WorldWideScience

Sample records for prevalent excitatory neurotransmitter

  1. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  2. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Fahlke, Christoph; Bjørn-Yoshimoto, Walden Emil

    2015-01-01

    The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the ......The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations...

  3. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  4. The building of the neocortex with non-hyperpolarizing neurotransmitters.

    Science.gov (United States)

    Ascenzi, Matteo; Bony, Guillaume

    2017-09-01

    The development of the neocortex requires the synergic action of several secreted molecules to achieve the right amount of proliferation, differentiation, and migration of neural cells. Neurons are well known to release neurotransmitters (NTs) in adult and a growing body of evidences describes the presence of NTs already in the embryonic brain, long before the generation of synapses. NTs are classified as inhibitory or excitatory based on the physiological responses of the target neuron. However, this view is challenged by the fact that glycine and GABA NTs are excitatory during development. Many reviews have described the role of nonhyperpolarizing GABA at this stage. Nevertheless, a global consideration of the inhibitory neurotransmitters and their downstream signaling during the embryonic cortical development is still needed. For example, taurine, the most abundant neurotransmitter during development is poorly studied regarding its role during cortical development. In the light of recent discoveries, we will discuss the functions of glycine, GABA, and taurine during embryonic cortical development with an emphasis on their downstream signaling. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1023-1037, 2017. © 2017 Wiley Periodicals, Inc.

  5. Anatomical and pharmacological characterization of excitatory amino acid receptors

    International Nuclear Information System (INIS)

    Monaghan, D.T.

    1985-01-01

    The majority of the excitatory neurotransmission in the vertebrate Central Nervous System is thought to be mediated by acidic amino acid neurotransmitters. However, relatively little is known about the excitatory amino acid receptors and their distribution within the CNS. By analyzing radioligand binding to purified synaptic plasma membranes and to thin tissue sections processed for autoradiography, multiple distinct binding sites were found. These binding sites exhibited the pharmacological properties indicative of the excitatory amino acid receptors, which had been identified by electrophysiological techniques. Specifically, L-[ 3 H]-glutamate and D-[ 3 H]-amino-5-phosphonopentanoate appear to label N-methyl-D-aspartate receptors, L-[ 3 H]-glutamate and [ 3 H]-kainic acid appear to label kainic acid receptors, and L-[ 3 H]-glutamate and [ 3 H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionate appear to label quisqualate receptors. Together, these results confirm the three receptor scheme proposed for excitatory amino acid neurotransmission. These results also show that these transmitter-receptor systems are differentially distributed in the brain, and that the total distribution is consistent with that found by other markers for excitatory amino acid-using neurons

  6. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals.

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Galkin, Maxim; Borysov, Arsenii; Borisova, Tatiana

    2016-03-31

    Nanodiamonds are one of the most perspective nano-sized particles with superb physical and chemical properties, which are mainly composed of carbon sp(3) structures in the core with sp(2) and disorder/defect carbons on the surface. The research team recently demonstrated neuromodulatory properties of carbon nanodots with other than nanodiamonds hybridization types, i.e., sp(2) hybridized graphene islands and diamond-like sp(3) hybridized elements. In this study, neuroactive properties of uncoated nanodiamonds produced by detonation synthesis were assessed basing on their effects on transporter-mediated uptake and the ambient level of excitatory and inhibitory neurotransmitters, glutamate and γ-aminobutyric acid (GABA), in isolated rat brain nerve terminals. It was shown that nanodiamonds in a dose-dependent manner attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake and accumulation of L-[(14)C]glutamate and [(3)H]GABA by nerve terminals and increased the ambient level of these neurotransmitters. Also, nanodiamonds caused a weak reduction in acidification of synaptic vesicles and depolarization of the plasma membrane of nerve terminals. Therefore, despite different types of hybridization in nanodiamonds and carbon dots, they exhibit very similar effects on glutamate and GABA transport in nerve terminals and this common feature of both nanoparticles is presumably associated with their nanoscale size. Observed neuroactive properties of pure nanodiamonds can be used in neurotheranostics for simultaneous labeling/visualization of nerve terminals and modulation of key processes of glutamate- and GABAergic neurotransmission. In comparison with carbon dots, wider medical application involving hypo/hyperthermia, external magnetic fields, and radiolabel techniques can be perspective for nanodiamonds.

  7. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research

    OpenAIRE

    Otsuka, Masanori

    2007-01-01

    Part I describes important contributions made by some Japanese pioneers in the field of neurotransmitters: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in ...

  8. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    Directory of Open Access Journals (Sweden)

    Joeri eVan Liefferinge

    2013-08-01

    Full Text Available The vesicular neurotransmitter transporters (VNTs are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3, the vesicular excitatory amino acid transporter (VEAT, the vesicular nucleotide transporter (VNUT, vesicular monoamine transporters (VMAT1/2, the vesicular acetylcholine transporter (VAChT and the vesicular γ-aminobutyric acid (GABA transporter (VGAT in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.

  9. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    DEFF Research Database (Denmark)

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we...... than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion....... use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype...

  11. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  12. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    Science.gov (United States)

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  13. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research.

    Science.gov (United States)

    Otsuka, Masanori

    2007-03-01

    PART I DESCRIBES IMPORTANT CONTRIBUTIONS MADE BY SOME JAPANESE PIONEERS IN THE FIELD OF NEUROTRANSMITTERS: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in striatum, its reduction in a patient with Parkinson's disease and the treatment with DOPA). In Part II, I present some of my reflections on my research on neurotransmitters. The work of my colleagues and myself has made some significant contributions to the establishment of neurotransmitter roles played by GABA and substance P, the first amino acid and the first peptide neurotransmitters, respectively. By the early 1960s, 3 substances, i.e., acetylcholine, noradrenaline, and adrenaline, had been established as neurotransmitters. Now the number of neurotransmitters is believed to be as many as 50 or even more mainly due to the inclusion of several amino acids and a large number of peptide transmitters.

  14. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia

    Directory of Open Access Journals (Sweden)

    Colin Kehrer

    2008-04-01

    Full Text Available Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDAreceptor subtype in the etiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation-inhibition (E/I balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed.

  15. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    Science.gov (United States)

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-28

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS 2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS 2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  16. A Role for Excitatory Amino Acids in Diabetic Eye Disease

    Directory of Open Access Journals (Sweden)

    Jose E. Pulido

    2007-01-01

    Full Text Available Diabetic retinopathy is a leading cause of vision loss. The primary clinical hallmarks are vascular changes that appear to contribute to the loss of sight. In a number of neurodegenerative disorders there is an appreciation that increased levels of excitatory amino acids are excitotoxic. The primary amino acid responsible appears to be the neurotransmitter glutamate. This review examines the nature of glutamatergic signaling at the retina and the growing evidence from clinical and animal model studies that glutamate may be playing similar excitotoxic roles at the diabetic retina.

  17. A Critical Assessment of Research on Neurotransmitters in Alzheimer's Disease.

    Science.gov (United States)

    Reddy, P Hemachandra

    2017-01-01

    The purpose of this mini-forum, "Neurotransmitters and Alzheimer's Disease", is to critically assess the current status of neurotransmitters in Alzheimer's disease. Neurotransmitters are essential neurochemicals that maintain synaptic and cognitive functions in mammals, including humans, by sending signals across pre- to post-synaptic neurons. Authorities in the fields of synapses and neurotransmitters of Alzheimer's disease summarize the current status of basic biology of synapses and neurotransmitters, and also update the current status of clinical trials of neurotransmitters in Alzheimer's disease. This article discusses the prevalence, economic impact, and stages of Alzheimer's dementia in humans.

  18. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    Science.gov (United States)

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  19. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy.

    Science.gov (United States)

    Nomura, Sadahiro; Inoue, Takao; Imoto, Hirochika; Suehiro, Eiichi; Maruta, Yuichi; Hirayama, Yuya; Suzuki, Michiyasu

    2017-04-01

    Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r 2 = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r 2 = 0.11). Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  20. Altered neurotransmitter expression profile in the ganglionic bowel in Hirschsprung's disease.

    Science.gov (United States)

    Coyle, David; O'Donnell, Anne Marie; Gillick, John; Puri, Prem

    2016-05-01

    Despite having optimal pull-through (PT) surgery for Hirschsprung's disease (HSCR), many patients experience persistent bowel symptoms with no mechanical/histopathological cause. Murine models of HSCR suggest that expression of key neurotransmitters is unbalanced proximal to the aganglionic colonic segment. We aimed to investigate expression of key enteric neurotransmitters in the colon of children with HSCR. Full-length PT specimens were collected fresh from children with HSCR (n=10). Control specimens were collected at colostomy closure from children with anorectal malformation (n=8). The distributions of neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and substance P (SP) were evaluated using immunofluorescence and confocal microscopy. Neurotransmitter quantification was with Western blot analysis. ChAT expression was high in aganglionic bowel and transition zone but reduced in ganglionic bowel in HSCR relative to controls. Conversely, nNOS expression was markedly reduced in aganglionic bowel but high in ganglionic bowel in HSCR relative to controls. VIP expression was similar in ganglionic HSCR and control colon. SP expression was similar in all tissue types. Imbalance of key excitatory and inhibitory neurotransmitters in the ganglionic bowel in HSCR may explain the basis of bowel dysmotility after an optimal pull-through operation in some patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.

    Science.gov (United States)

    Caldeira, Vanessa; Dougherty, Kimberly J; Borgius, Lotta; Kiehn, Ole

    2017-01-27

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2 Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.

  2. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  3. A Critical Assessment of Research on Neurotransmitters in Alzheimer’s Disease

    Science.gov (United States)

    Reddy, P. Hemachandra

    2018-01-01

    The purpose of this mini-forum, “Neurotransmitters and Alzheimer’s Disease”, is to critically assess the current status of neurotransmitters in Alzheimer’s disease. Neurotransmitters are essential neurochemicals that maintain synaptic and cognitive functions in mammals, including humans, by sending signals across pre- to post-synaptic neurons. Authorities in the fields of synapses and neurotransmitters of Alzheimer’s disease summarize the current status of basic biology of synapses and neurotransmitters, and also update the current status of clinical trials of neurotransmitters in Alzheimer’s disease. This article discusses the prevalence, economic impact, and stages of Alzheimer’s dementia in humans. PMID:28409748

  4. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA

    DEFF Research Database (Denmark)

    Schousboe, Arne; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2013-01-01

    Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis....... Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA...... related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA - glutamine cycle the operation of which...

  5. Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Veeraiah, Pandichelvam; Subramaniam, Vaidyanathan; Patel, Anant Bahadur

    2014-03-01

    This study investigates the effects of ethanol on neuronal and astroglial metabolism using (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of [1,6-(13)C2]/[1-(13)C]glucose or [2-(13)C]acetate, respectively. A three-compartment metabolic model was fitted to the (13)C turnover of GluC3 , GluC4, GABAC 2, GABAC 3, AspC3 , and GlnC4 from [1,6-(13)C2 ]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady-state [2-(13)C]acetate experiment and used as constraints during the metabolic model fitting. (1)H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 μmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2-(13)C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain. Depletion of ethanol and its effect on brain functions were measured using (1)H and (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of (13)C-labeled substrates. Ethanol depletion from brain follows zero order kinetics. Ethanol perturbs level of glutamate, and the excitatory and inhibitory activity in mice brain. © 2013 International Society for Neurochemistry.

  6. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  7. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  8. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.

    Science.gov (United States)

    Levite, Mia

    2008-08-01

    Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y. T-cells express many neurotransmitter receptors. These are regulated by TCR-activation, cytokines, or the neurotransmitters themselves, and are upregulated/downregulated in some human diseases. The context - whether the T-cells are naïve/resting or antigen/mitogen/cytokine-activated, the T-cell subset (CD4/CD8/Th1/Th2/Teff/Treg), neurotransmitter dose (low/optimal or high/excess), exact neurotransmitter receptors expressed, and the cytokine milieu - is crucial, and can determine either activation or suppression of T-cells by the same neurotransmitter. T-cells also produce many neurotransmitters. In summary, neurotransmitters activate vital T-cell functions in a direct, potent and specific manner, and may serve for communicating between the brain and the immune system to elicit an effective and orchestrated immune function, and for new therapeutic avenues, to improve T-cell eradication of cancer and infectious organisms.

  9. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Qian; Yang, Deyi; Zhang, Jingshu; Wang, Fengshan; Gu, Qing

    2013-09-01

    To estimate hearing loss, neurobehavioral function, and neurotransmitter alteration induced by ethylbenzene in petrochemical workers. From two petrochemical plants, 246 and 307 workers exposed to both ethylbenzene and noise were recruited-290 workers exposed to noise only from a power station plant and 327 office personnel as control group, respectively. Hearing and neurobehavioral functions were evaluated. Serum neurotransmitters were also determined. The prevalence of hearing loss was much higher in petrochemical groups than that in power station and control groups (P workers (P hearing loss, neurobehavioral function impairment, and imbalance of neurotransmitters.

  10. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  11. Probing for improved potency and in vivo bioavailability of excitatory amino acid transporter subtype 1 inhibitors UCPH-101 and UCPH-102: Design, synthesis and pharmacological evaluation of substituted 7-biphenyl analogs

    DEFF Research Database (Denmark)

    Erichsen, Mette Norman; Hansen, J; Artacho Ruiz, Jose

    2014-01-01

    Uptake of the major excitatory neurotransmitter in the CNS, (S)-glutamate, is mediated by a family of excitatory amino acid transporters (EAAT). Previously we have explored the structure-activity relationship (SAR) of a series of EAAT1 selective inhibitors, leading to the development of the potent...... were designed, synthesized and characterized pharmacologically at EAAT1-3 in a [(3)H]-D-aspartate uptake assay. Most notably, the potent EAAT1 inhibition displayed of UCPH-101 and UCPH-102 was retained in analog 1d in which the napht-1-yl group in the 7-position of UCPH-102 has been replaced by an o...

  12. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  13. Three Gaseous Neurotransmitters, Nitric oxide, Carbon Monoxide, and Hydrogen Sulfide, Are Involved in the Neurogenic Relaxation Responses of the Porcine Internal Anal Sphincter.

    Science.gov (United States)

    Folasire, Oladayo; Mills, Kylie A; Sellers, Donna J; Chess-Williams, Russ

    2016-01-31

    The internal anal sphincter (IAS) plays an important role in maintaining continence and a number of neurotransmitters are known to regulate IAS tone. The aim of this study was to determine the relative importance of the neurotransmitters involved in the relaxant and contractile responses of the porcine IAS. Responses of isolated strips of IAS to electrical field stimulation (EFS) were obtained in the absence and presence of inhibitors of neurotransmitter systems. Contractile responses of the sphincter to EFS were unaffected by the muscarinic receptor antagonist, atropine (1 μM), but were almost completely abolished by the adrenergic neuron blocker guanethidine (10 μM). Contractile responses were also reduced (by 45% at 5 Hz, P 40-50% reduction), zinc protoprophyrin IX (10 μM), an inhibitor of carbon monoxide synthesis (20-40% reduction), and also propargylglycine (30 μM) and aminooxyacetic acid (30 μM), inhibitors of hydrogen sulphide synthesis (15-20% reduction). Stimulation of IAS efferent nerves releases excitatory and inhibitory neurotransmitters: noradrenaline is the predominant contractile transmitter with a smaller component from ATP, whilst 3 gases mediate relaxation responses to EFS, with the combined contributions being nitric oxide > carbon monoxide > hydrogen sulfide.

  14. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  15. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2012-08-01

    Full Text Available Abstract Background Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2 lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP Gsat embryos were isolated to > 99% purity and profiled. Results We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97% were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. Conclusions This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways, and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.

  16. Perivascular neurotransmitters

    DEFF Research Database (Denmark)

    Frederiksen, Simona D; Haanes, Kristian A; Warfvinge, Karin

    2018-01-01

    In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders...... (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions...... such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders....

  17. Nanosensors for neurotransmitters.

    Science.gov (United States)

    Polo, Elena; Kruss, Sebastian

    2016-04-01

    Neurotransmitters are an important class of messenger molecules. They govern chemical communication between cells for example in the brain. The spatiotemporal propagation of these chemical signals is a crucial part of communication between cells. Thus, the spatial aspect of neurotransmitter release is equally important as the mere time-resolved measurement of these substances. In conclusion, without tools that provide the necessary spatiotemporal resolution, chemical signaling via neurotransmitters cannot be studied in greater detail. In this review article we provide a critical overview about sensors/probes that are able to monitor neurotransmitters. Our focus are sensing concepts that provide or could in the future provide the spatiotemporal resolution that is necessary to 'image' dynamic changes of neurotransmitter concentrations around cells. These requirements set the bar for the type of sensors we discuss. The sensor must be small enough (if possible on the nanoscale) to provide the envisioned spatial resolution and it should allow parallel (spatial) detection. In this article we discuss both optical and electrochemical concepts that meet these criteria. We cover techniques that are based on fluorescent building blocks such as nanomaterials, proteins and organic dyes. Additionally, we review electrochemical array techniques and assess limitations and possible future directions.

  18. Turning off neurotransmitters.

    Science.gov (United States)

    Snyder, Solomon H

    2006-04-07

    The historic discovery that the catecholamine neurotransmitters of the sympathetic nervous system, norepinephrine and epinephrine, are inactivated through their reuptake by presynaptic nerve terminals provided new insights into neurotransmitter action and paved the way for the development of modern antidepressant drugs.

  19. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters....... Neurons responded to electrical stimulation by monosynaptic EPSCs (excitatory monosynaptic postsynaptic currents). We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single...... neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting...

  20. Focus On: Neurotransmitter Systems

    Science.gov (United States)

    Valenzuela, C. Fernando; Puglia, Michael P.; Zucca, Stefano

    2011-01-01

    Neurotransmitter systems have been long recognized as important targets of the developmental actions of alcohol (i.e., ethanol). Short- and long-term effects of ethanol on amino acid (e.g., γ-aminobutyric acid and glutamate) and biogenic amine (e.g., serotonin and dopamine) neurotransmitters have been demonstrated in animal models of fetal alcohol spectrum disorders (FASD). Researchers have detected ethanol effects after exposure during developmental periods equivalent to the first, second, and third trimesters of human pregnancy. Results support the recommendation that pregnant women should abstain from drinking—even small quantities—as effects of ethanol on neurotransmitter systems have been detected at low levels of exposure. Recent studies have elucidated new mechanisms and/or consequences of the actions of ethanol on amino acid and biogenic amine neurotransmitter systems. Alterations in these neurotransmitter systems could, in part, be responsible for many of the conditions associated with FASD, including (1) learning, memory, and attention deficits; (2) motor coordination impairments; (3) abnormal responsiveness to stress; and (4) increased susceptibility to neuropsychiatric disorders, such as substance abuse and depression, and also neurological disorders, such as epilepsy and sudden infant death syndrome. However, future research is needed to conclusively establish a causal relationship between these conditions and developmental dysfunctions in neurotransmitter systems. PMID:23580048

  1. Inhalation of air polluted with gasoline vapours alters the levels of amino acid neurotransmitters in the cerebral cortex, hippocampus, and hypothalamus of the rat.

    Science.gov (United States)

    Kinawy, Amal A; Ezzat, Ahmed R; Al-Suwaigh, Badryah R

    2014-08-01

    This study was designed to investigate the impact of exposure to the vapours of two kinds of gasoline, a widely used fuel for the internal combustion engines on the levels of the amino acid neurotransmitters of the rat brain. Recent studies provide strong evidence for a causative role for traffic-related air pollution on morbidity outcomes as well as premature death (Health Effects Institute, 2009; Levy et al., 2010; von Stackelberg et al., 2013). Exposure to the vapours of gasoline or its constituents may be accidental, occupational by workers at fuel stations and factories, or through abuse as a mean of mood alteration (Fortenberry, 1985; Mc Garvey et al., 1999). Two kinds of gasoline that are common in Egypt have been used in this study. The first contains octane enhancers in the form of lead derivatives (leaded gasoline; G1) and the other contains methyl-tertiary butyl ether (MTBE) as the octane enhancer (unleaded gasoline; G2). The levels of the major excitatory (aspartic acid and glutamic acid) and the inhibitory (GABA and glycine) amino acid neurotransmitters were determined in the cerebral cortex, hippocampus, and hypothalamus. The current study revealed that the acute inhalation of air polluted with the two types of gasoline vapours (1/2 LC50 for 30 min) induced elevation in the levels of aspartic and glutamic acids along with a decrease in glycine and GABA in most studied brain areas. Chronic inhalation of both types of gasoline (a single daily 30-min session of 1/5 LC50 for 60 days) caused a significant increase in the aspartic and glutamic acid concentrations of the hippocampus without affecting the levels of GABA or glycine. Acute and chronic inhalation of either one of G1 and G2 vapours induced a disturbance and fluctuation in the levels of the free amino acids that act as excitatory and inhibitory neurotransmitters in the brain areas under investigation. These neurotransmitters are fundamental for the communicative functioning of the neurons and such

  2. Neurotransmitter signaling in white matter.

    Science.gov (United States)

    Butt, Arthur M; Fern, Robert F; Matute, Carlos

    2014-11-01

    White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function. © 2014 Wiley Periodicals, Inc.

  3. Excitatory amino acid receptors and disease.

    Science.gov (United States)

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  4. Neurotransmitters, more than meets the eye--neurotransmitters and their perspectives in cancer development and therapy.

    Science.gov (United States)

    Li, Zhi Jie; Cho, Chi Hin

    2011-09-30

    The neurotransmitter/receptor system has been shown to modulate various aspects of tumor development including cell proliferation, angiogenesis, invasion, migration and metastasis. It has been found that tumor tissues can not only synthesize and release a wide range of neurotransmitters but also produce different biological effects via respective receptors. These tissues are also innervated by nerve fibers but the biological significance is unknown. Nevertheless neurotransmitters can produce either stimulatory or inhibitory effect in normal and tumor tissues. These effects are dependent on the types of tissues and the kinds of neurotransmitter as well as the subtypes of corresponding receptors being involved. These findings clearly extend the conventional role of neurotransmitters in nervous system to the actions in oncogenesis. In this regard, intervention or stimulation of these neuronal pathways in different cancer diseases would have significant clinical implications in cancer treatments. Here, we summarize the influences of various well-characterized neurotransmitters and their receptors on tumor growth and further discuss the respective possible strategies and perspectives for cancer therapy in the future. Copyright © 2011. Published by Elsevier B.V.

  5. Pursuit of Neurotransmitter Functions: Being Attracted with Fascination of the Synapse.

    Science.gov (United States)

    Konishi, Shiro

    2017-01-01

    In the beginning of the 1970s, only two chemical substances, acetylcholine and γ-aminobutyric acid (GABA), had been definitely established as neurotransmitters. Under such circumstances, I started my scientific career in Professor Masanori Otsuka's lab searching for the transmitter of primary sensory neurons. Until 1976, lines of evidence had accumulated indicating that the undecapeptide substance P could be released as a transmitter from primary afferent fibers into spinal synapses, although the substance P-mediated synaptic response had yet to be identified. Peripheral synapses could serve as a good model and thus, it was demonstrated in the prevertebral sympathetic ganglia by1985 that substance P released from axon collaterals of primary sensory neurons acts as the transmitter mediating non-cholinergic slow excitatory postsynaptic potential (EPSP). At that time, we also found that autonomic synapses were useful to uncover the transmitter role of the opioid peptide enkephalins, whose functions had been unknown since their discovery in 1975. Accordingly, enkephalins were found to serve a transmitter role in mediating presynaptic inhibition of cholinergic fast and non-cholinergic slow transmission in the prevertebral sympathetic ganglia. In 1990s, we attempted to devise a combined technique of brain slices and patch-clamp recordings. We applied it to study the regulatory mechanisms that operate around cerebellar GABAergic inhibitory synapses, because most of the studies then had centered on excitatory synapses and because inhibitory synapses are crucially involved in brain functions and disorders. Consequently, we discovered novel forms of heterosynaptic interactions, dual actions of a single transmitter, and receptor crosstalk, the details of which are described in this review.

  6. Unconventional neurotransmitters, neurodegeneration and neuroprotection

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2009-01-01

    Full Text Available Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

  7. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  8. Neurotransmitter receptor imaging

    International Nuclear Information System (INIS)

    Cordes, M.; Hierholzer, J.; Nikolai-Beyer, K.

    1993-01-01

    The importance of neuroreceptor imaging in vivo using single photon emission tomography (SPECT) and positron emission tomography (PET) has increased enormously. The principal neurotransmitters, such as dopamine, GABA/benzodiazepine, acetylcholine, and serotonin, are presented with reference to anatomical, biochemical, and physiological features. The main radioligands for SPECT and PET are introduced, and methodological characteristics of both PET and SPECT presented. Finally, the results of neurotransmitter receptor imaging obtained so far will be discussed. (orig.) [de

  9. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    Science.gov (United States)

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  10. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  11. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  12. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  13. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact

    Directory of Open Access Journals (Sweden)

    Margot Van de Bor

    2013-08-01

    Full Text Available In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD. Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies.

  14. ASTROCYTIC CONTROL OF BIOSYNTHESIS AND TURNOVER OF THE NEUROTRANSMITTERS GLUTAMATE AND GABA

    Directory of Open Access Journals (Sweden)

    Arne eSchousboe

    2013-08-01

    Full Text Available Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis. Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase (PC, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA – glutamine cycle the operation of which involves the enzymes glutamine synthetase (GS and glutaminase (PAG together with the plasma membrane transporters for glutamate, GABA and glutamine. The distribution of these proteins between neurons and astrocytes determines the efficacy of the cycle and it is of particular importance that GS is exclusively expressed in astrocytes. It should be kept in mind that the operation of the cycle is associated with movement of ammonia nitrogen between the two cell types and different mechanisms which can mediate this have been proposed.This review is intended to delineate the above mentioned processes and to discuss quantitatively their relative importance in the homeostatic mechanisms responsible for the maintenance of optimal conditions for the respective neurotransmission processes to operate.

  15. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  16. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease

    Directory of Open Access Journals (Sweden)

    Holly Stefen

    2016-01-01

    Full Text Available Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer’s disease pathology.

  17. Therapeutics of Neurotransmitters in Alzheimer's Disease.

    Science.gov (United States)

    Kandimalla, Ramesh; Reddy, P Hemachandra

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.

  18. The Preferential Infection of Astrocytes by Enterovirus 71 Plays a Key Role in the Viral Neurogenic Pathogenesis.

    Science.gov (United States)

    Feng, Min; Guo, Sujie; Fan, Shengtao; Zeng, Xiaofeng; Zhang, Ying; Liao, Yun; Wang, Jianbin; Zhao, Ting; Wang, Lichun; Che, Yanchun; Wang, Jingjing; Ma, Na; Liu, Longding; Yue, Lei; Li, Qihan

    2016-01-01

    The pathological manifestations of fatal cases of human hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) are characterized by inflammatory damage to the central nervous system (CNS). Here, the dynamic distribution of EV71 in the CNS and the subsequent pathological characteristics within different regions of neonatal rhesus macaque brain tissue were studied using a chimeric EV71 expressing green fluorescence protein. The results were compared with brain tissue obtained from the autopsies of deceased EV71-infected HFMD patients. These observations suggested that the virus was prevalent in areas around the blood vessels and nerve nuclei in the brain stem and showed a preference for astrocytes in the CNS. Interestingly, infected astrocytes within the in vivo and in vitro human and macaque systems exhibited increased expression of excitatory neurotransmitters and cytokines that also stimulated the neuronal secretion of the excitatory neurotransmitters noradrenalin and adrenalin, and this process most likely plays a role in the pathophysiological events that occur during EV71 infection.

  19. Porters and neurotransmitter transporters.

    Science.gov (United States)

    Nelson, N; Lill, H

    1994-11-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)-ATPase. Two distinct families of transporters were identified in this group. One cotransports sodium with glutamate and other amino acids and requires additionally an outwardly directed potassium gradient. The second cotransports sodium, chloride and a variety of neurotransmitters, including gamma-aminobutyric acid (GABA), glycine and monoamines. Genes and cDNA encoding several members of the latter family have been cloned and studied in detail. The structure and function as well as the evolutionary relationships among these neurotransmitter transporters are discussed.

  20. SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Andersen, Jacob; Jørgensen, Trine N

    2011-01-01

    The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters...... for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake...... of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy...

  1. Excitatory amino acid transmitters in epilepsy.

    Science.gov (United States)

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  2. The emergence of neurotransmitters as immune modulators.

    Science.gov (United States)

    Franco, Rafael; Pacheco, Rodrigo; Lluis, Carmen; Ahern, Gerard P; O'Connell, Peta J

    2007-09-01

    Initially, the idea that neurotransmitters could serve as immunomodulators emerged with the discovery that their release and diffusion from nervous tissue could lead to signaling through lymphocyte cell-surface receptors and the modulation of immune function. It is now evident that neurotransmitters can also be released from leukocytes and act as autocrine or paracrine modulators. Here, we review the data indicating that leukocytes synthesize and release 'neurotransmitters' and we also discuss the diverse effects that these compounds exert in a variety of immune cells. The role of neurotransmitters in immune-related diseases is also reviewed succinctly. Current and future developments in understanding the cross-talk between the immune and nervous systems will probably identify new avenues for treating immune-mediated diseases using agonists or antagonists of neurotransmitter receptors.

  3. Dynamic SERS nanosensor for neurotransmitter sensing near neurons.

    Science.gov (United States)

    Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François

    2017-12-04

    Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.

  4. Zn2+ modulation of neurotransmitter transporters

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, K.; Gether, U.

    2006-01-01

    of neurotransmitter transporters have been identified based on sequence homology: (1) the neurotransmitter sodium symporter family (NSS), which includes the Na+/C1(-)-dependent transporters for dopamine, norepinephrine, and serotonin; and (2) the dicarboxylate/amino acid cation symporter family (DAACS), which...

  5. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  6. SNT-1 functions as the Ca2+ sensor for tonic and evoked neurotransmitter release in C. elegans.

    Science.gov (United States)

    Li, Lei; Liu, Haowen; Wang, Wei; Chandra, Mintu; Collins, Brett M; Hu, Zhitao

    2018-05-14

    Synaptotagmin-1 (Syt1) binds Ca 2+ through its tandem C2 domains (C2A and C2B) and triggers Ca 2+ -dependent neurotransmitter release. Here we show that snt-1 , the homolog of mammalian Syt1, functions as the Ca 2+ sensor for both tonic and evoked neurotransmitter release at the C. elegans neuromuscular junction. Mutations that disrupt Ca 2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca 2+ binding in a single C2 domain had no effect, indicating that the Ca 2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca 2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca 2+ entry. SIGNIFICANCE STATEMENT We showed that SNT-1 in C. elegans regulates evoked neurotransmitter release through Ca 2+ binding to its C2B domain, a similar way to Syt1 in the mouse CNS and the fly NMJ. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca 2+ -binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature excitatory postsynaptic current (mEPSC), indicating that SNT-1 also acts as a Ca 2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated. Copyright © 2018 the authors.

  7. Optimization of ultra-performance liquid chromatography (UPLC) with fluorescence detector (FLD) method for the quantitative determination of selected neurotransmitters in rat brain.

    Science.gov (United States)

    Stragierowicz, Joanna; Daragó, Adam; Brzeźnicki, Sławomir; Kilanowicz, Anna

    2017-07-26

    Glutamate (Glu) and γ-aminobutyric acid (GABA) are the main neurotransmitters in the central nervous system for excitatory and inhibitory processes, respectively. Monitoring these neurotransmitters is an essential tool in establishing pathological functions, among others in terms of occupational exposure to toxic substances. We present modification of the HPLC (high-performance liquid chromatography) to the UPLC (ultra-performance liquid chromatography) method for the simultaneous determination of glutamate and γ-aminobutyric acid in a single injection. The isocratic separation of these neurotransmitter derivatives was performed on Waters Acquity BEH (ethylene bridged hybrid) C18 column with particle size of 1.7 μm at 35°C using a mobile phase consisting of 0.1 M acetate buffer (pH 6.0) and methanol (60:40, v/v) at a flow rate of 0.3 ml/min. The analytes were detected with the fluorescence detector (FLD) using derivatization with o-phthaldialdehyde (OPA), resulting in excitation at 340 nm and emission at 455 nm. Several validation parameters including linearity (0.999), accuracy (101.1%), intra-day precision (1.52-1.84%), inter-day precision (2.47-3.12%), limit of detection (5-30 ng/ml) and quantification (100 ng/ml) were examined. The developed method was also used for the determination of these neurotransmitters in homogenates of selected rat brain structures. The presented UPLC-FLD is characterized by shorter separation time (3.5 min), which is an adaptation of the similar HPLC methods and is an alternative for more expensive references techniques such as liquid chromatography coupled with tandem mass-spectrometry (LC-MS/MS) methods. Med Pr 2017;68(5):583-591. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  8. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Directory of Open Access Journals (Sweden)

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  9. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model.

    Science.gov (United States)

    Arafa, Nadia M S; Marie, Mohamed-Assem S; AlAzimi, Sara Abdullah Mubarak

    2016-10-25

    The rapid economic development in the Arabian Gulf has resulted in lifestyle changes that have increased the prevalence of obesity and type 2 diabetes, with the greatest increases observed in Kuwait. Dyslipidemia and diabetes are risk factors for disruptions in cortical neurotransmitter homeostasis. This study investigated the effect of the antidiabetic medications canagliflozin (CAN) and metformin (MET) on the levels of cortical neurotransmitters in a diabetic rat model. The rats were assigned to the control (C) group, the diabetic group that did not receive treatment (D) or the diabetic group treated with either CAN (10 mg/kg) or MET (100 mg/kg) for 2 or 4 weeks. Blood and urine glucose levels and cortical acetylcholinesterase (AChE) activity were assayed, and amino acid and monoamine levels were measured using HPLC. The diabetic group exhibited a significant increase in AChE activity and a decrease in monoamine and amino acid neurotransmitter levels. In the CAN group, AChE was significantly lower than that in the D and D + MET groups after 2 weeks of treatment. In addition, a significant increase in some cortical monoamines and amino acids was observed in the D + MET and D + CAN groups compared with the D group. Histopathological analysis revealed the presence of severe focal hemorrhage, neuronal degeneration, and cerebral blood vessel congestion, with gliosis in the cerebrum of rats in the D group. The CAN-treated group exhibited severe cerebral blood vessel congestion after 2 weeks of treatment and focal gliosis in the cerebrum after 4 weeks of treatment. Focal gliosis in the cerebrum of rats in the MET-treated group was observed after 2 and 4 weeks of treatment. We conclude that the effect of CAN and MET on neurotransmitters is potentially mediated by their antihyperglycemic and antihyperlipidemic effects. In addition, the effects of CAN on neurotransmitters might be associated with its receptor activity, and the effect of MET on neurotransmitters

  10. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines.

    Science.gov (United States)

    Yi, Qiu-Yue; Li, Hong-Bao; Qi, Jie; Yu, Xiao-Jing; Huo, Chan-Juan; Li, Xiang; Bai, Juan; Gao, Hong-Li; Kou, Bo; Liu, Kai-Li; Zhang, Dong-Dong; Chen, Wen-Sheng; Cui, Wei; Zhu, Guo-Qing; Shi, Xiao-Lian; Kang, Yu-Ming

    2016-11-16

    Reactive oxygen species (ROS) in the brain are involved in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG), one of the active compounds in green tea, has anti-oxidant, anti-inflammatory and vascular protective properties. This study was designed to determine whether chronic infusion of EGCG into the hypothalamic paraventricular nucleus (PVN) attenuates ROS and sympathetic activity and delays the progression of hypertension by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and decreasing nuclear factor-kappa B (NF-κB) activity, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar-Kyoto (WKY) rats and SHR received bilateral PVN infusion of EGCG (20μg/h) or vehicle via osmotic minipumps for 4 weeks. SHR showed higher mean arterial pressure, plasma proinflammatory cytokines and circulating norepinephrine (NE) levels compared with WKY rats. SHR also had higher PVN levels of the subunit of NAD(P)H oxidase (gp91 phox ), ROS, tyrosine hydroxylase, and PICs; increased NF-κB activity; and lower PVN levels of interleukin-10 (IL-10) and 67kDa isoform of glutamate decarboxylase (GAD67) than WKY rats. PVN infusion of EGCG attenuated all these changes in SHR. These findings suggest that SHR have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN. Chronic inhibition of ROS in the PVN restores the balance of neurotransmitters and cytokines in the PVN, thereby attenuating hypertensive response and sympathetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders.

    Science.gov (United States)

    Ng, J; Heales, S J R; Kurian, M A

    2014-08-01

    Childhood neurotransmitter disorders are increasingly recognised as an expanding group of inherited neurometabolic syndromes. They are caused by disturbance in synthesis, metabolism, and homeostasis of the monoamine neurotransmitters, including the catecholamines (dopamine, norepinephrine, and epinephrine) and serotonin. Disturbances in monoamine neurotransmission will lead to neurological symptoms that often overlap with clinical features of other childhood neurological disorders (such as hypoxic ischaemic encephalopathy, cerebral palsy, other movement disorders, and paroxysmal conditions); consequently, neurotransmitter disorders are frequently misdiagnosed. The diagnosis of neurotransmitter disorders is made through detailed clinical assessment, analysis of cerebrospinal fluid neurotransmitters, and further supportive diagnostic investigations. Early and accurate diagnosis of neurotransmitter disorders is important, as many are amenable to therapeutic intervention. The principles of treatment for monoamine neurotransmitter disorders are mainly directly derived from understanding these metabolic pathways. In disorders characterized by enzyme deficiency, we aim to increase monoamine substrate availability, boost enzyme co-factor levels, reduce monoamine breakdown, and replace depleted levels of monoamines with pharmacological analogs as clinically indicated. Most monoamine neurotransmitter disorders lead to reduced levels of central dopamine and/or serotonin. Complete amelioration of motor symptoms is achievable in some disorders, such as Segawa's syndrome, and, in other conditions, significant improvement in quality of life can be attained with pharmacotherapy. In this review, we provide an overview of the clinical features and current treatment strategies for childhood monoamine neurotransmitter disorders.

  12. Quantitative densitometry of neurotransmitter receptors

    International Nuclear Information System (INIS)

    Rainbow, T.C.; Bleisch, W.V.; Biegon, A.; McEwen, B.S.

    1982-01-01

    An autoradiographic procedure is described that allows the quantitative measurement of neurotransmitter receptors by optical density readings. Frozen brain sections are labeled in vitro with [ 3 H]ligands under conditions that maximize specific binding to neurotransmitter receptors. The labeled sections are then placed against the 3 H-sensitive LKB Ultrofilm to produce the autoradiograms. These autoradiograms resemble those produced by [ 14 C]deoxyglucose autoradiography and are suitable for quantitative analysis with a densitometer. Muscarinic cholinergic receptors in rat and zebra finch brain and 5-HT receptors in rat brain were visualized by this method. When the proper combination of ligand concentration and exposure time are used, the method provides quantitative information about the amount and affinity of neurotransmitter receptors in brain sections. This was established by comparisons of densitometric readings with parallel measurements made by scintillation counting of sections. (Auth.)

  13. [Preliminary research on multi-neurotransmitters' change regulation in 120 depression patients' brains].

    Science.gov (United States)

    Chi, Ming; Qing, Xue-Mei; Pan, Yan-Shu; Xu, Feng-Quan; Liu, Chao; Zhang, Cheng; Xu, Zhen-Hua

    2014-04-01

    In view of the effective traditional Chinese medicine (TCM) in the treatment of clinical depression, the mechanism is not clear, this study attempts to research the cause of depression in a complex situation to lay the foundation for the next step of TCM curative effect evaluation. Based on the brain wave of 120 depression patients and 40 ordinary person, the change regulation of acetylcholine, dopamine, norepinephrine, depression neurotransmitters and excited neurotransmitters in the whole and various encephalic regions' multi-neurotransmitters of depression patients-serotonin are analysed by search of encephalo-telex (SET) system, which lays the foundation for the diagnosis of depression. The result showed that: contrased with the normal person group, the mean value of the six neurotransmitters in depression patients group are: (1) in the whole encephalic region of depression patients group the dopamine fall (P neurotransmitters and neurotransmitters: (1) the three antagonizing pairs of neurotransmitters-serotonin and dopamine, acetylcholine and norepinephrine, depression neurotransmitters and excited neurotransmitters, in ordinary person group and depression patients group are characterizeed by middle or strong negative correlation. Serotonin and dopamine, which are characterized by weak negative correlation in the right rear temporal region of ordinary person group, are characterized by strong negative correlation in the other encephalic regions and the whole encephalic (ordinary person group except the right rear temporal region: the range of [r] is [0.82, 0.92], P neurotransmitters and excited neurotransmitters are characterized by middle strong negative correlation (ordinary person group: the range of [r] is [0.57, 0.80], P neurotransmitters which are not antagonizing pairs of neurotransmitters, serotonin and excited neurotransmitters, or acetylcholine and depression neurotra-nsmitters, or dopamine and depression neurotransmitters in the various encephalic

  14. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets?

    Science.gov (United States)

    Jha, Saurabh Kumar; Jha, Niraj Kumar; Kumar, Dhiraj; Sharma, Renu; Shrivastava, Abhishek; Ambasta, Rashmi K; Kumar, Pravir

    2017-01-01

    The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.

  15. Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat.

    Science.gov (United States)

    Zhou, Xueyan; Zhu, Qiuxiang; Han, Xiaowen; Chen, Renguo; Liu, Yaowu; Fan, Hongbin; Yin, Xiaoxing

    2015-11-01

    Diabetic encephalopathy (DE) is one of the most prevalent chronic complications of diabetes mellitus (DM), with neither effective prevention nor proven therapeutic regimen. This study aims to uncover the potential dysregulation pattern of the neurotransmitters in a rat model of streptozotocin (STZ)-induced experimental DE. For that purpose, male Sprague-Dawley (SD) rats were treated with a single intraperitoneal injection of STZ. Cognitive performance was detected with the Morris water maze (MWM) test. Serum, cerebrospinal fluid (CSF), and brain tissues were collected to measure the levels of neurotransmitters. Compared with the control rats, the acetylcholine (ACh) levels in serum, CSF, hippocampus, and cortex were all significantly down-regulated as early as 6 weeks in the STZ treatment group. In contrast, the glutamate (Glu) levels were decreased in CSF and the hippocampus, but unaffected in the serum and cortex of STZ-treated rats. As for γ-aminobutyric acid (GABA), it was down-regulated in serum, but up-regulated in CSF, hippocampus, and the cortex in the STZ-treated group. The mRNA expressions of neurotransmitter-related rate limiting enzymes (including AChE, GAD1, and GAD2) and pro-inflammatory cytokines (including IL-1β and TNF-α) were all increased in the DE rats. Our data suggest that DM induces isoform-dependent and tissue-specific neurotransmitter abnormalities, and that neuroinflammation may underlay the nervous system dysfunction observed in the progression of DE.

  16. Dynamic regulation of neurotransmitter specification: Relevance to nervous system homeostasis

    Science.gov (United States)

    Borodinsky, Laura N.; Belgacem, Yesser Hadj; Swapna, Immani; Sequerra, Eduardo Bouth

    2013-01-01

    During nervous system development the neurotransmitter identity changes and coexpression of several neurotransmitters is a rather generalized feature of developing neurons. In the mature nervous system, different physiological and pathological circumstances recreate this phenomenon. The rules of neurotransmitter respecification are multiple. Among them, the goal of assuring balanced excitability appears as an important driving force for the modifications in neurotransmitter phenotype expression. The functional consequences of these dynamic revisions in neurotransmitter identity span a varied range, from fine-tuning the developing neural circuit to modifications in addictive and locomotor behaviors. Current challenges include determining the mechanisms underlying neurotransmitter phenotype respecification and how they intersect with genetic programs of neuronal specialization. PMID:23270605

  17. Excitatory Neuronal Hubs Configure Multisensory Integration of Slow Waves in Association Cortex

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroki

    2018-03-01

    Full Text Available Summary: Multisensory integration (MSI is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60 expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. Video Abstract: : Kuroki et al. performed cell-type-specific, wide-field FRET-based calcium imaging to visualize cortical network activity induced by multisensory inputs. They observed phase-locking of cortical slow waves in excitatory neuronal hubs in association cortical areas that may underlie multisensory integration. Keywords: wide-field calcium imaging, multisensory integration, cortical slow waves, association cortex, phase locking, fluorescence resonance energy transfer, spontaneous activity, excitatory neuron, inhibitory neuron, mouse

  18. Neurotransmitter: Sodium Symporters: Caught in the Act!

    DEFF Research Database (Denmark)

    Malinauskaite, Lina

    The neurotransmitter: sodium symporters in the neurons. Communication between neurons is mediated by the release of molecules called neurotransmitters (blue dots) from first neuron and sensed by receptors on the surface of the second (purple sphere). The signal is ended by active reuptake...

  19. Therapeutics of Neurotransmitters in Alzheimer’s Disease

    Science.gov (United States)

    Kandimalla, Ramesh; Reddy, P. Hemachandra

    2018-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters’ agonists/antagonists in AD. PMID:28211810

  20. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  1. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    Science.gov (United States)

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  2. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  3. Relationship of neurotransmitters to the symptoms of major depressive disorder.

    Science.gov (United States)

    Nutt, David J

    2008-01-01

    A relationship appears to exist between the 3 main monoamine neurotransmitters in the brain (i.e., dopamine, norepinephrine, and serotonin) and specific symptoms of major depressive disorder. Specific symptoms are associated with the increase or decrease of specific neurotransmitters, which suggests that specific symptoms of depression could be assigned to specific neurochemical mechanisms, and subsequently specific antidepressant drugs could target symptom-specific neurotransmitters. Research on electroconvulsive therapy has supported a correlation between neurotransmitters and depression symptoms. A 2-dimensional model of neurotransmitter functions is discussed that describes depression as a mixture of 2 separate components--negative affect and the loss of positive affect--that can be considered in relation to the 3 amine neurotransmitters. Owing to the different methods of action of available antidepressant agents and the depression symptoms thought to be associated with dopamine, serotonin, and norepinephrine, current treatments can be targeted toward patients' specific symptoms.

  4. Strategies for sensing neurotransmitters with responsive MRI contrast agents.

    Science.gov (United States)

    Angelovski, Goran; Tóth, Éva

    2017-01-23

    A great deal of research involving multidisciplinary approaches is currently dedicated to the understanding of brain function. The complexity of physiological processes that underlie neural activity is the greatest hurdle to faster advances. Among imaging techniques, MRI has great potential to enable mapping of neural events with excellent specificity, spatiotemporal resolution and unlimited tissue penetration depth. To this end, molecular imaging approaches using neurotransmitter-sensitive MRI agents have appeared recently to study neuronal activity, along with the first successful in vivo MRI studies. Here, we review the pioneering steps in the development of molecular MRI methods that could allow functional imaging of the brain by sensing the neurotransmitter activity directly. We provide a brief overview of other imaging and analytical methods to detect neurotransmitter activity, and describe the approaches to sense neurotransmitters by means of molecular MRI agents. Based on these initial steps, further progress in probe chemistry and the emergence of innovative imaging methods to directly monitor neurotransmitters can be envisaged.

  5. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  6. Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors.

    Science.gov (United States)

    Mann, Florian A; Herrmann, Niklas; Meyer, Daniel; Kruss, Sebastian

    2017-06-28

    Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmitters, including dopamine. This approach provides a high spatial and temporal resolution, but it is not understood if these sensors are able to distinguish dopamine from similar catecholamine neurotransmitters, such as epinephrine or norepinephrine. In this work, the organic phase (DNA sequence) around SWCNTs was varied to create sensors with different selectivity and sensitivity for catecholamine neurotransmitters. Most DNA-functionalized SWCNTs responded to catecholamine neurotransmitters, but both dissociation constants ( K d ) and limits of detection were highly dependent on functionalization (sequence). K d values span a range of 2.3 nM (SWCNT-(GC) 15 + norepinephrine) to 9.4 μM (SWCNT-(AT) 15 + dopamine) and limits of detection are mostly in the single-digit nM regime. Additionally, sensors of different SWCNT chirality show different fluorescence increases. Moreover, certain sensors (e.g., SWCNT-(GT) 10 ) distinguish between different catecholamines, such as dopamine and norepinephrine at low concentrations (50 nM). These results show that SWCNTs functionalized with certain DNA sequences are able to discriminate between catecholamine neurotransmitters or to detect them in the presence of interfering substances of similar structure. Such sensors will be useful to measure and study neurotransmitter signaling in complex biological settings.

  7. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    Science.gov (United States)

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  8. Atypical Neurotransmitters and the Neurobiology of Depression.

    Science.gov (United States)

    Joca, Samia Regiane; Moreira, Fabricio Araujo; Wegener, Gregers

    2015-01-01

    Since the first report that the mechanism of action of antidepressants involves the facilitation of monoaminergic neurotransmission in the brain in the 1960s, the leading hypothesis about the neurobiology of depression has been the so called "monoaminergic hypothesis". However, a growing body of evidence from the last two decades also supports important involvement of non-monoaminergic mechanisms in the neurobiology of depression and antidepressant action. The discovery of nitric oxide (NO) and endocannabinoid signaling in the brain during the 1990s challenged the wellestablished criteria of classical neurotransmission. These transmitters are synthesized and released on demand by the postsynaptic neurons, and may act as a retrograde messenger on the presynaptic terminal, modulating neurotransmitter release. These unconventional signaling mechanisms and the important role as neural messengers have classified NO and endocannabinoids as atypical neurotransmitters. They are able to modulate neural signaling mediated by the main conventional neurotransmitters systems in the brain, including the monoaminergic, glutamatergic and GABAergic signaling systems. This review aims at discussing the fundamental aspects of NO- and endocannabinoid-mediated signaling in the brain, and how they can be related to the neurobiology of depression. Both preclinical and clinical evidence supporting the involvement of these atypical neurotransmitters in the neurobiology of depression, and in the antidepressant effects are presented here. The evidence is discussed on basis of their ability to modulate different neurotransmitter systems in the brain, including monoaminergic and glutamatergic ones. A better comprehension of NO and endocannabinoid signaling mechanisms in the neurobiology depression could provide new avenues for the development of novel non-monoamine based antidepressants.

  9. Calcium-sensing beyond neurotransmitters

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Han, Weiping

    2009-01-01

    Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most....... Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems....... synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function...... as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion...

  10. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.

    Science.gov (United States)

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-08-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism

    Science.gov (United States)

    Cole, Jeffrey T.; Sweatt, Andrew J.; Hutson, Susan M.

    2012-01-01

    In the brain, metabolism of the essential branched chain amino acids (BCAAs) leucine, isoleucine, and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT) isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). The BCATs are thought to participate in a α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from α-ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC) catalyzes the second, irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA) products of the BCAT reaction. Maple Syrup Urine Disease (MSUD) results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron. PMID:22654736

  12. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.

    2011-01-01

    . The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer-mediated......Weak interactions of neurotransmitters and the lipid matrix in the synaptic membrane have been hypothesized to play a role in synaptic transmission of nerve signals, particularly with respect to receptor desensitization (Cantor, R. S. Biochemistry 2003, 42, 11891). The strength of such interactions......, however, was not measured, and this is an obvious impediment for further evaluation and understanding of a possible role for desensitization. We have used dialysis equilibrium to directly measure the net affinity of selected neurotransmitters for lipid membranes and analyzed this affinity data...

  13. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B

    2013-10-01

    The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.

  14. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    Science.gov (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  15. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-01-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  16. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  17. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  18. Porters and neurotransmitter transporters

    NARCIS (Netherlands)

    Nelson, Nathan; Lill, H

    1994-01-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma

  19. Dopamine in the Auditory Brainstem and Midbrain: Co-localization with Amino Acid Neurotransmitters and Gene Expression following Cochlear Trauma

    Directory of Open Access Journals (Sweden)

    Avril Genene eHolt

    2015-07-01

    Full Text Available Dopamine (DA modulates the effects of amino acid neurotransmitters, including GABA and glutamate, in motor, visual, olfactory and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012. The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA in the IC following cochlear trauma has been previously reported (Tong et al., 2005. In the current study the possibility of co-localization of TH with amino acid neurotransmitters (AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN and IC to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after two months while in the IC the reduction in TH was observed at both three days and two months following ablation. Furthermore, in the CN, glycine transporter 2 (GlyT2 and the GABA transporter (GABAtp were also significantly reduced only after two months. However, in the IC, DA receptor 1 (DRDA1, vesicular glutamate transporters 2 and 3 (vGluT2, vGluT3, GABAtp and GAD67 were reduced in expression both at the three day and two month time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GlyT2 and vGluT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons.

  20. Neurotransmitter properties of the newborn human retina

    International Nuclear Information System (INIS)

    Hollyfield, J.G.; Frederick, J.M.; Rayborn, M.E.

    1983-01-01

    Human retinal tissue from a newborn was examined autoradiographically for the presence of high-affinity uptake and localization of the following putative neurotransmitters: dopamine, glycine, GABA, aspartate, and glutamate. In addition, the dopamine content of this newborn retina was measured by high pressure liquid chromatography. Our study reveals that specific uptake mechanisms for 3 H-glycine, 3 H-dopamine, and 3 H-GABA are present at birth. However, the number and distribution of cells labeled with each of these 3 H-transmitters are not identical to those observed in adult human retinas. Furthermore, the amount of endogenous dopamine in the newborn retina is approximately 1/20 the adult level. Photoreceptor-specific uptake of 3 H-glutamate and 3 H-aspartate are not observed. These findings indicate that, while some neurotransmitter-specific properties are present at birth, significant maturation of neurotransmitter systems occurs postnatally

  1. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  2. Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: How to improve the antiepileptic effect?

    Science.gov (United States)

    Werner, Felix-Martin; Coveñas, Rafael

    2017-06-01

    Here, we describe in generalized epilepsies the alterations of classical neurotransmitters and neuropeptides acting at specific subreceptors. In order to consider a network context rather than one based on focal substrates and in order to make the interaction between neurotransmitters and neuropeptides and their specific subreceptors comprehensible, neural networks in the hippocampus, thalamus, and cerebral cortex are described. In this disease, a neurotransmitter imbalance between dopaminergic and serotonergic neurons and between presynaptic GABAergic neurons (hypoactivity) and glutaminergic neurons (hyperactivity) occurs. Consequently, combined GABA A agonists and NMDA antagonists could furthermore stabilize the neural networks in a multimodal pharmacotherapy. The antiepileptic effect and the mechanisms of action of conventional and recently developed antiepileptic drugs are reviewed. The GASH:Sal animal model can contribute to examine the efficacy of antiepileptic drugs. The issues of whether the interaction of classical neurotransmitters with other subreceptors (5-HT 7 , metabotropic 5 glutaminergic, A 2A adenosine, and alpha nicotinic 7 cholinergic receptors) or whether the administration of agonists/antagonists of neuropeptides might improve the therapeutic effect of antiepileptic drugs should be addressed. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

    Science.gov (United States)

    Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-15

    Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. © 2015. Published by The Company of Biologists Ltd.

  4. Effect of calcium on excitatory neuromuscular transmission in the crayfish

    Science.gov (United States)

    Bracho, H.; Orkand, R. K.

    1970-01-01

    1. The effects of varying the external Ca concentration from 1·8 to 30 mM/l. (⅛-2 times normal) have been studied at the in vitro crayfish excitatory neuromuscular junction. Electrophysiological techniques were used to record transmembrane junctional potentials from muscle fibres and extracellular junctional currents from the vicinity of nerve terminals. 2. The excitatory junctional potential amplitude was proportional to [Ca]0n, where n varied between 0·68 and 0·94 (mean 0·82) when [Ca]0 was varied from 1·8 to 15 mM/l. 3. The increase in junctional potential amplitude on raising [Ca]0 resulted primarily from an increase in the average number of quanta of excitatory transmitter released from the presynaptic nerve terminal by the nerve impulse. 4. The size of the quanta, synaptic delay, presynaptic potential and electrical properties of the muscle membrane were little affected by changes in calcium concentration in the range studied. PMID:5498460

  5. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    Energy Technology Data Exchange (ETDEWEB)

    Martyniuk, Christopher J. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sanchez, Brian C. [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States); Szabo, Nancy J.; Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sepulveda, Maria S., E-mail: mssepulv@purdue.edu [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens ({mu}g/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl{sub 2}) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 {mu}g/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 {mu}g/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 {mu}g/g) but increased cGnRH-II mRNA at the lowest dose (5 {mu}g/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  6. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    International Nuclear Information System (INIS)

    Martyniuk, Christopher J.; Sanchez, Brian C.; Szabo, Nancy J.; Denslow, Nancy D.; Sepulveda, Maria S.

    2009-01-01

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (μg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl 2 ) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 μg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 μg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 μg/g) but increased cGnRH-II mRNA at the lowest dose (5 μg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  7. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Sanchez, Brian C; Szabo, Nancy J; Denslow, Nancy D; Sepúlveda, Maria S

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (microg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl(2)) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 microg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 microg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 microg/g) but increased cGnRH-II mRNA at the lowest dose (5 microg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  8. Excitatory components of the mammalian locomotor CPG

    DEFF Research Database (Denmark)

    Kiehn, Ole; Quinlan, Katharina A.; Restrepo, Carlos Ernesto

    2008-01-01

    Locomotion in mammals is to a large degree controlled directly by intrinsic spinal networks, called central pattern generators (CPGs). The overall function of these networks is governed by interaction between inhibitory and excitatory neurons. In the present review, we will discuss recent finding...

  9. Synthesis of symmetrical and non-symmetrical bivalent neurotransmitter ligands

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Andersen, Jacob; Thygesen, Mikkel Boas

    2016-01-01

    A novel procedure for synthesis of bivalent neurotransmitter ligands was developed by reacting O-benzyl protected N-nosylated dopamine and serotonin with alkyl- or PEG-linked diols under Fukuyama-Mitsunobu conditions in the presence of DIAD/PPh3 generating three different bivalent neurotransmitte...

  10. Determination of the levels of two types of neurotransmitter and the anti-migraine effects of different dose-ratios of Ligusticum chuanxiong and Gastrodia elata

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-01-01

    Full Text Available Ligusticum chuanxiong (LC–Gastrodia elata (GE compatibility is widely used in the clinic for the treatment of migraine. It has been shown that the changes of neurotransmitters in the central nervous system are closely related to the pathogenesis of migraine; whether LC–GE compatibility might affect the neurotransmitters in migraine rats has not yet been studied. In this study, high performance liquid chromatography-fluorescence detector methods for quantification of serotonin (5-hydroxytryptamine, 5-HT and excitatory amino acids (EAAs in rat brain were developed. The 5-HT was measured directly, while EAAs were determined by using dansyl chloride as precolumn derivative reagent. The validation of the methods, including selectivity, linearity, sensitivity, precision, accuracy, recoveries, and stability were carried out and demonstrated to meet the requirements of quantitative analysis. Compared with the model group, the expression of 5-HT in migraine rat brain was enhanced from 30 minutes to 120 minutes and glutamate (L-Glu was suppressed from 30 minutes to 60 minutes in an LC–GE (4:3 group compared with the model group (p < 0.05, p < 0.01, respectively. These findings showed that the analytical methods were simple, sensitive, selective, and low cost, and LC–GE 4:3 compatibility could have better efficacy for treating migraine through upregulating 5-HT levels and downregulating L-Glu levels.

  11. MRI sensing of neurotransmitters with a crown ether appended Gd(3+) complex.

    Science.gov (United States)

    Oukhatar, Fatima; Même, Sandra; Même, William; Szeremeta, Frédéric; Logothetis, Nikos K; Angelovski, Goran; Tóth, Éva

    2015-02-18

    Molecular magnetic resonance imaging (MRI) approaches that detect biomarkers associated with neural activity would allow more direct observation of brain function than current functional MRI based on blood-oxygen-level-dependent contrast. Our objective was to create a synthetic molecular platform with appropriate recognition moieties for zwitterionic neurotransmitters that generate an MR signal change upon neurotransmitter binding. The gadolinium complex (GdL) we report offers ditopic binding for zwitterionic amino acid neurotransmitters, via interactions (i) between the positively charged and coordinatively unsaturated metal center and the carboxylate function and (ii) between a triazacrown ether and the amine group of the neurotransmitters. GdL discriminates zwitterionic neurotransmitters from monoamines. Neurotransmitter binding leads to a remarkable relaxivity change, related to a decrease in hydration number. GdL was successfully used to monitor neural activity in ex vivo mouse brain slices by MRI.

  12. Do personality traits predict individual differences in excitatory and inhibitory learning?

    Directory of Open Access Journals (Sweden)

    Zhimin eHe

    2013-05-01

    Full Text Available Conditioned inhibition (CI is demonstrated in classical conditioning when a stimulus is used to signal the omission of an otherwise expected outcome. This basic learning ability is involved in a wide range of normal behaviour - and thus its disruption could produce a correspondingly wide range of behavioural deficits. The present study employed a computer-based task to measure conditioned excitation and inhibition in the same discrimination procedure. Conditioned inhibition by summation test was clearly demonstrated. Additionally summary measures of excitatory and inhibitory learning (difference scores were calculated in order to explore how performance related to individual differences in a large sample of normal participants (n=176 following exclusion of those not meeting the basic learning criterion. The individual difference measures selected derive from two biologically-based personality theories, Gray’s reinforcement sensitivity theory (1982 and Eysenck’s psychoticism, extraversion and neuroticism theory (1991. Following the behavioural tasks, participants completed the behavioural inhibition system/behavioural activation system scales (BIS/BAS and the Eysenck personality questionnaire revised short scale (EPQ-RS. Analyses of the relationship between scores on each of the scales and summary measures of excitatory and inhibitory learning suggested that those with higher BAS (specifically the drive sub-scale and higher EPQ-RS neuroticism showed reduced levels of excitatory conditioning. Inhibitory conditioning was similarly attenuated in those with higher EPQ-RS neuroticism, as well as in those with higher BIS scores. Thus the findings are consistent with higher levels of neuroticism being accompanied by generally impaired associative learning, both inhibitory and excitatory. There was also evidence for some dissociation in the effects of behavioural activation and behavioural inhibition on excitatory and inhibitory learning respectively.

  13. Genetic susceptibility and neurotransmitters in Tourette syndrome.

    Science.gov (United States)

    Paschou, Peristera; Fernandez, Thomas V; Sharp, Frank; Heiman, Gary A; Hoekstra, Pieter J

    2013-01-01

    Family studies have consistently shown that Tourette syndrome (TS) is a familial disorder and twin studies have clearly indicated a genetic contribution in the etiology of TS. Whereas early segregation studies of TS suggested a single-gene autosomal dominant disorder, later studies have pointed to more complex models including additive and multifactorial inheritance and likely interaction with genetic factors. While the exact cellular and molecular base of TS is as yet elusive, neuroanatomical and neurophysiological studies have pointed to the involvement of cortico-striato-thalamocortical circuits and abnormalities in dopamine, glutamate, gamma-aminobutyric acid, and serotonin neurotransmitter systems, with the most consistent evidence being available for involvement of dopamine-related abnormalities, that is, a reduction in tonic extracellular dopamine levels along with hyperresponsive spike-dependent dopamine release, following stimulation. Genetic and gene expression findings are very much supportive of involvement of these neurotransmitter systems. Moreover, intriguingly, genetic work on a two-generation pedigree has opened new research pointing to a role for histamine, a so far rather neglected neurotransmitter, with the potential of the development of new treatment options. Future studies should be aimed at directly linking neurotransmitter-related genetic and gene expression findings to imaging studies (imaging genetics), which enables a better understanding of the pathways and mechanisms through which the dynamic interplay of genes, brain, and environment shapes the TS phenotype. © 2013 Elsevier Inc. All rights reserved.

  14. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    Science.gov (United States)

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  15. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1.

    Science.gov (United States)

    Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M; Coman, Daniel; Huang, Yuegao; Dulla, Chris G; Hyder, Fahmeed; Biederer, Thomas

    2016-07-13

    Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly

  16. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach.

    Science.gov (United States)

    Szymańska, Krystyna; Kuśmierska, Katarzyna; Demkow, Urszula

    2015-01-01

    Neurotransmitters (NTs) play a central role in the efficient communication between neurons necessary for normal functioning of the nervous system. NTs can be divided into two groups: small molecule NTs and larger neuropeptide NTs. Inherited disorders of NTs result from a primary disturbance of NTs metabolism or transport. This group of disorders requires sophisticated diagnostic procedures. In this review we discuss disturbances in the metabolism of tetrahydrobiopterin, biogenic amines, γ-aminobutyric acid, foliate, pyridoxine-dependent enzymes, and also the glycine-dependent encephalopathy. We point to pathologic alterations of proteins involved in synaptic neurotransmission that may cause neurological and psychiatric symptoms. We postulate that synaptic receptors and transporter proteins for neurotransmitters should be investigated in unresolved cases. Patients with inherited neurotransmitters disorders present various clinical presentations such as mental retardation, refractory seizures, pyramidal and extrapyramidal syndromes, impaired locomotor patterns, and progressive encephalopathy. Every patient with suspected inherited neurotransmitter disorder should undergo a structured interview and a careful examination including neurological, biochemical, and imaging.

  17. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol.

    Science.gov (United States)

    Lovinger, David M

    2008-01-01

    Nerve cells (i.e., neurons) communicate via a combination of electrical and chemical signals. Within the neuron, electrical signals driven by charged particles allow rapid conduction from one end of the cell to the other. Communication between neurons occurs at tiny gaps called synapses, where specialized parts of the two cells (i.e., the presynaptic and postsynaptic neurons) come within nanometers of one another to allow for chemical transmission. The presynaptic neuron releases a chemical (i.e., a neurotransmitter) that is received by the postsynaptic neuron's specialized proteins called neurotransmitter receptors. The neurotransmitter molecules bind to the receptor proteins and alter postsynaptic neuronal function. Two types of neurotransmitter receptors exist-ligand-gated ion channels, which permit rapid ion flow directly across the outer cell membrane, and G-protein-coupled receptors, which set into motion chemical signaling events within the cell. Hundreds of molecules are known to act as neurotransmitters in the brain. Neuronal development and function also are affected by peptides known as neurotrophins and by steroid hormones. This article reviews the chemical nature, neuronal actions, receptor subtypes, and therapeutic roles of several transmitters, neurotrophins, and hormones. It focuses on neurotransmitters with important roles in acute and chronic alcohol effects on the brain, such as those that contribute to intoxication, tolerance, dependence, and neurotoxicity, as well as maintained alcohol drinking and addiction.

  18. Detection and monitoring of neurotransmitters--a spectroscopic analysis.

    Science.gov (United States)

    Manciu, Felicia S; Lee, Kendall H; Durrer, William G; Bennet, Kevin E

    2013-01-01

    We demonstrate that confocal Raman mapping spectroscopy provides rapid, detailed, and accurate neurotransmitter analysis, enabling millisecond time resolution monitoring of biochemical dynamics. As a prototypical demonstration of the power of the method, we present real-time in vitro serotonin, adenosine, and dopamine detection, and dopamine diffusion in an inhomogeneous organic gel, which was used as a substitute for neurologic tissue.  Dopamine, adenosine, and serotonin were used to prepare neurotransmitter solutions in distilled water. The solutions were applied to the surfaces of glass slides, where they interdiffused. Raman mapping was achieved by detecting nonoverlapping spectral signatures characteristic of the neurotransmitters with an alpha 300 WITec confocal Raman system, using 532 nm neodymium-doped yttrium aluminum garnet laser excitation. Every local Raman spectrum was recorded in milliseconds and complete Raman mapping in a few seconds.  Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific microscale image regions. Such information is particularly important for complex, heterogeneous samples, where changes in composition can influence neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.  Accurate nondestructive characterization for real-time detection of neurotransmitters in inhomogeneous environments without the requirement of sample labeling is a key issue in neuroscience. Our work demonstrates the capabilities of Raman spectroscopy in biological applications, possibly providing a new tool for elucidating the mechanism and kinetics of deep brain stimulation. © 2012 International Neuromodulation Society.

  19. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  20. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  1. Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    Directory of Open Access Journals (Sweden)

    Golam Mustafa

    2017-01-01

    Full Text Available Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury.

  2. Pattern recognition of neurotransmitters using multimode sensing.

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Moldoveanu, Iuliana; van Staden, Jacobus Frederick

    2014-05-30

    Pattern recognition is essential in chemical analysis of biological fluids. Reliable and sensitive methods for neurotransmitters analysis are needed. Therefore, we developed for pattern recognition of neurotransmitters: dopamine, epinephrine, norepinephrine a method based on multimode sensing. Multimode sensing was performed using microsensors based on diamond paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrine, hemin and protoporphyrin IX in stochastic and differential pulse voltammetry modes. Optimized working conditions: phosphate buffer solution of pH 3.01 and KCl 0.1mol/L (as electrolyte support), were determined using cyclic voltammetry and used in all measurements. The lowest limits of quantification were: 10(-10)mol/L for dopamine and epinephrine, and 10(-11)mol/L for norepinephrine. The multimode microsensors were selective over ascorbic and uric acids and the method facilitated reliable assay of neurotransmitters in urine samples, and therefore, the pattern recognition showed high reliability (RSDneurotransmitters on biological fluids at a lower determination level than chromatographic methods. The sampling of the biological fluids referees only to the buffering (1:1, v/v) with a phosphate buffer pH 3.01, while for chromatographic methods the sampling is laborious. Accordingly with the statistic evaluation of the results at 99.00% confidence level, both modes can be used for pattern recognition and quantification of neurotransmitters with high reliability. The best multimode microsensor was the one based on diamond paste modified with protoporphyrin IX. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  4. Cochlear Damage Affects Neurotransmitter Chemistry in the Central Auditory System

    Directory of Open Access Journals (Sweden)

    Donald Albert Godfrey

    2014-11-01

    Full Text Available Tinnitus, the perception of a monotonous sound not actually present in the environment, affects nearly 20% of the population of the United States. Although there has been great progress in tinnitus research over the past 25 years, the neurochemical basis of tinnitus is still poorly understood. We review current research about the effects of various types of cochlear damage on the neurotransmitter chemistry in the central auditory system and document evidence that different changes in this chemistry can underlie similar behaviorally measured tinnitus symptoms. Most available data have been obtained from rodents following cochlear damage produced by cochlear ablation, loud sound, or ototoxic drugs. Effects on neurotransmitter systems have been measured as changes in neurotransmitter level, synthesis, release, uptake, and receptors. In this review, magnitudes of changes are presented for neurotransmitter-related amino acids, acetylcholine, and serotonin. A variety of effects have been found in these studies that may be related to animal model, survival time, type of cochlear damage, or methodology. The overall impression from the evidence presented is that any imbalance of neurotransmitter-related chemistry could disrupt auditory processing in such a way as to produce tinnitus.

  5. Development of clinical study and application on dopaminergic neurotransmitters and neuroreceptor imaging

    International Nuclear Information System (INIS)

    Wang Rongfu

    2000-01-01

    In recent years, the neurotransmitter mapping has been rapidly developed from a lot of fundamental researches to the studies of clinical applications. At present, the dopaminergic neurotransmitter and receptor imaging in the central neurotransmitter mapping study are the most active area including dopaminergic receptor, dopaminergic neurotransmitter and dopaminergic transporter imaging, etc,. The nuclear medicine functional imaging technique with positron emission tomography and single photon emission computed tomography possesses potential advantages in the diagnosis and distinguished diagnosis of neuropsychiatric disorders and movement disorders, and in the study of recognition function

  6. The importance of the excitatory amino acid transporter 3 (EAAT3)

    DEFF Research Database (Denmark)

    E. Bjørn-Yoshimoto, Walden; Underhill, Suzanne M.

    2016-01-01

    Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localiza......Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post...

  7. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  8. Functional relevance of neurotransmitter receptor heteromers in the central nervous system.

    Science.gov (United States)

    Ferré, Sergi; Ciruela, Francisco; Woods, Amina S; Lluis, Carme; Franco, Rafael

    2007-09-01

    The existence of neurotransmitter receptor heteromers is becoming broadly accepted and their functional significance is being revealed. Heteromerization of neurotransmitter receptors produces functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Neurotransmitter receptor heteromers can function as processors of computations that modulate cell signaling. Thus, the quantitative or qualitative aspects of the signaling generated by stimulation of any of the individual receptor units in the heteromer are different from those obtained during coactivation. Furthermore, recent studies demonstrate that some neurotransmitter receptor heteromers can exert an effect as processors of computations that directly modulate both pre- and postsynaptic neurotransmission. This is illustrated by the analysis of striatal receptor heteromers that control striatal glutamatergic neurotransmission.

  9. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    Science.gov (United States)

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  10. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  11. Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro

    Science.gov (United States)

    Aulí, M; Martínez, E; Gallego, D; Opazo, A; Espín, F; Martí-Gallostra, M; Jiménez, M; Clavé, P

    2008-01-01

    Background and purpose: To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. Experimental approach: Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. Key results: Strips developed weak spontaneous rhythmic contractions (3.67±0.49 g, 2.54±0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 μM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1–100 μM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by NG-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 μM) or the P2Y1 receptor antagonist MRS 2179 (10 μM) and were unaffected by the P2X antagonist NF279 (10 μM) or α-chymotrypsin (10 U mL−1). Amplitude of on- and off-contractions was reduced by atropine (1 μM) and the selective NK2 receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH2 (1 μM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM–1 mM) or substance P (1 nM–10 μM). Conclusions and implications: Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y1 receptors through apamin-sensitive K+ channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK2 receptors. Prejunctional P2Y1 receptors might modulate the activity of excitatory EMNs. P2Y1 and NK2 receptors might be therapeutic targets for colonic motor disorders. PMID:18846038

  12. NEUROTRANSMITTER ABNORMALITIES AND RESPONSE TO SUPPLEMENTATION IN SPG11

    Science.gov (United States)

    Vanderver, Adeline; Tonduti, Davide; Auerbach, Sarah; Schmidt, Johanna L.; Parikh, Sumit; Gowans, Gordon C.; Jackson, Kelly E.; Brock, Pamela L.; Patterson, Marc; Nehrebecky, Michelle; Godfrey, Rena; Zein, Wadih M.; Gahl, William; Toro, Camilo

    2012-01-01

    Objective To report the detection of secondary neurotransmitter abnormalities in a group of SPG11 patients and describe treatment with L-dopa/carbidopa and sapropterin. Design Case reports Setting National Institutes of Health in the context of the Undiagnosed Disease Program; Children’s National Medical Center in the context of Myelin Disorders Bioregistry Program Patients Four SPG11 patients with a clinical picture of progressive spastic paraparesis complicated by extrapyramidal symptoms and maculopathy Interventions L-dopa/carbidopa and sapropterin Results 3/4 patients presented secondary neurotransmitter abnormalities; 4/4 partially responded to L-dopa as well as sapropterin Conclusions In the SPG11 patient with extrapyramidal symptoms, a trial of L-dopa/carbidopa and sapropterin and/or evaluation of cerebrospinal fluid neurotransmitters should be considered. PMID:22749184

  13. Liquid Chromatography-Tandem Mass Spectrometry in Studies of Neurotransmitters and Their Metabolites in the Brain

    OpenAIRE

    Uutela, Päivi

    2009-01-01

    Neurotransmitters transfer chemically the electrical impulse from one neuron to another in the brain. The concentration of neurotransmitters in many neurological disorders is altered. The measurement of neurotransmitters in the brain is needed to understand how these diseases develop and how they can be treated. Neurotransmitters can be extracted from the brains of freely moving, alert animals by microdialysis technique. The concentration of neurotransmitters and their metabolites in brain mi...

  14. Tourette syndrome and excitatory substances: is there a connection?

    Science.gov (United States)

    Zou, Li-Ping; Wang, Ying; Zhang, Li-Ping; Zhao, Jian-Bo; Lu, Jin-Fang; Liu, Qun; Wang, Hang-Yan

    2011-05-01

    The objective of this study is to investigate the relationship between excitatory substances by testing the urine in children with Tourette syndrome (TS). We performed a control study involving 44 patients with TS and 44 normal children by investigating the children's daily eating habits. We used the gas chromatograph-mass spectrometer and liquid chromatograph-mass spectrometer from Agilent. Substances for detection included 197 excitatory substances prohibited by the International Olympic Committee and other substances with similar chemical structures or biological functions for urine samples. Forty-four patients who did not take any drugs in the past 2 weeks enrolled in the study. The positive rate in the experiment group was three cases, while it was negative in the control group. The level of 1-testosterone increased in one extremely severe TS patient who ate large amounts of puffed food and drank an average of 350 ml of cola per day. Cathine and other substances with similar chemical constitution or similar biological effects increased in one severe TS patient who ate bags of instant noodles daily, according to the high score of the Yale Global Tic Severity Scale. An increase in ephedrine type, testosterone, and stimulants may be related to the pathogenesis of TS. Unhealthy food possibly causes TS. The relationship between excitatory substances and TS needs to be explored with the goal of providing more information on diagnosing and treating TS.

  15. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  16. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.

    Science.gov (United States)

    Klockow, Jessica L; Hettie, Kenneth S; Secor, Kristen E; Barman, Dipti N; Glass, Timothy E

    2015-08-03

    Tunable dual-analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary-amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin-3-aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn-on fluorescence output. A pH-functionality was directly integrated into the fluorophore π-system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters. By altering the pH-sensitive unit with various electron-donating and -withdrawing sulfonamide substituents, we identified a correlation between the pKa of the pH-sensitive group and the fluorescence output from the activated fluorophore. In doing so, we achieved a twelvefold fluorescence enhancement upon evaluating the ExoSensors under conditions that mimic exocytosis. ExoSensors are aptly suited to serve as molecular imaging tools that allow for the direct visualization of only the neurotransmitters that are released from secretory vesicles upon exocytosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors

    Directory of Open Access Journals (Sweden)

    Vladimir S. Naumenko

    2018-01-01

    Full Text Available The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs and ligand-gated ion channels (LICs. From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.

  18. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  19. General principles of neurotransmitter detection. Problems and application to catecholamines

    International Nuclear Information System (INIS)

    Taxi, Jacques

    1976-01-01

    The use of radioautography for neurotransmitter studies requires two preliminary conditions (in addition to the availability of tritiated molecules): there must be a selective uptake of the neurotransmitter itself, or of a related substance (precursor or false transmitter); the labelled substance must be preserved in situ by fixation and must not be removed by further treatments. Since the putative neurotransmitters are generally small, hydrosoluble molecules, they can be maintained in situ only if they are bound to structure made insoluble by the fixative. The technical indications are summarized so that the successive stages of experimentation can be considered in an attempt to answer the major questions posed by the experimenter

  20. Macrocyclic Gd(3+) complexes with pendant crown ethers designed for binding zwitterionic neurotransmitters.

    Science.gov (United States)

    Oukhatar, Fatima; Meudal, Hervé; Landon, Céline; Logothetis, Nikos K; Platas-Iglesias, Carlos; Angelovski, Goran; Tóth, Éva

    2015-07-27

    A series of Gd(3+) complexes exhibiting a relaxometric response to zwitterionic amino acid neurotransmitters was synthesized. The design concept involves ditopic interactions 1) between a positively charged and coordinatively unsaturated Gd(3+) chelate and the carboxylate group of the neurotransmitters and 2) between an azacrown ether appended to the chelate and the amino group of the neurotransmitters. The chelates differ in the nature and length of the linker connecting the cyclen-type macrocycle that binds the Ln(3+) ion and the crown ether. The complexes are monohydrated, but they exhibit high proton relaxivities (up to 7.7 mM(-1)  s(-1) at 60 MHz, 310 K) due to slow molecular tumbling. The formation of ternary complexes with neurotransmitters was monitored by (1) H relaxometric titrations of the Gd(3+) complexes and by luminescence measurements on the Eu(3+) and Tb(3+) analogues at pH 7.4. The remarkable relaxivity decrease (≈80 %) observed on neurotransmitter binding is related to the decrease in the hydration number, as evidenced by luminescence lifetime measurements on the Eu(3+) complexes. These complexes show affinity for amino acid neurotransmitters in the millimolar range, which can be suited to imaging concentrations of synaptically released neurotransmitters. They display good selectivity over non-amino acid neurotransmitters (acetylcholine, serotonin, and noradrenaline) and hydrogenphosphate, but selectivity over hydrogencarbonate was not achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity.

    Science.gov (United States)

    Di Chiara, G.; Tanda, G.; Carboni, E.

    1996-11-01

    Although microdialysis is commonly understood as a method of sampling low molecular weight compounds in the extracellular compartment of tissues, this definition appears insufficient to specifically describe brain microdialysis of neurotransmitters. In fact, transmitter overflow from the brain into dialysates is critically dependent upon the composition of the perfusing Ringer. Therefore, the dialysing Ringer not only recovers the transmitter from the extracellular brain fluid but is a main determinant of its in-vivo release. Two types of brain microdialysis are distinguished: quantitative micro-dialysis and conventional microdialysis. Quantitative microdialysis provides an estimate of neurotransmitter concentrations in the extracellular fluid in contact with the probe. However, this information might poorly reflect the kinetics of neurotransmitter release in vivo. Conventional microdialysis involves perfusion at a constant rate with a transmitter-free Ringer, resulting in the formation of a steep neurotransmitter concentration gradient extending from the Ringer into the extracellular fluid. This artificial gradient might be critical for the ability of conventional microdialysis to detect and resolve phasic changes in neurotransmitter release taking place in the implanted area. On the basis of these characteristics, conventional microdialysis of neurotransmitters can be conceptualized as a model of the in-vivo release of neurotransmitters in the brain. As such, the criteria of face-validity, construct-validity and predictive-validity should be applied to select the most appropriate experimental conditions for estimating neurotransmitter release in specific brain areas in relation to behaviour.

  2. Dynamic neurotransmitter interactions measured with PET

    International Nuclear Information System (INIS)

    Schiffer, W.K.; Dewey, S.L.

    2001-01-01

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  3. Dynamic neurotransmitter interactions measured with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  4. Neurotransmitter transporters in schistosomes: structure, function and prospects for drug discovery.

    Science.gov (United States)

    Ribeiro, Paula; Patocka, Nicholas

    2013-12-01

    Neurotransmitter transporters (NTTs) play a fundamental role in the control of neurotransmitter signaling and homeostasis. Sodium symporters of the plasma membrane mediate the cellular uptake of neurotransmitter from the synaptic cleft, whereas proton-driven vesicular transporters sequester the neurotransmitter into synaptic vesicles for subsequent release. Together these transporters control how much transmitter is released and how long it remains in the synaptic cleft, thereby regulating the intensity and duration of signaling. NTTs have been the subject of much research in mammals and there is growing interest in their activities among invertebrates as well. In this review we will focus our attention on NTTs of the parasitic flatworm Schistosoma mansoni. Bloodflukes of the genus Schistosoma are the causative agents of human schistosomiasis, a devastating disease that afflicts over 200 million people worldwide. Schistosomes have a well-developed nervous system and a rich diversity of neurotransmitters, including many of the small-molecule ("classical") neurotransmitters that normally employ NTTs in their mechanism of signaling. Recent advances in schistosome genomics have unveiled numerous NTTs in this parasite, some of which have now been cloned and characterized in vitro. Moreover new genetic and pharmacological evidence suggests that NTTs are required for proper control of neuromuscular signaling and movement of the worm. Among these carriers are proteins that have been successfully targeted for drug discovery in other organisms, in particular sodium symporters for biogenic amine neurotransmitters such as serotonin and dopamine. Our goal in this chapter is to review the current status of research on schistosome NTTs, with emphasis on biogenic amine sodium symporters, and to evaluate their potential for anti-schistosomal drug targeting. Through this discussion we hope to draw attention to this important superfamily of parasite proteins and to identify new

  5. Availability of neurotransmitter glutamate is diminished when beta-hydroxybutyrate replaces glucose in cultured neurons.

    Science.gov (United States)

    Lund, Trine M; Risa, Oystein; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2009-07-01

    Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-(13)C]beta-hydroxybutyrate to that of [1,6-(13)C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate-glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of (13)C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-(13)C]beta-hydroxybutyrate as opposed to [1,6-(13)C]glucose. Our results suggest that the change in aspartate-glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate-aspartate shuttle activity in neurons using beta-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only beta-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing beta-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate-aspartate shuttle.

  6. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2010-06-01

    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  7. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Science.gov (United States)

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  8. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

    Science.gov (United States)

    Spiegel, Ivo; Mardinly, Alan R; Gabel, Harrison W; Bazinet, Jeremy E; Couch, Cameron H; Tzeng, Christopher P; Harmin, David A; Greenberg, Michael E

    2014-05-22

    The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Brain Pharmacokinetics and the Pharmacological Effects on Striatal Neurotransmitter Levels of Pueraria lobata Isoflavonoids in Rat

    Directory of Open Access Journals (Sweden)

    Bingxin Xiao

    2017-09-01

    Full Text Available Isoflavonoids are putatively active components of Pueraria lobata and has been demonstrated prominent neuro-protection effect against cerebrovascular disorders, hypertension or Parkinson's disease (PD. However, the molecular basis for the beneficial effect of Pueraria lobata on nervous systems has not been well revealed. The present study aims to assess striatum exposure to main active isoflavonoids and changes of striatal extracellular neurotransmitters levels in rat brain after intravenous administration of Pueraria lobata isoflavonoids extracts (PLF, to further elucidate its' substantial bases for neuro activities. Fifteen rats were divided into 3 groups (five rats in each group to receive a dose of PLF at 80 or 160 mg/kg or normal saline (vehicle, respectively. An LC-MS/MS method was employed to determine the concentrations of five main isoflavonoids and multiple neurotransmitters in microdialysate from striatal extracellular fluid (ECF of the rats. The exposed quantities of puerarin (PU, 3′-methoxypuerarin (MPU, daidzein-8-C-apiosyl-(1-6-glucoside (DAC, and 3′-hydroxypuerarin (HPU in striatum were dose-dependent. The content of daidzein (DAZ was too low to be detected in all dialysate samples through the experiment. Optimal dose PLF (80 mg/kg promoted DA metabolism and inhibited 5-HT metabolism. No obvious change in the level of GLu was determined. The concentration of GABA presented a temporary decline firstly and then a gradual uptrend followed by a further downtrend. Higher dose (160 mg/kg PLF could enhance the metabolism of both DA and 5-HT, and lower the extracellular level of GLu, without changing GABA concentrations, which might result in alleviation on excitatory toxicity under conditions, such as ischemia. The results infer that different dose of PLF should be chosen to achieve appropriate neurochemical modulation effects under conditions, such as hypertension or ischemia/stroke. These findings may significantly contribute to a

  10. Selectivity of phenothiazine cholinesterase inhibitors for neurotransmitter systems.

    Science.gov (United States)

    Darvesh, Sultan; Macdonald, Ian R; Martin, Earl

    2013-07-01

    Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer's disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer's disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  12. Pharmacological approaches for Alzheimer's disease: neurotransmitter as drug targets.

    Science.gov (United States)

    Prakash, Atish; Kalra, Jaspreet; Mani, Vasudevan; Ramasamy, Kalavathy; Majeed, Abu Bakar Abdul

    2015-01-01

    Alzheimer's disease (AD) is the most common CNS disorder occurring worldwide. There is neither proven effective prevention for AD nor a cure for patients with this disorder. Hence, there is an urgent need to develop safer and more efficacious drugs to help combat the tremendous increase in disease progression. The present review is an attempt at discussing the treatment strategies and drugs under clinical trials governing the modulation of neurotransmitter. Therefore, looking at neurotransmitter abnormalities, there is an urge for developing the pharmacological approaches aimed at correcting those abnormalities and dysfunctioning. In addition, this review also discusses the drugs that are in Phase III trials for the treatment of AD. Despite advances in treatment strategies aimed at correcting neurotransmitter abnormalities, there exists a need for the development of drug therapies focusing on the attempts to remove the pathogenomic protein deposits, thus combating the disease progression.

  13. The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    International Nuclear Information System (INIS)

    Fitsanakis, Vanessa A.; Aschner, Michael

    2005-01-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and γ-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb

  14. A neurotransmitter transporter encoded by the Drosophila inebriated gene

    Science.gov (United States)

    Soehnge, Holly; Huang, Xi; Becker, Marie; Whitley, Penn; Conover, Diana; Stern, Michael

    1996-01-01

    Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron. PMID:8917579

  15. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.

    Science.gov (United States)

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-04

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow

  16. Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure.

    Science.gov (United States)

    Tufi, Sara; Leonards, Pim; Lamoree, Marja; de Boer, Jacob; Legler, Juliette; Legradi, Jessica

    2016-03-15

    During early development, neurotransmitters are important stimulants for the development of the central nervous system. Although the development of different neuronal cell types during early zebrafish (Danio rerio) development is well-studied, little is known of the levels of neurotransmitters, their precursors and metabolites during development, and how these levels are affected by exposure to environmental contaminants. A method based on hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry has been applied for the first time to zebrafish embryos and larvae to study five neurotransmitter systems in parallel, including the dopaminergic-andrenergic, glutaminergic-GABAnergic, serotoninergic, histaminergic, and cholinergic systems. Our method enables the quantification of neurotransmitters and their precursors and metabolites in whole zebrafish from the period of zygote to free-swimming larvae 6 days postfertilization (dpf). We observed a developmental stage-dependent pattern with clear differences between the first 2 days of development and the following days. Whereas the neurotransmitter levels steadily increased, the precursors showed a peak at 3 dpf. After exposure to several pesticides, significant differences in concentrations of neurotransmitters and precursors were observed. Our study revealed new insights about neurotransmitter systems during early zebrafish development and showed the usefulness of our approach for environmental neurotoxicity studies.

  17. Temperature dependence of electrical properties of mixture of exogenous neurotransmitters dopamine and epinephrine

    Science.gov (United States)

    Patki, Mugdha; Patil, Vidya

    2016-05-01

    Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.

  18. Psychotropic and neurotropic drugs and neurotransmitter receptors

    International Nuclear Information System (INIS)

    Takahashi, Ryo

    1986-01-01

    Neurotransmitters are important in nervous and mental diseases because of their part in the pathogenesis of such diseases; at the same time, they play significant roles in the actions of effective therapeutic drugs. Studies of the mechanisms involved in the actions of such drugs not only generate useful methods to elucidate the pathogenesis of nervous and mental disorders but also serve as indispensable means of developing new drugs. In this field, investigations using both animal models of certain diseases and healthy animals are essential. Development of these animal models is urgently required. In this workshop, studies were presented of the mechanisms of action of major neuropsychotropic drugs such as anxiolytics, antidepressants, and antipsychotics, assessed in terms of the parts played by neurotransmitters and receptors. (Auth.)

  19. [Effect of occupational stress on neurotransmitters in petroleum workers].

    Science.gov (United States)

    Jiang, Yu; Lian, Yulong; Tao, Ning; Ge, Hua; Liu, Jiwen

    2015-09-01

    To explore the effects of occupational stress on neurotransmitters in petroleum workers. 178 petroleum workers with the length of service ≥ 1 year were recruited to the subjects by the questionnaire of OSI-R. The levels of 5-hydroxy tryptamine (5-HT), norepinephrine (NE), neuropeptide Y (NPY) and substance P (SP) in serum were measured. The subjects were classified into 3 groups according to the scores of occupational stress. The levels of 5-HT NE and SP for over 15 working years were higher than those of less than 15 years (P occupational stress degree groups, multiple comparison showed high. occupational stress group was higher than those of low occupational stress group. Multivariate correlation analysis showed that the occupational stress and sleep quality component scores correlated positively with the 5-HT, NE and SP (P Occupational stress in petroleum workers is correlated with serum monoamine and neuropeptides neurotransmitters, and it may affect serum levels of monoamine and neuropeptides neurotransmitters.

  20. Bepaling van enkele neurotransmitters, monoaminen, en metabolieten, met behulp van Continuous Flowapparatuur

    NARCIS (Netherlands)

    Eigeman L; Schonewille F; Borst M; van der Laan JW

    1986-01-01

    Bij het onderzoek in de psychofarmacologie kan kennis van de effecten van stoffen op de omzettingssnelheid van neurotransmitters een belangrijk aspect zijn. Met de huidige psychofarmaca lijken vooral de klassieke neurotransmitters zoals de monoaminen, noradrenaline, dopamine en serotonine van

  1. Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter

    DEFF Research Database (Denmark)

    Billesbølle, Christian B; Mortensen, Jonas S; Sohail, Azmat

    2016-01-01

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K...

  2. A Life of Neurotransmitters.

    Science.gov (United States)

    Snyder, Solomon H

    2017-01-06

    Development of scientific creativity is often tied closely to mentorship. In my case, two years with Julius Axelrod, the sum total of my research training, was transformative. My mentoring generations of graduate students and postdoctoral fellows has been as nurturing for me as it has been for them. Work in our lab over fifty years has covered the breadth of neurotransmitters and related substances, focusing on the discovery and characterization of novel messenger molecules. I can't conceptualize a more rewarding professional life.

  3. [Brain repair after ischemic stroke: role of neurotransmitters in post-ischemic neurogenesis].

    Science.gov (United States)

    Sánchez-Mendoza, Eduardo; Bellver-Landete, Víctor; González, María Pilar; Merino, José Joaquín; Martínez-Murillo, Ricardo; Oset-Gasque, María Jesús

    2012-11-01

    Brain ischemia and reperfusion produce alterations in the microenvironment of the parenchyma, including ATP depletion, ionic homeostasis alterations, inflammation, release of multiple cytokines and abnormal release of neurotransmitters. As a consequence, the induction of proliferation and migration of neural stem cells towards the peri-infarct region occurs. The success of new neurorestorative treatments for damaged brain implies the need to know, with greater accuracy, the mechanisms in charge of regulating adult neurogenesis, both under physiological and pathological conditions. Recent evidence demonstrates that many neurotransmitters, glutamate in particular, control the subventricular zone, thus being part of the complex signalling network that influences the production of new neurons. Neurotransmitters provide a link between brain activity and subventricular zone neurogenesis. Therefore, a deeper knowledge of the role of neurotransmitters systems, such as glutamate and its transporters, in adult neurogenesis, may provide a valuable tool to be used as a neurorestorative therapy in this pathology.

  4. Neurotransmitter alteration in a testosterone propionate-induced polycystic ovarian syndrome rat model.

    Science.gov (United States)

    Chaudhari, Nirja K; Nampoothiri, Laxmipriya P

    2017-02-01

    Polycystic ovarian syndrome (PCOS), one of the leading causes of infertility seen in women, is characterized by anovulation and hyperandrogenism, resulting in ovarian dysfunction. In addition, associations of several metabolic complications like insulin resistance, obesity, dyslipidemia and psychological co-morbidities are well known in PCOS. One of the major factors influencing mood and the emotional state of mind is neurotransmitters. Also, these neurotransmitters are very crucial for GnRH release. Hence, the current study investigates the status of neurotransmitters in PCOS. A PCOS rat model was developed using testosterone. Twenty-one-day-old rats were subcutaneously injected with 10 mg/kg body weight of testosterone propionate (TP) for 35 days. The animals were validated for PCOS characteristics by monitoring estrus cyclicity, serum testosterone and estradiol levels and by histological examination of ovarian sections. Neurotransmitter estimation was carried out using fluorometric and spectrophotometric methods. TP-treated animals demonstrated increased serum testosterone levels with unaltered estradiol content, disturbed estrus cyclicity and many peripheral cysts in the ovary compared to control rats mimicking human PCOS. Norepinephrine (NE), dopamine, serotonin, γ-amino butyric acid (GABA) and epinephrine levels were significantly low in TP-induced PCOS rats compared to control ones, whereas the activity of acetylcholinesterase in the PCOS brain was markedly elevated. Neurotransmitter alteration could be one of the reasons for disturbed gonadotropin-releasing hormone (GnRH) release, consequently directing the ovarian dysfunction in PCOS. Also, decrease in neurotransmitters, mainly NE, serotonin and dopamine (DA) attributes to mood disorders like depression and anxiety in PCOS.

  5. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    DEFF Research Database (Denmark)

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jørn Dybkjær

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches...... of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence......, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude...

  6. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    International Nuclear Information System (INIS)

    Ni Yun; Wu Liang; Wu Dan; Zhu Shiqun

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales. (interdisciplinary physics and related areas of science and technology)

  7. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J

    2014-12-11

    Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.

  8. Chapter 54: the discovery of neurotransmitters, and applications to neurology.

    Science.gov (United States)

    Sourkes, Theodore L

    2010-01-01

    The theory of chemical transmission has proved to be a powerful tool in the analysis of many aspects of neurological function, and its implications loom large on the horizon of neurology and psychiatry. Neurotransmitters are released at neuronal endings, diffuse rapidly across the synaptic cleft, and then act upon receptor proteins embedded in the membrane of the post-synaptic neuron or gland. Drugs are evaluated for their ability to stimulate or to block specific receptors, and in that way modify activity of the postsynaptic organ in order to achieve some desirable therapeutic effect. This chapter is concerned with our knowledge of some of the principal neurotransmitters, namely the primary amines: dopamine, noradrenaline, and serotonin; the quaternary amine: acetylcholine; and the aminoacids: gamma-aminobutyric acid, glutamic acid and glycine. The historical background to the discovery of these molecules as physiological neurotransmitters is presented, and their relation to various clinical states is discussed.

  9. Proton MR Spectroscopy—Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications

    Science.gov (United States)

    Agarwal, N.; Renshaw, P.F.

    2015-01-01

    SUMMARY Neurotransmitters are chemical substances that, by definition, allow communication between neurons and permit most neuronal-glial interactions in the CNS. Approximately 80% of all neurons use glutamate, and almost all interneurons use GABA. A third neurotransmitter, NAAG, modulates glutamatergic neurotransmission. Concentration changes in these molecules due to defective synthetic machinery, receptor expression, or errors in their degradation and metabolism are accepted causes of several neurologic disorders. Knowledge of changes in neurotransmitter concentrations in the brain can add useful information in making a diagnosis, helping to pick the right drug of treatment, and monitoring patient response to drugs in a more objective manner. Recent advances in 1H-MR spectroscopy hold promise in providing a more reliable in vivo detection of these neurotransmitters. In this article, we summarize the essential biology of 3 major neurotransmitters: glutamate, GABA, and NAAG. Finally we illustrate possible applications of 1H-MR spectroscopy in neuroscience research. PMID:22207303

  10. Radiopharmaceuticals for neurotransmitter imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jun [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin transporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmaceuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with [{sup 123}I] {beta} -CIT, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, [{sup 123}I]PE2I, [18F]FE-CNT, [{sup 123}I]FP-CIT and [{sup 18}F]FP-CIT were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. [{sup 11}C]McN 5652 was developed for serotonin transporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, [{sup 11}C]AFM and [{sup 11}C]DASB showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuticals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.

  11. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  12. Neurotransmitter measures in the cerebrospinal fluid of patients with Alzheimer's disease: a review.

    Science.gov (United States)

    Strac, Dubravka Svob; Muck-Seler, Dorotea; Pivac, Nela

    2015-03-01

    Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by progressive cognitive and functional decline, as well as by a variety of neuropsychiatric and psychological symptoms and behavioral dysfunctions. Various studies proposed the role of different neurotransmitter systems not only in AD-related cognitive, but also psychotic symptoms and behavioral and emotional deficits. Due to the close proximity, pathological neurochemical changes in brain occurring in AD are likely to be reflected in the cerebrospinal fluid (CSF). The purpose of this review is to provide a summary of the CSF neurotransmitter correlates of AD in order to get further insights into the potential role of altered neurotransmitters in the pathophysiology of AD and to offer novel AD biomarkers. PubMed and MEDLINE data bases were searched for English-language articles by using "Alzheimer's disease", "CSF" and "neurotransmitter" as primary terms. No time or article type constraints were applied. Moreover, the lists of references were searched manually for additional articles. Changes in various correlates of cholinergic, monoaminergic and amino acid neurotransmitter systems, as well as neuropeptides, have been observed in CSF of AD patients. However, as the results of these studies have been controversial, the importance of CSF neurotransmitter parameters as potential biomarkers in AD remains quite unclear. The observed discrepancies could be bypassed by implementation of new sensitive methods, such as novel proteomics approaches that include protein separation techniques, mass spectroscopy and targeted multiplex panels of specific analytes. Although no individual CSF neurotransmitter correlate was demonstrated as suitable biomarker of AD, a combined profile of several CSF neurochemical parameters might show enhanced sensitivity and specificity and thus contribute to earlier and more accurate diagnosis of AD, crucial for application of effective treatments.

  13. Interaction of neurotransmitters with a phospholipid bilayer

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved

    2014-01-01

    We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABAneu) and the osmolyte molecule glycerol...

  14. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    Science.gov (United States)

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  15. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  16. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine

    Directory of Open Access Journals (Sweden)

    An eDau

    2016-03-01

    Full Text Available Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  17. Thin film microelectrodes for electrochemical detection of neurotransmitters

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard

    An important signaling process in the nervous system is the release of chemical messengers called neurotransmitters from neurons. In this thesis alternative thin film electrode materials for applications targeting electrochemical detection of neurotransmitters in chip devices were evaluated...... and conductive polymer microelectrodes made of Pedot:Pss were also fabricated and used successfully to measure transmitter release from cells. The use of different thin film electrodes for low-noise amperometric measurements of single events of transmitter release from neuronal cells was studied....... For this application a very low current noise is needed together with a large temporal resolution. It was shown, that resistive and capacitive properties of thin film electrode materials are determining their usefulness in low-noise amperometric measurements. An analytical expression for the noise was derived...

  18. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  19. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    Science.gov (United States)

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  1. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  2. Urinary Neurotransmitters Are Selectively Altered in Children With Obstructive Sleep Apnea and Predict Cognitive Morbidity

    Science.gov (United States)

    Kheirandish-Gozal, Leila; McManus, Corena J. T.; Kellermann, Gottfried H.; Samiei, Arash

    2013-01-01

    Background: Pediatric obstructive sleep apnea (OSA) is associated with cognitive dysfunction, suggesting altered neurotransmitter function. We explored overnight changes in neurotransmitters in the urine of children with and without OSA. Methods: Urine samples were collected from children with OSA and from control subjects before and after sleep studies. A neurocognitive battery assessing general cognitive ability (GCA) was administered to a subset of children with OSA. Samples were subjected to multiple enzyme-linked immunosorbent assays for 12 neurotransmitters, and adjusted for creatinine concentrations. Results: The study comprised 50 children with OSA and 20 control subjects. Of the children with OSA, 20 had normal GCA score (mean ± SD) (101.2 ± 14.5) and 16 had a reduced GCA score (87.3 ± 13.9; P neurotransmitters enabled prediction of OSA (area under the curve [AUC]: 0.923; P neurotransmitters in urine may not only predict OSA but also the presence of cognitive deficits. Larger cohort studies appear warranted to confirm these findings. PMID:23306904

  3. Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making.

    Directory of Open Access Journals (Sweden)

    Ritwik K Niyogi

    Full Text Available Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the

  4. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  5. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters

    International Nuclear Information System (INIS)

    Sanghavi, Bankim J.; Swami, Nathan S.; Wolfbeis, Otto S.; Hirsch, Thomas

    2015-01-01

    Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pK a values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The

  6. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  7. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  8. Autoradiographic localization of drug and neurotransmitter receptors in the brain

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1981-01-01

    By combining and adapting various methodologies, it is possible to develop radiohistochemical methods for the light microscopic localization of drug and neurotransmitter receptors in the brain. These methods are valuable complements to other histochemical methods for mapping neurotransmitters; they provide a unique view of neuroanatomy and they can be used to provide valuable new hypotheses about how drugs produce various effects. Interesting 'hot spots' of receptor localizations have been observed in some sensory and limbic areas of the brain. Because most available methods are light microscopic, the development of ultrastructural methods will be a necessary and important extension of this field. (Auth.)

  9. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    Energy Technology Data Exchange (ETDEWEB)

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-12-14

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. /sup 3/H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table.

  10. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    International Nuclear Information System (INIS)

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-01-01

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. 3 H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table

  11. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.

    Science.gov (United States)

    Shen, Chun; Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2017-03-17

    The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.

    Science.gov (United States)

    Moody, Amber S; Sharma, Bhavya

    2018-04-05

    The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10 5 -10 6 . The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.

  13. The molecular mechanism for overcoming the rate-limiting step in monoamine neurotransmitter transport

    DEFF Research Database (Denmark)

    Sinning, Steffen; Said, Saida; Malinauskaite, Lina

    The monoamine transporter family consists of dopamine (DAT), norepinephrine (NET) and serotonin transporters (SERT) that mediate the reuptake of the monoamine neurotransmitters after their release during neurotransmission. These transporters play prominent roles in psychiatric disorders and are t......The monoamine transporter family consists of dopamine (DAT), norepinephrine (NET) and serotonin transporters (SERT) that mediate the reuptake of the monoamine neurotransmitters after their release during neurotransmission. These transporters play prominent roles in psychiatric disorders...... membrane. The rate-limiting step in monoamine reuptake is the return of the empty transporter from an inward-facing to an outward-facing conformation without neurotransmitter and sodium bound. The molecular mechanism underlying this important conformational transition has not been described. Crystal...

  14. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  15. Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis.

    Science.gov (United States)

    Schulze, H G; Greek, L S; Gorzalka, B B; Bree, A V; Blades, M W; Turner, R F

    1995-02-01

    Identification of individual components in biological mixtures can be a difficult problem regardless of the analytical method employed. In this work, Raman spectroscopy was chosen as a prototype analytical method due to its inherent versatility and applicability to aqueous media, making it useful for the study of biological samples. Artificial neural networks (ANNs) and the classical least-squares (CLS) method were used to identify and quantify the Raman spectra of the small-molecule neurotransmitters and mixtures of such molecules. The transfer functions used by a network, as well as the architecture of a network, played an important role in the ability of the network to identify the Raman spectra of individual neurotransmitters and the Raman spectra of neurotransmitter mixtures. Specifically, networks using sigmoid and hyperbolic tangent transfer functions generalized better from the mixtures in the training data set to those in the testing data sets than networks using sine functions. Networks with connections that permit the local processing of inputs generally performed better than other networks on all the testing data sets. and better than the CLS method of curve fitting, on novel spectra of some neurotransmitters. The CLS method was found to perform well on noisy, shifted, and difference spectra.

  16. Network models predict that reduced excitatory fluctuations can give rise to hippocampal network hyper-excitability in MeCP2-null mice.

    Directory of Open Access Journals (Sweden)

    Ernest C Y Ho

    Full Text Available Rett syndrome is a severe pediatric neurological disorder caused by loss of function mutations within the gene encoding methyl CpG-binding protein 2 (MeCP2. Although MeCP2 is expressed near ubiquitously, the primary pathophysiology of Rett syndrome stems from impairments of nervous system function. One alteration within different regions of the MeCP2-deficient brain is the presence of hyper-excitable network responses. In the hippocampus, such responses exist despite there being an overall decrease in spontaneous excitatory drive within the network. In this study, we generated and used mathematical, neuronal network models to resolve this apparent paradox. We did this by taking advantage of previous mathematical modelling insights that indicated that decreased excitatory fluctuations, but not mean excitatory drive, more critically explain observed changes in hippocampal network oscillations from MeCP2-null mouse slices. Importantly, reduced excitatory fluctuations could also bring about hyper-excitable responses in our network models. Therefore, these results indicate that diminished excitatory fluctuations may be responsible for the hyper-excitable state of MeCP2-deficient hippocampal circuitry.

  17. Characterizing Enzymatic Deposition for Microelectrode Neurotransmitter Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hosein, W. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yorita, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tolosa, V. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    The enzyme immobilization process, one step in creating an enzymatic biosensor, was characterized and analyzed as a function of its physical properties. The neural glutamic biosensor is a flexible device, effectively minimizing trauma to the area of implantation. The Multielectrode Array (MEA) is composed primarily of a proprietary polymer which has been successfully implanted into human subjects in recent years. This polymer allows the device the pliability that other devices normally lack, though this poses some challenges to implantation. The electrodes are made of Platinum (Pt), and can range in number from eight to thirty two electrodes per device. These electrodes are electroplated with a semipermeable polymer layer to improve selectivity of the electrode to the neurotransmitter of interest, in this case glutamate. A signal is created from the interaction of glutamate in the brain with the glutamate oxidase (GluOx) which is immobilized on the surface of the electrode by using crosslinking chemistry in conjunction with glutaraldehyde and Bovine Serum Albumin (BSA). The glutamate is oxidized by glutamate oxidase, producing α-ketoglutarate and hydrogen peroxide (H2O2) as a by-product. The production of H2O2 is crucial for detection of the presence of the glutamate within the enzymatic coating, as it diffuses through the enzyme layer and oxidizes at the surface of the electrode. This oxidation is detectable by measurable change in the current using amperometry. Hence, the MEA allows for in vivo monitoring of neurotransmitter activity in real time. The sensitivity of the sensor to these neurotransmitters is dependent on the thickness of the layer, which is investigated in these experiments in order to optimize the efficacy of the device to detecting the substrate, once implanted.

  18. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    Science.gov (United States)

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  20. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  1. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology.

    Science.gov (United States)

    Grässel, Susanne; Muschter, Dominique

    2017-04-28

    The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.

  2. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  3. Article Neurotransmitters – A biochemical view | Shalayel | Sudan ...

    African Journals Online (AJOL)

    The neurotransmission at most if not all synapses is chemical and is of great biochemical, physiological and pharmacological importance. Neurons communicate with each other at synapses by a process called synaptic transmission in which the release of small quantities of chemical messengers, called neurotransmitters ...

  4. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    Science.gov (United States)

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  5. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  6. Traveling wave front solutions in lateral-excitatory neuronal networks

    Directory of Open Access Journals (Sweden)

    Sittipong Ruktamatakul

    2008-05-01

    Full Text Available In this paper, we discuss the shape of traveling wave front solutions to a neuronal model with the connection function to be of lateral excitation type. This means that close connecting cells have an inhibitory influence, while cells that aremore distant have an excitatory influence. We give results on the shape of the wave fronts solutions, which exhibit different shapes depend ing on the size of a threshold parameter.

  7. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses

    Directory of Open Access Journals (Sweden)

    Makoto Nishiyama

    2010-06-01

    Full Text Available GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and post-synaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and post-synaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD” at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA with LTP timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”. Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD” to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing and frequency dependences of long-term synaptic modifications in the hippocampus.

  8. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  9. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+, EPSC(-, and EPSC(+/- based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs, using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+ neurons, but increased it in EPSC(- neurons. Unlike EPSC(+ and EPSC(- neurons, EPSC(+/- neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/- neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  10. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  11. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    Science.gov (United States)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  12. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile.

    Science.gov (United States)

    Chaudhari, Nirja; Dawalbhakta, Mitali; Nampoothiri, Laxmipriya

    2018-04-11

    GnRH is the master molecule of reproduction that is influenced by several intrinsic and extrinsic factors such as neurotransmitters and neuropeptides. Any alteration in these regulatory loops may result in reproductive-endocrine dysfunction such as the polycystic ovarian syndrome (PCOS). Although low dopaminergic tone has been associated with PCOS, the role of neurotransmitters in PCOS remains unknown. The present study was therefore aimed at understanding the status of GnRH regulatory neurotransmitters to decipher the neuroendocrine pathology in PCOS. PCOS was induced in rats by oral administration of letrozole (aromatase inhibitor). Following PCOS validation, animals were assessed for gonadotropin levels and their mRNA expression. Neurotrasnmitter status was evaluated by estimating their levels, their metabolism and their receptor expression in hypothalamus, pituitary, hippocampus and frontal cortex of PCOS rat model. We demonstrate that GnRH and LH inhibitory neurotransmitters - serotonin, dopamine, GABA and acetylcholine - are reduced while glutamate, a major stimulator of GnRH and LH release, is increased in the PCOS condition. Concomitant changes were observed for neurotransmitter metabolising enzymes and their receptors as well. Our results reveal that increased GnRH and LH pulsatility in PCOS condition likely result from the cumulative effect of altered GnRH stimulatory and inhibitory neurotransmitters in hypothalamic-pituitary centre. This, we hypothesise, is responsible for the depression and anxiety-like mood disorders commonly seen in PCOS women.

  13. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen.

    Science.gov (United States)

    Sullivan, Kelly G; Levin, Michael

    2016-10-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, results are reported from a loss- and gain-of-function survey, using pharmacological modulators of several neurotransmitter pathways to examine possible roles for these pathways in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations, including craniofacial defects, hyperpigmentation, muscle mispatterning and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. © 2016 Anatomical Society.

  14. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor

    NARCIS (Netherlands)

    Hartmann, J.; Dedic, N.; Pöhlmann, M.L.; Häusl, A.; Karst, H.; Engelhardt, C.; Westerholz, S.; Wagner, K.V.; Labermaier, C.; Hoeijmakers, L.; Kertokarijo, M.; Chen, A.; Joëls, M.; Deussing, J.M.; Schmidt, M.V.

    2017-01-01

    Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in

  15. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid.

    Science.gov (United States)

    Al-Wadei, Hussein A N; Plummer, Howard K; Schuller, Hildegard M

    2009-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality in Western countries. We have shown previously that four representative human PDAC cell lines were regulated by beta-adrenoreceptors via cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. In the current study, we have tested the hypothesis that nicotine stimulates the growth of PDAC xenografts in nude mice by increasing the systemic levels of the stress neurotransmitters adrenaline and noradrenaline, which are the physiological agonists for beta-adrenoreceptors and that inhibition by gamma-aminobutyric acid (GABA) of the adenylyl cyclase-dependent pathway downstream of adrenoreceptors blocks this effect. The size of xenografts from PDAC cell line Panc-1 was determined 30 days after inoculation of the cancer cells. Stress neurotransmitters in serum as well as cAMP in the cellular fraction of blood and in tumor tissue were assessed by immunoassays. Levels of GABA, its synthesizing enzymes GAD65 and GAD67 and beta-adrenergic signaling proteins in the tumor tissue were determined by western blotting. Nicotine significantly increased the systemic levels of adrenaline, noradrenaline and cAMP while increasing xenograft size and protein levels of cAMP, cyclic AMP response element-binding protein and p-extracellular signal-regulated kinase 1/2 in the tumor tissue. Nicotine additionally reduced the protein levels of both GAD isozymes and GABA in tumor tissue. Treatment with GABA abolished these responses to nicotine and blocked the development of xenografts in mice not exposed to nicotine. These findings suggest that the development and progression of PDAC is subject to significant modulation by stimulatory stress neurotransmitters and inhibitory GABA and that treatment with GABA may be useful for marker-guided cancer intervention of PDAC.

  16. ISSUES OF THE ACCOUNTING OF A WEAK NEUROTRANSMITTER COMPONENT IN THE PHARMACOTHERAPY OF POSTCOMATOSE STATES

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2016-01-01

    Full Text Available The principle in the accounting of a weak neurotransmitter component is considered as one of the most specific and promising ones for the study and practical introduction of therapy for postcomatous states. The paper outlines problems in the accurate determination of the lack and excess of neurotransmitters by up-to-date techniques (biochemical and neurophysiological tests, magnetic resonance spectroscopy. It gives the reasons for clinical doubts and difficulties in the practical use of ideas about the relationship of the clinical picture to one or another disorder of neurotransmitter metabolism and to the feasibilities of its effective correction. It is concluded that the main method for the individualized therapy of postcomatous states is the clinical analysis of neurological and psychiatric symptoms, only upon its completion, the consideration of a weak neurotransmitter component can be taken into account. The main possible and currently preferable ways to correct cholinergic and GABAergic deficiency and redundancy and deficiency in glutamate and dopamine are considered.

  17. Simultaneous quantification of seven hippocampal neurotransmitters in depression mice by LC-MS/MS.

    Science.gov (United States)

    Huang, Fei; Li, Jia; Shi, Hai-Lian; Wang, Ting-ting; Muhtar, Wahaf; Du, Min; Zhang, Bei-bei; Wu, Hui; Yang, Li; Hu, Zhi-bi; Wu, Xiao-jun

    2014-05-30

    There is no method available to simultaneously detect GABA, Glu, Epi, NE, DA, 5-HT and 5-HIAA in mouse hippocampus. A rapid and sensitive LC-MS/MS method has been developed for simultaneously measuring seven neurotransmitters in mouse hippocampus. The analytes were detected in positive mode with multiple reaction monitoring (MRM) and the procedure was completed in less than 9min. This method exhibited excellent linearity for all of the analytes with regression coefficients higher than 0.99, and showed good intra- and inter-day precisions (RSDneurotransmitters in a mouse depression model induced by successive methylprednisolone injections. The results indicated that this depression model was closely associated with the decreased level of Epi (p=0.002) and elevated ratio of 5-HIAA/5-HT (p=0.01), which has never been reported elsewhere. Compared with previous methods, current approach is more convenient without any pre-column derivatization of the analytes but enhances detectability with incremental neurotransmitter profile and shortens detection time. This work represents the first accurate simultaneous determination of seven neurotransmitters in the mouse depression model induced by methylprednisolone. The reliable method will benefit the research of neurological diseases with the altered neurotransmitter profile in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Prenatal nicotine is associated with reduced AMPA and NMDA receptor-mediated rises in calcium within the laterodorsal tegmentum: a pontine nucleus involved in addiction processes

    DEFF Research Database (Denmark)

    Mc Nair, Laura Kristine Frendrup; Kohlmeier, Kristi Anne

    2015-01-01

    excitatory neurotransmitter within the laterodorsal tegmental nucleus (LDT), which is a brainstem region importantly involved in responding to motivational stimuli and critical in development of drug addiction-associated behaviours, however, it is unknown whether PNE alters glutamate signalling within...

  19. Lentiviral Delivery of a Vesicular Glutamate Transporter 1 (VGLUT1)-Targeting Short Hairpin RNA Vector Into the Mouse Hippocampus Impairs Cognition

    NARCIS (Netherlands)

    King, Madeleine V.; Kurian, Nisha; Qin, Si; Papadopoulou, Nektaria; Westerink, Ben H. C.; Cremers, Thomas I.; Epping-Jordan, Mark P.; Le Poul, Emmanuel; Ray, David E.; Fone, Kevin C. F.; Kendall, David A.; Marsden, Charles A.; Sharp, Tyson V.

    Glutamate is the principle excitatory neurotransmitter in the mammalian brain, and dysregulation of glutamatergic neurotransmission is implicated in the pathophysiology of several psychiatric and neurological diseases. This study utilized novel lentiviral short hairpin RNA (shRNA) vectors to target

  20. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  1. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  2. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain

    NARCIS (Netherlands)

    van de Lagemaat, Louie N; Nijhof, Bonnie; Bosch, Daniëlle G M; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J.A.

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here

  3. Radiotracers for per studies of neurotransmitter binding sites: Design considerations

    International Nuclear Information System (INIS)

    Kilbourn, M.R.

    1991-01-01

    Neurotransmitter binding sites, such as receptors, neuronal uptake systems, and vesicular uptake systems, are important targets for new radiopharmaceutical design. Selection of potential radioligands can be guided by in vitro laboratory data including such characteristics as selectivity and affinity for specific binding sites. However, development of PET radiotracers for use in vivo must include considerations of in vivo pharmacokinetics and metabolism. Introduction of potential radioligands is further narrowed by the demands of the radiochemical synthesis, which must produce radioligands of high chemical and radiochemical purity and of high specific activity. This paper will review examples of previous and current attempts by radiopharmaceutical chemists to meet these demands for new positron emitter-labeled radioligands for PET studies of a wide array of neurotransmitter binding sites

  4. Probe-pin device for optical neurotransmitter sensing in the brain

    Science.gov (United States)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  5. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  6. Compartmental modeling alternatives for kinetic analysis of pet neurotransmitter receptor studies

    International Nuclear Information System (INIS)

    Koeppe, R.A.

    1991-01-01

    With the increased interest in studying neurotransmitter and receptor function in vivo, imaging procedures using positron emission tomography have presented new challenges for kinetic modeling and analysis of data. The in vivo behavior of radiolabeled markers for examining these neurotransmitter systems can be quite complex and, therefore, the implementation of compartmental models for data analysis is similarly complex. Often, the variability in the estimates of model parameters representing neurotransmitter or receptor densities, association and dissociation rates, or rates of incorporation or turnover does not permit reliable interpretation of the data. When less complex analyses are used, these model parameters may be biased and thus also do not yield the information being sought. Examination of trade-offs between uncertainty and bias in the parameters of interest may be used to select a compartmental model configuration with an appropriate level of complexity. Modeling alternatives will be discussed for radioligands with varying kinetic properties, such as those that bind reversibly and rapidly and others that bind nearly irreversibly. Specific problems, such as those occurring when a radioligand is open-quotes flow limitedclose quotes also will be discussed

  7. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention

    Science.gov (United States)

    Snyder, Adam C.; Morais, Michael J.

    2016-01-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. PMID:27466133

  8. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention.

    Science.gov (United States)

    Snyder, Adam C; Morais, Michael J; Smith, Matthew A

    2016-10-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. Copyright © 2016 the American Physiological Society.

  9. Direct assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state NMR

    DEFF Research Database (Denmark)

    Erlendsson, Simon; Gotfryd, Kamil; Larsen, Flemming Hofmann

    2017-01-01

    The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been...

  10. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  11. Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Johansen, Tommy N; Greenwood, Jeremy R; Frydenvang, Karla Andrea

    2003-01-01

    (S)-Glutamic acid (Glu), the major excitatory neurotransmitter in the central nervous system, operates through ionotropic as well as metabotropic receptors and is considered to be involved in certain neurological disorders and degenerative brain diseases that are currently without any satisfactory...

  12. Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina

    NARCIS (Netherlands)

    Vandenbranden, C. A.; Yazulla, S.; Studholme, K. M.; Kamphuis, W.; Kamermans, M.

    2000-01-01

    Glutamate is the major excitatory neurotransmitter in the retina of vertebrates. Electrophysiological experiments in goldfish and salamander have shown that neuronal glutamate transporters play an important role in the clearance of glutamate from cone synaptic clefts. In this study, the localization

  13. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  14. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    Science.gov (United States)

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  15. The Top 5 Neurotransmitters from a Clinical Neurologist's Perspective

    DEFF Research Database (Denmark)

    Kondziella, Daniel

    2017-01-01

    that we routinely prescribe. Most of us can hardly come up with more than a handful of relevant neurochemicals. From our point of view the most important neurotransmitters are, in alphabetical order, acetylcholine (associated with Alzheimer's disease and myasthenia gravis), dopamine (Parkinson's disease...

  16. A linear model for estimation of neurotransmitter response profiles from dynamic PET data

    OpenAIRE

    Normandin, M.D.; Schiffer, W.K.; Morris, E.D.

    2011-01-01

    The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET data with receptor-ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally efficient and can be applied to single-scan data. lp-ntPET employs a non-invasive reference region input function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of neurotransmitter activation. In simulation studies, the temporal p...

  17. Neurotransmitter synthesis from CNS glutamine for central control of breathing

    International Nuclear Information System (INIS)

    Hoop, B.; Systrom, D.; Chiang, C.H.; Shih, V.E.; Kazemi, H.

    1986-01-01

    The maximum rate at which CNS glutamine (GLN) derived from glutamate (GLU) can be sequestered for synthesis of neurotransmitter GLU and/or γ-aminobutyric acid (GABA) has been determined in pentobarbital-anesthetized dogs. A total of 57 animals were studied under normal, hypoxic (Pa/sub O2/ greater than or equal to 20 mmHg), or hypercapnic (Pa/sub CO2/ less than or equal to 71 mm Hg) conditions. Thirteen of these were bilaterally vagotomized and carotid body denervated and studied only under normoxic or hypoxic conditions. In 5 animals cerebrospinal fluid GLN transfer rate constant k was measured using 13 N-ammonia tracer. Measured cerebral cortical (CC) and medullary (MED) GLN concentrations c are found to vary with GLU metabolic rate r according to c-C/sub m/r/(r+R), where r, the product of k and corresponding tissue GLU concentration, is assumed equal to the maximum GLN metabolic rate via pathways other than for neurotransmitter synthesis. The constants C/sub m/ and R are the predicted maximum GLN concentration and its maximum rate of sequestration for neurotransmitter synthesis, respectively. For both CNS tissue types in all animals, C/sub m/ = 20.9 +- 7.4 (SD) mmoles/kg wet wt(mM) and R = 6.2 +- 2.3 mM/min. These values are consistent with results obtained in anesthetized rats

  18. Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks

    OpenAIRE

    Coba, Marcelo P; Pocklington, Andrew J; Collins, Mark O; Kopanitsa, Maksym V; Uren, Rachel T; Swamy, Sajani; Croning, Mike D R; Choudhary, Jyoti S; Grant, Seth G N

    2009-01-01

    The mammalian postsynaptic density (PSD) comprises a complex collection of approximately 1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-D-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic an...

  19. Functional imaging of neurotransmitter systems in movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ilgin, N. [Ankara, Gazi Univ. Medical School (Turkey). Dept. of Nuclear Medicine

    1998-09-01

    PET and SPECT enable the direct measurement of components of the dopaminergic and other systems in the living human brain and offer unique opportunity for the in vivo quantification on the dopaminergic function in PD and other movement disorders. The need to establish the early and differential diagnosis of PD is increasingly important given the recent evidence that early pharmacologic intervention may slow progression of this progressive degenerative disease. Accordingly, imaging with PET and SPECT using specific neuro markers has been increasingly important to biochemically identify the loss of specific neurotransmitters, their synthesizing enzymes and their receptors in movement disorders. Through the parallel development of new radiotracers, kinetic models and better instruments, PET and SPECT technology is enabling investigation of increasingly more complex aspects of the human brain neurotransmitter systems. This paper summarizes the results of different PET-SPECT studies used to evaluate the various elements of the dopamine system in the human brain with PET and intends to introduce the newly emerging specific tracers and their applications to clinical research in movement disorders.

  20. Functional imaging of neurotransmitter systems in movement disorders

    International Nuclear Information System (INIS)

    Ilgin, N.

    1998-01-01

    PET and SPECT enable the direct measurement of components of the dopaminergic and other systems in the living human brain and offer unique opportunity for the in vivo quantification on the dopaminergic function in PD and other movement disorders. The need to establish the early and differential diagnosis of PD is increasingly important given the recent evidence that early pharmacologic intervention may slow progression of this progressive degenerative disease. Accordingly, imaging with PET and SPECT using specific neuro markers has been increasingly important to biochemically identify the loss of specific neurotransmitters, their synthesizing enzymes and their receptors in movement disorders. Through the parallel development of new radiotracers, kinetic models and better instruments, PET and SPECT technology is enabling investigation of increasingly more complex aspects of the human brain neurotransmitter systems. This paper summarizes the results of different PET-SPECT studies used to evaluate the various elements of the dopamine system in the human brain with PET and intends to introduce the newly emerging specific tracers and their applications to clinical research in movement disorders

  1. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).

  2. Analysis of drug effects on neurotransmitter release

    International Nuclear Information System (INIS)

    Rowell, P.; Garner, A.

    1986-01-01

    The release of neurotransmitter is routinely studied in a superfusion system in which serial samples are collected and the effects of drugs or other treatments on the amount of material in the superfusate is determined. With frequent sampling interval, this procedure provides a mechanism for dynamically characterizing the release process itself. Using automated data collection in conjunction with polyexponential computer analysis, the equation which describes the release process in each experiment is determined. Analysis of the data during the nontreated phase of the experiment allows an internal control to be used for accurately assessing any changes in neurotransmitter release which may occur during a subsequent treatment phase. The use of internal controls greatly improves the signal to noise ratio and allows determinations of very low concentrations of drugs on small amounts of tissue to be made. In this presentation, the effects of 10 μM nicotine on 3 H-dopamine release in rat nucleus accumbens is described. The time course, potency and efficacy of the drug treatment is characterized using this system. Determinations of the exponential order of the release as well as the rate constants allow one to study the mechanism of the release process. A description of 3 H-dopamine release in normal as well as Ca ++ -free medium is presented

  3. Emergent spatial patterns of excitatory and inhibitory synaptic strengths drive somatotopic representational discontinuities and their plasticity in a computational model of primary sensory cortical area 3b

    Directory of Open Access Journals (Sweden)

    Kamil A. Grajski

    2016-07-01

    Full Text Available Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers, boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties.

  4. Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling

    International Nuclear Information System (INIS)

    Serra, Michael; Guaraldi, Mary; Shea, Thomas B

    2010-01-01

    Cortical neuronal activity depends on a balance between excitatory and inhibitory influences. Culturing of neurons on multi-electrode arrays (MEAs) has provided insight into the development and maintenance of neuronal networks. Herein, we seeded MEAs with murine embryonic cortical/hippocampal neurons at different densities ( 1000 cells mm −2 ) and monitored resultant spontaneous signaling. Sparsely seeded cultures displayed a large number of bipolar, rapid, high-amplitude individual signals with no apparent temporal regularity. By contrast, densely seeded cultures instead displayed clusters of signals at regular intervals. These patterns were observed even within thinner and thicker areas of the same culture. GABAergic neurons (25% of total neurons in our cultures) mediated the differential signal patterns observed above, since addition of the inhibitory antagonist bicuculline to dense cultures and hippocampal slice cultures induced the signal pattern characteristic of sparse cultures. Sparsely seeded cultures likely lacked sufficient inhibitory neurons to modulate excitatory activity. Differential seeding of MEAs can provide a unique model for analyses of pertubation in the interaction between excitatory and inhibitory function during aging and neuropathological conditions where dysregulation of GABAergic neurons is a significant component

  5. Table S1 Basic characteristics of 32 SNPs of neurotransmitter ...

    Indian Academy of Sciences (India)

    微软用户

    Basic characteristics of 32 SNPs in neurotransmitter-related genes. Gene .... rs45435444, rs80837467 and rs80980072, significant differences (P. *** * ... At the same age and environments, skin lesion scores on the ears (P < 0.001), front (P <.

  6. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

    Directory of Open Access Journals (Sweden)

    Neugebauer Volker

    2010-12-01

    Full Text Available Abstract Neuroplasticity in the central nucleus of the amygdala (CeA, particularly its latero-capsular division (CeLC, is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA. In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC. Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs and polysynaptic inhibitory currents (IPSCs that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline. Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1 antagonist (LY367385 reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic

  7. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters.

    Science.gov (United States)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.

  8. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  9. Partial agonists and subunit selectivity at NMDA receptors

    DEFF Research Database (Denmark)

    Risgaard, Rune; Hansen, Kasper Bø; Clausen, Rasmus Prætorius

    2010-01-01

    Subunit-selective ligands for glutamate receptors remains an area of interest as glutamate is the major excitatory neurotransmitter in the brain and involved in a number of diseased states in the central nervous system (CNS). Few subtype-selective ligands are known, especially among the N...

  10. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Impact of aspartame consumption on neurotransmitters in rat brain ...

    African Journals Online (AJOL)

    Background: Aspartame (APM), a common artificial sweetener, has been used for diabetic subjects and body weight control for a long time. The goal of the present study was to evaluate the impact of APM consumption on neurotransmitters and oxidative stress in rat's brain. Materials and Methods: Four groups of male ...

  12. Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter

    DEFF Research Database (Denmark)

    Larsen, Philip J; Holst, Jens Juul

    2005-01-01

    normal and pathophysiological role of GLP-1 have been published over the last two decades and our understanding of GLP-1 action has widened considerably. In the present review, we have tried to cover our current understanding of GLP-1 actions both as a peripheral hormone and as a central neurotransmitter...

  13. Identification of catecholamine neurotransmitters using fluorescence sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Forough [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahmoudi, Morteza, E-mail: mahmoudi@stanford.edu [Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551 (Iran, Islamic Republic of); Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101 (United States)

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and L-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L{sup −1}. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. - Highlights: • We have proposed a fluorescence sensor array to detect catecholamine neurotransmitters. • Visual differentiation of catecholamines is provided by fluorescence array fingerprints. • Discrimination of catecholamines from each other, and from their mixture is obtained on a PCA plot. • Proposed sensor array can be used for detection of catecholamines in urine samples.

  14. The Role of Ion Selectivity of the Fusion Pore on Transmission and the Exocytosis of Neurotransmitters and Hormones

    Science.gov (United States)

    Delacruz, Joannalyn Bongar

    influx and efflux through the fusion pore. The experiments reveal negatively charged transmitter release can occur through a fusion pore at larger conductance values, past a threshold range. Narrow fusion pores with lower conductance values favor cation selectivity, which would accelerate the release of positively charged transmitters such as acetylcholine in the neuromuscular junction. However, release of negatively charged neurotransmitters such as glutamate can occur if an expanded fusion pore mediates release of this fast major excitatory transmitter. The intention of this research is to expand our understanding of the nervous system, which can contribute to healthy shifts in our clinical and educational interventions that are commonly delivered.

  15. Imaging neurotransmitter release by drugs of abuse.

    Science.gov (United States)

    Martinez, Diana; Narendran, Rajesh

    2010-01-01

    Previous studies have shown that imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers that are specific for brain dopamine receptors can be used to indirectly image the change in the levels of neurotransmitters within the brain. Most of the studies in addiction have focused on dopamine, since the dopamine neurons that project to the striatum have been shown to play a critical role in mediating addictive behavior. These imaging studies have shown that increased extracellular dopamine produced by psychostimulants can be measured with PET and SPECT. However, there are some technical issues associated with imaging changes in dopamine, and these are reviewed in this chapter. Among these are the loss of sensitivity, the time course of dopamine pulse relative to PET and SPECT imaging, and the question of affinity state of the receptor. In addition, animal studies have shown that most drugs of abuse increase extracellular dopamine in the striatum, yet not all produce a change in neurotransmitter that can be measured. As a result, imaging with a psychostimulant has become the preferred method for imaging presynaptic dopamine transmission, and this method has been used in studies of addiction. The results of these studies suggest that cocaine and alcohol addiction are associated with a loss of dopamine transmission, and a number of studies show that this loss correlates with severity of disease.

  16. Stress-induced impairment of glutamatergic terminals ultrastructure: High vulnerability of medial prefrontal cortex and preventing action of desipramine

    DEFF Research Database (Denmark)

    Nava, N.; Popoli, M.; Musazzi, L.

    2013-01-01

    mediators, glucocorticoids, on brain volume and dendritic remodeling, in both humans and rodents. Nevertheless, few is still known on the structural changes exerted by behavioral stress on the features of glutamatergic synapses as sites of neuronal communication. Indeed, in excitatory synapses synaptic...... communication is driven by neurotransmitter which is stored, within the presynaptic terminal, in morphologically distinct pools of vesicles, namely the readily-releasable pool of vesicles (RRP), docked to the active zone and ready for release, and the reserve pool of vesicles. When neurotransmitter is released...

  17. Glutamate acts as a neurotransmitter for gastrin releasing peptide-sensitive and insensitive itch-related synaptic transmission in mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Ling Jennifer

    2011-06-01

    Full Text Available Abstract Itch sensation is one of the major sensory experiences of human and animals. Recent studies have proposed that gastrin releasing peptide (GRP is a key neurotransmitter for itch in spinal cord. However, no direct evidence is available to indicate that GRP actually mediate responses between primary afferent fibers and dorsal horn neurons. Here we performed integrative neurobiological experiments to test this question. We found that a small population of rat dorsal horn neurons responded to GRP application with increases in calcium signaling. Whole-cell patch-clamp recordings revealed that a part of superficial dorsal horn neurons responded to GRP application with the increase of action potential firing in adult rats and mice, and these dorsal horn neurons received exclusively primary afferent C-fiber inputs. On the other hands, few Aδ inputs receiving cells were found to be GRP positive. Finally, we found that evoked sensory responses between primary afferent C fibers and GRP positive superficial dorsal horn neurons are mediated by glutamate but not GRP. CNQX, a blocker of AMPA and kainate (KA receptors, completely inhibited evoked EPSCs, including in those Fos-GFP positive dorsal horn cells activated by itching. Our findings provide the direct evidence that glutamate is the principal excitatory transmitter between C fibers and GRP positive dorsal horn neurons. Our results will help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic disease.

  18. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  19. Spectroscopic Analysis of Neurotransmitters: A Theoretical and Experimental Raman Study

    Science.gov (United States)

    Alonzo, Matthew

    Surface-enhanced Raman spectroscopy (SERS) was applied to investigate the feasibility in the detection and monitoring of the dopamine (DA) neurotransmitter adsorbed onto silver nanoparticles (Ag NPs) at 10-11 molar, a concentration far below physiological levels. In addition, density functional theory (DFT) calculations were obtained with the Gaussian-09 analytical suite software to generate the theoretical molecular configuration of DA in its neutral, cationic, anionic, and dopaminequinone states for the conversion of computer-simulated Raman spectra. Comparison of theoretical and experimental results show good agreement and imply the presence of dopamine in all of its molecular forms in the experimental setting. The dominant dopamine Raman bands at 750 cm-1 and 795 cm-1 suggest the adsorption of dopaminequinone onto the silver nanoparticle surface. The results of this experiment give good insight into the applicability of using Raman spectroscopy for the biodetection of neurotransmitters.

  20. Glutamate mechanisms underlying opiate memories

    NARCIS (Netherlands)

    Peters, J.; de Vries, T.J.

    2012-01-01

    As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction

  1. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. What is the role of neurotransmitter systems in cortical seizures?

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana

    2008-01-01

    Roč. 57, Suppl.3 (2008), S111-S120 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : neurotransmitters * cerebral cortex * seizures Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  3. Fetal growth-retardation and brain-sparing by malnutrition are associated to changes in neurotransmitters profile.

    Science.gov (United States)

    García-Contreras, C; Valent, D; Vázquez-Gómez, M; Arroyo, L; Isabel, B; Astiz, S; Bassols, A; Gonzalez-Bulnes, A

    2017-04-01

    The present study assesses possible changes in the levels of different neurotransmitters (catecholamines and indoleamines) in fetuses affected by nutrient shortage. Hence, we determined the concentration of catecholamines and indoleamines at the hypothalamus of 56 swine fetuses obtained at both 70 and 90days of pregnancy (n=33 and 23 fetuses, respectively). The degree of fetal development and the fetal sex affected the neurotransmitters profile at both stages. At Day 70, there were found higher mean concentrations of l-DOPA in both female and male fetuses with severe IUGR; male fetuses with severe IUGR also showed higher concentrations of TRP than normal male littermates. At Day 90 of pregnancy, the differences between sexes were more evident. There were no significant effects from either severe IUGR on the neurotransmitter profile in male fetuses. However, in the females, a lower body-weight was related to lower concentrations of l-DOPA and TRP and those female fetuses affected by severe IUGR evidenced lower HVA concentration. In conclusion, the fetal synthesis and use of neurotransmitters increase with time of pregnancy but, in case of IUGR, both catecholamines and indoleamines pathways are affected by sex-related effects. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    Science.gov (United States)

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  5. Anaplastic Lymphoma Kinase Is a Regulator of Alcohol Consumption and Excitatory Synaptic Plasticity in the Nucleus Accumbens Shell

    Directory of Open Access Journals (Sweden)

    Regina A. Mangieri

    2017-08-01

    Full Text Available Anaplastic lymphoma kinase (ALK is a receptor tyrosine kinase recently implicated in biochemical, physiological, and behavioral responses to ethanol. Thus, manipulation of ALK signaling may represent a novel approach to treating alcohol use disorder (AUD. Ethanol induces adaptations in glutamatergic synapses onto nucleus accumbens shell (NAcSh medium spiny neurons (MSNs, and putative targets for treating AUD may be validated for further development by assessing how their manipulation modulates accumbal glutamatergic synaptic transmission and plasticity. Here, we report that Alk knockout (AlkKO mice consumed greater doses of ethanol, relative to wild-type (AlkWT mice, in an operant self-administration model. Using ex vivo electrophysiology to examine excitatory synaptic transmission and plasticity at NAcSh MSNs that express dopamine D1 receptors (D1MSNs, we found that the amplitude of spontaneous excitatory post-synaptic currents (EPSCs in NAcSh D1MSNs was elevated in AlkKO mice and in the presence of an ALK inhibitor, TAE684. Furthermore, when ALK was absent or inhibited, glutamatergic synaptic plasticity – long-term depression of evoked EPSCs – in D1MSNs was attenuated. Thus, loss of ALK activity in mice is associated with elevated ethanol consumption and enhanced excitatory transmission in NAcSh D1MSNs. These findings add to the mounting evidence of a relationship between excitatory synaptic transmission onto NAcSh D1MSNs and ethanol consumption, point toward ALK as one important molecular mediator of this interaction, and further validate ALK as a target for therapeutic intervention in the treatment of AUD.

  6. Neuroglobin in the rat brain (II): co-localisation with neurotransmitters

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Dewilde, Sylvia

    2008-01-01

    In an accompanying article, we found that neuroglobin (Ngb) was expressed in a few well-defined nuclei in the rat brain. Here, we show by use of immunohistochemistry and in situ hybridisation (ISH) that Ngb co-localise with several specific neurotransmitters. Ngb co-localise consistently with tyr...

  7. New mechanisms of the TCM spleen-based treatment of immune thrombocytopenia purpura from the perspective of blood neurotransmitters

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-04-01

    Conclusions: The JYS prescription may regulate the expression levels of blood neurotransmitters via the brain-gut axis in patients with “spleen deficiency” ITP and thus activate hemostatic mechanisms to promote hemostasis. β-EP and VIP are key neurotransmitters of the JYS-induced functional regulation.

  8. Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Hardin-Pouzet, H; Krakowski, M; Bourbonnière, L

    1997-01-01

    dehydrogenase (GDH) expression were dramatically reduced. These two astrocytic enzymes are responsible for degradation of glutamate, the most abundant excitatory neurotransmitter in the brain. Since elevated levels of glutamate may be neurotoxic, we propose that the decreased capacity of astrocytes...... to metabolize glutamate may contribute to EAE pathology....

  9. Measurement of insulin and C-peptide excitatory test levels in gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Du Tongxin; Wang Zizheng

    2001-01-01

    To investigate the function of islet β cells in patients with gestational diabetes mellitus (GDM), serum insulin and C-peptide (C-P) excitatory test levels were measured dynamically by radioimmunoassay in 41 patients with GDM and 30 normal pregnant controls. The results showed that there were significant difference in insulin and C-peptide excitatory test levels between normal pregnancy for 32-40 weeks and patients with GDM (P < 0.001). The secretory peak of insulin occurred at 60 min in normal pregnancy, while at 120 min in patients with GDM, and the recovery postponed in patients with GDM. The peak time for C-P was just as same as that of insulin, but the peak error for C-P between normal pregnant controls and patients with GDM was more larger than that for insulin and it recovered more slowly. It suggested that majority of islet β cells in patients with GDM were good enough for response to islet resistance factors and big stress from pregnancy, and also suggested a relation between pregnancy and islet β cells function

  10. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  11. Excitatory amino acids in epilepsy and potential novel therapies.

    Science.gov (United States)

    Meldrum, B S

    1992-07-01

    Evidence that an abnormality of excitatory neurotransmission may contribute to the epileptic phenomena in various animal and human syndromes is reviewed. Altered glutamate transport or metabolism may be a contributory factor in some genetic syndromes and enhanced responsiveness to activation of NMDA receptors may be significant in various acquired forms of epilepsy. Decreasing glutamatergic neurotransmission provides a rational therapeutic approach to epilepsy. Potent anticonvulsant effects are seen with the acute administration of NMDA antagonists in a wide range of animal models. Some competitive antagonists acting at the NMDA/glutamate site show prolonged anticonvulsant activity following oral administration at doses free of motor side effects and appear suitable for clinical trial.

  12. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  13. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  14. Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones

    Science.gov (United States)

    Sirois, Jay E; Lynch, Carl; Bayliss, Douglas A

    2002-01-01

    Neurotransmitters and volatile anaesthetics have opposing effects on motoneuronal excitability which appear to reflect contrasting modulation of two types of subthreshold currents. Neurotransmitters increase motoneuronal excitability by inhibiting TWIK-related acid-sensitive K+ channels (TASK) and shifting activation of a hyperpolarization-activated cationic current (Ih) to more depolarized potentials; on the other hand, anaesthetics decrease excitability by activating a TASK-like current and inducing a hyperpolarizing shift in Ih activation. Here, we used whole-cell recording from motoneurones in brainstem slices to test if neurotransmitters (serotonin (5-HT) and noradrenaline (NA)) and an anaesthetic (halothane) indeed compete for modulation of the same ion channels - and we determined which prevails. When applied together under current clamp conditions, 5-HT reversed anaesthetic-induced membrane hyperpolarization and increased motoneuronal excitability. Under voltage clamp conditions, 5-HT and NA overcame most, but not all, of the halothane-induced current. When Ih was blocked with ZD 7288, the neurotransmitters completely inhibited the K+ current activated by halothane; the halothane-sensitive neurotransmitter current reversed at the equilibrium potential for potassium (EK) and displayed properties expected of acid-sensitive, open-rectifier TASK channels. To characterize modulation of Ih in relative isolation, effects of 5-HT and halothane were examined in acidified bath solutions that blocked TASK channels. Under these conditions, 5-HT and halothane each caused their characteristic shift in voltage-dependent gating of Ih. When tested concurrently, however, halothane decreased the neurotransmitter-induced depolarizing shift in Ih activation. Thus, halothane and neurotransmitters converge on TASK and Ih channels with opposite effects; transmitter action prevailed over anaesthetic effects on TASK channels, but not over effects on Ih. These data suggest that

  15. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    Science.gov (United States)

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  16. Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level.

    Science.gov (United States)

    Paulose, Cheramadathukudiyil Skaria; John, Ponnezhathu Sebastian; Chinthu, Romeo; Akhilraj, Puthenveetil Raju; Anju, Thoppil Raveendran

    2017-04-01

    Spinal cord injury results in disruption of brain-spinal cord fibre connectivity, leading to progressive tissue damage at the site of injury and resultant paralysis of varying degrees. The current study investigated the role of autologous bone marrow modulated with neurotransmitters and neurotransmitter stimulating agent, Citicholine, in spinal cord of spinal cord injured rats. Radioreceptor assay using [3H] ligand was carried out to quantify muscarinic receptor. Gene expression studies were done using Real Time PCR analysis. Scatchard analysis of muscarinic M1 receptor showed significantly decreased B max (p neurotransmitters combination along with bone marrow or Citicholine with bone marrow can reverse the muscarinic receptor alterations in the spinal cord of spinal cord injured rats, which is a promising step towards a better therapeutic intervention for spinal cord injury because of the positive role of cholinergic system in regulation of both locomotor activity and synaptic plasticity. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  17. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry

    OpenAIRE

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Kallbäck, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J. A.; Andrén, Per E.

    2016-01-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyr...

  18. Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons

    NARCIS (Netherlands)

    Caillé, S.; Guillem, K.; Cador, M.; Manzoni, O.; Georges, F.

    2009-01-01

    Active response to either natural or pharmacological reward causes synaptic modifications to excitatory synapses on dopamine (DA) neurons of the ventral tegmental area (VTA). Here, we examine these modifications using nicotine, the main addictive component of tobacco, which is a potent regulator of

  19. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  20. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA.

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N

    2009-12-02

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.

  1. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    Science.gov (United States)

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  2. [The association between plasma neurotransmitters levels and depression in acute hemorrhagic stroke].

    Science.gov (United States)

    Yuan, Huai-wu; Zhang, Ning; Wang, Chun-xue; Shi, Yu-zhi; Qi, Dong; Luo, Ben-yan; Wang, Yong-jun

    2013-08-01

    To explore the relation between plasma neurotransmitters (Glutamic acid, GAA; γ-aminobutyric acid, GABA; 5-hydroxytryptamine, 5-HT; and noradrenaline, NE) and depression in acute hemorrhagic stroke. Objectives were screened from consecutive hospitalized patients with acute stroke. Fasting blood samples were taken on the day next to hospital admission, and neurotransmitters were examined by the liquid chromatography-high resolution mass spectrometry (LC-HRMS). The fourth edition of Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) was used to diagnose depression at two weeks after onset of stroke. The modified Ranking Scale (mRS) was followed up at 1 year. Pearson test was used to analyse the correlation between serum concentration of neurotransmitters and the Hamilton Depression scale-17-items (HAMD-17) score. Logistic regression was used to analyse the relation of serum concentration of neurotransmitters and depression and outcome of stroke. One hundred and eighty-one patients were included in this study. GABA significantly decreased [6.1(5.0-8.2) µg/L vs 8.1(6.3-14.7) µg/L, P depression in hemorrhagic stroke, and there was no significant difference in GAA, 5-HT, or NE. GABA concentration was negatively correlated with HAMD-17 score (r = -0.131, P depression in acute phase of hemorrhagic stroke was reduced by 5.6% (OR 0.944, 95%CI 0.893-0.997). While concentration of serum GAA rose by 1 µg/L, risk of worse outcome at 1 year was raised by 0.1%, although a statistic level was on marginal status (OR 1.001, 95%CI 1.000-1.002). In patients with depression in the acute phase of hemorrhagic stroke, there was a significant reduction in plasma GABA concentration. GABA may have a protective effect on depression in acute phase of hemorrhagic stroke. Increased concentrations of serum GAA may increase the risk of worse outcomes at 1 year after stroke.

  3. The Met receptor tyrosine kinase prevents zebrafish primary motoneurons from expressing an incorrect neurotransmitter

    Directory of Open Access Journals (Sweden)

    Eisen Judith S

    2008-07-01

    Full Text Available Abstract Background Expression of correct neurotransmitters is crucial for normal nervous system function. How neurotransmitter expression is regulated is not well-understood; however, previous studies provide evidence that both environmental signals and intrinsic differentiation programs are involved. One environmental signal known to regulate neurotransmitter expression in vertebrate motoneurons is Hepatocyte growth factor, which acts through the Met receptor tyrosine kinase and also affects other aspects of motoneuron differentiation, including axonal extension. Here we test the role of Met in development of motoneurons in embryonic zebrafish. Results We found that met is expressed in all early developing, individually identified primary motoneurons and in at least some later developing secondary motoneurons. We used morpholino antisense oligonucleotides to knock down Met function and found that Met has distinct roles in primary and secondary motoneurons. Most secondary motoneurons were absent from met morpholino-injected embryos, suggesting that Met is required for their formation. We used chemical inhibitors to test several downstream pathways activated by Met and found that secondary motoneuron development may depend on the p38 and/or Akt pathways. In contrast, primary motoneurons were present in met morpholino-injected embryos. However, a significant fraction of them had truncated axons. Surprisingly, some CaPs in met morpholino antisense oligonucleotide (MO-injected embryos developed a hybrid morphology in which they had both a peripheral axon innervating muscle and an interneuron-like axon within the spinal cord. In addition, in met MO-injected embryos primary motoneurons co-expressed mRNA encoding Choline acetyltransferase, the synthetic enzyme for their normal neurotransmitter, acetylcholine, and mRNA encoding Glutamate decarboxylase 1, the synthetic enzyme for GABA, a neurotransmitter never normally found in these motoneurons, but

  4. The discovery of chemical neurotransmitters.

    Science.gov (United States)

    Valenstein, Elliot S

    2002-06-01

    Neurotransmitters have become such an intrinsic part of our theories about brain function that many today are unaware of how difficult it was to prove their existence or the protracted dispute over the nature of synaptic transmission. The story is important not only because it is fascinating science history, but also because it exemplifies much of what is best in science and deserving to be emulated. The friendships formed among such major figures in this history as Henry Dale, Otto Loewi, Wilhelm Feldberg, Walter Cannon, and others extended over two world wars, enriching their lives and facilitating their research. Even the dispute-the "war of the sparks and the soups"--between neurophysiologists and pharmacologists over whether synaptic transmission is electrical or chemical played a positive role in stimulating the research needed to provide convincing proof. Copyright 2002 Elsevier Science (USA).

  5. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  6. Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking.

    Science.gov (United States)

    Zhang, Yan; Zhang, Yi; Wang, Guan; Chen, Wujuan; Li, Yi; Zhang, Yating; He, Pingang; Wang, Qingjiang

    2016-07-01

    Microchip electrophoresis (MCE) is particularly attractive as it provides high sensitivity and selectivity, short analysis time and low sample consumption. An on-line preconcentration strategy combining field-amplified stacking (FASS) and reversed-field stacking (RFS) was developed for efficient and sensitive analysis of neurotransmitters in real urine samples by MCE with laser induced fluorescence (LIF) detection. In this study, the multiple-preconcentration strategy greatly improves the sensitivity enhancement and surpass other conventional analytical methods for neurotransmitters detection. Under optimal conditions, the separation of three neurotransmitters (dopamine, norepinephrine and serotonin), was achieved within 3min with limits of detection (S/N=3) of 1.69, 2.35, and 2.73nM, respectively. The detection sensitivities were improved by 201-, 182-, and 292-fold enhancement, for the three neurotransmitters respectively. Other evaluation parameters such as linear correlation coefficients were considered as satisfactory. A real urine sample was analyzed with recoveries of 101.8-106.4%. The proposed FASS-RFS-MCE method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of three neurotransmitters in human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System

    Directory of Open Access Journals (Sweden)

    Megan M. Wickens

    2018-06-01

    Full Text Available Alterations in glutamate, the primary excitatory neurotransmitter in the brain, are implicated in several psychiatric diseases. Many of these psychiatric diseases display epidemiological sex differences, with either males or females exhibiting different symptoms or disease prevalence. However, little work has considered the interaction of disrupted glutamatergic transmission and sex on disease states. This review describes the clinical and preclinical evidence for these sex differences with a focus on two conditions that are more prevalent in women: Alzheimer's disease and major depressive disorder, and three conditions that are more prevalent in men: schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. These studies reveal sex differences at multiple levels in the glutamate system including metabolic markers, receptor levels, genetic interactions, and therapeutic responses to glutamatergic drugs. Our survey of the current literature revealed a considerable need for more evaluations of sex differences in future studies examining the role of the glutamate system in psychiatric disease. Gaining a more thorough understanding of how sex differences in the glutamate system contribute to psychiatric disease could provide novel avenues for the development of sex-specific pharmacotherapies.

  8. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses

    Science.gov (United States)

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.

    2015-01-01

    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  9. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde

  10. Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD.

    Science.gov (United States)

    Sánchez-Mora, Cristina; Cormand, Bru; Ramos-Quiroga, Josep Antoni; Hervás, Amaia; Bosch, Rosa; Palomar, Glòria; Nogueira, Mariana; Gómez-Barros, Núria; Richarte, Vanesa; Corrales, Montse; Garcia-Martinez, Iris; Corominas, Roser; Guijarro, Silvina; Bigorra, Aitana; Bayés, Mònica; Casas, Miguel; Ribasés, Marta

    2013-06-01

    Attention-deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder characterized by inappropriate difficulties to sustain attention, control impulses and modulate activity level. Although ADHD is one of the most prevalent childhood psychiatric disorders, it also persists into adulthood in around 30-50% of the cases. Based on the effect of psychostimulants used in the pharmacological treatment of ADHD, dysfunctions in neuroplasticity mechanisms and synapses have been postulated to be involved in the pathophysiology of ADHD. With this background, we evaluated, both in childhood and adulthood ADHD, the role of several genes involved in the control of neurotransmitter release through synaptic vesicle docking, fusion and recycling processes by means of a population-based association study. We analyzed single nucleotide polymorphisms across 16 genes in a clinical sample of 950 ADHD patients (506 adults and 444 children) and 905 controls. Single and multiple-marker analyses identified several significant associations after correcting for multiple testing with a false discovery rate (FDR) of 15%: (i) the SYT2 gene was strongly associated with both adulthood and childhood ADHD (p=0.001, OR=1.49 (1.18-1.89) and p=0.007, OR=1.37 (1.09-1.72), respectively) and (ii) STX1A was found associated with ADHD only in adults (p=0.0041; OR=1.28 (1.08-1.51)). These data provide preliminary evidence for the involvement of genes that participate in the control of neurotransmitter release in the genetic predisposition to ADHD through a gene-system association study. Further follow-up studies in larger cohorts and deep-sequencing of the associated genomic regions are required to identify sequence variants directly involved in ADHD. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  11. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    Directory of Open Access Journals (Sweden)

    Keith P. Johnson

    2018-02-01

    Full Text Available The spike trains of retinal ganglion cells (RGCs are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC. PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic. PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN of the thalamus and likely contribute to visual perception.

  12. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Neurotransmitters and Neuropeptides: New Players in the Control of Islet of Langerhans' Cell Mass and Function.

    Science.gov (United States)

    Di Cairano, Eliana S; Moretti, Stefania; Marciani, Paola; Sacchi, Vellea Franca; Castagna, Michela; Davalli, Alberto; Folli, Franco; Perego, Carla

    2016-04-01

    Islets of Langerhans control whole body glucose homeostasis, as they respond, releasing hormones, to changes in nutrient concentrations in the blood stream. The regulation of hormone secretion has been the focus of attention for a long time because it is related to many metabolic disorders, including diabetes mellitus. Endocrine cells of the islet use a sophisticate system of endocrine, paracrine and autocrine signals to synchronize their activities. These signals provide a fast and accurate control not only for hormone release but also for cell differentiation and survival, key aspects in islet physiology and pathology. Among the different categories of paracrine/autocrine signals, this review highlights the role of neurotransmitters and neuropeptides. In a manner similar to neurons, endocrine cells synthesize, accumulate, release neurotransmitters in the islet milieu, and possess receptors able to decode these signals. In this review, we provide a comprehensive description of neurotransmitter/neuropetide signaling pathways present within the islet. Then, we focus on evidence supporting the concept that neurotransmitters/neuropeptides and their receptors are interesting new targets to preserve β-cell function and mass. A greater understanding of how this network of signals works in physiological and pathological conditions would advance our knowledge of islet biology and physiology and uncover potentially new areas of pharmacological intervention. J. Cell. Physiol. 231: 756-767, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Sex and intrauterine growth restriction modify brain neurotransmitters profile of newborn piglets.

    Science.gov (United States)

    Vázquez-Gómez, M; Valent, D; García-Contreras, C; Arroyo, L; Óvilo, C; Isabel, B; Bassols, A; González-Bulnes, A

    2016-12-01

    The current study aimed to determine, using a swine model of intrauterine growth restriction (IUGR), whether short- and long-term neurological deficiencies and interactive dysfunctions of Low Birth-Weight (LBW) offspring might be related to altered pattern of neurotransmitters. Hence, we compared the quantities of different neurotransmitters (catecholamines and indoleamines), which were determined by HPLC, at brain structures related to the limbic system (hippocampus and amygdala) in 14 LBW and 10 Normal Body-Weight (NBW) newborn piglets. The results showed, firstly, significant effects of sex on the NBW newborns, with females having higher dopamine (DA) concentrations than males. The IUGR processes affected DA metabolism, with LBW piglets having lower concentrations of noradrenaline at the hippocampus and higher concentrations of the DA metabolites, homovanillic acid (HVA), at both the hippocampus and the amygdala than NBW neonates. The effects of IUGR were modulated by sex; there were no significant differences between LBW and NBW females, but LBW males had higher HVA concentration at the amygdala and higher concentration of 5-hydroxyindoleacetic acid, the serotonin metabolite, at the hippocampus than NBW males. In conclusion, the present study shows that IUGR is mainly related to changes, modulated by sex, in the concentrations of catecholamine neurotransmitters, which are related to adaptation to physical activity and to essential cognitive functions such as learning, memory, reward-motivated behavior and stress. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    Science.gov (United States)

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  16. Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons

    DEFF Research Database (Denmark)

    Ehrhart-Bornstein, M; Treiman, M; Hansen, Gert Helge

    1991-01-01

    Primary cultures of GABAergic cerebral cortex neurons and glutamatergic cerebellar granule cells were used to study the expression of synaptophysin, a synaptic vesicle marker protein, along with the ability of each cell type to release neurotransmitter upon stimulation. The synaptophysin expression...... by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons....... The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase...

  17. Self-assembly of SiO2 nanoparticles for the potentiometric detection of neurotransmitter acetylcholine and its inhibitor.

    Science.gov (United States)

    Arruda, Izabela G; Guimarães, Francisco E G; Ramos, Romildo J; Vieira, Nirton C S

    2014-09-01

    The detection and quantification of neurotransmitter acetylcholine (ACh) are relevant because modifications in the ACh levels constitute a threat to human health. The biological regulator of this neurotransmitter is acetylcholinesterase (AChE), an enzyme that catalyzes the hydrolysis of ACh to choline and acetic acid. However, its activity is inhibited in the presence of organophosphate and carbamate pesticides, compromising the degradation of the neurotransmitter. There has been a growing interest in faster and more sensitive detection systems that include new methods and materials for the determination of the ACh concentration. This paper proposes a potentiometric biosensor for the detection of neurotransmitter ACh and its inhibitors, specifically organophosphate pesticide methamidophos. The biosensor is based on a self-assembled platform formed by poly(allylamine) hydrochloride (PAH) and silicon dioxide nanoparticles (SiO2-Np) that contains the immobilized enzyme AChE. First, the responses of the biosensor were investigated for different concentrations of ACh in buffer solutions. After quantifying ACh, the inhibition of AChE in the presence of methamidophos was determined, enabling the quantification of methamidophos expressed as the percentage of enzyme inhibition. The potential advantages of this biosensor include simplicity in building the electrode, possible production on an industrial scale, limited need for qualified personnel to operate the device and low processing cost.

  18. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  19. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    Science.gov (United States)

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  20. Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis?

    OpenAIRE

    Dienel, Gerald A.

    2013-01-01

    Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during b...

  1. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms

    OpenAIRE

    Ting, Jonathan T.; Kelley, Brooke G.; Lambert, Talley J.; Cook, David G.; Sullivan, Jane M.

    2006-01-01

    Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transm...

  2. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  3. Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array.

    Science.gov (United States)

    Li, Nantao; Lu, Yanli; Li, Shuang; Zhang, Qian; Wu, Jiajia; Jiang, Jing; Liu, Gang Logan; Liu, Qingjun

    2017-07-15

    In this study, a novel spectroelectrochemical method was proposed for neurotransmitters detection. The central sensing device was a hybrid structure of nanohole array and gold nanoparticles, which demonstrated good conductivity and high localized surface plasmon resonance (LSPR) sensitivity. By utilizing such specially-designed nanoplasmonic sensor as working electrode, both electrical and spectral responses on the surface of the sensor could be simultaneously detected during the electrochemical process. Cyclic voltammetry was implemented to activate the oxidation and recovery of dopamine and serotonin, while transmission spectrum measurement was carried out to synchronously record to LSPR responses of the nanoplasmonic sensor. Coupling with electrochemistry, LSPR results indicated good integrity and linearity, along with promising accuracy in qualitative and quantitative detection even for mixed solution and in brain tissue homogenates. Also, the detection results of other negatively-charged neurotransmitters like acetylcholine demonstrated the selectivity of our detection method for transmitters with positive charge. When compared with traditional electrochemical signals, LSPR signals provided better signal-to-noise ratio and lower detection limits, along with immunity against interference factors like ascorbic acid. Taking the advantages of such robustness, the coupled detection method was proved to be a promising platform for point-of-care testing for neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    Science.gov (United States)

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  5. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    NARCIS (Netherlands)

    Boonstra, E.; Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S.

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer

  6. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides/neurotransmitters

  7. Changes of neurotransmitter levels in the cerebrospinal fluid of children with seizures

    International Nuclear Information System (INIS)

    Greber, S.

    1991-03-01

    In this study the aminoacids are measured in the CSF of children with seizures with a High-Performance Liquid Chromatograph and the peptides Substance P, Neurokinin A, Vasoactive Intestinale Peptide and Calcitoningene related peptide in the same subjects with a radioimmunoassay. The concentrations are related to the duration of seizure and the interval between seizure and puncture. Moreover most children suffer from febrile seizures. The results show an increase of glycine and taurine, two inhibitory amino acids with advancing interval between the seizure, and the puncture. Asparagine decreases with the duration of seizure, while ornithine, cystine and citrulline increase. These results cannot be postulated, because there are only three children with seizures about or equal to 10 minutes. But it can be discussed, that excitatory activity predominates or that central metabolism, the blood-brain-CSF barrier and/or some neurons are disturbed. For the peptides it seems, that the excitatory ones like Substance P, Neurokinin A and Vasoactive Intestinale Peptide increase with seizure susceptibility. That's only the case for seizures without a central focus and therefore maybe a neurochemical expression for a low seizure threshold of the brain. (author)

  8. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-04-01

    Full Text Available Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively as words with length equal to three. Then the frequency of each word (here eight words is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms.

  9. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    Science.gov (United States)

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. © 2015 UICC.

  10. In vitro labelled neurotransmitters release for the study of neuro toxins

    International Nuclear Information System (INIS)

    Camillo, Maria A.P.; Rogero, Jose R.; Troncone, Lanfranco R.P.

    1995-01-01

    There is an increasing concern in the replacement of in vivo by in vitro methods in Pharmacology. Looking for a method which involves the most of the physiological aspects related to neural functions, a super fusion system designed to evaluate in vitro neurotransmitter release from brain striatal tissue is here described. The method is based on the basal and stimulated release of pre-loaded tritium-labelled neurotransmitters. This procedure bears an active uptake/release function which is fairly changed by membrane polarisation state, ion channel activation and enzymatic activity, as well as other still unknown steps involved in neurotransmission. Calcium dependency of dopamine and acetylcholine release induced by high potassium depolarization or glutamate (Glu) stimulation was demonstrated employing calcium-free (+EGTA) super fusion or lanthanum/cadmium addition. Glutamate stimulation involved NMDA receptors since magnesium or MK801 blocks stimulated release. Uptake of DA and Ach was evidenced by using bupropione or hemicolinium-3. presynaptic inhibition of Ach release was evidenced by physostigmine-induced inhibitions of acetylcholinesterase. (author). 3 refs., 6 figs

  11. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    Science.gov (United States)

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  12. Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho

    Directory of Open Access Journals (Sweden)

    Jamshed Warsi

    2015-12-01

    Full Text Available Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3 and EAAT2 (SLC1A2, Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM-induced inward current (IGlu taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM. Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.

  13. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells.

    Science.gov (United States)

    Roshchina, Victoria V

    2016-01-01

    The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.

  14. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shang Li; Dong Shaojun

    2008-01-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10 -7 M, 3.5 x 10 -7 M, 4.1 x 10 -7 M, and 7.7 x 10 -7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields

  15. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Li; Dong Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: dongsj@ciac.jl.cn

    2008-03-05

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10{sup -7} M, 3.5 x 10{sup -7} M, 4.1 x 10{sup -7} M, and 7.7 x 10{sup -7} M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  16. Neurotransmitter receptors as signaling platforms in anterior pituitary cells

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Stojilkovic, S. S.

    2018-01-01

    Roč. 463, C (2018), s. 49-64 ISSN 0303-7207 R&D Projects: GA ČR(CZ) GA16-12695S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : pituitary * ligand-gated receptor channels * G protein -coupled receptors * neurotransmitters * action potentials * calcium signaling * hormone secretion Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.754, year: 2016

  17. Use of neurotransmitter regulators in functional gastrointestinal disorders based on symptom analysis.

    Science.gov (United States)

    Luo, Qing Qing; Chen, Sheng Liang

    2017-04-01

    It has been a great challenge for gastroenterologists to cope with functional gastrointestinal disorders (FGIDs) in clinical practice due to the contemporary increase in stressful events. A growing body of evidence has shown that neuroregulators such as anti-anxiety agents and antidepressants function well on FGIDs, particularly in cases that are refractory to classical gastrointestinal (GI) medications. Among these central-acting agents, small individualized doses of tricyclic antidepressants and selective serotonin reuptake inhibitors are usually recommended as a complement to routine GI management. When these drugs are chosen to treat FGIDs, both their central effects and the modulation of peripheral neurotransmitters should be taken into consideration. In this article we recommend strategies for choosing drugs based on an analysis of psychosomatic GI symptoms. The variety and dosage of the neurotransmitter regulators are also discussed. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  18. Synchronization in a non-uniform network of excitatory spiking neurons

    Science.gov (United States)

    Echeveste, Rodrigo; Gros, Claudius

    Spontaneous synchronization of pulse coupled elements is ubiquitous in nature and seems to be of vital importance for life. Networks of pacemaker cells in the heart, extended populations of southeast asian fireflies, and neuronal oscillations in cortical networks, are examples of this. In the present work, a rich repertoire of dynamical states with different degrees of synchronization are found in a network of excitatory-only spiking neurons connected in a non-uniform fashion. In particular, uncorrelated and partially correlated states are found without the need for inhibitory neurons or external currents. The phase transitions between these states, as well the robustness, stability, and response of the network to external stimulus are studied.

  19. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    Directory of Open Access Journals (Sweden)

    Talitha C Ford

    Full Text Available The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated.A total of 37 adults (19 female, 18 male aged 18-38 years completed the Autism Spectrum Quotient (AQ and Schizotypal Personality Questionnaire (SPQ, and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel.There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (p<0.05, SPQ subscales Social Anxiety, No Close Friend, Constricted Affect, Odd Behaviour, Odd Speech, Ideas of Reference and Suspiciousness, and AQ subscales Social Skills, Communication and Attention Switching (p<0.05; increased glutamate/GABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (p< 0.004. Left superior temporal glutamate/GABA+ ratio reduced with increasing restricted imagination (p<0.05.These findings demonstrate evidence for an association between excitatory/inhibitory neurotransmitter concentrations and symptoms that are shared between the autism and

  20. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    Science.gov (United States)

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss.

    Directory of Open Access Journals (Sweden)

    Cherylea J Browne

    Full Text Available Excessive exposure to loud noise can damage the cochlea and create a hearing loss. These pathologies coincide with a range of CNS changes including reorganisation of frequency representation, alterations in the pattern of spontaneous activity and changed expression of excitatory and inhibitory neurotransmitters. Moreover, damage to the cochlea is often accompanied by acoustic disorders such as hyperacusis and tinnitus, suggesting that one or more of these neuronal changes may be involved in these disorders, although the mechanisms remain unknown. We tested the hypothesis that excessive noise exposure increases expression of markers of excitation and plasticity, and decreases expression of inhibitory markers over a 32-day recovery period. Adult rats (n = 25 were monaurally exposed to a loud noise (16 kHz, 1/10(th octave band pass (115 dB SPL for 1-hour, or left as non-exposed controls (n = 5. Animals were euthanased at either 0, 4, 8, 16 or 32 days following acoustic trauma. We used Western Blots to quantify protein levels of GABA(A receptor subunit α1 (GABA(Aα1, Glutamic-Acid Decarboxylase-67 (GAD-67, N-Methyl-D-Aspartate receptor subunit 2A (NR2A, Calbindin (Calb1 and Growth Associated Protein 43 (GAP-43 in the Auditory Cortex (AC, Inferior Colliculus (IC and Dorsal Cochlear Nucleus (DCN. Compared to sham-exposed controls, noise-exposed animals had significantly (p<0.05: lower levels of GABA(Aα1 in the contralateral AC at day-16 and day-32, lower levels of GAD-67 in the ipsilateral DCN at day-4, lower levels of Calb1 in the ipsilateral DCN at day-0, lower levels of GABA(Aα1 in the ipsilateral AC at day-4 and day-32. GAP-43 was reduced in the ipsilateral AC for the duration of the experiment. These complex fluctuations in protein expression suggests that for at least a month following acoustic trauma the auditory system is adapting to a new pattern of sensory input.

  2. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters

    DEFF Research Database (Denmark)

    Løland, Claus Juul

    2015-01-01

    Background: The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters...... (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure......–function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. Scope of review: To provide an update on what is known about the binding sites for substrates and inhibitors in the Leu...

  3. Optimal properties of analog perceptrons with excitatory weights.

    Directory of Open Access Journals (Sweden)

    Claudia Clopath

    Full Text Available The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF to Purkinje Cell (PC synapses is guided by the Climbing fibers (CF, which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.

  4. Inferring Trial-to-Trial Excitatory and Inhibitory Synaptic Inputs from Membrane Potential using Gaussian Mixture Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Milad eLankarany

    2013-09-01

    Full Text Available Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The Kalman filtering is followed by an expectation maximization algorithm to infer the statistical parameters (time-varying mean and variance of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model. The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012 with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  5. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    Science.gov (United States)

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  6. Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative.

    Science.gov (United States)

    Wu, Xiaomeng; Wang, Rui; Jiang, Qingqing; Wang, Shue; Yao, Yao; Shao, Lihua

    2014-04-01

    A simple, rapid and accurate high-performance liquid chromatography method with ultraviolet-visible detection was developed for the determination of five amino acid neurotransmitters - aspartate, glutamic acid, glycine, taurine and γ-aminobutyric acid - in rat hippocampi with pre-column derivatization with 4-fluoro-7-nitrobenzofurazan. Several conditions which influenced derivatization and separation, such as pH, temperature, acetonitrile percentage mobile phase and flow rate, were optimized to obtain a suitable protocol for amino acids quantification in samples. The separation of the five neurotransmitter derivatives was performed on a C18 column using a mobile phase consisting of phosphate buffer (0.02 mol/L, pH 6.0)-acetonitrile (84:16, v/v) at a flow rate of 1.0 mL/min with the column temperature at 30°C. The detection wavelength was 472 nm. Without gradient elution, the five neurotransmitter derivatives were completely separated within 15 min. The linear relation was good in the range from 0.50 to 500 µmol/L, and the correlation coefficients were ≥0.999. Intra-day precision was between 1.8 and 3.2%, and inter-day precision was between 2.4 and 4.7%. The limits of detection (signal-to-noise ratio 3) were from 0.02 to 0.15 µmol/L. The established method was used to determine amino acid neurotransmitters in rat hippocampi with satisfactory recoveries varying from 94.9 to 105.2%. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.

    Directory of Open Access Journals (Sweden)

    Yahya Karimipanah

    Full Text Available A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at a critical regime, which is defined as a transition point between two phases of short lasting and chaotic activity. However, despite the fact that criticality brings about certain functional advantages for information processing, its supporting evidence is still far from conclusive, as it has been mostly based on power law scaling of size and durations of cascades of activity. Moreover, to what degree such hypothesis could explain some fundamental features of neural activity is still largely unknown. One of the most prevalent features of cortical activity in vivo is known to be spike irregularity of spike trains, which is measured in terms of the coefficient of variation (CV larger than one. Here, using a minimal computational model of excitatory nodes, we show that irregular spiking (CV > 1 naturally emerges in a recurrent network operating at criticality. More importantly, we show that even at the presence of other sources of spike irregularity, being at criticality maximizes the mean coefficient of variation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that such a maximized irregularity results in maximum correlation between neuronal firing rates and their corresponding spike irregularity (measured in terms of CV. On the one hand, using a model in the universality class of directed percolation, we propose new hallmarks of criticality at single-unit level, which could be applicable to any network of excitable nodes. On the other hand, given the controversy of the neural criticality hypothesis, we discuss the limitation of this approach to neural systems and to what degree they support the criticality hypothesis in real neural networks. Finally

  8. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  9. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Directory of Open Access Journals (Sweden)

    Gabriele Radnikow

    2018-01-01

    Full Text Available From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.

  10. Vanillin-induced amelioration of depression-like behaviors in rats by modulating monoamine neurotransmitters in the brain.

    Science.gov (United States)

    Xu, Jinyong; Xu, Hui; Liu, Yang; He, Haihui; Li, Guangwu

    2015-02-28

    Olfaction plays an important role in emotions in our daily life. Pleasant odors are known to evoke positive emotions, inducing relaxation and calmness. The beneficial effects of vanillin on depressive model rats were investigated using a combination of behavioral assessments and neurotransmitter measurements. Before and after chronic stress condition (or olfactory bulbectomy), and at the end of vanillin or fluoxetine treatment, body weight, immobility time on the forced swimming test and sucrose consumption in the sucrose consumption test were measured. Changes in these assessments revealed the characteristic phenotypes of depression in rats. Neurotransmitters were measured using ultrahigh-performance liquid chromatography. Our results indicated that vanillin could alleviate depressive symptoms in the rat model of chronic depression via the olfactory pathway. Preliminary analysis of the monoamine neurotransmitters revealed that vanillin elevated both serotonin and dopamine levels in brain tissue. These results provide important mechanistic insights into the protective effect of vanillin against chronic depressive disorder via olfactory pathway. This suggests that vanillin may be a potential pharmacological agent for the treatment of major depressive disorder. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply?

    DEFF Research Database (Denmark)

    Zhang, Mengliang

    2016-01-01

    Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates...... that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects...... that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles...

  12. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  13. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience.

    Science.gov (United States)

    Carabelli, Valentina; Marcantoni, Andrea; Picollo, Federico; Battiato, Alfio; Bernardi, Ettore; Pasquarelli, Alberto; Olivero, Paolo; Carbone, Emilio

    2017-02-15

    High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.

  14. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Källback, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J A; Andren, Per E

    2016-08-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Disruption of Fgf13 causes synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus.

    Science.gov (United States)

    Puranam, Ram S; He, Xiao Ping; Yao, Lijun; Le, Tri; Jang, Wonjo; Rehder, Catherine W; Lewis, Darrell V; McNamara, James O

    2015-06-10

    We identified a family in which a translocation between chromosomes X and 14 was associated with cognitive impairment and a complex genetic disorder termed "Genetic Epilepsy and Febrile Seizures Plus" (GEFS(+)). We demonstrate that the breakpoint on the X chromosome disrupted a gene that encodes an auxiliary protein of voltage-gated Na(+) channels, fibroblast growth factor 13 (Fgf13). Female mice in which one Fgf13 allele was deleted exhibited hyperthermia-induced seizures and epilepsy. Anatomic studies revealed expression of Fgf13 mRNA in both excitatory and inhibitory neurons of hippocampus. Electrophysiological recordings revealed decreased inhibitory and increased excitatory synaptic inputs in hippocampal neurons of Fgf13 mutants. We speculate that reduced expression of Fgf13 impairs excitability of inhibitory interneurons, resulting in enhanced excitability within local circuits of hippocampus and the clinical phenotype of epilepsy. These findings reveal a novel cause of this syndrome and underscore the powerful role of FGF13 in control of neuronal excitability. Copyright © 2015 the authors 0270-6474/15/358866-16$15.00/0.

  16. SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function

    Directory of Open Access Journals (Sweden)

    Lucas Matt

    2018-02-01

    Full Text Available Altering AMPA receptor (AMPAR content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1 encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1 modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP, while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity.

  17. Unsupported platinum nanoparticles as effective sensors of neurotransmitters and possible drug curriers

    Science.gov (United States)

    Tąta, Agnieszka; Gralec, Barbara; Proniewicz, Edyta

    2018-03-01

    Herein, surface-enhanced Raman scattering (SERS) activity of positively charged unsupported platinum nanoparticles (PtNPs) with ∼12 nm size and narrow size distribution, in an aqueous solution, towards neurotransmitters was monitored at 785 nm excitation wavelength. The pure PtNPs were synthetized by polyol method. Their morphology and structure were checked by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) measurements. As a neurotransmitter bombesin (BN), which exhibits autocrine effect on the growth of normal and tumour tissues, and its fragments from the C-terminal end: BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 (X-14 fragments of the BN amino acid sequence) were chosen. The collected spectra were interpreted and discussed. This is to determine the adsorption mode of bombesin onto the PtNPs surface and changes in this mode as a result of the bombesin backbone shortening from the N-terminal end. This is important from the point of using PtNPs as potential BN carrier into the cancerous tissue and antitumor drug.

  18. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain.

    Science.gov (United States)

    Kim, Min H; Yoon, Hargsoon; Choi, Sang H; Zhao, Fei; Kim, Jongsung; Song, Kyo D; Lee, Uhn

    2016-11-10

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1).

  19. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  20. Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Bell, Andrew M; Marin, Alina; Taylor, Rebecca; Boyle, Kieran A; Furuta, Takahiro; Watanabe, Masahiko; Polgár, Erika; Todd, Andrew J

    2017-03-01

    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.

  1. [Hormones and osteoporosis update. Regulation of bone remodeling by neuropeptides and neurotransmitters].

    Science.gov (United States)

    Takeda, Shu

    2009-07-01

    From the discovery of the regulation of bone remodelling by leptin, much attention has been focused on neurogenic control of bone remodelling. Various hypothalamic neuropeptides, which are involved in appetite regulation, are now revealed to be important regulators of bone remodelling. More recently, neurotransmitters, such as serotonin or catecholamines, are proven to be bone remodelling regulators.

  2. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies.

    Science.gov (United States)

    Forgacsova, Andrea; Galba, Jaroslav; Garruto, Ralph M; Majerova, Petra; Katina, Stanislav; Kovac, Andrej

    2018-01-15

    Neurotransmitters, small molecules widely distributed in the central nervous system are essential in transmitting electrical signals across neurons via chemical communication. Dysregulation of these chemical signaling molecules is linked to numerous neurological diseases including tauopathies. In this study, a precise and reliable liquid chromatography method was established with tandem mass spectrometry detection for the simultaneous determination of aspartic acid, asparagine, glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-l-aspartic acid, pyroglutamic acid, acetylcholine and choline in human brain tissue. The method was successfully applied to the analysis of human brain tissues from three different tauopathies; corticobasal degeneration, progressive supranuclear palsy and parkinsonism-dementia complex of Guam. Neurotransmitters were analyzed on ultra-high performance chromatography (UHPLC) using an ethylene bridged hybrid amide column coupled with tandem mass spectrometry (MS/MS). Identification and quantification of neurotransmitters was carried out by ESI+ mass spectrometry detection. We optimized sample preparation to achieve simple and fast extraction of all nine analytes. Our method exhibited an excellent linearity for all analytes (all coefficients of determination >0.99), with inter-day and intra-day precision yielding relative standard deviations 3.2%-11.2% and an accuracy was in range of 92.6%-104.3%. The present study, using the above method, is the first to demonstrate significant alterations of brain neurotransmitters caused by pathological processes in the brain tissues of patient with three different tauopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Studies on neurotransmitter-stimulated phospholipid metabolism with cerebral tissue suspensions: a possible biochemical correlate of synaptogenesis in normal and undernourished rats

    International Nuclear Information System (INIS)

    Reddy, P.V.; Sastry, P.S.

    1979-01-01

    The phenomenon of neurotransmitter-stimulated incorporation of 32 Pi into phosphatidic acid and inositol phosphatides (neurotransmitter effect) in developing brain was studied in vitro as a possible measure of synaptogenesis. While the neurotransmitter effect was not observed with brain homogenates, highly consistent and significant effects were noted with brain tissue suspensions obtained by passing the tissue through nylon bolting cloth. The magnitude of the effect decreased with the increase in mesh number. Maximum stimulations obtained with the 33 mesh adult brain cortex preparations (mean +- S.E.M. of 6 experiments) were 203 +- 8%, 316 +- 17% and 150 +8% with 10 -3 M acetylcholine (ACh) + 10 -3 M eserine; 10 -2 M norepinephrine (NE) and 10 -2 M serotonin (5-HT), respectively. (Auth.)

  4. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  5. The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-γ, and IL-4.

    Science.gov (United States)

    Pannell, Maria; Szulzewsky, Frank; Matyash, Vitali; Wolf, Susanne A; Kettenmann, Helmut

    2014-05-01

    Recently, neurotransmitters/neurohormones have been identified as factors controlling the function of microglia, the immune competent cells of the central nervous system. In this study, we compared the responsiveness of microglia to neurotransmitters/neurohormones. We freshly isolated microglia from healthy adult C57Bl/6 mice and found that only a small fraction (1-20%) responded to the application of endothelin, histamine, substance P, serotonin, galanin, somatostatin, angiotensin II, vasopressin, neurotensin, dopamine, or nicotine. In cultured microglia from neonatal and adult mice, a similarly small population of cells responded to these neurotransmitters/neurohormones. To induce a proinflammatory phenotype, we applied lipopolysaccaride (LPS) or interferon-gamma (IFN-γ) to the cultures for 24 h. Several of the responding populations increased; however, there was no uniform pattern when comparing adult with neonatal microglia or LPS with IFN-γ treatment. IL-4 as an anti-inflammatory substance increased the histamine-, substance P-, and somatostatin-sensitive populations only in microglia from adult, but not in neonatal cells. We also found that the expression of different receptors was not strongly correlated, indicating that there are many different populations of microglia with a distinct set of receptors. Our results demonstrate that microglial cells are a heterogeneous population with respect to their sensitivity to neurotransmitters/neurohormones and that they are more responsive in defined activation states. Copyright © 2014 Wiley Periodicals, Inc.

  6. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU).

    Science.gov (United States)

    Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O

    2016-01-01

    Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Harmane: an atypical neurotransmitter?

    Science.gov (United States)

    Abu Ghazaleh, Haya; Lalies, Maggie D; Nutt, David J; Hudson, Alan L

    2015-03-17

    Harmane is an active component of clonidine displacing substance and a candidate endogenous ligand for imidazoline binding sites. The neurochemistry of tritiated harmane was investigated in the present study examining its uptake and release properties in the rat brain central nervous system (CNS) in vitro. At physiological temperature, [(3)H]harmane was shown to be taken up in rat brain cortex. Further investigations demonstrated that treatment with monoamine uptake blockers (citalopram, nomifensine and nisoxetine) did not alter [(3)H]harmane uptake implicating that the route of [(3)H]harmane transport was distinct from the monoamine uptake systems. Furthermore, imidazoline ligands (rilmenidine, efaroxan, 2-BFI and idazoxan) showed no prominent effect on [(3)H]harmane uptake suggesting the lack of involvement of imidazoline binding sites. Subsequent analyses showed that disruption of the Na(+) gradient using ouabain or choline chloride did not block [(3)H]harmane uptake suggesting a Na(+)-independent transport mechanism. Moreover, higher temperatures (50°C) failed to impede [(3)H]harmane uptake implying a non-physiological transporter. The failure of potassium to evoke the release of preloaded [(3)H]harmane from rat brain cortex indicates that the properties of this putative endogenous ligand for imidazoline binding sites do not resemble that of a conventional neurotransmitter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    International Nuclear Information System (INIS)

    Maxwell, G.D.; Sietz, P.D.; Rafford, C.E.

    1982-01-01

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others

  9. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H G; Carr, W E; Gleeson, R A

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  10. Determination of neurotransmitters and their metabolites using one- and two-dimensional liquid chromatography with acidic potassium permanganate chemiluminescence detection.

    Science.gov (United States)

    Holland, Brendan J; Conlan, Xavier A; Stevenson, Paul G; Tye, Susannah; Reker, Ashlie; Barnett, Neil W; Adcock, Jacqui L; Francis, Paul S

    2014-09-01

    High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10(-8) to 2.5 × 10(-7) M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

  11. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs.

    Science.gov (United States)

    Werner, Felix-Martin; Coveñas, R

    2013-01-01

    We summarize the alterations of classical neurotransmitters and neuropeptides and the corresponding subreceptors involved in major depression. Neuronal circuits in the brainstem, hippocampus and hypothalamus are developed, since they can be used to derive a multimodal pharmacotherapy. In this sense, serotonin hypoactivity could occur through a strong presynaptic inhibition of glutaminergic neurons via the subtype 5 of metabotropic glutaminergic receptors, and noradrenaline hypoactivity could be due to an enhanced presynaptic inhibition of GABAergic neurons via GABAB receptors. In the hippocampus, dopamine hypoactivity leads to a decreased positive effect. In clinical trials, the antidepressant effect of drugs interfering with the mentioned subreceptors, for example the triple reuptake inhibitor amitifadine, is being investigated. Moreover, the alterations of neuropeptides, such as corticotropin-releasing hormone, neuropeptide Y and galanin are pointed out. The additional antidepressant effect of analogs, agonists and antagonists of the mentioned neuropeptides should be examined.

  12. Vesicular and Plasma Membrane Transporters for Neurotransmitters

    Science.gov (United States)

    Blakely, Randy D.; Edwards, Robert H.

    2012-01-01

    The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity. PMID:22199021

  13. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  14. The Effect of Scalp Point Cluster-Needling on Learning and Memory Function and Neurotransmitter Levels in Rats with Vascular Dementia

    OpenAIRE

    Yang, Junli; Litscher, Gerhard; Li, Haitao; Guo, Wenhai; Liang, Zhang; Zhang, Ting; Wang, Weihua; Li, Xiaoyan; Zhou, Yao; Zhao, Bing; Rong, Qi; Sheng, Zemin; Gaischek, Ingrid; Litscher, Daniela; Wang, Lu

    2014-01-01

    We observed the effect of scalp point cluster-needling treatment on learning and memory function and neurotransmitter levels in rats with vascular dementia (VD). Permanent ligation of the bilateral carotid arteries was used to create the VD rat model. A Morris water maze was used to measure the rats' learning and memory function, and the changes in neurotransmitter levels in the rats' hippocampus were analyzed. The results show that scalp point cluster-needling can increase the VD rat model's...

  15. Rapid labeling of amino acid neurotransmitters with a fluorescent thiol in the presence of o-phthalaldehyde.

    Science.gov (United States)

    Maddukuri, Naveen; Zhang, Qiyang; Zhang, Ning; Gong, Maojun

    2017-02-01

    LIF detection often requires labeling of analytes with fluorophores; and fast fluorescent derivatization is valuable for high-throughput analysis with flow-gated CE. Here, we report a fast fluorescein-labeling scheme for amino acid neurotransmitters, which were then rapidly separated and detected in flow-gated CE. This scheme was based on the reaction between primary amines and o-phthalaldehyde in the presence of a fluorescent thiol, 2-((5-fluoresceinyl)aminocarbonyl)ethyl mercaptan (FACE-SH). The short reaction time (neurotransmitters by coupling in vitro microdialysis with online derivatization and flow-gated CE. It is also anticipated that this fluorophore tagging scheme would be valuable for on-chip labeling of proteins retained on support in SPE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Tufi, Sara; Lamoree, Marja; de Boer, Jacob; Leonards, Pim

    2015-05-22

    Neurotransmitters are endogenous metabolites that allow the signal transmission across neuronal synapses. Their biological role is crucial for many physiological functions and their levels can be changed by several diseases. Because of their high polarity, hydrophilic interaction liquid chromatography (HILIC) is a promising tool for neurotransmitter analysis. Due to the large number of HILIC stationary phases available, an evaluation of the column performances and retention behaviors has been performed on five different commercial HILIC packing materials (silica, amino, amide and two zwitterionic stationary phases). Several parameters like the linear correlation between retention and the distribution coefficient (logD), the separation factor k and the column resolution Rs have been investigated and the column performances have been visualized with a heat map and hierarchical clustering analysis. An optimized and validated HILIC-MS/MS method based on the ZIC-cHILIC column is proposed for the simultaneous detection and quantification of twenty compounds consisting of neurotransmitters, precursors and metabolites: 3-methoxytyramine (3-MT), 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxy-L-tripthophan, acetylcholine, choline, L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, epinephrine, γ-aminobutyric acid (GABA), glutamate, glutamine, histamine, histidine, L-tryptophan, L-tyrosine, norepinephrine, normetanephrine, phenylalanine, serotonin and tyramine. The method was applied to neuronal metabolite profiling of the central nervous system of the freshwater snail Lymnaea stagnalis. This method is suitable to explore neuronal metabolism and its alteration in different biological matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Neurotransmitter implications in descending motility of longitudinal and circular muscles in rat colon

    Directory of Open Access Journals (Sweden)

    Zornitsa V. Gorcheva

    2018-03-01

    Full Text Available Introduction. The role of neurotransmitter systems in the motor activity of longitudinal or circular muscles in autonomic regulation of the motility of the colon by the nervous system is unclear. The aim of the study was to investigate the neurotransmitter implications in descending motility of longitudinal and circular muscles in rat colon. Methods. Electrically-induced (2, 5 or 10 Hz, 0.8 ms, 40 V, 20 s local or descending motor responses of longitudinal and circular muscles in isolated preparations and drugs were used to define the neurotransmitters’ role in colonic motility. Results. The spontaneous activity of the distal part of preparations manifested as high-amplitude irregular contractions more expressed in the longitudinal muscles. The electrically-induced local responses differed considerably in the two muscles: in longitudinal muscle there were frequency-dependent contractions, while initial relaxation followed by contraction was observed in circular muscle. The descending motor response resembled the pattern of the local responses, but the amplitudes were significantly less expressed, as compared to the respective local responses.

  18. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  19. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  20. Vitis vinifera juice ameliorates depression-like behavior in mice by modulating biogenic amine neurotransmitters

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam

    2015-12-01

    Full Text Available The advantageous effects of Vitis vinifera juice on depressive model mice were examined utilizing a blend of behavioral evaluations and biogenic amine neurotransmitter estimations. During the behavioral evaluations, immobility time on the forced swimming test and tail suspension test were measured in unstressed and immobilization-induced stressed mice. V. vinifera juice (4 mL/kg and 8 mL/kg and fluoxetine (20 mg/kg produced a significant decrease in immobility time of both unstressed and stressed mice when compared with their respective saline-treated control groups in both paradigms. Neurotransmitters were measured using high-performance liquid chromatography with electrochemical detector. V. vinifera juice raised the levels of both serotonin (p<0.001 and noradrenalin (p<0.001 in brain tissue. These outcomes give significant mechanistic insights into the protective effect of V. vinifera juice against depressive disorders. Our results showed that V. vinifera juice could relieve depressive manifestations in the rodent model of depression.

  1. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  2. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    Science.gov (United States)

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    2017-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    Science.gov (United States)

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P Calculus Bovis group was higher than combination group (P Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  4. Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.S.; Frost, J.J. (Johns Hopkins Univ., Baltimore, MD (USA))

    1991-04-01

    As surgical treatments for adult and pediatric forms of epilepsy have become more refined, methods for noninvasive localization of epileptogenic foci have become increasingly important. Detection of focal brain metabolic or flow abnormalities is now well recognized as an essential step in the presurgical evaluation of many patients with epilepsy. Positron emission tomography (PET) scanning is most beneficial when used in the context of the total clinical evaluation of patients, including scalp EEG, invasive EEG, neuropsychologic testing, etc. Metabolic PET studies also give insight into pathophysiologic mechanisms of epilepsy. The dynamic nature of the interictal hypometabolism observed with 18(F)FDG in some patients suggests that excitatory or inhibitory neurotransmitters and their receptors may be involved. An exciting current application of PET scanning is the use of tracers for neurotransmitter receptors in the study of epilepsy patients. Mu and non-mu opiate receptors have been extensively studied and are beginning to give new insights into this disorder. Increased labeling of mu receptors in temporal neocortex using 11C-carfentanil has been demonstrated and, in some patients, supplements the clinical localization information from 18(F)FDG studies. Increased mu opiate receptor number or affinity is thought to play a role in anticonvulsant mechanisms. Specificity of increased mu receptors is supported by the absence of significant changes in non-mu opiate receptors. Other brain receptors are also of interest for future studies, particularly those for excitatory neurotransmitters. Combined studies of flow, metabolism, and neuroreceptors may elucidate the factors responsible for initiation and termination of seizures, thus improving patient treatment.95 references.

  5. Epilepsy

    International Nuclear Information System (INIS)

    Fisher, R.S.; Frost, J.J.

    1991-01-01

    As surgical treatments for adult and pediatric forms of epilepsy have become more refined, methods for noninvasive localization of epileptogenic foci have become increasingly important. Detection of focal brain metabolic or flow abnormalities is now well recognized as an essential step in the presurgical evaluation of many patients with epilepsy. Positron emission tomography (PET) scanning is most beneficial when used in the context of the total clinical evaluation of patients, including scalp EEG, invasive EEG, neuropsychologic testing, etc. Metabolic PET studies also give insight into pathophysiologic mechanisms of epilepsy. The dynamic nature of the interictal hypometabolism observed with 18[F]FDG in some patients suggests that excitatory or inhibitory neurotransmitters and their receptors may be involved. An exciting current application of PET scanning is the use of tracers for neurotransmitter receptors in the study of epilepsy patients. Mu and non-mu opiate receptors have been extensively studied and are beginning to give new insights into this disorder. Increased labeling of mu receptors in temporal neocortex using 11C-carfentanil has been demonstrated and, in some patients, supplements the clinical localization information from 18[F]FDG studies. Increased mu opiate receptor number or affinity is thought to play a role in anticonvulsant mechanisms. Specificity of increased mu receptors is supported by the absence of significant changes in non-mu opiate receptors. Other brain receptors are also of interest for future studies, particularly those for excitatory neurotransmitters. Combined studies of flow, metabolism, and neuroreceptors may elucidate the factors responsible for initiation and termination of seizures, thus improving patient treatment.95 references

  6. Development and validation of a simple, rapid and sensitive LC-MS/MS method for the measurement of urinary neurotransmitters and their metabolites.

    Science.gov (United States)

    Yan, Jingya; Kuzhiumparambil, Unnikrishnan; Bandodkar, Sushil; Solowij, Nadia; Fu, Shanlin

    2017-12-01

    Neurotransmitters play crucial roles in physiological functions and their imbalances have demonstrated association in the pathology of several diseases. The measurement of neurotransmitters possesses a great potential as a significant clinical tool. This study presents the development and validation of an LC-MS/MS method for simultaneous quantification of multi-class neurotransmitters associated with dopamine, tryptophan and glutamate-γ-aminobutyric acid pathways. A total of ten neurotransmitters and their metabolites (dopamine, epinephrine, metanephrine, tryptophan, serotonin, kynurenic acid, kynurenine, anthranilic acid, GABA, glutamic acid) were determined based on a simple and rapid 'dilute and shoot' method using minimal urine volume. The chromatographic separation was achieved using a Poroshell 120 Bonus-RP LC Column in combination with a gradient elution within an 8.5-min time frame. The method exhibited good sensitivity as the limits of quantification ranged between 0.025 and 0.075 μg/mL with acceptable matrix effects ( 0.98). The accuracy and precision for all analytes were within tolerances, at neurotransmitter concentrations in urine of healthy donors. Furthermore, the undertaken stability experiments indicated that acidified urine specimens allowed the analytes to be stable for prolonged durations in comparison to those untreated. The study also reveals the performance of the method is unaffected by the absence of expensive deuterated reference standards under the experimental conditions employed which further simplifies the analytical procedures and provides a significant cost saving for running the assay. Graphical abstract The quantification of multi-class neurotransitters associated with the dopamine, tryptophan and GABA-glutamate pathways using a simple 'dilute and shoot' LC-MS/MS method.

  7. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Erichsen, Mette Navy; Nielsen, Christina Wøhlk

    2009-01-01

    The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the 4......- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool....

  8. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  9. Isoflurane Anesthesia Interferes with the Expression of Cocaine-Induced Sensitization in Female Rats

    OpenAIRE

    Siegal, Nora; Dow-Edwards, Diana

    2009-01-01

    Repeated cocaine administration results in a progressive sensitization of behavior which typically occurs more readily in female rats than in males. Our recent studies of rats undergoing surgical procedures revealed that following anesthesia, females sensitized less than males receiving identical repeated cocaine injections. Since isoflurane acts primarily by increasing the effects of the inhibitory neurotransmitter γ-amino butyric acid (GABA) and reducing the effects of the excitatory amino ...

  10. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia

    OpenAIRE

    Rowland, Laura M.; Kontson, Kimberly; West, Jeffrey; Edden, Richard A.; Zhu, He; Wijtenburg, S. Andrea; Holcomb, Henry H.; Barker, Peter B.

    2012-01-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, partic...

  11. A selective review of glutamate pharmacological therapy in obsessive–compulsive and related disorders

    OpenAIRE

    Grados, Marco; Atkins,Elizabeth; Kovacikova,Gabriela Ika; McVicar,Erin

    2015-01-01

    Marco A Grados,1 Elizabeth B Atkins,2 Gabriela I Kovacikova,3 Erin McVicar4 1Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 2Department of Psychology, Smith College, Northampton, MA, 3Department of Psychology, Wellesley College, Wellesley, MA, 4Susquehanna University, Selinsgrove, PA, USA Abstract: Glutamate, an excitatory central nervous system neurotransmitter, is emerging as a potential alternative pharmacological treatment when co...

  12. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development.

    Science.gov (United States)

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna-Zboińska, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2016-12-01

    The present study was designed to clarify the effect of prenatal and postnatal paracetamol administration on the neurotransmitter level and balance of amino acids in the cerebellum. Biochemical analysis to determine the concentration of neurotransmitters in this brain structure was performed on two-month-old Wistar male rats previously exposed to paracetamol in doses of 5 (P5, n=10) or 15mg/kg (P15, n=10) throughout the entire prenatal period, lactation and until the completion of the second month of life, when the experiment was terminated. Control animals were given tapped water (Con, n=10). The cerebellar concentration of monoamines, their metabolites and amino acids were assayed using High Performance Liquid Chromatography (HPLC). The present experiment demonstrates that prenatal and postnatal paracetamol exposure results in modulation of cerebellar neurotransmission with changes concerning mainly 5-HIAA and MHPG levels. The effect of paracetamol on monoaminergic neurotransmission in the cerebellum is reflected by changes in the level of catabolic end-products of serotonin (5-HIAA) and noradrenaline (MHPG) degradation. Further work is required to define the mechanism of action and impact of prenatal and postnatal exposure to paracetamol in the cerebellum and other structures of the central nervous system (CNS). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Paecilomyces tenuipes extract prevents depression-like behaviors in chronic unpredictable mild stress-induced rat model via modulation of neurotransmitters.

    Science.gov (United States)

    Liu, Chungang; Wang, Juan; Xu, Shiqi; An, Shengshu; Tang, Siying; He, Jian; Liu, Yang; Lee, Robert J; Wang, Di

    2017-08-01

    The medicinal fungus Paecilomyces tenuipes exhibits a variety of pharmacological effects, including antidepressive effects. The chronic unpredictable mild stress (CUMS)‑induced rat model has served an important role in studies involving antidepressants screening. The aim of the present study was to evaluate the antidepressant‑like activity of P. tenuipes N45 aqueous extract (PTNE) in a CUMS‑induced rat model of behavioral despair depression. Following 4 weeks of PTNE treatment, behavioral tests were conducted to investigate the antidepressant‑like activities, and the levels of neurotransmitters and hormones in blood and hypothalamus were measured. The results demonstrated that PTNE treatment significantly increased movement in the forced running test, whereas the immobility time was reduced in the hotplate test and the forced swim test in depression‑model rats. PTNE treatment was able to normalize the levels of hormones and neurotransmitters in serum and hypothalamus of CUMS rats. The data demonstrated that PTNE treatment may be a potential pharmaceutical agent in treatment‑resistant depression, and the effects of PTNE may be partly mediated through normalizing the levels of neurotransmitters.

  14. A simple LC-MS/MS method for quantitative analysis of underivatized neurotransmitters in rats urine: assay development, validation and application in the CUMS rat model.

    Science.gov (United States)

    Zhai, Xue-jia; Chen, Fen; Zhu, Chao-ran; Lu, Yong-ning

    2015-11-01

    Many amino acid neurotransmitters in urine are associated with chronic stress as well as major depressive disorders. To better understand depression, an analytical LC-MS/MS method for the simultaneous determination of 11 underivatized neurotransmitters (4-aminohippurate, 5-HIAA, glutamate, glutamine, hippurate, pimelate, proline, tryptophan, tyramine, tyrosine and valine) in a single analytical run was developed. The advantage of this method is the simple preparation in that there is no need to deconjugate the urine samples. The quantification range was 25-12,800 ng mL(-1) with >85.8% recovery for all analytes. The nocturnal urine concentrations of the 11 neurotransmitters in chronic unpredictable mild stress (CUMS) model rats and control group (n = 12) were analyzed. A series of significant changes in urinary excretion of neurotransmitters could be detected: the urinary glutamate, glutamine, hippurate and tyramine concentrations were significantly lower in the CUMS group. In addition, the urinary concentrations of tryptophan as well as tyrosine were significantly higher in chronically stressed rats. This method allows the assessment of the neurotransmitters associated with CUMS in rat urine in a single analytical run, making it suitable for implementation as a routine technique in depression research. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  16. Euglycemia Restoration by Central Leptin in Type 1 Diabetes Requires STAT3 Signaling but Not Fast-Acting Neurotransmitter Release.

    Science.gov (United States)

    Xu, Yuanzhong; Chang, Jeffrey T; Myers, Martin G; Xu, Yong; Tong, Qingchun

    2016-04-01

    Central leptin action is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D); however, the underlying mechanism remains poorly understood. To examine the role of intracellular signal transducer and activator of transcription 3 (STAT3) pathways, we used LepRs/s mice with disrupted leptin-phosphorylated STAT3 signaling to test the effect of central leptin on euglycemia restoration. These mice developed streptozocin-induced T1D, which was surprisingly not associated with hyperglucagonemia, a typical manifestation in T1D. Further, leptin action on euglycemia restoration was abrogated in these mice, which was associated with refractory hypercorticosteronemia. To examine the role of fast-acting neurotransmitters glutamate and γ-aminobutyric acid (GABA), two major neurotransmitters in the brain, from leptin receptor (LepR) neurons, we used mice with disrupted release of glutamate, GABA, or both from LepR neurons. Surprisingly, all mice responded normally to leptin-mediated euglycemia restoration, which was associated with expected correction from hyperglucagonemia and hyperphagia. In contrast, mice with loss of glutamate and GABA appeared to develop an additive obesity effect over those with loss of single neurotransmitter release. Thus, our study reveals that STAT3 signaling, but not fast-acting neurotransmitter release, is required for leptin action on euglycemia restoration and that hyperglucagonemia is not required for T1D. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Onchocerca volvulus-neurotransmitter tyramine is a biomarker for river blindness.

    Science.gov (United States)

    Globisch, Daniel; Moreno, Amira Y; Hixon, Mark S; Nunes, Ashlee A K; Denery, Judith R; Specht, Sabine; Hoerauf, Achim; Janda, Kim D

    2013-03-12

    Onchocerciasis, also known as "river blindness", is a neglected tropical disease infecting millions of people mainly in Africa and the Middle East but also in South America and Central America. Disease infectivity initiates from the filarial parasitic nematode Onchocerca volvulus, which is transmitted by the blackfly vector Simulium sp. carrying infectious third-stage larvae. Ivermectin has controlled transmission of microfilariae, with an African Program elimination target date of 2025. However, there is currently no point-of-care diagnostic that can distinguish the burden of infection--including active and/or past infection--and enable the elimination program to be effectively monitored. Here, we describe how liquid chromatography-MS-based urine metabolome analysis can be exploited for the identification of a unique biomarker, N-acetyltyramine-O,β-glucuronide (NATOG), a neurotransmitter-derived secretion metabolite from O. volvulus. The regulation of this tyramine neurotransmitter was found to be linked to patient disease infection, including the controversial antibiotic doxycycline treatment that has been shown to both sterilize and kill adult female worms. Further clues to its regulation have been elucidated through biosynthetic pathway determination within the nematode and its human host. Our results demonstrate that NATOG tracks O. volvulus metabolism in both worms and humans, and thus can be considered a host-specific biomarker for onchocerciasis progression. Liquid chromatography-MS-based urine metabolome analysis discovery of NATOG not only has broad implications for a noninvasive host-specific onchocerciasis diagnostic but provides a basis for the metabolome mining of other neglected tropical diseases for the discovery of distinct biomarkers and monitoring of disease progression.

  18. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had lower resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.

  19. RESTRAIN OF FEAR: PARTICIPATION OF GABA NEUROTRANSMITTER SYSTEM

    Directory of Open Access Journals (Sweden)

    Galina I. Shulgina

    2013-07-01

    Full Text Available In experiences on rats in the conditions of free behavior at development of a conditioned of passive avoidanсe reflex (the first series and a defensive reflex and a conditional inhibition (the second series it is revealed, and elaboration of internal inhibition and Phenibut – a nonspecific agonist of GAMKA and GAMKB receptors cause in experimental animals weakening of freezing arising in a dangerous situation, and a disinhibition of research behavior. Results of experiences in the accounting of data of the literature allow to assume that both factors, and elaboration of internal inhibition, and Phenibut weaken freezing – the phenomenon used in experiments as a biological analog of fear, owing to increase of level of activity of the GABA neurotransmitter system of a brain.

  20. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  1. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  2. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    Full Text Available The discovery that nitric oxide (NO functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated.The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated.Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  3. A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder.

    Science.gov (United States)

    Yin, Honglei; Pantazatos, Spiro P; Galfalvy, Hanga; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, John J

    2016-04-01

    Gamma-amino butyric acid (GABA) and glutamate are the major inhibitory and excitatory neurotransmitters in the mammalian central nervous system, respectively, and have been associated with suicidal behavior and major depressive disorder (MDD). We examined the relationship between genotype, brain transcriptome, and MDD/suicide for 24 genes involved in GABAergic and glutamatergic signaling. In part 1 of the study, 119 candidate SNPs in 24 genes (4 transporters, 4 enzymes, and 16 receptors) were tested for associations with MDD and suicidal behavior in 276 live participants (86 nonfatal suicide attempters with MDD and 190 non-attempters of whom 70% had MDD) and 209 postmortem cases (121 suicide deaths of whom 62% had MDD and 88 sudden death from other causes of whom 11% had MDD) using logistic regression adjusting for sex and age. In part 2, RNA-seq was used to assay isoform-level expression in dorsolateral prefrontal cortex of 59 postmortem samples (21 with MDD and suicide, 9 MDD without suicide, and 29 sudden death non-suicides and no psychiatric illness) using robust regression adjusting for sex, age, and RIN score. In part 3, SNPs with subthreshold (uncorrected) significance levels below 0.05 for an association with suicidal behavior and/or MDD in part 1 were tested for eQTL effects in prefrontal cortex using the Brain eQTL Almanac (www.braineac.org). No SNPs or transcripts were significant after adjustment for multiple comparisons. However, a protein coding transcript (ENST00000414552) of the GABA A receptor, gamma 2 (GABRG2) had lower brain expression postmortem in suicide (P = 0.01) and evidence for association with suicide death (P = 0.03) in a SNP that may be an eQTL in prefrontal cortex (rs424740, P = 0.02). These preliminary results implicate GABRG2 in suicide and warrant further investigation and replication in larger samples. © 2016 Wiley Periodicals, Inc.

  4. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

    Science.gov (United States)

    Williams, Michael R; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T; Luikart, Bryan W

    2015-01-21

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. Copyright © 2015 the authors 0270-6474/15/350943-17$15.00/0.

  5. The 'sniffer-patch' technique for detection of neurotransmitter release.

    Science.gov (United States)

    Allen, T G

    1997-05-01

    A wide variety of techniques have been employed for the detection and measurement of neurotransmitter release from biological preparations. Whilst many of these methods offer impressive levels of sensitivity, few are able to combine sensitivity with the necessary temporal and spatial resolution required to study quantal release from single cells. One detection method that is seeing a revival of interest and has the potential to fill this niche is the so-called 'sniffer-patch' technique. In this article, specific examples of the practical aspects of using this technique are discussed along with the procedures involved in calibrating these biosensors to extend their applications to provide quantitative, in addition to simple qualitative, measurements of quantal transmitter release.

  6. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  7. Differences in context sensitivity for second-learned inhibitory and excitatory stimuli in AAB and ABC designs

    OpenAIRE

    Elgueta, Tito

    2014-01-01

    Bouton (1997) proposed a model to explain Pavlovian conditioning according to which the order of the associations (first-learned or second-learned), not the valence of the associations (inhibitory or excitatory), determines context sensitivity in AAB and ABC renewal designs. As a consequence, Bouton’s model does not predict important differences in context sensitivity between AAB and ABC designs. However, evidence suggests that there are indeed differences in context sensitivity between these...

  8. Polymorphisms of genes in neurotransmitter systems were associated with alcohol use disorders in a Tibetan population.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Studies of linkage and association in various ethnic populations have revealed many predisposing genes of multiple neurotransmitter systems for alcohol use disorders (AUD. However, evidence often is contradictory regarding the contribution of most candidate genes to the susceptibility of AUD. We, therefore, performed a case-control study to investigate the possible associations of genes selected from multiple neurotransmitter systems with AUD in a homogeneous Tibetan community population in China. AUD cases (N = 281 with an alcohol use disorder identification test (AUDIT score ≥10, as well as healthy controls (N = 277 with an AUDIT score ≤5, were recruited. All participants were genotyped for 366 single nucleotide polymorphisms (SNPs of 34 genes selected from those involved in neurotransmitter systems. Association analyses were performed using PLINK version 1.07 software. Allelic analyses before adjustment for multiple tests showed that 15 polymorphisms within seven genes were associated with AUD (p<0.05. After adjustment for the number of SNPs genotyped within each gene, only the association of a single marker (rs10044881 in HTR4 remained statistically significant. Haplotype analysis for two SNPs in HTR4 (rs17777298 and rs10044881 showed that the haplotype AG was significantly associated with the protective effect for AUD. In conclusion, the present study discovered that the HTR4 gene may play a marked role in the pathogenesis of AUD. In addition, this Tibetan population sample marginally replicated previous evidence regarding the associations of six genes in AUD.

  9. Effect of adjuvant acupuncture therapy on serum cytokines and neurotransmitters in patients with post-stroke depression

    Directory of Open Access Journals (Sweden)

    Wan Feng

    2017-07-01

    Full Text Available Objective: To study the effect of adjuvant acupuncture therapy on serum cytokines and neurotransmitters in patients with post-stroke depression. Methods: Patients with poststroke depression who were treated in Traditional Chinese Medicine Hospital of Yuyang District Yulin City between May 2014 and February 2017 were selected as the research subjects and divided into two groups by random number table, control group of patients received neurotrophy, rehabilitation exercise, antidepressant drugs and other symptomatic treatment, and the acupuncture group received auxiliary acupuncture treatment on the basis of symptomatic treatment. The serum levels of nerve cytokines, inflammatory cytokines and neurotransmitters were detected before treatment as well as 2 weeks and 4 weeks after treatment. Results: 2 weeks and 4 weeks after treatment, serum BDNF, NGF, IGF-1, FGF-2, NE, DA and 5-HT levels of both groups of patients were higher than those before treatment while HCY, IL- 1β, IL-2, sIL-2R, TNF-α levels were lower than those before treatment, and serum BDNF, NGF, IGF-1, FGF-2, NE, DA and 5-HT levels of acupuncture group were higher than those of control group while HCY, IL-1β, IL-2, sIL-2R, TNF-α levels were lower than those of control group. Conclusion: Adjuvant acupuncture therapy for post-stroke depression can increase the secretion of nerve cytokines, reduce the secretion of inflammatory cytokines and regulate the function of monoamine neurotransmitters.

  10. Predator Exposure/Psychosocial Stress Animal Model of Post-Traumatic Stress Disorder Modulates Neurotransmitters in the Rat Hippocampus and Prefrontal Cortex

    Science.gov (United States)

    Wilson, C. Brad; Ebenezer, Philip J.; McLaughlin, Leslie D.; Francis, Joseph

    2014-01-01

    Post-Traumatic Stress Disorder (PTSD) can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT) may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE), 5-Hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), dopamine (DA), and 3,4-Dihydroxyphenylacetic acid (DOPAC), and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC). In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may cause a

  11. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    C Brad Wilson

    Full Text Available Post-Traumatic Stress Disorder (PTSD can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC. Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE, 5-Hydroxyindoleacetic acid (5-HIAA, homovanillic acid (HVA, dopamine (DA, and 3,4-Dihydroxyphenylacetic acid (DOPAC, and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC. In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may

  12. Measurement of neurotransmitters with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laruelle, M.; Erritzoe, D.; Abi-Dargham, A.; Huang, Y. [Columbia Univ., Coll. of Physicians and Surgeons, Dept. of Psychiatry and Radiology, New York, NY (United States)

    2003-09-01

    Over the last decade several groups have provided evidence that PET and SPECT neuro-receptor imaging techniques might be applied to measure fluctuations of dopamine (DA) synaptic concentrations in the living human brain. It is generally believed that changes in the in vivo binding of radioligands following acute changes in transmitter levels are driven by binding competition. These techniques have been very successful in giving dynamic information regarding DA transmission. However, the development of similar techniques to study other neurotransmitter systems has proven difficult. This review paper first summarizes endogenous competition studies performed in animals and humans. The validity of the model underlying the interpretation of these data is critically assessed. Emerging data suggest that simple binding competition might not be the only phenomenon involved in these interactions; receptor trafficking might play an important role. A better understanding of the radioligand properties that determine sensitivity to endogenous molecules might facilitate the selective development of this type of radiotracer. (authors)

  13. The transcription factor ERG increases expression of neurotransmitter receptors on prostate cancer cells

    International Nuclear Information System (INIS)

    Kissick, Haydn T.; On, Seung T.; Dunn, Laura K.; Sanda, Martin G.; Asara, John M.; Pellegrini, Kathryn L.; Noel, Jonathan K.; Arredouani, Mohamed S.

    2015-01-01

    The TMPRSS2-ERG gene fusion occurs in about half of prostate cancer (PCa) cases and results in overexpression of the transcription factor ERG. Overexpression of ERG has many effects on cellular function. However, how these changes enhance cell growth and promote tumor development is unclear. To investigate the role of ERG, LNCaP and PC3 cells were transfected with ERG and gene expression and metabolic profile were analyzed. Our data show that expression of ERG induces overexpression of many nicotinicacetylcholine receptors (nAChRs). In addition, metabolic profiling by LC-MS/MS revealed elevated production of several neurotransmitters in cells expressing ERG. Consistently, treatment of ERG-expressing cells with nicotine induced elevated calcium influx, GSK3β (Ser9) phosphorylation and cell proliferation. Finally, we show that PCa patientswho are smokers have larger tumors if their tumors are TMPRSS2-ERG gene fusion positive. Collectively, our data suggest that ERG sensitizes prostate tumor cells to neurotransmitter receptor agonists like nicotine. The online version of this article (doi:10.1186/s12885-015-1612-3) contains supplementary material, which is available to authorized users

  14. Effects of occupational exposure to polychlorinated biphenyls on urinary metabolites of neurotransmitters: A cross-sectional and longitudinal perspective.

    Science.gov (United States)

    Putschögl, Franziska Maria; Gaum, Petra Maria; Schettgen, Thomas; Kraus, Thomas; Gube, Monika; Lang, Jessica

    2015-07-01

    Polychlorinated biphenyls (PCBs) are chemicals which were used for industrial purposes and are known to induce various adverse health effects. They are also known to be neurotoxic and numerous targets within the central nervous system have been identified in previous studies. Specifically, the neurotransmitters dopamine (DA) and norepinephrine (NE) are influenced by PCBs as indicated in studies involving animals. However, limited evidence has been published documenting PCB induced changes in the neurotransmitter system in humans. In the present study, we examined the association between a higher PCB body burden following occupational exposure and possible changes in human neurotransmitter metabolites. Within a medical surveillance programme called HELPcB (Health Effects in High-Level Exposure to PCB) that monitors adverse health effects of occupational PCB exposure, urine samples were obtained (n(T1) = 166; n(T2) = 177 and n(T3) = 141). The urinary concentrations of the metabolites homovanillic acid (HVA; for DA) and vanillylmandelic acid (VMA; for NE) were analyzed. Blood samples were obtained by vena puncture in order to determine the internal exposure to PCBs with human biomonitoring. A cross-sectional analysis indicated a significant negative effect of PCB exposure on HVA and VMA. Longitudinally, an initially higher exposure to higher chlorinated PCBs was followed by constant reduced HVA level over three consecutive years. Exploratory analyses show different long-term effects for different PCBs according to their chlorination degree. A higher exposure with lower chlorinated PCBs leads to an increase of VMA and HVA. Conversely, a higher exposure to all PCBs results in a reduction of HVA. This study, to our knowledge, is the first to document changes in neurotransmitter metabolites after occupational PCB exposure in humans. This finding advances evidence obtained from past research, and identifies one potential pathomechanism in the central dopaminergic system of

  15. Nicotinic receptor-associated modulation of stimulatory and inhibitory neurotransmitters in NNK-induced adenocarcinoma of the lungs and pancreas

    Science.gov (United States)

    Al-Wadei, Hussein A. N.; Schuller, Hildegard M.

    2012-01-01

    Small airway-derived pulmonary adenocarcinoma (PAC) and pancreatic ductal adenocarcinoma (PDAC) are among the most common human cancers and smoking is a risk factor for both. Emerging research has identified cAMP signaling stimulated by the stress neurotransmitters adrenaline and noradrenaline as important stimulators of several adenocarcinomas, including PAC and PDAC. The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent mutagen and the most powerful tobacco carcinogen. NNK is also an agonist for nicotinic acetylcholine receptors (nAChRs). Using hamster models of NNK-induced PAC and PDAC, we have tested the hypothesis that in analogy to chronic effects of nicotine in the brain, NNK may modulate the α7- and α4β2nAChRs, causing an increase in stress neurotransmitters and decrease in the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In support of our hypothesis, immunoassays showed a significant increase in serum adrenaline/noradrenaline and increased intracellular cAMP in the cellular fraction of blood of NNK treated hamsters. Western blots were done with cells harvested by laser capture microcopy from control small airway epithelia, alveolar epithelia, pancreatic islet and pancreatic duct epithelia and from NNK-induced PACs and PDACs. The GABA synthesizing enzyme glutamate decarboxylase 65 (GAD65) and GABA were suppressed in NNK-induced PACs and PDACs whereas protein expression of the α7nAChR, α4nAChR as well as p-CREB and p-ERK1/2 were upregulated. These findings suggest, for the first time, that NNK-induced alterations in regulatory nAChRs may contribute to the development of smoking-associated PAC and PDAC by disturbing the balance between cancer stimulating and inhibiting neurotransmitters. PMID:19274673

  16. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    International Nuclear Information System (INIS)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr.

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects

  17. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    Science.gov (United States)

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  18. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  19. Expression of Glutamate and GABA during the Process of Rat Retinal Synaptic Plasticity Induced by Acute High Intraocular Pressure

    International Nuclear Information System (INIS)

    Zhou, Lihong; Huang, Jufang; Wang, Hui; Luo, Jia; Zeng, Leping; Xiong, Kun; Chen, Dan

    2013-01-01

    Acute high intraocular pressure (HIOP) can induce plastic changes of retinal synapses during which the expression of the presynaptic marker synaptophysin (SYN) has a distinct spatiotemporal pattern from the inner plexiform layer to the outer plexiform layer. We identified the types of neurotransmitters in the retina that participated in this process and determined the response of these neurotransmitters to HIOP induction. The model of acute HIOP was established by injecting normal saline into the anterior chamber of the rat eye. We found that the number of glutamate-positive cells increased successively from the inner part to the outer part of the retina (from the ganglion cell layer to the inner nuclear layer to the outer nuclear layer) after HIOP, which was similar to the spatiotemporal pattern of SYN expression (internally to externally) following HIOP. However, the distribution and intensity of GABA immunoreactivity in the retina did not change significantly at different survival time post injury and had no direct correlation with SYN expression. Our results suggested that the excitatory neurotransmitter glutamate might participate in the plastic process of retinal synapses following acute HIOP, but no evidence was found for the role of the inhibitory neurotransmitter GABA

  20. Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles.

    Science.gov (United States)

    Kuster, Alice; Arnoux, Jean-Baptiste; Barth, Magalie; Lamireau, Delphine; Houcinat, Nada; Goizet, Cyril; Doray, Bérénice; Gobin, Stéphanie; Schiff, Manuel; Cano, Aline; Amsallem, Daniel; Barnerias, Christine; Chaumette, Boris; Plaze, Marion; Slama, Abdelhamid; Ioos, Christine; Desguerre, Isabelle; Lebre, Anne-Sophie; de Lonlay, Pascale; Christa, Laurence

    2018-01-01

    To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.

  1. A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Sløk, F A; Skjaerbaek, N

    1996-01-01

    The homologous series of acidic amino acids, ranging from aspartic acid (1) to 2-aminosuberic acid (5), and the corresponding series of 3-isoxazolol bioisosteres of these amino acids, ranging from (RS)-2-amino-2-(3-hydroxy-5-methylisoxazol-4-yl)acetic acid (AMAA, 6) to (RS)-2-amino-6-(3-hydroxy-5......-methylisoxazol-4-yl)hexanoic acid (10), were tested as ligands for metabotropic excitatory amino acid receptors (mGlu1 alpha, mGlu2, mGlu4a, and mGlu6). Whereas AMAA (6) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinoic acid (AMPA, 7) are potent and highly selective agonists at N......-methyl-D-aspartic acid (NMDA) and AMPA receptors, respectively, the higher homologue of AMPA (7), (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (homo-AMPA, 8), is inactive at ionotropic excitatory amino acid receptors. Homo-AMPA (8), which is a 3-isoxazolol bioisostere of 2-aminoadipic acid (3), was...

  2. Receptor visualization and the atomic bomb. A historical account of the development of the chemical neuroanatomy of receptors for neurotransmitters and drugs during the Cold War.

    Science.gov (United States)

    Palacios, J M; Mengod, G

    2018-03-01

    This is a historical account of how receptors for neurotransmitters and drugs got to be seen at the regional, cellular, and subcellular levels in brain, in the years going from the end of the World War II until the collapse of the Soviet Union, the Cold War (1945-1991). The realization in the US of the problem of mental health care, as a consequence of the results of medical evaluation for military service during the war, let the US Government to act creating among other things the National Institute for Mental Health (NIMH). Coincident with that, new drug treatments for these disorders were introduced. War science also created an important number of tools and instruments, such as the radioisotopes, that played a significant role in the development of our story. The scientific context was marked by the development of Biochemistry, Molecular Biology and the introduction in the early 80's of the DNA recombinant technologies. The concepts of chemical neurotransmission in the brain and of receptors for drugs and transmitters, although proposed before the war, where not generally accepted. Neurotransmitters were identified and the mechanisms of biosynthesis, storage, release and termination of action by mechanisms such as reuptake, elucidated. Furthermore, the synapse was seen with the electron microscope and more important for our account, neurons and their processes visualized in the brain first by fluorescence histochemistry, then using radioisotopes and autoradiography, and later by immunohistochemistry (IHC), originating the Chemical Neuroanatomy. The concept of chemical neurotransmission evolved from the amines, expanded to excitatory and inhibitory amino acids, then to neuropeptides and finally to gases and other "atypical" neurotransmitters. In addition, coexpression of more than one transmitter in a neuron, changed the initial ideas of neurotransmission. The concept of receptors for these and other messengers underwent a significant evolution from an abstract

  3. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    OpenAIRE

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studie...

  4. Identification of catecholamine neurotransmitters using fluorescence sensor array.

    Science.gov (United States)

    Ghasemi, Forough; Hormozi-Nezhad, M Reza; Mahmoudi, Morteza

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25-30 μmol L(-1). Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  6. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  7. Beta-Sulfonamido Functionalized Aspartate Analogs as Excitatory Amino Acid Transporter Inhibitors: Distinct Subtype-Selectivity Profiles Arising from Subtle Structural Differences

    DEFF Research Database (Denmark)

    Hansen, Jacob Christian; Bjørn-Yoshimoto, Walden Emil; Bisballe, Niels

    2016-01-01

    In this study inspired by previous work on 3-substituted Asp analogues, we designed and synthesized a total of 32 β-sulfonamide Asp analogues and characterized their pharmacological properties at the excitatory amino acid transporter subtypes EAAT1, EAAT2, and EAAT3. In addition to several potent...

  8. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Dai Mitsushima

    2015-01-01

    Full Text Available Although the hippocampus is processing temporal and spatial information in particular context, the encoding rule creating memory is completely unknown. To examine the mechanism, we trained rats on an inhibitory avoidance (IA task, a hippocampus-dependent rapid one-trial contextual learning paradigm. By combining Herpes virus-mediated in vivo gene delivery with in vitro patch-clamp recordings, I reported contextual learning drives GluR1-containing AMPA receptors into CA3-CA1 synapses. The molecular event is required for contextual memory, since bilateral expression of delivery blocker in CA1 successfully blocked IA learning. Moreover, I found a logarithmic correlation between the number of delivery blocking cells and learning performance. Considering that one all-or-none device can process 1-bit of data per clock (Nobert Wiener 1961, the logarithmic correlation may provides evidence that CA1 neurons transmit essential data of contextual information. Further, I recently reported critical role of acetylcholine as an intrinsic trigger of learning-dependent synaptic plasticity. IA training induced ACh release in CA1 that strengthened not only AMPA receptor-mediated excitatory synapses, but also GABAA receptor-mediated inhibitory synapses on each CA1 neuron. More importantly, IA-trained rats showed individually different excitatory and inhibitory synaptic inputs with wide variation on each CA1 neuron. Here I propose a new hypothesis that the diversity of synaptic inputs on CA1 neurons may depict cell-specific outputs processing experienced episodes after training.

  9. Repeated Neck Restraint Stress Bidirectionally Modulates Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus-dependent Memory Task.

    Science.gov (United States)

    Spyrka, Jadwiga; Hess, Grzegorz

    2018-05-21

    The consequences of stress depend on characteristics of the stressor, including the duration of exposure, severity, and predictability. Exposure of mice to repeated neck restraint has been shown to bidirectionally modulate the potential for long-term potentiation (LTP) in the dentate gyrus (DG) in a manner dependent on the number of restraint repetitions, but the influence of repeated brief neck restraint on electrophysiology of single DG neurons has not yet been investigated. Here, we aimed at finding the effects of 1, 3, 7, 14, or 21 daily neck restraint sessions lasting 10 min on electrophysiological characteristics of DG granule cells as well as excitatory and inhibitory synaptic inputs to these neurons. While the excitability of DG granule cells and inhibitory synaptic transmission were unchanged, neck restraint decreased the frequency of spontaneous excitatory currents after three repetitions but enhanced it after 14 and 21 repetitions. The consequences of repeated neck restraint on hippocampus-dependent memory were investigated using the object location test (OLT). Neck restraint stress impaired cognitive performance in the OLT after three repetitions but improved it after 14 and 21 repetitions. Mice subjected to three neck restraint sessions displayed an increase in the measures of depressive and anxiety-like behaviors, however, prolongation of the exposure to neck restraint resulted in a gradual decline in the intensity of these measures. These data indicate that stress imposed by an increasing number of repeated neck restraint episodes bidirectionally modulates both excitatory synaptic transmission in the DG and cognitive performance in the object location memory task. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Science.gov (United States)

    Qi, Yanmei; Mair, Norbert; Kummer, Kai K.; Leitner, Michael G.; Camprubí-Robles, María; Langeslag, Michiel; Kress, Michaela

    2018-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception. PMID:29479306

  11. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2018-02-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.

  12. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    Science.gov (United States)

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ketamine attenuates the glutamatergic neurotransmission in the ventral posteromedial nucleus slices of rats.

    Science.gov (United States)

    Fu, Bao; Liu, Chengxi; Zhang, Yajun; Fu, Xiaoyun; Zhang, Lin; Yu, Tian

    2017-08-23

    Ketamine is a frequently used intravenous anesthetic, which can reversibly induce loss of consciousness (LOC). Previous studies have demonstrated that thalamocortical system is critical for information transmission and integration in the brain. The ventral posteromedial nucleus (VPM) is a critical component of thalamocortical system. Glutamate is an important excitatory neurotransmitter in the brain and may be involved in ketamine-induced LOC. The study used whole-cell patch-clamp to observe the effect of ketamine (30 μM-1000 μM) on glutamatergic neurotransmission in VPM slices. Ketamine significantly decreased the amplitude of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs), but only higher concentration of ketamine (300 μM and 1000 μM) suppressed the frequency of sEPSCs. Ketamine (100 μM-1000 μM) also decreased the amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs), without altering the frequency. In VPM neurons, ketamine attenuates the glutamatergic neurotransmission mainly through postsynaptic mechanism and action potential may be involved in the process.

  14. Nondopaminergic neurotransmission in the pathophysiology of Tourette syndrome.

    Science.gov (United States)

    Udvardi, Patrick T; Nespoli, Ester; Rizzo, Francesca; Hengerer, Bastian; Ludolph, Andrea G

    2013-01-01

    A major pathophysiological role for the dopaminergic system in Tourette's syndrome (TS) has been presumed ever since the discovery that dopamine-receptor antagonists can alleviate tics. Especially recent molecular genetic studies, functional imaging studies, and some rare postmortem studies have given more and more hints that other neurotransmitter systems are involved as well. Dysfunction in the dopamine metabolism-in particular during early development-might lead to counter-regulations in the other systems or vice versa. This chapter will give an overview of the studies that prove the involvement of other neurotransmitter systems such as the major monoaminergic neurotransmitters norepinephrine, serotonin, and histamine; the most important excitatory neurotransmitter, the amino acid glutamate; the major inhibitory neurotransmitter y-aminobutyric acid, as well as acetylcholine, endocannabinoid, corticoid; and others. These studies will hopefully lead to fundamental advances in the psychopharmacological treatment of TS. While tic disorders have been previously treated mainly with dopamine antagonists, some authors already favor alpha-agonists. Clinical trials with glutamate agonists and antagonists and compounds influencing the histaminergic system are currently being conducted. Since the different neurotransmitter systems consist of several receptor subtypes which might mediate different effects on locomotor activity, patients with TS may respond differentially to selective agonists or antagonists. Effects of agonistic or antagonistic compounds on tic symptoms might also be dose dependent. Further studies will lead to a broader spectrum of psychopharmacological treatment options in TS. © 2013 Elsevier Inc. All rights reserved.

  15. Drugs acting on amino acid neurotransmitters.

    Science.gov (United States)

    Meldrum, B S

    1986-01-01

    The most potent agents currently available for suppressing myoclonic activity in animals and humans act to enhance GABA-mediated inhibition and/or to diminish amino acid-induced excitation. Postsynaptic GABA-mediated inhibition plays an important role at the cortical level, diminishing the effect of augmented afferent activity and preventing pathologically enhanced output. Enhancement of GABAergic inhibition, principally at the cortical level but also at lower levels, by clonazepam and by valproate appears to be a predominant element in their antimyoclonic action. Studies in various animal models, including photically induced myoclonus in the baboon, P papio, indicate the value of other approaches to enhancing GABA-mediated inhibition. Among such approaches meriting evaluation in humans are inhibition of GABA-transaminase activity by gamma-vinyl GABA and action at some of the benzodiazepine receptors to enhance the action of GABA, as by the novel anticonvulsant beta-carbolines. Excitatory transmission mediated by dicarboxylic amino acids appears to play a role in myoclonus, especially at the spinal level, but also in the brainstem, cerebellum, basal ganglia, and cortex. Among various novel agents that act at the postsynaptic receptor site to antagonize such excitation, those specifically blocking excitation induced by aspartate and/or NMDA prevent myoclonic activity in a wide range of animal models. Further research is required before such agents can be evaluated in humans.

  16. The effects of ecstasy on neurotransmitter systems: a review on the findings of molecular imaging studies.

    Science.gov (United States)

    Vegting, Yosta; Reneman, Liesbeth; Booij, Jan

    2016-10-01

    Ecstasy is a commonly used psychoactive drug with 3,4-methylenedioxymethamphetamine (MDMA) as the main content. Importantly, it has been suggested that use of MDMA may be neurotoxic particularly for serotonergic (5-hydroxytryptamine (5-HT)) neurons. In the past decades, several molecular imaging studies examined directly in vivo the effects of ecstasy/MDMA on neurotransmitter systems. The objective of the present study is to review the effects of ecstasy/MDMA on neurotransmitter systems as assessed by molecular imaging studies in small animals, non-human primates and humans. A search in PubMed was performed. Eighty-eight articles were found on which inclusion and exclusion criteria were applied. Thirty-three studies met the inclusion criteria; all were focused on the 5-HT or dopamine (DA) system. Importantly, 9 out of 11 of the animal studies that examined the effects of MDMA on 5-HT transporter (SERT) availability showed a significant loss of binding potential. In human studies, this was the case for 14 out of 16 studies, particularly in heavy users. In abstinent users, significant recovery of SERT binding was found over time. Most imaging studies in humans that focused on the DA system did not find any significant effect of ecstasy/MDMA use. Preclinical and clinical molecular imaging studies on the effects of ecstasy/MDMA use/administration on neurotransmitter systems show quite consistent alterations of the 5-HT system. Particularly, in human studies, loss of SERT binding was observed in heavy ecstasy users, which might reflect 5-HT neurotoxicity, although alternative explanations (e.g. down-regulation of the SERT) cannot be excluded.

  17. Mechanical Regulation in Cell Division and in Neurotransmitter Release

    Science.gov (United States)

    Thiyagarajan, Sathish

    During their lifecycle, cells must produce forces which play important roles in several subcellular processes. Force-producing components are organized into macromolecular assemblies of proteins that are often dynamic, and are constructed or disassembled in response to various signals. The forces themselves may directly be involved in subcellular mechanics, or they may influence mechanosensing proteins either within or outside these structures. These proteins play different roles: they may ensure the stability of the force-producing structure, or they may send signals to a coupled process. The generation and sensing of subcellular forces is an active research topic, and this thesis focusses on the roles of these forces in two key areas: cell division and neurotransmitter release. The first part of the thesis deals with the effect of force on cell wall growth regulation during division in the fission yeast Schizosaccharomyces pombe, a cigar-shaped, unicellular organism. During cytokinesis, the last stage of cell division in which the cell physically divides into two, a tense cytokinetic ring anchored to the cellular membrane assembles and constricts, accompanied by the inward centripetal growth of new cell wall, called septum, in the wake of the inward-moving membrane. The contour of the septum hole maintains its circularity as it reduces in size--an indication of regulated growth. To characterize the cell wall growth process, we performed image analysis on contours of the leading edge of the septum obtained via fluorescence microscopy in the labs of our collaborators. We quantified the deviations from circularity using the edge roughness. The roughness was spatially correlated, suggestive of regulated growth. We hypothesized that the cell wall growers are mechanosensitive and respond to the force exerted by the ring. A mathematical model based on this hypothesis then showed that this leads to corrections of roughness in a curvature-dependent fashion. Thus, one of

  18. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters

    Directory of Open Access Journals (Sweden)

    M.V. Fogaça

    2012-04-01

    Full Text Available This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO and endocannabinoids (eCBs play an important role in the regulation of aversive responses in the periaqueductal gray (PAG. Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1 receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1 receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.

  19. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    Science.gov (United States)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  20. Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study.

    Science.gov (United States)

    Korchounov, Alexei; Ziemann, Ulf

    2011-08-01

    Long-term potentiation (LTP) of synaptic efficacy is considered a fundamental mechanism of learning and memory. At the cellular level a large body of evidence demonstrated that the major neuromodulatory neurotransmitters dopamine (DA), norepinephrine (NE), and acetylcholine (ACh) influence LTP magnitude. Noninvasive brain stimulation protocols provide the opportunity to study LTP-like plasticity at the systems level of human cortex. Here we applied paired associative stimulation (PAS) to induce LTP-like plasticity in the primary motor cortex of eight healthy subjects. In a double-blind, randomized, placebo-controlled, crossover design, the acute effects of a single oral dose of the neuromodulatory drugs cabergoline (DA agonist), haloperidol (DA antagonist), methylphenidate (indirect NE agonist), prazosine (NE antagonist), tacrine (ACh agonist), and biperiden (ACh antagonist) on PAS-induced LTP-like plasticity were examined. The antagonists haloperidol, prazosine, and biperiden depressed significantly the PAS-induced LTP-like plasticity observed under placebo, whereas the agonists cabergoline, methylphenidate, and tacrine had no effect. Findings demonstrate that antagonists in major neuromodulatory neurotransmitter systems suppress LTP-like plasticity at the systems level of human cortex, in accord with evidence of their modulating action of LTP at the cellular level. This provides further supportive evidence for the known detrimental effects of these drugs on LTP-dependent mechanisms such as learning and memory.

  1. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.

    Science.gov (United States)

    Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C

    2015-09-23

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.

  2. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors

    Directory of Open Access Journals (Sweden)

    Cuong M. Nguyen

    2015-09-01

    Full Text Available In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu. A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.

  3. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula

    2006-01-01

    Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was inves......Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis...... was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity...... significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx...

  4. Reversible cortical blindness in a case of hepatic encephalopathy

    Directory of Open Access Journals (Sweden)

    Amlan Kanti Biswas

    2016-01-01

    Full Text Available Hepatic encephalopathy is a frequent and often fatal manifestation of chronic liver disease. The pathogenesis of hepatic encephalopathy is believed to be multifactorial including impaired blood-brain barrier function, imbalance between the excitatory and inhibitory neurotransmitters in cortex, accumulation of various toxic and false neurotransmitters, and lack of nutrients like oxygen and glucose. Signs and symptoms of hepatic encephalopathy varies and commonly ranges from personality changes, disturbed consciousness, sleep pattern alternation, intellectual deterioration, speech disturbances, asterixis to frank coma and even death. Reversible or transient cortical blindness is rare manifestation of hepatic encephalopathy. It may even precede the phase of altered consciousness in such patients. Very few similar cases have been reported worldwide. Hence, we would like to report a case of transient cortical blindness in a patient of hepatic encephalopathy.

  5. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

    DEFF Research Database (Denmark)

    Frigerio, Francesca; Karaca, Melis; De Roo, Mathias

    2012-01-01

    Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH...... was questioned here by generation of CNS-specific GDH-null mice (CnsGlud1(-/-)); which were viable, fertile and without apparent behavioral problems. GDH immunoreactivity as well as enzymatic activity were absent in Cns-Glud1(-/-) brains. Immunohistochemical analyses on brain sections revealed that the pyramidal...... oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up-regulation of astrocyte-type glutamate and glutamine...

  6. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.

    Science.gov (United States)

    Bledsoe, Jonathan M; Kimble, Christopher J; Covey, Daniel P; Blaha, Charles D; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M; Horne, April; Bennet, Kevin E; Lee, Kendall H; Garris, Paul A

    2009-10-01

    Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. The FSCV study consisted of a triangle wave scanned between -0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 mum) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by approximately 100 microm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2

  7. ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations.

    Science.gov (United States)

    Cheng, Aifang; Zhao, Teng; Tse, Kai-Hei; Chow, Hei-Man; Cui, Yong; Jiang, Liwen; Du, Shengwang; Loy, Michael M T; Herrup, Karl

    2018-01-09

    ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1 + ) vesicles, while ATR associates only with inhibitory (VGAT + ) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.

  8. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  9. Caffeine and Cannabis Effects on Vital Neurotransmitters and Enzymes in the Brain Tissue of Juvenile Experimental Rats.

    Science.gov (United States)

    Owolabi, J O; Olatunji, S Y; Olanrewaju, A J

    2017-05-01

    Caffeine and cannabis are globally consumed and abused psychoactive substances. While caffeine is legally used in various forms, including in tea and coffee as beverages, it is also consumed in soda and energy drinks as additives. Cannabis, on the other hand, is considered illegal in most countries; albeit, it is being consumed globally particularly by adolescents. The adolescent stage marks a critical stage of brain development and maturation. Influences of agents on the brain at this stage may affect neuronal structural and functional attributes. To this end, the current experiment considered the effects of cannabis and caffeine on selected key neurotransmitters and enzymes in the brain tissues after regimented caffeine and cannabis treatment for 21 days. A total of 72 juvenile Wistar rats that were approximately 40 days old were divided into 6 groups A-F. The group A served as the control. Other groups were administered various dosages of caffeine or cannabis in distilled water, using oral gavages as follows: group B animals received 100 mg/kg body weight of caffeine, group C animals received 50 mg/kg body weight of caffeine, group D animals received 500 mg/kg body weight of cannabis, group E animals received 200 mg/kg body weight of cannabis, and group F received a low dose of cannabis (200 mg/kg body weight) plus a low dose of caffeine (50 mg/kg body weight). The animals were killed by cervical dislocation 24 h after the last administration. The brain tissues were excised and homogenized. The enzymes cytochrome C oxidase and glucose-6-phosphate dehydrogenase were assayed to observe tissue energy metabolism while the neurotransmitters gamma-amino butyric acid (GABA), glutamate, and dopamine were assayed to observe the effects of the psychoactive substances on their activities relative to mental activities. GABA, glutamate, and dopamine were generally higher in the treated groups of animals. The levels of G-6-PDH were higher in all treated animals' brains

  10. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression.

    Science.gov (United States)

    Gregg, T R; Siegel, A

    2001-01-01

    1. Violence and aggression are major public health problems. 2. The authors have used techniques of electrical brain stimulation, anatomical-immunohistochemical techniques, and behavioral pharmacology to investigate the neural systems and circuits underlying aggressive behavior in the cat. 3. The medial hypothalamus and midbrain periaqueductal gray are the most important structures mediating defensive rage behavior, and the perifornical lateral hypothalamus clearly mediates predatory attack behavior. The hippocampus, amygdala, bed nucleus of the stria terminalis, septal area, cingulate gyrus, and prefrontal cortex project to these structures directly or indirectly and thus can modulate the intensity of attack and rage. 4. Evidence suggests that several neurotransmitters facilitate defensive rage within the PAG and medial hypothalamus, including glutamate, Substance P, and cholecystokinin, and that opioid peptides suppress it; these effects usually depend on the subtype of receptor that is activated. 5. A key recent discovery was a GABAergic projection that may underlie the often-observed reciprocally inhibitory relationship between these two forms of aggression. 6. Recently, Substance P has come under scrutiny as a possible key neurotransmitter involved in defensive rage, and the mechanism by which it plays a role in aggression and rage is under investigation. 7. It is hoped that this line of research will provide a better understanding of the neural mechanisms and substrates regulating aggression and rage and thus establish a rational basis for treatment of disorders associated with these forms of aggression.

  11. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  12. Memory, Plasticity and Sleep - A role for calcium permeable AMPA receptors?

    Directory of Open Access Journals (Sweden)

    Jason D Shepherd

    2012-04-01

    Full Text Available Experience shapes and molds the brain throughout life. These changes in neuronal circuits are produced by a myriad of molecular and cellular processes. Simplistically, circuits are modified through changes in neurotransmitter release or through neurotransmitter detection at synapses. The predominant neurotransmitter receptor in excitatory transmission, the AMPA-type glutamate receptor, is exquisitely sensitive to changes in experience and synaptic activity. These ion channels are usually impermeable to calcium, a property conferred by the GluA2 subunit. However, GluA2-lacking AMPARs are permeable to calcium and have recently been shown to play a unique role in synaptic function. In this review, I will describe new findings on the role of calcium permeable AMPARs (CP-AMPARs in experience-dependent and synaptic plasticity. These studies suggest that CP-AMPARs play a prominent role in maintaining circuits in a labile state where further plasticity can occur, thus promoting metaplasticity. Moreover, the abnormal expression of CP-AMPARs has been implicated in drug addiction and memory disorders and thus may be a novel therapeutic target.

  13. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal–Glial Stimulation of Excitatory GABA Circuits

    Science.gov (United States)

    Haam, Juhee; Halmos, Katalin C.; Di, Shi

    2014-01-01

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal–glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal–glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal–glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis. PMID:24790191

  14. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-11-01

    Full Text Available Background: The excitatory amino-acid transporters EAAT1 and EAAT2 clear glutamate from the synaptic cleft and thus terminate neuronal excitation. The carriers are subject to regulation by various kinases. The EAAT3 isoform is regulated by mammalian target of rapamycin (mTOR. The present study thus explored whether mTOR influences transport by EAAT1 and/or EAAT2. Methods: cRNA encoding wild type EAAT1 (SLC1A3 or EAAT2 (SLC1A2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding mTOR. Dual electrode voltage clamp was performed in order to determine electrogenic glutamate transport (IEAAT. EAAT2 protein abundance was determined utilizing chemiluminescence. Results: Appreciable IEAAT was observed in EAAT1 or EAAT2 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of mTOR. Coexpression of mTOR increased significantly the maximal IEAAT in EAAT1 or EAAT2 expressing oocytes, without significantly modifying affinity of the carriers. Moreover, coexpression of mTOR increased significantly EAAT2 protein abundance in the cell membrane. Conclusions: The kinase mTOR up-regulates the excitatory amino acid transporters EAAT1 and EAAT2.

  15. Locally excitatory, globally inhibitory oscillator networks: theory and application to scene segmentation

    Science.gov (United States)

    Wang, DeLiang; Terman, David

    1995-01-01

    A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.

  16. Effects of spinal transection on presynaptic markers for glutamatergic neurons in the rat

    International Nuclear Information System (INIS)

    Singer, H.S.; Coyle, J.T.; Frangia, J.; Price, D.L.

    1981-01-01

    To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release of L-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinity glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process for L-[3H]glutamate resulted in elevation of Vmax with no significant alteration in KT as compared to age-matched controls. Depolarization-induced release of L-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat

  17. Bioanalysis of a panel of neurotransmitters and their metabolites in plasma samples obtained from pediatric patients with neuroblastoma and Wilms' tumor.

    Science.gov (United States)

    Konieczna, Lucyna; Roszkowska, Anna; Stachowicz-Stencel, Teresa; Synakiewicz, Anna; Bączek, Tomasz

    2018-02-01

    This paper details the quantitative analysis of neurotransmitters, including dopamine (DA), norepinephrine (NE), epinephrine (E), and serotonin (5-HT), along with their respective precursors and metabolites in children with solid tumors: Wilms' tumor (WT) and neuroblastoma (NB). A panel of neurotransmitters was determined with the use of dispersive liquid-liquid microextraction (DLLME) technique combined with liquid-chromatography mass spectrometry (LC-MS/MS) in plasma samples obtained from a group of pediatric subjects with solid tumors and a control group of healthy children. Next, statistical univariate analysis (t-test) and multivariate analysis (Principal Component Analysis) were performed using chromatographic data. The levels of tyrosine (Tyr) and tryptophan (Trp) (the precursors of analyzed neurotransmitters) as well as 3,4-dihydroxyphenylacetic acid (DOPAC) (a product of metabolism of DA) were significantly higher in the plasma samples obtained from pediatric patients with WT than in the samples taken from the control group. Moreover, statistically significant differences were observed between the levels of 5-HT and homovanillic acid (HVA) in the plasma samples from pediatric patients with solid tumors and the control group. However, elevated levels of these analytes did not facilitate a clear distinction between pediatric patients with WT and those with NB. Nonetheless, the application of advanced statistical tools allowed the healthy controls to be differentiated from the pediatric oncological patients. The identification and quantification of a panel of neurotransmitters as potential prognostic factors in selected childhood malignancies may provide clinically relevant information about ongoing metabolic alterations, and it could potentially serve as an adjunctive strategy in the effective diagnosis and treatment of solid tumors in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modulation of electrogenic transport processes in the porcine proximal colon by enteric neurotransmitters.

    Science.gov (United States)

    Pfannkuche, H; Mauksch, A; Gäbel, G

    2012-06-01

    The aim of our study was to evaluate the involvement of essential pro- and antisecretory neurotransmitters in regulation of secretion in porcine proximal colon. Choline acetyltransferase (ChAT), nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP), substance P (SP), somatostatin (SOM) and neuropeptide Y (NPY) were located immunohistochemically in the epithelium and subepithelial layer. Modulation of epithelial secretion was studied in Ussing chambers. Application of carbachol (CA), sodium nitroprussid (SNP), VIP and SP but not of NPY or SOM resulted in a chloride dependent increase in short circuit current (I(sc) ). I(sc) increase induced by CA, VIP or SNP was not altered by preincubation with tetrodotoxin or indomethacin. In contrast, SP-induced I(sc) increase was diminished by preincubation with tetrodotoxin, indomethacin, L-nitro-arginin-methyl-ester, and atropine but not hexamethonium. Simultaneous application of CA and VIP, or CA and SNP increased the I(sc) stronger as expected. Applying SP/CA led to a smaller increase in I(sc) as calculated. It is concluded that mainly prosecretory neurotransmitters are involved in regulation of colonic secretion. Cross-potentiations of acetylcholine and nitric oxide and acetylcholine and VIP suggest activation of different intracellular cascades. Similar intracellular pathways may be stimulated by acetylcholine and SP, thus preventing an additive effect of the transmitters. © 2011 Blackwell Verlag GmbH.

  19. Do Proxies for the Neurotransmitter Cortisol Predict Adaptation to Life with Chronic Pain?

    Science.gov (United States)

    Deamond, Wade

    Among the numerous difficulties encountered by chronic pain patients, impulsive and dysfunctional decision-making complicate their already difficult life situations yet remains relatively understudied. This study examined a recently published neurobiological decision making model that identifies eight specific neurotransmitters and hormones (Dopamine, Testosterone, Endogenous Opioids Glutamate, Serotonin, Norepinephrine, Cortisol, and GABA) linked to unsound decision making related to cognitive, motivational and emotional dysregulation (Nussbaum et al., 2011) (see Appendix 2). The Perceived Stress Scale (PSS), a proxy for the cortisol element in the pharmacological decision making model was analyzed for the neurotransmitter's relationship to functionality and quality of life in a group of 37 chronic pain patients. Participants were comprised of males and females ranging from 23 to 52 years of age and were classified with respect to levels of adjustment to living with chronic pain based on the Quality of Life Scale (QLS), the Dartmouth WONCA COOP Charts and the Global Assessment of Functioning (GAF). The Iowa Gambling Task (IGT) and Frontal System Behavioral Scale (FSBS) measured decision making related to immediate gratification and daily living respectively. Results suggest that emotional dysregulation, as measured by the PSS is a significant predictor for adaptation to life with chronic pain and the PSS is superior to predicting adaptation to life with chronic pain than reported levels of pain as measured by the McGill Pain Questionnaire.

  20. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.

    Directory of Open Access Journals (Sweden)

    H Francis Song

    2016-02-01

    Full Text Available The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, "trained" networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale's principle, which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural

  1. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework

    Science.gov (United States)

    Wang, Xiao-Jing

    2016-01-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, “trained” networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale’s principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity

  2. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Christian Bonansco

    2016-01-01

    Full Text Available Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  3. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory...... synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...

  4. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2014-01-01

    Familial hemiplegic migraine type 1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. In FHM1 knockin mice, excitatory neurotransmission at cortical pyramidal cell synapses is enhanced, but inhibitory neurotransmission at connected pairs of fast-spiking (FS) interneurons and pyramidal cells is unaltered, despite being initiated by CaV2.1 channels. The mechanism underlying the unaltered GABA release at cortical FS interneuron synapses remains unknown. Here, we show that the FHM1 R192Q mutation does not affect inhibitory transmission at autapses of cortical FS and other types of multipolar interneurons in microculture from R192Q knockin mice, and investigate the underlying mechanism. Lowering the extracellular [Ca2+] did not reveal gain-of-function of evoked transmission neither in control nor after prolongation of the action potential (AP) with tetraethylammonium, indicating unaltered AP-evoked presynaptic calcium influx at inhibitory autapses in FHM1 KI mice. Neither saturation of the presynaptic calcium sensor nor short duration of the AP can explain the unaltered inhibitory transmission in the mutant mice. Recordings of the P/Q-type calcium current in multipolar interneurons in microculture revealed that the current density and the gating properties of the CaV2.1 channels expressed in these interneurons are barely affected by the FHM1 mutation, in contrast with the enhanced current density and left-shifted activation gating of mutant CaV2.1 channels in cortical pyramidal cells. Our findings suggest that expression of specific CaV2.1 channels differentially sensitive to modulation by FHM1 mutations in inhibitory and excitatory cortical neurons underlies the gain-of-function of excitatory but unaltered inhibitory synaptic transmission and the likely consequent dysregulation of the cortical excitatory–inhibitory balance in FHM1. PMID:24907493

  5. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Pennelope K. Blakely

    2015-10-01

    Full Text Available The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC and SPARC-like 1 (SPARCL1, are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal grey matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal grey matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis.

  6. Immunohistochemical profile of various neurotransmitters, neurotrophins and MIB-1 in cholesteatomas of the petrous bone.

    Science.gov (United States)

    Artico, Marco; Bronzetti, Elena; Lo Vasco, Vincenza Rita; Ionta, Brunella; Alicino, Valentina; D'Ambrosio, Anna; Magliulo, Giuseppe

    2008-01-01

    Compared to the normal epidermal epithelium, cholesteatomas have altered growth properties characterized by the excessive growth of keratinocytes leading to mucosal destruction. Either congenital or acquired, these lesions, which grow in the middle ear space, the petrous apex or the mastoid of temporal bones, are mostly considered benign skin tumoral lesions. However, many questions remain concerning their pathophysiology. Numerous studies have been proposed to identify those cholesteatoma lesions at risk of recurrence, a possible event that may cause hearing loss. We examined patients with petrous apex or mastoid cholesteatoma in order to analyze the expression of various neurotransmitters, neurotrophins and their receptors and the Ki-67 antigen for identification of a possible relationship between clinical outcome and histopathological behaviour in terms of the proliferative activity of cholesteatomas. Expression of the analyzed molecules was studied using immunohistochemical methods in seven adult patients with petrous apex cholesteatoma who underwent surgical removal of the lesion. Our results, in accordance with published data, confirm that Molecular Immunology Borstel-1 (MIB-1) and certain neurotransmitters could be useful in the prognostic evaluation of the risk of recurrence of aggressive forms of cholesteatoma.

  7. The influence of aripiprazole and olanzapine on neurotransmitters level in frontal cortex of prenatally stressed rats.

    Science.gov (United States)

    Ratajczak, P; Kus, K; Gołembiowska, K; Noworyta-Sokołowska, K; Woźniak, A; Zaprutko, T; Nowakowska, E

    2016-09-01

    The study aims to verify whether alterations in the level of neurotransmitters have occurred in prenatally stressed rats (animal model of schizophrenia), and whether aripiprazole (ARI) and olanzapine (OLA) modify this level. The effects of ARI (1.5mg/kg) and OLA (0.5mg/kg) were studied by means of microdialysis in freely moving rats (observation time 120min). The level of neurotransmitters (DA, 5-HT, NA) and their metabolites (DOPAC, HVA, 5-HIAA) was analyzed by HPLC with coulochemical detection. Obtained results indicate that after a single administration of ARI and OLA in the prenatally stressed rats the increase of DA, DOPAC, and 5-HT was observed. In turn ARI administration increase the level of HVA and 5-HIAA and also decrease the level of NA. After OLA administration the level of NA and HVA increased and no significant change in 5-HIAA was observed. Alterations observed as a result of ARI and OLA administration may be pivotal in identifying animal models of mental disorders and in the analysis of neuroleptics effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  9. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    International Nuclear Information System (INIS)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-01-01

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH 2 -terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions

  10. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  11. Influences of combined traffic noise on the ability of learning and memory in mice

    Directory of Open Access Journals (Sweden)

    Guo-Qing Di

    2018-01-01

    Full Text Available Objective: The present study aimed to evaluate the influences of combined traffic noise (CTN on the ability of learning and memory in mice. Materials and Methods: The Institute of Cancer Research (ICR mice were exposed to CTN from highways and high-speed railways for 42 days, whose day–night equivalent continuous A-weighted sound pressure level (Ldn was 70 dB(A. On the basis of behavioral reactions in Morris water maze (MWM and the concentrations of amino acid neurotransmitters in the hippocampus, the impacts of CTN on learning and memory in mice were examined. Results: The MWM test showed that the ability of learning and memory in mice was improved after short-term exposure (6–10 days, the first batch to 70 dB(A CTN, which showed the excitatory effect of stimuli. Long-term exposure (26–30 days, the third batch; 36–40 days, the fourth batch led to the decline of learning and memory ability, which indicated the inhibitory effect of stimuli. Assays testing amino acid neurotransmitters showed that the glutamate level of the experimental group was higher than that of the control group in the first batch. However, the former was lower than the latter in the third and fourth batches. Both, behavioral reactions and the concentrations of amino acid neurotransmitters, testified that short-term exposure and long-term exposure resulted in excitatory effect and inhibitory effect on the ability of learning and memory, respectively. Conclusion: The effects of 70 dB(A CTN on the ability of learning and memory were closely related to the exposure duration. Furthermore, those effects were regulated and controlled by the level of glutamate in the hippocampus.

  12. Expression of neurotransmitters and neurotrophins in neurogenic inflammation of the rat retina

    Directory of Open Access Journals (Sweden)

    E Bronzetti

    2009-08-01

    Full Text Available Antidromic stimulation of the rat trigeminal ganglion triggers the release of substance P (SP and calcitonin gene-related peptide (CGRP from sensory nerve terminals of the capsaicin sensitive C-fibers. These pro-inflammatory neuropeptides produce a marked hyperemia in the anterior segment of the eye, accompanied by increased intraocular pressure, breakdown of the blood-aqueous barrier and myosis. To assess the effects of neurogenic inflammation on the retina, specifically on the immunostaining of neurotransmitters and neurotrophins, as well as on the expression of neurotrophin receptors in the retina. RT-PCR was also accomplished in control and stimulated animals to confirm the immunohistochemical results. In the electrically stimulated eyes, immunostaining for SP, CGRP, VIP and nNOS demonstrated a marked increase in the RPE/POS (Retinal Pigment Epithelium/Photoreceptor Outer Segments, in the inner and outer granular layers and in the ganglion cells in comparison to the control eyes. CGRP and SP were found increased in stimulated animals and this result has been confirmed by RT- PCR. Changes in neurotrophin immunostaining and in receptor expression were also observed after electric stimulation of trigeminal ganglia. Decrease of BDNF and NT4 in the outer and inner layers and in ganglion cells was particularly marked. In stimulated rat retinas immunostaining and RT-PCR showed a NGF expression increase. Neurotrophin receptors remained substantially unchanged. These studies demonstrated, for the first time, that antidromic stimulation of the trigeminal ganglion and subsequent neurogenic inflammation affect immunostaining of retinal cell neurotransmitter/ neuropeptides and neurotrophins as well as the expression of neurotrophin receptors.

  13. Role of Ca+2 and other second messengers in excitatory amino acid receptor mediated neurodegeneration: clinical perspectives

    DEFF Research Database (Denmark)

    Schousboe, A; Belhage, B; Frandsen, A

    1997-01-01

    Neurodegeneration associated with neurological disorders such as epilepsy, Huntington's Chorea, Alzheimer's disease, and olivoponto cerebellar atrophy or with energy failure such as ischemia, hypoxia, and hypoglycemia proceeds subsequent to overexposure of neurons to excitatory amino acids of which...... glutamate and aspartate may be quantitatively the most important. The toxic action of glutamate and aspartate is mediated through activation of glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA subtypes. Antagonists for these receptors can act as neuroprotectants both in in vitro model...

  14. Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters

    DEFF Research Database (Denmark)

    Álvarez-Martos, Isabel; Ferapontova, Elena

    2016-01-01

    Cellular and brain metabolism of dopamine can be correlated with a number of neurodegenerative disorders, and as such, in vivo analysis of dopamine in the presence of structurally related neurotransmitters (NT) represents a holy grail of neuroscience. Interference from those NTs generally does...

  15. A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons

    DEFF Research Database (Denmark)

    Borgius, Lotta; Restrepo, C. Ernesto; Leao, Richardson N.

    2010-01-01

    Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line...... showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior...... colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC...

  16. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  17. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment

    Science.gov (United States)

    Rojas, Donald C.

    2014-01-01

    Glutamate is the major excitatory neurotransmitter in the brain and may be a key neurotransmitter involved in autism. Literature pertaining to glutamate and autism or related disorders (e.g., Fragile X syndrome) is reviewed in this article. Interest in glutamatergic dysfunction in autism is high due to increasing convergent evidence implicating the system in the disorder from peripheral biomarkers, neuroimaging, protein expression, genetics and animal models. Currently, there are no pharmaceutical interventions approved for autism that address glutamate deficits in the disorder. New treatments related to glutamatergic neurotransmission, however, are emerging. In addition, older glutamate-modulating medications with approved indications for use in other disorders are being investigated for re-tasking as treatments for autism. This review presents evidence in support of glutamate abnormalities in autism and the potential for translation into new treatments for the disorder. PMID:24752754

  18. A Preliminary Study of Gene Polymorphisms Involved in the Neurotransmitters Metabolism of a Homogeneous Spanish Autistic Group

    Science.gov (United States)

    Calahorro, Fernando; Alejandre, Encarna; Anaya, Nuria; Guijarro, Teresa; Sanz, Yolanza; Romero, Auxiliadora; Tienda, Pilar; Burgos, Rafael; Gay, Eudoxia; Sanchez, Vicente; Ruiz-Rubio, Manuel

    2009-01-01

    Twin studies have shown a strong genetic component for autism. Neurotransmitters, such as serotonin and catecholamines, have been suggested to play a role in the disease since they have an essential function in synaptogenesis and brain development. In this preliminary study, polymorphism of genes implicated in the serotonergic and dopaminergic…

  19. Brain neurotransmitters in an animal model with postpartum depressive-like behavior.

    Science.gov (United States)

    Avraham, Y; Hants, Y; Vorobeiv, L; Staum, M; Abu Ahmad, Wiessam; Mankuta, D; Galun, E; Arbel-Alon, S

    2017-05-30

    Post-Partum Depression (PPD) occurs in 15% of pregnancies and its patho-physiology is not known. We studied female BALB/c ("depressive") and C57BL/6 (control) mice as a model for PPD and assessed their behavior and correlates with brain neurotransmitters (NTs) - norepinephrine, dopamine, serotonin and intermediates, during the pre-pregnancy (PREP), pregnancy (PREG) and post-partum (PP) periods. Depressive-like behavior was evaluated by the Open Field (OFT), Tail Suspension (TST) and Forced Swim (FST) tests. Neurotransmitters (NTs) were determined in the striatum (care-giving), hippocampus (cognitive function) and hypothalamus (maternal care & eating behavior). In the BALB/c mice, while their performance in all behavioral tests was significantly reduced during pregnancy and P-P indicative of the development of depressive-like responses, no changes were observed in the C57BL/6 mice. Changes in NTs in BALB/C were as follows: PREP, all NTs in the three brain areas were decreased, although an increase in dopamine release was observed in the hippocampus. PREG: No changes were observed in the NTs except for a decrease in 5-HT in the striatum. P-P: striatum, low 5-HT, NE and dopamine; Hippocampus: low 5-HT, NE and high Dopamine; hypothalamus: all NTs increased, especially NE. Following pregnancy and delivery, the BALB/c mice developed depressive-like behavior associated with a significant decrease in 5-HT, dopamine and NE in the striatum and 5-HT and NE in the hippocampus. Dopamine increased in the latter together with a significant increase in all NTs in the hypothalamus. These findings suggest that the development of PPD may be associated with NT changes. Normalization of these alterations may have a role in the treatment of PPD. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An Investigation into the Effects of Peptide Neurotransmitters and Intracellular Second Messengers in Rat Central Neurons in Culture.

    Science.gov (United States)

    1988-02-04

    Purkinje neurons. 3. Neuromodulation of synaptic efficacy in an invertebrate preparation that may be a useful model system for the actions of histamine in...neurotransmitters, neuromodulators , affect brain function. Nerve cells are the functional units of the brain, and changes in neuronal activity are ultimately

  1. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.

    Science.gov (United States)

    Bunzow, J R; Sonders, M S; Arttamangkul, S; Harrison, L M; Zhang, G; Quigley, D I; Darland, T; Suchland, K L; Pasumamula, S; Kennedy, J L; Olson, S B; Magenis, R E; Amara, S G; Grandy, D K

    2001-12-01

    The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.

  2. Neurotransmitter regulation of adult neurogenesis: putative therapeutic targets.

    Science.gov (United States)

    Vaidya, V A; Vadodaria, K C; Jha, S

    2007-10-01

    The evidence that new neuron addition takes place in the mammalian brain throughout adult life has dramatically altered our perspective of the potential for plasticity in the adult CNS. Although several recent reports suggest a latent neurogenic capacity in multiple brain regions, the two major neurogenic niches that retain the ability to generate substantial numbers of new neurons in adult life are the subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone (SGZ) in the hippocampal formation. The discovery of adult neurogenesis has also unveiled a novel therapeutic target for the repair of damaged neuronal circuits. In this regard, understanding the endogenous mechanisms that regulate adult neurogenesis holds promise both for a deeper understanding of this form of structural plasticity, as well as the identification of pathways that can serve as therapeutic targets to manipulate adult neurogenesis. The purpose of the present review is to discuss the regulation of adult neurogenesis by neurotransmitters and to highlight the relevance of these endogenous regulators as targets to modulate adult neurogenesis in a clinical context.

  3. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options.

    Science.gov (United States)

    Croft, Harry A

    2017-12-01

    The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system

  4. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis.

    Directory of Open Access Journals (Sweden)

    Nabanita Chatterjee

    2011-01-01

    Full Text Available The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl, is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.

  6. Repeated injections of piracetam improve spatial learning and increase the stimulation of inositol phospholipid hydrolysis by excitatory amino acids in aged rats

    NARCIS (Netherlands)

    Canonico, P. L.; Aronica, E.; Aleppo, G.; Casabona, G.; Copani, A.; Favit, A.; Nicoletti, F.; Scapagnini, U.

    1991-01-01

    Repeated injections of piracetam (400 mg/kg, i.p. once a day for 15 days) to 16-month old rats led to an improved performance on an 8-arm radial maze, used as a test for spatial learning. This effect was accompanied by a greater ability of excitatory amino acids (ibotenate and glutamate) to

  7. An Excitatory Neural Assembly Encodes Short-Term Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2018-02-01

    Full Text Available Short-term memory (STM is crucial for animals to hold information for a small period of time. Persistent or recurrent neural activity, together with neural oscillations, is known to encode the STM at the cellular level. However, the coding mechanisms at the microcircuitry level remain a mystery. Here, we performed two-photon imaging on behaving mice to monitor the activity of neuronal microcircuitry. We discovered a neuronal subpopulation in the medial prefrontal cortex (mPFC that exhibited emergent properties in a context-dependent manner underlying a STM-like behavior paradigm. These neuronal subpopulations exclusively comprise excitatory neurons and mainly represent a group of neurons with stronger functional connections. Microcircuitry plasticity was maintained for minutes and was absent in an animal model of Alzheimer’s disease (AD. Thus, these results point to a functional coding mechanism that relies on the emergent behavior of a functionally defined neuronal assembly to encode STM.

  8. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    Science.gov (United States)

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. The levels of monoamine neurotransmitters and measures of mental and emotional health in HCV patients treated with ledipasvir (LDV) and sofosbuvir (SOF) with or without ribavirin (RBV).

    Science.gov (United States)

    Golabi, Pegah; Elsheikh, Elzafir; Karrar, Azza; Estep, James M; Younossi, Issah; Stepanova, Maria; Gerber, Lynn; Younossi, Zobair M

    2016-11-01

    Mental and emotional health (MEH) impairment is commonly encountered in hepatitis C patients. Although the exact mechanism remains unknown, alterations in neurotransmitter and cytokine levels maybe associated with hepatitis C virus (HCV)-related MEH issues.The aim of the study was to assess association of serum biomarkers with self-reports of MEH in HCV patients before treatment and after achieving sustained virologic response (SVR).The HCV genotype-1-infected patients who achieved SVR at 12 weeks after treatment with ledipasvir (LDV)/sofosbuvir (SOF) ± ribavirin (RBV) were selected. Frozen serum samples from baseline, end of treatment (EOT), and posttreatment week 4 (PTW4) were used to assay 16 cytokines and monoamine neurotransmitters. Validated self-reports were used to assess MEH.Hundred patients were evaluated. Mean age was 53 years (57% male, 86% white). Compared with baseline, emotional well-being and emotional health significantly increased by EOT, and role emotional, emotional well-being, and emotional health significantly increased at PTW4 in the RBV-containing arm (P neurotransmitters and cytokines were found to be independent predictors of MEH scores in multiple regression analysis.Cytokine and neurotransmitter changes are associated with mental and emotional health. Patient-reported outcome scores change during and after treatment.

  10. New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups

    Czech Academy of Sciences Publication Activity Database

    Palma-Cerda, F.; Auger, C.; Crawford, D.J.; Hodgson, A.C.C.; Reynolds, S.J.; Cowell, J.K.; Swift, K.A.D.; Cais, Ondřej; Vyklický ml., Ladislav; Corrie, J.E.T.; Ogden, D.

    2012-01-01

    Roč. 63, č. 4 (2012), s. 624-634 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA309/07/0271 Grant - others:EC(XE) LSHM-CT-2007-037765 Institutional research plan: CEZ:AV0Z50110509 Keywords : photolysis * glutamate receptors * caged neurotransmitters Subject RIV: ED - Physiology Impact factor: 4.114, year: 2012

  11. Validity of urinary monoamine assay sales under the "spot baseline urinary neurotransmitter testing marketing model".

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2011-01-01

    Spot baseline urinary monoamine assays have been used in medicine for over 50 years as a screening test for monoamine-secreting tumors, such as pheochromocytoma and carcinoid syndrome. In these disease states, when the result of a spot baseline monoamine assay is above the specific value set by the laboratory, it is an indication to obtain a 24-hour urine sample to make a definitive diagnosis. There are no defined applications where spot baseline urinary monoamine assays can be used to diagnose disease or other states directly. No peer-reviewed published original research exists which demonstrates that these assays are valid in the treatment of individual patients in the clinical setting. Since 2001, urinary monoamine assay sales have been promoted for numerous applications under the "spot baseline urinary neurotransmitter testing marketing model". There is no published peer-reviewed original research that defines the scientific foundation upon which the claims for these assays are made. On the contrary, several articles have been published that discredit various aspects of the model. To fill the void, this manuscript is a comprehensive review of the scientific foundation and claims put forth by laboratories selling urinary monoamine assays under the spot baseline urinary neurotransmitter testing marketing model.

  12. Transmitter-controlled properties of α-motoneurones causing long-lasting motor discharge to brief excitatory inputs

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Hultborn, H.; Kiehn, O.

    1986-01-01

    Brief sensory inputs to intact conscious subjects commonly trigger complex long-lasting motor responses, in which higher cerebral mechanisms, or even voluntary action, may be integrative parts. However, long-lasting motor discharge following brief afferent stimulation is also observed in reduced ...... flipflops, which are set at one of two levels by short excitatory or inhibitory inputs. However, when the whole motoneuronal pool is considered, many different levels can be maintained by recruitment of new units.......Brief sensory inputs to intact conscious subjects commonly trigger complex long-lasting motor responses, in which higher cerebral mechanisms, or even voluntary action, may be integrative parts. However, long-lasting motor discharge following brief afferent stimulation is also observed in reduced...

  13. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication

    Science.gov (United States)

    Kuo, Wen Ping; Amphornrat, Jesa; Thilemann, Sebastian; Saab, Aiman S.; Kirchhoff, Frank; Möbius, Wiebke; Goebbels, Sandra; Nave, Klaus-Armin; Schneider, Anja; Simons, Mikael; Klugmann, Matthias; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2013-01-01

    Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca2+ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity. PMID:23874151

  14. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.

    Science.gov (United States)

    Frühbeis, Carsten; Fröhlich, Dominik; Kuo, Wen Ping; Amphornrat, Jesa; Thilemann, Sebastian; Saab, Aiman S; Kirchhoff, Frank; Möbius, Wiebke; Goebbels, Sandra; Nave, Klaus-Armin; Schneider, Anja; Simons, Mikael; Klugmann, Matthias; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2013-07-01

    Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca²⁺ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.

  15. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  16. Exploration of inclusion complexes of neurotransmitters with β-cyclodextrin by physicochemical techniques

    Science.gov (United States)

    Roy, Mahendra Nath; Saha, Subhadeep; Kundu, Mitali; Saha, Binoy Chandra; Barman, Siti

    2016-07-01

    Molecular assemblies of β-cyclodextrin with few of the most important neurotransmitters, viz., dopamine hydrochloride, tyramine hydrochloride and (±)-epinephrine hydrochloride in aqueous medium have been explored by reliable spectroscopic and physicochemical techniques as potential drug delivery systems. Job plots confirm the 1:1 host-guest inclusion complexes, while surface tension and conductivity studies illustrate the inclusion process. The inclusion complexes were characterized by 1H NMR spectroscopy and association constants have been calculated by using Benesi-Hildebrand method. Thermodynamic parameters for the formation of inclusion complexes have been derived by van't Hoff equation, which demonstrate that the overall inclusion processes are thermodynamically favorable.

  17. Excitatory strength of expressive faces: effects of happy and fear expressions and context on the extinction of a conditioned fear response.

    Science.gov (United States)

    Lanzetta, J T; Orr, S P

    1986-01-01

    In a recent study, Orr and Lanzetta (1984) showed that the excitatory properties of fear facial expressions previously described (Lanzetta & Orr, 1981; Orr & Lanzetta, 1980) do not depend on associative mechanisms; even in the absence of reinforcement, fear faces intensify the emotional reaction to a previously conditioned stimulus and disrupt extinction of an acquired fear response. In conjunction with the findings on acquisition, the failure to obtain extinction suggests that fear faces have some of the functional properties of "prepared" (fear-relevant) stimuli. In the present study we compared the magnitude of conditioned fear responses to happy and fear faces when a potent danger signal, the shock electrodes, are attached or unattached. If fear faces are functionally analogous to prepared stimuli, then, even in the absence of veridical support for an expectation of shock, they should retain excitatory strength, whereas happy faces should not. The results are consistent with this view of fear expressions. In the absence of reinforcement, and with shock electrodes removed, conditioned fear responses and basal levels of arousal were of greater magnitude for the fear-face condition than for the happy-face condition.

  18. Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance.

    Science.gov (United States)

    Christian, Catherine A; Huguenard, John R

    2013-10-01

    Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.

  19. Simultaneous determination of amino acids and neurotransmitters in plasma samples from schizophrenic patients by hydrophilic interaction liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Domingues, Diego Soares; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Cecilio Hallak, Jaime Eduardo; de Souza Crippa, José Alexandre; Costa Queiroz, Maria Eugênia

    2015-03-01

    A sensitive, reproducible, and rapid method was developed for the simultaneous determination of underivatized amino acids (aspartate, serine, glycine, alanine, methionine, leucine, tyrosine, and tryptophan) and neurotransmitters (glutamate and γ-aminobutyric acid) in plasma samples using hydrophilic interaction liquid chromatography coupled to triple quadrupole tandem mass spectrometry. The plasma concentrations of amino acids and neurotransmitters obtained from 35 schizophrenic patients in treatment with clozapine (27 patients) and olanzapine (eight patients) were compared with those obtained from 38 healthy volunteers to monitor the effectiveness of treatment. The chromatographic conditions separated ten target compounds within 3 min. This method presented linear ranges that varied from (lower limit of quantification: 9.7-13.3 nmol/mL) to (upper limit of quantification: 19.4-800 nmol/mL), intra- and interassay precision with coefficients of variation lower than 10%, and relative standard error values of the accuracy ranged from -2.1 to 9.9%. The proposed method appropriately determines amino acids and neurotransmitters in plasma from schizophrenic patients. Compared with the control group (healthy volunteers), the plasma levels of methionine in schizophrenic patients treated with olanzapine are statistically significantly higher. Moreover, schizophrenic patients treated with clozapine tend to have increased plasma levels of glutamate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A new structural class of subtype-selective inhibitor of cloned excitatory amino acid transporter, EAAT2

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Hermit, M B; Nielsen, B

    2000-01-01

    We have studied the pharmacological effects of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and the enantiomers of (RS)-2-amino-3-(3-hydroxy-1,2, 5-thiadiazol-4-yl)propionic acid (TDPA) on cloned human excitatory amino acid transporter subtypes 1, 2 and 3 (EAAT1......-3) expressed in Cos-7 cells. Whereas AMPA and (R)-TDPA were both inactive as inhibitors of [3H]-(R)-aspartic acid uptake on all three EAAT subtypes, (S)-TDPA was shown to selectively inhibit uptake by EAAT2 with a potency equal to that of the endogenous ligand (S)-glutamic acid. (S)-TDPA thus represents a new...

  1. Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)

    2015-01-15

    Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.

  2. Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network

    International Nuclear Information System (INIS)

    Lafranceschina, Jacopo; Wackerbauer, Renate

    2015-01-01

    Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state

  3. Fife, a Drosophila Piccolo-RIM Homolog, Promotes Active Zone Organization and Neurotransmitter Release

    Science.gov (United States)

    Bruckner, Joseph J.; Gratz, Scott J.; Slind, Jessica K.; Geske, Richard R.; Cummings, Alexander M.; Galindo, Samantha E.; Donohue, Laura K.; O'Connor-Giles, Kate M.

    2012-01-01

    Neuronal communication depends on the precisely orchestrated release of neurotransmitter at specialized sites called active zones (AZs). A small number of scaffolding and cytoskeletal proteins comprising the cytomatrix of the active zone (CAZ) are thought to organize the architecture and functional properties of AZs. The majority of CAZ proteins are evolutionarily conserved, underscoring the fundamental similarities in neurotransmission at all synapses. However, core CAZ proteins Piccolo and Bassoon have long been believed exclusive to vertebrates, raising intriguing questions about the conservation of the molecular mechanisms that regulate presynaptic properties. Here, we present the identification of a piccolo-rim-related gene in invertebrates, together with molecular phylogenetic analyses that indicate the encoded proteins may represent Piccolo orthologs. In accordance, we find that the Drosophila homolog, Fife, is neuronal and localizes to presynaptic AZs. To investigate the in vivo function of Fife, we generated a deletion of the fife locus. We find that evoked neurotransmitter release is substantially decreased in fife mutants and loss of fife results in motor deficits. Through morphological analysis of fife synapses, we identify underlying AZ abnormalities including pervasive presynaptic membrane detachments and reduced synaptic vesicle clustering. Our data demonstrate the conservation of a Piccolo-related protein in invertebrates and identify critical roles for Fife in regulating AZ structure and function. These findings suggest the CAZ is more conserved than previously thought, and open the door to a more complete understanding of how CAZ proteins regulate presynaptic structure and function through genetic studies in simpler model systems. PMID:23197698

  4. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  5. Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters.

    Science.gov (United States)

    Manyam, Bala V; Dhanasekaran, Muralikrishnan; Hare, Theodore A

    2004-02-01

    HP-200, which contains Mucuna pruriens endocarp, has been shown to be effective in the treatment of Parkinson's disease. Mucuna pruriens endocarp has also been shown to be more effective compared to synthetic levodopa in an animal model of Parkinson's disease. The present study was designed to elucidate the long-term effect of Mucuna pruriens endocarp in HP-200 on monoaminergic neurotransmitters and its metabolite in various regions of the rat brain. HP-200 at a dose of 2.5, 5.0 or 10.0 g/kg/day was mixed with rat chow and fed daily ad lib to Sprague-Dawley rats (n = 6 for each group) for 52 weeks. Controls (n = 6) received no drug. Random assignment was made for doses and control. The rats were sacrificed at the end of 52 weeks and the neurotransmitters were analyzed in the cortex, hippocampus, substantia nigra and striatum. Oral administration of Mucuna pruriens endocarp in the form of HP-200 had a significant effect on dopamine content in the cortex with no significant effect on levodopa, norepinephrine or dopamine, serotonin, and their metabolites- HVA, DOPAC and 5-HIAA in the nigrostriatal tract. The failure of Mucuna pruriens endocarp to significantly affect dopamine metabolism in the striatonigral tract along with its ability to improve Parkinsonian symptoms in the 6-hydorxydopamine animal model and humans may suggest that its antiparkinson effect may be due to components other than levodopa or that it has an levodopa enhancing effect. Copyright 2004 John Wiley & Sons, Ltd. Copyright 2004 John Wiley & Sons, Ltd.

  6. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  7. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism.

    Science.gov (United States)

    Naaijen, J; Bralten, J; Poelmans, G; Glennon, J C; Franke, B; Buitelaar, J K

    2017-01-10

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable; however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance, based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n=931), in which we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an association with severity of hyperactivity/impulsivity (P=0.009), which was robust to correcting for genome-wide association levels. The GABA gene set showed nominally significant association with inhibition (P=0.04), but this did not survive correction for multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD.

  8. Effect of ASF (a Compound of Traditional Chinese Medicine on Behavioral Sensitization Induced by Ethanol and Conditioned Place Preference in Mice

    Directory of Open Access Journals (Sweden)

    Da-chao Wen

    2014-01-01

    Full Text Available ASF composed by semen and epimedium herbal is a traditional plant compound that is widely used in the treatment of insomnia. Studies have shown that saponins and flavonoids contained in semen can significantly decrease the content of excitatory neurotransmitter Glu in mice. And the total flavone of YinYangHuo can increase the release of GABA in the anterior periventricular system of rat and increase the affinity of GABA for the receptors GABAA. It can be inferred that their synergism may have effect on the neurotransmitter that causes behavioral sensitization and conditioned place preference in experimental animals and affects their drinking behaviors, which is the starting point of this research. The present study found that ASF can inhibit development and expression of behavioral sensitization induced by ethanol and the development of CPP in mice. We demonstrate the inhibition of ASF on behavioral sensitization partly due to its effect on the mesolimbic neurotransmitter system, including decreasing level of DA and Glu and increasing the content of GABA. It suggested that the ASF may have pharmacological effects in the treatment of alcohol addiction.

  9. The anticonvulsant action of the galanin receptor agonist NAX-5055 involves modulation of both excitatory- and inhibitory neurotransmission

    DEFF Research Database (Denmark)

    Walls, Anne B; Flynn, Sean P; West, Peter J

    2016-01-01

    -based anti-convulsant drugs was prompted. Based on this, a rationally designed GalR1 preferring galanin analogue, NAX-5055, was synthesized. This compound demonstrates anti-convulsant actions in several animal models of epilepsy. However, the alterations at the cellular level leading to this anti......-convulsant action of NAX-5055 are not known. Here we investigate the action of NAX-5055 at the cellular level by determining its effects on excitatory and inhibitory neurotransmission, i.e. vesicular release of glutamate and GABA, respectively, in cerebellar, neocortical and hippocampal preparations. In addition...

  10. Dietary Neurotransmitters: A Narrative Review on Current Knowledge

    Directory of Open Access Journals (Sweden)

    Matteo Briguglio

    2018-05-01

    Full Text Available Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs acetylcholine (ACh, the modified amino acids glutamate and γ-aminobutyric acid (GABA, and the biogenic amines dopamine, serotonin (5-HT, and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs. Relevant books and literature from PubMed and Scopus databases were searched for data on food sources of Ach, glutamate, GABA, dopamine, 5-HT, and histamine. Different animal foods, fruits, edible plants, roots, and botanicals were reported to contain NTs. These substances can either be naturally present, as part of essential metabolic processes and ecological interactions, or derive from controlled/uncontrolled food technology processes. Ripening time, methods of preservation and cooking, and microbial activity further contributes to NTs. Moreover, gut microbiota are considerable sources of NTs. However, the significance of dietary NTs intake needs to be further investigated as there are no significant data on their bioavailability, neuronal/non neuronal effects, or clinical implications. Evidence-based interventions studies should be encouraged.

  11. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    Directory of Open Access Journals (Sweden)

    Dick R. Nässel

    2018-03-01

    Full Text Available It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs. Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a

  12. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    Science.gov (United States)

    Nässel, Dick R.

    2018-01-01

    It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for

  13. Neuroendocrine abnormalities in hypothalamic amenorrhea: spectrum, stability, and response to neurotransmitter modulation.

    Science.gov (United States)

    Perkins, R B; Hall, J E; Martin, K A

    1999-06-01

    To characterize the neuroendocrine patterns of abnormal GnRH secretion in hypothalamic amenorrhea (HA), 49 women with primary and secondary HA underwent frequent sampling of LH in a total of 72 baseline studies over 12-24 h. A subset of women participated in more than one study to address 1) the variability of LH pulse patterns over time; and 2) the impact of modulating opioid, dopaminergic, and adrenergic tone on LH secretory patterns. The frequency and amplitude of LH secretion was compared with that seen in the early follicular phase (EFP) of normally cycling women. The spectrum of abnormalities of LH pulses was 8% apulsatile, 27% low frequency/low amplitude, 8% low amplitude/normal frequency, 43% low frequency/normal amplitude, 14% normal frequency/normal amplitude. Of patients studied overnight, 45% demonstrated a pubertal pattern of augmented LH secretion during sleep. Of patients studied repeatedly, 75% demonstrated at least 2 different patterns of LH secretion, and 33% reverted at least once to a normal pattern of secretion. An increase in LH pulse frequency was seen in 12 of 15 subjects in response to naloxone (opioid receptor antagonist). Clonidine (alpha-2 adrenergic agonist) was associated with a decrease in mean LH in 3 of 3 subjects. An increase in LH pulse frequency was seen in 4 of 8 subjects in response to metoclopramide (dopamine receptor antagonist), but the response was not statistically significant. Baseline abnormalities in LH secretion did not appear to influence response to neurotransmitter modulation. 1) HA represents a spectrum of disordered GnRH secretion that can vary over time; 2) LH pulse patterns at baseline do not appear to influence the ability to respond to neurotransmitter modulation; 3) Opioid and adrenergic tone appear to influence the hypothalamic GnRH pulse generator in some individuals with HA.

  14. [Magnesium sulphate in the treatment of ischemic-hypoxic neonatal encephalopathy].

    Science.gov (United States)

    Kornacka, M K

    2001-01-01

    Hypoxic-ischaemic encephalopathy (HIE) remains one of the most important neurological complications in full and near full term newborns. During HIE glutamate and other excitatory neurotransmitters are released and progressive energy failure in brain is observed. Toxicity of glutamate plays the main role in brain injury. Glutamate activates the specific receptors that, in turn, mediate an overwhelming influx of calcium into the postsynaptic neuron. The pathological changes are located particularly in hippocampus. Magnesium sulfate has been used safely for years to treat preclampsia. The animal experimental evidence support a neuroprotective role for magnesium in HIE.

  15. High expression of cystine-glutamate antiporter xCT (SLC7A11) is an independent biomarker for epileptic seizures at diagnosis in glioma

    DEFF Research Database (Denmark)

    Sørensen, Mai Froberg; Heimisdóttir, Sólborg Berglind; Sørensen, Mia Dahl

    2018-01-01

    Epileptic seizures are an important cause of morbidity in glioma patients. Substantial lines of evidence support the concept of the excitatory neurotransmitter glutamate being a crucial mediator of glioma-associated seizures. In gliomas, non-vesicular secretion of glutamate via the cystine...... tumor using tissue microarrays. In addition to histological grading of the tumors, isocitrate dehydrogenase 1 (IDH1) R132H mutational status was determined by immunohistochemistry. 215 consecutive glioma patients were included in the study (7.4% grade II, 7.0% grade III, 85.6% grade IV). High x...

  16. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R

    2002-01-01

    Glutamate is the principal excitatory neurotransmitter within the mammalian CNS, playing an important role in many different functions in the brain such as learning and memory. In this study, a combination of molecular biology, X-ray structure determinations, as well as electrophysiology...... with Br-HIBO and ACPA have allowed us to explain the molecular mechanism behind this selectivity and to identify key residues for ligand recognition. The agonists induce the same degree of domain closure as AMPA, except for Br-HIBO, which shows a slightly lower degree of domain closure. An excellent...

  17. In Vivo Assessment of Neurotransmitters and Modulators with Magnetic Resonance Spectroscopy: Application to Schizophrenia

    Science.gov (United States)

    Wijtenburg, S. Andrea; Yang, Shaolin; Fischer, Bernard A.; Rowland, Laura M.

    2015-01-01

    In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy (1H-MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3Tesla or higher, and summarizes the neurochemical findings in schizophrenia. Overall, 1H-MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases. PMID:25614132

  18. [The interaction between gamma-aminobutyric acid and other related neurotransmitters in depression].

    Science.gov (United States)

    Li, Zhen; An, Shu-Cheng; Li, Jiang-Na

    2014-06-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system (CNS) in mammalian, which involved in several mood disorders such as anxiety, depression and schizophrenia. Nowadays, there are growing evidences showed that the depression is concerned with a deficiency in brain GABA. However, there are numerous studies based on the monoamine hypothesis and glutamatergic dysfunction, while the study on GABA is relatively less and scattered. Our aim is to discuss the relationship between depression and GABA by introducing the role of GABA receptors and the interaction between GABA and 5-hydroxytryptamine, dopamine and glutamic acid. It provides new ideas for further study on the pathogenesis and therapy of depression.

  19. Levels in neurotransmitter precursor amino acids correlate with mental health in patients with breast cancer.

    Science.gov (United States)

    Hüfner, K; Oberguggenberger, A; Kohl, C; Geisler, S; Gamper, E; Meraner, V; Egeter, J; Hubalek, M; Beer, B; Fuchs, D; Sperner-Unterweger, B

    2015-10-01

    Breast cancer is the most common cancer among females. Approximately 30% of cancer patients develop depression or depressive adaptation disorder within 5 years post diagnosis. Low grade inflammation and subsequent changes in neurotransmitter levels could be the pathophysiological link. In the current study we investigated the association of neurotransmitter precursor amino acids with a diagnosis of depression or state anxiety in 154 subjects suffering from breast cancer (BCA(+)), depression (DPR(+)), both or neither. Sociodemographic parameters, severity of depressive symptoms, and state anxiety (ANX) were recorded. Neopterin, kynurenine/tryptophan and phenylalanine/tyrosine were analysed by HPLC or ELISA. Significantly higher serum neopterin values were found in DPR(+) patients (p = 0.034) and in ANX(+) subjects (p = 0.008), as a marker of Th1-related inflammation. The phenylalanine/tyrosine ratio (index of the catecholamine pathway) was associated with the factors "breast cancer" and "depression" and their interaction (all p depressive symptoms (r = 0.376, p precursor amino acids correlate with mental health, an effect which was much more pronounced in BCA(+) patients than in BCA(-) subjects. Aside from identifying underlying pathophysiological mechanisms, these results could be the basis for future treatment studies: in BCA(+) patients with depression the use of serotonin-noradrenaline reuptake inhibitors might be recommended while in those with predominant anxiety selective serotonin reuptake inhibitors might be the treatment of choice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of some parasitic infection on neurotransmitters in the brain of experimentally infected mice before and after treatment.

    Science.gov (United States)

    Abdel Ghafar, A E; Elkowrany, S E; Salem, S A; Menaisy, A A; Fadel, W A; Awara, W M

    1996-08-01

    The effects of some parasitic infection (bilharziasis, toxocariasis and trichinosis) on the brain of experimentally infected mice were investigated. Eighty animals were classified into four groups, group I contained five non infected animals as a control group. The other groups each contained twenty-five mice infected with Schistosoma mansoni (group II), Toxocara canis (group III) and Trichinella spiralis (group IV). Each infected group was divided into two subgroups (a,b). Subgroup (a) left untreated and subgroups (b) treated by praziquantel (in group II) and mebendazole (in group III and IV). Histopathological and immunological examination using peroxidase antiperoxidase (PAP) technique and neurotransmitters estimation (nor-epinephrine, dopamine and serotonine) were carried. In the untreated animals, there were mild histopathological changes and mild antigenic deposition in subgroups (IIa and IIIa) and marked changes in subgroup (IVa). There were significant decrease in dopamine in subgroup (IIIa), not improved after treatment (subgroup IIIb) and significant decrease in nor-epinephrine and serotonine in subgroup (IVa) improved after treatment in subgroup (IVb). The neurotransmitters changes may explain the motor, behavioural and emotional changes that occurred with these parasites.