; Khazanie, Prateeti; Steenbeke, Tavis D.; Censoplano, Nina M.; Chung, Eva A.; Cruz, Catherine C.; Chaikin, Margery A.; Daucher, Marybeth; Kottilil, Shyam; Mavilio, Domenico; Schuck, Peter; Sun, Peter D.; Rabin, Ronald L.; Radaev, Sergei; Van Ryk, Donald; Cicala, Claudia; Fauci, Anthony S.

    2005-01-01

    Natural killer (NK) cells play an important role in both innate and adaptive antiviral immune responses. The adaptive response typically requires that virus-specific antibodies decorate infected cells which then direct NK cell lysis through a CD16 mediated process termed antibody-dependent cellular cytotoxicity (ADCC). In this report, we employ a highly polymerized chimeric IgG1/IgA immunoglobulin (Ig) fusion protein that, by virtue of its capacity to extensively crosslink CD16, activates NK cells while directing the lysis of infected target cells. We employ HIV as a model system, and demonstrate that freshly isolated NK cells preloaded with an HIV gp120-specific chimeric IgG1/IgA fusion protein efficiently lyse HIV-infected target cells at picomolar concentrations. NK cells pre-armed in this manner retain the capacity to kill targets over an extended period of time. This strategy may have application to other disease states including various viral infections and cancers

  20. Evaluation of cell lysis procedures and use of a micro fluidic system for an automated DNA-based cell identification in interplanetary missions

    Science.gov (United States)

    Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.

    2006-12-01

    A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with

  1. Tumour-infiltrating lymphocytes mediate lysis of autologous squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Hald, Jeppe; Rasmussen, N; Claesson, Mogens Helweg

    1995-01-01

    , the cancer cells either overexpressed the tumour-suppressor gene product p53 or harboured human papilloma virus 16/18 (HPV). The TIL were expanded in vitro in the presence of interleukin-2, immobilised anti-CD3 mAb and soluble anti-CD28 mAb. Expanded TIL cultures contained both CD4+ and CD8+ T cells...

  2. Tumour-infiltrating lymphocytes mediate lysis of autologous squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Hald, Jeppe; Rasmussen, N; Claesson, Mogens Helweg

    1995-01-01

    Tumour-infiltrating lymphocytes (TIL) and tumours from six patients with squamous cell carcinomas of the head and neck (SCCHN) were investigated. The six tumours all expressed major histocompatibility complex (MHC) class I antigens both in vivo and as tumor cell lines grown in vitro. In addition,...... in a MHC-class-I-restricted fashion. Thus, the results of the present study document that carcinomas of the head and neck in some patients are infiltrated by cytotoxic T cell precursors potentially capable of rejecting the autologous tumour....

  3. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes

    DEFF Research Database (Denmark)

    Ronchel, M.C.; Molina, L.; Witte, A.

    1998-01-01

    Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell death...

  4. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  5. Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus

    Science.gov (United States)

    Divyashree, M. S.; Shamala, T. R.

    2009-02-01

    Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5-40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5×10 5 to 1.9×10 5 after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7×10 5 to 2.3×10 5 and tensile strength from 20 to 35 MPa. GC, GC-MS, FTIR and 1H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.

  6. Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus

    Energy Technology Data Exchange (ETDEWEB)

    Divyashree, M.S. [Department of Food Microbiology, Central Food Technological Research Institute, Mysore 570020 (India); Shamala, T.R. [Department of Food Microbiology, Central Food Technological Research Institute, Mysore 570020 (India)], E-mail: shamala_trs@yahoo.co.uk

    2009-02-15

    Bacillus flexus cultivated on sucrose and sucrose with plant oil such as castor oil produced polyhydroxybutyrate (PHB), a homopolymer of polyhydroxyalkanoate (PHA) and PHA copolymer (containing hydroxybutyrate and hexanoate), respectively. Gamma irradiation of these cells (5-40 kGy) resulted in cell damage and aided in the isolation of 45% and 54% PHA on biomass weight, correspondingly. Molecular weight of PHB increased from 1.5x10{sup 5} to 1.9x10{sup 5} after irradiation (10 kGy), with marginal increase of tensile strength from 18 to 20 MPa. At the same irradiation dosage, PHA copolymer showed higher molecular weight increase from 1.7x10{sup 5} to 2.3x10 {sup 5} and tensile strength from 20 to 35 MPa. GC, GC-MS, FTIR and {sup 1}H NMR were used for the characterization of PHA. Gamma irradiation seems to be a novel technique, to induce cross-linking and molecular weight increase of PHA copolymer and aid in easy extractability of intracellular PHA, simultaneously.

  7. Cost-effective and rapid lysis of Saccharomyces cerevisiae cells for quantitative western blot analysis of proteins, including phosphorylated eIF2α.

    Science.gov (United States)

    Lee, Su Jung; Ramesh, Rashmi; de Boor, Valerie; Gebler, Jan M; Silva, Richard C; Sattlegger, Evelyn

    2017-09-01

    The common method for liberating proteins from Saccharomyces cerevisiae cells involves mechanical cell disruption using glass beads and buffer containing inhibitors (protease, phosphatase and/or kinase inhibitors), followed by centrifugation to remove cell debris. This procedure requires the use of costly inhibitors and is laborious, in particular when many samples need to be processed. Also, enzymatic reactions can still occur during harvesting and cell breakage. As a result low-abundance and labile proteins may be degraded, and enzymes such as kinases and phosphatases may still modify proteins during and after cell lysis. We believe that our rapid sample preparation method helps overcome the above issues and offers the following advantages: (a) it is cost-effective, as no inhibitors and breaking buffer are needed; (b) cell breakage is fast (about 15 min) since it only involves a few steps; (c) the use of formaldehyde inactivates endogenous proteases prior to cell lysis, dramatically reducing the risk of protein degradation; (d) centrifugation steps only occur prior to cell lysis, circumventing the problem of losing protein complexes, in particular if cells were treated with formaldehyde intended to stabilize and capture large protein complexes; and (e) since formaldehyde has the potential to instantly terminate protein activity, this method also allows the study of enzymes in live cells, i.e. in their true physiological environment, such as the short-term effect of a drug on enzyme activity. Taken together, the rapid sample preparation procedure provides a more accurate snapshot of the cell's protein content at the time of harvesting. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.

    Science.gov (United States)

    Briard, Jennie G; Poisson, Jessica S; Turner, Tracey R; Capicciotti, Chantelle J; Acker, Jason P; Ben, Robert N

    2016-03-29

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70-80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming.

  9. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells.

    Science.gov (United States)

    Gameiro, Sofia R; Malamas, Anthony S; Tsang, Kwong Y; Ferrone, Soldano; Hodge, James W

    2016-02-16

    The clinical promise of cancer immunotherapy relies on the premise that the immune system can recognize and eliminate tumor cells identified as non-self. However, tumors can evade host immune surveillance through multiple mechanisms, including epigenetic silencing of genes involved in antigen processing and immune recognition. Hence, there is an unmet clinical need to develop effective therapeutic strategies that can restore tumor immune recognition when combined with immunotherapy, such as immune checkpoint blockade and therapeutic cancer vaccines. We sought to examine the potential of clinically relevant exposure of prostate and breast human carcinoma cells to histone deacetylase (HDAC) inhibitors to reverse tumor immune escape to T-cell mediated lysis. Here we demonstrate that prostate (LNCAP) and breast (MDA-MB-231) carcinoma cells are more sensitive to T-cell mediated lysis in vitro after clinically relevant exposure to epigenetic therapy with either the pan-HDAC inhibitor vorinostat or the class I HDAC inhibitor entinostat. This pattern of immunogenic modulation was observed against a broad range of tumor-associated antigens, such as CEA, MUC1, PSA, and brachyury, and associated with augmented expression of multiple proteins involved in antigen processing and tumor immune recognition. Genetic and pharmacological inhibition studies identified HDAC1 as a key determinant in the reversal of carcinoma immune escape. Further, our findings suggest that the observed reversal of tumor immune evasion is driven by a response to cellular stress through activation of the unfolded protein response. This offers the rationale for combining HDAC inhibitors with immunotherapy, including therapeutic cancer vaccines.

  10. Cell lysis-free quantum dot multicolor cellular imaging-based mechanism study for TNF-α-induced insulin resistance.

    Science.gov (United States)

    Kim, Min Jung; Rangasamy, Sabarinathan; Shim, Yumi; Song, Joon Myong

    2015-01-27

    TNF-α is an inflammatory cytokine that plays an important role in insulin resistance observed in obesity and chronic inflammation. Many cellular components involved in insulin signaling cascade are known to be inhibited by TNF-α. Insulin receptor substrate (IRS)-1 is one of the major targets in TNF-α-induced insulin resistance. The serine phosphorylation of IRS-1 enables the inhibition of insulin signaling. Until now, many studies have been conducted to investigate the mechanism of TNF-α-induced insulin resistance based on Western blot. Intracellular protein kinase crosstalk is commonly encountered in inflammation-associated insulin resistance. The crosstalk among the signaling molecules obscures the precise role of kinases in insulin resistance. We have developed a cell lysis-free quantum dots (QDots) multicolor cellular imaging to identify the biochemical role of multiple kinases (p38, JNK, IKKβ, IRS1ser, IRS1tyr, GSK3β, and FOXO1) in inflammation-associated insulin resistance pathway with a single assay in one run. QDot-antibody conjugates were used as nanoprobes to simultaneously monitor the activation/deactivation of the above seven intracellular kinases in HepG2 cells. The effect of the test compounds on the suppression of TNF-α-induced insulin resistance was validated through kinase monitoring. Aspirin, indomethacin, cinnamic acid, and amygdalin were tested. Through the measurement of the glycogen level in HepG2 cell treated with TNF-α, it was found that aspirin and indomethacin increased glycogen levels by almost two-fold compared to amygdalin and cinnamic acid. The glucose production assay proved that cinnamic acid was much more efficient in suppressing glucose production, compared with MAP kinase inhibitors and non-steroidal anti-inflammatory drugs. QDot multicolor cellular imaging demonstrated that amygdalin and cinnamic acid selectively acted via the JNK1-dependent pathway to suppress the inflammation-induced insulin resistance and improve

  11. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation

    Directory of Open Access Journals (Sweden)

    Jagroop Pandhal

    2018-04-01

    Full Text Available There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min destruction of two pure microcystins (MC-LR and MC-RR, together with removal of by-products even at low flow rate 1 L min−1 where bubble size was 0.56–0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min−1 flow rate compared to 1 L

  12. Factors influencing lysis time stochasticity in bacteriophage λ

    Directory of Open Access Journals (Sweden)

    Dennehy John J

    2011-08-01

    Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

  13. CD20-Specific Immunoligands Engaging NKG2D Enhance γδ T Cell-Mediated Lysis of Lymphoma Cells

    DEFF Research Database (Denmark)

    Peipp, M.; Wesch, D.; Oberg, H. H.

    2017-01-01

    Human γδ T cells are innate-like T cells which are able to kill a broad range of tumour cells and thus may have potential for cancer immunotherapy. The activating receptor natural killer group 2 member D (NKG2D) plays a key role in regulating immune responses driven by γδ T cells. Here, we explor...

  14. Viral Lysis of Cells Influences The Concentration and Compostion of Dissolved Organic Matter and The Formation of Organic Aggregates (marine Snow)

    Science.gov (United States)

    Weinbauer, M. G.; Peduzzi, P.

    The effect of moderately (ca. 2.5 fold) increasing the concentration of the virus-size fraction (VSF) of seawater on the chemical composition of the dissolved organic mat- ter (DOM) pool during the formation of organic aggregates (marine snow) was tested experimentally with seawater samples collected in the Northern Adriatic Sea. The VSF enrichment did not significantly change the concentration of selected DOM com- pounds, whereas viral abundance was ca. 2-fold higher. During long-term experiments (40 - 200 hrs), bacterial abundance was on average 25% lower in the VSF amended than in the control incubations, and the frequency of visibly infected cells was stimu- lated by ca. 50%. VSF delayed the development of phytoplankton blooms (diatoms), but in the end of the experiments, Chl a concentrations in the VSF amended incuba- tions exceeded those in the control incubations. The VSF enrichment caused an enrich- ment of Serine and Threonine in the dissolved hydrolysable amino acid (AA) fraction indicative of viral lysis of diatoms. Bulk dissolved free AA acid and monomeric car- bohydrate (CHO) concentrations were repressed, whereas bulk dissolved hydrolysable AA and CHO concentrations were stimulated in the VSF enriched incubations. Viral lysis was likely the major reason for the stimulation of hydrolysable DOM. The for- mation of organic aggregates was repressed by the VSF enrichment, but the aggregates were larger and more persistent in the VSF amended than in the control incubations. Stimulation of hydrolysable DOM and sticky viral lysis products might be the reason for the larger and more persistent aggregates. This demonstrates that bioactive mate- rial in the VSF of seawater can have major implications for primary production and the cycling of organic carbon in the ocean.

  15. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals.

    Directory of Open Access Journals (Sweden)

    Manuela Fogli

    2008-07-01

    Full Text Available Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7. This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I molecules, HIV-1-infected p24(pos blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs and with the high frequency of the anergic CD56(neg/CD16(pos subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos blasts derived from primary T cells.

  16. Type i CD20 antibodies recruit the B cell receptor for complement-dependent lysis of malignant B cells

    DEFF Research Database (Denmark)

    Engelberts, P. J.; Voorhorst, M.; Schuurman, J.

    2016-01-01

    . We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship...... between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells...... isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC...

  17. Solubilization of proteins: the importance of lysis buffer choice.

    Science.gov (United States)

    Peach, Mandy; Marsh, Noelle; Miskiewicz, Ewa I; MacPhee, Daniel J

    2015-01-01

    The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.

  18. Dextran sulphate crowding and sodium deoxycholate lysis of primary breast fibroblast cells achieve extracellular matrix deposition and decellularization for breast cancer stem cell culture

    Directory of Open Access Journals (Sweden)

    Aroem Naruni

    2016-01-01

    Full Text Available AbstrakLatar belakang: Lingkungan mikro yaitu sel stromal dam matriks ekstraseluler saat ini dinyatakansebagai kontributor dalam perkembangan tumor. Beberapa penelitian telah mengembangkan matriksekstraseluler yang mendukung perkembangan sel in vitro. Matriks ekstraseluler adalah suatu komplekssusunan supramolekuler dari berbagai macam glycoprotein dan proteoglycan. Matriks ekstraselulermenyediakan integritas jaringan, bertindak sebagai scaffold alami tempat sel melekat dan berinteraksiserta berperan sebagai reservoir pertumbuhan sel. Penelitian ini bertujuan untuk mendapatkan deposisidan deselularisasi yang optimal pada matriks ekstraseluler.Metode: Dalam penelitian ini, kami mengembangkan cells crowder untuk meningkatkan deposit matriksekstraseluler dari kultur sel primer fibroblast payudara yang diperoleh dari spesimen hasil operasimammoplasty. Dextran 500 kDa ditambahkan dalam media kultur DMEM lengkap yang telah ditambahkan0.5% FBS dan 100μM L-ascorbic acid 2-phosphate. Setelah tujuh hari, sel dilisis dengan menggunakanSodium Deoxycolate (DOC.Hasil: Deposisi matriks ekstraseluler dan proses deselulerisasi dari sel primer fibroblas payudara dapatterdeteksi dengan menggunakan antibodi Rabbit anti human fibronectin yang selanjutnya ditambahkandengan anti rabbit IgG yang telah dikonjugasi dengan Alexa Fluor 488.Kesimpulan: Penambahan dextran sulfat dan prosesing lysis dengan sodium deoxycolate dapatmeningkatkan deposisi dan menghasilkan deselularisasi matriks ekstraseluler. (Health Science Journalof Indonesia 2015;6:43-7Kata kunci: matriks ekstra selular, kanker mammae, stem cell, sel fibroblast AbstractBackground: The microenvironment including stromal cells and extracellular matrix (ECM is now consideredan active contributor to tumor progression. Certain studies have developed ECM which supports a suitable cellulargrowth in vitro. The ECM is a complex supramolecular assembly of a variety of glycoproteins and proteoglycans

  19. Type I CD20 Antibodies Recruit the B Cell Receptor for Complement-Dependent Lysis of Malignant B Cells

    NARCIS (Netherlands)

    Engelberts, Patrick J.; Voorhorst, Marleen; Schuurman, Janine; van Meerten, Tom; Bakker, Joost M.; Vink, Tom; Mackus, Wendy J. M.; Breij, Esther C. W.; Derer, Stefanie; Valerius, Thomas; van de Winkel, Jan G. J.; Parren, Paul W. H. I.; Beurskens, Frank J.

    2016-01-01

    Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20(+) B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab ')2 fragments, as well as C1q-binding-deficient IgG mutants,

  20. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha.

    Science.gov (United States)

    Morimoto, H; Bonavida, B

    1992-09-15

    We have reported that diphtheria toxin (DTX) mediates target cell lysis and intranucleosomal DNA fragmentation (apoptosis) and also synergizes with TNF-alpha. In this paper, we examined which step in the pathway of DTX-mediated inhibition of protein synthesis was important for induction of cytolytic activity and for synergy. Using a DTX-sensitive tumor cell line, we first examined the activity of the mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2). CRM 197 was not cytolytic for target cells and did not mediate intranucleosomal DNA fragmentation of viable cells. The failure of CRM 197 to mediate target cell lysis suggested that the catalytic activity of DTX is prerequisite for target cell lysis. This was corroborated by demonstrating that MeSAdo, which blocks the biosynthesis of diphthamide, inhibited DTX-mediated protein synthesis inhibition and also blocked target cell lysis. Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis. These findings suggest that ADP-ribosylation of EF-2 may be a necessary step in the pathway leading to target cell lysis. In contrast to the sensitive line, the SKOV-3 tumor cell line is sensitive to protein synthesis inhibition by DTX but is not susceptible to cytolysis and apoptosis by DTX. Thus, protein synthesis inhibition by DTX is not sufficient to mediate target cell lysis. The synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined in order to determine the pathway mediated by DTX in synergy. Like the direct lysis by DTX, synergy was significantly reduced by MeSAdo and by nicotinamide. Furthermore, synergy was not observed with combination of CRM 197 and TNF-alpha. These results demonstrate that, in synergy, DTX may utilize the same pathway required for its cytolytic activity. Pseudomonas aeruginosa exotoxin shared most the properties shown for DTX. Altogether, these findings

  1. Increased susceptibility of tumor cells and chicken erythrocytes to lysis by antibody and complement after treatment with aminoethylisothiouronium bromide hydrobromide (AET)

    Energy Technology Data Exchange (ETDEWEB)

    Langone, J.J.; Borsos, T. (National Cancer Institute, Bethesda, MD (USA))

    1979-01-01

    After treatment with aminoethylisothiouronium bromide hydrobromide (AET), the ascites forms of the diethylnitrosamine-induced guinea pig hepatomas, line-1 and line-10, were susceptible or more susceptible to killing in vitro by certain combinations of tumor-specific or IgM anti-Forssman antibody and either human or guinea pig complement. Since AET could be toxic to either cell line, conditions of pH, concentration of AET, and duration of exposure of the cells to the reagent were determined that resulted in enhanced susceptibility without significantly affecting cell viability. Chicken erythrocytes (CE) also were tested and AET-treated cells found to be more susceptible to lysis by IgM anti-Forssman antibody and guinea pig complement. The enhancement apparently was not due to increased ability of AET-treated CE to fix antibody. In contrast to CE, the lytic susceptibility of sheep cells was not affected by AET treatment. In addition to AET, several drugs and enzymes that also can affect the susceptibility of the tumor cells to antibody and complement were tested and found to be ineffective against CE. Since AET reputedly acts directly on the cell surface, it seems reasonable to assume that the increased susceptibility of the tumor cells and CE to antibody and complement may result from a modification of the cell surface.

  2. Lysis from without

    Science.gov (United States)

    2011-01-01

    In this commentary I consider use of the term “lysis from without” (LO) along with the phenomenon's biological relevance. LO originally described an early bacterial lysis induced by high-multiplicity virion adsorption and that occurs without phage production (here indicated as LOV). Notably, this is more than just high phage multiplicities of adsorption leading to bacterial killing. The action on bacteria of exogenously supplied phage lysin, too, has been described as a form of LO (here, LOL). LOV has been somewhat worked out mechanistically for T4 phages, has been used to elucidate various phage-associated phenomena including discovery of the phage eclipse, may be relevant to phage ecology, and, with resistance to LO (LOR), is blocked by certain phage gene products. Speculation as to the impact of LOV on phage therapy also is fairly common. Since LOV assays are relatively easily performed and not all phages are able to induce LOV, a phage's potential to lyse bacteria without first infecting should be subject to at least in vitro experimental confirmation before the LOV label is applied. The term “abortive infection” may be used more generally to describe non-productive phage infections that kill bacteria. PMID:21687534

  3. Peptidomic profiling of secreted products from pancreatic islet culture results in a higher yield of full-length peptide hormones than found using cell lysis procedures.

    Science.gov (United States)

    Taylor, Steven W; Nikoulina, Svetlana E; Andon, Nancy L; Lowe, Carolyn

    2013-08-02

    Peptide Hormone Acquisition through Smart Sampling Technique-Mass Spectrometry (PHASST-MS) is a peptidomics platform that employs high resolution liquid chromatography-mass spectrometry (LC-MS) techniques to identify peptide hormones secreted from in vitro or ex vivo cultures enriched in endocrine cells. Application of the methodology to the study of murine pancreatic islets has permitted evaluation of the strengths and weaknesses of the approach, as well as comparison of our results with published islet studies that employed traditional cellular lysis procedures. We found that, while our PHASST-MS approach identified fewer peptides in total, we had greater representation of intact peptide hormones. The technique was further refined to improve coverage of hydrophilic as well as hydrophobic peptides and subsequently applied to human pancreatic islet cultures derived from normal donors or donors with type 2 diabetes. Interestingly, in addition to the expected islet hormones, we identified alpha-cell-derived bioactive GLP-1, consistent with recent reports of paracrine effects of this hormone on beta-cell function. We also identified many novel peptides derived from neurohormonal precursors and proteins related to the cell secretory system. Taken together, these results suggest the PHASST-MS strategy of focusing on cellular secreted products rather than the total tissue peptidome may improve the probability of discovering novel bioactive peptides and also has the potential to offer important new insights into the secretion and function of known hormones.

  4. Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection

    Science.gov (United States)

    Background: Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV...

  5. Establishment of a simple cell-based ELISA for the direct detection of abnormal isoform of prion protein from prion-infected cells without cell lysis and proteinase K treatment

    Science.gov (United States)

    Shan, Zhifu; Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2016-01-01

    ABSTRACT Prion-infected cells have been used for analyzing the effect of compounds on the formation of abnormal isoform of prion protein (PrPSc). PrPSc is usually detected using anti-prion protein (PrP) antibodies after the removal of the cellular isoform of prion protein (PrPC) by proteinase K (PK) treatment. However, it is expected that the PK-sensitive PrPSc (PrPSc-sen), which possesses higher infectivity and conversion activity than the PK-resistant PrPSc (PrPSc-res), is also digested through PK treatment. To overcome this problem, we established a novel cell-based ELISA in which PrPSc can be directly detected from cells persistently infected with prions using anti-PrP monoclonal antibody (mAb) 132 that recognizes epitope consisting of mouse PrP amino acids 119–127. The novel cell-based ELISA could distinguish prion-infected cells from prion-uninfected cells without cell lysis and PK treatment. MAb 132 could detect both PrPSc-sen and PrPSc-res even if all PrPSc molecules were not detected. The analytical dynamic range for PrPSc detection was approximately 1 log. The coefficient of variation and signal-to-background ratio were 7%–11% and 2.5–3.3, respectively, demonstrating the reproducibility of this assay. The addition of a cytotoxicity assay immediately before PrPSc detection did not affect the following PrPSc detection. Thus, all the procedures including cell culture, cytotoxicity assay, and PrPSc detection were completed in the same plate. The simplicity and non-requirement for cell lysis or PK treatment are advantages for the high throughput screening of anti-prion compounds. PMID:27565564

  6. Transcriptional Regulation and Characteristics of a Novel N-Acetylmuramoyl-l-Alanine Amidase Gene Involved in Bacillus thuringiensis Mother Cell Lysis

    Science.gov (United States)

    Yang, Jingni; Peng, Qi; Chen, Zhen; Deng, Chao; Shu, Changlong; Huang, Dafang

    2013-01-01

    In Bacillus thuringiensis, a novel N-acetylmuramoyl-l-alanine amidase gene (named cwlB) was detected, and the CwlB protein was purified and characterized. Reverse transcription-PCR (RT-PCR) results indicated that cwlB and an upstream gene (named cwlA) formed one transcriptional unit. 5′ rapid amplification of cDNA ends (5′-RACE)-PCR and transcriptional fusions with the lacZ gene indicated that transcription of the operon was directed by a promoter, PcwlA, which is located upstream from the cwlA gene and that the transcription start site is a single 5′-end nucleotide residue T located 25 nucleotides (bp) upstream from the cwlA translational start codon. Moreover, the activity of PcwlA was controlled by σK. Morphological analysis suggested that the mutation of cwlB could delay spore release compared to the timing of spore release in the wild-type strain. Western blot assay demonstrated that purified CwlB bound to the B. thuringiensis cell wall. Observations with laser confocal microscopy and a green fluorescent protein-based reporter system demonstrated that the CwlB protein localizes to the cell envelope. All results suggest that the CwlB protein is involved in mother cell lysis in B. thuringiensis. PMID:23603740

  7. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by triton X-100 for efficient production of D-malate

    NARCIS (Netherlands)

    Werf, M.J. van der; Hartmans, S.; Tweel, W.J.J. van den

    1995-01-01

    Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the

  8. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    Directory of Open Access Journals (Sweden)

    Carsten Geiss

    2017-10-01

    Full Text Available Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  9. Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression

    Science.gov (United States)

    Tiwary, Bipransh Kumar; Kumar, Anoop

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value≤0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

  10. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens.

    Science.gov (United States)

    Attai, Hedieh; Rimbey, Jeanette; Smith, George P; Brown, Pamela J B

    2017-12-01

    To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative p hage p eptidoglycan h ydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N -acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens , may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The

  11. Application of Doehlert experimental design in the optimization of experimental variables for the Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 cell lysis

    Directory of Open Access Journals (Sweden)

    Amanda Reges de Sena

    2012-12-01

    Full Text Available This study aimed to verify the influence of pH and temperature on the lysis of yeast using experimental design. In this study, the enzymatic extract containing β-1,3-glucanase and chitinase, obtained from the micro-organism Moniliophthora perniciosa, was used. The experiment showed that the best conditions for lysis of Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 by lytic enzyme were pH 4.9 at 37 ºC and pH 3.9 at 26.7 ºC, respectively. The lytic enzyme may be used for obtaining various biotechnology products from yeast.

  12. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells.

    Science.gov (United States)

    d'Argouges, Sandrine; Wissing, Sandra; Brandl, Christian; Prang, Nadja; Lutterbuese, Ralf; Kozhich, Alex; Suzich, Joann; Locher, Mathias; Kiener, Peter; Kufer, Peter; Hofmeister, Robert; Baeuerle, Patrick A; Bargou, Ralf C

    2009-03-01

    We have compared the cytotoxic activity of rituximab with that of blinatumomab (MT103/MEDI-538), a single-chain CD19-/CD3-bispecific antibody engaging human T cells. Blinatumomab consistently led to a higher degree of lysis of human lymphoma lines than rituximab, and was active at much lower concentration. The cytotoxicity mediated by blinatumomab and rituximab both caused a potent activation of pro-caspases 3 and 7 in target cells, a key event in induction of granzyme-mediated apoptotic cell death. Combination of rituximab with blinatumomab was found to greatly enhance the activity of rituximab, in particular at low effector-to-target cell ratios and at low antibody concentration.

  13. Prevalence of Complement-Mediated Cell Lysis-like Gene (sicG) in Streptococcus dysgalactiae subsp. equisimilis Isolates From Japan (2014-2016).

    Science.gov (United States)

    Takahashi, Takashi; Fujita, Tomohiro; Shibayama, Akiyoshi; Tsuyuki, Yuzo; Yoshida, Haruno

    2017-07-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE; a β-hemolytic streptococcus of human or animal origin) infections are emerging worldwide. We evaluated the clonal distribution of complement-mediated cell lysis-like gene (sicG) among SDSE isolates from three central prefectures of Japan. Group G/C β-hemolytic streptococci were collected from three institutions from April 2014 to March 2016. Fifty-five strains (52 from humans and three from animals) were identified as SDSE on the basis of 16S rRNA sequencing data.; they were obtained from 25 sterile (blood, joint fluid, and cerebrospinal fluid) and 30 non-sterile (skin-, respiratory tract-, and genitourinary tract-origin) samples. emm genotyping, multilocus sequence typing, sicG amplification/sequencing, and random amplified polymorphic DNA (RAPD) analysis of sicG-positive strains were performed. sicG was detected in 30.9% of the isolates (16 human and one canine) and the genes from the 16 human samples (blood, 10; open pus, 3; sputum, 2; throat swab, 1) and one canine sample (open pus) showed the same sequence pattern. All sicG-harboring isolates belonged to clonal complex (CC) 17, and the most prevalent emm type was stG6792 (82.4%). There was a significant association between sicG presence and the development of skin/soft tissue infections. CC17 isolates with sicG could be divided into three subtypes by RAPD analysis. CC17 SDSE harboring sicG might have spread into three closely-related prefectures in central Japan during 2014-2016. Clonal analysis of isolates from other areas might be needed to monitor potentially virulent strains in humans and animals. © The Korean Society for Laboratory Medicine

  14. CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells.

    Science.gov (United States)

    Koelle, D M; Chen, H B; Gavin, M A; Wald, A; Kwok, W W; Corey, L

    2001-03-15

    HSV-2 causes chronic infections. CD8 CTL may play several protective roles, and stimulation of a CD8 response is a rational element of vaccine design for this pathogen. The viral Ags recognized by CD8 T cells are largely unknown. It has been hypothesized that HSV inhibition of TAP may favor recognition of virion input proteins or viral immediate early proteins. We tested this prediction using HSV-specific CD8 CTL clones obtained from genital HSV-2 lesions. Drug and replication block experiments were consistent with specificity for the above-named classes of viral proteins. Fine specificity was determined by expression cloning using molecular libraries of viral DNA, and peptide epitopes recognized at nanomolar concentrations were identified. Three of four clones recognized the viral tegument proteins encoded by genes UL47 and UL49. These proteins are transferred into the cytoplasm on virus entry. Processing of the tegument Ag-derived epitopes was TAP dependent. The tegument-specific CTL were able to lyse HLA class I-appropriate fibroblasts after short times of infection. Lysis of keratinocytes required longer infection and pretreatment with IFN-gamma. Another clone recognized an immediate early protein, ICP0. Lymphocytes specific for these lesion-defined epitopes could be reactivated from the PBMC of additional subjects. These data are consistent with an influence of HSV immune evasion genes upon the selection of proteins recognized by CD8 CTL in lesions. Tegument proteins, identified for the first time as Ags recognized by HSV-specific CD8 CTL, are rational candidate vaccine compounds.

  15. β-1,3 Glucanases e quitinases: aplicação na lise de leveduras e inibição de fungos β-1,3 glucanases and chitinases: application in the yeast cell lysis and fungi inhibition

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2008-08-01

    Full Text Available Objetivou-se, no presente trabalho, a aplicação de β-1,3 glucanases e quitinases da linhagem Cellulosimicrobium cellulans 191 na lise de leveduras e inibição de fungos, respectivamente. O delineamento experimental mostrou que as melhores condições para a lise de Saccharomyces cerevisiae KL-88 pela β-1,3 glucanase foi pH 6,5 e 35ºC. As células de leveduras incubadas por 10 h em frascos sem agitação mostraram-se mais susceptíveis à lise pela ação da enzima. Foi obtido maior lise da levedura quando a suspensão de células foi submetida ao tratamento com β-1,3 glucanase e cisteína 1mM. A enzima invertase intracelular ou ligada à célula de S. cerevisiae KL-88 e K. marxianus NCYC 587 foi extraída após tratamento da suspensão celular com β-1,3 glucanase, sendo que o tratamento prévio das leveduras com a enzima aumentou a susceptibilidade das células à lise com ultra-som. A preparação de quitinase foi capaz de formar halos de inibição de alguns fungos.The aim of this work was the application of β-1,3 glucanases and chitinases by Cellulosimicrobium cellulans 191 strain on yeast cell lysis and fungi inhibition, respectively. The experimental design study showed that the best conditions to Saccharomyces cerevisiae KL-88 lysis by β-1,3 glucanase extract were pH 6,5 and 35ºC. This study also demonstrated that the yeast cells were more susceptible to lysis after 10 h of cultivation in flasks without agitation. Lysis activity was increased when S. cerevisiae KL-88 cell suspension was treated with β-1,3 glucanase and cystein 1mM. The enzyme invertase of S. cerevisiae KL-88 and Kluyveromyces marxianus NCYC 587 was extracted after treatment of cell suspension with β-1,3 glucanase and the previous treatment of yeasts with the enzyme, increased the susceptibility to lysis when ultrasonic treatment was used. The chitinase presented growth inhibition halos for some of the fungi.

  16. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    International Nuclear Information System (INIS)

    Cavard, D.

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either [ 35 S]cysteine or [ 3 H]lysine. This 3-kDa protein was acylated, as shown by [2- 3 H]glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants

  17. Produção de protoplastos e lise da parede celular de leveduras utilizando β-1,3 glucanase Protoplasts production and yeast cell wall lysis using β-1,3 glucanase

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2010-06-01

    Full Text Available O presente trabalho visou a aplicação da β-1,3 glucanase lítica, obtida do microrganismo Cellulosimicrobium cellulans 191, na produção de protoplastos e na lise da parede celular de leveduras. A preparação bruta da enzima foi capaz de lisar as leveduras Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann e Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587 e Hansenula mrakii NCYC 500. A β-1,3 glucanase purificada foi capaz de lisar as leveduras Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii e Pichia membranaefaciens e formar protoplastos de Saccharomyces cerevisiae KL-88.The aim of this work was the application of lytic β-1,3 glucanase obtained from Cellulosimicrobium cellulans strain 191 in the production of protoplasts and lysis of yeast cell walls. The crude extract demonstrated lysis activity against the yeasts Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann and Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587, and Hansenula mrakii NCYC 500. The purified β-1,3 glucanase demonstrated lysis activity against the yeasts Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii, and Pichia membranaefaciens, and it was able to produce Saccharomyces cerevisiae KL-88 protoplasts.

  18. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    Science.gov (United States)

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  19. The Spanin Complex Is Essential for Lambda Lysis

    Science.gov (United States)

    Berry, Joel; Rajaure, Manoj; Pang, Ting

    2012-01-01

    Phage lysis is a ubiquitous biological process, the most frequent cytocidal event in the biosphere. Lysis of Gram-negative hosts has been shown to require holins and endolysins, which attack the cytoplasmic membrane and peptidoglycan, respectively. Recently, a third class of lysis proteins, the spanins, was identified. The first spanins to be characterized were λ Rz and Rz1, an integral cytoplasmic membrane protein and an outer membrane lipoprotein, respectively. Previous work has shown that Rz and Rz1 form complexes that span the entire periplasm. Phase-contrast video microscopy was used to record the morphological changes involved in the lysis of induced λ lysogens carrying prophages with either the λ canonical holin-endolysin system or the phage 21 pinholin-signal anchor release (SAR) endolysin system. In the former, rod morphology persisted until the instant of an explosive polar rupture, immediately emptying the cell of its contents. In contrast, in pinholin-SAR endolysin lysis, the cell began to shorten and thicken uniformly, with the resultant rounded cell finally bursting. In both cases, lysis failed to occur in inductions of isogenic prophages carrying null mutations in the spanin genes. In both systems, instead of an envelope rupture, the induced cells were converted from a rod shape to a spherical form. A functional GFPΦRz chimera was shown to exhibit a punctate distribution when coexpressed with Rz1, despite the absence of endolysin function. A model is proposed in which the spanins carry out the essential step of disrupting the outer membrane, in a manner regulated by the state of the peptidoglycan layer. PMID:22904283

  20. Syngeneic lysis of reticuloendotheliosis virus-transformed cell lines transfected with Marek's disease virus genes by virus-specific cytotoxic T cells.

    Science.gov (United States)

    Uni, Z; Pratt, W D; Miller, M M; O'Connell, P H; Schat, K A

    1994-12-01

    Cell-mediated immune responses against Marek's disease virus (MDV) antigens were examined using reticuloendotheliosis virus (REV)-transformed cell lines of two haplotypes (B19B19 and B13B13). These cell lines were stably transfected with cloned fragments of MDV DNA resulting in the expression of the MDV-specific phosphoprotein pp38. Effector cells were obtained from P2a (B19B19) and S13 (B13B13) chickens at 7 days post inoculation with REV, oncogenic or attenuated serotype 1 MDV (JM-16/O and JM-16/A, respectively), serotype 2 MDV (SB-1), or herpesvirus of turkeys (HVT). Transfection of MDV genes did not influence the expression of Class I major histocompatibility complex antigens. The optimal effector to target cell ratio was determined to be 100:1. REV-sensitized effector cells lysed REV cell lines and REV cell lines transfected with MDV DNA in a syngeneic fashion. Effector cells from chickens inoculated with JM-16/O, JM-16/A, SB-1 or HVT lysed only the syngeneic, transfected cell lines, but not the parent REV cell lines. The percentage specific release caused by the MDV-sensitized effector cells was low, but statistically significant.

  1. Tumor lysis syndrome in the emergency department: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Ñamendys-Silva SA

    2015-08-01

    Full Text Available Silvio A Ñamendys-Silva,1,2 Juan M Arredondo-Armenta,1 Erika P Plata-Menchaca,2 Humberto Guevara-García,1 Francisco J García-Guillén,1 Eduardo Rivero-Sigarroa,2 Angel Herrera-Gómez,1 1Department of Critical Care Medicine, Instituto Nacional de Cancerología, 2Department of Critical Care Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Abstract: Tumor lysis syndrome (TLS is the most common oncologic emergency. It is caused by rapid tumor cell destruction and the resulting nucleic acid degradation during or days after initiation of cytotoxic therapy. Also, a spontaneous form exists. The metabolic abnormalities associated with this syndrome include hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, and acute kidney injury. These abnormalities can lead to life-threatening complications, such as heart rhythm abnormalities and neurologic manifestations. The emergency management of overt TLS involves proper fluid resuscitation with crystalloids in order to improve the intravascular volume and the urinary output and to increase the renal excretion of potassium, phosphorus, and uric acid. With this therapeutic strategy, prevention of calcium phosphate and uric acid crystal deposition within renal tubules is achieved. Other measures in the management of overt TLS are prescription of hypouricemic agents, renal replacement therapy, and correction of electrolyte imbalances. Hyperkalemia should be treated quickly and aggressively as its presence is the most hazardous acute complication that can cause sudden death from cardiac arrhythmias. Treatment of hypocalcemia is reserved for patients with electrocardiographic changes or symptoms of neuromuscular irritability. In patients who are refractory to medical management of electrolyte abnormalities or with severe cardiac and neurologic manifestations, early dialysis is recommended.Keywords: tumor lysis syndrome, emergency department, emergency

  2. Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics.

    Science.gov (United States)

    Brudzynski, Katrina; Sjaarda, Calvin

    2014-01-01

    Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active β-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential β-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS). More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (ptransformed with the ampicillin-resistance gene (β-lactamase) remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, β-lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and survival, honey active compounds would be

  3. A simple and rapid lysis method for preparation of genomic DNA ...

    African Journals Online (AJOL)

    Yomi

    2011-12-07

    Dec 7, 2011 ... extraction while improving the quality of extracted DNA. However, all the existing methods invariably involve two important steps: Cell lysis and precipitation of the DNA. The lysis step is performed with detergents, enzymes, or organic solvents and consuming a long time (Marmur,. 1961; Flamm et al., 1984; ...

  4. Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics.

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active β-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential β-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS. More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001. E. coli cells transformed with the ampicillin-resistance gene (β-lactamase remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, β-lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and

  5. A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time

    Directory of Open Access Journals (Sweden)

    Chantranupong Lynne

    2012-03-01

    Full Text Available Abstract Background Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa. Results We adapted two related small single-stranded DNA phages, ΦX174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The ΦX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. ΦX174 grown on slyD-defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be ~2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model. Conclusions The consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation.

  6. [Acute renal failure in patients with tumour lysis sindrome].

    Science.gov (United States)

    Poskurica, Mileta; Petrović, Dejan; Poskurica, Mina

    2016-01-01

    `Hematologic malignancies (leukemia, lymphoma, multiple myeloma, et al.), as well as solid tumours (renal, liver, lung, ovarian, etc.), can lead to acute or chronic renal failure.The most common clinical manifestation is acute renal failure within the tumour lysis syndrome (TLS). It is characterized by specific laboratory and clinical criteria in order to prove that kidney disorders result from cytolysis of tumour cells after chemotherapy regimen given, although on significantly fewer occasions it is likely to occur spontaneously or after radiotherapy. Essentially, failure is the disorder of functionally conserved kidney or of kidney with varying degrees of renal insufficiency, which render the kidney impaired and unable to effectively eliminate the end products of massive cytolysis and to correct the resulting disorders: hyperuricemia, hyperkalemia, hypocalcaemia, hyperphosphatemia, and others. The risk of TLS depends on tumour size, proliferative potential of malignant cells, renal function and the presence of accompanying diseases and disorders. Hydration providing adequate diuresis and administration of urinary suppressants (allopurinol, febuxostat) significantly reduce the risk of developing TLS. If prevention of renal impairment isn't possible, the treatment should be supplemented with hemodynamic monitoring and pharmacological support, with the possible application of recombinant urate-oxidase enzyme (rasburicase). Depending on the severity of azotemia and hydroelectrolytic disorders, application of some of the methods of renal replacement therapy may be considered.

  7. Acute renal failure in patients with tumour lysis sindrome

    Directory of Open Access Journals (Sweden)

    Poskurica Mileta

    2016-01-01

    Full Text Available Hematologic malignancies (leukemia, lymphoma, multiple myeloma, et al., as well as solid tumours (renal, liver, lung, ovarian, etc., can lead to acute or chronic renal failure. The most common clinical manifestation is acute renal failure within the tumour lysis syndrome (TLS. It is characterized by specific laboratory and clinical criteria in order to prove that kidney disorders result from cytolysis of tumour cells after chemotherapy regimen given, although on significantly fewer occasions it is likely to occur spontaneously or after radiotherapy. Essentially, failure is the disorder of functionally conserved kidney or of kidney with varying degrees of renal insufficiency, which render the kidney impaired and unable to effectively eliminate the end products of massive cytolysis and to correct the resulting disorders: hyperuricemia, hyperkalemia, hypocalcaemia, hyperphosphatemia, and others. The risk of TLS depends on tumour size, proliferative potential of malignant cells, renal function and the presence of accompanying diseases and disorders. Hydration providing adequate diuresis and administration of urinary suppressants (allopurinol, febuxostat significantly reduce the risk of developing TLS. If prevention of renal impairment isn’t possible, the treatment should be supplemented with hemodynamic monitoring and pharmacological support, with the possible application of recombinant urate-oxidase enzyme (rasburicase. Depending on the severity of azotemia and hydroelectrolytic disorders, application of some of the methods of renal replacement therapy may be considered.

  8. A novel toolbox for E. coli lysis monitoring.

    Science.gov (United States)

    Rajamanickam, Vignesh; Wurm, David; Slouka, Christoph; Herwig, Christoph; Spadiut, Oliver

    2017-01-01

    The bacterium Escherichia coli is a well-studied recombinant host organism with a plethora of applications in biotechnology. Highly valuable biopharmaceuticals, such as antibody fragments and growth factors, are currently being produced in E. coli. However, the high metabolic burden during recombinant protein production can lead to cell death, consequent lysis, and undesired product loss. Thus, fast and precise analyzers to monitor E. coli bioprocesses and to retrieve key process information, such as the optimal time point of harvest, are needed. However, such reliable monitoring tools are still scarce to date. In this study, we cultivated an E. coli strain producing a recombinant single-chain antibody fragment in the cytoplasm. In bioreactor cultivations, we purposely triggered cell lysis by pH ramps. We developed a novel toolbox using UV chromatograms as fingerprints and chemometric techniques to monitor these lysis events and used flow cytometry (FCM) as reference method to quantify viability offline. Summarizing, we were able to show that a novel toolbox comprising HPLC chromatogram fingerprinting and data science tools allowed the identification of E. coli lysis in a fast and reliable manner. We are convinced that this toolbox will not only facilitate E. coli bioprocess monitoring but will also allow enhanced process control in the future.

  9. High-efficiency lysis of cervical cancer by allogeneic NK cells derived from umbilical cord progenitors is independent of HLA status

    NARCIS (Netherlands)

    Veluchamy, John P.; Heeren, A. Marijne; Spanholtz, Jan; van Eendenburg, Jaap D. H.; Heideman, Daniëlle A. M.; Kenter, Gemma G.; Verheul, Henk M.; van der Vliet, Hans J.; Jordanova, Ekaterina S.; de Gruijl, Tanja D.

    2017-01-01

    Down-regulation of HLA in tumor cells, low numbers and dysfunctionality of NK cells are commonly observed in patients with end-stage cervical cancer. Adoptive transfer of high numbers of cytotoxic NK cells might be a promising treatment approach in this setting. Here, we explored the cytotoxic

  10. Enzyme-mediated Nutrient Regeneration Following Lysis of Synechococcus WH7803

    Science.gov (United States)

    Mine, A. H.; Coleman, M.; Colman, A. S.

    2016-02-01

    Phosphate availability plays a pivotal role in limiting primary production in large regions of the oceans. In order to meet their metabolic needs, microbes use a variety of strategies to overcome phosphate stress. Expression of enzymes such as alkaline phosphatase (APase) allows cells to hydrolyze and use certain ambient dissolved organic phosphorus (DOP) compounds to meet their P demand. Cell lysis releases a range of nutrient forms and enzymes into the ambient environment and is an essential component of the microbial loop. Yet very few studies have attempted to characterize both the immediate and sustained nutrient remineralization linked to the milieu of organophosphorus compounds and enzymatic activity in lysate. We conducted experiments using Synechococcus WH7803 grown under nutrient replete and starved conditions to quantify the release of phosphate during viral lysis and lysis by lysozyme treatment. Dissolved inorganic and organic phosphorus concentrations and APase activity were monitored over time following lysis. We observed a significant initial release of orthophosphate that accompanies lysis. Following lysis, phosphate concentrations continue to rise for a period of hours to days as organophosphorus compounds continue to hydrolyze. Our observations suggest this is due to a combination of direct hydrolysis of DOP released during lysis, solubilization of POP followed by hydrolysis, and possibly polyphosphate decomposition. Size fractionated enzymatic assays suggest cellular debris associated enzymes and dissolved fractions are both important in DOP hydrolysis in the viral lysate, whereas particle associated APase activity dominates in the lysozyme treatments. Moreover, nutrient status prior to lysis has important controls on the initial nutrient release and subsequent regenerative flux. These findings underscore the significance of lysis and subsequent enzyme-mediated hydrolysis in nutrient regeneration and biogeochemical dynamics in marine ecosystems.

  11. The Fc-receptor III of cultured human monocytes. Structural similarity with FcRIII of natural killer cells and role in the extracellular lysis of sensitized erythrocytes

    NARCIS (Netherlands)

    Klaassen, R. J.; Ouwehand, W. H.; Huizinga, T. W.; Engelfriet, C. P.; von dem Borne, A. E.

    1990-01-01

    FcRIII is not present on peripheral blood monocytes, but becomes expressed upon culturing and can be demonstrated on tissue macrophages. We studied the expression of FcRIII of cultured monocytes in detail and compared its structure with FcRIII of neutrophils and NK cells. The cell density of FcRIII

  12. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  13. Direct cellular lysis/protein extraction protocol for soil metaproteomics.

    Science.gov (United States)

    Chourey, Karuna; Jansson, Janet; VerBerkmoes, Nathan; Shah, Manesh; Chavarria, Krystle L; Tom, Lauren M; Brodie, Eoin L; Hettich, Robert L

    2010-12-03

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  14. Spontaneous Tumour Lysis Syndrome in a Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Can Huzmeli

    2016-01-01

    Full Text Available The tumor lysis syndrome (TLS is a collection of metabolic abnormalities that occur in consequence of the release of intracellular contents following lysis of tumor cells. TLS occurs spontaneously or after chemotherapy. Spontaneous TLS is uncommon occurrence in multiple myeloma (MM. We define a case of a 70-year-old woman patient who was found to have MM with spontaneous TLS, following a compression fracture of the T-12 vertebrae. While serum uric acid and phosphorous levels were high, low calcium levels were identified. There were also acute kidney injury and metabolic acidosis. Upon the diagnosis of TLS, she was treated with hydration, allopurinol, sodium bicarbonate, and calcium gluconate. The improvement of her laboratory data was observed. We submitted this case in order to draw attention to the presentation of MM with spontaneous TLS.

  15. High-efficiency lysis of cervical cancer by allogeneic NK cells derived from umbilical cord progenitors is independent of HLA status.

    Science.gov (United States)

    Veluchamy, John P; Heeren, A Marijne; Spanholtz, Jan; van Eendenburg, Jaap D H; Heideman, Daniëlle A M; Kenter, Gemma G; Verheul, Henk M; van der Vliet, Hans J; Jordanova, Ekaterina S; de Gruijl, Tanja D

    2017-01-01

    Down-regulation of HLA in tumor cells, low numbers and dysfunctionality of NK cells are commonly observed in patients with end-stage cervical cancer. Adoptive transfer of high numbers of cytotoxic NK cells might be a promising treatment approach in this setting. Here, we explored the cytotoxic efficacy on ten cervical cancer cell lines of activated allogeneic NK cells from two sources, i.e., peripheral blood (PBNK) with and without cetuximab (CET), a tumor-specific monoclonal antibody directed against EGFR, or derived from umbilical cord blood (UCB-NK). Whereas CET monotherapy was ineffective against the panel of cervical cancer cell lines, irrespective of their EGFR expression levels and despite their RAS wt status, it significantly enhanced the in vitro cytotoxic efficacy of activated PBNK (P = 0.002). Equally superior cytotoxicity over activated PBNK alone was achieved by UCB-NK (P HLA-E and/or HLA-G. Most strikingly, whereas the PBNK's cytotoxic activity was inversely correlated with HLA-ABC levels (P = 0.036), PBNK + CET and UCB-NK cytotoxicity were entirely independent of HLA-ABC expression. In conclusion, this study provides a rationale to initiate a clinical trial for cervical cancer with adoptively transferred allogeneic NK cells, employing either UCB-NK or PBNK + CET for EGFR-expressing tumors. Adoptive transfer of UCB-NK might serve as a generally applicable treatment for cervical cancer, enabled by HLA-, histology- and HPV-independent killing mechanisms.

  16. Chimeric bispecific OC/TR monoclonal antibody mediates lysis of tumor cells expressing the folate-binding protein (MOv18) and displays decreased immunogenicity in patients

    NARCIS (Netherlands)

    Luiten, R. M.; Warnaar, S. O.; Sanborn, D.; Lamers, C. H.; Bolhuis, R. L.; Litvinov, S. V.; Zurawski, V. R.; Coney, L. R.

    1997-01-01

    The bispecific OC/TR monoclonal antibody (mAb) cross-links the CD3 molecule on T cells with the human folate-binding protein (FBP), which is highly expressed on nonmucinous ovarian carcinomas. Clinical trials of patients with ovarian carcinoma with the OC/TR mAb have shown some complete and partial

  17. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes.

    Science.gov (United States)

    Warren, A P; Ducroq, D H; Lehner, P J; Borysiewicz, L K

    1994-05-01

    Viruses which cause persistence in the naturally infected host are predicted to have evolved immune evasion mechanisms. Human cytomegalovirus (HCMV) causes significant morbidity and mortality in immunocompromised patients yet persists without clinical manifestations in seropositive individuals who have normal immune function. We report that HCMV infection in vitro impairs major histocompatibility complex class I (MHC-I) assembly accompanied by resistance to killing by cytotoxic CD8+ T lymphocytes. Pulse-chase metabolic labelling experiments show that MHC-I complexes continue to be assembled by both uninfected and HCMV-infected cells. However, MHC-I molecules are unstable in HCMV-infected cells and are rapidly broken down. Endoglycosidase H treatment of immunoprecipitates indicates that the breakdown of MHC-I complexes in HCMV-infected cells occurs primarily in a pre-Golgi compartment. Interference with normal MHC-I assembly and expression, if relevant in vivo, may have implications for the restriction of the diversity of the CD8+ cytotoxic T lymphocyte repertoire directed against HCMV antigens and may be an important mechanism of viral persistence.

  18. Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins

    International Nuclear Information System (INIS)

    Mazumder, A.; Grimm, E.A.; Zhang, H.Z.; Rosenberg, S.A.

    1982-01-01

    Human peripheral blood lymphocytes (PBL), obtained from patients with a variety of cancers, were incubated in vitro with phytohemagglutinin, concanavalin A, and crude or lectin-free T-cell growth factors. The lectin-activated PBL of nine patients were capable of lysing fresh autologous tumor during a 4-hr 51Cr release assay. Multiple metastases from the same patient were equivalently lysed by these activated autologous PBL. No lysis of fresh PBL or lectin-induced lymphoblast cell targets was seen, although tumor, PBL, and lymphoblast cells were shown to be equally lysable using allosensitized cells. The activated cells could be expanded without loss of cytotoxicity in crude or lectin-free T-cell growth factors. The generation of cells lytic to fresh autologous tumor was dependent on the presence of adherent cells, although the lytic cell itself was not adherent. Proliferation was not involved in the induction of lytic cells since equal lysis was induced in irradiated and nonirradiated lymphocytes. Lectin was not required in the lytic assay, and the addition of alpha-methyl-D-mannoside to concanavalin A-activated lymphoid cells did not increase the lysis of fresh tumor cells. Activation by lectin for 3 days appears to be an efficient and convenient method for generating human cells lytic to fresh autologous tumor. These lytic cells may be of value for studies of the cell-mediated lysis of human tumor and possibly for tumor immunotherapy as well

  19. Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Cristiana Ossaille Beltrame

    Full Text Available Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR. Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.

  20. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.

    Science.gov (United States)

    Glatter, Timo; Ahrné, Erik; Schmidt, Alexander

    2015-11-06

    We evaluated different in-solution and FASP-based sample preparation strategies for absolute protein quantification. Label-free quantification (LFQ) was employed to compare different sample preparation strategies in the bacterium Pseudomonas aeruginosa and human embryonic kidney cells (HEK), and organismal-specific differences in general performance and enrichment of specific protein classes were noted. The original FASP protocol globally enriched for most proteins in the bacterial sample, whereas the sodium deoxycholate in-solution strategy was more efficient with HEK cells. Although detergents were found to be highly suited for global proteome analysis, higher intensities were obtained for high-abundant nucleic acid-associated protein complexes, like the ribosome and histone proteins, using guanidine hydrochloride. Importantly, we show for the first time that the observable total proteome mass of a sample strongly depends on the sample preparation protocol, with some protocols resulting in a significant underestimation of protein mass due to incomplete protein extraction of biased protein groups. Furthermore, we demonstrate that some of the observed abundance biases can be overcome by incorporating a nuclease treatment step or, alternatively, a correction factor for complementary sample preparation approaches.

  1. Antimicrobial actions of hexachlorophene: lysis and fixation of bacterial protoplasts.

    Science.gov (United States)

    Corner, T R; Joswick, H L; Silvernale, J N; Gerhardt, P

    1971-10-01

    Hexachlorophene was found to be both a lytic and a fixative agent for protoplasts isolated from Bacillus megaterium. Concentrations of 50 to 100 mug of drug per mg of original cell dry weight were required to lyse 4.4 x 10(9) protoplasts (2 mg of original cell dry weight). At higher drug concentrations, protoplasts became fixed against osmotic stress and reduced in sensitivity to disruption by n-butanol. Lower drug concentrations caused proportionate lysis in the protoplast population. Intact cells lost the ability to become plasmolyzed at these same hexachlorophene concentrations. Nonplasmolyzed, drug-treated cells were resistant to the action of lysozyme, whereas plasmolyzed, drug-treated cells were sensitive. But the sensitivity of isolated cell walls to lysozyme digestion was not markedly altered by hexachlorophene treatment. These effects appeared to be secondary in the killing of cells by hexachlorophene because they occurred at concentrations higher than the minimum lethal concentration.

  2. A High Throughput Screening Assay for Anti-Mycobacterial Small Molecules Based on Adenylate Kinase Release as a Reporter of Cell Lysis.

    Directory of Open Access Journals (Sweden)

    Lauren Forbes

    Full Text Available Mycobacterium tuberculosis (Mtb is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.

  3. Stroke Prevention Trials in Sickle Cell Anemia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-06-01

    Full Text Available As part of an International Pediatric Stroke Study launched in 2002, the Stroke Prevention Trial in Sickle Cell Anemia (STOP reports a reduction in the number of overt clinical strokes in children with critically high transcranial Doppler velocities (>200 cm/sec who were regularly transfused.

  4. The Ms6 Mycolyl-Arabinogalactan Esterase LysB is Essential for an Efficient Mycobacteriophage-Induced Lysis

    Directory of Open Access Journals (Sweden)

    Adriano M. Gigante

    2017-11-01

    Full Text Available All dsDNA phages encode two proteins involved in host lysis, an endolysin and a holin that target the peptidoglycan and cytoplasmic membrane, respectively. Bacteriophages that infect Gram-negative bacteria encode additional proteins, the spanins, involved in disruption of the outer membrane. Recently, a gene located in the lytic cassette was identified in the genomes of mycobacteriophages, which encodes a protein (LysB with mycolyl-arabinogalactan esterase activity. Taking in consideration the complex mycobacterial cell envelope that mycobacteriophages encounter during their life cycle, it is valuable to evaluate the role of these proteins in lysis. In the present work, we constructed an Ms6 mutant defective on lysB and showed that Ms6 LysB has an important role in lysis. In the absence of LysB, lysis still occurs but the newly synthesized phage particles are deficiently released to the environment. Using cryo-electron microscopy and tomography to register the changes in the lysis phenotype, we show that at 150 min post-adsorption, mycobacteria cells are incompletely lysed and phage particles are retained inside the cell, while cells infected with Ms6wt are completely lysed. Our results confirm that Ms6 LysB is necessary for an efficient lysis of Mycobacterium smegmatis, acting, similarly to spanins, in the third step of the lysis process.

  5. Increased Resistance to osmotic lysis of sickled erythrocytes ...

    African Journals Online (AJOL)

    treated with CNw had significantly reduced osmotic lysis when compared with the untreated set (P<0.05, respectively) at various hypotonic NaCl concentrations. Various Hb genotypes exhibited a graded increase in osmotic pressure lysis in ...

  6. Miniature acoustic wave lysis system and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  7. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures.

    Science.gov (United States)

    Jin, Min; Ye, Ting; Zhang, Xiaobo

    2013-08-01

    The holin-endolysin system is used by double-stranded DNA phages to lyse their bacterial hosts at the terminal stage of the phage reproduction cycle. Endolysins are proteins with one of several muralytic activities able to digest the bacterial cell wall for phage progeny release. However, the functions of thermophilic bacteriophage endolysin in host lysis have not been extensively investigated. In this study, the roles of the endolysin of a thermophilic bacteriophage, GVE2, from a deep-sea hydrothermal vent, which could infect Geobacillus sp. E263 at high temperatures, were characterized. The results showed that GVE2 could lead to lysis of host cells. The confocal microscopy data showed that GFP-endolysin aggregated in GVE2-infected Geobacillus sp. E263 cells, showing the involvement of endolysin in the lysis process at high temperatures. The results revealed that the GVE2 endolysin and holin interacted directly. It was found that the endolysin could interact with the host protein ABC transporter, suggesting that host proteins might participate in the regulation of the lysis process. Therefore, our study presents a novel insight into the mechanism of the lysis process of a thermophilic bacterium by its phage at high temperatures, which should be helpful in revealing the roles of thermophilic bacteriophages in the biosphere of deep-sea hydrothermal vents.

  8. Phage lysis: three steps, three choices, one outcome

    Science.gov (United States)

    Young, Ry

    2014-01-01

    The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gram-negative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, instead triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanins and i-spanins, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the

  9. Ribosomes in the sea: a window on taxon-specific lysis

    Science.gov (United States)

    Suttle, C.; Zhong, X.; Wirth, J.

    2016-02-01

    Microbes are estimated to comprise more than 90% of the biomass in the world's oceans, are major drivers of biogeochemical cycles, and have turnover rates ranging from hours to days. Despite the central role that microbes play in marine ecosystems, there is no robust method to evaluate taxon-specific mortality rates. Here, we report a method that employs extracellular free-ribosomes as a proxy to evaluate taxon-specific microbial lysis. The method was validated with laboratory cultures of the marine heterotrophic bacterium Vibrio natriegens strain PWH3a and the photoautotroph Synechococcus strain DC2, with and without grazers or viruses, to identify the origin and fate of the extracellular free-ribosomes. Our results showed both viral lysis and programmed-cell-death (PCD) contribute to free-ribosome production. Ribosomes were not released when cells were grazed, but grazers could consume free-ribosomes. We show that extracellular free-ribosomes can be used to evaluate microbial mortality caused by viral lysis and PCD. This approach was applied to environmental samples by examining the taxonomic composition and relative abundance of free 16S-ribosomes in seawater samples collected from the Strait of Georgia and Saanich Inlet, British Columbia, Canada. Based on the presence of free ribosomes, lysis was detected in 2198 out of 4013 prokaryotic taxa, representing 22 bacterial and three archaeal phyla. Of these, lysis of 140 taxa could be detected in all nine samples. Based on the ratio of free ribosomes to cellular ribosomes, some taxa associated with specific ecological niches appeared to be subject to high rates of lysis, including the genera Achromobacter, Chryseobacterium, Clostridium, Delftia, Ferruginibacter, Lactobacillus, Marinomonas, Massilia, Microbacterium, Ochrobactrum, Paenibacillus, Phyllobacterium, Pseudomonas, Rhodobacter, and Stenotrophomonas. Our results showed high-lysis coupled with low-abundance, suggesting that taxa in lower abundance are subject

  10. Comparison of lysis-centrifugation with lysis-filtration and a conventional unvented bottle for blood cultures.

    OpenAIRE

    Gill, V J; Zierdt, C H; Wu, T C; Stock, F; Pizzo, P A; MacLowry, J D

    1984-01-01

    Evaluation of a commercially available lysis-centrifugation blood culture system (Isolator, DuPont Co., Wilmington, Del.) and a lysis-filtration blood culture system for 3,111 cultures showed that both methods had comparable recoveries (73 and 68%, respectively) of significant aerobic and facultatively anaerobic isolates. The unvented conventional blood culture bottle had a recovery rate of 59%. Although the lysis-centrifugation and lysis-filtration systems had comparable recoveries of pathog...

  11. Childhood obesity prevention from cell to society.

    Science.gov (United States)

    Fiese, Barbara H; Bost, Kelly K; McBride, Brent A; Donovan, Sharon M

    2013-08-01

    Nearly 40% of US children are overweight or obese. We propose that a cell-to-society integrative approach is needed that takes into account biology, early child development, home and childcare environments, and public policy. This approach requires researchers, families, and policy makers to work together to develop preventative strategies and interventions that benefit the nutrition and wellbeing of young children and their families, and ultimately the health of the nation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  13. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Science.gov (United States)

    2011-01-01

    Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat) gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80). Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host. The recombinant phage

  14. The susceptibility to cytotoxic T lymphocyte mediated lysis of chemically induced sarcomas from immunodeficient and normal mice

    DEFF Research Database (Denmark)

    Svane, I M; Engel, A M; Thomsen, Allan Randrup

    1997-01-01

    the sensitivity to CTL mediated lysis and surface expression of the MHC class I molecule Ld of the tumour cells. Tumour cells incapable of in vitro presentation of viral antigen to specific cytotoxic T cells originated from tumours known from previous experiments to be readily accepted after transplantation...... tested for susceptibility to cytolysis by virus specific cytotoxic T cells. Tumour cells originating from tumours induced in immunocompetent C.B.-17 mice presented virus antigen more efficiently than tumour cells from immunodeficient SCID mice. No significant difference in virus antigen presentation...... was found between tumours from nude and nu/+ BALB/c mice. The sensitivity of target cells from the individual tumours to cytotoxic T lymphocyte (CTL) mediated lysis correlated negatively with their sensitivity to natural killer (NK) cell mediated lysis. There was a positive correlation between...

  15. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.

    Science.gov (United States)

    Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S

    2010-10-04

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.

  16. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics

    International Nuclear Information System (INIS)

    Mitchell, Gabriel J; Weitz, Joshua S; Nelson, Daniel C

    2010-01-01

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics

  17. Jk(a-b-) phenotype screening by the urea lysis test in Thai blood donors.

    Science.gov (United States)

    Deelert, Suparat; Thippayaboon, Pattrawan; Sriwai, Wimolpak; Sriwanitchrak, Pramote; Tubrod, Jintana; Kupatawintu, Pawinee; Nathalang, Oytip

    2010-01-01

    The Jk(a-b-) phenotype is rare in most populations and often detected after transfusion or pregnancy. After immunisation, anti-Jk3 forms and it can be difficult to find compatible Jk(a-b-) donors. Using anti-Jk(a) and anti-Jk(b) in a conventional tube method is unsuitable for identifying Jk(a-b-) in mass screening of blood donors. Jk(a-b-) phenotypes are associated with the absence of urea transporters on erythrocytes, making red blood cells (RBC) resistant to lysis by 2M urea, while Jk(a+b-), Jk(a-b+) and Jk(a+b+) phenotypes are susceptible to lysis. We screened for Jk(a-b-) phenotypes in blood donors by the urea lysis test using a 96-well microplate. The Jk(a-b-) phenotypes were confirmed by the indirect antiglobulin test (IAT). Altogether, 20,163 blood samples from Thai blood donors were tested and only RBC from five samples were resistant to lysis by 2M urea, while 20,158 samples were completely lysed within 5 min. In an IAT, both anti-Jk(a) and anti-Jk(b) failed to agglutinate RBC from all five samples. Using a micro-titre plate, the direct urea lysis test, costs * 0.01, about 480 times less than IAT. Moreover, the test time for each plate (94 samples) is about 18 times less than that for IAT. Jk(a-b-) phenotype screening by the direct urea lysis test on samples in a micro-titre plate is simple, cost-effective and practical for mass screening of blood donors.

  18. Jk(a−b−) phenotype screening by the urea lysis test in Thai blood donors

    Science.gov (United States)

    Deelert, Suparat; Thippayaboon, Pattrawan; Sriwai, Wimolpak; Sriwanitchrak, Pramote; Tubrod, Jintana; Kupatawintu, Pawinee; Nathalang, Oytip

    2010-01-01

    Background The Jk(a−b−) phenotype is rare in most populations and often detected after transfusion or pregnancy. After immunisation, anti-Jk3 forms and it can be difficult to find compatible Jk(a−b−) donors. Using anti-Jka and anti-Jkb in a conventional tube method is unsuitable for identifying Jk(a−b−) in mass screening of blood donors. Jk(a−b−) phenotypes are associated with the absence of urea transporters on erythrocytes, making red blood cells (RBC) resistant to lysis by 2M urea, while Jk(a+b−), Jk(a−b+) and Jk(a+b+) phenotypes are susceptible to lysis. Materials and methods. We screened for Jk(a−b−) phenotypes in blood donors by the urea lysis test using a 96-well microplate. The Jk(a−b−) phenotypes were confirmed by the indirect antiglobulin test (IAT). Results Altogether, 20,163 blood samples from Thai blood donors were tested and only RBC from five samples were resistant to lysis by 2M urea, while 20,158 samples were completely lysed within 5 min. In an IAT, both anti-Jka and anti-Jkb failed to agglutinate RBC from all five samples. Using a micro-titre plate, the direct urea lysis test, costs • 0.01, about 480 times less than IAT. Moreover, the test time for each plate (94 samples) is about 18 times less than that for IAT. Conclusion Jk(a−b−) phenotype screening by the direct urea lysis test on samples in a micro-titre plate is simple, cost-effective and practical for mass screening of blood donors. PMID:20104274

  19. Síndrome de lise tumoral: uma revisão abrangente da literatura Acute tumor lysis syndrome: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Michael Darmon

    2008-09-01

    égias baseadas no risco dos pacientes são necessários para limitar a alta morbidade e mortalidade desta complicação.Tumor lysis syndrome is characterized by the massive destruction of malignant cells and the release in the extra-cellular space of their content. While Tumor lysis syndrome may occur spontaneously before treatment, it usually develops shortly after the initiation of cytotoxic chemotherapy. These metabolites can overwhelm the homeostatic mechanisms with development of hyperuricaemia, hyperkalaemia, hyperphosphataemia, and hypocalcaemia. These biological manifestations may lead to clinical manifestations including, acute kidney injury, seizure, or sudden death that require intensive care. Since clinical tumor lysis syndrome is associated with a poor prognosis both prevention of tumor lysis syndrome and prevention of clinical consequences of tumor lysis syndrome are mandatory. The objective of this review is to describe pathophysiological mechanisms, biological and clinical manifestations of tumor Lysis syndrome, and to provide upto-date guidelines to ensure prevention of tumor lysis syndrome. Review of selected studies on tumor lysis syndrome published at the PubMed database www.pubmed.gov during the last 20 years. Additional references were retrieved from the studies initially selected. Tumor lysis syndrome is a frequent and life-threatening complication of the newly diagnosed malignancies. Preventive measures, including hydration, uricolytic agents, eviction of factors predisposing to acute kidney injury and, in the more severe patients, on prophylactic renal replacement therapy, are required to prevent or limit clinical consequences of Tumor lysis syndrome. However optimal timing and modalities of prevention remains unknown and may be modified by the changing spectrum of patients at risk of tumor lysis syndrome. Development and validation of risk based strategies is required to limit the high morbidity and mortality of this complication.

  20. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica.

    Science.gov (United States)

    Gutiérrez-Kobeh, L; Cabrera, N; Pérez-Montfort, R

    1997-04-01

    Some Entamoeba histolytica strains resist complement-mediated lysis by serum. Susceptible and resistant strains activate the complement system equivalently, but resistant amebas evade killing by membrane attack complexes. Our objective was to determine the mechanism by which trophozoites of E. histolytica resist lysis by human serum. Amebas were made resistant to lysis by incubation with increasing concentrations of normal human serum. The possibility that resistant cells ingest membrane attack complexes was explored by subcellular fractionation of susceptible and resistant trophozoites treated with sublytic concentrations of human serum containing radiolabeled C9. In both cases, most of the label was in the fractions containing plasma membrane. The susceptible strain consistently showed more label associated with these fractions than the resistant strain. Thus, the possibility that the membrane attack complexes were released to the medium was explored. Both resistant and susceptible trophozoites release to the medium similar amounts of material excluded by Sepharose CL-2B in the presence or absence of normal human serum. Labeled C9 elutes together with the main bulk of proteins from the medium: this indicates that it is not in vesicles or high molecular weight aggregates. Coincubation of susceptible amebas with lysates of resistant trophozoites confers resistance to susceptible cells within 30 min. Resistance to lysis by serum can also be acquired by susceptible amebas after coincubation with lysates from human erythrocytes or after feeding them with whole human red blood cells. Resistant but not susceptible trophozoites show intense immunofluorescent staining on their surface with anti-human erythrocytic membrane antibody. These results suggest that amebas acquire resistance to lysis by serum by incorporating into their membranes complement regulatory proteins.

  1. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Torpey, D.J. III.

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with 51 Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant

  2. Gene transcription from the linear plasmid pBClin15 leads to cell lysis and extracellular DNA-dependent aggregation of Bacillus cereus ATCC 14579 in response to quinolone-induced stress.

    Science.gov (United States)

    Vörös, Aniko; Simm, Roger; Kroeger, Jasmin K; Kolstø, Anne-Brit

    2013-11-01

    The Bacillus cereus type strain ATCC 14579 harbours pBClin15, a linear plasmid with similar genome organization to tectiviruses. Since phage morphogenesis is not known to occur it has been suggested that pBClin15 may be a defect relic of a tectiviral prophage without relevance for the bacterial physiology. However, in this paper, we demonstrate that a pBClin15-cured strain is more tolerant to antibiotics interfering with DNA integrity than the WT strain. Growth in the presence of crystal violet or the quinolones nalidixic acid, norfloxacin or ciprofloxacin resulted in aggregation and lysis of the WT strain, whereas the pBClin15-cured strain was unaffected. Microarray analysis comparing the gene expression in the WT and pBClin15-cured strains showed that pBClin15 gene expression was strongly upregulated in response to norfloxacin stress, and coincided with lysis and aggregation of the WT strain. The aggregating bacteria experienced a significant survival benefit compared with the planktonic counterparts in the presence of norfloxacin. There was no difference between the WT and pBClin15-cured strains during growth in the absence of norfloxacin, the pBClin15 genes were moderately expressed, and no effect was observed on chromosomal gene expression. These data demonstrate for the first time that although pBClin15 may be a remnant of a temperate phage, it negatively affects the DNA stress tolerance of B. cereus ATCC 14579. Furthermore, our results warrant a recommendation to always verify the presence of pBClin15 following genetic manipulation of B. cereus ATCC 14579.

  3. Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis.

    Science.gov (United States)

    Tsougeni, K; Papadakis, G; Gianneli, M; Grammoustianou, A; Constantoudis, V; Dupuy, B; Petrou, P S; Kakabakos, S E; Tserepi, A; Gizeli, E; Gogolides, E

    2016-01-07

    We describe the design, fabrication, and successful demonstration of a sample preparation module comprising bacteria cell capture and thermal lysis on-chip with potential applications in food sample pathogen analysis. Plasma nanotexturing of the polymeric substrate allows increase of the surface area of the chip and the antibody binding capacity. Three different anti-Salmonella antibodies were directly and covalently linked to plasma treated chips without any additional linker chemistry or other treatment. Then, the Ab-modified chips were tested for their capacity to bind bacteria in the concentration range of 10(2)-10(8) cells per mL; the module exhibited 100% efficiency in Salmonella enterica serovar Typhimurium bacteria capture for cell suspensions below 10(5) cells per mL (10(4) cells injected with a 100 μL sample volume) and efficiency higher than 50% for 10(7) cells per mL. Moreover, thermal lysis achieved on-chip from as low as 10 captured cells was demonstrated and shown to compare well with off-chip lysis. Excellent selectivity (over 1 : 300) was obtained in a sample containing, in addition to S. Typhimurium and E. coli bacteria.

  4. Electrophoretic Concentration and Electrical Lysis of Bacteria in a Microfluidic Device Using a Nanoporous Membrane

    Directory of Open Access Journals (Sweden)

    Md. Shehadul Islam

    2017-02-01

    Full Text Available Pathogenic bacteria such as Escherichia coli O157, Salmonella and Campylobacter are the main causes for food and waterborne illnesses. Lysis of these bacteria is an important component of the sample preparation for molecular identification of these pathogens. The pathogenicity of these bacteria is so high that they cause illness at very low concentrations (1–10 CFU/100 mL. Hence, there is a need to develop methods to collect a small number of such bacterial cells from a large sample volume and process them in an automated reagent-free manner. An electrical method to concentrate the bacteria and lyse them has been chosen here as it is reagent free and hence more conducive for online and automated sample preparation. We use commercially available nanoporous membranes sandwiched between two microfluidic channels to create thousands of parallel nanopore traps for bacteria, electrophoretically accumulate and then lyse them. The nanopores produce a high local electric field for lysis at moderate applied voltages, which could simplify instrumentation and enables lysis of the bacteria as it approaches them under an appropriate range of electric field (>1000 V/cm. Accumulation and lysis of bacteria on the nanoporous membrane is demonstrated by using the LIVE/DEAD BacLight Bacterial Viability Kit and quantified by fluorescence intensity measurements. The efficiency of the device was determined through bacterial culture of the lysate and was found to be 90% when a potential of 300 V was applied for 3 min.

  5. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    Science.gov (United States)

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  6. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  7. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  8. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...

  9. Lysis of Microcystis aeruginosa with Extracts from Chinese Medicinal Herbs

    Directory of Open Access Journals (Sweden)

    Yu-Fen Yin

    2009-09-01

    Full Text Available Boiling water extracts of 66 selected Chinese medicinal herbs were screened for their anticyanobaterial activity against Microcystis aeruginosa by the soft-agar overlayer (SAO method. Results indicated that extracts from 16 materials could inhibit the growth of this bacterial species. Among these anticyanobacterial samples, eight extracts showed low minimum inhibitory concentrations (MIC, including four extracts with MICs between 1 and 6 mg/mL, and four extracts with MICs < 1 mg/mL which could be considered useful to prevent the outbreak of cyanobacteria before the appearance of cyanobacterial blooms. Further study showed that three extracts with MIC values < 1 mg/mL induced intensive chlorophyll-a lysis within 7 days at the MIC. The results suggested that highly efficient anticyanobacterial compounds must be involved in the inhibitory activities. The final results indicated these three extracts (from Malaphis chinensis, Cynips gallae-tinctoriae and Fructus mume had the potential to be developed as algicides due to their remarkably anticyanobacterial activities.

  10. Veto cell suppression mechanisms in the prevention of allograft rejection

    DEFF Research Database (Denmark)

    Jacobsen, I M; Claesson, Mogens Helweg

    1998-01-01

    on the surface of the veto-active cell. Data from a large number of experimental and clinical studies strongly indicate that veto-active cells function in vivo and are capable of preventing allograft rejection. Thus, donor-cell-mediated veto activity is the most likely explanation for the well-known graft...

  11. Study of the phage production efficiency in the bacterian lysis processes

    International Nuclear Information System (INIS)

    Vidania, R.; Garces, F.; Davila, C.A.

    1979-01-01

    A search for the best production conditions of lambda vir and lambda clear phages in E coli K12 and E coli C 6 00 infected cells respectively is presented. By keeping fixed some parameters of the process as the bacterial and phage generation times and the bacterial burst side, it has been finded that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection eficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of those experimental results. (auth)

  12. Study of the phage production efficiency in the bacteria lysis processes

    International Nuclear Information System (INIS)

    Vidania Munoz, R. de; Garces, F.; Davila, C. A.

    1979-01-01

    In this work we present a search for the best production conditions of λvir andλ clear phages In E coli K12 and E coli C 6 00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and (he bacterial burst side, we have finder that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs

  13. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.

    Science.gov (United States)

    Chen, Lin; Li, Runzhi; Ren, Xiaoli; Liu, Tianzhong

    2016-08-01

    High moisture content in wet algal biomass hinders effective performance of current lipid extraction methods. An improved aqueous extraction method combing thermal and enzymatic lysis was proposed and performed in algal slurry of Nannochloropsis oceanica (96.0% moisture) in this study. In general, cell-wall of N. oceanica was disrupted via thermal lysis and enzymatic lysis and lipid extraction was performed using aqueous surfactant solution. At the optimal conditions, high extraction efficiencies for both lipid (88.3%) and protein (62.4%) were obtained, which were significantly higher than those of traditional hexane extraction and other methods for wet algal biomass. Furthermore, an excessive extraction of polar lipid was found for wet biomass compared with dry biomass. The advantage of this method is to efficiently extract lipids from high moisture content algal biomass and avoid using organic solvent, indicating immense potential for commercial microalgae-based biofuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A disposable bacterial lysis cartridge (BLC) suitable for an in situ water-borne pathogen detection system.

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Son, Ahjeong; Chua, Beelee

    2015-11-21

    We constructed a disposable bacterial lysis cartridge (BLC) suitable for an in situ pathogen detection system. It had an in-built micro corona discharge based ozone generator that provided ozone for cell lysis. Using a custom sample handling platform, its performance was evaluated with a Gram-positive bacterium of Bacillus subtilis. It was capable of achieving a similar degree of lysis as a commercial ultrasonic dismembrator with a P-1 microprobe in 10 min at an air pump flow rate of 29.4 ml min(-1) and an ozone generator operating voltage of 1600 V. The lysing duration could be significantly reduced to 5 min by increasing the air pump flow rate and the ozone generator operating voltage as well as by the addition of sodium dodecyl sulfate (SDS).

  15. Fuel-Cell Structure Prevents Membrane Drying

    Science.gov (United States)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  16. Role of the SRRz/Rz1lambdoid lysis cassette in the pathoadaptive evolution of Shigella.

    Science.gov (United States)

    Leuzzi, Adriano; Grossi, Milena; Di Martino, Maria Letizia; Pasqua, Martina; Micheli, Gioacchino; Colonna, Bianca; Prosseda, Gianni

    2017-06-01

    Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain process concerns the acquisition of the genetic determinants of virulence, the loss is related to the adaptation of the genome to the new pathogenic status and occurs by pathoadaptive mutation of antivirulence genes. In this study, we highlight that the SRRz/Rz 1 lambdoid lysis cassette, even though stably adopted in E. coli K12 by virtue of its beneficial effect on cell physiology, has undergone a significant decay in Shigella. Moreover, we show the antivirulence nature of the SRRz/Rz 1 lysis cassette in Shigella. In fact, by restoring the SRRz/Rz 1 expression in this pathogen, we observe an increased release of peptidoglycan fragments, causing an unbalance in the fine control exerted by Shigella on host innate immunity and a mitigation of its virulence. This strongly affects the virulence of Shigella and allows to consider the loss of SRRz/Rz 1 lysis cassette as another pathoadaptive event in the life of Shigella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  18. Lysis of Gymnodinium breve by cultures of the green alga Nannochloris eucaryotum.

    Science.gov (United States)

    Pérez, E; Sawyers, W G; Martin, D F

    2001-01-01

    Laboratory cultures of Florida's red tide organism, Gymnodinium breve, were killed by the green alga Nannochloris eucaryotum. Studies involved organism-organism interaction as well as organism-cell-free culture (N. eucaryotum) interaction. Both studies demonstrated that N. eucaryotum adversely affected Florida's red tide organism. The lysis has been attributed to compounds called APONINs (apparent oceanic naturally occurring cytolins). N. eucaryotum crude APONIN was extracted from cell-free cultures, partially purified and fractionated. The fractions were bioassayed against G. breve, and 'fingerprints' of the deleterious fractions were obtained.

  19. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis

    Science.gov (United States)

    Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.

    2016-01-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  20. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    2016-08-01

    Full Text Available Trichomonas vaginalis (Tv is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.

  1. Management of Pediatric Tumor Lysis Syndrome

    African Journals Online (AJOL)

    Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia. 1997. Nov;11(11):1813-6. 43. Elitek [package insert]. Bridgewater, NJ: Sanofi-. Aventis US LLC; 2009. 44. Pui CH, Mahmoud HH, Wiley JM, Woods GM,. Leverger G, Camitta B, Hastings C, Blaney SM, Relling.

  2. Poxvirus-encoded serpins do not prevent cytolytic T cell-mediated recovery from primary infections.

    Science.gov (United States)

    Müllbacher, A; Wallich, R; Moyer, R W; Simon, M M

    1999-06-15

    Previous observations that the highly conserved poxvirus-encoded serpins inhibit cytotoxic activities of alloreactive CTL via granule and/or Fas-mediated pathways was taken to indicate their involvement in immune evasion by poxviruses. We now show that interference with 51Cr release from target cells by ectromelia and cowpoxvirus is limited to alloreactive but not MHC-restricted CTL. The data are in support of the paramount importance of CTL and its effector molecule perforin in the recovery from primary ectromelia virus infection and question the role of serpins in the evasion of poxviruses from killing by CTL. Further analysis of poxvirus interference with target cell lysis by alloreactive CTL revealed that suppression primarily affects the Fas-mediated, and to a lesser extent, the granule exocytosis pathway. Serpin-2 is the main contributor to suppression for both killing pathways. In addition, inhibition of lysis was shown to be both target cell type- and MHC allotype-dependent. We hypothesize that differences in TCR affinities and/or state of activation between alloreactive and MHC-restricted CTL as well as the quality (origin) of target cells are responsible for the observed phenomenon.

  3. Antimicrobial Actions of Hexachlorophene: Lysis and Fixation of Bacterial Protoplasts1

    Science.gov (United States)

    Corner, Thomas R.; Joswick, H. L.; Silvernale, J. N.; Gerhardt, Philipp

    1971-01-01

    Hexachlorophene was found to be both a lytic and a fixative agent for protoplasts isolated from Bacillus megaterium. Concentrations of 50 to 100 μg of drug per mg of original cell dry weight were required to lyse 4.4 × 109 protoplasts (2 mg of original cell dry weight). At higher drug concentrations, protoplasts became fixed against osmotic stress and reduced in sensitivity to disruption by n-butanol. Lower drug concentrations caused proportionate lysis in the protoplast population. Intact cells lost the ability to become plasmolyzed at these same hexachlorophene concentrations. Nonplasmolyzed, drug-treated cells were resistant to the action of lysozyme, whereas plasmolyzed, drug-treated cells were sensitive. But the sensitivity of isolated cell walls to lysozyme digestion was not markedly altered by hexachlorophene treatment. These effects appeared to be secondary in the killing of cells by hexachlorophene because they occurred at concentrations higher than the minimum lethal concentration. PMID:5001202

  4. Inhibition of pneumococcal autolysis in lysis-centrifugation blood culture.

    OpenAIRE

    Lehtonen, O P

    1986-01-01

    The recovery of Streptococcus pneumoniae from the Isolator lysis-centrifugation blood culture has been low in many studies. The poor survival of pneumococci was not due to toxicity of the Isolator medium but to autolysis before plating. This autolysis was completely inhibited by adding 10 mM phosphorylcholine to the Isolator medium.

  5. Management of Pediatric Tumor Lysis Syndrome | Tazi | Arab ...

    African Journals Online (AJOL)

    Typical clinical sequelae include gastrointestinal disturbances, neuromuscular effects, cardiovascular complications, acute renal failure and death. Tumor lysis syndrome can also compromise the efficacy or administration of curative therapies. Available evidence suggests that the incidence of clinical TLS is approximately ...

  6. Fluorescent method for monitoring cheese starter permeabilization and lysis

    NARCIS (Netherlands)

    Bunthof, C.J.; Schalkwijk, van S.; Meijer, W.; Abee, T.; Hugenholtz, J.

    2001-01-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium

  7. Preventing Infections in Sickle Cell Disease: The Unfinished Business.

    Science.gov (United States)

    Obaro, Stephen K; Iroh Tam, P Y

    2016-05-01

    While encapsulated bacterial agents, particularly Streptococcus pneumoniae, are recognized as important microbes that are associated with serious illness in hosts with sickle cell disease (SCD), multiple pathogens are implicated in infectious manifestations of SCD. Variations in clinical practice have been an obstacle to the universal implementation of infection preventive management through active, targeted vaccination of these individuals and routine usage of antibiotic prophylaxis. Paradoxically, in low-income settings, there is evidence that SCD also increases the risk for several other infections that warrant additional infection preventive measures. The infection preventive care among patients with SCD in developed countries does not easily translate to the adoption of these recommendations globally, which must take into account the local epidemiology of infections, available vaccines and population-specific vaccine efficacy, environment, health care behaviors, and cultural beliefs, as these are all factors that play a complex role in the manifestation of SCD and the prevention of infectious disease morbidity. © 2016 Wiley Periodicals, Inc.

  8. Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.

    Directory of Open Access Journals (Sweden)

    Michael Bednarz

    Full Text Available The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.

  9. [Study of a lysis medium stabilizing microfilaments and microtubules in vitro and in vivo].

    Science.gov (United States)

    Foucault, G; Raymond, M N; Coffe, G; Pudles, J

    1984-01-01

    Determination of experimental conditions which allow the evaluation of the variations in the ratio of non polymerized and polymerized forms of actin and tubulin during the reorganization of the cytoskeletal cell system is of most valuable importance. In order to prepare cell homogenates which would reflect the in vivo situation, we tested in vitro a lysis medium which stabilized both microfilaments and microtubules, which were determined by DNase inhibition assays and colchicine binding assays respectively. This lysis medium containing 10 mM potassium phosphate, 1mM magnesium chloride, 5 mM EGTA, 1 M hexylene glycol, 1% Triton X-100, pH 6.4, used at 4 degrees C a) diffused rapidly into the cells; b) did not denature actin and tubulin; c) did not displace the equilibrium between non polymerized and polymerized forms of actin and tubulin, allowing biochemical assays on cell homogenates; d) blocked the evolution of the cytoskeletal system and permitted structural studies; e) and allowed the decoration of microfilaments by heavy meromyosin.

  10. Tumor Lysis Syndrome (TLS following intrathecal chemotherapy in a child with acute myelogenous leukemia (AML

    Directory of Open Access Journals (Sweden)

    Chana L. Glasser, MD

    2017-01-01

    Full Text Available Tumor Lysis Syndrome (TLS is a well-known complication of induction therapy for hematologic malignancies. It is characterized by rapid breakdown of malignant white blood cells (WBCs leading to metabolic derangements and serious morbidity if left untreated. Most commonly, TLS is triggered by systemic chemotherapy, however, there have been case reports of TLS following intrathecal (IT chemotherapy, all in patients with acute lymphoblastic leukemia (ALL/lymphoma. Here, we report the first case of a patient with acute myelogenous leukemia (AML who developed TLS following a single dose of IT cytosine arabinoside (Ara-C.

  11. Bacterial Infochemicals are Drivers of Algal Lysis

    Science.gov (United States)

    Whalen, K.; Deering, R.; Rowley, D. C.; El Gamal, A.; Schorn, M.; Moore, B. S.; Johnson, M. D.; Mincer, T. J.; Harvey, E.

    2016-02-01

    Processing of organic matter by bacteria forces oceanic biogeochemical cycles, food web structure and ultimately environmental stoichiometry. A newly emerging picture of the microbial loop suggests that bacteria are not merely passive recipients of dissolved organic matter (DOM) from phytoplankton exudate. Rather, heterotrophic bacteria can mediate the flow of DOM by actively producing soluble algicidal compounds. However, deciphering those chemical signals that determine these interactions has remained a challenge. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria isolated from plastic debris in the North Atlantic. Both 2-heptyl-3-hydroxy-4-quinolone and its immediate precursor, HHQ are known to function as antibiotics and quorum sensing signaling molecules with crucial roles in virulence, and apoptosis in eukaryotic cells (e.g. fungi and mammalian cells). Our ecologically-relevant screening of live cells and filtrate from P. piscicida cultures caused a significant decrease in the growth rate of the bloom-forming coccolithophore, Emiliania huxleyi. Bioassay-guided fraction of P. piscicida extracellular crude extracts identified HHQ, which induced mortality in three strains of E. huxleyi with an IC50 in the nanomolar range. In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures (IC50 > 10 micromolar), but were susceptible to extracts of P. piscicida, indicating this bacterium may produce a cocktail of algicidal compounds specific to different phytoplankton guilds. The ability of HHQ to influence phytoplankton growth suggests that alkylquinolone-signaling molecules play a fundamental role in interkingdom interactions, ultimately influencing shifts in phytoplankton population dynamics. This study implicates a new role for HHQ beyond its importance in quorum sensing.

  12. An Interesting Case of Intramuscular Myxoma with Scapular Bone Lysis

    Directory of Open Access Journals (Sweden)

    Jérôme Tirefort

    2017-01-01

    Full Text Available Introduction. Intramuscular myxoma is a rare benign primitive tumor of the mesenchyme founded at the skeletal muscle level; it presents itself like an unpainful, slow-growing mass. Myxomas with bone lysis are even more rare; only 7 cases have been reported in the English literature, but never at the shoulder level. Case Presentation. We describe an 83-year-old patient with a growing mass in the deltoid muscle with unique scapular lysis, without any symptom. Magnetic resonance imaging (MRI and a biopsy were performed and the diagnosis of intramuscular myxoma has been retained. In front of this diagnosis of nonmalignant lesion, the decision of a simple follow-up was taken. One year after this decision, the patient was still asymptomatic. Conclusion. In the presence of an intramuscular growing mass with associated bone lysis, intramuscular myxoma as well as malignant tumor should be evoked. MRI has to be part of the initial radiologic appraisal but biopsy is essential to confirm the diagnosis. By consensus, the standard treatment is surgical excision but conservative treatment with simple follow-up can be an option.

  13. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.

    Science.gov (United States)

    Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I

    2009-08-14

    Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.

  14. RNA integrity as a quality indicator during the first steps of RNP purifications : A comparison of yeast lysis methods

    Directory of Open Access Journals (Sweden)

    Jansen Ralf-Peter

    2004-10-01

    Full Text Available Abstract Background The completion of several genome-sequencing projects has increased our need to assign functions to newly identified genes. The presence of a specific protein domain has been used as the determinant for suggesting a function for these new genes. In the case of proteins that are predicted to interact with mRNA, most RNAs bound by these proteins are still unknown. In yeast, several protocols for the identification of protein-protein interactions in high-throughput analyses have been developed during the last years leading to an increased understanding of cellular proteomics. If any of these protocols or similar approaches shall be used for the identification of mRNA-protein complexes, the integrity of mRNA is a critical factor. Results We compared the effect of different lysis protocols on RNA integrity. We report dramatic differences in RNA stability depending on the method used for yeast cell lysis. Glass bead milling and French Press lead to degraded mRNAs even in the presence of RNase inhibitors. Thus, they are not suitable to purify intact mRNP complexes or to identify specific mRNAs bound to proteins. Conclusion We suggest a novel protocol, grinding deep-frozen cells, for the preparation of protein extracts that contain intact RNAs, as lysis method for the purification of mRNA-protein complexes from yeast cells.

  15. Indole prevents Escherichia coli cell division by modulating membrane potential

    Science.gov (United States)

    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane. PMID:22387460

  16. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  17. Prevention of overpressurization of lithium-thionyl chloride battery cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, G. R.; Salmon, D. J.

    1984-12-25

    A method of preventing overpressurization of a lithium-thionyl chloride battery cell by formation of excessive SO/sub 2/ during high rate discharge. The method comprises the step of providing PCl/sub 5/ in the cathode. Alternatively, the PCl/sub 5/ may be provided in the electrolyte or in both the cathode and electrolyte as desired. The PCl/sub 5/ may be incorporated in the cathode by introduction thereof into the porous carbon structure of a preformed carbon element. Alternatively, the PCl/sub 5/ may be dry mixed with the carbon and the mixture formed into the desired cathode element.

  18. Indole prevents Escherichia coli cell division by modulating membrane potential

    OpenAIRE

    Chimerel, Catalin; Field, Christopher M.; Pi?ero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3?5?mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological proces...

  19. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  20. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  1. Beta-endorphin cell therapy for cancer prevention.

    Science.gov (United States)

    Zhang, Changqing; Murugan, Sengottuvelan; Boyadjieva, Nadka; Jabbar, Shaima; Shrivastava, Pallavi; Sarkar, Dipak K

    2015-01-01

    β-Endorphin (BEP)-producing neuron in the hypothalamus plays a key role in bringing the stress axis to a state of homeostasis and maintaining body immune defense system. Long-term delivery of BEP to obtain beneficial effect on chemoprevention is challenging, as the peptides rapidly develop tolerance. Using rats as animal models, we show here that transplantation of BEP neurons into the hypothalamus suppressed carcinogens- and hormone-induced cancers in various tissues and prevented growth and metastasis of established tumors via activation of innate immune functions. In addition, we show that intracerebroventricular administration of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) increased the number of BEP neurons in the hypothalamus, reduced the stress response, enhanced the innate immune function, and prevented tumor cell growth, progression, and metastasis. BEP neuronal supplementation did not produce any deleterious effects on general health but was beneficial in suppressing age-induced alterations in physical activity, metabolic, and immune functions. We conclude that the neuroimmune system has significant control over cancer growth and progression, and that activation of the neuroimmune system via BEP neuronal supplementation/induction may have therapeutic value for cancer prevention and improvement of general health. ©2014 American Association for Cancer Research.

  2. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    Science.gov (United States)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with

  3. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E.

    Science.gov (United States)

    Ehgartner, Daniela; Sagmeister, Patrick; Langemann, Timo; Meitz, Andrea; Lubitz, Werner; Herwig, Christoph

    2017-07-01

    Production of recombinant proteins as inclusion bodies is an important strategy in the production of technical enzymes and biopharmaceutical products. So far, protein from inclusion bodies has been recovered from the cell factory through mechanical or chemical disruption methods, requiring additional cost-intensive unit operations. We describe a novel method that is using a bacteriophage-derived lysis protein to directly recover inclusion body protein from Escherichia coli from high cell density fermentation process: The recombinant inclusion body product is expressed by using a mixed feed fed-batch process which allows expression tuning via adjusting the specific uptake rate of the inducing substrate. Then, bacteriophage ΦX174-derived lysis protein E is expressed to induce cell lysis. Inclusion bodies in empty cell envelopes are harvested via centrifugation of the fermentation broth. A subsequent solubilization step reveals the recombinant protein. The process was investigated by analyzing the impact of fermentation conditions on protein E-mediated cell lysis as well as cell lysis kinetics. Optimal cell lysis efficiencies of 99% were obtained with inclusion body titers of >2.0 g/l at specific growth rates higher 0.12 h -1 and inducer uptake rates below 0.125 g/(g × h). Protein E-mediated cell disruption showed a first-order kinetics with a kinetic constant of -0.8 ± 0.3 h -1 . This alternative inclusion body protein isolation technique was compared to the one via high-pressure homogenization. SDS gel analysis showed 10% less protein impurities when cells had been disrupted via high-pressure homogenization, than when empty cell envelopes including inclusion bodies were investigated. Within this contribution, an innovative technology, tuning recombinant protein production and substituting cost-intensive mechanical cell disruption, is presented. We anticipate that the presented method will simplify and reduce the production costs of inclusion body

  4. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC.

    Directory of Open Access Journals (Sweden)

    Jung Seok Lee

    Full Text Available Avian pathogenic Escherichia coli (APEC is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein-sharing networks, the Markov clustering (MCL algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3 competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR endolysin pathway to trigger host cell lysis.

  5. Isolation of Mycobacterium chelonei with the lysis-centrifugation blood culture technique.

    OpenAIRE

    Fojtasek, M F; Kelly, M T

    1982-01-01

    Mycobacterium chelonei was isolated from a patient by the lysis-centrifugation and the conventional two-bottle blood culture methods. The lysis-centrifugation method was significantly more sensitive and rapid than the conventional method in detecting and isolating this organism; quantitations done by this method were useful for monitoring response to therapy.

  6. Heme oxygenase-1 prevents smoke induced B-cell infiltrates: a role for regulatory T cells?

    Directory of Open Access Journals (Sweden)

    Luinge Marjan A

    2008-02-01

    Full Text Available Abstract Background Smoking is the most important cause for the development of COPD. Since not all smokers develop COPD, it is obvious that other factors must be involved in disease development. We hypothesize that heme oxygenase-1 (HO-1, a protective enzyme against oxidative stress and inflammation, is insufficiently upregulated in COPD. The effects of HO-1 modulation on cigarette smoke induced inflammation and emphysema were tested in a smoking mouse model. Methods Mice were either exposed or sham exposed to cigarette smoke exposure for 20 weeks. Cobalt protoporphyrin or tin protoporphyrin was injected during this period to induce or inhibit HO-1 activity, respectively. Afterwards, emphysema development, levels of inflammatory cells and cytokines, and the presence of B-cell infiltrates in lung tissue were analyzed. Results Smoke exposure induced emphysema and increased the numbers of inflammatory cells and numbers of B-cell infiltrates, as well as the levels of inflammatory cytokines in lung tissue. HO-1 modulation had no effects on smoke induced emphysema development, or the increases in neutrophils and macrophages and inflammatory cytokines. Interestingly, HO-1 induction prevented the development of smoke induced B-cell infiltrates and increased the levels of CD4+CD25+ T cells and Foxp3 positive cells in the lungs. Additionally, the CD4+CD25+ T cells correlated positively with the number of Foxp3 positive cells in lung tissue, indicating that these cells were regulatory T cells. Conclusion These results support the concept that HO-1 expression influences regulatory T cells and indicates that this mechanism is involved in the suppression of smoke induced B-cell infiltrates. The translation of this interaction to human COPD should now be pursued.

  7. Tumor lysis syndrome in a patient with metastatic colon cancer after treatment with oxaliplatin and 5-Fu

    Directory of Open Access Journals (Sweden)

    Ruo-Han Tseng

    2016-12-01

    Full Text Available Tumor lysis syndrome in solid tumors is a rare occurrence, with a poor prognosis. We present the case of a patient of recurrent colon cancer who received chemotherapy with FOLFOX regimen (lencovorin, fluorouracil, and oxaliplatin with subsequent tumor lysis. We present a recurrent rectal cancer patient suffered from tumor lysis syndrome after salvage FOLFOX regimen. After treat with CVVH with improved conscious status. In this case report, we had review the tumor lysis in solid tumor.

  8. Physical urticarias: mast cell disfunction. Preventive, diagnostic and therapeutical approach

    Directory of Open Access Journals (Sweden)

    Mario Geller

    2007-09-01

    Full Text Available Objective: To present and discuss the current classification of physicalurticarias based on immunologic and pathophysiological mechanisms.To describe clinical symptoms, triggering and worsening factors,different diagnostic tools, and to list the available pharmacologicaltherapeutic approaches as well as the methods of physicaldesensitization. Methods: The literature search was carried out usingMedline. Forty studies were evaluated including case-control series,meta-analyses, case reports and reviews in the English language. Thekeywords used were physical urticarias, classification, and physicaldesensitization. A didactic diagnostic classification of differentgroups of physical urticarias was made, as well as a description ofthe several modalities of these dermatatologic conditions causedby physical stimuli, as localized or diffuse, classical or atypical,acquired or familial, with or without IgE involvement. The geneticpredisposing factors were determined. Results: Physical urticaria isdue to mast cell dysfunction with lowered threshold for the releaseof cytoplasmic anaphylactic mediators triggered by physical factors.These precipitating environmental physical factors include cold, heat,mechanical stimuli, exercises, exposure to sunlight and skin contactwith water. Conclusions: Physical urticarias occur in approximately17% of chronic urticaria patients and different forms may coexist inthe same individual. Treatments include prevention, antihistamines(classical and non-sedating presentations and, occasionally,corticosteroids, dapsone and other anti-inflammatory drugs, and thepotential use of specific physical desensitization.

  9. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  10. Application of Doehlert experimental design in the optimization of experimental variables for the Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 cell lysis Aplicação do modelo Doehlert na otimização das variáveis experimentais para a lise de Pseudozyma sp. (CCMB 306 e Pseudozyma sp. (CCMB 300

    Directory of Open Access Journals (Sweden)

    Amanda Reges de Sena

    2012-12-01

    Full Text Available This study aimed to verify the influence of pH and temperature on the lysis of yeast using experimental design. In this study, the enzymatic extract containing β-1,3-glucanase and chitinase, obtained from the micro-organism Moniliophthora perniciosa, was used. The experiment showed that the best conditions for lysis of Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 by lytic enzyme were pH 4.9 at 37 ºC and pH 3.9 at 26.7 ºC, respectively. The lytic enzyme may be used for obtaining various biotechnology products from yeast.O presente trabalho visou verificar a influência do pH e temperatura na lise de leveduras utilizando planejamento experimental. No estudo, foi utilizado o extrato enzimático, contendo β-1,3-glucanase e quitinase líticas, obtidas do micro-organismo Moniliophthora perniciosa. O delineamento experimental mostrou que as melhores condições para a lise de Pseudozyma sp. (CCMB 306 e Pseudozyma sp. (CCMB 300, pelas enzimas líticas, foram pH 4,9 a 37 ºC, pH 3,9 a 26,7 ºC, respectivamente. As enzimas líticas podem ser utilizadas para a obtenção de vários produtos biotecnológicos a partir de leveduras.

  11. NF-κB pathway inhibition by anthrocyclic glycoside aloin is key event in preventing osteoclastogenesis in RAW264.7 cells.

    Science.gov (United States)

    Pengjam, Yutthana; Madhyastha, Harishkumar; Madhyastha, Radha; Yamaguchi, Yuya; Nakajima, Yuichi; Maruyama, Masugi

    2016-04-15

    Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. As current treatments can exhibit deleterious side effects, the use of phyto-compounds with therapeutic and preventive activities against orthopaedic related problems represents a promising alternative. We investigated the effect of aloin, an anthrocyclic compound, on inhibition of osteoclastogenesis using receptor of the nuclear factor κB (NF-κB) ligand (RANKL)-induced RAW264.7 macrophage cells. The inhibitory effect of aloin on in vitro osteoclastogenesis was evaluated by reduction in tartrate-resistant acid phosphatase (TRAP) content and expression levels of osteoclast-specific gene, cathepsin K. Multinuclear formation of osteoclast was assessed with haematoxylin and eosin staining. F4/80 content the marker of the murine monocyte/macrophage cells, was evaluated by immunocytochemistry. The underlining mechanisms were assessed by Western blots and EMSA. Effect of aloin on generation of intracellular reactive oxygen species (ROS) was estimated by dichlorofluorescein diacetate (DCFH-DA). Bone degradation effect was evaluated by bone pit assay. The bone pit culture supernatant was studied by Fluorescein assay. We demonstrated that aloin reduced TRAP content and levels of osteoclast-specific gene and protein, cathepsin K. Treatment with aloin (0.75 µM) prevented multinuclear formation (haematoxylin and eosin staining), reduced intracellular TRAP content (TRAP Staining) and increased F4/80 content (F4/80 immunohistochemistry) in RANKL (20 ng/ml) treated RAW cells. Treatment of the RAW cells with aloin suppressed RANKL-induced NF-κB pathway components like IKKα, IKKβ, Phospho.IKK α/β, NF-κB-p65, Phospho NF-κB-p65 and IκBα. EMSA studies showed aloin dose dependently reduced DNA binding activity of NF-κB. Additionally, in vitro bone pit assay revealed that aloin prevented bone degradation and also decreased the fluorescence content in cells, thus

  12. Remnant cationic dendrimers block RNA migration in electrophoresis after monophasic lysis.

    Science.gov (United States)

    Kuo, Jung-Hua Steven; Lin, Yi-Lin

    2007-05-01

    Cationic dendrimers such as poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) have attractive characteristics for the delivery of nucleic acid and various biomedical applications. Most studies have focused on cationic dendrimer-based intracellular delivery, and very few studies have focused on the non-specific interaction of remnant cationic dendrimers with total RNA after isolation directly from cells in vitro. We examined RNA isolation using the common method of monophasic lysis from human macrophage-like cells (U937) and mouse fibroblast cells (NIH/3T3) that had been exposed to dendrimers and DNA/dendrimer complexes using gel electrophoresis. We found that PAMAM and PPI dendrimers strongly altered the mobility of RNA in the gels. In addition, the extent of dendrimer-induced alteration in RNA mobility was directly dendrimer-generation-dependent: the alteration was greater with higher-generation dendrimers. We also found that DNA/dendrimer complexes at higher dendrimer to DNA ratios interacted with RNA after isolation while gene expression was maintained. The interactions between RNA and remnant dendrimers after isolation were caused by electrostatic bindings, and we recovered total RNA using high ionic strength solvents (2M NaCl solution) to disrupt the electrostatic forces binding dendrimers to RNA. Because RNA isolation is routinely used for biological applications, such dendrimer-induced alteration in RNA mobility should be accounted for in the further processing of RNA-related applications.

  13. Evaluation of conventional castaneda and lysis centrifugation blood culture techniques for diagnosis of human brucellosis.

    Science.gov (United States)

    Mantur, Basappa G; Mangalgi, Smita S

    2004-09-01

    We investigated the role of the lysis centrifugation blood culture technique over the conventional Castaneda technique for the diagnosis of human brucellosis. The lysis centrifugation technique has been found to be more sensitive in both acute (20% higher sensitivity; P centrifugation was in the mean detection time, which was only 2.4 days in acute and 2.7 days in chronic cases, with 103 out of 110 (93.6%) and 17 out of 20 (85%) cultures from acute and chronic brucellosis, respectively, detected before the conventional culture was positive. Our results confirmed the potential usefulness of the lysis technique in diagnosis and institution of appropriate antibiotic therapy.

  14. B cell depletion reduces the number of autoreactive T helper cells and prevents glucose-6-phosphate isomerase-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Oliver Frey

    Full Text Available The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI. The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells.

  15. Mycobacterium tuberculosis bacteremia detected by the Isolator lysis-centrifugation blood culture system.

    OpenAIRE

    Kiehn, T E; Gold, J W; Brannon, P; Timberger, R J; Armstrong, D

    1985-01-01

    Mycobacterium tuberculosis was detected by the Isolator lysis-centrifugation blood culture system from the blood of a patient with tuberculosis of the breast. The organism also grew on conventional laboratory media inoculated with pleural fluid from the patient.

  16. Susceptibility of pathogenic and nonpathogenic Naegleria spp. to complement-mediated lysis.

    OpenAIRE

    Whiteman, L Y; Marciano-Cabral, F

    1987-01-01

    The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with [3H]uridine and visual observation with a compound microscope were used as indices of lysis. Highly pathogenic mouse-passaged N. fowleri was less susceptible to the lytic effects of NHS a...

  17. Prevention and management of stroke in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Y. Kilinç

    2011-12-01

    Full Text Available Sickle Cell Disease(SCD is one of the most common hemoglobinopathies in the world which causes stroke. The management of stroke depends on the manifestations and the age of the patient. Especially in childhood, anatomic and physiological abnormalities of CNS may be a predisposing factors. Stroke mostly affects the distal segments of the Internal Carotid Artery, but also middle and anterior segments of the cerebral arteries are involved. The most important predisposing factors are the arterial malformations, stenosis and obstructions in cranial arteries, generally involving Internal Carotid Artery, frequently Proximal Middle Cerebral or Anterior Cerebral Arteries. After infarcts at brain vessels, most frequent clinical findings are hemiparesis or hemiplegia, impaired speech, focal seizures, gait disturbances. Risk factors for predisposing stroke are prior transient ischemia, baseline Hb decrease, acute chest sydrome within previous two weeks, systolic blood pressure rises, leucocyte increases. The patient with silent stroke or transient ischemic attacks may be asymptomatic or without neurological symptoms. Neuroimaging abnormalities may be seen without significant clinical findings in children with SCD. We talk about silent stroke if there are neuroradiological abnormalities without clinical findings. Children with silent strokes are more prone to new strokes. If there is a significant stroke a ischemic stroke often present with focal neurological signs and symptoms. If patient is asymptomatic or have suspected stroke, first step may be performance of Transcranial Doppler Ultrasonography (TCD. Children with time-averaged mean velocity (TAMV, measured in Middle Carotid Artery or in distal internal carotid Artery abnormally elevated, defined as TAMV≥200cm/sec, have sixfold increase for stroke than those with normal TAMV≤170cm/sec. For these patients under the risk of stroke, chronic blood transfusion is recommended for prevention of primary

  18. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  19. Studies on cytotoxic and clot lysis activity of probiotically fermented cocktail juice prepared using Camellia sinensis and Punica grantum

    Science.gov (United States)

    Biswas, Ananya; Deori, Meenakshi; Nivetha, A.; Mohansrinivasan, V.

    2017-11-01

    In the current research the effect of probiotic microorganisms viz; Lactococcus lactis and Lactobacillus plantarum on fermentation of Camellia sinensis and Punica grantum was studied. In vitro test were done to analyze the anticancer, antioxidant and atherosclerosis (clot lysis) properties of fermented juice. The juice was fermented for 48 and 96h, during which concentration of phenolic content, total acid content and free radical scavenging activity of the sample was analyzed by DPPH assay (α, α-diphenyl-β-picrylhydrazyl). Dropping of pH was observed after 48 h of fermentation. The clot lysis activity was found to be 80 % in 100μl concentration of fermented cocktail juice. The 96 h fermented sample has shown around 70% inhibition against colon cancer cell lines. Analytical study of HPLC proves the organic acid production such as ascorbic acid in superior amount for 96h of fermented sample, Based on the retention time, the corresponding peaks were detected at 4.919 and 4.831 min.

  20. The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin.

    Science.gov (United States)

    Briers, Yves; Peeters, Liesbet M; Volckaert, Guido; Lavigne, Rob

    2011-01-01

    The lysis cassette of Pseudomonas aeruginosa phage ϕKMV encodes a holin, endolysin, Rz and Rz1 in the canonical order. It has a tight organization with a high degree of overlapping genes and is highly conserved (between 96 and 100% identity at the protein level) among several other members of the "phiKMV-like viruses." The endolysin KMV45 exhibits characteristics as expected for a signal-arrest-release (SAR) endolysin, whereas the holin KMV44 is a typical pinholin. KMV45 is initially secreted as an inactive, membrane-anchored endolysin, which is subsequently released by membrane depolarization driven by the pinholin KMV44. The SAR domain of KMV45 is necessary for its full enzymatic activity, suggesting a refolding of the catalytic cleft upon release from the membrane. The physical proximity of the catalytic glutamic acid residue close to SAR domain suggests an alternative activation mechanism compared to the SAR endolysin of phages P1, ERA103 and 21. Expression of KMV44 leads to a quick cell lysis when paired with SAR endolysin KMV45, but not with the cytoplasmic phage λ endolysin, indicating the membrane depolarizing function of KMV44 rather than the large hole-making function characteristic of classical holins.

  1. Study of the phage production efficiency in the bacteria lysis processes; Estudio del rendimiento en fagos para los procesos de lisis bacteriana

    Energy Technology Data Exchange (ETDEWEB)

    Vidania Munoz, R. de; Garces, F.; Davila, C. A.

    1979-07-01

    In this work we present a search for the best production conditions of {lambda}vir and{lambda} clear phages In E coli K12 and E coli C{sub 6}00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and the bacterial burst side, we have found that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs.

  2. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  3. A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the protonmotive force in Escherichia coli membrane vesicles by generating hydrophilic pores

    NARCIS (Netherlands)

    Goessens, Wil H.F.; Driessen, Arnold J.M.; Wilschut, Jan; Duin, Jan van

    1988-01-01

    The RNA phage MS2 encodes a protein, 75 amino acids long, that is necessary and sufficient for lysis of the host cell. DNA deletion analysis has shown that the lytic activity is confined to the C-terminal half of the protein. We have examined the effects of a synthetic peptide, covering the

  4. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke

    OpenAIRE

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L.; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L.; Vexler, Zinaida S.

    2016-01-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral arter...

  5. Cauda Equina Syndrome Following an Epidural Lysis Procedure: A Case Report

    Directory of Open Access Journals (Sweden)

    Yasemin Turan

    2017-08-01

    Full Text Available Epidural lysis is known to be one of the therapy methods used following an unsuccessful low back surgery. Despite its proven effectiveness, several complications associated with epidural lysis procedure have been reported. The most common complications are dural perforation, breaking of the catheter and infections. Cauda equina syndrome is a rare complication seen after epidural lysis. A 51-year-old female complaining of lower back pain for six years underwent an epidural lysis procedure at the lumbar 3-4-5 level. Following the procedure, the patient was not able to walk due to weakness starting in both lower extremities, besides, she had fecal and urinary incontinence. After being diagnosed with cauda equina syndrome, a rehabilitation program was administered. After three months, the patient was ambulant with a bilateral dynamic carbon fiber ankle foot orthoses and a walker. It should be kept in mind that serious complications such as cauda equina syndrome, which may considerably affect the patients’ quality of life in a negative way, might develop after an epidural lysis procedure.

  6. Low-dose steroid-induced tumor lysis syndrome in a hepatocellular carcinoma patient

    Directory of Open Access Journals (Sweden)

    Jin Ok Kim

    2015-03-01

    Full Text Available Tumor lysis syndrome is rare in hepatocellular carcinoma (HCC, but it has been reported more frequently recently in response to treatments such as transcatheter arterial chemoembolization (TACE, radiofrequency thermal ablation (RFTA, and sorafenib. Tumor lysis syndrome induced by low-dose steroid appears to be very unusual in HCC. We report a patient with hepatitis-C-related liver cirrhosis and HCC in whom tumor lysis syndrome occurred due to low-dose steroid (10 mg of prednisolone. The patient was a 90-year-old male who presented at the emergency room of our hospital with general weakness and poor oral intake. He had started to take prednisolone to treat adrenal insufficiency 2 days previously. Laboratory results revealed hyperuricemia, hyperphosphatemia, and increased creatinine. These abnormalities fulfilled the criteria in the Cairo-Bishop definition of tumor lysis syndrome. Although the patient received adequate hydration, severe metabolic acidosis and acute kidney injury progressed unabated. He finally developed multiple organ failure, and died 3 days after admission. This was a case of tumor lysis syndrome caused by administration of low-dose steroid in a patient with HCC.

  7. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  8. The preventive role of type 2 NKT cells in the development of type 1 diabetes.

    Science.gov (United States)

    Sørensen, Jakob Ørskov; Buschard, Karsten; Brogren, Carl-Henrik

    2014-03-01

    In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  9. Head/Neck Squamous Cell Carcinoma: - Prevention Strategy ...

    African Journals Online (AJOL)

    Background:-Head and neck squamous cell carcinoma is the most common histological subtypes of Head and neck tumour. It consist of 4-5% of all cancer and the fourth leading cause of cancer death in developed and developing nations of America and Africa. Objective:-To describe the epidemiological pattern of Head ...

  10. Natural killer T cells in adipose tissue prevent insulin resistance

    NARCIS (Netherlands)

    Schipper, H.S.; Rakhshandehroo, M.; Graaf, van de S.F.J.; Venken, K.; Koppen, A.; Stienstra, R.; Prop, S.; Meerding, J.; Hamers, N.; Besra, G.S.; Boon, den L.; Nieuwenhuis, E.E.S.; Elewaut, D.; Prakken, B.; Kersten, A.H.; Boes, M.; Kalkhoven, E.

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased

  11. Artemesia annua extract prevents glyoxal-induced cell injury in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Artemesia annua extract on glyoxal-induced injury in retinal microvascular endothelial cells (HRECs). Methods: HRECs were cultured in a medium containing 500 μM glyoxal or glyoxal plus 50μM Artemesia annua extract, or in the medium alone for 24 h. Apoptosis was analysed by flow ...

  12. Perceptions about Sickle Cell Disease and its Prevention among ...

    African Journals Online (AJOL)

    SCD) patients per country in the world. Most of the studies that were carried out in Nigeria on awareness of sickle cell disease come from the southern part of the country. There is variation in the incidence of the disease within Nigeria with a ...

  13. Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells.

    Science.gov (United States)

    Guillem-Llobat, Paloma; Dovizio, Melania; Bruno, Annalisa; Ricciotti, Emanuela; Cufino, Valerio; Sacco, Angela; Grande, Rosalia; Alberti, Sara; Arena, Vincenzo; Cirillo, Mariangela; Patrono, Carlo; FitzGerald, Garret A; Steinhilber, Dieter; Sgambato, Alessandro; Patrignani, Paola

    2016-05-31

    We investigated whether platelets prime colon cancer cells for metastasis and whether pharmacological inhibition of platelet function may prevent it. Coculturing HT29 human colon carcinoma cells with human platelets led to the induction of mesenchymal-like cancer cells characterized by downregulation of E-cadherin and upregulation of Twist1, enhanced cell mobility and a proaggregatory action on platelets. These changes were prevented by different antiplatelet agents, aspirin[an inhibitor of cyclooxygenase(COX)-1], DG-041[an antagonist of prostaglandin(PG)E2 EP3 receptor] and ticagrelor (a P2Y12 receptor antagonist). The injection of HT29 cells, exposed to platelets in vitro, into the tail vein of humanized immunodeficient mice led to higher incidence of lung metastasis compared to the injection of untreated HT29 cells. This effect was associated with enhanced systemic biosynthesis of thromboxane(TX)A2 and PGE2in vivo. Platelet COX-1 inhibition by aspirin administration to mice prevented the increased rate of metastasis as well as the enhanced production of TXA2 and PGE2 induced by the in vitro priming of HT29 cells by platelets. In conclusion, targeting platelet COX-1 with low-dose aspirin exerts an antimetastatic action by averting the stem cell mimicry of cancer cells associated with enhanced proaggregatory effects induced by platelet-tumor cell interactions. These effects may be shared by other antiplatelet drugs.

  14. The euglobulin clot lysis time to assess the impact of nanoparticles on fibrinolysis

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Valentine, E-mail: valentine.minet@unamur.be; Alpan, Lutfiye; Mullier, François [University of Namur – UNamur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences NARILIS (Belgium); Toussaint, Olivier [Laboratory of Cellular Biochemistry and Biology (URBC) (Belgium); Lucas, Stéphane [University of Namur (UNamur), Research Centre for the Physics of Matter and Radiation (PMR-LARN), Namur Nanosafety Center NNC, NAmur Research Institute for Life Sciences NARILIS (Belgium); Dogné, Jean-Michel; Laloy, Julie, E-mail: julie.laloy@unamur.be [University of Namur – UNamur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences NARILIS (Belgium)

    2015-07-15

    Nanoparticles (NPs) are developed for many applications in various fields, including nanomedicine. The NPs used in nanomedicine may disturb homeostasis in blood. Secondary hemostasis (blood coagulation) and fibrinolysis are complex physiological processes regulated by activators and inhibitors. An imbalance of this system can either lead to the development of hemorrhages or thrombosis. No data are currently available on the impact of NPs on fibrinolysis. The objectives of this study are (1) to select a screening test to study ex vivo the impact of NPs on fibrinolysis and (2) to test NPs with different physicochemical properties. Euglobulin clot lysis time test was selected to screen the impact of some NPs on fibrinolysis using normal pooled plasma. A dose-dependent decrease in the lysis time was observed with silicon dioxide and silver NPs without disturbing the fibrin network. Carbon black, silicon carbide, and copper oxide did not affect the lysis time at the tested concentrations.

  15. Clinical Trial Design for Testing the Stem Cell Model for the Prevention and Treatment of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Rishindra M., E-mail: reddyrm@med.umich.edu [Medical Center, University of Michigan, 1500 E. Medical Center Drive, 2120 Taubman Center, Ann Arbor, MI 48109 (United States); Kakarala, Madhuri; Wicha, Max S. [Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109 (United States)

    2011-06-20

    The cancer stem cell model introduces new strategies for the prevention and treatment of cancers. In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size. These new approaches mandate a change in the design of clinical trials and biomarkers chosen for efficacy assessment for preventative, neoadjuvant, adjuvant, and palliative treatments. Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in “complete” or “partial” responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples.

  16. Application of mitomycin C after endoscopic lysis of congenital laryngeal web combined with epiglottic hypoplasia in a middle-aged man.

    Science.gov (United States)

    Roh, Jong-Lyel

    2006-04-01

    Laryngeal webs and epiglottic hypoplasias are uncommon congenital anomalies. Anterior glottic web combined with epiglottic hypoplasia was found in a middle-aged man presenting with hoarseness and dyspnea on exertion. This can be considered as a unique isolated defect of the larynx during early fetal development. The laryngeal web can be successfully treated in a single stage with endoscopic lysis and topical application of mitomycin C for prevention of anterior glottic restenosis. This case and prior reports suggest that the novel approach may be effective in the treatment of laryngeal webs.

  17. Ambulatory Quality Indicators to Prevent Infection in Sickle Cell Disease

    OpenAIRE

    Beverung, Lauren M.; Brousseau, David; Hoffmann, Raymond G.; Yan, Ke; Panepinto, Julie A.

    2014-01-01

    The purpose of the present study was to identify rates of adherence for three outpatient quality indicators noted by Wang and colleagues (2011): (1) influenza vaccine, (2) pneumococcal immunizations, and (3) penicillin prophylaxis in patients with sickle cell disease (SCD) in a Medicaid sample. These variables were chosen based on Wang and colleagues’ suggestion that these variables are important for the assessment of the quality of care of children with SCD. We hypothesized that the overall ...

  18. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke.

    Science.gov (United States)

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L; Vexler, Zinaida S

    2016-03-09

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. Copyright © 2016 the authors 0270-6474/16/362881-13$15.00/0.

  19. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration

    OpenAIRE

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of ?-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which ...

  20. Sun protection for preventing basal cell and squamous cell skin cancers.

    Science.gov (United States)

    Sánchez, Guillermo; Nova, John; Rodriguez-Hernandez, Andrea Esperanza; Medina, Roger David; Solorzano-Restrepo, Carolina; Gonzalez, Jenny; Olmos, Miguel; Godfrey, Kathie; Arevalo-Rodriguez, Ingrid

    2016-07-25

    'Keratinocyte cancer' is now the preferred term for the most commonly identified skin cancers basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), which were previously commonly categorised as non-melanoma skin cancers (NMSC). Keratinocyte cancer (KC) represents about 95% of malignant skin tumours. Lifestyle changes have led to increased exposure to the sun, which has, in turn, led to a significant increase of new cases of KC, with a worldwide annual incidence of between 3% and 8%. The successful use of preventive measures could mean a significant reduction in the resources used by health systems, compared with the high cost of the treatment of these conditions. At present, there is no information about the quality of the evidence for the use of these sun protection strategies with an assessment of their benefits and risks. To assess the effects of sun protection strategies (i.e. sunscreen and barrier methods) for preventing keratinocyte cancer (that is, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) of the skin) in the general population. We searched the following databases up to May 2016: the Cochrane Skin Group Specialised Register, CENTRAL, MEDLINE, Embase, and LILACS. We also searched five trial registries and the bibliographies of included studies for further references to relevant trials. We included randomised controlled clinical trials (RCTs) of preventive strategies for keratinocyte cancer, such as physical barriers and sunscreens, in the general population (children and adults), which may provide information about benefits and adverse events related to the use of solar protection measures. We did not include trials focused on educational strategies to prevent KC or preventive strategies in high-risk groups. Our prespecified primary outcomes were BCC or cSCC confirmed clinically or by histopathology at any follow-up and adverse events. Two review authors independently selected studies for eligibility using

  1. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS.

    Science.gov (United States)

    Caspar, Yvan; Garnaud, Cécile; Raykova, Mariya; Bailly, Sébastien; Bidart, Marie; Maubon, Danièle

    2017-05-01

    Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value SDS lysis instead of saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tumor lysis syndrome following endoscopic radiofrequency interstitial thermal ablation of colorectal liver metastases.

    LENUS (Irish Health Repository)

    Barry, B D

    2012-02-03

    Radiofrequency interstitial thermal ablation (RITA) provides a palliative option for patients suffering from metastatic liver disease. This procedure can be performed using a laparoscopic approach with laparoscopic ultrasound used to position the RITA probe. We describe a case of laparoscopic RITA performed for colorectal liver metastasis that was complicated by tumor lysis syndrome (TLS) following treatment. We consider RITA to be a safe procedure, as supported by the literature, but where intracorporal tumor lysis is the treatment goal we believe that the systemic release of tumor products can overwhelm the excretory capacity; therefore, TLS is an inevitable consequence in some patients.

  3. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Michael Huber

    2006-11-01

    Full Text Available BACKGROUND: To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. METHODS AND FINDINGS: Sera from two groups of patients-25 with acute HIV-1 infection and 31 with chronic infection-were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. CONCLUSIONS: Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.

  4. [Regulatory role of NKT cells in the prevention of type 1 diabetes].

    Science.gov (United States)

    Ghazarian, Liana; Simoni, Yannick; Pingris, Karine; Beaudoin, Lucie; Lehuen, Agnès

    2013-01-01

    Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic β cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes. © 2013 médecine/sciences – Inserm.

  5. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  6. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC) that is currently not accounted for

  7. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game

    OpenAIRE

    van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Oberste, M. Steven; Karpilow, Jon; Tripp, Ralph A.

    2016-01-01

    Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing event...

  8. Alerting the immune system via stromal cells is central to the prevention of tumor growth

    DEFF Research Database (Denmark)

    Navikas, Shohreh

    2013-01-01

    Anticancer immunotherapies are highly desired. Conversely, unwanted inflammatory or immune responses contribute to oncogenesis, tumor progression, and cancer-related death. For non-immunogenic therapies to inhibit tumor growth, they must promote, not prevent, the activation of anticancer immune...... responses. Here, the central immunoregulatory role of brain-specific stromal cells and neurons as well as their ability to maintain an immunological balance and prevent the development of glioblastoma is discussed....

  9. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Gerhart

    Full Text Available Posterior capsule opacification (PCO is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.

  10. Adenosine Selectively Depletes Alloreactive T Cells to Prevent GVHD While Conserving Immunity to Viruses and Leukemia.

    Science.gov (United States)

    Whitehill, Greg D; Amarnath, Shoba; Muranski, Pawel; Keyvanfar, Keyvan; Battiwalla, Minoo; Barrett, Austin J; Chinnassamy, Dhanalakshmi

    2016-09-01

    Selective depletion (SD) of alloreactive T cells from allogeneic hematopoeitic stem cell transplants to prevent graft-versus-host disease (GVHD) without compromising immune reconstitution and antitumor responses remains a challenge. Here, we demonstrate a novel SD strategy whereby alloreacting T cells are efficiently deleted ex vivo with adenosine. SD was achieved in human leukocyte antigen (HLA) mismatched cocultures by multiple exposures to 2 mmol/l adenosine over 7 days. Adenosine depleted greater than to 90% of alloproliferating T cells in mismatched, haploidentical, and matched sibling pairs while conserving response to third-party antigens. Alloreactive CD4 and CD8 T cells were targeted for depletion while NK and B cells were preserved. Our novel approach also preserved nonalloreactive naive, central, and effector memory T-cell subsets, Tregs, and notably preserved T-cell responses against DNA viruses that contribute to transplant related mortality after allogeneic hematopoeitic stem cell transplants. Additionally, T cells recognizing leukemia-associated antigens were efficiently generated in vitro from the cell product post-SD. This study is the first to demonstrate that adenosine depletion of alloactivated T cells maintains a complete immune cell profile and recall viral responses. Expansion of tumor antigen-specific subsets postdepletion opens the possibility of generating T-cell products capable of graft-versus-tumor responses without causing GVHD.

  11. Erythrocyte lysis in isotonic solution of ammonium chloride: Theoretical modelling and experimental verification

    NARCIS (Netherlands)

    Chernyshev, A.V.; Tarasov, P.A.; Semianov, K.A.; Nekrasov, V.M.; Hoekstra, A.G.; Maltsev, V.P.

    2008-01-01

    A mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane,

  12. A simple and rapid lysis method for preparation of genomic DNA ...

    African Journals Online (AJOL)

    Moreover, the resultant genomic DNA was in good quantity and quality and can be used successfully for restriction endonucleases digestion, PCR amplification and others types of molecular biology manipulations. Keywords: Genomic DNA, lysis, carvacrol, Gram-negative bacteria, Escherichia coli, Erwinia chrysanthemi ...

  13. Electrochemical lysis at the stage of endoresection for large posterior intraocular tumors

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2012-01-01

    Full Text Available Purpose: to design the new combined technique of endoresection with intraoperative intraocular electrochemical lysis at the tumor destruction stage for large posterior intraocular tumors.Methods: 3 patients (3 eyes with large choroidal melanomas t3N0M0 (tumor thickness — 8-10 mm, base diameter — 13-15 mm, juxtapapillary localization. Mean age was 55.4 years old. Endoresection with intraoperational intraocular electrochemical lysis of the tumor was performed. Electrochemical lysis was performed with use of the technical unit ECU 300 (Soering, Germany and the original method of combined intratumoral positioning of two platinum electrodes: anode and cathode.Results: the tumor was removal completely in all 3 cases. the anatomical retinal reattachment was reached in all patients. Sclera was safe in all 3 cases. Visual acuity was not changed (NLP. At the place of the removal tumor a surgical choroidal coloboma without pigmentation all over scleral bed and periphery was shown in all cases in distant postoperative period (from 1.5 to 3 years. No local recurrences or metastasis were revealed in all patients.Conclusion: Further investigations in clinical group are necessarily to determinate the real possibilities of the combined method and the indications for endoresection with intraoperative intraocular electrochemical lysis for large intraocular tumors. 

  14. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    Science.gov (United States)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  15. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    Science.gov (United States)

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  16. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    Science.gov (United States)

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  17. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells.

    Science.gov (United States)

    Hornung, Matthias; Werner, Jens M; Farkas, Stefan; Schlitt, Hans J; Geissler, Edward K

    2011-11-01

    DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.

  18. Requirement of autolytic activity for bacteriocin-induced lysis

    NARCIS (Netherlands)

    Martínez-Cuesta, M. Carmen; Kok, Jan; Herranz, Elisabet; Peláez, Carmen; Requena, Teresa; Buist, Girbe

    The bacteriocin produced by Lactococcus lactis IFPL105 is bactericidal against several Lactococcus and Lactobacillus strains. Addition of the bacteriocin to exponential-growth-phase cells resulted in all cases in bacteriolysis. The bacteriolytic response of the strains was not related to differences

  19. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells.

    Directory of Open Access Journals (Sweden)

    Antonella Pantaleo

    Full Text Available BACKGROUND: While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs. METHODOLOGY/PRINCIPAL FINDINGS: Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM or divicine (0.5 mM causes: (1 an increase in the oxidation and tyrosine phosphorylation of AE1; (2 progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3 parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.

  20. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells.

    OpenAIRE

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    Udgivelsesdato: 2008-Feb DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells by using the model organisms Escherichia coli and Schizosaccharomyces pombe as examples. Although the underlying molecular details are different, the logic behind the con...

  1. CTL lysis: there is a hyperbolic relation of killing rate to exocytosable granzyme A for highly cytotoxic murine cytotoxic T lymphocytes.

    Science.gov (United States)

    Poe, M; Wu, J K; Talento, A; Koo, G C

    1996-06-10

    The lysis of susceptible targets by efficient cytotoxic T lymphocytes (CTL) increases both with time and with the ratio of CTL to target. Simple methods for calculating a killing rate constant from the time dependence of killing and for calculating the relation of the killing rate constant to the concentration of exocytosable granzyme A are given. Application of these methods to the killing of target cells by the highly efficient mouse CTL AR1 is presented. AR1 needed granzyme A for efficient killing. AR1 contained sufficient exocytosable granzyme A to kill at about 80% of the rate possible at infinite exocytosable granzyme A.

  2. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration.

    Science.gov (United States)

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of β-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which led to mitochondrial permeability transition pore (PTP) opening, cytochrome c release and cell death. These events were fully prevented by Imeglimin treatment. This protective effect on cell death occurred without any effect on oxygen consumption rate, on lactate production and on cytosolic redox or phosphate potentials. Imeglimin also dramatically decreased reactive oxygen species production, inhibiting specifically reverse electron transfer through complex I. We conclude that Imeglimin prevents hyperglycemia-induced cell death in HMEC-1 through inhibition of PTP opening without inhibiting mitochondrial respiration nor affecting cellular energy status. Considering the high prevalence of macrovascular and microvascular complications in type 2 diabetic subjects, these results together suggest a potential benefit of Imeglimin in diabetic angiopathy.

  3. Selective effect of phosphatidylcholine on the lysis of adipocytes.

    Directory of Open Access Journals (Sweden)

    Ji-Young Kim

    Full Text Available Obesity, a serious health risk factor, is often associated with depression and negatively affects many aspects of life. Injection of a formula comprising phosphatidylcholine (PPC and deoxycholate (DC has emerged as an alternative to liposuction in the reduction of local fat deposits. However, the formula component mainly responsible for this effect and the mechanism behind the actions of the components with respect to fat reduction are unknown. Here, we investigate the specific effects of PPC and DC on adipocyte viability. When exposed to PPC or DC, 3T3L1 preadipocytes and differentiated adipocytes showed dose dependent decrease in cell viability. Interestingly, while DC mediated cell death was non-specific to both preadipocytes and adipocytes, PPC specifically induced a decrease in mature adipocyte viability, but had less effect on preadipocytes. Injection of PPC and DC into inguinal fat pads caused reduction in size. PPC injections preferentially decreased gene expression in mature adipocytes, while a strong inflammatory response was elicited by DC injection. In line with the decreased adipocyte viability, exposure of differentiated adipocytes to PPC resulted in triglyceride release, with a minimal effect on free fatty acids release, suggesting that its fat-reducing effect mediated mainly through the induction of adipocyte cell death rather than lipolysis. Taken together, it appears that PPC specifically affects adipocytes, and has less effect on preadipocyte viability. It can therefore be a promising agent to selectively reduce adipose tissue mass.

  4. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    Science.gov (United States)

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  5. Film breakers prevent migration of aqueous potassium hydroxide in fuel cells

    Science.gov (United States)

    Hess, P. D.

    1970-01-01

    Electrolyte film breakers made from polytetrafluoroethylene are installed in the reactant and water vapor removal outlets of each cell and sealed by elastomers. Use of these devices in the water vapor removal cavity outlets prevents loss of KOH solution through film migration during water removal.

  6. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    Science.gov (United States)

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  7. Histamine prevents polyamine accumulation in mouse C57.1 mast cell cultures.

    Science.gov (United States)

    Fajardo, I; Urdiales, J L; Paz, J C; Chavarría, T; Sánchez-Jiménez, F; Medina, M A

    2001-02-01

    The effects of histamine on polyamine uptake and metabolism was studied in a mouse mast cell line (C57.1), as a cell model in which both biogenic amines are important for maintaining cell function and viability. Results obtained after incubations with exogenous histamine indicated that histamine prevents polyamine accumulation by affecting polyamine uptake. A plasma membrane transport system for polyamines has been also studied in mast cells. It seems to be a Na(+)-dependent uptake with high affinity for both spermine and spermidine and lower affinity for putrescine and agmatine. Polyamine uptake was reduced in both cells treated with exogenous histamine and histamine-preloaded cells. However, ornithine decarboxylase activity and cell proliferation were not affected by histamine. Incubation with histamine enhanced the spermidine/spermine acetyl transferase induction caused by N(1)-ethyl-N(11)-[(cyclopropyl)methyl]-4,8-diazaundecane, suggesting that polyamine acetylation could be another mechanism by which histamine prevents polyamine accumulation in C57.1 mast cells.

  8. Acrolein inhalation prevents VEGF-induced mobilization of Flk-1+/Sca-1+ cells in mice

    Science.gov (United States)

    Wheat, Laura A.; Haberzettl, Petra; Hellmann, Jason; Baba, Shahid P.; Bertke, Matthew; Lee, Jongmin; McCracken, James; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2011-01-01

    Objectives Acrolein is a toxic chemical present in tobacco, wood and coal smoke as well as automobile exhaust. Because exposure to these pollutants is associated with an increase in cardiovascular disease risk, we studied the effects of acrolein on Flk-1+/Sca-1+ cells that are involved in vascular repair. Methods and Results In adult male C57BL/6 mice, inhalation of acrolein (1ppm, 6h/day, 4 days or 5ppm for 2 or 6h) led to the formation of protein-acrolein adducts in the bone marrow and diminished levels of plasma NOx and circulating Flk-1+/Sca-1+ but not Sca-1+ only cells. Acrolein exposure increased the number of apoptotic Flk-1+/Sca1+ cells in circulation, and increased bone marrow-derived cells with endothelial characteristics (Dil-acLDL/UE-lectin and Flk-1+/Sca-1+) in culture. Deficits in the circulating levels of Flk-1+/Sca-1+ cells were reversed after 7 days of recovery in acrolein-free air. Exposure to acrolein blocked VEGF/AMD3100-stimulated mobilization of Flk-1+/Sca-1+ but not Sca-1+ only cells and prevented VEGF-induced phosphorylation of Akt and eNOS in the aorta. Conclusions Inhalation of acrolein increases apoptosis and suppresses the circulating levels of Flk-1+/Sca-1+ cells, while increasing these cells in the bone marrow and preventing their mobilization by VEGF. Exposure to acrolein-rich pollutants could impair vascular repair capacity. PMID:21527748

  9. Fat Body Cells Are Motile and Actively Migrate to Wounds to Drive Repair and Prevent Infection.

    Science.gov (United States)

    Franz, Anna; Wood, Will; Martin, Paul

    2018-02-26

    Adipocytes have many functions in various tissues beyond energy storage, including regulating metabolism, growth, and immunity. However, little is known about their role in wound healing. Here we use live imaging of fat body cells, the equivalent of vertebrate adipocytes in Drosophila, to investigate their potential behaviors and functions following skin wounding. We find that pupal fat body cells are not immotile, as previously presumed, but actively migrate to wounds using an unusual adhesion-independent, actomyosin-driven, peristaltic mode of motility. Once at the wound, fat body cells collaborate with hemocytes, Drosophila macrophages, to clear the wound of cell debris; they also tightly seal the epithelial wound gap and locally release antimicrobial peptides to fight wound infection. Thus, fat body cells are motile cells, enabling them to migrate to wounds to undertake several local functions needed to drive wound repair and prevent infections. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis.

    Science.gov (United States)

    Someya, Shinichi; Yamasoba, Tatsuya; Weindruch, Richard; Prolla, Tomas A; Tanokura, Masaru

    2007-10-01

    Presbycusis is characterized by an age-related progressive decline of auditory function, and arises mainly from the degeneration of hair cells or spiral ganglion (SG) cells in the cochlea. Here we show that caloric restriction suppresses apoptotic cell death in the mouse cochlea and prevents late onset of presbycusis. Calorie restricted (CR) mice, which maintained body weight at the same level as that of young control (YC) mice, retained normal hearing and showed no cochlear degeneration. CR mice also showed a significant reduction in the number of TUNEL-positive cells and cleaved caspase-3-positive cells relative to middle-age control (MC) mice. Microarray analysis revealed that CR down-regulated the expression of 24 apoptotic genes, including Bak and Bim. Taken together, our findings suggest that loss of critical cells through apoptosis is an important mechanism of presbycusis in mammals, and that CR can retard this process by suppressing apoptosis in the inner ear tissue.

  11. Depletion of host CCR7(+) dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients.

    Science.gov (United States)

    He, Wei; Racine, Jeremy J; Johnston, Heather F; Li, Xiaofan; Li, Nainong; Cassady, Kaniel; Liu, Can; Deng, Ruishu; Martin, Paul; Forman, Stephen; Zeng, Defu

    2014-07-01

    We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells

    DEFF Research Database (Denmark)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells...... prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism...

  13. Intestinal bacterium-derived cyp27a1 prevents colon cancer cell apoptosis

    OpenAIRE

    Ji, Yan-Chao; Liu, Chang; Zhang, Xia; Zhang, Cheng-Sen; Wang, Dong; Zhang, Yan

    2016-01-01

    The pathogenesis of metastasis of colon cancer (Cca) is to be further investigated. The dysfunction of apoptotic mechanism plays a role in the cancer cell over growth. This study tests a hypothesis by which intestinal bacterium-derived cyp27a1 prevents apoptosis in colon cancer cells. In this study, the levels of cyp27a1 in human stool samples were assessed by enzyme-linked immunosorbent assay. The apoptosis of Cca cells was observed by flow cytometry. The expression of cyp27a1 was assessed b...

  14. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts.

    Science.gov (United States)

    Summer, Elizabeth J; Berry, Joel; Tran, Tram Anh T; Niu, Lili; Struck, Douglas K; Young, Ry

    2007-11-09

    Under usual laboratory conditions, lysis by bacteriophage lambda requires only the holin and endolysin genes, but not the Rz and Rz1 genes, of the lysis cassette. Defects in Rz or Rz1 block lysis only in the presence of high concentrations of divalent cations. The lambda Rz and Rz1 lysis genes are remarkable in that Rz1, encoding an outer membrane lipoprotein, is completely embedded in the +1 register within Rz, which itself encodes an integral inner membrane protein. While Rz and Rz1 equivalents have been identified in T7 and P2, most phages, including such well-studied classic phages as T4, P1, T1, Mu and SP6, lack annotated Rz/Rz1 equivalents. Here we report that a search strategy based primarily on gene arrangement and membrane localization signals rather than sequence similarity has revealed that Rz/Rz1 equivalents are nearly ubiquitous among phages of Gram-negative hosts, with 120 of 137 phages possessing genes that fit the search criteria. In the case of T4, a deletion of a non-overlapping gene pair pseT.2 and pseT.3 identified as Rz/Rz1 equivalents resulted in the same divalent cation-dependent lysis phenotype. Remarkably, in T1 and six other phages, Rz/Rz1 pairs were not found but a single gene encoding an outer membrane lipoprotein with a C-terminal transmembrane domain capable of integration into the inner membrane was identified. These proteins were named "spanins," since their protein products are predicted to span the periplasm providing a physical connection between the inner and outer membranes. The T1 spanin gene was shown to complement the lambda Rz-Rz1- lysis defect, indicating that spanins function as Rz/Rz1 equivalents. The widespread presence of Rz/Rz1 or their spanin equivalents in phages of Gram-negative hosts suggests a strong selective advantage and that their role in the ecology of these phages is greater than that inferred from the mild laboratory phenotype.

  15. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-02-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells by using the model organisms Escherichia coli and Schizosaccharomyces pombe as examples. Although the underlying molecular details are different, the logic behind the control mechanisms is similar. For example, after initiation, crucial molecules required for the loading of replicative helicases in both prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism that prevents re-replication in both systems also increases the synthesis of DNA building blocks.

  16. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells.

    Science.gov (United States)

    Gunaseelan, Srithar; Balupillai, Agilan; Govindasamy, Kanimozhi; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugam, Mohana; Thangaiyan, Radhiga; Robert, Beaulah Mary; Prasad Nagarajan, Rajendra; Ponniresan, Veeramani Kandan; Rathinaraj, Pierson

    2017-01-01

    Ultraviolet-B radiation (285-320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages.

  17. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth.

    Science.gov (United States)

    Sun, Ye; Ju, Meihua; Lin, Zhiqiang; Fredrick, Thomas W; Evans, Lucy P; Tian, Katherine T; Saba, Nicholas J; Morss, Peyton C; Pu, William T; Chen, Jing; Stahl, Andreas; Joyal, Jean-Sébastien; Smith, Lois E H

    2015-09-22

    Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial SOCS3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling. Copyright © 2015, American Association for the Advancement of Science.

  18. Prevention of Biomaterial Infection by Pre-Operative Incubation with Human Cells.

    Science.gov (United States)

    Pérez-Tanoira, Ramón; Aarnisalo, Antti A; Eklund, Kari K; Han, Xia; Soininen, Antti; Tiainen, Veli-Matti; Esteban, Jaime; Kinnari, Teemu J

    2017-04-01

    Cells of tissues and biofilm forming bacteria compete for the living space on the surface of an implant. We hypothesized the incubation of the implant (titanium, polydimethylsiloxane, and polystyrene surface) with human cells before implantation as a strategy to prevent bacterial adhesion and biofilm formation. After 24 hours of incubation with human osteogenic sarcoma SaOS-2 cells (1 × 10 5 cells/mL), the materials were incubated for 4.5 hours or two days with Staphylococcus aureus in serial 1:10 dilutions of 10 8 colony-forming units/mL. The bacterial adherence and biofilm biomass on materials pre-incubated with SaOS-2 cells were compared with our previous results on materials incubated only with bacteria or in simultaneous co-culture of SaOS-2 cells and S. aureus. Fluorescent microscopy and crystal violet stain were used. The number of viable SaOS-2 and bacterial cells present was tested using colorimetric methods (MTT, LDH) and drop plate method, respectively. The pre-treatment with human cells was associated with a reduction of bacterial colonization of the biomaterial at 4.5 hours and 48 hours compared with the non-pre-treated materials. The presence of bacteria decreased the number of viable human cells on all materials. ( Supplementary Fig. 1 ; see online supplementary materials at www.liebertpub.com/sur ). These results suggest that the pre-operative incubation of prostheses with host cells could prevent infection of biomaterials.

  19. [Tumor lysis syndrome in a pregnancy complicated with acute lymphoblastic leukemia].

    Science.gov (United States)

    Álvarez-Goris, M P; Sánchez-Zamora, R; Torres-Aguilar, A A; Briones Garduño, J C

    2016-04-01

    Acute leukemia is rare during pregnancy, affects about 1 in 75,000 pregnancies, of all leukemias diagnosed only 28% are acute lymphoblastic leukemia, this is a risk factor to develop spontaneous tumor lysis syndrome, it's a oncologic complication potentially deadly if the prophylactic treatment its avoided. Cases of acute lymphoblastic leukemia associated with pregnancy has been poorly documented in the literature the association of these two entities to pregnancy is the first report published worldwide, so the information is limited.

  20. Arthroscopic lysis and lavage in patients with temporomandibular anterior disc displacement without reduction

    Czech Academy of Sciences Publication Activity Database

    Machoň, V.; Šedý, Jiří; Klíma, K.; Hirjak, D.; Foltán, R.

    2012-01-01

    Roč. 41, č. 1 (2012), s. 109-113 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : temporomandibular joint * arthroscopic lysis * arthroscopic lavage Subject RIV: FJ - Surgery incl. Transplants Impact factor: 1.521, year: 2012

  1. An improved single-step lysis protocol to measure luciferase bioluminescence in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Hasenkamp Sandra

    2012-02-01

    Full Text Available Abstract This report describes the optimization and evaluation of a simple single-step lysis protocol to measure luciferase bioluminescence from genetically modified Plasmodium falciparum. This protocol utilizes a modified commercial buffer to improve speed of assay and consistency in the bioluminescence signal measured by reducing the manipulation steps required to release the cytoplasmic fraction. The utility of this improved assay protocol is demonstrated in typical assays that explore absolute and temporal gene expression activity.

  2. Endothelin receptor antagonist prevents parathyroid cell proliferation of low calcium diet-induced hyperparathyroidism in rats.

    Science.gov (United States)

    Kanesaka, Y; Tokunaga, H; Iwashita, K; Fujimura, S; Naomi, S; Tomita, K

    2001-01-01

    Secondary hyperparathyroidism, one of the most frequently encountered disorders of the calcium homeostasis, is characterized by an increase in parathyroid epithelial (PT) cell number, which is crucial from a functional viewpoint. However, it is still unknown what factors are involved in PT cell proliferation. Endothelin-1 (ET-1), a vasoconstrictive peptide, has been shown to act as a mitogen in a variety of cell types. Rat PT cells are reported to synthesize ET-1 and possess its receptors. To test the hypothesis that ET-1 plays a role in PT cell proliferation, we used rat test subjects fed a low calcium diet for 8 weeks (low Ca rats). The number of the proliferating PT cells, measured by proliferating cell nuclear antigen immunostaining, was significantly increased, with striking immunoreactivity of ET-1 in the low Ca rats. An endothelin receptor antagonist, bosentan (100 mg/kg.day), prevented any increase in the proliferation of PT cells in the low Ca rats (14.3 +/- 2.7/1000 PT cells with no bosentan; 2.1 +/- 1.3 with bosentan; P hyperparathyroidism.

  3. Langerhans Cells Prevent Autoimmunity via Expansion of Keratinocyte Antigen-Specific Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Daniela Y. Kitashima

    2018-01-01

    Full Text Available Langerhans cells (LCs are antigen-presenting cells in the epidermis whose roles in antigen-specific immune regulation remain incompletely understood. Desmoglein 3 (Dsg3 is a keratinocyte cell-cell adhesion molecule critical for epidermal integrity and an autoantigen in the autoimmune blistering disease pemphigus. Although antibody-mediated disease mechanisms in pemphigus are extensively characterized, the T cell aspect of this autoimmune disease still remains poorly understood. Herein, we utilized a mouse model of CD4+ T cell-mediated autoimmunity against Dsg3 to show that acquisition of Dsg3 and subsequent presentation to T cells by LCs depended on the C-type lectin langerin. The lack of LCs led to enhanced autoimmunity with impaired Dsg3-specific regulatory T cell expansion. LCs expressed the IL-2 receptor complex and the disruption of IL-2 signaling in LCs attenuated LC-mediated regulatory T cell expansion in vitro, demonstrating that direct IL-2 signaling shapes LC function. These data establish that LCs mediate peripheral tolerance against an epidermal autoantigen and point to langerin and IL-2 signaling pathways as attractive targets for achieving tolerogenic responses particularly in autoimmune blistering diseases such as pemphigus.

  4. Targeted disruption of CD1d prevents NKT cell development in pigs.

    Science.gov (United States)

    Yang, Guan; Artiaga, Bianca L; Hackmann, Timothy J; Samuel, Melissa S; Walters, Eric M; Salek-Ardakani, Shahram; Driver, John P

    2015-06-01

    Studies in mice genetically lacking natural killer T (NKT) cells show that these lymphocytes make important contributions to both innate and adaptive immune responses. However, the usefulness of murine models to study human NKT cells is limited by the many differences between mice and humans, including that their NKT cell frequencies, subsets, and distribution are dissimilar. A more suitable model may be swine that share many metabolic, physiological, and growth characteristics with humans and are also similar for NKT cells. Thus, we analyzed genetically modified pigs made deficient for CD1d that is required for the development of Type I invariant NKT (iNKT) cells that express a semi-invariant T-cell receptor (TCR) and Type II NKT cells that use variable TCRs. Peripheral blood analyzed by flow cytometry and interferon-γ enzyme-linked immuno spot assays demonstrated that CD1d-knockout pigs completely lack iNKT cells, while other leukocyte populations remain intact. CD1d and NKT cells have been shown to be involved in shaping the composition of the commensal microbiota in mice. Therefore, we also compared the fecal microbiota profile between pigs expressing and lacking NKT cells. However, no differences were found between pigs lacking or expressing CD1d. Our results are the first to show that knocking-out CD1d prevents the development of NKT cells in a non-rodent species. CD1d-deficient pigs should offer a useful model to more accurately determine the contribution of NKT cells for human immune responses. They also have potential for understanding how NKT cells impact the health of commercial swine.

  5. Comparison of the lysis-centrifugation and agitated biphasic blood culture systems for detection of fungemia.

    Science.gov (United States)

    Murray, P R

    1991-01-01

    Although the detection of fungemia has been improved by the use of vented or biphasic blood culture bottles, the best recovery and earliest detection have been reported in the Isolator lysis-centrifugation system. It was recently demonstrated that improved detection of both bacteria and fungi was accomplished by mechanically agitating blood culture bottles for the first 24 h of incubation. In this study the detection of fungemia by use of the Isolator system was compared with that of an agitated biphasic system. A total of 182 fungi were isolated from blood specimens inoculated into both culture systems. No difference in the overall recovery of fungi or individual species of yeasts was observed between the two systems. However, all seven isolates of Histoplasma capsulatum were recovered in the Isolator system only. The time required to detect fungemia with each of the two systems was also compared. No statistically significant difference was observed. From the data collected during this 18-month study, it can be concluded that the overall recovery and time of detection of yeasts are equivalent in the lysis-centrifugation system and the agitated biphasic blood culture system. The lysis-centrifugation system is still superior for the detection of filamentous fungi such as H. capsulatum. PMID:1993772

  6. Tumor lysis syndrome as a contributory factor to the development of reversible posterior leukoencephalopathy

    International Nuclear Information System (INIS)

    Ozkan, A.; Ozkalemkas, F.; Ali, R.; Ozkocaman, V.; Ozcelik, T.; Altundal, Y.; Tunali, A.; Hakyemez, B.; Taskapilioglu, O.

    2006-01-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is a recently described clinical and radiological entity comprising headache, seizures, altered level of consciousness and visual disturbances in association with transient posterior cerebral white-matter abnormalities. We report a young woman with Burkitt's lymphoma who developed RPLS after combined chemotherapy administered during the tumor lysis syndrome. The symptoms in this patient fitted well with those of RPLS; they included abrupt alterations in mental status, seizures, headache, visual changes and characteristic neuroradiological findings. She was given further combination chemotherapy without any neurological complications, at which time she had already recovered from both RPLS and tumor lysis syndrome. Although many etiological factors have been reported in the development of RPLS, the underlying mechanism is not yet well understood. With prompt and appropriate management, RPLS is usually reversible, and chemotherapy can be continued after complete recovery from RPLS. We suggest that tumor lysis syndrome should be considered as a contributory factor to the development of RPLS in patients for whom treatment with combined chemotherapy for hematological malignancies is planned. (orig.)

  7. A controllable bacterial lysis system to enhance biological safety of live attenuated Vibrio anguillarum vaccine.

    Science.gov (United States)

    Chu, Teng; Guan, Lingyu; Shang, Pengfei; Wang, Qiyao; Xiao, Jingfan; Liu, Qin; Zhang, Yuanxing

    2015-08-01

    Bacterial strains used as backbone for the generation of vaccine prototypes should exhibit an adequate and stable safety profile. Given the fact that live attenuated vaccines often contain some potential risks in virulence recovery and spread infections, new approaches are greatly needed to improve their biological safety. Here, a critically iron-regulated promoter PviuA was screened from Vibrio anguillarum, which was demonstrated to respond to iron-limitation signal both in vitro and in vivo. By using PviuA as a regulatory switch to control the expression of phage P22 lysis cassette 13-19-15, a novel in vivo inducible bacterial lysis system was established in V. anguillarum. This system was proved to be activated by iron-limitation signals and then effectively lyse V. anguillarum both in vitro and in vivo. Further, this controllable bacterial lysis system, after being transformed into a live attenuated V. anguillarum vaccine strain MVAV6203, was confirmed to significantly improve biological safety of the live attenuated vaccine without impairing its immune protection efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Split anergized natural killer cells halt inflammation by inducing stem cell differentiation, resistance to NK cell cytotoxicity and prevention of cytokine and chemokine secretion

    Science.gov (United States)

    Tseng, Han-Ching; Cacalano, Nicholas; Jewett, Anahid

    2015-01-01

    The mechanism of suppression of NK cytotoxicity in cancer patients is not clearly established. In this paper we provide evidence that anergized NK cells induce differentiation of healthy Dental Pulp Stem Cells (DPSCs) or transformed Oral Squamous Cancer Stem Cells (OSCSCs) resulting in cell growth inhibition, resistance to NK cell-mediated cytotoxicity and prevention of inflammatory mediators secretion. Induction of cytotoxicity resistance in differentiated cells correlated with increased CD54 and MHC class I surface expression and mediated by the combination of IFN-γ and TNF-α since antibodies to both, but not each cytokine alone, was able to inhibit resistance. In contrast, inhibition of cytokine and chemokine release was mediated by IFN-γ since the addition of anti-IFN-γ antibody, and not anti-TNF-α, restored secretion of inflammatory mediators in NK cell cultures with differentiated DPSCs and OSCSCs. There was a gradual and time dependent decrease in MHC class I and CD54 expression which correlated with the restoration of NK cell cytotoxicity, augmentation of cytokine secretion and increased cell growth from days 0–12 post NK removal. Continuous presence of NK cells is required for the maintenance of cell differentiation since the removal of NK cell-mediated function reverses the phenotype and function of differentiated cells to their stem-like cells. PMID:25860927

  9. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  10. [Extraction of sperm DNA from mixed stain by the modified differential lysis method combined with silicon bead method].

    Science.gov (United States)

    Han, Hai-Jun; Zhang, Yu-Hong; Yang, Min; Yi, Hai; Yang, Geng-Ye; Jia, Dong-Tao; Lu, Da-Ru

    2014-02-01

    To extract sperm DNA from mixed stain by the modified differential lysis method combined with silicon bead method and to evaluate its application value. Fifty-two mixed stains containing female STR genotypes detected by differential lysis method were collected. The sperm DNA was extracted by the modified method combined with silicon bead method, then genotyped with the Identifiler Kit, and compared with the results of genotyping by the conventional differential lysis method as control. Of the 52 samples, 38 samples with sole male STR genotypes in all loci were detected. The detection rate of male STR genotypes was 98.08% through the modified method combined with silicon bead method. The modified differential lysis method combined with silicon bead method can be used in extraction of sperm DNA from mixed stain.

  11. New Therapeutic Approaches to Prevent or Delay Beta-Cell Failure in Diabetes

    Directory of Open Access Journals (Sweden)

    Ionica Floriana Elvira

    2015-09-01

    Full Text Available Background and aims: The most recent estimates of International Diabetes Federation indicate that 382 million people have diabetes, and the incidence of this disease is increasing. While in type 1 diabetes mellitus (T1DM beta-cell death is autoimmunemediated, type 2 diabetes mellitus (T2DM results from an interaction between genetic and environmental factors that impair beta-cell function and insulin action. Many people with T2DM remain unaware of their illness for a long time because symptoms may take years to appear or be recognized, while the body is affected by excess blood glucose. These patients are often diagnosed only when diabetes complications have already developed. The aim of this article was to perform a review based on literature data on therapeutic modalities to prevent/delay beta cell function decline. Material and Methods: We searched MEDLINE from 2000 to the present to identify the therapeutic approaches to prevent or delay beta-cell failure in patients with T2DM. Results and conclusions: Several common polymorphisms in genes linked to monogenic forms of diabetes appear to influence the response to T2DM pharmacotherapy. Recent studies report the role of the G protein coupled receptor 40 (GPR40, also known as Free Fatty Acids Receptor 1 (FFAR1 in the regulation of beta-cell function- CNX-011-67 (a GPR40 agonist has the potential to provide good and durable glycemic control in T2DM patients.

  12. Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2017-01-01

    Full Text Available Although angiotensin II (Ang II was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN via activating nuclear factor (erythroid-derived 2-like 2 (NRF2, the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2.

  13. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications.

    Science.gov (United States)

    Bayat, Sahar; Shekari Khaniani, Mahmoud; Choupani, Jalal; Alivand, Mohammad Reza; Mansoori Derakhshan, Sima

    2018-01-01

    Epigenetics is independent of the sequence events that physically affect the condensing of chromatin and genes expression. The unique epigenetic memories of various cells trigger exclusive gene expression profiling. According to different studies, the aberrant epigenetic signatures and impaired gene expression profiles are master occurrences in cancer cells in which oncogene and tumor suppressor genes are affected. Owing to the facts that epigenetic modifications are performed earlier than expression and are reversible, the epigenetic reprogramming of cancer cells could be applied potentially for their prevention, control, and therapy. The disruption of the acetylation signature, as a master epigenetic change in cancers, is related to the expression and the activity of HDACs. In this context, class I HDACs play a significant role in the regulation of cell proliferation and cancer. More recently, cancer stem cell (CSC) has been introduced as a minority population of tumor that is responsible for invasiveness, drug resistance, and relapse of cancers. It is now believed that controlling CSC via epigenetic reprogramming such as targeting HDACs could be helpful in regulating the acetylation pattern of chromatin. Recently, a number of reports have introduced some phytochemicals as HDAC inhibitors. The use of phytochemicals with the HDAC inhibition property could be potentially efficient in overcoming the mentioned problems of CSCs. This review presents a perspective concerning HDAC-targeted phytochemicals to control CSC in tumors. Hopefully, this new route would have more advantages in therapeutic applications and prevention against cancer. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Intestinal bacterium-derived cyp27a1 prevents colon cancer cell apoptosis.

    Science.gov (United States)

    Ji, Yan-Chao; Liu, Chang; Zhang, Xia; Zhang, Cheng-Sen; Wang, Dong; Zhang, Yan

    2016-01-01

    The pathogenesis of metastasis of colon cancer (Cca) is to be further investigated. The dysfunction of apoptotic mechanism plays a role in the cancer cell over growth. This study tests a hypothesis by which intestinal bacterium-derived cyp27a1 prevents apoptosis in colon cancer cells. In this study, the levels of cyp27a1 in human stool samples were assessed by enzyme-linked immunosorbent assay. The apoptosis of Cca cells was observed by flow cytometry. The expression of cyp27a1 was assessed by real time RT-PCR and Western blotting. We observed higher levels of cyp27a1 in the stool samples of Cca patients than that from healthy subjects. Cca colon epithelial biopsy contained high levels of cyp27a1 protein, but not the cyp27a1 mRNA. Cyp27a1 prevented Cca cell apoptosis induced by vitamin D3. In conclusion, intestinal bacterium-derived cyp27a1 facilitates Cca survival by inhibiting Cca cell apoptosis.

  15. Inhibiting HSP90 prevents the induction of myeloid-derived suppressor cells by melanoma cells.

    Science.gov (United States)

    Janssen, Nicole; Speigl, Lisa; Pawelec, Graham; Niessner, Heike; Shipp, Christopher

    2018-02-21

    Metastatic melanoma is the most dangerous form of skin cancer, with an ever-increasing incidence worldwide. Despite encouraging results with immunotherapeutic approaches, long-term survival is still poor. This is likely partly due to tumour-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs), which were shown to be associated with response to therapy and survival. Thus, identifying pathways responsible for MDSC differentiation may provide new therapeutic targets and improve efficacy of existing immunotherapies. Therefore, we've analysed mechanisms by which tumour cells contribute to the induction of MDSCs. Established melanoma cell lines were pre-treated with inhibitors of different pathways and tested for their capacity to alleviate T cell suppression via MDSC differentiation in vitro. Targeting HSP70/90 in melanoma cells resulted in reduced induction of immune suppressive cells on a phenotypic and functional basis, for which a more potent effect was observed when HSP90 was inhibited under hypoxic conditions. This initial study suggests a novel mechanism in tumour cells responsible for the induction of MDSC in melanoma. Copyright © 2018. Published by Elsevier Inc.

  16. Mast Cell Stabilizers as Host Modulatory Drugs to Prevent and Control Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Dhoom Singh Mehta

    2011-01-01

    Full Text Available Introduction: Mast cells are among the first cells to get in-volved in periodontal inflammation. Their numbers have been shown to be in-creased in cases of gingivitis and periodontal disease. The hypothesis: Since mast cell stabilizers like sodium cromogly-cate (SCG and nedocromil sodium (NS have been used in the prophylaxis of bronchial asthma without any significant adverse effects and also the fact that drugs like SCG show significant anti-inflammatory activities, it would be logical to use mast cell stabilizers as host modulating drugs for the treatment and prevention of peri-odontal disease. Evaluation of the hypothesis: Safety and efficacy of both SCG and NS are well documented. So, it will be systemically safe to use in humans. However, oral administration SCG or delivery of the drug by means local irrigation will not be very useful because SCG may not be secreted in the gingival crevicular fluid (GCF(as in the case of oral administraion or the drug may get washed out from periodontal pocket due to the constant flow of GCF(as in the case of irrigation. A local or targeted drug delivery of mast cell stabilizers can be used in patients with periodontal disease. Role of mast cells in periodontal disease has been dealt in-depth in many studies and articles. However, limited amount of research has been done on using mast cell stabilizers in the prevention and control of periodontal diseases. More studies are needed to study the efficacy and effective-ness of mast cell stabilizers as an adjunct to phase I therapy in the control of periodontal disease.

  17. γδ T Cell-Dependent Regulatory T Cells Prevent the Development of Autoimmune Keratitis1

    Science.gov (United States)

    Huang, Yafei; Yang, Zhifang; Huang, Chunjian; McGowan, Jessica; Casper, Tamara; Sun, Deming; Born, Willi K.; O’Brien, Rebecca L.

    2015-01-01

    To prevent potentially damaging inflammatory responses, the eye actively promotes local immune tolerance via a variety of mechanisms. Due to trauma, infection, or other ongoing autoimmunity, these mechanisms sometimes fail, and an autoimmune disorder may develop in the eye. In mice of the C57BL/10 (B10) background, autoimmune keratitis often develops spontaneously, particularly in the females. Its incidence is greatly elevated in the absence of γδ T cells, such that about 80% of female B10.TCRδ−/− mice develop keratitis by 18 weeks of age. Here, we show that CD8+ αβ T cells are the drivers of this disease, because adoptive transfer of CD8+ but not CD4+ T cells to keratitis-resistant B10.TCRβ/δ−/− hosts induced a high incidence of keratitis. This was unexpected because in other autoimmune diseases, more often CD4+ αβ T cells, or both CD4+ and CD8+ αβ T cells, mediate the disease. Compared to wildtype B10 mice, B10.TCRδ−/− mice also show increased percentages of peripheral memory phenotype CD8+ αβ T cells, along with an elevated frequency of CD8+ αβ T cells biased to produce inflammatory cytokines. B10.TCRδ−/− mice in addition have fewer peripheral CD4+ CD25+ FoxP3+ regulatory αβ T cells (Tregs), which express lower levels of receptors needed for Treg development and function. Together, these observations suggest that in B10 background mice, γδ T cells are required to generate adequate numbers of CD4+ CD25+ FoxP3+ Tregs, and that in B10.TCRδ−/− mice a Treg deficiency allows dysregulated effector or memory CD8+ αβ T cells to infiltrate the cornea and provoke an autoimmune attack. PMID:26566677

  18. Blood culture bottles are superior to lysis-centrifugation tubes for bacteriological diagnosis of spontaneous bacterial peritonitis.

    OpenAIRE

    Siersema, P D; de Marie, S; van Zeijl, J H; Bac, D J; Wilson, J H

    1992-01-01

    The conventional method of ascitic fluid culturing was compared with the bedside inoculation of ascites into blood culture bottles and into lysis-centrifugation tubes. The conventional culture method was compared with the blood culture bottle method in 31 episodes of spontaneous bacterial peritonitis (SBP). Cultures were positive with the conventional culture method in 11 (35%) episodes and with the blood culture bottle method in 26 (84%) episodes (P less than 0.001). The lysis-centrifugation...

  19. Randomized Controlled Trial of Sildenafil for Preventing Recurrent Ischemic Priapism in Sickle Cell Disease

    Science.gov (United States)

    Burnett, Arthur L.; Anele, Uzoma A.; Trueheart, Irene N.; Strouse, John J.; Casella, James F.

    2014-01-01

    BACKGROUND Successful preventive therapy for ischemic priapism, a disorder of penile erection with major physical and psychologic consequences, is limited. We conducted a randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of sildenafil by a systematic dosing protocol to prevent recurrent ischemic priapism associated with sickle cell disease. METHODS Thirteen patients with sickle cell disease reporting priapism recurrences at least twice weekly were randomized to receive sildenafil 50 mg or placebo daily, unassociated with sleep or sexual activity, for 8 weeks, followed by open-label use of this sildenafil regimen for an additional 8 weeks. RESULTS Priapism frequency reduction by 50% did not differ between sildenafil and placebo groups by intention-to-treat or per protocol analyses (P = 1.0). However, during open-label assessment, 5 of 8 patients (62.5%) by intention-to-treat analysis and 2 of 3 patients (66.7%) by per protocol analysis met this primary efficacy outcome. No significant differences were found between study groups in rates of adverse effects, although major priapism episodes were decreased 4-fold in patients monitored “on-treatment.” CONCLUSIONS Sildenafil use by systematic dosing may offer a strategy to prevent recurrent ischemic priapism in patients with sickle cell disease. PMID:24680796

  20. Role of hydroxycarbamide in prevention of complications in patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    NM Wiles

    2009-09-01

    Full Text Available NM Wiles, J HowardDepartment of Haematology, St Thomas’ Hospital, Westminster, Bridge Road, London, SE1 7EH, UKAbstract: Sickle cell disease (SCD is a genetically inherited condition caused by a point mutation in the beta globin gene. This results in the production of the abnormal hemoglobin, sickle hemoglobin (HbS. Hydroxycarbamide, is an antimetabolite/cytotoxic which works by inhibiting ribonucleotide reductase, blocking the synthesis of DNA and arresting cells in the S phase. In sickle cell anemia, it promotes fetal hemoglobin (HbF synthesis, improves red cell hydration, decreases neutrophil and platelet count, modifies red cell endothelial cell interactions and acts as a nitric oxide donor. Trials have shown the clinical benefit of hydroxycarbamide in a subpopulation of adult patients with SCD, with a 44% reduction in the median annual rate of painful crises, a decrease in the incidence of acute chest syndrome and an estimated 40% reduction in overall mortality over a 9-year observational period. Its use in pediatrics has also been well established; trials have shown it is well tolerated and does not impair growth or development. In addition it decreases the number and duration of hospital attendences. A number of emerging uses of hydroxycarbamide currently are being investigated, such as stroke prevention.Keywords: sickle cell anemia, hydroxycarbamide, hydroxyurea, maximum tolerated dose, vaso-occlusive crisis

  1. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Science.gov (United States)

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  2. Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease.

    Science.gov (United States)

    Wang, Winfred C; Dwan, Kerry

    2013-11-14

    In sickle cell disease, a common inherited haemoglobin disorder, abnormal haemoglobin distorts red blood cells, causing anaemia, vaso-occlusion and dysfunction in most body organs. Without intervention, stroke affects around 10% of children with sickle cell anaemia (HbSS) and recurrence is likely. Chronic blood transfusion dilutes the sickled red blood cells, reducing the risk of vaso-occlusion and stroke. However, side effects can be severe. To assess risks and benefits of chronic blood transfusion regimens in people with sickle cell disease to prevent first stroke or recurrences. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and conference proceedings.Date of the latest search of the Group's Haemoglobinopathies Trials Register: 28 January 2013. Randomised and quasi-randomised controlled trials comparing blood transfusion as prophylaxis for stroke in people with sickle cell disease to alternative or no treatment. Both authors independently assessed the risk of bias of the included trials and extracted data. Searches identified three eligible randomised trials (n = 342). The first two trials addressed the use of chronic transfusion to prevent primary stroke; the third utilized the drug hydroxycarbamide (hydroxyurea) and phlebotomy to prevent both recurrent (secondary) stroke and iron overload in patients who had already experienced an initial stroke. In the first trial (STOP) a chronic transfusion regimen for maintaining sickle haemoglobin lower than 30% was compared with standard care in 130 children with sickle cell disease judged (through transcranial Doppler ultrasonography) as high-risk for first stroke. During the trial, 11 children in the standard care group suffered a stroke compared to one in the transfusion group, odds ratio 0.08 (95% confidence interval 0.01 to 0.66). This meant the trial was

  3. Histamine prevents radiation-induced mesenchymal changes in breast cancer cells.

    Science.gov (United States)

    Galarza, Tamara E; Mohamad, Nora A; Táquez Delgado, Mónica A; Vedoya, Guadalupe M; Crescenti, Ernesto J; Bergoc, Rosa M; Martín, Gabriela A; Cricco, Graciela P

    2016-09-01

    Radiotherapy is a prime option for treatment of solid tumors including breast cancer though side effects are usually present. Experimental evidence shows an increase in invasiveness of several neoplastic cell types through conventional tumor irradiation. The induction of epithelial to mesenchymal transition is proposed as an underlying cause of metastasis triggered by gamma irradiation. Experiments were conducted to investigate the role of histamine on the ionizing radiation-induced epithelial to mesenchymal transition events in breast cancer cells with different invasive phenotype. We also evaluated the potential involvement of Src phosphorylation in the migratory capability of irradiated cells upon histamine treatment. MCF-7 and MDA-MB-231 mammary tumor cells were exposed to a single dose of 2Gy of gamma radiation and five days after irradiation mesenchymal-like phenotypic changes were observed by optical microscope. The expression and subcellular localization of E-cadherin, β-catenin, vimentin and Slug were determined by immunoblot and indirect immunofluorescence. There was a decrease in the epithelial marker E-cadherin expression and an increase in the mesenchymal marker vimentin after irradiation. E-cadherin and β-catenin were mainly localized in cytoplasm. Slug positive nuclei, matrix metalloproteinase-2 activity and cell migration and invasion were significantly increased. In addition, a significant enhancement in Src phosphorylation/activation could be determined by immunoblot in irradiated cells. MCF-7 and MDA-MB-231 cells also received 1 or 20μM histamine during 24h previous to be irradiated. Notably, pre-treatment of breast cancer cells with 20μM histamine prevented the mesenchymal changes induced by ionizing radiation and also reduced the migratory behavior of irradiated cells decreasing phospho-Src levels. Collectively, our results suggest that histamine may block events related to epithelial to mesenchymal transition in irradiated mammary cancer

  4. Haemophilus haemolyticus Interaction with Host Cells Is Different to Nontypeable Haemophilus influenzae and Prevents NTHi Association with Epithelial Cells.

    Science.gov (United States)

    Pickering, Janessa L; Prosser, Amy; Corscadden, Karli J; de Gier, Camilla; Richmond, Peter C; Zhang, Guicheng; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-01-01

    Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-species variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549) within 3 h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24 h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1β, and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response. Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and cytotoxic

  5. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game.

    Science.gov (United States)

    van der Sanden, Sabine M G; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C; Brooks, Paula; O'Donnell, Jason; Jones, Les P; Brown, Cedric; Tompkins, S Mark; Oberste, M Steven; Karpilow, Jon; Tripp, Ralph A

    2016-02-15

    Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work

  6. Repurposing of bisphosphonates for the prevention and therapy of nonsmall cell lung and breast cancer.

    Science.gov (United States)

    Stachnik, Agnes; Yuen, Tony; Iqbal, Jameel; Sgobba, Miriam; Gupta, Yogesh; Lu, Ping; Colaianni, Graziana; Ji, Yaoting; Zhu, Ling-Ling; Kim, Se-Min; Li, Jianhua; Liu, Peng; Izadmehr, Sudeh; Sangodkar, Jaya; Scherer, Thomas; Mujtaba, Shiraz; Galsky, Matthew; Gomez, Jorge; Epstein, Solomon; Buettner, Christoph; Bian, Zhuan; Zallone, Alberta; Aggarwal, Aneel K; Haider, Shozeb; New, Maria I; Sun, Li; Narla, Goutham; Zaidi, Mone

    2014-12-16

    A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine kinase inhibitors (TKIs), namely gefitinib and erlotinib, and whether the drugs can target TKI-resistant NSCLCs. In silico docking, together with molecular dynamics and anisotropic network modeling, showed that bisphosphonates bind to TKIs within the HER1 kinase domain. As predicted from this combinatorial binding, bisphosphonates enhanced the effects of TKIs in reducing cell viability and driving tumor regression in mice. Impressively, the drugs also overcame erlotinib resistance acquired through the gatekeeper mutation T790M, thus offering an option for TKI-resistant NSCLCs. We suggest that bisphosphonates can potentially be repurposed for the prevention and adjunctive therapy of HER1-driven cancers.

  7. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    Science.gov (United States)

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  8. Lysis to Kill: Evaluation of the Lytic Abilities, and Genomics of Nine Bacteriophages Infective for Gordonia spp. and Their Potential Use in Activated Sludge Foam Biocontrol.

    Directory of Open Access Journals (Sweden)

    Zoe A Dyson

    Full Text Available Nine bacteriophages (phages infective for members of the genus Gordonia were isolated from wastewater and other natural water environments using standard enrichment techniques. The majority were broad host range phages targeting more than one Gordonia species. When their genomes were sequenced, they all emerged as double stranded DNA Siphoviridae phages, ranging from 17,562 to 103,424 bp in size, and containing between 27 and 127 genes, many of which were detailed for the first time. Many of these phage genomes diverged from the expected modular genome architecture of other characterized Siphoviridae phages and contained unusual lysis gene arrangements. Whole genome sequencing also revealed that infection with lytic phages does not appear to prevent spontaneous prophage induction in Gordonia malaquae lysogen strain BEN700. TEM sample preparation techniques were developed to view both attachment and replication stages of phage infection.

  9. Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity

    Directory of Open Access Journals (Sweden)

    Christian Thomas Mayer

    2012-07-01

    Full Text Available The last decades of Nobel prize-honored research have unequivocally proven a key role of dendritic cells (DCs at controlling both T cell immunity and tolerance. A tight balance between these opposing DC functions ensures immune homeostasis and host integrity. Its perturbation could explain pathological conditions such as the attack of self tissues, chronic infections and tumor immune evasion. While recent insights into the complex DC network help to understand the contribution of individual DC subsets to immunity, the tolerogenic functions of DCs only begin to emerge. As these consist of many different layers, the definition of a ‘tolerogenic DC’ is subjected to variation. Moreover, the implication of DCs and DC subsets in the suppression of autoimmunity are incompletely resolved. In this review, we point out conceptual controversies and dissect the various layers of DC-mediated T cell tolerance. These layers include central tolerance, Foxp3+ regulatory T cells, anergy/deletion and negative feedback regulation. The mode and kinetics of antigen presentation is highlighted as an additional factor shaping tolerance. Special emphasis is given to the interaction between layers of tolerance as well as their differential regulation during inflammation. Furthermore, potential technical caveats of DC depletion models are considered. Finally, we summarize our current understanding of DC-mediated tolerance and its role for the suppression of autoimmunity. Understanding the mechanisms of DC-mediated tolerance and their complex interplay is fundamental for the development of selective therapeutic strategies, e.g. for the modulation of autoimmune responses or for the immunotherapy of cancer.

  10. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity

    Directory of Open Access Journals (Sweden)

    Philippe Régnier

    2015-05-01

    Full Text Available Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI+/ion trap-MS characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM. No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.

  11. Surgical treatment of bilateral nondisplaced isthmic lysis by interlaminar fixation device

    Directory of Open Access Journals (Sweden)

    Keyvan Mostofi

    2017-01-01

    Full Text Available Study Design: Spondylolysis is a defect in the portion of pars interarticularis. The latter affects approximately 6% of the population. It is caused by repetitive trauma in hyperextension. Low back pain is the most common symptom. Methods: We implanted interspinous process devices in 12 patients with isthmic lysis without spondylolisthesis for low back pain. The purpose of the surgery was to conduct a minimally invasive procedure. Results: In eight cases, patients became asymptomatic. In two cases, there has been a considerable improvement. In two cases, no change had been noted. Conclusion: This good result motivates us to consider this approach a part of therapeutic arsenal for some cases of spondylolysis.

  12. Ptaquiloside reduces NK cell activities by enhancing metallothionein expression, which is prevented by selenium.

    Science.gov (United States)

    Latorre, Andreia O; Caniceiro, Beatriz D; Fukumasu, Heidge; Gardner, Dale R; Lopes, Fabricio M; Wysochi, Harry L; da Silva, Tereza C; Haraguchi, Mitsue; Bressan, Fabiana F; Górniak, Silvana L

    2013-02-08

    Pteridium aquilinum, one of the most important poisonous plants in the world, is known to be carcinogenic to animals and humans. Moreover, our previous studies showed that the immunosuppressive effects of ptaquiloside, its main toxic agent, were prevented by selenium in mouse natural killer (NK) cells. We also verified that this immunosuppression facilitated development of cancer. Here, we performed gene expression microarray analysis in splenic NK cells from mice treated for 14 days with ptaquiloside (5.3 mg/kg) and/or selenium (1.3 mg/kg) to identify gene transcripts altered by ptaquiloside that could be linked to the immunosuppression and that would be prevented by selenium. Transcriptome analysis of ptaquiloside samples revealed that 872 transcripts were expressed differentially (fold change>2 and p<0.05), including 77 up-regulated and 795 down-regulated transcripts. Gene ontology analysis mapped these up-regulated transcripts to three main biological processes (cellular ion homeostasis, negative regulation of apoptosis and regulation of transcription). Considering the immunosuppressive effect of ptaquiloside, we hypothesized that two genes involved in cellular ion homeostasis, metallothionein 1 (Mt1) and metallothionein 2 (Mt2), could be implicated because Mt1 and Mt2 are responsible for zinc homeostasis, and a reduction of free intracellular zinc impairs NK functions. We confirm these hypotheses and show increased expression of metallothionein in splenic NK cells and reduction in free intracellular zinc following treatment with ptaquiloside that were completely prevented by selenium co-treatment. These findings could help avoid the higher susceptibility to cancer that is induced by P. aquilinum-mediated immunosuppressive effects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease

    Science.gov (United States)

    Estcourt, Lise J; Fortin, Patricia M; Hopewell, Sally; Trivella, Marialena; Wang, Winfred C

    2017-01-01

    Background Sickle cell disease is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. Sickle cell disease can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Stroke affects around 10% of children with sickle cell anaemia (HbSS). Chronic blood transfusions may reduce the risk of vaso-occlusion and stroke by diluting the proportion of sickled cells in the circulation. This is an update of a Cochrane Review first published in 2002, and last updated in 2013. Objectives To assess risks and benefits of chronic blood transfusion regimens in people with sickle cell disease for primary and secondary stroke prevention (excluding silent cerebral infarcts). Search methods We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 04 April 2016. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register: 25 April 2016. Selection criteria Randomised controlled trials comparing red blood cell transfusions as prophylaxis for stroke in people with sickle cell disease to alternative or standard treatment. There were no restrictions by outcomes examined, language or publication status. Data collection and analysis Two authors independently assessed trial eligibility and the risk of bias and extracted data. Main results We included five trials (660 participants) published between 1998 and 2016. Four of these trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of sickle cell disease. Three trials compared regular red cell transfusions to standard care in primary prevention of stroke: two in children with no previous long-term transfusions; and one in children and adolescents on long-term transfusion. Two trials compared the drug

  14. Invariant NKT cells promote skin wound healing by preventing a prolonged neutrophilic inflammatory response.

    Science.gov (United States)

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Kanno, Emi; Suzuki, Aiko; Takagi, Naoyuki; Yamamoto, Hideki; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2017-09-01

    The wound-healing process consists of the inflammation, proliferation, and remodeling phases. In chronic wounds, the inflammation phase is prolonged with persistent neutrophil infiltration. The inflammatory response is critically regulated by cytokines and chemokines that are secreted from various immune cells. Recently, we showed that skin wound healing was delayed and the healing process was impaired under conditions lacking invariant natural killer T (iNKT) cells, an innate immune lymphocyte with potent immuno-regulatory activity. In the present study, we investigated the effect of iNKT cell deficiency on the neutrophilic inflammatory response during the wound healing process. Neutrophil infiltration was prolonged in wound tissue in mice genetically lacking iNKT cells (Jα18KO mice) than in wild-type (WT) control mice on days 1 and 3 after wounding. MIP-2, KC, and IL-17A were produced at a significantly higher level in Jα18KO mice than in WT mice. In addition, neutrophil apoptosis was significantly reduced in the wound tissue in Jα18KO mice than in WT mice. Treatment with anti-IL-17A mAb, anti-Gr-1 mAb, or neutrophil elastase inhibitor reversed the impaired wound healing in Jα18KO mice. These results suggest that iNKT cells may promote the wound healing process through preventing the prolonged inflammatory response mediated by neutrophils. © 2017 by the Wound Healing Society.

  15. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway.

    Directory of Open Access Journals (Sweden)

    Itay Israel Shemesh

    Full Text Available Diabetic nephropathy (DN is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn't decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rpS6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.

  16. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells.

    Science.gov (United States)

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that activation of MAPK pathways by sulforaphane is unlikely to mediate sulforaphane-induced growth inhibition. Sulforaphane did not generate significant levels of intracellular ROS. Pretreatment with thiol reducers, but not ROS scavengers, prevented sulforaphane-induced growth inhibition. Furthermore, diamide, a thiol-oxidizing agent, enhanced both growth inhibition and cell death induced by sulforaphane, suggesting that the effect of sulforaphane on cell growth may be related to oxidation of protein thiols or change in cellular redox status. Our data indicate that supplementation with thiol-reducing agents should be avoided when sulforaphane is used to treat cancer.

  17. Slit molecules prevent entrance of trunk neural crest cells in developing gut.

    Science.gov (United States)

    Zuhdi, Nora; Ortega, Blanca; Giovannone, Dion; Ra, Hannah; Reyes, Michelle; Asención, Viviana; McNicoll, Ian; Ma, Le; de Bellard, Maria Elena

    2015-04-01

    Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1-3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia. Especially since trunk neural crest cells express Robo receptor while vagal do not. Thus, although we know that Robo mediates migration along the dorsal pathway in neural crest cells, we do not know if it is responsible in preventing their entry into the gut. The goal of this study was to further corroborate a role for Slit molecules in keeping trunk neural crest cells away from the gut. We observed that when we silenced Robo receptor in trunk neural crest, the sympathoadrenal (somites 18-24) were capable of invading gut mesenchyme in larger proportion than more rostral counterparts. The more rostral trunk neural crest tended not to migrate beyond the ventral aorta, suggesting that there are other repulsive molecules keeping them away from the gut. Interestingly, we also found that when we silenced Robo in sacral neural crest they did not wait for the arrival of vagal crest but entered the gut and migrated rostrally, suggesting that Slit molecules are the ones responsible for keeping them waiting at the hindgut mesenchyme. These combined results confirm that Slit molecules are responsible for keeping the timeliness of colonization of the gut by neural crest cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells.

    Science.gov (United States)

    Rovini, Amandine; Carré, Manon; Bordet, Thierry; Pruss, Rebecca M; Braguer, Diane

    2010-09-15

    Microtubule-targeting agents (MTAs), anticancer drugs widely used in the clinic, often induce peripheral neuropathy, a main dose-limiting side effect. The mechanism for this neurotoxicity remains poorly understood and there are still no approved therapies for neuropathies triggered by MTAs. Olesoxime (cholest-4-en-3-one, oxime; TRO19622) has shown marked neuroprotective properties in animals treated with paclitaxel and vincristine. The purpose of this study was to investigate its mechanism of neuroprotection against MTA neurotoxicity by using rat and human differentiated neuronal cells. We first showed that olesoxime prevented neurite shrinkage induced by MTAs in differentiated PC-12 and SK-N-SH neuroblastoma cell lines by up to 90%. This neuroprotective effect was correlated with enhanced EB1 accumulation at microtubule plus-ends, increased growth cone microtubule growing rate (20%) and decreased microtubule attenuation duration (54%). The effects of olesoxime on EB comets were specific for differentiated neuronal cells and were not seen either in proliferating neuroblastoma cells, glioblastoma cells or primary endothelial cells. Importantly, olesoxime did not alter MTA cytotoxic properties in a wide range of MTA-sensitive tumor cells, a prerequisite for future clinical application. Finally, olesoxime also counteracted MTA inhibition of microtubule-dependent mitochondria trafficking. These results provide additional insight into the neuroprotective properties of olesoxime, highlighting a role for microtubule dynamics in preservation of neurite architecture and axoplasmic transport, which are both disturbed by MTAs. The neuron-specific protective properties of olesoxime support its further development to treat MTA-induced neuropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    Science.gov (United States)

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  20. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons

    Directory of Open Access Journals (Sweden)

    Crish Samuel D

    2011-01-01

    Full Text Available Abstract Background Brimonidine is a common drug for lowering ocular pressure and may directly protect retinal ganglion cells in glaucoma. The disease involves early loss of retinal ganglion cell transport to brain targets followed by axonal and somatic degeneration. We examined whether brimonidine preserves ganglion cell axonal transport and abates degeneration in rats with elevated ocular pressure induced by laser cauterization of the episcleral veins. Results Ocular pressure was elevated unilaterally by 90% for a period of 8 weeks post- cauterization. During this time, brimonidine (1mg/kg/day or vehicle (phosphate-buffered saline was delivered systemically and continuously via subcutaneous pump. Animals received bilateral intravitreal injections of fluorescent cholera toxin subunit β (CTB two days before sacrifice to assess anterograde transport. In retinas from the vehicle group, elevated pressure induced a 44% decrease in the fraction of ganglion cells with intact uptake of CTB and a 14-42% reduction in the number of immuno-labelled ganglion cell bodies, with the worst loss occurring nasally. Elevated pressure also caused a 33% loss of ganglion cell axons in vehicle optic nerves and a 70% decrease in CTB transport to the superior colliculus. Each of these components of ganglion cell degeneration was either prevented or significantly reduced in the brimonidine treatment group. Conclusions Continuous and systemic treatment with brimonidine by subcutaneous injection significantly improved retinal ganglion cell survival with exposure to elevated ocular pressure. This effect was most striking in the nasal region of the retina. Brimonidine treatment also preserved ganglion cell axon morphology, sampling density and total number in the optic nerve with elevated pressure. Consistent with improved outcome in the optic projection, brimonidine also significantly reduced the deficits in axonal transport to the superior colliculus associated with

  1. Dynamics of myeloid cell populations during relapse-preventive immunotherapy in acute myeloid leukemia.

    Science.gov (United States)

    Rydström, Anna; Hallner, Alexander; Aurelius, Johan; Sander, Frida Ewald; Bernson, Elin; Kiffin, Roberta; Thoren, Fredrik Bergh; Hellstrand, Kristoffer; Martner, Anna

    2017-08-01

    Relapse of leukemia in the postchemotherapy phase contributes to the poor prognosis and survival in patients with acute myeloid leukemia (AML). In an international phase IV trial (ClinicalTrials.gov; NCT01347996), 84 patients with AML in first complete remission who had not undergone transplantation received immunotherapy with histamine dihydrochloride (HDC) and low-dose IL-2 with the aim of preventing relapse. The dynamics of myeloid cell counts and expression of activation markers was assessed before and after cycles of immunotherapy and correlated with clinical outcome in terms of relapse risk and survival. During cycles, a pronounced increase in blood eosinophil counts was observed along with a reduction in monocyte and neutrophil counts. A strong reduction of blood monocyte counts during the first HDC/IL-2 treatment cycle predicted leukemia-free survival. The HDC component of the immunotherapy exerts agonist activity at histamine type 2 receptors (H2Rs) that are expressed by myeloid cells. It was observed that the density of H 2 R expression in blood monocytes increased during cycles of immunotherapy and that high monocyte H 2 R expression implied reduced relapse risk and improved overall survival. Several other activation markers, including HLA-DR, CD86, and CD40, were induced in monocytes and dendritic cells during immunotherapy but did not predict clinical outcome. In addition, expression of HLA-ABC increased in all myeloid populations during therapy. A low expression of HLA-ABC was associated with reduced relapse risk. These results suggest that aspects of myeloid cell biology may impact clinical benefit of relapse-preventive immunotherapy in AML. © Society for Leukocyte Biology.

  2. Susceptibility of pathogenic and nonpathogenic Naegleria spp. to complement-mediated lysis.

    Science.gov (United States)

    Whiteman, L Y; Marciano-Cabral, F

    1987-10-01

    The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with [3H]uridine and visual observation with a compound microscope were used as indices of lysis. Highly pathogenic mouse-passaged N. fowleri was less susceptible to the lytic effects of NHS and NGPS than the weakly pathogenic, axenically grown N. fowleri or N. australiensis and the nonpathogenic amoebae N. gruberi and N. lovaniensis. However, both pathogenic and nonpathogenic Naegleria spp. depleted complement as assessed by total hemolytic activity. Treatment of serum with EDTA, heat (56 degrees C, 30 min), cobra venom factor, or antibody to C3 or C9 complement components decreased the amoebicidal activity of NHS. The presence of specific agglutinating antibody to N. fowleri enhanced the amoebicidal activity of NGPS for N. fowleri.

  3. Feasibility trial for primary stroke prevention in children with sickle cell anemia in Nigeria (SPIN trial).

    Science.gov (United States)

    Galadanci, Najibah A; Umar Abdullahi, Shehu; Vance, Leah D; Musa Tabari, Abdulkadir; Ali, Shehi; Belonwu, Raymond; Salihu, Auwal; Amal Galadanci, Aisha; Wudil Jibir, Binta; Bello-Manga, Halima; Neville, Kathleen; Kirkham, Fenella J; Shyr, Yu; Phillips, Sharon; Covert, Brittany V; Kassim, Adetola A; Jordan, Lori C; Aliyu, Muktar H; DeBaun, Michael R

    2017-08-01

    The vast majority of children with sickle cell anemia (SCA) live in Africa, where evidence-based guidelines for primary stroke prevention are lacking. In Kano, Nigeria, we conducted a feasibility trial to determine the acceptability of hydroxyurea therapy for primary stroke prevention in children with abnormal transcranial Doppler (TCD) measurements. Children with SCA and abnormal non-imaging TCD measurements (≥200 cm/s) received moderate fixed-dose hydroxyurea therapy (∼20 mg/kg/day). A comparison group of children with TCD measurements hydroxyurea. The comparison group consisted of initially 210 children, of which four developed abnormal TCD measurements, and were started on hydroxyurea. None of the monthly research visits were missed (n = total 603 visits). Two and 10 deaths occurred in the treatment and comparison groups, with mortality rates of 2.69 and 1.81 per 100 patient-years, respectively (P = .67). Our results provide strong evidence, for high family recruitment, retention, and adherence rates, to undertake the first randomized controlled trial with hydroxyurea therapy for primary stroke prevention in children with SCA living in Africa. © 2017 Wiley Periodicals, Inc.

  4. Management of delayed hemolytic transfusion reaction in sickle cell disease: Prevention, diagnosis, treatment.

    Science.gov (United States)

    Pirenne, F; Bartolucci, P; Habibi, A

    2017-09-01

    Transfusion remains a key treatment of sickle cell disease complications. However, delayed hemolytic transfusion reaction, the most serious complication of transfusion, may be life-threatening if hyperhemolysis develops. This syndrome is generally underdiagnosed because its biological and clinical features resemble those of vaso-occlusive crisis, and red blood cell antibodies are frequently absent. Further transfusions may aggravate the symptoms, leading to severe multiple organ failure and death. It is therefore essential to prevent, diagnose and treat this syndrome efficiently. Prevention is based principally on the attenuation of allo-immunization through the provision of extended-matched RBCs or the use of rituximab. However, such treatment may be insufficient. Early diagnosis might make it possible to implement specific treatments in some cases, thereby avoiding the need for secondary transfusion. Diagnosis is dependent on the knowledge of the medical staff. Finally, many treatments, including steroids, immunoglobulins, erythropoietin and eculizumab, have been used to improve outcome. Improvements in our knowledge of the specific features of DHTR in SCD should facilitate management of this syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  6. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    Science.gov (United States)

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  7. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    Directory of Open Access Journals (Sweden)

    Lorena Olivares-González

    Full Text Available Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2 for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  8. Prevention of lysosomal storage diseases and derivation of mutant stem cell lines by preimplantation genetic diagnosis.

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research.

  9. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J.; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  10. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...... sonication (method ii). Protein disaggregation and solubilization of high Mr proteins were further improved by pre-boiling with SDS and using thiourea/urea lysis buffer instead of "standard" lysis buffer (procedure iii)....... molecular mass proteins. The procedures employed were sonication, followed by (i) protein solubilization with "standard" lysis buffer (9 M urea, 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 1% dithiothreitol (DTT), 2% v/v carrier ampholytes, (ii) presolubilization of proteins...

  11. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    Science.gov (United States)

    Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.

  12. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells.

    Science.gov (United States)

    Li, Bo; Kim, Do Sung; Yadav, Raj Kumar; Kim, Hyung Ryong; Chae, Han Jung

    2015-07-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression.

  13. Sitagliptin Prevents Inflammation and Apoptotic Cell Death in the Kidney of Type 2 Diabetic Animals

    Directory of Open Access Journals (Sweden)

    Catarina Marques

    2014-01-01

    Full Text Available This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day during 6 weeks. Glycaemia and blood HbA1c levels were monitored, as well as kidney function and lesions. Kidney mRNA and/or protein content/distribution of DPP-IV, GLP-1, GLP-1R, TNF-α, IL-1β, BAX, Bcl-2, and Bid were evaluated by RT-PCR and/or western blotting/immunohistochemistry. Sitagliptin treatment improved glycaemic control, as reflected by the significantly reduced levels of glycaemia and HbA1c (by about 22.5% and 1.2%, resp. and ameliorated tubulointerstitial and glomerular lesions. Sitagliptin prevented the diabetes-induced increase in DPP-IV levels and the decrease in GLP-1 levels in kidney. Sitagliptin increased colocalization of GLP-1 and GLP-1R in the diabetic kidney. Sitagliptin also decreased IL-1β and TNF-α levels, as well as, prevented the increase of BAX/Bcl-2 ratio, Bid protein levels, and TUNEL-positive cells which indicates protective effects against inflammation and proapoptotic state in the kidney of diabetic rats, respectively. In conclusion, sitagliptin might have a major role in preventing diabetic nephropathy evolution due to anti-inflammatory and antiapoptotic properties.

  14. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals.

    Science.gov (United States)

    Marques, Catarina; Mega, Cristina; Gonçalves, Andreia; Rodrigues-Santos, Paulo; Teixeira-Lemos, Edite; Teixeira, Frederico; Fontes-Ribeiro, Carlos; Reis, Flávio; Fernandes, Rosa

    2014-01-01

    This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF) rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks. Glycaemia and blood HbA1c levels were monitored, as well as kidney function and lesions. Kidney mRNA and/or protein content/distribution of DPP-IV, GLP-1, GLP-1R, TNF-α, IL-1β, BAX, Bcl-2, and Bid were evaluated by RT-PCR and/or western blotting/immunohistochemistry. Sitagliptin treatment improved glycaemic control, as reflected by the significantly reduced levels of glycaemia and HbA1c (by about 22.5% and 1.2%, resp.) and ameliorated tubulointerstitial and glomerular lesions. Sitagliptin prevented the diabetes-induced increase in DPP-IV levels and the decrease in GLP-1 levels in kidney. Sitagliptin increased colocalization of GLP-1 and GLP-1R in the diabetic kidney. Sitagliptin also decreased IL-1β and TNF-α levels, as well as, prevented the increase of BAX/Bcl-2 ratio, Bid protein levels, and TUNEL-positive cells which indicates protective effects against inflammation and proapoptotic state in the kidney of diabetic rats, respectively. In conclusion, sitagliptin might have a major role in preventing diabetic nephropathy evolution due to anti-inflammatory and antiapoptotic properties.

  15. Effects of short-term restraint stress on leukocyte counts, lymphocyte proliferation and lysis of erythrocytes in gilts.

    Science.gov (United States)

    Roozen, A W; Magnusson, U

    1996-10-01

    The effects of short-term restraint stress on leukocyte counts, lymphocyte proliferation and lysis of erythrocytes were studied in six gilts. A catheter was inserted into the jugular vein and two blood samples were collected before the onset of stress. Thereafter a hog snare was applied and blood samples were collected at 0.5, 2, and 3.5 min after the start of snaring. Neither the total WBC number, nor the total number of lymphocytes, or the total number of polymorphonuclear leukocytes changed significantly throughout the study. This was also true for the degree of intravasal lysis of erythrocytes. In whole blood cultures stimulated with pokeweed mitogen, an increase (P immunity but not the leukocyte count nor lysis of erythrocytes in pigs.

  16. [Progress of Clinical Trials on Bone Marrow Mesenchymal Stem Cells for Prevention and Therapy of Graft-Versus-Host Disease].

    Science.gov (United States)

    Zhong, Dan-Li; Tu, San-Fang; Li, Yu-Hua

    2015-12-01

    Graft-versus-host disease (GVHD) is a major complication following allogenetic hematopoietic stem cell transplantation, which shows a great threat to patients' survival and life quality. Along with multiple differentiation potential to various types of progenitor cells, bone marrow mesenchymal stem cells (BMMSC) have been confirmed to possess low immunogenicity and exert favorable immunomodulation. The recent studies show that the safety and high efficiency of BMMSC to prevent and cure GVHD greatly improved survival rate of the hosts. The most recent progress on prevention and therapy of GVHD is summarized in this review based on biology of BMMSC and pathogenesis of GVHD, so as to provide the effective evidence for further research.

  17. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Middelboe, Mathias

    2009-01-01

    A model ecosystem with two autotrophic flagellates, Phaeocystis pouchetii and Rhodomonas salina, a virus specific to P. pouchetii (PpV) and bacteria and heterotrophic nanoflagellates was used to investigate effects of viral lysis on algal population dynamics and heterotrophic nitrogen and phospho......A model ecosystem with two autotrophic flagellates, Phaeocystis pouchetii and Rhodomonas salina, a virus specific to P. pouchetii (PpV) and bacteria and heterotrophic nanoflagellates was used to investigate effects of viral lysis on algal population dynamics and heterotrophic nitrogen...

  18. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    Science.gov (United States)

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF - cells) or the presence (EGF + cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF - but not in EGF + cells. In EGF - cells, Tl(I) decreased mitochondrial potential, enhanced H 2 O 2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF - cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF - and EGF + cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF - cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF - and EGF + cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  19. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells

    Directory of Open Access Journals (Sweden)

    Seung Eun Song

    2016-04-01

    Full Text Available This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6–25 mM increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM. High glucose increased reactive oxygen species (ROS generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

  20. Analysis of five streptokinase formulations using the euglobulin lysis test and the plasminogen activation assay

    Directory of Open Access Journals (Sweden)

    Couto L.T.

    2004-01-01

    Full Text Available Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251(TM. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251(TM. Streptase(TM was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase(TM and Solustrep(TM formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251(TM activity per vial, Streptase(TM (75.7 ± 5.0 units and Streptonase(TM (94.7 ± 4.6 units had the highest activity, while Unitinase(TM (31.0 ± 2.4 units and Strek(TM (32.9 ± 3.3 units had the weakest activity. Solustrep(TM (53.3 ± 2.7 units presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.

  1. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    Science.gov (United States)

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  2. A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Laura Giusti

    2017-01-01

    Full Text Available Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs, bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG, on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.

  3. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections.

    Directory of Open Access Journals (Sweden)

    Jörn Coers

    2011-06-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-γ (IFNγ plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNγ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs, we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3((-/- mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3((-/- mice is dependent on an exacerbated CD4(+ T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4(+ T cells and prevents the establishment of a persistent infection in mice.

  4. Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells.

    Science.gov (United States)

    Shen, Weiliang; Chen, Jialin; Zhu, Ting; Yin, Zi; Chen, Xiao; Chen, Longkun; Fang, Zhi; Heng, Boon Chin; Ji, Junfeng; Chen, Weishan; Ouyang, Hong-Wei

    2013-07-15

    Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. Here, this study aimed to identify and characterize a novel population of meniscus-derived stem cells (MeSCs) and develop a new strategy of articular cartilage protection by intra-articular injection of these cells. The "stemness" and immune properties of MeSCs were investigated in vitro, while the efficacy of intra-articular injection of MeSCs for meniscus regeneration and OA prevention were investigated in vivo at 4, 8, and 12 weeks postsurgery. MeSCs displayed typical stem cell characteristics such as low immunogenicity and even possessed immunosuppressive function. In a rabbit meniscus injury model, transplantation of allogenous MeSCs did not elicit immunological rejection, but promoted neo-tissue formation with better-defined shape and more matured extracellular matrix. In a rabbit experimental OA model, transplantation of MeSCs further protected joint surface cartilage and maintained joint space at 12 weeks postsurgery, whereas extensive joint surface irregularities and joint space stenosis were observed in the control group. This study thus evoked a new strategy for articular cartilage protection and meniscus regeneration by intra-articular injection of MeSCs for patients undergoing meniscectomy.

  5. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    International Nuclear Information System (INIS)

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua; Zhou Rongjia

    2006-01-01

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-κB was up-regulated. Interference analysis of NF-κB in A549 cells showed that knock down of NF-κB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-κB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer

  6. Reaching rural women: breast cancer prevention information seeking behaviors and interest in Internet, cell phone, and text use.

    Science.gov (United States)

    Kratzke, Cynthia; Wilson, Susan; Vilchis, Hugo

    2013-02-01

    The purpose of this study was to examine the breast cancer prevention information seeking behaviors among rural women, the prevalence of Internet, cell, and text use, and interest to receive breast cancer prevention information cell and text messages. While growing literature for breast cancer information sources supports the use of the Internet, little is known about breast cancer prevention information seeking behaviors among rural women and mobile technology. Using a cross-sectional study design, data were collected using a survey. McGuire's Input-Ouput Model was used as the framework. Self-reported data were obtained from a convenience sample of 157 women with a mean age of 60 (SD = 12.12) at a rural New Mexico imaging center. Common interpersonal information sources were doctors, nurses, and friends and common channel information sources were television, magazines, and Internet. Overall, 87% used cell phones, 20% had an interest to receive cell phone breast cancer prevention messages, 47% used text messaging, 36% had an interest to receive text breast cancer prevention messages, and 37% had an interest to receive mammogram reminder text messages. Bivariate analysis revealed significant differences between age, income, and race/ethnicity and use of cell phones or text messaging. There were no differences between age and receiving text messages or text mammogram reminders. Assessment of health information seeking behaviors is important for community health educators to target populations for program development. Future research may identify additional socio-cultural differences.

  7. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  8. Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: a retrospective study.

    Science.gov (United States)

    van Geel, Björn M; Poll-The, Bwee Tien; Verrips, Aad; Boelens, Jaap-Jan; Kemp, Stephan; Engelen, Marc

    2015-03-01

    X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder. Male patients develop adrenocortical insufficiency (80 % before 18 years), a chronic myelopathy (adrenomyeloneuropathy (AMN); all in adulthood), or progressive cerebral demyelination (cerebral ALD; 40 % before 18 years). Cerebral ALD is treated with haematopoetic cell transplantation (HCT). It is unknown if AMN still develops in patients with X-ALD that underwent HCT for cerebral ALD in childhood. A retrospective observational study was performed by selecting all adult patients with X-ALD in our cohort that underwent HCT in childhood. This retrospective study found that three out of five patients in our cohort who underwent HCT in childhood developed signs of myelopathy in adulthood. These data suggest that HCT for cerebral ALD in childhood does not prevent the onset of AMN in X-ALD in adulthood.

  9. Immune-gene therapy for renal cancer: chimeric receptor-mediated lysis of tumor cells

    NARCIS (Netherlands)

    M.E.M. Weijtens (Mo)

    2001-01-01

    textabstractThe immune system serves as a protective system against infectious agents such as bacteria, viruses and parasites. Foreign molecules (antigens) can be recognized by the immune system and induce an immune response resulting in destruction and elimination of the pathogens. In addition to

  10. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    2 University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA ... environment and freshwater bodies in particular receive massive pollutants from ... survive the environmental stresses, a process which leads to the increase of unsaturated.

  11. Study on improvement of sludge dewaterability with H2O2 cell lysis

    Science.gov (United States)

    Zhuo, Qiongfang; Yi, Hao; Zhang, Zhengke; Wang, Ji; Feng, Lishi; Xu, Zhencheng; Guo, Qingwei; Jin, Zhong; Lan, Yongzhe

    2017-12-01

    Excess sludge is the product of sewage treatment plants. With continuous perfection of municipal sewage treatment facilities in China, sludge output increases as a result of the growth of sewage treatment plants. Excess sludge has complicated compositions, including heavy metals, PPCPs, persistent organic pollutants. It owns high contents of organic matters and water. High-efficiency and low-cost dehydration of sludge is the key of sludge disposal. How to improve sludge dehydration efficiency is the research hotspot in the world. In this study, effects of hydrogen peroxide content and pH on sludge dehydration were discussed by chemical disintegration technique. The optimal hydrogen peroxide content and pH were discussed, aiming to search a high-efficiency sludge conditioner.

  12. Role of cell surface composition and lysis in static biofilm formation by Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Fernández Ramírez, Mónica D.; Nierop Groot, Masja N.; Smid, Eddy J.; Hols, Pascal; Kleerebezem, Michiel; Abee, Tjakko

    2018-01-01

    Next to applications in fermentations, Lactobacillus plantarum is recognized as a food spoilage organism, and its dispersal from biofilms in food processing environments might be implicated in contamination or recontamination of food products. This study provides new insights into biofilm

  13. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    Science.gov (United States)

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  14. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    blue-green algae produced toxins, microcystins, is enhanced by the presence of polyunsaturated fatty acids. Secondarily, it has been reported that unsaturated long- chain fatty acids are toxic to aquatic organisms and known to inhibit fish gill activities resulting into death of fish and other aquatic microorganisms when they.

  15. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Mucci, Maira; Noyma, Natalia Pessoa; de Magalhaes, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iame Alves; Huszar, Vera L. M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  16. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Nunes Teixeira Mucci, Maira; Noyma, Natalia Pessoa; Magalhães, de Leonardo; Miranda, Marcela; Oosterhout, van Frank; Guedes, Iamê Alves; Huszar, Vera L.M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  17. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    Science.gov (United States)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  18. Laminaria japonica Polysaccharide Inhibits Vascular Calcification via Preventing Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Li, Xue-Ying; Li, Qiang-Ming; Fang, Qing; Zha, Xue-Qiang; Pan, Li-Hua; Luo, Jian-Ping

    2018-02-28

    This study aimed to investigate the effect and underlying mechanism of a purified Laminaria japonica polysaccharide (LJP61A) on preventing vascular calcification (VC). In the adenine-induced chronic renal failure (CRF) mice VC model and the β-glycerophosphate (β-GP)-induced vascular smooth muscle cells (VSMC) calcification model, LJP61A was found to significantly inhibit VC phenotypes as determined by biochemical analysis and von Kossa, alizarin red, and immunohistochemical staining. Meanwhile, LJP61A remarkably up-regulated the mRNA levels of VSMC related markers and down-regulated the mRNA levels of sodium-dependent phosphate cotransporter Pit-1. In addition, LJP61A could significantly decrease the protein levels of core-binding factor-1, osteocalcin, bone morphogenetic protein 2, and receptor activator for nuclear factor-κB ligand, and it can increase the protein levels of osteoprotegerin and matrix gla protein. These results indicated that LJP61A ameliorated VC both in vivo and in vitro via preventing osteoblastic differentiation of VSMC, suggesting LJP61A might be a potential therapeutic agent for VC in CRF patients.

  19. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  20. Two wheat decapeptides prevent gliadin-dependent maturation of human dendritic cells.

    Science.gov (United States)

    Giordani, Luciana; Del Pinto, Tamara; Vincentini, Olimpia; Felli, Cristina; Silano, Marco; Viora, Marina

    2014-02-15

    Celiac disease (CD) is a small intestinal enteropathy, triggered in susceptible individuals by the ingestion of dietary gluten. Dendritic cells (DC) are instrumental in the generation and regulation of immune responses and oversee intestinal immune homeostasis promoting and maintaining oral tolerance to food antigens. The aim of this study was to monitor the effect of peptic-tryptic digest of gliadin (PT-gliadin) on the maturation of human monocyte-derived DC and the impact of pDAV and pRPQ decapeptides in the modulation of PT-gliadin-induced phenotypic and functional DC maturation. Immature DC (iDC) were challenged in vitro with PT-gliadin. In some experiments iDC were pre-treated with pDAV or pRPQ and after 2h PT-gliadin was added to the cultures. We found that PT-gliadin up-regulates the expression of the maturation markers HLA-DR, CD83, CD80 and CD86. The functional consequence of PT-gliadin treatment of iDC is a significant increase in IL-12, TNF-alpha production as well as in their T cell stimulatory capacity. On the contrary, the digest of zein had no effect on DC maturation. Interestingly, we found that pre-treatment of iDC with pDAV or pRPQ decapeptides significantly prevents the functional maturation of DC induced by PT-gliadin. On the other hand, pDAV and pRPQ did not revert the PT-gliadin-induced phenotypic maturation of DC. Here we report, for the first time, that naturally occurring peptides are able to prevent the gliadin-dependent DC maturation. This finding could have implication for CD, raising the perspective of a potential therapeutic strategy alternative to a gluten free diet. © 2013 Published by Elsevier Inc.

  1. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy.

    Science.gov (United States)

    Sander, Frida Ewald; Nilsson, Malin; Rydström, Anna; Aurelius, Johan; Riise, Rebecca E; Movitz, Charlotta; Bernson, Elin; Kiffin, Roberta; Ståhlberg, Anders; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B; Martner, Anna

    2017-11-01

    Regulatory T cells (T regs ) have been proposed to dampen functions of anti-neoplastic immune cells and thus promote cancer progression. In a phase IV trial (Re:Mission Trial, NCT01347996, http://www.clinicaltrials.gov ) 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received ten consecutive 3-week cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) to prevent relapse of leukemia in the post-consolidation phase. This study aimed at defining the features, function and dynamics of Foxp3 + CD25 high CD4 + T regs during immunotherapy and to determine the potential impact of T regs on relapse risk and survival. We observed a pronounced increase in T reg counts in peripheral blood during initial cycles of HDC/IL-2. The accumulating T regs resembled thymic-derived natural T regs (nT regs ), showed augmented expression of CTLA-4 and suppressed the cell cycle proliferation of conventional T cells ex vivo. Relapse of AML was not prognosticated by T reg counts at onset of treatment or after the first cycle of immunotherapy. However, the magnitude of T reg induction was diminished in subsequent treatment cycles. Exploratory analyses implied that a reduced expansion of T regs in later treatment cycles and a short T reg telomere length were significantly associated with a favorable clinical outcome. Our results suggest that immunotherapy with HDC/IL-2 in AML entails induction of immunosuppressive T regs that may be targeted for improved anti-leukemic efficiency.

  2. Biological variation in tPA-induced plasma clot lysis time.

    Science.gov (United States)

    Talens, Simone; Malfliet, Joyce J M C; Rudež, Goran; Spronk, Henri M H; Janssen, Nicole A H; Meijer, Piet; Kluft, Cornelis; de Maat, Moniek P M; Rijken, Dingeman C

    2012-10-01

    Hypofibrinolysis is a risk factor for venous and arterial thrombosis, and can be assessed by using a turbidimetric tPA-induced clot lysis time (CLT) assay. Biological variation in clot lysis time may affect the interpretation and usefulness of CLT as a risk factor for thrombosis. Sufficient information about assay variation and biological variation in CLT is not yet available. Thus, this study aimed to determine the analytical, within-subject and between-subject variation in CLT. We collected blood samples from 40 healthy individuals throughout a period of one year (average 11.8 visits) and determined the CLT of each plasma sample in duplicate. The mean (± SD) CLT was 83.8 (± 11.1) minutes. The coefficients of variation for total variation, analytical variation, within-subject variation and between-subject variation were 13.4%, 2.6%, 8.2% and 10.2%, respectively. One measurement can estimate the CLT that does not deviate more than 20% from its true value. The contribution of analytical variation to the within-subject variation was 5.0%, the index of individuality was 0.84 and the reference change value was 23.8%. The CLT was longer in the morning compared to the afternoon and was slightly longer in older individuals (> 40 years) compared to younger (≤40 years) individuals. There was no seasonal variation in CLT and no association with air pollution. CLT correlated weakly with fibrinogen, C-reactive protein, prothrombin time and thrombin generation. This study provides insight into the biological variation of CLT, which can be used in future studies testing CLT as a potential risk factor for thrombosis.

  3. Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton.

    Science.gov (United States)

    Pedrós-Alió; Calderón-Paz; Gasol

    2000-04-01

    Empirical models derived from literature data were used to compare the factors controlling prokaryotic abundance (PN) and prokaryotic heterotrophic production (PHP) in solar salterns. These empirical relationships were generated as multiple linear regressions with PN or PHP as dependent variables, while the independent variables were chosen to reflect the likely sources of organic matter, inorganic nutrients and temperature. These variables were then measured in solar salterns and the predictions made by the general relationships were compared to actual saltern values of PN and PHP. Saltern ponds of salinity higher than 100 per thousand departed significantly from the general relationships, while the ponds of salinity lower than 100 per thousand fitted well within the range of values predicted by the general models. The most likely explanation for the discrepancy of the former was the absence of bacterivory. This hypothesis was tested with data from other very different aquatic systems: karstic lakes with anaerobic hypolimnia and two marine areas in the Mediterranean and the Southern Ocean. The anoxic regions of karstic lakes departed significantly from the predictions of the general model, while the oxic layers conformed to the predictions. As in the case of salterns, this difference could be explained by the presence of significant predation in the oxic, but not in the anoxic, layers of these lakes. Finally, two marine areas with similar predation pressure on prokaryotes but very different impacts of viral lysis were tested. In all cases, PN values conformed to the predictions, suggesting that lysis due to viruses is not the main factor controlling PN in aquatic systems, which is more likely to be determined by the balance between bacterivory and resource supply. The present work also demonstrates the usefulness of empirical comparative analyses to generate predictions and to draw inferences on the functioning of microbial communities.

  4. Prediction of recurrent venous thromboembolism by clot lysis time: a prospective cohort study.

    Science.gov (United States)

    Traby, Ludwig; Kollars, Marietta; Eischer, Lisbeth; Eichinger, Sabine; Kyrle, Paul A

    2012-01-01

    Venous thromboembolism (VTE) is a chronic disease, which tends to recur. Whether an abnormal fibrinolytic system is associated with an increased risk of VTE is unclear. We assessed the relationship between fibrinolytic capacity (reflected by clot lysis time [CLT]) and risk of recurrent VTE. We followed 704 patients (378 women; mean age 48 yrs) with a first unprovoked VTE for an average of 46 months after anticoagulation withdrawal. Patients with natural coagulation inhibitor deficiency, lupus anticoagulant, cancer, homozygosity for factor V Leiden or prothrombin mutation, or requirement for indefinite anticoagulation were excluded. Study endpoint was symptomatic recurrent VTE. For measurement of CLT, a tissue factor-induced clot was lysed by adding tissue-type plasminogen activator. Time between clot formation and lysis was determined by measuring the turbidity. 135 (19%) patients had recurrent VTE. For each increase in CLT of 10 minutes, the crude relative risk (RR) of recurrence was 1.13 (95% CI 1.02-1.25; p = 0.02) and was 1.08 (95% CI 0.98-1.20; p = 0.13) after adjustment for age and sex. For women only, the adjusted RR was 1.14 (95% CI, 0.91-1.42, p = 0.22) for each increase in CLT of 10 minutes. CLT values in the 4(th) quartile of the female patient population, as compared to values in the 1(st) quartile, conferred a risk of recurrence of 3.28 (95% CI, 1.07-10.05; p = 0.04). No association between CLT and recurrence risk was found in men. Hypofibrinolysis as assessed by CLT confers a moderate increase in the risk of recurrent VTE. A weak association between CLT and risk of recurrence was found in women only.

  5. Prediction of recurrent venous thromboembolism by clot lysis time: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Ludwig Traby

    Full Text Available Venous thromboembolism (VTE is a chronic disease, which tends to recur. Whether an abnormal fibrinolytic system is associated with an increased risk of VTE is unclear. We assessed the relationship between fibrinolytic capacity (reflected by clot lysis time [CLT] and risk of recurrent VTE. We followed 704 patients (378 women; mean age 48 yrs with a first unprovoked VTE for an average of 46 months after anticoagulation withdrawal. Patients with natural coagulation inhibitor deficiency, lupus anticoagulant, cancer, homozygosity for factor V Leiden or prothrombin mutation, or requirement for indefinite anticoagulation were excluded. Study endpoint was symptomatic recurrent VTE. For measurement of CLT, a tissue factor-induced clot was lysed by adding tissue-type plasminogen activator. Time between clot formation and lysis was determined by measuring the turbidity. 135 (19% patients had recurrent VTE. For each increase in CLT of 10 minutes, the crude relative risk (RR of recurrence was 1.13 (95% CI 1.02-1.25; p = 0.02 and was 1.08 (95% CI 0.98-1.20; p = 0.13 after adjustment for age and sex. For women only, the adjusted RR was 1.14 (95% CI, 0.91-1.42, p = 0.22 for each increase in CLT of 10 minutes. CLT values in the 4(th quartile of the female patient population, as compared to values in the 1(st quartile, conferred a risk of recurrence of 3.28 (95% CI, 1.07-10.05; p = 0.04. No association between CLT and recurrence risk was found in men. Hypofibrinolysis as assessed by CLT confers a moderate increase in the risk of recurrent VTE. A weak association between CLT and risk of recurrence was found in women only.

  6. Polysaccharide-experienced effector T cells induce IL-10 in FoxP3+ regulatory T cells to prevent pulmonary inflammation.

    Science.gov (United States)

    Johnson, Jenny L; Jones, Mark B; Cobb, Brian A

    2018-12-01

    Inhibition of peripheral inflammatory disease by carbohydrate antigens derived from normal gut microbiota has been demonstrated for the GI tract, brain, peritoneum, and most recently the airway. We have demonstrated that polysaccharide A (PSA) from the commensal organism Bacteroides fragilis activates CD4+ T cells upon presentation by the class II major histocompatibility complex, and that these PSA-experienced T cells prevent the development of lung inflammation in murine models. While the PSA-responding T cells themselves are not canonical FoxP3+ regulatory T cells (Tregs), their ability to prevent inflammation is dependent upon the suppressive cytokine IL-10. Using an adoptive T cell transfer approach, we have discovered that PSA-experienced T cells require IL-10 expression by PSA-naïve recipient animals in order to prevent inflammation. A cooperative relationship was found between PSA-activated effector/memory T cells and tissue-resident FoxP3+ Tregs both in vivo and in vitro, and it is this cooperation that enables the suppressive activity of PSA outside of the gut environment where exposure takes place. These findings suggest that carbohydrate antigens from the normal microbiota communicate with peripheral tissues to maintain homeostasis through T cell-to-T cell cooperation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Single-cell qPCR on dispersed primary pituitary cells -an optimized protocol

    Directory of Open Access Journals (Sweden)

    Haug Trude M

    2010-11-01

    Full Text Available Abstract Background The incidence of false positives is a potential problem in single-cell PCR experiments. This paper describes an optimized protocol for single-cell qPCR measurements in primary pituitary cell cultures following patch-clamp recordings. Two different cell harvesting methods were assessed using both the GH4 prolactin producing cell line from rat, and primary cell culture from fish pituitaries. Results Harvesting whole cells followed by cell lysis and qPCR performed satisfactory on the GH4 cell line. However, harvesting of whole cells from primary pituitary cultures regularly produced false positives, probably due to RNA leakage from cells ruptured during the dispersion of the pituitary cells. To reduce RNA contamination affecting the results, we optimized the conditions by harvesting only the cytosol through a patch pipette, subsequent to electrophysiological experiments. Two important factors proved crucial for reliable harvesting. First, silanizing the patch pipette glass prevented foreign extracellular RNA from attaching to charged residues on the glass surface. Second, substituting the commonly used perforating antibiotic amphotericin B with β-escin allowed efficient cytosol harvest without loosing the giga seal. Importantly, the two harvesting protocols revealed no difference in RNA isolation efficiency. Conclusion Depending on the cell type and preparation, validation of the harvesting technique is extremely important as contaminations may give false positives. Here we present an optimized protocol allowing secure harvesting of RNA from single cells in primary pituitary cell culture following perforated whole cell patch clamp experiments.

  8. Rearrangements of the fibrin network and spatial distribution of fibrinolytic components during plasma clot lysis: Study with confocal microscopy

    NARCIS (Netherlands)

    Sakharov, D.V.; Nagelkerkel, J.F.; Rijken, D.C.

    1996-01-01

    Binding of components of the fibrinolytic system to fibrin is important for the regulation of fibrinolysis. In this study, decomposition of the fibrin network and binding of plasminogen and plasminogen activators (PAs) to fibrin during lysis of a plasma clot were investigated with confocal

  9. Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality

    Science.gov (United States)

    Gopinath, Rajaneesh Karimpurath

    2016-01-01

    Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment. PMID:26951197

  10. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  11. Out-of-Sequence Preventative Cell Dispatching for Multicast Input-Queued Space-Memory-Memory Clos-Network

    DEFF Research Database (Denmark)

    Yu, Hao; Ruepp, Sarah Renée; Berger, Michael Stübert

    2011-01-01

    This paper proposes two out-of-sequence (OOS) preventative cell dispatching algorithms for the multicast input-queued space-memory-memory (IQ-SMM) Clos-network switch architecture, i.e. the multicast flow-based DSRR (MF-DSRR) and the multicast flow-based round-robin (MFRR). Treating each cell...... independently, the desynchronized static round-robin (DSRR) cell dispatching scheme can evenly distribute cells to the central switching modules, however, its frequent change of the input switching module connection pattern causes a serious OOS problem to the IQ-SMM architecture. Therefore large reassembly...

  12. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis.

    Science.gov (United States)

    Garimella, Manasa G; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T; Mishra, Gyan C; Chattopadhyay, Naibedya; Wani, Mohan R

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Induced thyme product prevents VEGF-induced migration in human umbilical vein endothelial cells.

    Science.gov (United States)

    Krill, Diane; Madden, John; Huncik, Kevin; Moeller, Peter D

    2010-12-17

    Compounds with anti-angiogenic properties are useful in combating cancer by preventing new blood vessel formation to support the tumor. In this report we introduce a rapid method for screening potential anti-angiogenic compounds in a model system that stimulates the production of secondary defense chemicals in plants. This methodology identified an inducible vascular factor (IVF3), which was found to be inhibitory in all of the model systems tested. Thyme plants were exposed to highly vascular mint plants and the methanol extracts were analyzed by reverse phase HPLC. The thyme compounds induced by the invading mint tissue, and not present in the thyme plants grown alone, were tested in a vertical plate assay measuring root length as a quantitative assay for drug sensitivity. The HPLC-purified extract, referred to as IVF3, reduced the growth of root vascular tissue compared to the control and vehicle control, and 50% as well as known angiogenesis inhibitors, VEGF receptor tyrosine kinase inhibitor and amiloride hydrochloride. Extracted compounds that were effective inhibitors of plant roots were assayed in Madin Darby canine kidney epithelial cells (MDCK) for toxicity, and in human umbilical vein endothelial cells (HUVEC) for their effect on migration. IVF3 was effective at limiting HUVEC migration in VEGF-stimulated cultures. In vivo video capture of intersegmental vessel circulation between 48 and 72 h post fertilization in the developing vasculature of zebrafish embryos showed IVF3 also significantly reduced ISV functional circulation. This report demonstrates the anti-angiogenic effects of IVF3 extract in endothelial cells and in an intact vertebrate model for angiogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus

    Science.gov (United States)

    Puig, Isabel; Champeval, Delphine; Kumasaka, Mayuko; Belloir, Elodie; Bonaventure, Jacky; Mark, Manuel; Yamamoto, Hiroaki; Taketo, Mark M.; Choquet, Philippe; Etchevers, Heather C.; Beermann, Friedrich; Delmas, Véronique; Monassier, Laurent; Larue, Lionel

    2013-01-01

    Background Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes. PMID:23382837

  15. IRF9 Prevents CD8+T Cell Exhaustion in an Extrinsic Manner during Acute Lymphocytic Choriomeningitis Virus Infection.

    Science.gov (United States)

    Huber, Magdalena; Suprunenko, Tamara; Ashhurst, Thomas; Marbach, Felix; Raifer, Hartmann; Wolff, Svenja; Strecker, Thomas; Viengkhou, Barney; Jung, So Ri; Obermann, Hannah-Lena; Bauer, Stefan; Xu, Haifeng C; Lang, Philipp A; Tom, Adomati; Lang, Karl S; King, Nicholas J C; Campbell, Iain L; Hofer, Markus J

    2017-11-15

    Effective CD8 + T cell responses play an important role in determining the course of a viral infection. Overwhelming antigen exposure can result in suboptimal CD8 + T cell responses, leading to chronic infection. This altered CD8 + T cell differentiation state, termed exhaustion, is characterized by reduced effector function, upregulation of inhibitory receptors, and altered expression of transcription factors. Prevention of overwhelming antigen exposure to limit CD8 + T cell exhaustion is of significant interest for the control of chronic infection. The transcription factor interferon regulatory factor 9 (IRF9) is a component of type I interferon (IFN-I) signaling downstream of the IFN-I receptor (IFNAR). Using acute infection of mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong, we show here that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and IFN-I and by controlling levels of IRF7, a transcription factor essential for IFN-I production. Infection of IRF9- or IFNAR-deficient mice led to a loss of early restriction of viral replication and impaired antiviral responses in dendritic cells, resulting in CD8 + T cell exhaustion and chronic infection. Differences in the antiviral activities of IRF9- and IFNAR-deficient mice and dendritic cells provided further evidence of IRF9-independent IFN-I signaling. Thus, our findings illustrate a CD8 + T cell-extrinsic function for IRF9, as a signaling factor downstream of IFNAR, in preventing overwhelming antigen exposure resulting in CD8 + T cell exhaustion and, ultimately, chronic infection. IMPORTANCE During early viral infection, overwhelming antigen exposure can cause functional exhaustion of CD8 + T cells and lead to chronic infection. Here we show that the transcription factor interferon regulatory factor 9 (IRF9) plays a decisive role in preventing CD8 + T cell exhaustion. Using acute infection of mice with LCMV strain Armstrong, we found that IRF9

  16. Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma.

    Science.gov (United States)

    Zhang, Guqin; Nie, Hanxiang; Yang, Jiong; Ding, Xuhong; Huang, Yi; Yu, Hongying; Li, Ruyou; Yuan, Zhuqing; Hu, Suping

    2011-12-01

    Asthma is a common chronic inflammatory disease involving many different cell types. Recently, type I natural killer T (NKT) cells have been demonstrated to play a crucial role in the development of asthma. However, the roles of type II NKT cells in asthma have not been investigated before. Interestingly, type I and type II NKT cells have been shown to have opposing roles in antitumor immunity, antiparasite immunity, and autoimmunity. We hypothesized that sulfatide-activated type II NKT cells could prevent allergic airway inflammation by inhibiting type I NKT cell function in asthma. Strikingly, in our mouse model, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells result in reduced-inflammation cell infiltration in the lung and bronchoalveolar lavage fluid, decreased levels of IL-4 and IL-5 in the BALF; and decreased serum levels of ovalbumin-specific IgE and IgG1. Furthermore, it is found that the activation of sulfatide-reactive type II NKT cells leads to the functional inactivation of type I NKT cells, including the proliferation and cytokine secretion. Our data reveal that type II NKT cells activated by glycolipids, such as sulfatide, may serve as a novel approach to treat allergic diseases and other disorders characterized by inappropriate type I NKT cell activation.

  17. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

    Science.gov (United States)

    Song, Seung Eun; Jo, Hye Jun; Kim, Yong-Woon; Cho, Young-Je; Kim, Jae-Ryong; Park, So-Young

    2016-04-01

    This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6-25 mM) increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM) prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM). High glucose increased reactive oxygen species (ROS) generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX) 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK)1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor) prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF)-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Montelukast prevents microparticle-induced inflammatory and functional alterations in human bronchial smooth muscle cells.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Neri, Tommaso; Bardelli, Claudio; Amoruso, Angela; Brunelleschi, Sandra; Celi, Alessandro; Breschi, Maria Cristina

    2013-10-01

    Microparticles (MPs) are membrane fragments that may play a role in the pathogenesis of chronic respiratory diseases. We aimed to investigate whether human monocytes/macrophage-derived MPs could induce a pro-inflammatory phenotype in human bronchial smooth muscle cells (BSMC) and the effect of montelukast in this setting. Experimental methods included isolation of human monocytes/macrophages and generation of monocyte-derived MPs, RT-PCR analysis of gene expression, immunoenzymatic determination of pro-inflammatory factor release, bioluminescent assay of intracellular cAMP levels and electromobility shift assay analysis of NF-κB nuclear translocation. Stimulation of human BSMC with monocyte-derived MPs induced a pro-inflammatory switch in human BSMC by inducing gene expression (COX-2 and IL-8), protein release in the supernatant (PGE2 and IL-8), and heterologous β2-adrenoceptor desensitization. The latter effect was most likely related to autocrine PGE2 since pre-treatment with COX inhibitors restored the ability of salbutamol to induce cAMP synthesis in desensitized cells. Challenge with MPs induced nuclear translocation of NF-κB and selective NF-κB inhibition decreased MP-induced cytokine release in the supernatant. Montelukast treatment prevented IL-8 release and heterologous β2-adrenoceptor desensitization in human BSMC exposed to monocyte-derived MPs by blocking NF-κB nuclear translocation. These findings provide evidence on the role of human monocyte-derived MPs in the airway smooth muscle phenotype switch as a novel potential mechanism in the progression of chronic respiratory diseases and on the protective effects by montelukast in this setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of); Yoon, Sungpil, E-mail: yoons@ncc.re.kr [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Sal sensitizes antimitotic drugs-treated cancer cells. Black-Right-Pointing-Pointer Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. Black-Right-Pointing-Pointer Sal also sensitizes them by increasing DNA damage and reducing p21 level. Black-Right-Pointing-Pointer A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  20. Proliferation of Interstitial Cells in the Cyclophosphamide-Induced Cystitis and the Preventive Effect of Imatinib

    Directory of Open Access Journals (Sweden)

    Maria Sancho

    2017-01-01

    Full Text Available Cyclophosphamide- (CYP- induced cystitis in the rat is a well-known model of bladder inflammation that leads to an overactive bladder, a process that appears to involve enhanced nitric oxide (NO production. We investigated the changes in the number and distribution of interstitial cells (ICs and in the expression of endothelial NO synthase (eNOS in the bladder and urethra of rats subjected to either intermediate or chronic CYP treatment. Pronounced hyperplasia and hypertrophy of ICs were evident within the lamina propria and in the muscle layer. IC immunolabeling with CD34, PDGFRα, and vimentin was enhanced, as reflected by higher colocalization indexes of the distinct pairs of markers. Moreover, de novo expression of eNOS was evident in vimentin and CD34 positive ICs. Pretreatment with the receptor tyrosine kinase inhibitor Imatinib prevented eNOS expression and ICs proliferation, as well as the increased voiding frequency and urinary tract weight provoked by CYP. As similar results were obtained in the urethra, urethritis may contribute to the uropathology of CYP-induced cystitis.

  1. Tea Polysaccharide Prevents Colitis-Associated Carcinogenesis in Mice by Inhibiting the Proliferation and Invasion of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Li-Qiao Liu

    2018-02-01

    Full Text Available The imbalance between cell proliferation and apoptosis can lead to tumor progression, causing oncogenic transformation, abnormal cell proliferation and cell apoptosis suppression. Tea polysaccharide (TPS is the major bioactive component in green tea, it has showed antioxidant, antitumor and anti-inflammatory bioactivities. In this study, the chemoprophylaxis effects of TPS on colitis-associated colon carcinogenesis, especially the cell apoptosis activation and inhibition effects on cell proliferation and invasion were analyzed. The azoxymethane/dextran sulfate sodium (AOM/DSS was used to induce the colorectal carcinogenesis in mice. Results showed that the tumor incidence was reduced in TPS-treated AOM/DSS mice compared to AOM/DSS mice. TUNEL staining and Ki-67 immunohistochemistry staining showed that the TPS treatment increased significantly the cell apoptosis and decreased cell proliferation among AOM/DSS mice. Furthermore, TPS reduced the expression levels of the cell cycle protein cyclin D1, matrix metalloproteinase (MMP-2, and MMP-9. In addition, in vitro studies showed that TPS, suppressed the proliferation and invasion of the mouse colon cancer cells. Overall, our findings demonstrated that TPS could be a potential agent in the treatment and/or prevention of colon tumor, which promoted the apoptosis and suppressed the proliferation and invasion of the mouse colon cancer cells via arresting cell cycle progression.

  2. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  3. Large-scale clinical comparison of the lysis-centrifugation and radiometric systems for blood culture

    International Nuclear Information System (INIS)

    Brannon, P.; Kiehn, T.E.

    1985-01-01

    The Isolator 10 lysis-centrifugation blood culture system (E. I. du Pont de Nemours and Co., Inc., Wilmington, Del.) was compared with the BACTEC radiometric method (Johnston Laboratories, Inc., Towson, Md.) with 6B and 7D broth media for the recovery of bacteria and yeasts. From 11,000 blood cultures, 1,174 clinically significant organisms were isolated. The Isolator system recovered significantly more total organisms, members of the family Enterobacteriaceae, Staphylococcus spp., and yeasts. The BACTEC system recovered significantly more Pseudomonas spp., Streptococcus spp., and anaerobes. Of the Isolator colony counts, 87% measured less than 11 CFU/ml of blood. Organisms, on an average, were detected the same day from each of the two culture systems. Only 13 of the 975 BACTEC isolates (0.01%) were recovered by subculture of growth-index-negative bottles, and 12 of the 13 were detected in another broth blood culture taken within 24 h. Contaminants were recovered from 4.8% of the Isolator 10 and 2.3% of the BACTEC cultures

  4. Plasma clot lysis time and its association with cardiovascular risk factors in black Africans.

    Science.gov (United States)

    de Lange, Zelda; Pieters, Marlien; Jerling, Johann C; Kruger, Annamarie; Rijken, Dingeman C

    2012-01-01

    Studies in populations of European descent show longer plasma clot lysis times (CLT) in patients with cardiovascular disease (CVD) than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid urbanisation with increased CVD prevalence. We investigated associations between known CVD risk factors and CLT in black Africans and whether CLTs differ between rural and urban participants in light of differences in CVD risk.Data from 1000 rural and 1000 urban apparently healthy black South Africans (35-60 years) were cross-sectionally analysed.Increased PAI-1(act), BMI, HbA1c, triglycerides, the metabolic syndrome, fibrinogen concentration, CRP, female sex and positive HIV status were associated with increased CLTs, while habitual alcohol consumption associated with decreased CLT. No differences in CLT were found between age and smoking categories, contraceptive use or hyper- and normotensive participants. Urban women had longer CLT than rural women while no differences were observed for men.CLT was associated with many known CVD risk factors in black Africans. Differences were however observed, compared to data from populations of European descent available in the literature, suggesting possible ethnic differences. The effect of urbanisation on CLT is influenced by traditional CVD risk factors and their prevalence in urban and rural communities.

  5. Statins and Cancer Prevention

    Science.gov (United States)

    ... cell membrane integrity, cell signaling, protein synthesis, and cell cycle progression, all of which are potential areas of intervention to arrest the cancer process. What are the ... at the NCI Division of Cancer Prevention Web site at http://prevention. ...

  6. Photoreactivation of ultraviolet irradiated non-dividing populations of ICR 2A frog cells

    International Nuclear Information System (INIS)

    Rosenstein, B.S.; Kantor, G.J.

    1981-01-01

    Ultraviolet (UV) irradiation of non-dividing populations of ICR 2A frog cells led to their detachment from the surface of the culture dish and eventual lysis. Exposure of the cells to photoreactivating light after UV irradiation prevented cell killing and was accompanied by a loss of endonuclease sensitive sites from DNA. This photoreversal did not take place when the cells were exposed at 4 0 C to photoreactivating light indicating that the reversal was the result of photoenzymatic repair. As the action of photoreactivating enzyme is specific for the repair of pyrimidine dimers in DNA, the results suggest that pyrimidine dimers in DNA are the critical lesions leading to the death of non-dividing populations of UV irradiated cells. (author)

  7. Secondary prevention of esophageal squamous cell carcinoma in areas where smoking, alcohol, and betel quid chewing are prevalent.

    Science.gov (United States)

    Chung, Chen-Shuan; Lee, Yi-Chia; Wang, Cheng-Ping; Ko, Jenq-Yuh; Wang, Wen-Lun; Wu, Ming-Shiang; Wang, Hsiu-Po

    2010-06-01

    Esophageal cancer is ranked as the sixth most common cause of cancer death worldwide and has a substantial effect on public health. In contrast to adenocarcinoma arising from Barrett's esophagus in Western countries, the major disease phenotype in the Asia-Pacific region is esophageal squamous cell carcinoma which is attributed to the prevalence of smoking, alcohol, and betel quid chewing. Despite a multidisciplinary approach to treating esophageal cancer, the outcome remains poor. Moreover, field cancerization reveals that esophageal squamous cell carcinoma is closely linked with the development of head and neck cancers that further sub-optimize the treatment of patients. Therefore, preventive strategies are of paramount importance to improve the prognosis of this dismal disease. Since obstacles exist for primary prevention via risk factor elimination, the current rationale for esophageal cancer prevention is to identify high-risk groups at earlier stages of the disease, and encourage them to get a confirmatory diagnosis, prompt treatment, and intensive surveillance for secondary prevention. Novel biomarkers for identifying specific at-risk populations are under extensive investigation. Advances in image-enhanced endoscopy do not just substantially improve our ability to identify small precancerous or cancerous foci, but can also accurately predict their invasiveness. Research input from the basic sciences should be translated into preventive measures in order to decrease the disease burden of esophageal cancer. Copyright (c) 2010 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.

  8. Secondary Prevention of Esophageal Squamous Cell Carcinoma in Areas Where Smoking, Alcohol, and Betel Quid Chewing are Prevalent

    Directory of Open Access Journals (Sweden)

    Chen-Shuan Chung

    2010-06-01

    Full Text Available Esophageal cancer is ranked as the sixth most common cause of cancer death worldwide and has a substantial effect on public health. In contrast to adenocarcinoma arising from Barrett's esophagus in Western countries, the major disease phenotype in the Asia-Pacific region is esophageal squamous cell carcinoma which is attributed to the prevalence of smoking, alcohol, and betel quid chewing. Despite a multidisciplinary approach to treating esophageal cancer, the outcome remains poor. Moreover, field cancerization reveals that esophageal squamous cell carcinoma is closely linked with the development of head and neck cancers that further sub-optimize the treatment of patients. Therefore, preventive strategies are of paramount importance to improve the prognosis of this dismal disease. Since obstacles exist for primary prevention via risk factor elimination, the current rationale for esophageal cancer prevention is to identify high-risk groups at earlier stages of the disease, and encourage them to get a confirmatory diagnosis, prompt treatment, and intensive surveillance for secondary prevention. Novel biomarkers for identifying specific at-risk populations are under extensive investigation. Advances in image-enhanced endoscopy do not just substantially improve our ability to identify small precancerous or cancerous foci, but can also accurately predict their invasiveness. Research input from the basic sciences should be translated into preventive measures in order to decrease the disease burden of esophageal cancer.

  9. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced apoptosis by interfering with T cell activation signals

    Science.gov (United States)

    Odaka, C; Mizuochi, T

    2000-01-01

    Captopril is an orally active inhibitor of angiotensin-converting enzyme (ACE) which is widely used as an anti-hypertensive agent. In addition to its ability to reduce blood pressure, captopril has a number of other biological activities. Recently the drug was shown to inhibit Fas-induced apoptosis in human activated peripheral T cells and human lung epithelial cells. In this study, we investigated whether captopril blocks activation-induced apoptosis in murine T cell hybridomas, and found that captopril inhibited IL-2 synthesis and apoptotic cell death upon activation with anti-CD3 antibody. In addition, captopril inhibited an inducible caspase-3-like activity during activation-induced apoptosis. On the other hand, captopril did not interfere with Fas signalling, since anti-Fas antibody-induced apoptosis in Fas+ Jurkat cells was unaffected by the drug. Furthermore, we examined whether captopril blocks activation-induced apoptosis by interfering with expression of Fas, Fas ligand (FasL), or both on T cell hybridomas. FasL expression on activated T cells was significantly inhibited by captopril, whereas up-expression of Fas was partially inhibited, as assessed by cell surface staining. Taking all data together, we conclude that captopril prevents activation-induced apoptosis in T cell hybridomas by interfering with T cell activation signals. Captopril has been reported to induce systemic lupus erythematosus syndrome, and our findings may be useful for elucidating the mechanism of captopril-induced autoimmunity. PMID:10971519

  10. Estimates of bacterioplankton and Synechococcus spp. mortality from nanoflagellate grazing and viral lysis in the subtropical Danshui River estuary

    Science.gov (United States)

    Tsai, An-Yi; Gong, Gwo-Ching; Huang, Yu Wen; Chao, Chien Fu

    2015-02-01

    To better understand picoplankton dynamics in the surface waters of upriver the Danshui River and its estuary, we assessed nanoflagellate-induced and virus-induced mortality of bacteria and Synechococcus spp. during different seasons (October, 2012 and January, April and July, 2013) using a modified dilution technique. Bacteria and viruses were significantly higher in abundance upriver than at the estuary. The distribution of Synechococcus spp. did not follow this spatial pattern. Abundance of Synechococcus spp. was relatively low during the whole sampling period in the upriver region. Furthermore, bacterial mortality resulting from nanoflagellate grazing were generally higher than those resulting from viral lysis in the upriver region, while Synechococcus spp. losses appeared to be mainly due to viral lysis upriver and in the estuary. Our dilution experiments suggested that nanoflagellates largely depend on bacteria as an important energy source there.

  11. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape

    NARCIS (Netherlands)

    Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen

    2017-01-01

    Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is

  12. Prevention of B cell antigen receptor-induced apoptosis by ligation of CD40 occurs downstream of cell cycle regulation

    NARCIS (Netherlands)

    Mackus, Wendelina J. M.; Lens, Susanne M. A.; Medema, René H.; Kwakkenbos, Mark J.; Evers, Ludo M.; Oers, Marinus H. J. van; van Lier, René A. W.; Eldering, Eric

    2002-01-01

    Cross-linking of the B cell antigen receptor (BCR) on germinal center B cells can induce growth arrest and apoptosis, thereby eliminating potentially autoreactive B cells. Using the Burkitt lymphoma cell line Ramos as a model, we studied the commitment to apoptosis following growth arrest, as well

  13. Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype.

    Directory of Open Access Journals (Sweden)

    Zhiyi Zhao

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1. Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR and western blot analysis. To study the physiological effects mediated by PAC1, we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC. After exposure to UVC, the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells, as demonstrated by WST-8 analysis, annexin V/propidium iodide (PI analysis and the terminal transferase dUTP nick end labeling (TUNEL assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly, immunofluorescence, western blot analysis, real-time quantitative polymerase chain reaction (RT-qPCR analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover, karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary, these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype.

  14. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice.

    Science.gov (United States)

    Chen, Yulin; Wu, Jie; Wang, Jiajia; Zhang, Wenjing; Xu, Bohui; Xu, Xiaojun; Zong, Li

    2018-03-15

    The intestinal immune system is an ideal target to induce immune tolerance physiologically. However, the efficiency of oral protein antigen delivery is limited by degradation of the antigen in the gastrointestinal tract and poor uptake by antigen-presenting cells. Gut dendritic cells (DCs) are professional antigen-presenting cells that are prone to inducing antigen-specific immune tolerance. In this study, we delivered the antigen heat shock protein 65-6×P277 (H6P) directly to the gut DCs of NOD mice through oral vaccination with H6P-loaded targeting nanoparticles (NPs), and investigated the ability of this antigen to induce immune tolerance to prevent autoimmune diabetes in NOD mice. A targeting NP delivery system was developed to encapsulate H6P, and the ability of this system to protect and facilitate H6P delivery to gut DCs was assessed. NOD mice were immunised with H6P-loaded targeting NPs orally once a week for 7 weeks and the onset of diabetes was assessed by monitoring blood glucose levels. H6P-loaded targeting NPs protected the encapsulated H6P from degradation in the gastrointestinal tract environment and significantly increased the uptake of H6P by DCs in the gut Peyer's patches (4.1 times higher uptake compared with the control H6P solution group). Oral vaccination with H6P-loaded targeting NPs induced antigen-specific T cell tolerance and prevented diabetes in 100% of NOD mice. Immune deviation (T helper [Th]1 to Th2) and CD4 + CD25 + FOXP3 + regulatory T cells were found to participate in the induction of immune tolerance. In this study, we successfully induced antigen-specific T cell tolerance and prevented the onset of diabetes in NOD mice. To our knowledge, this is the first attempt at delivering antigen to gut DCs using targeting NPs to induce T cell tolerance.

  15. Advances in the Use of Regulatory T-Cells for the Prevention and Therapy of Graft-vs.-Host Disease.

    Science.gov (United States)

    Ramlal, Reshma; Hildebrandt, Gerhard C

    2017-05-16

    Regulatory T (Tregs) cells play a crucial role in immunoregulation and promotion of immunological tolerance. Adoptive transfer of these cells has therefore been of interest in the field of bone marrow and solid organ transplantation, autoimmune diseases and allergy medicine. In bone marrow transplantation, Tregs play a pivotal role in the prevention of graft-verus-host disease (GvHD). This has generated interest in using adoptive Treg cellular therapy in the prevention and treatment of GvHD. There have been several barriers to the feasibility of Treg cellular therapy in the setting of hematopoietic stem cell transplantation (HSCT) which include low Treg concentration in peripheral blood, requiring expansion of the Treg population; instability of the expanded product with loss of FoxP3 expression; and issues related to the purity of the expanded product. Despite these challenges, investigators have been able to successfully expand these cells both in vivo and in vitro and have demonstrated that they can be safely infused in humans for the prevention and treatment of GvHD with no increase in relapse risk or infections risk.

  16. Tocotrienol-Rich Fraction Prevents Cell Cycle Arrest and Elongates Telomere Length in Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2011-01-01

    Full Text Available This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF in preventing cellular senescence of human diploid fibroblasts (HDFs. Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G0/G1 phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G0/G1 phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.

  17. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    Science.gov (United States)

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  18. Determining Human Clot Lysis Time (in vitro with Plasminogen/Plasmin from Four Species (Human, Bovine, Goat, and Swine

    Directory of Open Access Journals (Sweden)

    Omaira Cañas Bermúdez

    2015-05-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, including failures in the plasminogen/plasmin system which is an important factor in poor lysis of blood clots. This article studies the fibrinolytic system in four species of mammals, and it identifies human plasminogen with highest thrombolysis efficiency. It examines plasminogen from four species (human, bovine, goat, and swine and identifies the most efficient one in human clot lysis in vitro. All plasminogens were identically purified by affinity chromatography. Human fibrinogen was purified by fractionation with ethanol. The purification of both plasminogen and fibrinogen was characterized by one-dimensional SDS-PAGE (10%. Human clot formation in vitro and its dissolution by plasminogen/plasmin consisted of determining lysis time from clot formation to its dilution. Purification of proteins showed greater than 95% purity, human plasminogen showed greater ability to lyse clot than animal plasminogen. The article concludes that human plasminogen/plasmin has the greatest catalysis and efficiency, as it dissolves human clot up to three times faster than that of irrational species.

  19. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    Science.gov (United States)

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  20. Mitoprotective antioxidant EUK-134 stimulates fatty acid oxidation and prevents hypertrophy in H9C2 cells.

    Science.gov (United States)

    Purushothaman, Sreeja; Nair, R Renuka

    2016-09-01

    Oxidative stress is an important contributory factor for the development of cardiovascular diseases like hypertension-induced hypertrophy. Mitochondrion is the major source of reactive oxygen species. Hence, protecting mitochondria from oxidative damage can be an effective therapeutic strategy for the prevention of hypertensive heart disease. Conventional antioxidants are not likely to be cardioprotective, as they cannot protect mitochondria from oxidative damage. EUK-134 is a salen-manganese complex with superoxide dismutase and catalase activity. The possible role of EUK-134, a mitoprotective antioxidant, in the prevention of hypertrophy of H9C2 cells was examined. The cells were stimulated with phenylephrine (50 μM), and hypertrophy was assessed based on cell volume and expression of brain natriuretic peptide and calcineurin. Enhanced myocardial lipid peroxidation and protein carbonyl content, accompanied by nuclear factor-kappa B gene expression, confirmed the presence of oxidative stress in hypertrophic cells. Metabolic shift was evident from reduction in the expression of medium-chain acyl-CoA dehydrogenase. Mitochondrial oxidative stress was confirmed by the reduced expression of mitochondria-specific antioxidant peroxiredoxin-3 and enhanced mitochondrial superoxide production. Compromised mitochondrial function was apparent from reduced mitochondrial membrane potential. Pretreatment with EUK-134 (10 μM) was effective in the prevention of hypertrophic changes in H9C2 cells, reduction of oxidative stress, and prevention of metabolic shift. EUK-134 treatment improved the oxidative status of mitochondria and reversed hypertrophy-induced reduction of mitochondrial membrane potential. Supplementation with EUK-134 is therefore identified as a novel approach to attenuate cardiac hypertrophy and lends scope for the development of EUK-134 as a therapeutic agent in the management of human cardiovascular disease.

  1. Tumor Induced Inactivation of Natural Killer Cell Cytotoxic Function; Implication in Growth, Expansion and Differentiation of Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Han-Ching Tseng

    2011-01-01

    Full Text Available Accumulated evidence indicates that cytotoxic function of immune effectors is largely suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. The aims of this review are to provide a rationale and a potential mechanism for immunosuppression in cancer and to demonstrate the significance of such immunosuppression in cellular differentiation and progression of cancer. To that end, we have recently shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, Mesenchymal Stem Cells (hMSCs, dental pulp stem cells (hDPSCs and induced pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in primary monocytes in vivo significantly augmented NK cell function. Total population of monocytes and those depleted of CD16(+ subsets were able to substantially prevent NK cell mediated lysis of OSCSCs, MSCs and DPSCs. Taken together, our results suggest that stem cells are significant targets of the NK cell cytotoxicity. The concept of split anergy in NK cells and its contribution to tissue repair and regeneration and in tumor resistance and progression will be discussed in this review.

  2. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game

    NARCIS (Netherlands)

    van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Oberste, M. Steven; Karpilow, Jon; Tripp, Ralph A.

    2016-01-01

    Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced

  3. Staphylococcus haemolyticus prophage ΦSH2 endolysin relies on Cysteine, Histidine-dependent Amidohydrolases/Peptidases activity for lysis ‘from without’

    Science.gov (United States)

    Schmelcher, Mathias; Korobova, Olga; Schischkova, Nina; Kiseleva, Natalia; Kopylov, Paul; Pryamchuk, Sergey; Donovan, David M.; Abaev, Igor

    2014-01-01

    Staphylococcus aureus is an important pathogen, with methicillin-resistant (MRSA) and multi-drug resistant strains becoming increasingly prevalent in both human and veterinary clinics. S. aureus causing bovine mastitis yields high annual losses to the dairy industry. Conventional treatment of mastitis by broad range antibiotics is often not successful and may contribute to development of antibiotic resistance. Bacteriophage endolysins present a promising new source of antimicrobials. The endolysin of prophage ΦSH2 of Staphylococcus haemolyticus strain JCSC1435 (ΦSH2 lysin) is a peptidoglycan hydrolase consisting of two catalytic domains (CHAP and amidase) and an SH3b cell wall binding domain. In this work, we demonstrated its lytic activity against live staphylococcal cells and investigated the contribution of each functional module to bacterial lysis by testing a series of deletion constructs in zymograms and turbidity reduction assays. The CHAP domain exhibited three-fold higher activity than the full length protein and optimum activity in physiological saline. This activity was further enhanced by the presence of bivalent calcium ions. The SH3b domain was shown to be required for full activity of the complete ΦSH2 lysin. The full length enzyme and the CHAP domain showed activity against multiple staphylococcal strains, including MRSA strains, mastitis isolates, and CoNS. PMID:23026556

  4. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation

    OpenAIRE

    Shujue Li; Wenqi Wu; Wenzheng Wu; Xiaolu Duan; Zhenzhen Kong; Guohua Zeng

    2016-01-01

    Background/Aims: The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Methods: Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-48...

  5. Tolerogenic interactions between CD8+ dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts.

    Science.gov (United States)

    Hongo, David; Tang, Xiaobin; Zhang, Xiangyue; Engleman, Edgar G; Strober, Samuel

    2017-03-23

    The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8 + dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8 + DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8 + DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8 + DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8 + DCs initiates tolerance induction. Tolerogenic CD8 + DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8 + DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol. © 2017 by The American Society of Hematology.

  6. Comparison of the lysis centrifugation method with the conventional blood culture method in cases of sepsis in a tertiary care hospital.

    Science.gov (United States)

    Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M

    2012-07-01

    Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.

  7. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-01-01

    Highlights: → Depletion of cellular PABP level arrests mRNA translation in HeLa cells. → PABP knock down leads to apoptotic cell death. → PABP depletion does not affect transcription. → PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  8. Prior endurance exercise prevents postprandial lipaemia-induced increases in reactive oxygen species in circulating CD31+ cells.

    Science.gov (United States)

    Jenkins, Nathan T; Landers, Rian Q; Thakkar, Sunny R; Fan, Xiaoxuan; Brown, Michael D; Prior, Steven J; Spangenburg, Espen E; Hagberg, James M

    2011-11-15

    We hypothesized that prior exercise would prevent postprandial lipaemia (PPL)-induced increases in intracellular reactive oxygen species (ROS) in three distinct circulating angiogenic cell (CAC) subpopulations. CD34(+), CD31(+)/CD14(-)/CD34(-), and CD31(+)/CD14(+)/CD34(-) CACs were isolated from blood samples obtained from 10 healthy men before and 4 h after ingesting a high fat meal with or without ∼50 min of prior endurance exercise. Significant PPL-induced increases in ROS production in both sets of CD31(+) cells were abolished by prior exercise. Experimental ex vivo inhibition of NADPH oxidase activity and mitochondrial ROS production indicated that mitochondria were the primary source of PPL-induced oxidative stress. The attenuated increases in ROS with prior exercise were associated with increased antioxidant gene expression in CD31(+)/CD14(-)/CD34(-) cells and reduced intracellular lipid uptake in CD31(+)/CD14(+)/CD34(-) cells. These findings were associated with systemic cardiovascular benefits of exercise, as serum triglyceride, oxidized low density lipoprotein-cholesterol, and plasma endothelial microparticle concentrations were lower in the prior exercise trial than the control trial. In conclusion, prior exercise completely prevents PPL-induced increases in ROS in CD31(+)/CD14(-)/CD34(-) and CD31(+)/CD14(+)/CD34(-) cells. The mechanisms underlying the effects of exercise on CAC function appear to vary among specific CAC types.

  9. Coriandrum sativum L. seed extract mitigates lipotoxicity in RAW 264.7 cells and prevents atherogenic changes in rats

    Science.gov (United States)

    Patel, Dipak; Desai, Swati; Gajaria, Tejal; Devkar, Ranjitsinh; Ramachandran, A.V.

    2013-01-01

    This study was designed to assess the efficacy of Coriandrum sativum L. (CS) in preventing in vitro low density lipoprotein (LDL) oxidation mediated macrophage modification. Further, an in vivo study was also conducted to confirm upon the efficacy of CS seed extract in alleviating pathophysiological alterations of high cholesterol diet induced atherosclerosis in rats. Copper mediated cell free oxidation of LDL accounted for elevated indices of malondialdehyde (MDA), lipid hydroperoxide (LHP)and protein carbonyl (PC) and a progressive increment in conjugate diene (CD) levels whereas, reverse set of changes were recorded in presence of CS extract. Cell mediated LDL oxidation (using RAW 264.7 cells) accounted for lowered MDA production and oxidized LDL (Ox-LDL) mediated cell death in presence of CS extract and the same was attributed to its potent antioxidant and free radical scavenging potentials. High cholesterol fed atherogenic rats showed elevated lipid indices, evidences of LDL oxidation, plaque formation in thoracic aorta. The same was further validated with immunostaining of cell adhesion molecules and hematoxylin and eosin (HXE) staining. However, co-supplementation of CS to atherogenic rats recorded significant lowering of the above mentioned parameters further strengthening the claim that CS extract is instrumental in preventing onset and progression of atherosclerosis. PMID:26417232

  10. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity.

    Science.gov (United States)

    Wang, Xin; Sun, Kang; Tan, Yanping; Wu, Shanshan; Zhang, Jinsong

    2014-07-01

    Peritoneal implantation of cancer cells, particularly postoperative seeding metastasis, frequently occurs in patients with primary tumors in the stomach, colon, liver, and ovary. Peritoneal carcinomatosis is associated with poor prognosis. In this work, we evaluated the prophylactic effect of intraperitoneal administration of selenium (Se), an essential trace element and a putative chemopreventive agent, on peritoneal implantation of cancer cells. Elemental Se nanoparticles were injected into the abdominal cavity of mice, into which highly malignant H22 hepatocarcinoma cells had previously been inoculated. Se concentrations in the cancer cells and tissues, as well as the efficacy of proliferation inhibition and safety, were evaluated. Se was mainly concentrated in cancer cells compared to Se retention in normal tissues, showing at least an order of magnitude difference between the drug target cells (the H22 cells) and the well-recognized toxicity target of Se (the liver). Such a favorable selective distribution resulted in strong proliferation suppression without perceived host toxicity. The mechanism of action of the Se nanoparticle-triggered cytotoxicity was associated with Se-mediated production of reactive oxygen species, which impaired the glutathione and thioredoxin systems. Our results suggest that intraperitoneal administration of Se is a safe and effective means of preventing growth of cancer cells in the peritoneal cavity for the above-mentioned high-risk populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A selective cyclooxygenase-2 inhibitor prevents inflammation-related squamous cell carcinogenesis of the forestomach via duodenogastric reflux in rats

    OpenAIRE

    Oba, Masaru; Miwa, Koichi; Fujimura, Takeshi; Harada, Shin-ichi; Sasaki, Shozo; Oyama, Katsunobu; Ohta, Tetsuo; Hattori, Takanori

    2009-01-01

    Background: Duodenal reflux causes inflammation-related squamous cell carcinogenesis in the forestomach of rats without any carcinogens. The aim of this study was to investigate the efficacy of a selective cyclooxygenase (COX)-2 inhibitor, meloxicam, in preventing this carcinogenesis. Methods: A series of 188 rats underwent a surgical duodenogastric reflux procedure and were divided into 2 groups. One group was given commercial chow (control group), and the other was given experimental chow c...

  12. NCI First International Workshop on the Biology, Prevention and Treatment of Relapse after Allogeneic Hematopoietic Cell Transplantation: Report from the Committee on Prevention of Relapse Following Allogeneic Cell Transplantation for Hematological Malignancies

    Science.gov (United States)

    Alyea, Edwin P.; DeAngelo, Daniel J.; Moldrem, Jeffrey; Pagel, John M.; Przepiorka, Donna; Riddell, Stan; Sadelin, Michel; Young, James W.; Giralt, Sergio; Bishop, Michael

    2011-01-01

    Prevention of relapse after allogeneic hematopoietic stem cell transplantation is the most likely approach to improve survival of patients treated for hematologic malignancies. Herein we review the limits of currently available transplant therapies and the innovative strategies being developed to overcome resistance to therapy or to fill therapeutic modalities not currently available. These novel strategies include nonimmunologic therapies, such as targeted preparative regimens and posttransplant drug therapy, as well as immunologic interventions, including graft engineering, donor lymphocyte infusions, T cell engineering, vaccination and dendritic cell-based approaches. Several aspects of the biology of the malignant cells as well as the host have been identified that obviate success of even these newer strategies. To maximize the potential for success, we recommend pursuing research to develop additional targeted therapies to be used in the preparative regimen or as maintenance post-transplant, better characterize the T-cell and dendritic cells subsets involved in graft-versus-host disease and the graft-versus-leukemia/tumor effect, identify strategies for timing immunologic or nonimmunologic therapies to eliminate the noncycling cancer stem cell, identify more targets for immunotherapies, develop new vaccines that will not be limited by HLA, and develop methods to identify population at very high risk for relapse in order to accelerate clinical development and avoid toxicity in patients not at risk for relapse. PMID:20580849

  13. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    Directory of Open Access Journals (Sweden)

    James W Wells

    Full Text Available Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.

  14. N-methyl bases of ethanolamine prevent apoptotic cell death induced by oxidative stress in cells of oligodendroglia origin.

    Science.gov (United States)

    Brand, A; Gil, S; Yavin, E

    2000-04-01

    A major reason for brain tissue vulnerability to oxidative damage is the high content of polyunsaturated fatty acids (PUFAs). Oligodendroglia-like OLN 93 cells lack PUFAs and are relatively insensitive to oxidative stress. When grown in serum-free defined medium in the presence of 0.1 mM docosahexaenoic acid (DHA; 22:6 n-3) for 3 days, OLN 93 cells release in the medium 2.6-fold more thiobarbituric acid-reactive substances (TBARS) after a 30-min exposure to 0.1 mM H2O2 and 50 microM Fe2+. Release of TBARS was substantially decreased by approximately 20 and 30% on coincubation with either 1 mM N-monomethylethanolamine or N,N'-dimethylethanolamine (dEa), respectively. The protective effect of dEa was concentration- and time-dependent and was still visible after dEa removal, suggesting a long-lasting mechanism of protection. After 24 h following H2O2-induced stress, cell death monitored by cell sorting showed 16% of the cells in the sub-G1 area, indicative of apoptotic cell death. DHA-supplemented cultures showed 35% cell death, whereas cosupplements with dEa reduced cell death to 12%, indicating cell rescue. Although the exact mechanism for this protection is not known, the nature of the polar head group and the degree of unsaturation may determine the ultimate resistance of nerve cells to oxidative stress.

  15. Blood Stem Cell Activity Is Arrested by Th1-Mediated Injury Preventing Engraftment following Nonmyeloablative Conditioning

    Science.gov (United States)

    Florek, Mareike; Kohrt, Holbrook E. K.; Küpper, Natascha J.; Filatenkov, Alexander; Linderman, Jessica A.; Hadeiba, Husein; Negrin, Robert S.

    2016-01-01

    T cells are widely used to promote engraftment of hematopoietic stem cells (HSCs) during an allogeneic hematopoietic cell transplantation. Their role in overcoming barriers to HSC engraftment is thought to be particularly critical when patients receive reduced doses of preparative chemotherapy and/or radiation compared with standard transplantations. In this study, we sought to delineate the effects CD4+ cells on engraftment and blood formation in a model that simulates clinical hematopoietic cell transplantation by transplanting MHC-matched, minor histocompatibility–mismatched grafts composed of purified HSCs, HSCs plus bulk T cells, or HSCs plus T cell subsets into mice conditioned with low-dose irradiation. Grafts containing conventional CD4+ T cells caused marrow inflammation and inhibited HSC engraftment and blood formation. Posttransplantation, the marrows of HSCs plus CD4+ cell recipients contained IL-12–secreting CD11c+ cells and IFN-γ–expressing donor Th1 cells. In this setting, host HSCs arrested at the short-term stem cell stage and remained in the marrow in a quiescent cell cycling state (G0). As a consequence, donor HSCs failed to engraft and hematopoiesis was suppressed. Our data show that Th1 cells included in a hematopoietic allograft can negatively impact HSC activity, blood reconstitution, and engraftment of donor HSCs. This potential negative effect of donor T cells is not considered in clinical transplantation in which bulk T cells are transplanted. Our findings shed new light on the effects of CD4+ T cells on HSC biology and are applicable to other pathogenic states in which immune activation in the bone marrow occurs such as aplastic anemia and certain infectious conditions. PMID:27815446

  16. Prophylactic antibiotics for preventing pneumococcal infection in children with sickle cell disease.

    Science.gov (United States)

    Rankine-Mullings, Angela E; Owusu-Ofori, Shirley

    2017-10-10

    Persons with sickle cell disease (SCD) are particularly susceptible to infection. Infants and very young children are especially vulnerable. The 'Co-operative Study of Sickle Cell Disease' observed an incidence rate for pneumococcal septicaemia of 10 per 100 person years in children under the age of three years. Vaccines, including customary pneumococcal vaccines, may be of limited use in this age group. Therefore, prophylactic penicillin regimens may be advisable for this population. This is an update of a Cochrane Review first published in 2002, and previously updated, most recently in 2014. To assess the effects of antibiotic prophylaxis against pneumococcus in children with SCD in relation to:1. incidence of infection;2. mortality;3. drug-related adverse events (as reported in the included studies) to the individual and the community;4. the impact of discontinuing at various ages on incidence of infection and mortality. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which is comprised of references identified from comprehensive electronic database searches and also two clinical trials registries: ClinicalTrials.gov and the WHO International Registry Platform. Additionally, we carried out handsearching of relevant journals and abstract books of conference proceedings.Date of the most recent search: 19 December 2016. All randomised or quasi-randomised controlled trials comparing prophylactic antibiotics to prevent pneumococcal infection in children with SCD with placebo, no treatment or a comparator drug. Both authors independently extracted data and assessed trial quality. The authors used the GRADE criteria to assess the quality of the evidence. Five trials were identified by the searches, of which three trials (880 children randomised) met the inclusion criteria. All of the included trials showed a reduced incidence of infection in children with SCD (SS or Sβ0Thal) receiving prophylactic penicillin

  17. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging

    OpenAIRE

    Palmer, Clovis S.; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M.

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impa...

  18. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction. Copyright © 2016 the American Physiological Society.

  19. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    Science.gov (United States)

    2012-07-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved

  20. Protective effects of [Gly14]-Humanin on beta-amyloid-induced PC12 cell death by preventing mitochondrial dysfunction.

    Science.gov (United States)

    Jin, Hui; Liu, Tao; Wang, Wei-Xi; Xu, Jie-Hua; Yang, Peng-Bo; Lu, Hai-Xia; Sun, Qin-Ru; Hu, Hai-Tao

    2010-02-01

    Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD), and is considered as an early event in AD pathology. Humanin (HN) and its derivative, [Gly14]-Humanin (HNG), are known for their ability to suppress neuronal death induced by AD-related insults in vitro and in vivo. In the present study, we investigated the neuroprotective effects of HNG on Abeta(25-35)-induced toxicity and its potential mechanisms in PC12 cells. Exposure of PC12 cells to 25 microM Abeta(25-35) caused significant viability loss and cell apoptosis. In addition, decreased mitochondrial membrane potential and increased cytochrome c releases from mitochondria were also observed after Abeta(25-35) exposure. All these effects induced by Abeta(25-35) were markedly reversed by HNG. Pretreatment with 100 nM HNG 6h prior to Abeta(25-35) exposure significantly elevated cell viability, reduced Abeta(25-35)-induced cell apoptosis, stabilized mitochondrial membrane potential, and blocked cytochrome c release from mitochondria. Furthermore, HNG also ameliorated the Abeta(25-35)-induced Bcl-2/Bax ratio reduction and decreased caspase-3 activity in PC12 cells. These results demonstrate that HNG could attenuate Abeta(25-35)-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Furthermore, these data suggest that mitochondria are involved in the protective effect of HNG against Abeta(25-35). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. B Cell IgD Deletion Prevents Alveolar Bone Loss Following Murine Oral Infection

    Directory of Open Access Journals (Sweden)

    Pamela J. Baker

    2009-01-01

    and CD4+ T cells in immune normal mice compared to IgD deficient mice. These data suggest that IgD is an important mediator of alveolar bone resorption, possibly through antigen-specific coactivation of B cells and CD4+ T cells.

  2. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation.

    Science.gov (United States)

    Li, Shujue; Wu, Wenqi; Wu, Wenzheng; Duan, Xiaolu; Kong, Zhenzhen; Zeng, Guohua

    2016-01-01

    The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-488-tagged COM crystals were used in crystals adhesion experiment to distinguish from the previous COM attachment, and adhesive crystals were counted under fluorescence microscope, which were also dissolved and the calcium concentration was assessed by flame atomic absorption spectrophotometry. Dedifferentiated MDCK cells induced by transforming growth factor β1 (TGF-β1) shown higher affinity to COM crystals. After exposure to COM for 48 hours, cell dedifferentiation were observed and more subsequent COM crystals could bind onto, mediated by Akt/GSK-3β/Snail signaling. L-carnitine attenuated this signaling, resulted in inhibition of cell dedifferentiation and reduction of subsequent COM crystals adhesion. COM attachment promotes subsequent COM crystals adhesion, by inducing cell dedifferentiation via Akt/GSK-3β/Snail signaling. L-carnitine partially abolishes cell dedifferentiation and resists COM crystals adhesion. L-carnitine, may be used as a potential therapeutic strategy against recurrence of urolithiasis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers

    Directory of Open Access Journals (Sweden)

    Ngoka Lambert CM

    2008-10-01

    Full Text Available Abstract Background An important step in the proteomics of solid tumors, including breast cancer, consists of efficiently extracting most of proteins in the tumor specimen. For this purpose, Radio-Immunoprecipitation Assay (RIPA buffer is widely employed. RIPA buffer's rapid and highly efficient cell lysis and good solubilization of a wide range of proteins is further augmented by its compatibility with protease and phosphatase inhibitors, ability to minimize non-specific protein binding leading to a lower background in immunoprecipitation, and its suitability for protein quantitation. Results In this work, the insoluble matter left after RIPA buffer extraction of proteins from breast tumors are subjected to another extraction step, using a urea-based buffer. It is shown that RIPA and urea lysis buffers fractionate breast tissue proteins primarily on the basis of molecular weights. The average molecular weight of proteins that dissolve exclusively in urea buffer is up to 60% higher than in RIPA. Gene Ontology (GO and Directed Acyclic Graphs (DAG are used to map the collective biological and biophysical attributes of the RIPA and urea proteomes. The Cellular Component and Molecular Function annotations reveal protein solubilization preferences of the buffers, especially the compartmentalization and functional distributions. It is shown that nearly all extracellular matrix proteins (ECM in the breast tumors and matched normal tissues are found, nearly exclusively, in the urea fraction, while they are mostly insoluble in RIPA buffer. Additionally, it is demonstrated that cytoskeletal and extracellular region proteins are more soluble in urea than in RIPA, whereas for nuclear, cytoplasmic and mitochondrial proteins, RIPA buffer is preferred. Extracellular matrix proteins are highly implicated in cancer, including their proteinase-mediated degradation and remodelling, tumor development, progression, adhesion and metastasis. Thus, if they are not

  4. Prevention of immunodeficiency virus induced CD4+ T-cell depletion by prior infection with a non-pathogenic virus

    International Nuclear Information System (INIS)

    TerWee, Julie A.; Carlson, Jennifer K.; Sprague, Wendy S.; Sondgeroth, Kerry S.; Shropshire, Sarah B.; Troyer, Jennifer L.; VandeWoude, Sue

    2008-01-01

    Immune dysregulation initiated by a profound loss of CD4+ T-cells is fundamental to HIV-induced pathogenesis. Infection of domestic cats with a non-pathogenic lentivirus prevalent in the puma (puma lentivirus, PLV or FIV PCO ) prevented peripheral blood CD4+ T-cell depletion caused by subsequent virulent FIV infection. Maintenance of this critical population was not associated with a significant decrease in FIV viremia, lending support to the hypothesis that direct viral cytopathic effect is not the primary cause of immunodeficiency. Although this approach was analogous to immunization with a modified live vaccine, correlates of immunity such as a serum-neutralizing antibody or virus-specific T-cell proliferative response were not found in protected animals. Differences in cytokine transcription profile, most notably in interferon gamma, were observed between the protected and unprotected groups. These data provide support for the importance of non-adaptive enhancement of the immune response in the prevention of CD4+ T-cell loss

  5. Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Taishin eAkiyama

    2013-08-01

    Full Text Available Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla (mTECs contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs. Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED. In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases.

  6. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    Science.gov (United States)

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    Science.gov (United States)

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  8. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening.

    Science.gov (United States)

    Tronser, Tina; Popova, Anna A; Jaggy, Mona; Bastmeyer, Martin; Levkin, Pavel A

    2017-12-01

    Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of

  9. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation.

    Science.gov (United States)

    Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K

    2015-10-01

    Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.

  10. Prevention of cell death by the zinc ion chelating agent TPEN in cultured PC12 cells exposed to Oxygen-Glucose Deprivation (OGD).

    Science.gov (United States)

    Liu, Zhao; Huang, Yue-yang; Wang, Yu-xiang; Wang, Hong-gang; Deng, Fei; Heng, Bin; Xie, Lai-hua; Liu, Yan-qiang

    2015-01-01

    To elucidate the role of Zn(2+)-associated glutamate signaling pathway and voltage-dependent outward potassium ion currents in neuronal death induced by hypoxia-ischemia, PC12 cells were exposed to Oxygen-Glucose Deprivation (OGD) solution mimicking the hypoxic-ischemic condition in neuron, and the effect of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn(2+) chelating agent on OGD-induced neuronal death was assessed in the present study. The cell survival rate, apoptosis status, potassium channel currents, intracellular free glutamate concentration and GluR2 expression in PC12 cells exposed to OGD in the absence or presence of TPEN for different time were investigated. The results showed that OGD exposure increased apoptosis, reduced the cell viability (P PC12 cells. TPEN partially reversed the influence resulted from OGD. These results suggest that OGD-induced cell apoptosis and/or death is mediated by the alteration in glutamate signaling pathway and the voltage-dependent outward potassium ion currents, while TPEN effectively prevent cell apoptosis and/or death under hypoxic-ischemic condition. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Activation of iNKT Cells Prevents Salmonella-Enterocolitis and Salmonella-Induced Reactive Arthritis by Downregulating IL-17-Producing γδT Cells

    Directory of Open Access Journals (Sweden)

    Mariángeles Noto Llana

    2017-09-01

    Full Text Available Reactive arthritis (ReA is an inflammatory condition of the joints that arises following an infection. Salmonella enterocolitis is one of the most common infections leading to ReA. Although the pathogenesis remains unclear, it is known that IL-17 plays a pivotal role in the development of ReA. IL-17-producers cells are mainly Th17, iNKT, and γδT lymphocytes. It is known that iNKT cells regulate the development of Th17 lineage. Whether iNKT cells also regulate γδT lymphocytes differentiation is unknown. We found that iNKT cells play a protective role in ReA. BALB/c Jα18−/− mice suffered a severe Salmonella enterocolitis, a 3.5-fold increase in IL-17 expression and aggravated inflammation of the synovial membrane. On the other hand, activation of iNKT cells with α-GalCer abrogated IL-17 response to Salmonella enterocolitis and prevented intestinal and joint tissue damage. Moreover, the anti-inflammatory effect of α-GalCer was related to a drop in the proportion of IL-17-producing γδT lymphocytes (IL17-γδTcells rather than to a decrease in Th17 cells. In summary, we here show that iNKT cells play a protective role against Salmonella-enterocolitis and Salmonella-induced ReA by downregulating IL17-γδTcells.

  12. INDUCIBLE CELL LYSIS SYSTEM IN BACILLUS SUBTILIS AND TRANSFORMATION BY DNA RELEASED FROM LYSED CELLS. (R826107)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Remifentanil induces autophagy and prevents hydrogen peroxide-induced apoptosis in Cos-7 cells.

    Science.gov (United States)

    Yoon, Ji-Young; Baek, Chul-Woo; Woo, Mi-Na; Kim, Eun-Jung; Yoon, Ji-Uk; Park, Chang-Hoon

    2016-09-01

    This study investigated the effect of remifentanil pretreatment on Cos-7 cells exposed to oxidative stress, and the influence of remifentanil on intracellular autophagy and apoptotic cell death. Cells were divided into 4 groups: (1) Control: non-pretreated cells were incubated in normoxia (5% CO 2 , 21% O 2 , and 74% N 2 ). (2) H 2 O 2 : non-pretreated cells were exposed to H 2 O 2 for 24 h. (3) RPC+H 2 O 2 : cells pretreated with remifentanil were exposed to H 2 O 2 for 24 h. (4) 3-MA+RPC+H 2 O 2 : cells pretreated with 3-Methyladenine (3-MA) and remifentanil were exposed to H 2 O 2 for 24 h. We determined the cell viability of each group using an MTT assay. Hoechst staining and FACS analysis of Cos-7 cells were performed to observe the effect of remifentanil on apoptosis. Autophagy activation was determined by fluorescence microscopy, MDC staining, and AO staining. The expression of autophagy-related proteins was observed using western blotting. Remifentanil pretreatment increased the viability of Cos-7 cells exposed to oxidative stress. Hoechst staining and FACS analysis revealed that oxidative stress-dependent apoptosis was suppressed by the pretreatment. Additionally, fluorescence microscopy showed that remifentanil pretreatment led to autophagy-induction in Cos-7 cells, and the expression of autophagy-related proteins was increased in the RPC+H 2 O 2 group. The study showed that remifentanil pretreatment stimulated autophagy and increased viability in an oxidative stress model of Cos-7 cells. Therefore, we suggest that apoptosis was activated upon oxidative stress, and remifentanil preconditioning increased the survival rate of the cells by activating autophagy.

  14. Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.

    Science.gov (United States)

    Kirlin, W G; Cai, J; DeLong, M J; Patten, E J; Jones, D P

    1999-10-01

    Dietary agents that induce glutathione S-transferases and related detoxification systems (Phase 2 enzyme inducers) are thought to prevent cancer by enhancing elimination of chemical carcinogens. The present study shows that compounds of this group (benzyl isothiocyanate, allyl sulfide, dimethyl fumarate, butylated hydroxyanisole) activated apoptosis in human colon carcinoma (HT29) cells in culture over the same concentration ranges that elicited increases in enzyme activity (5-25, 25-100, 10-100, 15-60 micromol/L, respectively). Pretreatment of cells with sodium butyrate, an agent that induces HT29 cell differentiation, resulted in parallel increases in Phase 2 enzyme activities and induction of apoptosis in response to the inducers. Cell death characteristics included apoptotic morphological changes, appearance of cells at sub-G1 phase on flow cytometry, caspase activation, DNA fragmentation and TUNEL-positive staining. The results suggest that dietary Phase 2 inducers may protect against cancer by a mechanism distinct from and in addition to that associated with enhanced elimination of carcinogens. If this occurs in vivo, diets high in such compounds could eliminate precancerous cells by apoptosis at time points well after initial exposure to chemical mutagens and carcinogens.

  15. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface.

    Science.gov (United States)

    Martínez-Muñoz, Laura; Barroso, Rubén; Dyrhaug, Sunniva Y; Navarro, Gemma; Lucas, Pilar; Soriano, Silvia F; Vega, Beatriz; Costas, Coloma; Muñoz-Fernández, M Ángeles; Santiago, César; Rodríguez Frade, José Miguel; Franco, Rafael; Mellado, Mario

    2014-05-13

    CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.

  16. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  17. CD4+ T-cell priming as biomarker to study immune response to preventive vaccines

    Directory of Open Access Journals (Sweden)

    Annalisa eCiabattini

    2013-12-01

    Full Text Available T-cell priming is a critical event in the initiation of the immune response to vaccination since it deeply influences both the magnitude and the quality of the immune response induced. CD4+ T-cell priming, required for the induction of high-affinity antibodies and immune memory, represents a key target for improving and modulating vaccine immunogenicity. A major challenge in the study of in vivo T-cell priming is due to the low frequency of antigen-specific T cells. This review discusses the current knowledge on antigen-specific CD4+ T-cell priming in the context of vaccination, as well as the most advanced tools for the characterization of the in vivo T-cell priming and the opportunities offered by the application of systems biology.

  18. CD4(+) T Cell Priming as Biomarker to Study Immune Response to Preventive Vaccines.

    Science.gov (United States)

    Ciabattini, Annalisa; Pettini, Elena; Medaglini, Donata

    2013-12-04

    T cell priming is a critical event in the initiation of the immune response to vaccination since it deeply influences both the magnitude and the quality of the immune response induced. CD4(+) T cell priming, required for the induction of high-affinity antibodies and immune memory, represents a key target for improving and modulating vaccine immunogenicity. A major challenge in the study of in vivo T cell priming is due to the low frequency of antigen-specific T cells. This review discusses the current knowledge on antigen-specific CD4(+) T cell priming in the context of vaccination, as well as the most advanced tools for the characterization of the in vivo T cell priming and the opportunities offered by the application of systems biology.

  19. CD4+ T Cell Priming as Biomarker to Study Immune Response to Preventive Vaccines

    Science.gov (United States)

    Ciabattini, Annalisa; Pettini, Elena; Medaglini, Donata

    2013-01-01

    T cell priming is a critical event in the initiation of the immune response to vaccination since it deeply influences both the magnitude and the quality of the immune response induced. CD4+ T cell priming, required for the induction of high-affinity antibodies and immune memory, represents a key target for improving and modulating vaccine immunogenicity. A major challenge in the study of in vivo T cell priming is due to the low frequency of antigen-specific T cells. This review discusses the current knowledge on antigen-specific CD4+ T cell priming in the context of vaccination, as well as the most advanced tools for the characterization of the in vivo T cell priming and the opportunities offered by the application of systems biology. PMID:24363656

  20. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells

    OpenAIRE

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    ABSTRACT The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that act...

  1. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis.

    Science.gov (United States)

    Liu, Xiaolin; Li, Qing; Niu, Xin; Hu, Bin; Chen, Shengbao; Song, Wenqi; Ding, Jian; Zhang, Changqing; Wang, Yang

    2017-01-01

    Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro . iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on

  2. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat.

    Science.gov (United States)

    Guo, Shang-Chun; Tao, Shi-Cong; Yin, Wen-Jing; Qi, Xin; Sheng, Jia-Gen; Zhang, Chang-Qing

    2016-01-01

    Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering. Herein, we provided the first demonstration that the early treatment of exosomes secreted by human synovial-derived mesenchymal stem cells (SMSC-Exos) could prevent GC-induced ONFH in the rat model. Using a series of in vitro functional assays, we found that SMSC-Exos could be internalized into bone marrow derived stromal cells (BMSCs) and enhance their proliferation and have anti-apoptotic abilities. Finally, SMSC-Exos may be promising for preventing GC-induced ONFH.

  3. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine

    2006-01-01

    signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process...

  4. The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin

    OpenAIRE

    Briers, Yves; Peeters, Liesbet M; Volckaert, Guido; Lavigne, Rob

    2011-01-01

    The lysis cassette of Pseudomonas aeruginosa phage ϕKMV encodes a holin, endolysin, Rz and Rz1 in the canonical order. It has a tight organization with a high degree of overlapping genes and is highly conserved (between 96 and 100% identity at the protein level) among several other members of the “phiKMV-like viruses.” The endolysin KMV45 exhibits characteristics as expected for a signal-arrest-release (SAR) endolysin, whereas the holin KMV44 is a typical pinholin. KMV45 is initially secreted...

  5. [PrepFiler Express BTATM Lysis Buffer Combined with Silicon Microbeads for Rapid DNA Extraction from Bone].

    Science.gov (United States)

    Ding, S C; Zhang, H C; Gao, L L

    2017-10-01

    To establish a convenient and rapid method for extracting DNA from bone. Fifteen long bone samples were washed and sterilized. The skeletal fragments were obtained by electric drill, and lysed by PrepFiler Express BTA™ lysis buffer. DNA was then manually extracted by silicon microbeads for further analysis. STR genotyping was successfully obtained in 14 out of the 15 samples, and the detection rate was 93.33%. The method for DNA extraction from bone established in present study is convenient, quick, effective, and with a strong applicability, which is worth spreading and applying. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. The Natural Killer Cell Cytotoxic Function Is Modulated by HIV-1 Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Edward Barker

    2011-07-01

    Full Text Available Natural killer (NK cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.

  7. Brain irradiation for metastasis prevention and radiation treatment of small cell lung cancer metastases into the brain

    International Nuclear Information System (INIS)

    Mikhina, Z.P.; Motorina, L.I.; Glekov, I.V.

    1985-01-01

    The report presents the results of cranial irradiation of 44 small cell lung cancer patients with clinically-identified intracranial metastases and 40 patients - for metastatic spread prevention. Whole brain irradiation was carried out with single doses of 2-4 Gy (total dose - 30-40 Gy) in both groups 5 times weekly. Patients irradiated for metastasis prevention revealed a 3.3 - fold decrease in intracranial metastasis frequency and a good post-treatment tolerance. In the other group, radiation failed to reach tumor lesions in 20%; treatment produced a poor effect in 30%. There was a correlation between survival time, initial expansion of process and tumor response to primary treatment. No relationship was observed between survival time and procedure and duration of cranial irradiation. Prophylactic irradiation may be beneficial in responders to therapy

  8. Secondary benefit of maintaining normal transcranial Doppler velocities when using hydroxyurea for prevention of severe sickle cell anemia.

    Science.gov (United States)

    Ghafuri, Djamila Labib; Chaturvedi, Shruti; Rodeghier, Mark; Stimpson, Sarah-Jo; McClain, Brandi; Byrd, Jeannie; DeBaun, Michael R

    2017-07-01

    In a retrospective cohort study, we tested the hypothesis that when prescribing hydroxyurea (HU) to children with sickle cell anemia (SCA) to prevent vaso-occlusive events, there will be a secondary benefit of maintaining low transcranial Doppler (TCD) velocity, measured by imaging technique (TCDi). HU was prescribed for 90.9% (110 of 120) of children with SCA ≥5 years of age and followed for a median of 4.4 years, with 70% (n = 77) receiving at least one TCDi evaluation after starting HU. No child prescribed HU had a conditional or abnormal TCDi measurement. HU initiation for disease severity prevention decreases the prevalence of abnormal TCDi velocities. © 2016 Wiley Periodicals, Inc.

  9. A PILOT STUDY OF HYDROXYUREA TO PREVENT CHRONIC ORGAN DAMAGE IN YOUNG CHILDREN WITH SICKLE CELL ANEMIA

    Science.gov (United States)

    Thornburg, Courtney D.; Dixon, Natalia; Burgett, Shelly; Mortier, Nicole A.; Schultz, William H.; Zimmerman, Sherri A.; Bonner, Melanie; Hardy, Kristina K.; Calatroni, Agustin; Ware, Russell E.

    2016-01-01

    Background Hydroxyurea improves laboratory parameters and prevents acute clinical complications of sickle cell anemia (SCA) in children and adults, but its effects on organ function remain incompletely defined. Methods To assess the safety and efficacy of hydroxyurea in young children with SCA and to prospectively assess kidney and brain function, 14 young children (mean age 35 months) received hydroxyurea at a mean maximum tolerated dose (MTD) of 28 mg/kg/day. Results After a mean of 25 months, expected laboratory effects included significant increases in hemoglobin, MCV and %HbF along with significant decreases in reticulocytes, absolute neutrophil count, and bilirubin. There was no significant increase in glomerular filtration rate by DTPA clearance or Schwartz estimate. Mean transcranial Doppler (TCD) velocity changes were −25.6 cm/sec (phydroxyurea at MTD is well-tolerated by both children and families, and may prevent chronic organ damage in young children with SCA. PMID:19061213

  10. Implications of Green Tea and Its Constituents in the Prevention of Cancer via the Modulation of Cell Signalling Pathway

    Science.gov (United States)

    Rahmani, Arshad H.; Al shabrmi, Fahad M.; Allemailem, Khaled S.; Aly, Salah M.; Khan, Masood A.

    2015-01-01

    Green tea is commonly used as a beverage worldwide, especially in China, Japan, Morocco, and Saudi Arabia. Green tea and its constituents have been considered very effective in the prevention and treatment of various diseases. It contains a variety of catechins, which show a pivotal role in the modulation of biological activities and also act as chemopreventive agents. Earlier studies have confirmed that green tea and its chief constituent epigallocatechin gallate (EGCG) have a potential role in the management of cancer through the modulation of cell signaling pathways. In this review, we focused on the beneficial effects of green tea and its constituents in the cancer prevention and treatment and its impact on modulation of molecular pathways. PMID:25977926

  11. Prevention of phosphine-induced cytotoxicity by nutrients in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Marzieh Rashedinia

    2016-01-01

    Interpretation & conclusions: The results supported the hypothesis that phosphine-induced cytotoxicity was due to decrease of ATP levels. ATP suppliers could prevent its toxicity by generating ATP through glycolysis. α-keto compounds such as dihydroxyacetone and α-ketoglutarate may bind to phosphine and restore mitochondrial respiration.

  12. U6 snRNA expression prevents toxicity in TDP-43-knockdown cells.

    Directory of Open Access Journals (Sweden)

    Masao Yahara

    Full Text Available Depletion of amyotrophic lateral sclerosis (ALS-associated transactivation response (TAR RNA/DNA-binding protein 43 kDa (TDP-43 alters splicing efficiency of multiple transcripts and results in neuronal cell death. TDP-43 depletion can also disturb expression levels of small nuclear RNAs (snRNAs as spliceosomal components. Despite this knowledge, the relationship between cell death and alteration of snRNA expression during TDP-43 depletion remains unclear. Here, we knocked down TDP-43 in murine neuroblastoma Neuro2A cells and found a time lag between efficient TDP-43 depletion and appearance of cell death, suggesting that several mechanisms mediate between these two events. The amount of U6 snRNA was significantly decreased during TDP-43 depletion prior to increase of cell death, whereas that of U1, U2, and U4 snRNAs was not. Downregulation of U6 snRNA led to cell death, whereas transient exogenous expression of U6 snRNA counteracted the effect of TDP-43 knockdown on cell death, and slightly decreased the mis-splicing rate of Dnajc5 and Sortilin 1 transcripts, which are assisted by TDP-43. These results suggest that regulation of the U6 snRNA expression level by TDP-43 is a key factor in the increase in cell death upon TDP-43 loss-of-function.

  13. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection

    NARCIS (Netherlands)

    Christensen, D.P.; Gysemans, C.; Lundh, M.; Dahllof, M.S.; Noesgaard, D.; Schmidt, S.F.; Mandrup, S; Birkbak, N.; Workman, C.T.; Piemonti, L.; Blaabjerg, L.; Monzani, V.; Fossati, G.; Mascagni, P.; Paraskevas, S.; Aikin, R.A.; Billestrup, N.; Grunnet, L.G.; Dinarello, C.A.; Mathieu, C.; Mandrup-Poulsen, T.

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic beta-cells. Lysine deacetylase inhibitors (KDACi) protect beta-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes

  14. Neural Responses to Injury: Prevention, Protection and Repair; Volume 7: Role Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury

    National Research Council Canada - National Science Library

    Bazan, Nicolas

    1996-01-01

    ...: Prevention, Protection, and Repair, Subproject: Role of Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury, are as follows: Species Rat(Albino Wistar), Number Allowed...

  15. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    Directory of Open Access Journals (Sweden)

    Jariya Umka Welbat

    2016-05-01

    Full Text Available Valproic acid (VPA is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU, respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ of the hippocampal dentate gyrus (DG. However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA.

  16. American Ginseng Stimulates Insulin Production and Prevents Apoptosis through Regulation of Uncoupling Protein-2 in Cultured β Cells

    Directory of Open Access Journals (Sweden)

    John Zeqi Luo

    2006-01-01

    Full Text Available American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2 has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism. To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β, (200 pg ml−1, a cytokine to induce β cell apoptosis and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.

  17. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  18. The myosin II ATPase inhibitor blebbistatin prevents thrombin-induced inhibition of intercellular calcium wave propagation in corneal endothelial cells.

    Science.gov (United States)

    Ponsaerts, Raf; D'hondt, Catheleyne; Bultynck, Geert; Srinivas, Sangly P; Vereecke, Johan; Himpens, Bernard

    2008-11-01

    Thrombin inhibits intercellular Ca(2+) wave propagation in bovine corneal endothelial cells (BCECs) through a mechanism dependent on myosin light chain (MLC) phosphorylation. In this study, blebbistatin, a selective myosin II ATPase inhibitor, was used to investigate whether the effect of thrombin is mediated by enhanced actomyosin contractility. BCECs were exposed to thrombin (2 U/mL) for 5 minutes. MLC phosphorylation was assayed by immunocytochemistry. Ca(2+) waves were visualized by confocal microscopy with Fluo-4AM. Fluorescence recovery after photobleaching (FRAP) was used to investigate intercellular communication (IC) via gap junctions. ATP release was measured by luciferin-luciferase assay. Lucifer yellow (LY) uptake was used to investigate hemichannel activity, and Fura-2 was used to assay thrombin- and ATP-mediated Ca(2+) responses. Pretreatment with blebbistatin (5 microM for 20 minutes) or its nitro derivative prevented the thrombin-induced inhibition of the Ca(2+) wave. Neither photo-inactivated blebbistatin nor the inactive enantiomers prevented the thrombin effect. Blebbistatin also prevented thrombin-induced inhibition of LY uptake, ATP release and FRAP, indicating that it prevented the thrombin effect on paracrine and gap junctional IC. In the absence of thrombin, blebbistatin had no significant effect on paracrine or gap junctional IC. The drug had no influence on MLC phosphorylation or on [Ca(2+)](i) transients in response to thrombin or ATP. Blebbistatin prevents the inhibitory effects of thrombin on intercellular Ca(2+) wave propagation. The findings demonstrate that myosin II-mediated actomyosin contractility plays a central role in thrombin-induced inhibition of gap junctional IC and of hemichannel-mediated paracrine IC.

  19. Dietary polyherbal supplementation decreases CD3+ cell infiltration into pancreatic islets and prevents hyperglycemia in nonobese diabetic mice.

    Science.gov (United States)

    Burke, Susan J; Karlstad, Michael D; Conley, Caroline P; Reel, Danielle; Whelan, Jay; Collier, J Jason

    2015-04-01

    Type 1 diabetes mellitus results from autoimmune-mediated destruction of pancreatic islet β-cells, a process associated with inflammatory signals. We hypothesized that dietary supplementation with botanicals known to contain anti-inflammatory properties would prevent losses in functional β-cell mass in nonobese diabetic (NOD) mice, a rodent model of autoimmune-mediated islet inflammation that spontaneously develops diabetes. Female NOD mice, a model of spontaneous autoimmune diabetes, were fed a diet supplemented with herbal extracts (1.916 g total botanical extracts per 1 kg of diet) over a 12-week period. The mice consumed isocaloric matched diets without (controls) and with polyherbal supplementation (PHS) ad libitum starting at a prediabetic stage (age 6 weeks) for 12 weeks. Control mice developed hyperglycemia (>180 mg/dL) within 16 weeks (n = 9). By contrast, mice receiving the PHS diet did not develop hyperglycemia by 18 weeks (n = 8). Insulin-positive cell mass within pancreatic islets was 31.9% greater in PHS mice relative to controls. We also detected a 26% decrease in CD3(+) lymphocytic infiltration in PHS mice relative to mice consuming a control diet. In vitro assays revealed reduced β-cell expression of the chemokines CCL2 and CXCL10 after overnight PHS addition to the culture media. We conclude that dietary PHS delays initiation of autoimmune-mediated β-cell destruction and subsequent onset of diabetes mellitus by diminishing islet inflammatory responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Carnitine prevents the early mitochondrial damage induced by methylglyoxal bis(guanylhydrazone) in L1210 leukaemia cells.

    Science.gov (United States)

    Nikula, P; Ruohola, H; Alhonen-Hongisto, L; Jänne, J

    1985-06-01

    We previously found that the anti-cancer drug methylglyoxal bis(guanylhydrazone) (mitoguazone) depresses carnitine-dependent oxidation of long-chain fatty acids in cultured mouse leukaemia cells [Nikula, Alhonen-Hongisto, Seppänen & Jänne (1984) Biochem. Biophys. Res. Commun. 120, 9-14]. We have now investigated whether carnitine also influences the development of the well-known mitochondrial damage produced by the drug in L1210 leukaemia cells. Palmitate oxidation was distinctly inhibited in tumour cells exposed to 5 microM-methylglyoxal bis(guanylhydrazone) for only 7 h. Electron-microscopic examination of the drug-exposed cells revealed that more than half of the mitochondria were severely damaged. Similar exposure of the leukaemia cells to the drug in the presence of carnitine not only abolished the inhibition of fatty acid oxidation but almost completely prevented the drug-induced mitochondrial damage. The protection provided by carnitine appeared to depend on the intracellular concentration of methylglyoxal bis(guanylhydrazone), since the mitochondria-sparing effect disappeared at higher drug concentrations.

  1. Eplerenone-Mediated Aldosterone Blockade Prevents Renal Fibrosis by Reducing Renal Inflammation, Interstitial Cell Proliferation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2013-11-01

    Full Text Available Background/Aims: Prolonged elevation of serum aldosterone leads to renal fibrosis. Inflammation also plays a role in the pathogenesis of renal disease. We used a rat model of interstitial renal fibrosis to test the hypothesis that eplerenone-mediated aldosterone blockade prevents renal fibrosis due to its anti-inflammatory and anti-proliferative effects. Methods: Eplerenone (a selective aldosterone blocker or vehicle (control, was given to male Wistar rats (50 mg/kg, twice daily for 7 days before unilateral ureteral obstruction (UUO and for an additional 28 days after surgery. Body weight, blood pressure, renal histo-morphology, immune-staining for macrophages, monocyte chemotactic protein-1, proliferating cell nuclear antigen, α-smooth muscle actin, and serum and urine markers of renal function and oxidative stress were determined for both groups on 7, 14, and 28 days after surgery. Results: Epleronone had no effect on body weight or blood pressure. However, eplerenone inhibited the development of renal fibrosis, inflammation (macrophage and monocyte infiltration, interstitial cell proliferation, and activation of interstitial cells (α-SMA expression. Epleronone also reduced oxidative stress. Conclusion: The anti-fibrotic effect of eplerenone appears to be unrelated to its effect on blood pressure. Eplerenone inhibits renal inflammation, interstitial cell proliferation, phenotypic changes of interstitial cells, and reduces oxidative stress.

  2. Maillard reaction products from highly heated food prevent mast cell number increase and inflammation in a mouse model of colitis.

    Science.gov (United States)

    Al Amir, Issam; Dubayle, David; Héron, Anne; Delayre-Orthez, Carine; Anton, Pauline M

    2017-12-01

    Links between food and inflammatory bowel diseases (IBDs) are often suggested, but the role of food processing has not been extensively studied. Heat treatment is known to cause the loss of nutrients and the appearance of neoformed compounds such as Maillard reaction products. Their involvement in gut inflammation is equivocal, as some may have proinflammatory effects, whereas other seem to be protective. As IBDs are associated with the recruitment of immune cells, including mast cells, we raised the hypothesis that dietary Maillard reaction products generated through heat treatment of food may limit the colitic response and its associated recruitment of mast cells. An experimental model of colitis was used in mice submitted to mildly and highly heated rodent food. Adult male mice were divided in 3 groups and received nonheated, mildly heated, or highly heated chow during 21 days. In the last week of the study, each group was split into 2 subgroups, submitted or not (controls) to dextran sulfate sodium (DSS) colitis. Weight variations, macroscopic lesions, colonic myeloperoxidase activity, and mucosal mast cell number were evaluated at the end of the experiment. Only highly heated chow significantly prevented DSS-induced weight loss, myeloperoxidase activity, and mast cell number increase in the colonic mucosa of DSS-colitic mice. We suggest that Maillard reaction products from highly heated food may limit the occurrence of inflammatory phases in IBD patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kristoffer Lindell

    Full Text Available Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues.

  4. How to prevent contamination with Candida albicans during the fabrication of transplantable oral mucosal epithelial cell sheets

    Directory of Open Access Journals (Sweden)

    Ryo Takagi

    2015-06-01

    Full Text Available We have utilized patients' own oral mucosa as a cell source for the fabrication of transplantable epithelial cell sheets to treat limbal stem cell deficiency and mucosal defects after endoscopic submucosal dissection of esophageal cancer. Because there are abundant microbiotas in the human oral cavity, the oral mucosa was sterilized and 40 μg/mL gentamicin and 0.27 μg/mL amphotericin B were added to the culture medium in our protocol. Although an oral surgeon carefully checked each patient's oral cavity and although candidiasis was not observed before taking the biopsy, contamination with Candida albicans (C. albicans was detected in the conditioned medium during cell sheet fabrication. After adding 1 μg/mL amphotericin B to the transportation medium during transport from Nagasaki University Hospital to Tokyo Women's Medical University, which are 1200 km apart, no proliferation of C. albicans was observed. These results indicated that the supplementation of transportation medium with antimycotics would be useful for preventing contamination with C. albicans derived from the oral mucosa without hampering cell proliferation.

  5. Development of disease preventive method using radiated pathogenic microorganisms, cell lines and animals

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yosuke; Sakamoto, Kenichi; Yamakawa, Mutsumi [National Inst. of Animal Health, Kodaira, Tokyo (Japan)] [and others

    1999-02-01

    A radiated bone marrow chimera mouse has been constructed by grafting. This chimera mouse was thought useful for analyzing gene specific functions in vivo. This study aimed to construct a vector available for a study on the functions of various genes that were cloned from animals through their constitutive expressions. Construction of a retroviral vector was attempted using spleen focus forming virus (SFFV), a mouse leukemia virus. The virus thus obtained was demonstrated to be able to express the gene when infected to NIH3T3, a mouse fibroblast cell line. Furthermore, packaging cells were constructed by transfecting the retroviral vector into the fibroblast cell. Bone marrow cells were incubated with the packaging cells for several days to make gene transfection into the bone marrow cells. After radiation exposure at a lethal dose, the mouse was grafted with the bone marrow cells. Thus, it became possible to investigate in vivo functions of a cloned gene through its expression in the cells. Then, development of a retroviral vector was attempted to use for transfection into bone marrow cells. Aujeszky`s disease virus, a large size DNA virus was exposed to Co radiation at -78degC, but the infectivity of the irradiated virus was not detectable. Since viral RNA was demonstrated to be already broken 24 hours after the exposure to {beta}-ray, the effects of {beta}-radiation were examined with swine vesicular disease virus, a small RNA virus. This virus was exposed to {alpha}-{sup 32}dATP (37MBq) as a {beta}-ray source for 1 hour to 96 hours. However, there were no significant differences in the infectivity titer between the virus exposed for any of the durations and the control, non-radiated virus. This suggested that the virus was not inactivated under the present conditions. Further investigation to determine exposure conditions is under way. (M.N.)

  6. Fuel Cell Cathode Contamination: Comparison of Prevention Strategies and their Viability

    Science.gov (United States)

    Tejaswi, Arjun

    Fuel cells are a major area of research in ongoing efforts to find alternate sources of energy. Today these efforts have become ever the more necessary in the face of spiraling costs of conventional sources of energy and concerns about global warming. Most fuel cells consume hydrogen to produce, for the most part, only water in their exhaust. They are also capable of achieving significantly higher efficiencies than conventional automobile internal combustion engines. Since cost still remains one of the most intractable challenges to the advent of fuel cells, it is imperative that every effort be made to lower the costs of fuel cell production, operation and maintenance as well as improving overall efficiency. The air circulation system of a fuel cell is designed to provide oxygen to the cathode of the fuel cell. Air taken from the surroundings, however, often contains pollutants including dust, SO2, NO 2 and various other gases. These gases may severely degrade various components of system, especially for polymer electrolyte membrane (PEM) type fuel cells, including the catalyst, membrane electrode assembly and other components. Moreover, these pollutants may lead to specific behavior based on ambient air composition at the test site thereby confusing researchers. In order to address these issues, this study seeks to identify these pollutants and examine the mitigation strategies to mitigate them. Also discussed is whether these pollutants have an effect debilitating enough to justify the extra cost and potential parasitic losses associated with these mitigation strategies. Adsorptive filtration is identified as the most appropriate cathode side air quality system for fuel cells. Performance of cathode side fuel cell filters are examined under varying relative humidity, temperature, air flow rate and pollutant concentration conditions. An estimated filter survival time under realistic conditions is also suggested.

  7. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection

    DEFF Research Database (Denmark)

    Christensen, Dan Ploug; Gysemans, Conny; Lundh, Morten

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic β-cells. Lysine deacetylase inhibitors (KDACi) protect β-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes...... in the nonobese diabetic (NOD) mouse model of type 1 diabetes and counteract inflammatory target cell damage by a mechanism of action consistent with transcription factor-rather than global chromatin-hyperacetylation. Weaning NOD mice received low doses of vorinostat and givinostat in their drinking water until...... 100-120 d of age. Diabetes incidence was reduced by 38% and 45%, respectively, there was a 15% increase in the percentage of islets without infiltration, and pancreatic insulin content increased by 200%. Vorinostat treatment increased the frequency of functional regulatory T-cell subsets...

  8. Laser process and corresponding structures for fabrication of solar cells with shunt prevention dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D.; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2017-11-28

    Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.

  9. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    OpenAIRE

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J.; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative ma...

  10. Interferon-γ Prevents Death of Bystander Neurons during CD8 T Cell Responses in the Brain

    Science.gov (United States)

    Richter, Kirsten; Hausmann, Jürgen; Staeheli, Peter

    2009-01-01

    T cells restricted to neurotropic viruses are potentially harmful as their activity may result in the destruction of neurons. In the Borna disease virus (BDV) model, antiviral CD8 T cells entering the brain of infected mice cause neurological disease but no substantial loss of neurons unless the animals lack interferon-γ (IFN-γ). We show here that glutamate receptor antagonists failed to prevent BDV-induced neuronal loss in IFN-γ-deficient mice, suggesting that excitotoxicity resulting from glutamate receptor overstimulation is an unlikely explanation for the neuronal damage. Experiments with IFN-γ-deficient mice lacking eosinophils indicated that these cells, which specifically accumulate in the infected brains of IFN-γ-deficient mice, are not responsible for CA1 neuronal death. Interestingly, BDV-induced damage of CA1 neurons was reduced significantly in IFN-γ-deficient mice lacking perforin, suggesting a key role for CD8 T cells in this pathological process. Specific death of hippocampal CA1 neurons could be triggered by adoptive transfer of BDV-specific CD8 T cells from IFN-γ-deficient mice into uninfected mice that express transgene-encoded BDV antigen at high level in astrocytes. These results indicate that attack by CD8 T cells that cause the death of CA1 neurons might be directed toward regional astrocytes and that IFN-γ protects vulnerable CA1 neurons from collateral damage resulting from exposure to potentially toxic substances generated as a result of CD8 T cell-mediated impairment of astrocyte function. PMID:19359516

  11. Artemisia capillaris inhibited enterovirus 71-induced cell injury by preventing viral internalization

    Directory of Open Access Journals (Sweden)

    Ming-Hong Yen

    2018-03-01

    Full Text Available Artemisia capillaris (A. capillaris is a common herbal drug used for thousands years in ancient China. A. capillaris has been empirically used to manage hand-foot-mouth disease (HFMD, which is commonly caused by enterovirus 71 (EV71. EV71 can cause meningoencephalitis with mortality and neurologic sequelae without effective management. It is presently unknown whether A. capillaris is effective against EV71 infection. To test the hypothesis that it could protect cells from EV71-induced injury, a hot water extract of A. capillaris was tested in human foreskin fibroblast cells (CCFS-1/KMC and human rhabdomyosarcoma cells (RD cells by plaque reduction assay and flow cytometry. Inhibition of viral replication was examined by reverse quantitative RT-PCR (qRT-PCR. Its effect on translations of viral proteins (VP0, VP1, VP2, protease 2B and 3AB, and apoptotic proteins were examined by western blot. A. capillaris was dose-dependently effective against EV71 infection in both CCFS-1/KMC cells and RD cells by inhibiting viral internalization. However, A. capillaris was minimally effective on viral attachment, VP2 translation, and inhibition of virus-induced apoptosis. Further isolation of effective molecules is needed. In conclusion, A. capillaris has anti-EV71 activity mainly by inhibiting viral internalization. A. capillaris would be better to manage EV71 infection in combination with other agents.

  12. Modulation of Cell Cycle Profile by Chlorella vulgaris Prevents Replicative Senescence of Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Tayyebeh Saberbaghi

    2013-01-01

    Full Text Available In this study, the effects of Chlorella vulgaris (CV on replicative senescence of human diploid fibroblasts (HDFs were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P<0.05. Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P<0.05. Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P<0.05. Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P<0.05. In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.

  13. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  14. [A comparative study of blood culture conventional method vs. a modified lysis/centrifugation technique for the diagnosis of fungemias].

    Science.gov (United States)

    Santiago, Axel Rodolfo; Hernández, Betsy; Rodríguez, Marina; Romero, Hilda

    2004-12-01

    The purpose of this work was to compare the efficacy of blood culture conventional method vs. a modified lysis/centrifugation technique. Out of 450 blood specimens received in one year, 100 where chosen for this comparative study: 60 from patients with AIDS, 15 from leukemic patients, ten from febrile neutropenic patients, five from patients with respiratory infections, five from diabetics and five from septicemic patients. The specimens were processed, simultaneously, according to the above mentioned methodologies with daily inspections searching for fungal growth in order to obtain the final identification of the causative agent. The number (40) of isolates recovered was the same using both methods, which included; 18 Candida albicans (45%), ten Candida spp. (25%), ten Histoplasma capsulatum (25%), and two Cryptococcus neoformans (5%). When the fungal growth time was compared by both methods, growth was more rapid when using the modified lysis/centrifugation technique than when using the conventional method. Statistical analysis revealed a significant difference (pcentrifugation technique showed to be more efficacious than the conventional one, and therefore the implementation of this methodology is highly recommended for the isolation of fungi from blood.

  15. A Simple Method for DNA Extraction from Mature Date Palm Leaves: Impact of Sand Grinding and Composition of Lysis Buffer

    Science.gov (United States)

    Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Ahamed, Anis; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Al Sadoon, Mohammad; Bahkali, Ali H.; Shobrak, Mohammad

    2010-01-01

    Molecular marker techniques have been widely used for cultivar identification of inbred date palms (Phoenix dactylifera L.; Arecaceae) and biodiversity conservation. Isolation of highly pure DNA is the prerequisite for PCR amplification and subsequent use such as DNA fingerprinting and sequencing of genes that have recently been developed for barcoding. To avoid problems related to the preservation and use of liquid nitrogen, we examined sterile sand for grinding the date palm leaves. Individual and combined effects of sodium chloride (NaCl), polyvinylpyrrolidone (PVP) and lithium chloride (LiCl) with the cetyltrimethylammonium bromide (CTAB) method for a DNA yield of sufficient purity and PCR amplification were evaluated in this study. Presence of LiCl and PVP alone or together in the lysis buffer did not significantly improve the DNA yield and purity compared with the addition of NaCl. Our study suggested that grinding of date palm leaf with sterile sand and inclusion of NaCl (1.4 M) in the lysis buffer without the costly use of liquid nitrogen, PVP and LiCl, provides a DNA yield of sufficient purity, suitable for PCR amplification. PMID:20957085

  16. The C60-Fullerene Porphyrin Adducts for Prevention of the Doxorubicin-Induced Acute Cardiotoxicity in Rat Myocardial Cells

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Shetab Boushehri

    2010-10-01

    Full Text Available This is a fullerene-based low toxic nanocationite designed for targeted delivery of the paramagnetic stable isotope of magnesium to the doxorubicin (DXR-induced damaged heart muscle providing a prominent effect close to about 80% recovery of the tissue hypoxia symptoms in less than 24 hrs after a single injection (0.03 - 0.1 LD50. Magnesium magnetic isotope effect selectively stimulates the ATP formation in the oxygen-depleted cells due to a creatine kinase (CK and mitochondrial respiratory chain-focusing "attack" of 25Mg2+ released by nanoparticles. These "smart nanoparticles" with membranotropic properties release the overactivating cations only in response to the intracellular acidosis. The resulting positive changes in the energy metabolism of heart cell may help to prevent local myocardial hypoxic (ischemic disorders and, hence, to protect the heart muscle from a serious damage in a vast variety of the hypoxia-induced clinical situations including DXR side effects.

  17. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents.

    Directory of Open Access Journals (Sweden)

    Sarah R Sabir

    Full Text Available The Nek11 kinase is a potential mediator of the DNA damage response whose expression is upregulated in early stage colorectal cancers (CRCs. Here, using RNAi-mediated depletion, we examined the role of Nek11 in HCT116 WT and p53-null CRC cells exposed to ionizing radiation (IR or the chemotherapeutic drug, irinotecan. We demonstrate that depletion of Nek11 prevents the G2/M arrest induced by these genotoxic agents and promotes p53-dependent apoptosis both in the presence and absence of DNA damage. Interestingly, Nek11 depletion also led to long-term loss of cell viability that was independent of p53 and exacerbated following IR exposure. CRC cells express four splice variants of Nek11 (L/S/C/D. These are predominantly cytoplasmic, but undergo nucleocytoplasmic shuttling mediated through adjacent nuclear import and export signals in the C-terminal non-catalytic domain. In HCT116 cells, Nek11S in particular has an important role in the DNA damage response. These data provide strong evidence that Nek11 contributes to the response of CRC cells to genotoxic agents and is essential for survival either with or without exposure to DNA damage.

  18. Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy.

    Science.gov (United States)

    Kelly, Katherine J; Zhang, Jizhong; Han, Ling; Wang, Mingsheng; Zhang, Shaobo; Dominguez, Jesus H

    2013-12-15

    Diabetic nephropathy, the most common cause of progressive chronic renal failure and end-stage renal disease, has now reached global proportions. The only means to rescue diabetic patients on dialysis is renal transplantation, a very effective therapy but severely limited by the availability of donor kidneys. Hence, we tested the role of intravenous renal cell transplantation (IRCT) on obese/diabetic Zucker/SHHF F1 hybrid (ZS) female rats with severe ischemic and diabetic nephropathy. Renal ischemia was produced by bilateral renal clamping of the renal arteries at 10 wk of age, and IRCT with genetically modified normal ZS male tubular cells was given intravenously at 15 and 20 wk of age. Rats were euthanized at 34 wk of age. IRCT with cells expressing serum amyloid A had strong and long-lasting beneficial effects on renal function and structure, including tubules and glomeruli. However, donor cells were found engrafted only in renal tubules 14 wk after the second infusion. The results indicate that IRCT with serum amyloid A-positive cells is effective in preventing the progression of chronic kidney disease in rats with diabetic and ischemic nephropathy.

  19. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Garcia, Pierre; Youssef, Ihsen; Utvik, Jo K; Florent-Béchard, Sabrina; Barthélémy, Vanassa; Malaplate-Armand, Catherine; Kriem, Badreddine; Stenger, Christophe; Koziel, Violette; Olivier, Jean-Luc; Escanye, Marie-Christine; Hanse, Marine; Allouche, Ahmad; Desbène, Cédric; Yen, Frances T; Bjerkvig, Rolf; Oster, Thierry; Niclou, Simone P; Pillot, Thierry

    2010-06-02

    The development of novel therapeutic strategies for Alzheimer's disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta (Abeta) oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Abeta oligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances. Most importantly, CNTF led to full recovery of cognitive functions associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive Abeta-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD.

  20. Taurine prevents beta-glycerophosphate-induced calcification in cultured rat vascular smooth muscle cells.

    Science.gov (United States)

    Li, Juxiang; Zhang, Baohong; Huang, Zhiyu; Wang, Shuhen; Tang, Chaoshu; Du, Junbao

    2004-05-01

    Vascular calcification is an ectopic calcification that commonly occurs in atherosclerosis. Because taurine was previously shown to protect against cardiovascular diseases, the effect of taurine on vascular calcification was evaluated in calcified vascular smooth muscle cells (VSMCs) of rat in vitro in the present study. Osteoblastic differentiation, calcification, and proliferation in VSMCs were detected in the presence and absence of taurine. Alkaline phosphatase (ALP), cellular calcium content, and (45)Ca accumulation were measured as the indicators of osteoblastic differentiation and calcification. Incubation of VSMCs with Beta-glycerophosphate for 10 days induced an osteoblast-like morphological change. The activity of ALP was enhanced. Calcium content and (45)Ca uptake were increased in these cells. Calcification of these VSMCs was demonstrated with Beta-glycerophosphate treatment. In association with these alterations, cell proliferation, detected by cell counting, [(3)H]thymidine ([(3)H]TdR), and [(3)H]leucine ([(3)H]Leu) incorporation, was also increased in these calcified VSMCs. Taurine at 20 mmol/l decreased calcium content, (45)Ca(2+) uptake, and ALP activity both after early and late treatment, in which a reduction of the cell count, [(3)H"]TdR, and [(3)H]Leu incorporation of calcified VSMCs was also noted. Compared with the calcified group, morphological changes in the VSMCs of the early-treated group were deferred. These results demonstrated that calcification of VSMCs could be alleviated by taurine. Taurine treatment appeared to be more beneficial when the treatment was started earlier.

  1. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome.

    Science.gov (United States)

    Marycz, Krzysztof; Michalak, Izabela; Kornicka, Katarzyna

    2018-01-31

    Horses metabolic disorders have become an important problem of modern veterinary medicine. Pathological obesity, insulin resistance and predisposition toward laminitis are associated with Equine Metabolic Syndrome (EMS). Based on pathogenesis of EMS, dietary and cell therapy management may significantly reduce development of this disorder. Special attention has been paid to the diet supplementation with highly bioavailable minerals and mesenchymal stem cells (MSC) which increase insulin sensitivity. In nutrition, there is a great interests in natural algae enriched via biosorption process with micro- and macroelements. In the case of cellular therapy, metabolic condition of engrafted cells may be crucial for the effectiveness of the therapy. Although, recent studies indicated on MSC deterioration in EMS individuals. Here, we described the combined nutritional and stem cells therapy for the EMS treatment. Moreover, we specified in details how EMS affects the adipose-derived stem cells (ASC) population. Presented here, combined kind of therapy- an innovative and cutting edge approach of metabolic disorders treatment may become a new gold standard in personalized veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  3. Granzyme A Is Required for Regulatory T-Cell Mediated Prevention of Gastrointestinal Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sarvari Velaga

    Full Text Available In our previous work we could identify defects in human regulatory T cells (Tregs likely favoring the development of graft-versus-host disease (GvHD following allogeneic stem cell transplantation (SCT. Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.

  4. Post-Transcriptional Regulation Prevents Accumulation of Glutathione Reductase Protein and Activity in the Bundle Sheath Cells of Maize1

    Science.gov (United States)

    Pastori, Gabriela M.; Mullineaux, Philip M.; Foyer, Christine H.

    2000-01-01

    Glutathione reductase (GR; EC 1.6.4.2) activity was assayed in bundle sheath and mesophyll cells of maize (Zea mays L. var H99) from plants grown at 20°C, 18°C, and 15°C. The purity of each fraction was determined by measuring the associated activity of the compartment-specific marker enzymes, Rubisco and phosphoenolpyruvate carboxylase, respectively. GR activity and the abundance of GR protein and mRNA increased in plants grown at 15°C and 18°C compared with those grown at 20°C. In all cases GR activity was found only in mesophyll fractions of the leaves, with no GR activity being detectable in bundle sheath extracts. Immunogold labeling with GR-specific antibodies showed that the GR protein was exclusively localized in the mesophyll cells of leaves at all growth temperatures, whereas GR transcripts (as determined by in situ hybridization techniques) were observed in both cell types. These results indicate that post-transcriptional regulation prevents GR accumulation in the bundle sheath cells of maize leaves. The resulting limitation on the capacity for regeneration of reduced glutathione in this compartment may contribute to the extreme chilling sensitivity of maize leaves. PMID:10712529

  5. Pivotal role of inosine triphosphate pyrophosphatase in maintaining genome stability and the prevention of apoptosis in human cells.

    Science.gov (United States)

    Menezes, Miriam Rose; Waisertreiger, Irina S-R; Lopez-Bertoni, Hernando; Luo, Xu; Pavlov, Youri I

    2012-01-01

    Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer.

  6. Conditionally replicating adenovirus prevents pluripotent stem cell–derived teratoma by specifically eliminating undifferentiated cells

    Directory of Open Access Journals (Sweden)

    Kaoru Mitsui

    Full Text Available Incomplete abolition of tumorigenicity creates potential safety concerns in clinical trials of regenerative medicine based on human pluripotent stem cells (hPSCs. Here, we demonstrate that conditionally replicating adenoviruses that specifically target cancers using multiple factors (m-CRAs, originally developed as anticancer drugs, may also be useful as novel antitumorigenic agents in hPSC-based therapy. The survivin promoter was more active in undifferentiated hPSCs than the telomerase reverse transcriptase (TERT promoter, whereas both promoters were minimally active in differentiated normal cells. Accordingly, survivin-responsive m-CRA (Surv.m-CRA killed undifferentiated hPSCs more efficiently than TERT-responsive m-CRAs (Tert.m-CRA; both m-CRAs exhibited efficient viral replication and cytotoxicity in undifferentiated hPSCs, but not in cocultured differentiated normal cells. Pre-infection of hPSCs with Surv.m-CRA or Tert.m-CRA abolished in vivo teratoma formation in a dose-dependent manner following hPSC implantation into mice. Thus, m-CRAs, and in particular Surv.m-CRAs, represent novel antitumorigenic agents that could facilitate safe clinical applications of hPSC-based regenerative medicine.

  7. PREVENTION AND TREATMENT OF HEPATITIS VIRUS INFECTION IN HEMATOPOIETIC STEM CELL TRANSPLANTATION RECIPIENTS

    Directory of Open Access Journals (Sweden)

    Suparno Chakrabarti

    2009-12-01

    Full Text Available Abstract: Infections with Hepatitis viruses B and C pose major problems both short and long term respectively after HSCT. The key to prevention for Hepatitis B disease remains vaccination for HBV-naïve patients and judicial use of anti-viral therapy in both pre- and post-transplant settings for HBV-infected patients. HBsAg positive grafts to HBV-naïve recipients result in transmission of the virus in about 50%. The newer anti-viral agents have enabled effective treatment of post-transplant patients who might be lamivudine-resistant or might develop so. Selecting a previously infected donor who has high titres of surface antibody for HBsAg positive patients gives the best chance for immunological clearance. The most challenging aspect of preventing HBV reactivation remains the duration of anti-viral therapy and timing of its withdrawal as most reactivations and often fatal ones occur after this period. Hepatitis C, on the other hand affects long-term survival with early onset of fibrosis and cirrhosis. Early effect of Hepatitis C virus on the immune system remains conjectural. The standard combination therapy seems to be effective, but data on this front remains sparse, as in the case of the use of newer antiviral agents. HSCT from HCV infected grafts result in more consistent transmission of the virus and pre-donation treatment of donors should be undertaken to render them non-viremic, if possible.  The current understanding and recommendations regarding prevention and management of these infections in HSCT recipients are discussed.

  8. An optimized protocol for isolating primary epithelial cell chromatin for ChIP.

    Directory of Open Access Journals (Sweden)

    James A Browne

    Full Text Available A critical part of generating robust chromatin immunoprecipitation (ChIP data is the optimization of chromatin purification and size selection. This is particularly important when ChIP is combined with next-generation sequencing (ChIP-seq to identify targets of DNA-binding proteins, genome-wide. Current protocols refined by the ENCODE consortium generally use a two-step cell lysis procedure that is applicable to a wide variety of cell types. However, the isolation and size selection of chromatin from primary human epithelial cells may often be particularly challenging. These cells tend to form sheets of formaldehyde cross-linked material in which cells are resistant to membrane lysis, nuclei are not released and subsequent sonication produces extensive high molecular weight contamination. Here we describe an optimized protocol to prepare high quality ChIP-grade chromatin from primary human bronchial epithelial cells. The ENCODE protocol was used as a starting point to which we added the following key steps to separate the sheets of formaldehyde-fixed cells prior to lysis. (1 Incubation of the formaldehyde-fixed adherent cells in Trypsin-EDTA (0.25% room temperature for no longer than 5 min. (2 Equilibration of the fixed cells in detergent-free lysis buffers prior to each lysis step. (3 The addition of 0.5% Triton X-100 to the complete cell membrane lysis buffer. (4 Passing the cell suspension (in complete cell membrane lysis buffer through a 25-gauge needle followed by continuous agitation on ice for 35 min. Each step of the modified protocol was documented by light microscopy using the Methyl Green-Pyronin dual dye, which stains cytoplasm red (Pyronin and the nuclei grey-blue (Methyl green. This modified method is reproducibly effective at producing high quality sheared chromatin for ChIP and is equally applicable to other epithelial cell types.

  9. Transcriptional control of pre-B cell development and leukemia prevention.

    Science.gov (United States)

    Pang, Swee Heng Milon; Carotta, Sebastian; Nutt, Stephen L

    2014-01-01

    The differentiation of early B cell progenitors is controlled by multiple transcriptional regulators and growth-factor receptors. The triad of DNA-binding proteins, E2A, EBF1, and PAX5 is critical for both the early specification and commitment of B cell progenitors, while a larger number of secondary determinants, such as members of the Ikaros, ETS, Runx, and IRF families have more direct roles in promoting stage-specific pre-B gene-expression program. Importantly, it is now apparent that mutations in many of these transcription factors are associated with the progression to acute lymphoblastic leukemia. In this review, we focus on recent studies that have shed light on the transcriptional hierarchy that controls efficient B cell commitment and differentiation as well as focus on the oncogenic consequences of the loss of many of the same factors.

  10. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease.

    Science.gov (United States)

    Cruz, E A; Reuter, S; Martin, H; Dehzad, N; Muzitano, M F; Costa, S S; Rossi-Bergmann, B; Buhl, R; Stassen, M; Taube, C

    2012-01-15

    Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    Receptor Tyrosine Kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  12. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  13. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse.

    Science.gov (United States)

    Martelli, Massimo F; Di Ianni, Mauro; Ruggeri, Loredana; Falzetti, Franca; Carotti, Alessandra; Terenzi, Adelmo; Pierini, Antonio; Massei, Maria Speranza; Amico, Lucia; Urbani, Elena; Del Papa, Beatrice; Zei, Tiziana; Iacucci Ostini, Roberta; Cecchini, Debora; Tognellini, Rita; Reisner, Yair; Aversa, Franco; Falini, Brunangelo; Velardi, Andrea

    2014-07-24

    Posttransplant relapse is still the major cause of treatment failure in high-risk acute leukemia. Attempts to manipulate alloreactive T cells to spare normal cells while killing leukemic cells have been unsuccessful. In HLA-haploidentical transplantation, we reported that donor-derived T regulatory cells (Tregs), coinfused with conventional T cells (Tcons), protected recipients against graft-versus-host disease (GVHD). The present phase 2 study investigated whether Treg-Tcon adoptive immunotherapy prevents posttransplant leukemia relapse. Forty-three adults with high-risk acute leukemia (acute myeloid leukemia 33; acute lymphoblastic leukemia 10) were conditioned with a total body irradiation-based regimen. Grafts included CD34(+) cells (mean 9.7 × 10(6)/kg), Tregs (mean 2.5 × 10(6)/kg), and Tcons (mean 1.1 × 10(6)/kg). No posttransplant immunosuppression was given. Ninety-five percent of patients achieved full-donor type engraftment and 15% developed ≥grade 2 acute GVHD. The probability of disease-free survival was 0.56 at a median follow-up of 46 months. The very low cumulative incidence of relapse (0.05) was significantly better than in historical controls. These results demonstrate the immunosuppressive potential of Tregs can be used to suppress GVHD without loss of the benefits of graft-versus-leukemia (GVL) activity. Humanized murine models provided insights into the mechanisms underlying separation of GVL from GVHD, suggesting the GVL effect is due to largely unopposed Tcon alloantigen recognition in bone marrow. © 2014 by The American Society of Hematology.

  14. Beta cell imaging - a key tool in optimized diabetes prevention and treatment

    NARCIS (Netherlands)

    Gotthardt, M.; Eizirik, D.L.; Cnop, M.; Brom, M.

    2014-01-01

    The prevalence of diabetes is 382 million worldwide, and is expected to rise to 592 million in 2035 (http://www.idf.org/diabetesatlas); 2.5-15\\% of national annual healthcare budgets are related to diabetes care, potentially increasing to 40\\% in high-prevalence countries. Beta cell dysfunction and

  15. Priming the Tumor Immune Microenvironment Improves Immune Surveillance of Cancer Stem Cells and Prevents Cancer Recurrence

    Science.gov (United States)

    2013-10-01

    KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005;7:211–217. 48 Hansen D...Williams CR et al. The synthetic triterpenoid CDDO-imidazolide suppresses STAT phosphorylation and induces ap- optosis in myeloma and lung cancer. Clin

  16. Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells

    Science.gov (United States)

    Lai, Fangfang; Singh, Amar; King, Mary Lou

    2012-01-01

    Nanos is expressed in multipotent cells, stem cells and primordial germ cells (PGCs) of organisms as diverse as jellyfish and humans. It functions together with Pumilio to translationally repress targeted mRNAs. Here we show by loss-of-function experiments that Xenopus Nanos1 is required to preserve PGC fate. Morpholino knockdown of maternal Nanos1 resulted in a striking decrease in PGCs and a loss of germ cells from the gonads. Lineage tracing and TUNEL staining reveal that Nanos1-deficient PGCs fail to migrate out of the endoderm. They appear to undergo apoptosis rather than convert to normal endoderm. Whereas normal PGCs do not become transcriptionally active until neurula, Nanos1-depleted PGCs prematurely exhibit a hyperphosphorylated RNA polymerase II C-terminal domain at the midblastula transition. Furthermore, they inappropriately express somatic genes characteristic of endoderm regulated by maternal VegT, including Xsox17α, Bix4, Mixer, GATA4 and Edd. We further demonstrate that Pumilio specifically binds VegT RNA in vitro and represses, along with Nanos1, VegT translation within PGCs. Repressed VegT RNA in wild-type PGCs is significantly less stable than VegT in Nanos1-depleted PGCs. Our data indicate that maternal VegT RNA is an authentic target of Nanos1/Pumilio translational repression. We propose that Nanos1 functions to translationally repress RNAs that normally specify endoderm and promote apoptosis, thus preserving the germline. PMID:22399685

  17. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact