WorldWideScience

Sample records for prevalence size shape

  1. Temporal trends in vertebral size and shape from medieval to modern-day.

    Directory of Open Access Journals (Sweden)

    Juho-Antti Junno

    Full Text Available Human lumbar vertebrae support the weight of the upper body. Loads lifted and carried by the upper extremities cause significant loading stress to the vertebral bodies. It is well established that trauma-induced vertebral fractures are common especially among elderly people. The aim of this study was to investigate the morphological factors that could have affected the prevalence of trauma-related vertebral fractures from medieval times to the present day. To determine if morphological differences existed in the size and shape of the vertebral body between medieval times and the present day, the vertebral body size and shape was measured from the 4th lumbar vertebra using magnetic resonance imaging (MRI and standard osteometric calipers. The modern samples consisted of modern Finns and the medieval samples were from archaeological collections in Sweden and Britain. The results show that the shape and size of the 4th lumbar vertebra has changed significantly from medieval times in a way that markedly affects the biomechanical characteristics of the lumbar vertebral column. These changes may have influenced the incidence of trauma- induced spinal fractures in modern populations.

  2. Prevalence of shovel-shaped incisors in Saudi Arabian dental patients.

    Science.gov (United States)

    Saini, T S; Kharat, D U; Mokeem, S

    1990-10-01

    The prevalence of maxillary incisor shoveling was studied radiographically in 990 Saudi patients. According to the radiomorphologic characteristics, a new classification was developed and shovel teeth were categorized. The findings of this study showed 9% shovel-shaped incisors; among those, 4% were central incisors and 5% were lateral incisors. Frequency of dens invaginatus occurrence with the shovel-shaped incisors was also investigated. Eight percent of shovel-shaped incisors showed presence of dens invaginatus. Prevalence was found to be 4% in central shovel-shaped incisors, whereas that in lateral shovel-shaped incisors was 11%.

  3. Detecting size and shape of bodies capacitatively

    International Nuclear Information System (INIS)

    Walton, H.

    1980-01-01

    The size and shape of a body is determined by rolling it between the plates of capacitors and measuring the capacitance changes. A capacitor comprising two parallel, spaced wires inclined to the rolling direction and above and below the rolling body scans sections of the body along its longitudinal axis, another determines the body's lengths and a third comprising two non-parallel wires determines the position of the body. The capacitance changes are compared with those produced by a body of known size and shape so that the size and shape of the body can be determined. (author)

  4. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini

    Directory of Open Access Journals (Sweden)

    LA Nunes

    Full Text Available This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil. Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size variation and altitude, taking geographic distances into account, revealed that size (but not shape is largely influenced by altitude (r = 0.54 p < 0.01. These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

  5. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).

    Science.gov (United States)

    Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D

    2013-11-01

    This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

  6. Macrophages recognize size and shape of their targets.

    Directory of Open Access Journals (Sweden)

    Nishit Doshi

    2010-04-01

    Full Text Available Recognition by macrophages is a key process in generating immune response against invading pathogens. Previous studies have focused on recognition of pathogens through surface receptors present on the macrophage's surface. Here, using polymeric particles of different geometries that represent the size and shape range of a variety of bacteria, the importance of target geometry in recognition was investigated. The studies reported here reveal that attachment of particles of different geometries to macrophages exhibits a strong dependence on size and shape. For all sizes and shapes studied, particles possessing the longest dimension in the range of 2-3 microm exhibited highest attachment. This also happens to be the size range of most commonly found bacteria in nature. The surface features of macrophages, in particular the membrane ruffles, might play an important role in this geometry-based target recognition by macrophages. These findings have significant implications in understanding the pathogenicity of bacteria and in designing drug delivery carriers.

  7. Body size and allometric variation in facial shape in children.

    Science.gov (United States)

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  8. How river rocks round: resolving the shape-size paradox.

    Directory of Open Access Journals (Sweden)

    Gabor Domokos

    Full Text Available River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.

  9. Size and shape dependent lattice parameters of metallic nanoparticles

    International Nuclear Information System (INIS)

    Qi, W. H.; Wang, M. P.

    2005-01-01

    A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures

  10. Size-dependent modification of asteroid family Yarkovsky V-shapes

    Science.gov (United States)

    Bolin, B. T.; Morbidelli, A.; Walsh, K. J.

    2018-04-01

    Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.

  11. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  12. Size, Shape and Impurity Effects on Superconducting critical temperature.

    Science.gov (United States)

    Umeda, Masaki; Kato, Masaru; Sato, Osamu

    Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.

  13. Prevalence of cam hip shape morphology: a systematic review.

    Science.gov (United States)

    Dickenson, E; Wall, P D H; Robinson, B; Fernandez, M; Parsons, H; Buchbinder, R; Griffin, D R

    2016-06-01

    Cam hip shape morphology is a recognised cause of femoroacetabular impingement (FAI) and is associated with hip osteoarthritis. Our aim was to systematically review the available epidemiological evidence assessing the prevalence of cam hip shape morphology in the general population and any studied subgroups including subjects with and without hip pain. All studies that reported the prevalence of cam morphology, measured by alpha angles, in subjects aged 18 and over, irrespective of study population or presence of hip symptoms were considered for inclusion. We searched AMED, MEDLINE, EMBASE, CINAHL and CENTRAL in October 2015. Two authors independently identified eligible studies and assessed risk of bias. We planned to pool data of studies considered clinically homogenous. Thirty studies met inclusion criteria. None of the included studies were truly population-based: three included non-representative subgroups of the general population, 19 included differing clinical populations, while eight included professional athletes. All studies were judged to be at high risk of bias. Due to substantial clinical heterogeneity meta analysis was not possible. Across all studies, the prevalence estimates of cam morphology ranged from 5 to 75% of participants affected. We were unable to demonstrate a higher prevalence in selected subgroups such as athletes or those with hip pain. There is currently insufficient high quality data to determine the true prevalence of cam morphology in the general population or selected subgroups. Well-designed population-based epidemiological studies that use homogenous case definitions are required to determine the prevalence of cam morphology and its relationship to hip pain. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. The size and shape of the foramen magnum in man

    Directory of Open Access Journals (Sweden)

    Matthew J Zdilla

    2017-01-01

    Results and Conclusions: The study demonstrates that, within each distinct population, the size of the FM is significantly larger in males than in females; however, there are no significant differences in the shapes of the foramina between sexes. However, when comparing different populations to one another, there are significant differences with regard to both the size and shape of the FM. This study also presents a new model of FM ontogeny. Specifically, the growth occurring between the anterior and posterior foraminal boundaries before 5 years of age predicts the ultimate shape of the adult FM.

  15. XRD characterisation of nanoparticle size and shape distributions

    International Nuclear Information System (INIS)

    Armstrong, N.; Kalceff, W.; Cline, J.P.; Bonevich, J.

    2004-01-01

    Full text: The form of XRD lines and the extent of their broadening provide useful structural information about the shape, size distribution, and modal characteristics of the nanoparticles comprising the specimen. Also, the defect content of the nanoparticles can be determined, including the type, dislocation density, and stacking faults/twinning. This information is convoluted together and can be grouped into 'size' and 'defect' broadening contributions. Modern X-ray diffraction analysis techniques have concentrated on quantifying the broadening arising from the size and defect contributions, while accounting for overlapping of profiles, instrumental broadening, background scattering and noise components. We report on a combined Bayesian/Maximum Entropy (MaxEnt) technique developed for use in the certification of a NIST Standard Reference Material (SRM) for size-broadened line profiles. The approach used was chosen because of its generality in removing instrumental broadening from the observed line profiles, and its ability to determine not only the average crystallite size, but also the distribution of sizes and the average shape of crystallites. Moverover, this Bayesian/MaxEnt technique is fully quantitative, in that it also determines uncertainties in the crystallite-size distribution and other parameters. Both experimental and numerical simulations of size broadened line-profiles modelled on a range of specimens with spherical and non-spherical morphologies are presented to demonstrate how this information can be retrieved from the line profile data. The sensitivity of the Bayesian/MaxEnt method to determining the size distribution using varying a priori information are emphasised and discussed

  16. Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sijin Guo

    2017-12-01

    Full Text Available RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants.

  17. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  18. Patients' evaluation of shape, size and colour of solid dosage forms

    DEFF Research Database (Denmark)

    Overgaard, A.B.A.; Møller-Sonnergaard, J.; Christrup, L.L.

    2001-01-01

    Aim: The aim of the study was to investigate the swallow ability and the patient preferences of tablets and capsules with different sizes, shapes, surfaces and colours. Method: Patients were asked to swallow tablets with different surface and size, while tablets with different shape and colour were...... visually assessed. They were asked to indicate their preferences. Results: Gelatine capsules were found easier to swallow than tablets and coated tablets were found easier than uncoated normal tablets. The preferred colour was white both for tables and capsules, and the most disliked colours were purple...... tablets and brown capsules. The preferred shape was strongly arched circular for small tablets, oval for medium sized and big tablets. The difficulty to swallow tablets increased with increasing size. Conclusion: According to the results of this study, the ideal tablet is small and white, strongly arched...

  19. The Genetic Basis of Baculum Size and Shape Variation in Mice

    Directory of Open Access Journals (Sweden)

    Nicholas G. Schultz

    2016-05-01

    Full Text Available The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.

  20. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    Science.gov (United States)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  1. The correlation between supermarket size and national obesity prevalence.

    Science.gov (United States)

    Cameron, Adrian J; Waterlander, Wilma E; Svastisalee, Chalida M

    2014-01-01

    Supermarkets provide healthy and affordable food options while simultaneously heavily promoting energy-dense, nutrient-poor foods and drinks. Store size may impact body weight via multiple mechanisms. Large stores encourage purchasing of more food in a single visit, and in larger packages. In addition they provide greater product choice (usually at lower prices) and allow greater exposure to foods of all types. These characteristics may promote purchasing and consumption. Our objective was to assess the relationship between supermarket size and obesity, which has rarely been assessed. Data on supermarket size (measured as total aisle length in metres) was from 170 stores in eight developed countries with Western-style diets. Data for national obesity prevalence was obtained from the UK National Obesity Observatory. We found a strong correlation between average store size and national obesity prevalence (r = 0.96). Explanations for the association between store size and national obesity prevalence may include larger and less frequent shopping trips and greater choice and exposure to foods in countries with larger stores. Large supermarkets may represent a food system that focuses on quantity ahead of quality and therefore may be an important and novel environmental indicator of a pattern of behaviour that encourages obesity.

  2. Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.

    Science.gov (United States)

    Guo, Sijin; Li, Hui; Ma, Mengshi; Fu, Jian; Dong, Yizhou; Guo, Peixuan

    2017-12-15

    RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Effect of the shape of a nano-object on quantum-size states

    International Nuclear Information System (INIS)

    Dzyuba, Vladimir; Kulchin, Yurii; Milichko, Valentin

    2012-01-01

    In this paper, we propose an original functional method that makes it easy to determine the effect of any deviation in the shape of a nano-object from the well-studied shape (e.g., spherical) on the quantum characteristics of charge localized inside the nano-object. The maximum dimension of the object is determined by the magnitude of influence of quantum-size effects on quantum states of charge, and is limited by 100 nm. This method is ideologically similar to the perturbation theory, but the perturbation of the surface shape, rather than the potential, is used. Unlike the well-known variational methods of theoretical physics, this method is based on the assumption that the physical quantity is a functional of surface shape. Using the method developed, we present the quantum-size state of charges for two different complex shapes of nano-objects. The results from analyzing the quantum-size states of charge in the nano-objects with a deformed spherical shape indicated that the shape perturbations have a larger effect on the probability density of locating a particle inside the nano-object than on the surface energy spectrum and quantum density of the states.

  4. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    Science.gov (United States)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  5. Event-related potentials during word mapping to object shape predict toddlers’ vocabulary size

    Directory of Open Access Journals (Sweden)

    Kristina eBorgström

    2015-02-01

    Full Text Available What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds’ (n = 38; n = 34; overlapping n = 24 ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development.

  6. Shape and size effects on layered Ni/PZT/Ni composites magnetoelectric performance

    Energy Technology Data Exchange (ETDEWEB)

    Pan, D A; Zhang, S G; Qiao, L J [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A [Department of Mechanical Engineering, University of South Florida, Tampa FL 33620 (United States)], E-mail: lqiao@ustb.edu.cn

    2008-09-07

    This paper presents the magnetoelectric (ME) effect in trilayered Ni/PZT/Ni composites which is related to their size and shape. The ME composites with the same interfacial areas but different geometrical shapes have different ME voltage coefficients. Longitudinal resonant modes in the rectangular and triangular trilayered ME composites were studied. One should choose optimized size, shape and working frequency of the ME composites in order to gain the maximum ME effect. This study plays a guiding role for trilayered ME composites design for real applications. (fast track communication)

  7. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells

    Science.gov (United States)

    Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2016-04-01

    Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the

  8. The impact of cigarette pack shape, size and opening: evidence from tobacco company documents.

    Science.gov (United States)

    Kotnowski, Kathy; Hammond, David

    2013-09-01

    To use tobacco industry documents on cigarette pack shape, size and openings to identify industry findings on associations with brand imagery, product attributes, consumer perceptions and behaviour. Internal tobacco industry research and marketing documents obtained through court disclosure contained in the Legacy Tobacco Documents Library were searched using keywords related to pack shapes, sizes and opening methods. The search identified 66 documents related to consumer research and marketing plans on pack shape, size and openings, drawn from 1973 to 2002. Industry research consistently found that packs that deviated from the traditional flip-top box projected impressions of 'modern', 'elegant' and 'unique' brand imagery. Alternative pack shape and openings were identified as an effective means to communicate product attributes, particularly with regard to premium quality and smooth taste. Consumer studies consistently found that pack shape, size and opening style influenced perceptions of reduced product harm, and were often used to communicate a 'lighter' product. Slim, rounded, oval and booklet packs were found to be particularly appealing among young adults, and several studies demonstrated increased purchase interest for tobacco products presented in novel packaging shape or opening. Evidence from consumer tracking reports and company presentations indicate that pack innovations in shape or opening method increased market share of brands. Consumer research by the tobacco industry between 1973 and 2002 found that variations in packaging shape, size and opening method could influence brand appeal and risk perceptions and increase cigarette sales. © 2013 Society for the Study of Addiction.

  9. Forces and dynamics in epithelial domes of controlled size and shape

    Science.gov (United States)

    Latorre-Ibars, Ernest; Casares, Laura; Gomez-Gonzalez, Manuel; Uroz, Marina; Arroyo, Marino; Trepat, Xavier

    Mechanobiology of epithelia plays a central role in morphogenesis, wound healing, and tumor progression. Its current understanding relies on mechanical measurements on flat epithelial layers. However, most epithelia in vivo exhibit a curved 3D shape enclosing a pressurized lumen. Using soft micropatterned substrates we produce massive parallel arrays of epithelial domes with controlled size and basal shape. We measure epithelial traction, tension, and luminal pressure in epithelial domes. The local stress tensor on the freestanding epithelial membrane is then mapped by combining measured luminal pressure and local curvature. We show that tension and cell shape are highly anisotropic and vary along the meridional position of the domes. Finally, we establish constitutive relations between shape, tension, and pressure during perturbations of the contractile machinery, osmotic shocks, and spontaneous fluctuations of dome volume. Our findings contradict a description of the epithelium as a fluid capillary surface. Cells in the dome are unable to relax into a uniform and isotropic tensional state through sub- and supra-cellular rearrangements. Mapping epithelial shape, tension, and pressure will enable quantitative studies of mechanobiology in 3D epithelia of controlled size and shape.

  10. An online detection system for aggregate sizes and shapes based on digital image processing

    Science.gov (United States)

    Yang, Jianhong; Chen, Sijia

    2017-02-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  11. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth.

    Science.gov (United States)

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-06-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity.

  12. Size and shape dependent Gibbs free energy and phase stability of titanium and zirconium nanoparticles

    International Nuclear Information System (INIS)

    Xiong Shiyun; Qi Weihong; Huang Baiyun; Wang Mingpu; Li Yejun

    2010-01-01

    The Debye model of Helmholtz free energy for bulk material is generalized to Gibbs free energy (GFE) model for nanomaterial, while a shape factor is introduced to characterize the shape effect on GFE. The structural transitions of Ti and Zr nanoparticles are predicted based on GFE. It is further found that GFE decreases with the shape factor and increases with decreasing of the particle size. The critical size of structural transformation for nanoparticles goes up as temperature increases in the absence of change in shape factor. For specified temperature, the critical size climbs up with the increase of shape factor. The present predictions agree well with experiment values.

  13. Shape, size and temperature dependency of thermal expansion ...

    Indian Academy of Sciences (India)

    M GOYAL

    2018-05-19

    May 19, 2018 ... Oriental J. Chem.32(4), 2193 (2016), is extended in the present study using Qi and Wang model [Mater. Chem. Phys. ... Nanomaterials; shape factor; size effect; thermal expansion; equation of state. ... als are different from that of their bulk material. ..... and 1c along with the present calculated results. It is.

  14. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan

    2017-06-01

    Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.

  15. ACCURACY RESEARCH OF THE DIAMETRICAL SIZES FORMING AT GEAR SHAPING BY STEPPED CUTTER

    Directory of Open Access Journals (Sweden)

    N. M. Rasulov

    2015-09-01

    Full Text Available The paper presents research results of forming accuracy for diametrical sizes at gear shaping with stepped cutter and the traditional method. Analysis of static technological dimensional pitch size chain of wheels being cut is performed. It was revealed that the most of transmission errors of the wheels, formed by the traditional gear-shaped cutter are caused by manufacturing and installation error of the cutter and result from the formation of each tooth of the wheel with a certain tool. This is not the case with gear shaping by step cutter since at that, the profiles of all gear teeth are formed by means of tooth profile mostly remote from the tool rotation axis. Analysis of occurrence of setting-up errors typical for the above gear shaping methods has been performed. At gear shaping with stepped cutter there are no setting-up error components. It was revealed that this fact causes the absence of errors in the tool position before its each double motion. The accuracy of diametrical sizes increases. Formation mechanism of tool installation errors and workpiece are also given and their analysis is presented. Findings in the field of gear shaping with stepped cutter comply with results of research carried out by the other authors in the field of traditional gear shaping.

  16. Determination of size and shape distributions of metal and ceramic powders

    International Nuclear Information System (INIS)

    Jovanovic, DI.

    1961-01-01

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders

  17. Normal mediastinal lymph node size and shape; CT and cadaver study

    International Nuclear Information System (INIS)

    Im, Chung Kie; Lee, Kyung Soo; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    With the view point of size, shape and arrangement pattern, authors present normal mediastinal lymph node from the analysis of 61 cases of CT scan and multidirectional section of 2 cadavers. The result were as follows: 1. Transverse diameter of the lymph nodes, demonstrated in cadaver section, was 3 to 6mm in upper paratracheal area and 5 to 14mm in juxta-carinal and AP-window area. Arrangement of the lymph nodes showed tendency of longitudinal direction in lower paratracheal, and juxtacarinal area, while that of AP window showed tendency of AP direction as long axis. 2. Mean and the largest size of the lymph nodes demonstrated in CT scan were 3.7mm, 8mm in upper paratracheal area, and 6mm, 12mm in lower paratracheal area, and 7.1mm, 14mm in juxtacarinal area, and 6.3mm and 11mm in aorticopulmonary window area. 3. Size of the lymph nodes in CT scan showed linear increasing tendency according to increasing age (y=0.32, p<0.005). 4. Shape of the lymph nodes in CT scan were mostly round in upper paratracheal area while that of aorticopulmonary window showed higher incidence of oval and elongated shape. 5. Recommended size criterior of abnormal lymph node is 10mm in upper paratracheal area and 15mm in the other area

  18. Body shape and size depictions of African American women in JET magazine, 1953-2006.

    Science.gov (United States)

    Dawson-Andoh, Nana A; Gray, James J; Soto, José A; Parker, Scott

    2011-01-01

    Depictions of Caucasian women in the mainstream media have become increasingly thinner in size and straighter in shape. These changes may be inconsistent with the growing influence of African American beauty ideals, which research has established as more accepting of larger body sizes and more curvaceous body types than Caucasians. The present study looked at trends in the portrayal of African American women featured in JET magazine from 1953 to 2006. Beauty of the Week (BOW) images were collected and analyzed to examine body size (estimated by independent judges) and body shape (estimated by waist-to-hip ratio). We expected body sizes to increase and body shapes to become more curvaceous. Results revealed a rise in models' body size consistent with expectations, but an increase in waist-to-hip ratio, contrary to prediction. Our findings suggest that the African American feminine beauty ideal reflects both consistencies with and departures from mainstream cultural ideals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Size, shape and age-related changes of the mandibular condyle during childhood

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Stolzmann, Paul [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Habernig, Sandra; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Mueller, Lukas [University of Zurich, Clinics for Orthodontics and Paediatric Dentistry, Zurich (Switzerland); Saurenmann, Traudel [University Children' s Hospital Zurich, Department of Rheumatology, Zurich (Switzerland)

    2010-10-15

    To determine age-related differences in the size and shape of the mandibular condyle in children to establish anatomical reference values. A total of 420 mandibular condyles in 210 children (mean age, 7 years) were retrospectively analysed by using computed tomography (CT) imaging. The greatest left-right (LRD) and anterior-posterior (APD) diameters and the anteversion angles (AA) were measured by two readers. An APD/LRD ratio was calculated. The shape of the condyles was graded into three types on sagittal images. Correlations of parameters with the children's age were assessed by using Pearson's correlation analyses. The LRD (mean, 14.1 {+-} 2.4 mm), APD (mean, 7.3 {+-} 1.0 mm) and LRD/APD ratio (mean, 1.9 {+-} 0.3) increased (r{sub LRD} = 0.70, p < 0.01; r{sub APD} = 0.56, p < 0.01; r{sub rat} = 0.28, p < 0.01) while the AA (mean, 27 {+-} 7 ) decreased significantly (r{sub antang} = -0.26, p < 0.001) with age. The condylar shape as determined on sagittal images correlated significantly with age (r = 0.69, p < 0.05). Boys had significantly higher anteversion angles (p < 0.01), greater LRDs (p < 0.05) and greater mean ratios (p < 0.05). The mandibular condyle is subject to significant age-related changes in size and shape during childhood. As the size of the condyles increases with age, the anteversion angles decrease and the shape of the condyle turns from round to oval. (orig.)

  20. Parking simulation of three-dimensional multi-sized star-shaped particles

    International Nuclear Information System (INIS)

    Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin

    2014-01-01

    The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape. (paper)

  1. Optical Response of CeB_6 Nanoparticles with Different Sizes and Shapes from Discrete-Dipole Approximation

    International Nuclear Information System (INIS)

    Chao Luo-Meng; Bao Li-Hong; Tegus, O.

    2015-01-01

    The discrete dipole approximation is used to investigate the optical response of CeB_6 nanoparticles with different sizes and different shapes. The extinction valley in the visible light range becomes narrower and the extinction peak at the near infrared region (NIR) is red-shifted with the increasing particle size. In addition, the extinction peak value of the spherical particle decreases more rapidly than that of cubic-shaped particle with an increase in the particle size, and the cubic-shaped particles exhibit better performance on blocking NIR radiation than spherical-shaped particles. The calculation results coincide well with the reported experimental results. (paper)

  2. Crystal size and shape analysis of Pt nanoparticles in two and three dimensions

    International Nuclear Information System (INIS)

    Gontard, L Cervera; Dunin-Borkowski, R E; Ozkaya, D; Hyde, T; Midgley, P A; Ash, P

    2006-01-01

    The majority of industrial catalysts are high-surface-area solids, onto which an active component is dispersed in the form of nanoparticles that have sizes of between 1 and 20 nm. In an industrial environment, the crystal size distributions of such particles are conventionally measured by using either bright-field transmission electron microscope (TEM) images or X-ray diffraction. However, the analysis of particle sizes and shapes from two-dimensional bright-field TEM images is affected by variations in image contrast between adjacent particles, by the difficulty of distinguishing the particles from their matrix, and by overlap between particles when they are imaged in projection. High-angle annular dark-field (HAADF) electron tomography provides a convenient technique for overcoming many of these problems, by allowing the three-dimensional shapes and sizes of high atomic number nanoparticles that are supported on a low atomic number support to be recorded. Here, we discuss the three-dimensional analysis of particle sizes and shapes from such tomographic data, and we assess whether such measurements provide different information from that obtained using two-dimensional TEM images and X-ray diffraction measurements

  3. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    International Nuclear Information System (INIS)

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-01-01

    We present a study on the magnetic properties of naked and silica-coated Fe 3 O 4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO 2 shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO 2 functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe 3 O 4 nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  4. Fundamental study on laser manipulation of contamination particles with determining shape, size and species

    International Nuclear Information System (INIS)

    Shimizu, Isao; Fujii, Taketsugu

    1995-01-01

    It has been desired to eliminate or collect the contamination particles of radioisotope in each sort of species or shape and size non-invasively. The shape and size of particle can be determined from the shape and distribution of diffraction pattern of particle in the parallel laser beam, the species of particle can be discriminated by the fluorescence from resonance of laser beam, or by the laser Raman scattering, and the particle suspended in the air or falling down in a vacuum can be levitated against the gravity and trapped by the radiation force and the trapping force of the focussed laser beam in the atmosphere or in a vacuum. For the purpose of the non-invasive manipulation of contamination particles, the laser manipulation technique, image processing technique with Multiplexed Matched Spatial Filter and the determination technique of laser Raman scattering or fluorescence from resonance of laser light were combined in the experiments. The shape, size and species of particles trapped in the focal plane of focused Ar laser beam can be determined simultaneously and instantaneously from the shape and intensity distributions of diffraction patterns of the particles in the irradiation of parallel coherent beam of He-Ne laser, and fluorescence from the resonance of YAG laser beam with variable wave length. In this research, a new technique is proposed to manipulate non-invasively the contamination particles determined with the shape, size and species in the atmosphere or in a vacuum, by laser beam. (author)

  5. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    Science.gov (United States)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  6. Children's Concepts of the Shape and Size of the Earth, Sun and Moon

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2013-02-01

    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models which young people use and how they theorise in the process of acquiring more scientific conceptions. In this article, the relevant published research is reviewed critically and in-depth in order to frame a series of investigations using semi-structured interviews carried out with 248 participants aged 3-18 years from China and New Zealand. Analysis of qualitative and quantitative data concerning the reasoning of these subjects (involving cognitive categorisations and their rank ordering) confirmed that (a) concepts of Earth shape and size are embedded in a 'super-concept' or 'Earth notion' embracing ideas of physical shape, 'ground' and 'sky', habitation of and identity with Earth; (b) conceptual development is similar in cultures where teachers hold a scientific world view and (c) children's concepts of shape and size of the Earth, Sun and Moon can be usefully explored within an ethnological approach using multi-media interviews combined with observational astronomy. For these young people, concepts of the shape and size of the Moon and Sun were closely correlated with their Earth notion concepts and there were few differences between the cultures despite their contrasts. Analysis of the statistical data used Kolmogorov-Smirnov Two-Sample Tests with hypotheses confirmed at K-S alpha level 0.05; rs : p < 0.01.

  7. Prevalence of dental anomalies on panoramic radiographs in a population of the state of Pará, Brazil.

    Science.gov (United States)

    Goncalves-Filho, Antonio Jg; Moda, Larissa B; Oliveira, Roberta P; Ribeiro, Andre Luis Ribeiro; Pinheiro, João Jv; Alver-Junior, S Rgio M

    2014-01-01

    Dental anomalies (DAs) are the result of disorders that are able to modify the shape, number, size, and structure of teeth. This study aimed to evaluate the prevalence of DAs using panoramic radiographs in a population of the City of Belém, northern Brazil. In this study, 487 panoramic radiographs were evaluated searching for DAs. Dental records were reviewed for diagnostic confirmation. DAs related to the shape, number, size, and structure of teeth were investigated. Our results showed a DA prevalence of 56.9%. The most prevalent DA was taurodontism, which was present in 27.19% of cases. Root dilaceration was the second most prevalent DA in adults, whereas hypodontia was the second most prevalent DA in children. A total of 13 DAs were found. Dental anomalies were present in over half of the sample, and most of them were related to the shape of the teeth. Although there was a high prevalence of shape-related DAs, these alterations are generally of lower severity, and most do not require specific treatment. However, in 19.25% of cases, DAs were found involving the number, size and structure of the teeth. These DAs should be diagnosed and treated early, avoiding thus more serious complications.

  8. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  9. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  10. Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus).

    Science.gov (United States)

    Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien

    2016-07-01

    Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.

  11. Penis size interacts with body shape and height to influence male attractiveness.

    Science.gov (United States)

    Mautz, Brian S; Wong, Bob B M; Peters, Richard A; Jennions, Michael D

    2013-04-23

    Compelling evidence from many animal taxa indicates that male genitalia are often under postcopulatory sexual selection for characteristics that increase a male's relative fertilization success. There could, however, also be direct precopulatory female mate choice based on male genital traits. Before clothing, the nonretractable human penis would have been conspicuous to potential mates. This observation has generated suggestions that human penis size partly evolved because of female choice. Here we show, based upon female assessment of digitally projected life-size, computer-generated images, that penis size interacts with body shape and height to determine male sexual attractiveness. Positive linear selection was detected for penis size, but the marginal increase in attractiveness eventually declined with greater penis size (i.e., quadratic selection). Penis size had a stronger effect on attractiveness in taller men than in shorter men. There was a similar increase in the positive effect of penis size on attractiveness with a more masculine body shape (i.e., greater shoulder-to-hip ratio). Surprisingly, larger penis size and greater height had almost equivalent positive effects on male attractiveness. Our results support the hypothesis that female mate choice could have driven the evolution of larger penises in humans. More broadly, our results show that precopulatory sexual selection can play a role in the evolution of genital traits.

  12. Controlling the Size and Shape of the Elastin-Like Polypeptide based Micelles

    Science.gov (United States)

    Streletzky, Kiril; Shuman, Hannah; Maraschky, Adam; Holland, Nolan

    Elastin-like polypeptide (ELP) trimer constructs make reliable environmentally responsive micellar systems because they exhibit a controllable transition from being water-soluble at low temperatures to aggregating at high temperatures. It has been shown that depending on the specific details of the ELP design (length of the ELP chain, pH and salt concentration) micelles can vary in size and shape between spherical micelles with diameter 30-100 nm to elongated particles with an aspect ratio of about 10. This makes ELP trimers a convenient platform for developing potential drug delivery and bio-sensing applications as well as for understanding micelle formation in ELP systems. Since at a given salt concentration, the headgroup area for each foldon should be constant, the size of the micelles is expected to be proportional to the volume of the linear ELP available per foldon headgroup. Therefore, adding linear ELPs to a system of ELP-foldon should result in changes of the micelle volume allowing to control micelle size and possibly shape. The effects of addition of linear ELPs on size, shape, and molecular weight of micelles at different salt concentrations were studied by a combination of Dynamic Light Scattering and Static Light Scattering. The initial results on 50 µM ELP-foldon samples (at low salt) show that Rh of mixed micelles increases more than 5-fold as the amount of linear ELP raised from 0 to 50 µM. It was also found that a given mixture of linear and trimer constructs has two temperature-based transitions and therefore displays three predominant size regimes.

  13. WormSizer: high-throughput analysis of nematode size and shape.

    Directory of Open Access Journals (Sweden)

    Brad T Moore

    Full Text Available The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy mutant is short and fat and that a Long (Lon mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc and Roller (Rol mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.

  14. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  15. Genome-Wide Association Study on Male Genital Shape and Size in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Baku Takahara

    Full Text Available Male genital morphology of animals with internal fertilization and promiscuous mating systems have been one of the most diverse and rapidly evolving morphological traits. The male genital morphology in general is known to have low phenotypic and genetic variations, but the genetic basis of the male genital variation remains unclear. Drosophila melanogaster and its closely related species are morphologically very similar, but the shapes of the posterior lobe, a cuticular projection on the male genital arch are distinct from each other, representing a model system for studying the genetic basis of male genital morphology. In this study, we used highly inbred whole genome sequenced strains of D. melanogaster to perform genome wide association analysis on posterior lobe morphology. We quantified the outline shape of posterior lobes with Fourier coefficients obtained from elliptic Fourier analysis and performed principal component analysis, and posterior lobe size. The first and second principal components (PC1 and PC2 explained approximately 88% of the total variation of the posterior lobe shape. We then examined the association between the principal component scores and posterior lobe size and 1902142 single nucleotide polymorphisms (SNPs. As a result, we obtained 15, 14 and 15 SNPs for PC1, PC2 and posterior lobe size with P-values smaller than 10(-5. Based on the location of the SNPs, 13, 13 and six protein coding genes were identified as potential candidates for PC1, PC2 and posterior lobe size, respectively. In addition to the previous findings showing that the intraspecific posterior shape variation are regulated by multiple QTL with strong effects, the present study suggests that the intraspecific variation may be under polygenic regulation with a number of loci with small effects. Further studies are required for investigating whether these candidate genes are responsible for the intraspecific posterior lobe shape variation.

  16. Strengthening of Fe-Mn-Si based shape memory alloys by grain size refinement

    International Nuclear Information System (INIS)

    Sato, A.; Masuya, T.; Kumai, S.; Inoue, A.

    2000-01-01

    Degree of the shape memory effect was measured either by bending, tensile and compression tests in the temperature range 77∝300 K. The yield stress increased substantially by the grain size refinement, yet maintaining a good shape memory effect. In addition to usual mentioned slow strain rate tests (about 10 -3 s -1 ), shape deformation was given at high strain rate (10 3 s -1 ) by hammering, in order to induce fine structure. It is also found that the shape memory effect under an opposing force was improved by the high-speed deformation. (orig.)

  17. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  18. Splenic Anomalies of Shape, Size, and Location: Pictorial Essay

    Directory of Open Access Journals (Sweden)

    Adalet Elcin Yildiz

    2013-01-01

    Full Text Available Spleen can have a wide range of anomalies including its shape, location, number, and size. Although most of these anomalies are congenital, there are also acquired types. Congenital anomalies affecting the shape of spleen are lobulations, notches, and clefts; the fusion and location anomalies of spleen are accessory spleen, splenopancreatic fusion, and wandering spleen; polysplenia can be associated with a syndrome. Splenosis and small spleen are acquired anomalies which are caused by trauma and sickle cell disease, respectively. These anomalies can be detected easily by using different imaging modalities including ultrasonography, computed tomography, magnetic resonance imaging, and also Tc-99m scintigraphy. In this pictorial essay, we review the imaging findings of these anomalies which can cause diagnostic pitfalls and be interpreted as pathologic processes.

  19. Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

    Science.gov (United States)

    Linkenauger, Sally A; Leyrer, Markus; Bülthoff, Heinrich H; Mohler, Betty J

    2013-01-01

    The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

  20. Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

    Directory of Open Access Journals (Sweden)

    Sally A Linkenauger

    Full Text Available The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

  1. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. MR assessment of the repaired rotator cuff: prevalence, size, location, and clinical relevance of tendon rerupture

    International Nuclear Information System (INIS)

    Mellado, J.M.; Calmet, J.; Ballabriga, J.; Gine, J.; Olona, M.; Camins, A.; Perez del Palomar, L.

    2006-01-01

    The objectives of this study were to use magnetic resonance (MR) imaging to evaluate the prevalence, size, location, and clinical relevance of tendon rerupture following complete repair of full-thickness rotator cuff tear (RCT). A total of 78 surgically proven full-thickness rotator cuff tears in 74 patients were retrospectively included in the study. Clinical assessment was performed using the University of California at Los Angeles score. Postoperative MR imaging was evaluated to determine prevalence, size, and location of tendon rerupture. At a mean 48.4 months' follow-up, 62 shoulders (79.5%) had favorable outcomes and 45 shoulders (57.6%) showed rerupture on MR imaging studies. Reruptures were significantly more prevalent among patients with intermediate-to-bad outcomes (81.3%), with surgically demonstrated two-tendon tears (78.9%) or three-tendon tears (100%), and with preoperative fatty degeneration of the supraspinatus muscle greater than 1 (91.6%). Reruptures were also significantly larger in those subgroups. Complete repair of RCT of all sizes may have favorable outcomes in a significant proportion of patients in spite of a high prevalence of reruptures. Preoperative tear size and degree of muscle fatty degeneration influence the prevalence and rerupture size. After repair of supraspinatus tears, reruptures tend to invade the posterior aspect of the tendon. (orig.)

  3. MR assessment of the repaired rotator cuff: prevalence, size, location, and clinical relevance of tendon rerupture

    Energy Technology Data Exchange (ETDEWEB)

    Mellado, J.M. [Hospital Reina Sofia de Tudela, Servicio de Radiodiagnostico, Tudela, Navarra (Spain); Calmet, J.; Ballabriga, J.; Gine, J. [Hospital Universitari de Tarragona Joan XXIII, Servei de Cirurgia Ortopedica i Traumatologia, Tarragona (Spain); Olona, M. [Hospital Universitari de Tarragona Joan XXIII, Servei de Medicina Preventiva i Epidemiologia, Tarragona (Spain); Camins, A. [Hospital Universitari de Tarragona Joan XXIII, Institut de Diagnostic per la Imatge, Tarragona (Spain); Perez del Palomar, L. [Hospital Ernest Lluch, Servicio de Radiologia, Calatayud, Zaragoza (Spain)

    2006-10-15

    The objectives of this study were to use magnetic resonance (MR) imaging to evaluate the prevalence, size, location, and clinical relevance of tendon rerupture following complete repair of full-thickness rotator cuff tear (RCT). A total of 78 surgically proven full-thickness rotator cuff tears in 74 patients were retrospectively included in the study. Clinical assessment was performed using the University of California at Los Angeles score. Postoperative MR imaging was evaluated to determine prevalence, size, and location of tendon rerupture. At a mean 48.4 months' follow-up, 62 shoulders (79.5%) had favorable outcomes and 45 shoulders (57.6%) showed rerupture on MR imaging studies. Reruptures were significantly more prevalent among patients with intermediate-to-bad outcomes (81.3%), with surgically demonstrated two-tendon tears (78.9%) or three-tendon tears (100%), and with preoperative fatty degeneration of the supraspinatus muscle greater than 1 (91.6%). Reruptures were also significantly larger in those subgroups. Complete repair of RCT of all sizes may have favorable outcomes in a significant proportion of patients in spite of a high prevalence of reruptures. Preoperative tear size and degree of muscle fatty degeneration influence the prevalence and rerupture size. After repair of supraspinatus tears, reruptures tend to invade the posterior aspect of the tendon. (orig.)

  4. SU-D-201-04: Study On the Impact of Tumor Shape and Size On Drug Delivery to Pancreatic Tumors

    International Nuclear Information System (INIS)

    Soltani, M; Bazmara, H; Sefidgar, M; Subramaniam, R; Rahmim, A

    2015-01-01

    Purpose: Drug delivery to solid tumors can be expressed physically using transport phenomena such as convection and diffusion for the drug of interest within extracellular matrices. We aimed to carefully model these phenomena, and to investigate the effect of tumor shape and size on drug delivery to solid tumors in the pancreas. Methods: In this study, multiple tumor geometries as obtained from clinical PET/CT images were considered. An advanced numerical method was used to simultaneously solve fluid flow and solute transport equations. Data from n=45 pancreatic cancer patients with non-resectable locoregional disease were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. To investigate effect of tumor shape, tumors with similar size but different shapes were selected and analyzed. Moreover, to investigate effect of tumor size, tumors with similar shapes but different sizes, ranging from 1 to 77 cm 3 , were selected and analyzed. A hypothetical tumor similar to one of the analyzed tumors, but scaled to reduce its size below 0.2 cm 3 , was also analyzed. Results: The results showed relatively similar average drug concentration profiles in tumors with different sizes. Generally, smaller tumors had higher absolute drug concentration. In the hypothetical tumor, with volume less than 0.2 cm 3 , the average drug concentration was 20% higher in comparison to its counterparts. For the various real tumor geometries, however, the maximum difference between average drug concentrations was 10% for the smallest and largest tumors. Moreover, the results demonstrated that for pancreatic tumors the shape is not significant. The negligible difference of drug concentration in different tumor shapes was due to the minimum effect of convection in pancreatic tumors. Conclusion: In tumors with different sizes, smaller tumors have higher drug delivery; however, the impact of tumor shape in the case of pancreatic tumors is not

  5. SU-D-201-04: Study On the Impact of Tumor Shape and Size On Drug Delivery to Pancreatic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, M [ohns Hopkins University School of Medicine, Baltimore, Maryland, and KNT university, Tehran (Iran, Islamic Republic of); Bazmara, H [KNT university, Tehran (Iran, Islamic Republic of); Sefidgar, M [IKI University, Qazvin (Iran, Islamic Republic of); Subramaniam, R; Rahmim, A [Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: Drug delivery to solid tumors can be expressed physically using transport phenomena such as convection and diffusion for the drug of interest within extracellular matrices. We aimed to carefully model these phenomena, and to investigate the effect of tumor shape and size on drug delivery to solid tumors in the pancreas. Methods: In this study, multiple tumor geometries as obtained from clinical PET/CT images were considered. An advanced numerical method was used to simultaneously solve fluid flow and solute transport equations. Data from n=45 pancreatic cancer patients with non-resectable locoregional disease were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. To investigate effect of tumor shape, tumors with similar size but different shapes were selected and analyzed. Moreover, to investigate effect of tumor size, tumors with similar shapes but different sizes, ranging from 1 to 77 cm{sup 3}, were selected and analyzed. A hypothetical tumor similar to one of the analyzed tumors, but scaled to reduce its size below 0.2 cm{sup 3}, was also analyzed. Results: The results showed relatively similar average drug concentration profiles in tumors with different sizes. Generally, smaller tumors had higher absolute drug concentration. In the hypothetical tumor, with volume less than 0.2 cm{sup 3}, the average drug concentration was 20% higher in comparison to its counterparts. For the various real tumor geometries, however, the maximum difference between average drug concentrations was 10% for the smallest and largest tumors. Moreover, the results demonstrated that for pancreatic tumors the shape is not significant. The negligible difference of drug concentration in different tumor shapes was due to the minimum effect of convection in pancreatic tumors. Conclusion: In tumors with different sizes, smaller tumors have higher drug delivery; however, the impact of tumor shape in the case of pancreatic

  6. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  7. Automatic focusing of attention on object size and shape

    Directory of Open Access Journals (Sweden)

    Cesar Galera

    2005-01-01

    Full Text Available In two experiments we investigated the automatic adjusting of the attentional focus to simple geometric shapes. The participants performed a visual search task with four stimuli (the target and three distractors presented always around the fixation point, inside an outlined frame not related to the search task. A cue informed the subject only about the possible size and shape of the frame, not about the target. The results of the first experiment showed faster target detection in the valid cue trials, suggesting that attention was captured automatically by the cue shape. In the second experiment, we introduced a flanker stimulus (compatible or incompatible with the target in order to determine if attentional resources spread homogenously inside and outside the frame. The results showed that performance depended both on cue validity and frame orientation. The flanker effect was dependent on compatibility and flanker position (vertical or horizontal meridian. The results of both experiments suggest that the form of an irrelevant object can capture attention despite participants’ intention and the results of the second experiment suggest that the attentional resources are more concentrated along the horizontal meridian.

  8. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures

    Science.gov (United States)

    Kalogirou, Andreas; Gergidis, Leonidas N.; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic A B copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  9. Investigation of Size Effects to the Mixing Performance on the X-shaped Micro-Channels

    Directory of Open Access Journals (Sweden)

    S Tu

    2016-09-01

    Full Text Available Due to the developing of micro-electro-mechanical-system, MEMS, the fabrication of the microminiaturization devices becomes obviously important. The advances in the basic understanding of fluid physics have opened an era of application of fluid dynamics systems using microchannels. The purpose of this study is to research the flow transport phenomenon by employing different kinds of micro-channel sizing in X-shaped micro-channels. As the working fluid, water is injected to microchannel at different mass flow rate. Over a wide range of flow condition, 1.06 < Re < 514, in X-shaped micro-channels, the mixture performances of numerical simulation, flow visualization, and temperature distribution remain the same. At the same mass flow rate as the Reynolds number below 112.53, the biggest channel size had the slowest flow velocity and got the best mixing performance; as the Reynolds number above 112.53, the smaller the channel sizing, the lower the pressure drops and the faster velocity becomes. The transition form early from laminar flow, the unsteady flow is an advantage for mixing in the limited mixing area, therefore 0.7 mm got the best mixing performance. It is clear that the size of the channel plays an important role in the X-shaped micro-channels.

  10. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape

    DEFF Research Database (Denmark)

    Winkler, Thomas W; Justice, Anne E; Graff, Mariaelisa

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially...... (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR... effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape....

  11. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    Science.gov (United States)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  12. Shape Modification and Size Classification of Microcrystalline Graphite Powder as Anode Material for Lithium-Ion Batteries

    Science.gov (United States)

    Wang, Cong; Gai, Guosheng; Yang, Yufen

    2018-03-01

    Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.

  13. One-pot size and shape controlled synthesis of DMSO capped iron

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/029/06/0617-0621. Keywords. Iron oxide; thermal decomposition; TEM; VSM. Abstract. We report here the capping of iron oxide nanoparticles with dimethyl sulfoxide (DMSO) to make chloroform soluble iron oxide nanoparticles. Size and shape of the capped iron oxide nanoparticles ...

  14. Sample size determination for disease prevalence studies with partially validated data.

    Science.gov (United States)

    Qiu, Shi-Fang; Poon, Wai-Yin; Tang, Man-Lai

    2016-02-01

    Disease prevalence is an important topic in medical research, and its study is based on data that are obtained by classifying subjects according to whether a disease has been contracted. Classification can be conducted with high-cost gold standard tests or low-cost screening tests, but the latter are subject to the misclassification of subjects. As a compromise between the two, many research studies use partially validated datasets in which all data points are classified by fallible tests, and some of the data points are validated in the sense that they are also classified by the completely accurate gold-standard test. In this article, we investigate the determination of sample sizes for disease prevalence studies with partially validated data. We use two approaches. The first is to find sample sizes that can achieve a pre-specified power of a statistical test at a chosen significance level, and the second is to find sample sizes that can control the width of a confidence interval with a pre-specified confidence level. Empirical studies have been conducted to demonstrate the performance of various testing procedures with the proposed sample sizes. The applicability of the proposed methods are illustrated by a real-data example. © The Author(s) 2012.

  15. General classification of maturation reaction-norm shape from size-based processes

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Andersen, Ken Haste

    2011-01-01

    for growth and mortality is based on processes at the level of the individual, and is motivated by the energy budget of fish. MRN shape is a balance between opposing factors and depends on subtle details of size dependence of growth and mortality. MRNs with both positive and negative slopes are predicted...

  16. Chest roentgenographic findings of thymic size and shape in respiratory distress syndrome

    International Nuclear Information System (INIS)

    Oh, Young Ho; Yoon, Sung Do; Sung, Ki Yeal; Park, Seog Hee; Kim, Jong Woo; Bahk, Yong Whee

    1984-01-01

    Thymic size can be affected by both exogenous and endogenous glucocorticoids. Development of the respiratory distress syndrome (RDS) is influenced by adrenal cortical function. Thus, thymic size in RDS is considered to be enlarged due to decreased adrenal cortical function. To find whether the presence of RDS correlates with the thymus, the size and shape of the thymus were evaluated in the radiographs of premature infants with RDS, without RDS (control prematurity) and normal infants. The subjects were consisted of chest films of Korean premature infants, 120 with RDS, 60 without RDS, and 60 of normal infants taken at the Department of Radiology, Our Lady of Mercy Hospital during the period of 62 months since January 1978. Relative size of the thymus was determine by cardiothymic/thoracic ratio (CT /T ratio). Grading and location of the thymic prominence as well as incidence of the shape were examined. And all the relations among the radiographs of RDS, control prematurity and normal infants were analyzed. The results were as follows: 1. The CT/T ratio of premature infants with RDS was significantly greater than that of control prematurity and normal infants (P< 0.01). 2. The incidence of bilateral thymic prominence was more frequent in premature infant with RDS than in control prematurity and normal infants (P<0.05). 3. The frequency of thymic prominence was greater in the right than left side in all the three groups (P<0.05). 4. As in the shape of the thymus, a rounded type was most frequent, and a triangular type was least frequent in all three groups. 5. Incident of RDS was very low (9.8%) when the CT/T ratio is below 0.3 and it was very high (90.9%) when the CT/T ratio is above 0.49.

  17. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.

    Science.gov (United States)

    Brangwynne, Clifford P; Mitchison, Timothy J; Hyman, Anthony A

    2011-03-15

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.

  18. Identification of different shapes, colors and sizes of standard oral dosage forms in diabetes type 2 patients-A pilot study.

    Science.gov (United States)

    Stegemann, Sven; Riedl, Regina; Sourij, Harald

    2017-01-30

    The clear identification of drug products by the patients is essential for a safe and effective medication management. In order to understand the impact of shape, size and color on medication identification a study was performed in subjects with type 2 diabetes mellitus (T2D). Ten model drugs differentiated by shape, size and color were evaluated using a mixed method of medication schedule preparation by the participants followed by a semi-structured interview. Detection times were fastest for the large round tablet shape and the bi-chromatic forms. Larger size was easier to identify than the smaller sizes except for the bi-chromatic forms. The shape was the major source of errors, followed by the size and the color dimension. The results from this study suggests that color as a single dimension are perceived more effectively by subjects with T2D compared to shape and size, which requires a more demanding processing of three dimension and is dependent on the perspective. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Simultaneous Topology, Shape, and Sizing Optimisation of Plane Trusses with Adaptive Ground Finite Elements Using MOEAs

    Directory of Open Access Journals (Sweden)

    Norapat Noilublao

    2013-01-01

    Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.

  20. Magnetic properties of crystalline nanoparticles with different sizes and shapes

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Ana T.A. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Universidade Federal Rural do Semi-Árido, Campus de Caraubas, RN 333, Rio Grande do Norte (Brazil); Dantas, Ana L.; Almeida, N.S. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, Rio Grande do Norte (Brazil)

    2017-03-01

    The effects of shape and finite size on the physical behavior of nanostructured antiferromagnetic particles are investigated. They were modeled as ellipsoidal systems which preserve the crystalline structure of the correspondent bulk material. In our analysis we consider nanoparticles composed by magnetic ions which are themselves insensitive to the presence of surfaces and/or interfaces. Results are shown for structures similar to MnF{sub 2} and NiO crystals. Special attention is given to these last once their singular magnetic arrangement, as well as, their use at different technological and/or biomedical applications, has motivated intense experimental studies at different laboratories. We use the parameters that describe the correspondent bulk material to discuss the magnetic behavior of these particles for different volumes and shapes. - Highlights: • The number of magnetic phases of tetragonal AFM nanoparticles depends on their shape. • Hysteresis loops of NiO particles depends on the direction of the dc magnetic field. • The high frequencies normal modes of NiO particles are insensitive to their geometry.

  1. One-pot size and shape controlled synthesis of DMSO capped iron ...

    Indian Academy of Sciences (India)

    Size and shape of the capped iron oxide nanoparticles are well controlled by simply ... quently used to synthesize magnetic ferrites from different iron precursors ... added to the mixture resulting in a dark brown precipitate. Figure 2. (a–c). TG–DTA .... Doyle P S, Bibette J, Bancaud A and Viovy J L 2002 Science. 295 2237.

  2. Engineering cartilage substitute with a specific size and shape using porous high-density polyethylene (HDPE) as internal support.

    Science.gov (United States)

    Wu, Yujia; Zhu, Lie; Jiang, Hua; Liu, Wei; Liu, Yu; Cao, Yilin; Zhou, Guangdong

    2010-04-01

    Despite the great advances in cartilage engineering, constructing cartilage of large sizes and appropriate shapes remains a great challenge, owing to limits in thickness of regenerated cartilage and to inferior mechanical properties of scaffolds. This study introduces a pre-shaped polyglycolic acid (PGA)-coated porous high-density polyethylene (HDPE) scaffold to overcome these challenges. HDPE was carved into cylindrical rods and wrapped around by PGA fibres to form PGA-HDPE scaffolds. Porcine chondrocytes were seeded into the scaffolds and the constructs were cultured in vitro for 2 weeks before subcutaneous implantation into nude mice. Scaffolds made purely of PGA with the same size and shape were used as a control. After 8 weeks of implantation, the construct formed cartilage-like tissue and retained its pre-designed shape and size. In addition, the regenerated cartilage grew and completely surrounded the HDPE core, which made the entire cartilage substitute biocompatible to its implanted environment as native cartilage similarly does. By contrast, the shape and size of the constructs in the control group seriously deformed and obvious hollow cavity and necrotic tissue were observed in the inner region. These results demonstrate that the use of HDPE as the internal support of a biodegradable scaffold has the potential to circumvent the problems of limitations in size and shape, with promising implications for the development of engineered cartilage appropriate for clinical applications. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Influence of preservative and mounting media on the size and shape of monogenean sclerites.

    Science.gov (United States)

    Fankoua, Severin-Oscar; Bitja Nyom, Arnold R; Bahanak, Dieu Ne Dort; Bilong Bilong, Charles F; Pariselle, Antoine

    2017-08-01

    Based on Cichlidogyrus sp. (Monogenea, Ancyrocephalidae) specimens from Hemichromis sp. hosts, we tested the influence of different methods to fix/preserve samples/specimens [frozen material, alcohol or formalin preserved, museum process for fish preservation (fixed in formalin and preserved in alcohol)] and different media used to mount the slides [tap water, glycerin ammonium picrate (GAP), Hoyer's one (HM)] on the size/shape of sclerotized parts of monogenean specimens. The results show that the use of HM significantly increases the size of haptoral sclerites [marginal hooks I, II, IV, V, and VI; dorsal bar length, width, distance between auricles and auricle length, ventral bar length and width], and changes their shape [angle opening between shaft and guard (outer and inner roots) in both ventral and dorsal anchors, ventral bar much wider, dorsal one less curved]. This influence seems to be reduced when specimens/samples are fixed in formalin. The systematics of Monogenea being based on the size and shape of their sclerotized parts, to prevent misidentifications or description of invalid new species, we recommend the use of GAP as mounting medium; Hoyer's one should be restricted to monogenean specimens fixed for a long time which are more shrunken.

  4. Size and shape dependent deprotonation potential and proton affinity of nanodiamond

    International Nuclear Information System (INIS)

    Barnard, Amanda S; Per, Manolo C

    2014-01-01

    Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present >10 4 simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8–2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization. (paper)

  5. Size and shape dependent deprotonation potential and proton affinity of nanodiamond

    Science.gov (United States)

    Barnard, Amanda S.; Per, Manolo C.

    2014-11-01

    Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.

  6. Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles

    KAUST Repository

    Shuai, Danmeng

    2013-03-01

    Catalytic reduction with Pd has emerged as a promising technology to remove a suite of contaminants from drinking water, such as oxyanions, disinfection byproducts, and halogenated pollutants, but low activity is a major challenge for application. To address this challenge, we synthesized a set of shape- and size-controlled Pd nanoparticles and evaluated the activity of three probe contaminants (i.e., nitrite, N-nitrosodimethylamine (NDMA), and diatrizoate) as a function of facet type (e.g., (100), (110), (111)), ratios of low- to high-coordination sites, and ratios of surface sites to total Pd (i.e., dispersion). Reduction results for an initial contaminant concentration of 100 μM show that initial turnover frequency (TOF0) for nitrite increases 4.7-fold with increasing percent of (100) surface Pd sites (from 0% to 95.3%), whereas the TOF0 for NDMA and for diatrizoate increases 4.5- and 3.6-fold, respectively, with an increasing percent of terrace surface Pd sites (from 79.8% to 95.3%). Results for an initial nitrite concentration of 2 mM show that TOF0 is the same for all shape- and size-controlled Pd nanoparticles. Trends for TOF0 were supported by results showing that all catalysts but one were stable in shape and size up to 12 days; for the exception, iodide liberation in diatrizoate reduction appeared to be responsible for a shape change of 4 nm octahedral Pd nanoparticles. Density functional theory (DFT) simulations for the free energy change of hydrogen (H2), nitrite, and nitric oxide (NO) adsorption and a two-site model based on the Langmuir-Hinshelwood mechanism suggest that competition of adsorbates for different Pd sites can explain the TOF0 results. Our study shows for the first time that catalytic reduction activity for waterborne contaminant removal varies with the Pd shape and size, and it suggests that Pd catalysts can be tailored for optimal performance to treat a variety of contaminants for drinking water. © 2013 American Chemical Society.

  7. Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles

    KAUST Repository

    Shuai, Danmeng; McCalman, Dorrell C.; Choe, Jong Kwon; Shapley, John R.; Schneider, William F.; Werth, Charles J.

    2013-01-01

    Catalytic reduction with Pd has emerged as a promising technology to remove a suite of contaminants from drinking water, such as oxyanions, disinfection byproducts, and halogenated pollutants, but low activity is a major challenge for application. To address this challenge, we synthesized a set of shape- and size-controlled Pd nanoparticles and evaluated the activity of three probe contaminants (i.e., nitrite, N-nitrosodimethylamine (NDMA), and diatrizoate) as a function of facet type (e.g., (100), (110), (111)), ratios of low- to high-coordination sites, and ratios of surface sites to total Pd (i.e., dispersion). Reduction results for an initial contaminant concentration of 100 μM show that initial turnover frequency (TOF0) for nitrite increases 4.7-fold with increasing percent of (100) surface Pd sites (from 0% to 95.3%), whereas the TOF0 for NDMA and for diatrizoate increases 4.5- and 3.6-fold, respectively, with an increasing percent of terrace surface Pd sites (from 79.8% to 95.3%). Results for an initial nitrite concentration of 2 mM show that TOF0 is the same for all shape- and size-controlled Pd nanoparticles. Trends for TOF0 were supported by results showing that all catalysts but one were stable in shape and size up to 12 days; for the exception, iodide liberation in diatrizoate reduction appeared to be responsible for a shape change of 4 nm octahedral Pd nanoparticles. Density functional theory (DFT) simulations for the free energy change of hydrogen (H2), nitrite, and nitric oxide (NO) adsorption and a two-site model based on the Langmuir-Hinshelwood mechanism suggest that competition of adsorbates for different Pd sites can explain the TOF0 results. Our study shows for the first time that catalytic reduction activity for waterborne contaminant removal varies with the Pd shape and size, and it suggests that Pd catalysts can be tailored for optimal performance to treat a variety of contaminants for drinking water. © 2013 American Chemical Society.

  8. Calcium Pectinate Beads Formation: Shape and Size Analysis

    Directory of Open Access Journals (Sweden)

    Boon-Beng Lee

    2014-04-01

    Full Text Available The aim of this study was to investigate the inter-relationship between process variables and the size and shape of pectin solution droplets upon detachment from a dripping tip as well as Ca-pectinate beads formed after gelation via image analysis. The sphericity factor (SF of the droplets was generally smaller than 0.05. There was no specific trend between the SF of the droplets and the pectin concentration or the dripping tip radius. The SF the beads formed from high-concentration pectin solutions and a small dripping tip was smaller than 0.05. The results show that the Reynolds number and Ohnesorge number of the droplets fall within the operating region for forming spherical beads in the shape diagram, with the exception to the lower boundary. The lower boundary of the operating region has to be revised to Oh = 2.3. This is because the critical viscosity for Ca-pectinate bead formation is higher than that of Ca-alginate beads. On the other hand, the radius of the droplets and beads increased as the dripping tip radius increased. The bead radius can easily be predicted by Tate’s law equation.

  9. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    Science.gov (United States)

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Hydrologic Controls on Shallow Landslide Location, Size, and Shape

    Science.gov (United States)

    Bellugi, D.; Milledge, D.; Perron, T.; McKean, J. A.; Dietrich, W.; Rulli, M.

    2012-12-01

    Shallow landslides, typically involving just the soil mantle, are principally controlled by topography, soil and root strengths, and soil thickness, and are typically triggered by storm-induced increases in pore water pressure. The response of a landscape to landslide-triggering storms will thus depend on factors such as rainfall totals, storm intensity and duration, and antecedent moisture conditions. The two dominant mechanisms that generate high pore water pressures at a point are topographically-steered lateral subsurface flow (over timescales of days to weeks), and rapid vertical infiltration (over timescales of minutes to hours). We aim to understand the impact of different storm characteristics and hydrologic regimes on shallow landslide location, size, and shape. We have developed a regional-scale model, which applies a low-parameter grid-based multi-dimensional slope stability model within a novel search algorithm, to generate discrete landslide predictions. This model shows that the spatial organization of parameters such as root strength and pore water pressure has a strong control on shallow landslide location, size, and shape. We apply this model to a field site near Coos Bay, OR, where a ten-year landslide inventory has been mapped onto high-resolution topographic data. Our model predicts landslide size generally increases with increasing rainfall intensity, except when root strength is extremely high and pore pressures are topographically steered. The distribution of topographic index values (the ratios of contributing area to slope) of predicted landslides is a clear signature of the pore water pressure generation mechanism: as laterally dominated flow increases, landslides develop in locations with lower slopes and higher contributing areas; in contrast, in the case of vertically-dominated pore pressure rise, landslides are consistently found in locations with higher slopes and lower contributing areas. While in both cases landslides are found in

  11. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  12. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    Science.gov (United States)

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  14. Anti-Gravity Loop-shaped heat pipe with graded pore-size wick

    International Nuclear Information System (INIS)

    Tang Yong; Zhou Rui; Lu Longsheng; Xie Zichun

    2012-01-01

    An Anti-Gravity Loop-Shaped Heat Pipe (AGLSHP) with a Continuous Graded Pore-Size Wick (CGPSW) was developed for the cooling of electronic devices at the anti-gravity orientation on the ground. At this orientation, heat is transferred toward the direction of the gravitational field. The AGLSHP consists of an evaporator, a condenser, a vapor line and a liquid line. The CGPSW is formed by sintered copper powders and it is filled inside the evaporator and the liquid line. The corresponding test system was developed to investigate the start-up characteristics and heat transfer performance of the AGLSHP at the anti-gravity orientation. The experimental result shows that, the AGLSHP has the capability to start-up reliably without any temperature overshoot or oscillation at the test heat loads. And the AGLSHP is able to keep the temperature of the evaporator below 105 °C and the overall thermal resistance below 0.24 °C/W at the heat load of 100 W. It is also found that the ideal heat load range of the AGLSHP at the anti-gravity orientation is from 30 W to 90 W. In this power range the overall thermal resistance stabilizes at about 0.15 °C/W, and the maximum temperature of the evaporator is lower than 84 °C at the heat load of 90 W. - Highlights: ► We present a loop-shaped heat pipe for the anti-gravity application on the ground. ► We present the continuous graded pore-size wick and its fabrication process. ► We test the start-up and heat transfer performance of this loop-shaped heat pipe. ► This loop-shaped heat pipe starts up reliably and has satisfying heat transfer capability.

  15. Investigation of influence of falling rock size and shape on traveling distance due to earthquake

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi

    2010-01-01

    In evaluation of seismic stability of surrounding slope in a nuclear power plant, as a part of residual risk evaluation, it is essential to confirm the effects of surrounding slope failure on a important structure, when slope failure probability is not sufficiently small for extremely large earthquake. So evaluation of slope failure potential based on a falling rocks analyses considering slope failure using discontinuous model such as distinct element method(DEM) will be employed in near future. But, these slope collapse analysis by discontinuous model needs determination of input data of falling rock size and shape, and some problems about determination method of these size and shape condition and analysis accuracy are remained. In this study, the results of slope collapse experiment by shaking table and numerical simulation of this experiment by DEM is conducted to clarify the influence of falling rock size and shape on traveling distance. As a results, it is indicated that more massive and larger rock model gives safety side evaluation for traveling distance. (author)

  16. A multidimensional stability model for predicting shallow landslide size and shape across landscapes.

    Science.gov (United States)

    Milledge, David G; Bellugi, Dino; McKean, Jim A; Densmore, Alexander L; Dietrich, William E

    2014-11-01

    The size of a shallow landslide is a fundamental control on both its hazard and geomorphic importance. Existing models are either unable to predict landslide size or are computationally intensive such that they cannot practically be applied across landscapes. We derive a model appropriate for natural slopes that is capable of predicting shallow landslide size but simple enough to be applied over entire watersheds. It accounts for lateral resistance by representing the forces acting on each margin of potential landslides using earth pressure theory and by representing root reinforcement as an exponential function of soil depth. We test our model's ability to predict failure of an observed landslide where the relevant parameters are well constrained by field data. The model predicts failure for the observed scar geometry and finds that larger or smaller conformal shapes are more stable. Numerical experiments demonstrate that friction on the boundaries of a potential landslide increases considerably the magnitude of lateral reinforcement, relative to that due to root cohesion alone. We find that there is a critical depth in both cohesive and cohesionless soils, resulting in a minimum size for failure, which is consistent with observed size-frequency distributions. Furthermore, the differential resistance on the boundaries of a potential landslide is responsible for a critical landslide shape which is longer than it is wide, consistent with observed aspect ratios. Finally, our results show that minimum size increases as approximately the square of failure surface depth, consistent with observed landslide depth-area data.

  17. A Quantitative Comparison Between Size, Shape, Topology and Simultaneous Optimization for Truss Structures

    Directory of Open Access Journals (Sweden)

    T.E. Müller

    Full Text Available Abstract There are typically three broad categories of structural optimization namely size, shape and topology. Over the past few decades various researchers have focused on developing techniques for optimizing structures by considering either one or a combination of these aspects. In this paper the efficiency of these techniques are investigated in an effort to quantify the improvement of the result obtained by utilizing a more complex optimization routine. The percentage of the structural weight saved and computational effort required are used as measures to compare these techniques. The well-known genetic algorithm with elitism is used to perform these tests on various benchmark structures found in literature. Some of the results that are obtained include that a simultaneous approach produces, on average, a 22 % better solution than a simple size optimization and a 12 % improvement when compared to a staged approach where the size, shape and topology of the structure is considered sequentially. From these results, it is concluded that a significant saving can be made by using a more complex optimization routine, such as a simultaneous approach.

  18. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. The evolution of body size and shape in the human career

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G.; Richmond, Brian G.

    2016-01-01

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the ‘best’ for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus. The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298459

  20. Geographic body size and shape variation in a mainland anolis (Squamata: Dactyloidae) from northwestern South America (Colombia)

    International Nuclear Information System (INIS)

    Calderon Espinosa, Martha L; Barragan Contreras, Leidy Alejandra

    2014-01-01

    Anolis auratus is a widely distributed species, from Costa Rica in Central America, through northern South America, including Colombia, Venezuela, northern Brazil, Surinam and the Guyanas. In Colombia, its widespread distribution across different life zones suggests that these lizards occupy different environments and exhibit different microhabitat use in different geographic areas. On the other hand, some observations suggest that this species prefers open areas, selecting grasslands over brushy areas, and thus, an alternative hypothesis is that microhabitat use is similar among different populations. In Anolis, body variables related to locomotion (body size and shape) defines structural microhabitat use, so two distinct patterns could be expected in this species: Conservative or highly variable body size and shape throughout the species distribution. To test these predictions, we characterized geographic variation in morphometric traits of this species in Colombia. Females and males were similar in body size, but exhibited differences in some variables related to body shape. These characteristics also varied among males and females from different regions, suggesting heterogeneous use of structural microhabitat, between sexes and among populations. As an alternative, phylogenetic divergence among populations could also account for the observed differences. Absence of ecological and phylogenetic data limits our ability to identify the underlying causes of this pattern. However, we provide a general framework to explore hypotheses about evolution of body size and shape in this species.

  1. Size, shape, and appearance of the normal female pituitary gland

    International Nuclear Information System (INIS)

    Wolpert, S.M.; Molitch, M.E.; Goldman, J.A.; Wood, J.B.

    1984-01-01

    One hundred seven women 18-65 years old were studied who were referred for suspected central nervous system disease not related to the pituitary gland or hypothalamus. High-resolution, direct, coronal, contrast-enhanced computed tomography (CT) was used to examine the size; shape, and density of the normal pituitary gland. There were three major conclusions: (1) the height of the normal gland can be as much as 9 mm; (2) the superior margin of the gland may bulge in normal patients; and (3) both large size and convex contour appear to be associated with younger age. It was also found that serum prolactin levels do not appear to correlate with the CT appearances. Noise artifacts inherent in high-detail, thin-section, soft-tissue scanning may be a limiting factor in defining reproducible patterns in different parts of the normal pituitary gland

  2. Prevalence of C-shaped canals in mandibular second and third molars in a central India population: A cone beam computed tomography analysis.

    Science.gov (United States)

    Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P K

    2017-01-01

    To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al . (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference ( P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied.

  3. Optimization of the size and shape of the set-in nozzle for a PWR reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, Usman Tariq, E-mail: maniiut@yahoo.com; Javed Hyder, M., E-mail: hyder@pieas.edu.pk

    2015-04-01

    Highlights: • The size and shape of the set-in nozzle of the RPV have been optimized. • The optimized nozzle ensure the reduction of the mass around 198 kg per nozzle. • The mass of the RPV should be minimized for better fracture toughness. - Abstract: The objective of this research work is to optimize the size and shape of the set-in nozzle for a typical reactor pressure vessel (RPV) of a 300 MW pressurized water reactor. The analysis was performed by optimizing the four design variables which control the size and shape of the nozzle. These variables are inner radius of the nozzle, thickness of the nozzle, taper angle at the nozzle-cylinder intersection, and the point where taper of the nozzle starts from. It is concluded that the optimum design of the nozzle is the one that minimizes the two conflicting state variables, i.e., the stress intensity (Tresca yield criterion) and the mass of the RPV.

  4. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  5. Study on relationship of performance shaping factor in human error probability with prevalent stress of PUSPATI TRIGA reactor operators

    Science.gov (United States)

    Rahim, Ahmad Nabil Bin Ab; Mohamed, Faizal; Farid, Mohd Fairus Abdul; Fazli Zakaria, Mohd; Sangau Ligam, Alfred; Ramli, Nurhayati Binti

    2018-01-01

    Human factor can be affected by prevalence stress measured using Depression, Anxiety and Stress Scale (DASS). From the respondents feedback can be summarized that the main factor causes the highest prevalence stress is due to the working conditions that require operators to handle critical situation and make a prompt critical decisions. The relationship between the prevalence stress and performance shaping factors found that PSFFitness and PSFWork Process showed positive Pearson’s Correlation with the score of .763 and .826 while the level of significance, p = .028 and p = .012. These positive correlations with good significant values between prevalence stress and human performance shaping factor (PSF) related to fitness, work processes and procedures. The higher the stress level of the respondents, the higher the score of selected for the PSFs. This is due to the higher levels of stress lead to deteriorating physical health and cognitive also worsened. In addition, the lack of understanding in the work procedures can also be a factor that causes a growing stress. The higher these values will lead to the higher the probabilities of human error occur. Thus, monitoring the level of stress among operators RTP is important to ensure the safety of RTP.

  6. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    Science.gov (United States)

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  7. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  8. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.

    Science.gov (United States)

    Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M

    2017-08-01

    Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

  9. The Effect of Sterilization on Size and Shape of Fat Globules in Model Processed Cheese Samples

    Directory of Open Access Journals (Sweden)

    B. Tremlová

    2006-01-01

    Full Text Available Model cheese samples from 4 independent productions were heat sterilized (117 °C, 20 minutes after the melting process and packing with an aim to prolong their durability. The objective of the study was to assess changes in the size and shape of fat globules due to heat sterilization by using image analysis methods. The study included a selection of suitable methods of preparation mounts, taking microphotographs and making overlays for automatic processing of photographs by image analyser, ascertaining parameters to determine the size and shape of fat globules and statistical analysis of results obtained. The results of the experiment suggest that changes in shape of fat globules due to heat sterilization are not unequivocal. We found that the size of fat globules was significantly increased (p < 0.01 due to heat sterilization (117 °C, 20 min, and the shares of small fat globules (up to 500 μm2, or 100 μm2 in the samples of heat sterilized processed cheese were decreased. The results imply that the image analysis method is very useful when assessing the effect of technological process on the quality of processed cheese quality.

  10. A Review on Anatomical Variations of Mental Foramen (Number, Location, Shape, Symmetry, Direction and Size

    Directory of Open Access Journals (Sweden)

    F Ezoddini-Ardakani

    2016-02-01

    Full Text Available Mental foramen is located on the anterior aspect of the mandible that permits the terminal branch of the inferior alveolar nerve and blood vessels to exit. The anatomical variations of mental foramen are of considerable importance in local anesthesia, treatment of the fractures in the parasymphysis area, orthognatic surgeries, implant placement, etc. Regarding the importance of mental foramen in dentistry (from local anesthesia to invasive surgical procedures, this study intends to review the anatomical variations of mental foramen in this study. Absence of mental foramen is rare. On the other hand, prevalence of accessory mental foramen has been estimated lower than 15% in the most studies. The position of mental foramen is normally between first and second premolar teeth or under second premolar tooth in different ethnic groups and bilateral symmetry exists in regard with location in most cases. In most studies, the ratio of distance from mental foramen to symphysis to distance from symphysis to posterior border of ramus has been reported about 1/3.5 to 1/3. Mental foramen is oval or circular in shape and its most common direction is usually posterosuperior. Its size in different studies has been estimated about 2 to 5 millimeters and asymmetry in size is possible on both sides of mandible. Due to variations of mental foramen between various ethnic groups and even different individuals in the same ethnic group, using advanced imaging techniques such as CBCT is recommended in order to gain detailed knowledge of anatomy and morphology of mental foramen before applying invasive surgeries.

  11. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    Science.gov (United States)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  12. Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis

    Science.gov (United States)

    Wu, Jin-Hu; Ferguson, A. Ross; Murray, Brian G.; Jia, Yilin; Datson, Paul M.; Zhang, Jingli

    2012-01-01

    Background and Aims Some otherwise promising selections of Actinidia chinensis (kiwifruit) have fruit that are too small for successful commercialization. We have therefore made the first detailed study in diploid kiwifruit of the effects of chromosome doubling induced by colchicine on fruit size, shape and crop loading. Methods Flow cytometric analysis of young leaves and chromosome analysis of flower buds and root tips was used to confirm the stability of induced autotetraploids. Fruit weight, size and crop load were measured in the third year after planting in the field and for three consecutive years. DNA fingerprinting was used to confirm the origin of the material. Key Results There was a very significant increase in fruit size in induced autotetraploids of different genotypes of A. chinensis. With the commercially important diploid cultivar ‘Hort16A’, most regenerants, Type A plants, had fruit which were much the same shape as fruit of the diploid but, at the same fruit load, were much larger and heavier. Some regenerants, Type B plants, produced fruit similar to ‘fasciated’ fruit. Fruit of the autotetraploids induced from three female red-fleshed A. chinensis selections were also 50–60 % larger than fruit of their diploid progenitors. The main increase in fruit dimensions was in their diameters. These improved fruit characteristics were stable over several seasons. Conclusions Chromosome doubling has been shown to increase significantly fruit size in autotetraploid A. chinensis, highlighting the considerable potential of this technique to produce new cultivars with fruit of adequate size. Other variants with differently shaped fruit were also produced but the genetic basis of this variation remains to be elucidated. Autoploids of other Actinidia species with commercial potential may also show improved fruit characteristics, opening up many new possibilities for commercial development. PMID:21980192

  13. Effects of shape and size of inclusions on the sintering of ZnO-ZrO2 composites

    International Nuclear Information System (INIS)

    Nakada, Yohsuke; Kimura, Toshio

    1997-01-01

    The densification behavior and microstructure development of ZnO matrices containing rigid ZrO 2 inclusions were studied, with special emphasis on the effect of inclusion shape and size. The inclusions retarded the densification of the matrix, regardless of the inclusion shape and size. For large inclusions with diameter of > 10 microm, dense regions developed between inclusion particles. The inclusion particles and dense regions formed a continuous network, which constrained the densification of the composites. The inclusion shape had a small effect on the development of dense regions. Severe retardation in densification was observed for compacts containing inclusions with diameters of < 10 microm. In these cases, dense regions between inclusion particles did not develop. The formation of the continuous network cannot be applicable to small inclusions as an origin of retardation of densification

  14. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.

    Science.gov (United States)

    Kuamit, Thanawit; Ratanasak, Manussada; Rungnim, Chompoonut; Parasuk, Vudhichai

    2017-11-25

    Effects of size, shape, and pyrene doping on electronic properties of graphene nanoflakes (GNFs) were theoretically investigated using density functional theory method with PBE, B3PW91, and M06-2X functionals and cc-pVDZ basis set. Two shapes of zigzag GNFs, hexagonal (HGN) and rhomboidal (RGN), were considered. The energy band gap of GNF depends on shape and decreases with size. The HGN has larger band gap energy (1.23-3.96 eV) than the RGN (0.13-2.12 eV). The doping of pyrene and pyrene derivatives on both HGN and RGN was also studied. The adsorption energy of pyrene and pyrene derivatives on GNF does not depend on the shape of GNFs with energies between 21 and 27 kcal mol -1 . The substituent on pyrene enhances the binding to GNF but the strength does not depend on electron withdrawing or donating capability. The doping by pyrene and pyrene derivatives also shifts the HOMO and LUMO energies of GNFs. Both positive (destabilizing) and negative (stabilizing) shifts on HOMO and LUMO of GNFs were seen. The direction and magnitude of the shift do not follow the electron withdrawing and donating capability of pyrene substituents. However, only a slight shift was observed for doped RGN. A shift of 0.19 eV was noticed for HOMO of HGN doped with 1-aminopyrene (pyNH 2 ) and of 0.04 eV for LUMO of HGN doped with 1-pyrenecarboxylic acid (pyCOOH). Graphical Abstract HOMO and LUMO Energies of pyrene/pyrene derivatives doped Graphene Nanoflakes.

  15. Evaluation of Decontamination Factor of Aerosol in Pool Scrubber according to Bubble Shape and Size

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon; Jang, Dong Soon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the pool. The developed code has been verified using the experimental results and parametric studies the decontamination factor according to bubble shape and size. To evaluate the decontamination factor more accurate whole pool scrubber phenomena, the code was improved to consider the variety shape and size of bubbles. The decontamination factor were largely evaluated in ellipsoid bubble rather than in sphere bubble. The pool scrubbing models will be enhanced to apply more various model such as aerosol condensation of hygroscopic. And, it is need to experiment to measure to bubble shape and size distribution in pool to improve bubble model.

  16. Cosmic Topology: Studying The Shape And Size Of Our Universe

    Science.gov (United States)

    Yzaguirre, Amelia; Hajian, A.

    2010-01-01

    The question of the size and the shape of our universe is a very old problem that has received considerable attention over the past few years. The simplest cosmological model predicts that the mean density of the universe is very close to the critical density, admitting a local geometry of the universe that is flat. Current results from different cosmological observations confirm this to the percent level accuracy. General Relativity (being a local theory) only determines local geometry, which allows for the possibility of a multiply connected universe with a zero (or small) curvature. To study the global shape, or topology, of the universe, one can use cosmological observations on large scales. In this project we investigate the possibility of a ``small universe'', that is, a compact finite space, by searching for planar symmetries in the CMB anisotropy maps provided by the five-year WMAP observations in two foreground cleaned maps (WMAP ILC map and the Tegmark, et al. (TOH) map ). Our results strongly suggest that the small universe model is not a viable topology for the universe.

  17. The shapes of bird beaks are highly controlled by nondietary factors.

    Science.gov (United States)

    Bright, Jen A; Marugán-Lobón, Jesús; Cobb, Samuel N; Rayfield, Emily J

    2016-05-10

    Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations.

  18. Effect of the shape and size of dosimeters on the response of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, Nicola D.; Fabisiak, Slawomir; Lagunov, Oleg

    2006-01-01

    The influence of the shape and size of dosimeters used in solid state-EPR (SS/EPR) dosimetry on their response is reported. It is shown that for commonly used cylindrical (rod) shaped dosimeters of equal height, prepared of low (ε=<3) dielectric constant materials, linearity between their volume and the EPR response is observed when their diameter varies between 3 and 5mm. Further increase of the dosimeter's diameter is not recommended since the increased penetration of the dosimeter material into the electric component of the microwave field in the EPR cavity increases the dielectric losses and decreases the EPR response. In an attempt to improve the sensitivity of the SS/EPR dosimetry we have prepared and tested new, flat-shaped, dosimeters of low (ε∼2) dielectric constant materials which were found to exhibit: (i) linear EPR response within 1-5mm thickness; (ii) higher sensitivity than cylindrical dosimeters at equal sample volume; (iii) increased by ca. 270% EPR sensitivity at 5mm thickness compared to the cylindrical dosimeters with the same diameter (ca. 1.7 times increased sample volume). Using flat shape dosimeters of suitable size provides 2.7 times higher EPR sensitivity of single estimation

  19. Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff

    Directory of Open Access Journals (Sweden)

    Anwar MF

    2016-01-01

    Full Text Available Mohammad F Anwar,1 Deepak Yadav,2 Swati Jain,3 Sumeet Kapoor,4 Shweta Rastogi,5 Indu Arora,6 Mohammed Samim1 1Department of Chemistry, Faculty of Science, 2Faculty of Medicine, Jamia Hamdard University, New Delhi, 3Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, 4Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 5Department of Chemistry, Hans Raj College, 6Department of Biomedical Sciences, Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India Abstract: Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs, and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs and nanorods (NRs were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was

  20. The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits

    Science.gov (United States)

    Mele, Daniela; Dioguardi, Fabio

    2018-03-01

    Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.

  1. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    Science.gov (United States)

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  2. Chemical composition shape form and size of suspended solids in the atmosphere carried by rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2001-01-01

    The interest of this work is to know about shape form, size and chemical composition of the suspended solids in the atmosphere of Toluca city and which are carried by the rains. The harvest of the samples was carried out during january to november 1999. The separation of the particulate matter from the rain water was realized through centrifugation. The solids were analysed by Scanning Electron Microscopy to know the shape form and size and the chemical composition was determined by X-ray dispersive energy in general form and of some particles individually analysed. The p H was measured to the solutions and the quantification of some dissolved ions by the Icp technique was realized. The results of the solids showed C, O, Na, Mg, Al, Si, S, P, K, Ca, Ti and Fe. Moreover they present sizes which varying from a ten of nanometers until some tens of microns. (Author)

  3. New Atrophic Acne Scar Classification: Reliability of Assessments Based on Size, Shape, and Number.

    Science.gov (United States)

    Kang, Sewon; Lozada, Vicente Torres; Bettoli, Vincenzo; Tan, Jerry; Rueda, Maria Jose; Layton, Alison; Petit, Lauren; Dréno, Brigitte

    2016-06-01

    Post-acne atrophic scarring is a major concern for which standardized outcome measures are needed. Traditionally, this type of scar has been classified based on shape; but survey of practicing dermatologists has shown that atrophic scar morphology has not been well enough defined to allow good agreement in clinical classification. Reliance on clinical assessment is still needed at the current time, since objective tools are not yet available in routine practice. Evaluate classification for atrophic acne scars by shape, size, and facial location and establish reliability in assessments. We conducted a non-interventional study with dermatologists performing live clinical assessments of atrophic acne scars. To objectively compare identification of lesions, individual lesions were marked on a high-resolution photo of the patient that was displayed on a computer during the clinical evaluation. The Jacob clinical classification system was used to define three primary shapes of scars 1) icepick, 2) boxcar, and 3) rolling. To determine agreement for classification by size, independent technicians assessed the investigators' markings on digital images. Identical localization of scars was denoted if the maximal distance between their centers was ≤ 60 pixels (approximately 3 mm). Raters assessed scars on the same patients twice (morning/afternoon). Aggregate models of rater assessments were created and analyzed for agreement. Raters counted a mean scar count per subject ranging from 15.75 to 40.25 scars. Approximately 50% of scars were identified by all raters and ~75% of scars were identified by at least 2 of 3 raters (weak agreement, Kappa pairwise agreement 0.30). Agreement between consecutive counts was moderate, with Kappa index ranging from 0.26 to 0.47 (after exclusion of one outlier investigator who had significantly higher counts than all others). Shape classifications of icepick, boxcar, and rolling differed significantly between raters and even for same raters at

  4. Size dependent nanomechanics of coil spring shaped polymer nanowires.

    Science.gov (United States)

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-27

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  5. Children's Concepts of the Shape and Size of the Earth, Sun and Moon

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2013-01-01

    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models…

  6. Prevalence of Dental Anomalies in Odisha Population: A Panoramic Radiographic Study.

    Science.gov (United States)

    Goutham, Balasubramanya; Bhuyan, Lipsa; Chinnannavar, Sangamesh N; Kundu, Madhurima; Jha, Kunal; Behura, Shyam S

    2017-07-01

    The aim of this study was to evaluate the prevalence of dental anomalies (DAs) in Odisha population using panoramic radiographs. In this study, 1,080 panoramic radiographs were evaluated for DAs. Dental records were reviewed for diagnostic confirmation. Anomalies related to the shape, size, position of teeth, and number of roots (supernumerary roots) were evaluated. The study results showed the prevalence of DAs to be 35.27%. The most prevalent was dilaceration, which was seen in 46.71% cases followed by peg laterals in 20.99%. Dental anomalies were present in more than one-third of the study group, which was mostly related to shape of the teeth. Early diagnosis of these DAs helps in avoiding complications. Identification of DAs requires proper examination and thereby subsequent correct diagnosis. These anomalies can pose complications in normal functioning of orofacial complex. The knowledge of the prevalence of such anomalies aids dental practitioners for a proper treatment plan.

  7. Size and shape variability in the skull of Myotis nigricans (Schinz, 1821 (Chiroptera: Vespertilionidae from two geographic areas in Brazil

    Directory of Open Access Journals (Sweden)

    R. Bornholdt

    Full Text Available We present a quantitative analysis of sexual dimorphism and geographic variation in the skull of Myotis nigricans (Schinz, 1821 assessed by geometric morphometrics. Differences in size and shape of skulls were investigated using 30 landmarks plotted on two-dimensional images of lateral and ventral views. Results of geometric morphometrics revealed sexual dimorphism in the centroid size of the skull in both views. Females were larger than males. Nevertheless, there was no sexual dimorphism in skull shape of M. nigricans. Geographic variation was detected in size and shape of the skull. South Brazilian specimens were significantly larger than Ceará specimens only in the lateral view. Differences in skull shape were statistically significant in both views: specimens from South Brazil were brevirostri and presented a more expanded skull in the posterior region while Ceará specimens were longirostri and do not present any expansion in the brain case. Ecological factors for these phenomena are discussed in the text.

  8. Shape and size controlled synthesis of Au nanorods: H2S gas-sensing characterizations and antibacterial application

    International Nuclear Information System (INIS)

    Lanh, Le Thi; Hoa, Tran Thai; Cuong, Nguyen Duc; Khieu, Dinh Quang; Quang, Duong Tuan; Van Duy, Nguyen; Hoa, Nguyen Duc; Van Hieu, Nguyen

    2015-01-01

    Highlights: • We have demonstrated a facile method to prepare colloid Au nanorods. • The size and shape of Au nanorods can be controlled via seed-mediated growth method. • The H 2 S gas-sensing properties have been investigated. • The antibacterial application has been conducted. - Abstract: Controlling their size and shape is one of the important issues in the fundamental study and application of colloidal metal nanoparticles. In the current study, different sizes and shapes of Au nanorods were fabricated using a seed-mediated growth method. Material characterization by X-ray diffraction and transmission electron microscopy revealed that the obtained products were made of single-crystal Au nanorods with an average diameter and length of 10 nm and 40 nm, respectively. The Au nanorod-based sensor exhibited significantly high sensitivity and fast response/recovery time to low concentrations (2.5–10 ppm) of H 2 S at temperatures ranging from 300 °C to 400 °C. Additionally, they exhibited antibacterial effect at low concentration. These results suggested that the fabricated Au nanorods have excellent potential for practical application in air pollution monitoring and biomedicine

  9. Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae-Won; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been

  10. Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity

    International Nuclear Information System (INIS)

    Cho, Tae-Won; Sohn, Dong-Seong

    2014-01-01

    The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been

  11. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    T.W. Winkler (Thomas W.); A.E. Justice (Anne); M.J. Graff (Maud J.L.); Barata, L. (Llilda); M.F. Feitosa (Mary Furlan); Chu, S. (Su); J. Czajkowski (Jacek); T. Esko (Tõnu); M. Fall (Magnus); T.O. Kilpeläinen (Tuomas); Y. Lu (Yingchang); R. Mägi (Reedik); E. Mihailov (Evelin); T.H. Pers (Tune); Rüeger, S. (Sina); A. Teumer (Alexander); G.B. Ehret (Georg); T. Ferreira (Teresa); N.L. Heard-Costa (Nancy); J. Karjalainen (Juha); V. Lagou (Vasiliki); A. Mahajan (Anubha); Neinast, M.D. (Michael D.); I. Prokopenko (Inga); J. Simino (Jeannette); T.M. Teslovich (Tanya M.); R. Jansen; H.J. Westra (Harm-Jan); C.C. White (Charles); D. Absher (Devin); T.S. Ahluwalia (Tarunveer Singh); S. Ahmad (Shafqat); E. Albrecht (Eva); A.C. Alves (Alexessander Couto); Bragg-Gresham, J.L. (Jennifer L.); A.J. de Craen (Anton); J.C. Bis (Joshua); A. Bonnefond (Amélie); G. Boucher (Gabrielle); G. Cadby (Gemma); Y.-C. Cheng (Yu-Ching); Chiang, C.W. (Charleston W K); G. Delgado; A. Demirkan (Ayşe); N. Dueker (Nicole); N. Eklund (Niina); G. Eiriksdottir (Gudny); J. Eriksson (Joel); B. Feenstra (Bjarke); K. Fischer (Krista); F. Frau (Francesca); T.E. Galesloot (Tessel); F. Geller (Frank); A. Goel (Anuj); M. Gorski (Mathias); T.B. Grammer (Tanja); S. Gustafsson (Stefan); Haitjema, S. (Saskia); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); A.U. Jackson (Anne); K.B. Jacobs (Kevin); A. Johansson (Åsa); M. Kaakinen (Marika); M.E. Kleber (Marcus); J. Lahti (Jari); I.M. Leach (Irene Mateo); Lehne, B. (Benjamin); Liu, Y. (Youfang); K.S. Lo; M. Lorentzon (Mattias); J. Luan (Jian'An); P.A. Madden (Pamela); M. Mangino (Massimo); B. McKnight (Barbara); Medina-Gomez, C. (Carolina); K.L. Monda (Keri); M.E. Montasser (May E.); G. Müller (Gabriele); M. Müller-Nurasyid (Martina); I.M. Nolte (Ilja); Panoutsopoulou, K. (Kalliope); L. Pascoe (Laura); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); F. Renström (Frida); Rizzi, F. (Federica); L.M. Rose (Lynda); Ryan, K.A. (Kathy A.); P. Salo (Perttu); S. Sanna (Serena); H. Scharnagl (Hubert); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); L. Southam (Lorraine); A. Stancáková (Alena); V. Steinthorsdottir (Valgerdur); R.J. Strawbridge (Rona); Sung, Y.J. (Yun Ju); I. Tachmazidou (Ioanna); T. Tanaka (Toshiko); G. Thorleifsson (Gudmar); S. Trompet (Stella); N. Pervjakova (Natalia); J.P. Tyrer (Jonathan); L. Vandenput (Liesbeth); S.W. Van Der Laan (Sander W.); N. van der Velde (Nathalie); J. van Setten (Jessica); J.V. van Vliet-Ostaptchouk (Jana); N. Verweij (Niek); E. Vlachopoulou (Efthymia); L. Waite (Lindsay); S.R. Wang (Sophie); Z. Wang (Zhaoming); S.H. Wild (Sarah); C. Willenborg (Christina); J.F. Wilson (James); A. Wong (Andrew); Yang, J. (Jian); L. Yengo (Loic); L.M. Yerges-Armstrong (Laura); Yu, L. (Lei); W. Zhang (Weihua); Zhao, J.H. (Jing Hua); E.A. Andersson (Ehm Astrid); S.J.L. Bakker (Stephan); D. Baldassarre (Damiano); Banasik, K. (Karina); Barcella, M. (Matteo); Barlassina, C. (Cristina); C. Bellis (Claire); P. Benaglio (Paola); J. Blangero (John); M. Blüher (Matthias); Bonnet, F. (Fabrice); L.L. Bonnycastle (Lori); H.A. Boyd (Heather); M. Bruinenberg (M.); Buchman, A.S. (Aron S.); H. Campbell (Harry); Y.D. Chen (Y.); P.S. Chines (Peter); S. Claudi-Boehm (Simone); J.W. Cole (John W.); F.S. Collins (Francis); E.J.C. de Geus (Eco); L.C.P.G.M. de Groot (Lisette); M. Dimitriou (Maria); J. Duan (Jubao); S. Enroth (Stefan); E. Eury (Elodie); A.-E. Farmaki (Aliki-Eleni); N.G. Forouhi (Nita); N. Friedrich (Nele); P.V. Gejman (Pablo); B. Gigante (Bruna); N. Glorioso (Nicola); A. Go (Attie); R.F. Gottesman (Rebecca); J. Gräßler (Jürgen); H. Grallert (Harald); N. Grarup (Niels); Gu, Y.-M. (Yu-Mei); L. Broer (Linda); A.C. Ham (Annelies); T. Hansen (T.); T.B. Harris (Tamara); C.A. Hartman (Catharina A.); Hassinen, M. (Maija); N. Hastie (Nick); A.T. Hattersley (Andrew); A.C. Heath (Andrew); A.K. Henders (Anjali); D.G. Hernandez (Dena); H.L. Hillege (Hans); O.L. Holmen (Oddgeir); G.K. Hovingh (Kees); J. Hui (Jennie); Husemoen, L.L. (Lise L.); Hutri-Kähönen, N. (Nina); P.G. Hysi (Pirro); T. Illig (Thomas); P.L. de Jager (Philip); S. Jalilzadeh (Shapour); T. Jorgensen (Torben); J.W. Jukema (Jan Wouter); Juonala, M. (Markus); S. Kanoni (Stavroula); M. Karaleftheri (Maria); K.T. Khaw; L. Kinnunen (Leena); T. Kittner (Thomas); W. Koenig (Wolfgang); I. Kolcic (Ivana); P. Kovacs (Peter); Krarup, N.T. (Nikolaj T.); W. Kratzer (Wolfgang); Krüger, J. (Janine); Kuh, D. (Diana); M. Kumari (Meena); T. Kyriakou (Theodosios); C. Langenberg (Claudia); L. Lannfelt (Lars); C. Lanzani (Chiara); V. Lotay (Vaneet); L.J. Launer (Lenore); K. Leander (Karin); J. Lindström (Jaana); A. Linneberg (Allan); Liu, Y.-P. (Yan-Ping); S. Lobbens (Stéphane); R.N. Luben (Robert); V. Lyssenko (Valeriya); S. Männistö (Satu); P.K. Magnusson (Patrik); W.L. McArdle (Wendy); C. Menni (Cristina); S. Merger (Sigrun); L. Milani (Lili); Montgomery, G.W. (Grant W.); A.P. Morris (Andrew); N. Narisu (Narisu); M. Nelis (Mari); K.K. Ong (Ken); A. Palotie (Aarno); L. Perusse (Louis); I. Pichler (Irene); M.G. Pilia (Maria Grazia); A. Pouta (Anneli); Rheinberger, M. (Myriam); Ribel-Madsen, R. (Rasmus); Richards, M. (Marcus); K.M. Rice (Kenneth); T.K. Rice (Treva K.); C. Rivolta (Carlo); V. Salomaa (Veikko); A.R. Sanders (Alan); M.A. Sarzynski (Mark A.); S. Scholtens (Salome); R.A. Scott (Robert); W.R. Scott (William R.); S. Sebert (Sylvain); S. Sengupta (Sebanti); B. Sennblad (Bengt); T. Seufferlein (Thomas); A. Silveira (Angela); P.E. Slagboom (Eline); J.H. Smit (Jan); T. Sparsø (Thomas); K. Stirrups (Kathy); R.P. Stolk (Ronald); H.M. Stringham (Heather); Swertz, M.A. (Morris A.); A.J. Swift (Amy); A.C. Syvänen; S.-T. Tan (Sian-Tsung); B. Thorand (Barbara); A. Tönjes (Anke); Tremblay, A. (Angelo); E. Tsafantakis (Emmanouil); P.J. van der Most (Peter); U. Völker (Uwe); M.-C. Vohl (Marie-Claude); J.M. Vonk (Judith); M. Waldenberger (Melanie); Walker, R.W. (Ryan W.); R. Wennauer (Roman); E. Widen; G.A.H.M. Willemsen (Gonneke); T. Wilsgaard (Tom); A.F. Wright (Alan); M.C. Zillikens (Carola); S. Van Dijk (Suzanne); N.M. van Schoor (Natasja); F.W. Asselbergs (Folkert); P.I.W. de Bakker (Paul); J.S. Beckmann (Jacques); J.P. Beilby (John); D.A. Bennett (David A.); R.N. Bergman (Richard); S.M. Bergmann (Sven); C.A. Böger (Carsten); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); S.R. Bornstein (Stefan); E.P. Bottinger (Erwin); C. Bouchard (Claude); J.C. Chambers (John); S.J. Chanock (Stephen); D.I. Chasman (Daniel); F. Cucca (Francesco); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); K. Hagen (Knut); D. Evans; U. de Faire (Ulf); M. Farrall (Martin); L. Ferrucci (Luigi); I. Ford (Ian); L. Franke (Lude); P.W. Franks (Paul); P. Froguel (Philippe); R.T. Gansevoort (Ron); C. Gieger (Christian); H. Grönberg (Henrik); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); P. Hall (Per); A. Hamsten (Anders); P. van der Harst (Pim); C. Hayward (Caroline); M. Heliovaara (Markku); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hofman (Albert); Hu, F. (Frank); H.V. Huikuri (Heikki); K. Hveem (Kristian); A. James (Alan); Jordan, J.M. (Joanne M.); A. Jula (Antti); M. Kähönen (Mika); E. Kajantie (Eero); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); M. Kivimaki (Mika); P. Knekt; H. Koistinen (Heikki); J.S. Kooner (Jaspal S.); S. Koskinen (Seppo); J. Kuusisto (Johanna); W. Maerz (Winfried); N.G. Martin (Nicholas); M. Laakso (Markku); T.A. Lakka (Timo); T. Lehtimäki (Terho); G. Lettre (Guillaume); D.F. Levinson (Douglas); W.H.L. Kao (Wen); M.L. Lokki; Mäntyselkä, P. (Pekka); M. Melbye (Mads); A. Metspalu (Andres); B.D. Mitchell (Braxton); F.L. Moll (Frans); J.C. Murray (Jeffrey); A.W. Musk (Arthur); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); B.A. Oostra (Ben); C. Palmer (Cameron); J.S. Pankow (James); G. Pasterkamp (Gerard); N.L. Pedersen (Nancy); O. Pedersen (Oluf); B.W.J.H. Penninx (Brenda); M. Perola (Markus); A. Peters (Annette); O. Polasek (Ozren); P.P. Pramstaller (Peter Paul); Psaty, B.M. (Bruce M.); Qi, L. (Lu); T. Quertermous (Thomas); Raitakari, O.T. (Olli T.); T. Rankinen (Tuomo); R. Rauramaa (Rainer); P.M. Ridker (Paul); J.D. Rioux (John); F. Rivadeneira Ramirez (Fernando); J.I. Rotter (Jerome I.); I. Rudan (Igor); H.M. den Ruijter (Hester ); J. Saltevo (Juha); N. Sattar (Naveed); Schunkert, H. (Heribert); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); J. Sinisalo (Juha); H. Snieder (Harold); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); Staessen, J.A. (Jan A.); Stefania, B. (Bandinelli); U. Thorsteinsdottir (Unnur); M. Stumvoll (Michael); J.-C. Tardif (Jean-Claude); E. Tremoli (Elena); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); A.L.M. Verbeek; S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); Vitart, V. (Veronique); H. Völzke (Henry); P. Vollenweider (Peter); G. Waeber (Gérard); M. Walker (Mark); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); E. Zeggini (Eleftheria); A. Chakravarti (Aravinda); Clegg, D.J. (Deborah J.); L.A. Cupples (Adrienne); P. Gordon-Larsen (Penny); C.E. Jaquish (Cashell); D.C. Rao (Dabeeru C.); Abecasis, G.R. (Goncalo R.); T.L. Assimes (Themistocles); I.E. Barroso (Inês); S.I. Berndt (Sonja); M. Boehnke (Michael); P. Deloukas (Panagiotis); C.S. Fox (Caroline); L. Groop (Leif); D. Hunter (David); E. Ingelsson (Erik); R.C. Kaplan (Robert); McCarthy, M.I. (Mark I.); K.L. Mohlke (Karen); J.R. O´Connell; Schlessinger, D. (David); D.P. Strachan (David); J-A. Zwart (John-Anker); C.M. van Duijn (Cornelia); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia M.); I.M. Heid (Iris); K.E. North (Kari); I.B. Borecki (Ingrid); Z. Kutalik (Zoltán); R.J.F. Loos (Ruth)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ

  12. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    Science.gov (United States)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  13. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.

    Science.gov (United States)

    Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena

    2015-05-01

    Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes. © 2015 Institute of Food Technologists®

  14. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2016-01-01

    Full Text Available Application of Enhanced Oil Recovery (EOR in oil and gas industry is very important to increase oil recovery and prolong the lifetime of a reservoir but it has been very costly and losing properties of EOR agent due to harsh condition. Nanoparticles have been used in EOR application since they are not degradable in reservoir condition and used in smaller amount compared to polymer usage. Commonly, EOR techniques are focusing on increasing the sweep efficiency by controlling the mobility ratio between reservoir fluid and injected fluid. Thus, this research aimed to analyze the nanofluid viscosity at different particle size and shape, volumetric concentration and types of dispersing fluid, as well as to determine the oil recovery performance at different nanofluid concentration. The nanofluid viscosity was investigated at nanoparticle sizes of 15nm and 60nm and shapes of 15nm spherical-solid and porous. Five nanofluid samples with concentration ranging from 0.1wt.% to 7wt.% were used to investigate the effect of volumetric concentration. Distilled water, ethanol, ethylene glycol (EG and brine were used for the effect of dispersing fluids. Oil recovery was investigated at five different concentrations of nanofluid samples through flooding test. It was found that viscosity of nanofluid increased with decreasing particle size and increasing volumetric concentration. Solid shape particle and increasing dispersing fluid viscosity resulted in higher nanofluid viscosity. The higher the nanofluid concentration, the higher the oil recovery obtained. It can be concluded that nanofluid properties have been significantly affected by the environment and the particle used for potential EOR application.

  15. Influence of shape and size of the particles on jigging separation of plastics mixture.

    Science.gov (United States)

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Complex calculation and improvement of beam shaping and accelerating system of the ''Sokol'' small-size electrostatic accelerator

    International Nuclear Information System (INIS)

    Simonenko, A.V.; Pistryak, V.M.; Zats, A.V.; Levchenko, Yu.Z.; Kuz'menko, V.V.

    1987-01-01

    Features of charged particle accelerated beam shaping in the electrostatic part of the ''Sokol'' small-size accelerator are considered in complex taking into account the electrode real geometry. Effect of the extracting, accelerating electorde potential and accelerator total voltage on beam behaviour is investigated. A modified variation of the beam shaping system, allowing to decrease 2 times the required interval of accelerating electrode potential adjustment and to decrease the beam size in the starting acceleration region, is presented. It permits to simplify the construction and to improve accelerator operation. Comparison of experimental and calculational data on the beam in the improved accelerator variation is carried out. Effect of peripheral parts of accelerating tube electrodes on the beam is investigated

  17. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  18. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    Science.gov (United States)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  19. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae).

    Science.gov (United States)

    Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio

    2017-01-01

    The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity

  20. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae.

    Directory of Open Access Journals (Sweden)

    Abril Rodríguez-González

    Full Text Available The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such

  1. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    Directory of Open Access Journals (Sweden)

    Muhammad Akram Raza

    2016-04-01

    Full Text Available Silver nanoparticles (AgNPs of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM, UV-visible spectroscopy (UV-VIS, and X-ray diffraction (XRD techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.

  2. Set Size, Individuation, and Attention to Shape

    Science.gov (United States)

    Cantrell, Lisa; Smith, Linda B.

    2013-01-01

    Much research has demonstrated a shape bias in categorizing and naming solid objects. This research has shown that when an entity is conceptualized as an individual object, adults and children attend to the object's shape. Separate research in the domain of numerical cognition suggest that there are distinct processes for quantifying small and…

  3. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography

    NARCIS (Netherlands)

    A.M. Anwar (Ashraf); M.L. Geleijnse (Marcel); F.J. ten Cate (Folkert); F.J. Meijboom (Folkert)

    2006-01-01

    textabstractTricuspid annulus (TA) evaluation continues to be a major problem in the surgical decision-making process. Obviously, 2-dimensional transthoracic echocardiography (2D TTE) is limited in TA visualization due to its complex 3D shape. The study aimed to determine TA morphology, size and

  4. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  5. Template-directed nucleation and growth of CdS nanocrystal: the role of helical and nonhelical nanofibers on their shape and size

    International Nuclear Information System (INIS)

    Bose, Partha Pratim; Banerjee, Arindam

    2010-01-01

    This study describes the use of chiral nature of synthetic self-assembled nanofibers for nucleation and growth of Cadmium sulfide (CdS) nanocrystals with different sizes and shapes in room temperature. The templates are built by immobilizing a peptide capping agent on the surface of synthetic self-assembled helical or nonhelical nanofibers and CdS nanocrystals were allowed to grow on them. It is observed that there are differences in shapes and sizes of the nanocrystals depending on the chiral nature of the nanofibers on which they were growing. Even the CdS nanocrystals grown on different chiral and achiral nanofibers differ markedly in their photoluminescence properties. Thus, here we introduce a new way of using chirality of nanofibers to nucleate and grow CdS nanocrystals of different shape, size, and optical property.

  6. Application of geometric morphometrics to the study of postnatal size and shape changes in the skull of Calomys expulsus

    Directory of Open Access Journals (Sweden)

    Erika Hingst-Zaher

    2000-06-01

    Full Text Available Abstract We analyzed ontogenetic patterns of landmarks for 169 laboratory-raised specimens of Calomys expulsus, at 0, 5, 10, 20, 30, 50, 100, 200, and 300 days of age, using two-dimensional geometric morphometrics. There is sexual dimorphism in size, with males smaller than females at earlier ages, but larger after 50 days. Differences in shape between sexes are strong only until 10 days of age, suggesting that shape is more constrained than size. Combining sexes, there is strong variation in size with age, reduced after 200 days, while most of the variation in shape occurs before 20 days. This dissociation is common for sigmodontine rodents, and might be the basis of heterochronic processes responsible for the morphological variation of this South American group. Centroid size does not show any reduction in the coefficient of variation over ages, while Procrustes distances within sucessive ages are reduced after 20 days. Uniform component and the more global partial warps explain most of the shape changes with age. Cranial and Facial parts of the skull increase in size at different rates with a relative lengthening of the snout and decrease in height of the braincase. We were unable to detect a clear pattern of integration for the rostrum and braincase, besides that shown by landmark displacements.

  7. Distribution and predictors of wing shape and size variability in three sister species of solitary bees.

    Directory of Open Access Journals (Sweden)

    Simon Dellicour

    Full Text Available Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal

  8. Distribution and predictors of wing shape and size variability in three sister species of solitary bees.

    Science.gov (United States)

    Dellicour, Simon; Gerard, Maxence; Prunier, Jérôme G; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis

    2017-01-01

    Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the

  9. Shape and size controlled synthesis of Au nanorods: H{sub 2}S gas-sensing characterizations and antibacterial application

    Energy Technology Data Exchange (ETDEWEB)

    Lanh, Le Thi [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Hoa, Tran Thai, E-mail: trthaihoa@yahoo.com [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Cuong, Nguyen Duc [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Hue City (Viet Nam); Khieu, Dinh Quang [College of Sciences, Hue University, 77 Nguyen Hue, Hue City (Viet Nam); Quang, Duong Tuan [College of Education, Hue University, 34 Le Loi, Hue City (Viet Nam); Van Duy, Nguyen; Hoa, Nguyen Duc [International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi (Viet Nam)

    2015-06-25

    Highlights: • We have demonstrated a facile method to prepare colloid Au nanorods. • The size and shape of Au nanorods can be controlled via seed-mediated growth method. • The H{sub 2}S gas-sensing properties have been investigated. • The antibacterial application has been conducted. - Abstract: Controlling their size and shape is one of the important issues in the fundamental study and application of colloidal metal nanoparticles. In the current study, different sizes and shapes of Au nanorods were fabricated using a seed-mediated growth method. Material characterization by X-ray diffraction and transmission electron microscopy revealed that the obtained products were made of single-crystal Au nanorods with an average diameter and length of 10 nm and 40 nm, respectively. The Au nanorod-based sensor exhibited significantly high sensitivity and fast response/recovery time to low concentrations (2.5–10 ppm) of H{sub 2}S at temperatures ranging from 300 °C to 400 °C. Additionally, they exhibited antibacterial effect at low concentration. These results suggested that the fabricated Au nanorods have excellent potential for practical application in air pollution monitoring and biomedicine.

  10. Prospective assessment of pituitary size and shape on MR imaging after suppressive hormonal therapy in central precocious puberty

    Energy Technology Data Exchange (ETDEWEB)

    Beek, J.T. van; Sharafuddin, M.J.A.; Kao, S.C.S. [Department of Radiology-JPP 3889, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52246 (United States); Luisiri, A. [Cardinal Glennon Children' s Hospital, St. Louis, Missouri (United States); Garibaldi, L.R. [Children' s Hospital of New Jersey, Newark Beth Israel Medical Center, Newark, New Jersey (United States); St. Barnabas Medical Center, Livingston, New Jersey (United States)

    2000-07-01

    Objective. The diagnostic significance of an enlarged pituitary gland regarding both shape and size parameters on MR imaging has previously been demonstrated in children with central precocious puberty. This study was designed to assess changes in these parameters following successful suppressive therapy of central precocious puberty with the gonadotropin-releasing hormone (GnRH) analogue. Materials and methods. Twelve girls (mean age 7.3 years) with central precocious puberty were prospectively enrolled in our study protocol. Sagittal and coronal MR images of the pituitary region were obtained in all patients before treatment and after at least 6 months of GnRH analogue therapy (mean 18.0 months). Parameters measured included pituitary gland height, length, width, sagittal cross-sectional area, and volume. Results. All patients had excellent clinical response to treatment with arrest of secondary sexual development, normalization of serum estradiol levels, and complete obliteration of the LH response to diagnostic GnRH stimulation. No significant change occurred in any pituitary size or shape parameter following GnRH analogue therapy. Conclusion. Favorable clinical response to GnRH analogue therapy in central precocious puberty is not accompanied by significant a change in pituitary gland size and shape. (orig.)

  11. Prospective assessment of pituitary size and shape on MR imaging after suppressive hormonal therapy in central precocious puberty

    International Nuclear Information System (INIS)

    Beek, J.T. van; Sharafuddin, M.J.A.; Kao, S.C.S.; Luisiri, A.; Garibaldi, L.R.

    2000-01-01

    Objective. The diagnostic significance of an enlarged pituitary gland regarding both shape and size parameters on MR imaging has previously been demonstrated in children with central precocious puberty. This study was designed to assess changes in these parameters following successful suppressive therapy of central precocious puberty with the gonadotropin-releasing hormone (GnRH) analogue. Materials and methods. Twelve girls (mean age 7.3 years) with central precocious puberty were prospectively enrolled in our study protocol. Sagittal and coronal MR images of the pituitary region were obtained in all patients before treatment and after at least 6 months of GnRH analogue therapy (mean 18.0 months). Parameters measured included pituitary gland height, length, width, sagittal cross-sectional area, and volume. Results. All patients had excellent clinical response to treatment with arrest of secondary sexual development, normalization of serum estradiol levels, and complete obliteration of the LH response to diagnostic GnRH stimulation. No significant change occurred in any pituitary size or shape parameter following GnRH analogue therapy. Conclusion. Favorable clinical response to GnRH analogue therapy in central precocious puberty is not accompanied by significant a change in pituitary gland size and shape. (orig.)

  12. Understanding the shape of the Earth and measuring its size

    Science.gov (United States)

    Baltatzis, Evangelos; Galanaki, Angeliki

    2016-04-01

    Most elementary students have problems and misconceptions regarding the shape of the Earth. Teachers often contribute to this confusion telling the students that the Earth is almost spherical, but not explaining to them, how the Earth can be spherical while it appears. It would be helpful for students to understand how humanity came with the idea of the spherical Earth (to be precise the Earth is ellipsoid). Historically, most cultures describe the Earth as flat. That changes with the ancient Greek culture. We don't know exactly how the Greeks first understood the spherical shape of the Earth, but some Greek philosophers give some arguments why the Earth must be a sphere. We can discuss these arguments and observations with the students. First, if someone travels in the south, he can see the southern constellations rise higher above the horizon. We can give students pictures of the night sky in southern regions and compare them with observations of ''their'' night sky. Second, in the lunar eclipse we can see the round shadow of the Earth. Third, whenever a ship is on the horizon, his low part is invisible . This is known as "hull-down". Moreover, the low part of mountains is invisible from the sea, due to the curvature of the Earth. It is always better to make these observations in real life but it can also be done via videos and pictures. The realization of the spherical shape of the Earth was sine qua non for the first good measurement of its size. In the second part of the project, following the ancient mathematician Eratosthenes's steps, students can measure the size of the Earth, , find pleasure in doing experimental work and realize how important mathematics is in everyday life. Two sticks, situated a long distance away from each other, can give us approximately the circumference , the radius and the diameter of the Earth. Eratosthenes used geometry combined to the knowledge of ancient Greek culture that the Earth is spherical (360°). He knew the distance

  13. Influence of the particle size on phase transformation temperatures of Ni-49at.%Ti shape memory alloy powders

    International Nuclear Information System (INIS)

    Anselmo, George Carlos. S.; Castro, Walman B. de; Araujo, Carlos Jose de

    2009-01-01

    It is important to control the martensitic transformation start temperature (Ms) of Ti-Ni alloys because it determines the temperature range over which the shape memory effect and superelasticity appear. Powder metallurgy (PM) is known to provide the possibility of material saving and automated fabrication of at least semi-finished products as well as net-shape components for NiTi alloys. In this study powder with different particle sizes was subjected by gas atomization. The evolution of the control the martensitic transformation start temperature (Ms) was studied by differential scanning calorimetry. The effect of the particle size of powders on the transformation temperatures behaviors was discussed. (author)

  14. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2016-03-01

    Full Text Available Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL, developed using an elite (ND 705 and a nonadapted genotype (PI 414566, was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL and width (KW are genetically independent, while a large number (∼59% of the quantitative trait loci (QTL for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A and (7A genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools.

  15. Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina)

    DEFF Research Database (Denmark)

    Wieskotten, S.; Mauck, B.; Miersch, L.

    2011-01-01

    Harbour seals can use their mystacial vibrissae to detect and track hydrodynamic wakes. We investigated the ability of a harbour seal to discriminate objects of different size or shape by their hydrodynamic signature and used particle image velocimetry to identify the hydrodynamic parameters...... that a seal may be using to do so. Hydrodynamic trails were generated by different sized or shaped paddles that were moved in the calm water of an experimental box to produce a characteristic signal. In a two-alternative forced-choice procedure the blindfolded subject was able to discriminate size differences...... of down to 3.6. cm (Weber fraction 0.6) when paddles were moved at the same speed. Furthermore the subject distinguished hydrodynamic signals generated by flat, cylindrical, triangular or undulated paddles of the same width. Particle image velocimetry measurements demonstrated that the seal could have...

  16. Foraging Habitat Distributions Affect Territory Size and Shape in the Tuamotu Kingfisher

    Directory of Open Access Journals (Sweden)

    Dylan C. Kesler

    2012-01-01

    Full Text Available I studied factors influencing territory configuration in the Tuamotu kingfisher (Todiramphus gambieri. Radiotelemetry data were used to define territory boundaries, and I tested for effects on territory size and shape of landscape habitat composition and foraging patch configuration. Tuamotu kingfisher territories were larger in areas with reduced densities of coconut plantation foraging habitat, and territories were less circular in the study site that had a single slender patch of foraging habitat. Maximum territory length did not differ between study sites, however, which suggested that the size of Tuamotu kingfisher territories might be bounded by the combined influence of maximum travel distances and habitat configurations. Results also suggested that birds enlarge territories as they age. Together, results supported previous work indicating that territory configurations represent a balance between the costs of defending a territory and gains from territory ownership.

  17. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    Science.gov (United States)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  18. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Wada, Ken; Hyodo, Toshio

    2013-01-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  19. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  20. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map.

    Science.gov (United States)

    Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M

    2016-03-01

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.

  1. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization.

    Science.gov (United States)

    Fujibayashi, Teruhisa; Okubo, Masayoshi

    2007-07-17

    Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.

  2. Heritability of Wing Size and Shape of the Rice and Corn Strains of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Cañas-Hoyos, N; Márquez, E J; Saldamando-Benjumea, C I

    2016-08-01

    Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) represents a pest of economic importance in all Western Hemisphere. This polyphagous species has diverged into two populations that have been mainly recognized with various mitochondrial and nuclear molecular markers and named "the rice" and "the corn" strains. In Colombia, both strains have evolved prezygotic and postzygotic isolation. They differ in tolerance to Bacillus thuringiensis (Cry1Ac and Cry1Ab endotoxins) and the insecticides lambda-cyhalothrin and methomyl. In 2014, a wing morphometric analysis made in 159 individuals from a colony showed that both strains significantly differ in wing shape. The species also exhibits sexual dimorphism in the rice strain as in females wing size is larger than in males. Here, we continued this work with another wing morphometric approach in laboratory-reared strains to calculate wing size and shape heritabilities using a full-sib design and in wild populations to determine if this method distinguishes these strains. Our results show that male heritabilities of both traits were higher than female ones. Wild populations were significantly different in wing shape and size. These results suggest that wing morphometrics can be used as an alternative method to molecular markers to differentiate adults from laboratory-reared populations and wild populations of this pest, particularly in males of this species. Finally, Q ST values obtained for wing size and shape further demonstrated that both strains are genetically differentiated in nature.

  3. Matching Ge detector element geometry to sample size and shape: One does not fit all exclamation point

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.; Sangsingkeow, P.

    1998-01-01

    For 25 yr, coaxial germanium detector performance has been specified using the methods and values specified in Ref. 1. These specifications are the full-width at half-maximum (FWHM), FW.1M, FW.02M, peak-to-Compton ratio, and relative efficiency. All of these measurements are made with a 60 Co source 25 cm from the cryostat endcap and centered on the axis of the detector. These measurements are easy to reproduce, both because they are simple to set up and use a common source. These standard tests have been useful in guiding the user to an appropriate detector choice for the intended measurement. Most users of germanium gamma-ray detectors do not make measurements in this simple geometry. Germanium detector manufacturers have worked over the years to make detectors with better resolution, better peak-to-Compton ratios, and higher efficiency--but all based on measurements using the IEEE standard. Advances in germanium crystal growth techniques have made it relatively easy to provide detector elements of different shapes and sizes. Many of these different shapes and sizes can give better results for a specific application than other shapes and sizes. But, the detector specifications must be changed to correspond to the actual application. Both the expected values and the actual parameters to be specified should be changed. In many cases, detection efficiency, peak shape, and minimum detectable limit for a particular detector/sample combination are valuable specifications of detector performance. For other situations, other parameters are important, such as peak shape as a function of count rate. In this work, different sample geometries were considered. The results show the variation in efficiency with energy for all of these sample and detector geometries. The point source at 25 cm from the endcap measurement allows the results to be compared with the currently given IEEE criteria. The best sample/detector configuration for a specific measurement requires more and

  4. Hematoma Shape, Hematoma Size, Glasgow Coma Scale Score and ICH Score: Which Predicts the 30-Day Mortality Better for Intracerebral Hematoma?

    Science.gov (United States)

    Wang, Chih-Wei; Liu, Yi-Jui; Lee, Yi-Hsiung; Hueng, Dueng-Yuan; Fan, Hueng-Chuen; Yang, Fu-Chi; Hsueh, Chun-Jen; Kao, Hung-Wen; Juan, Chun-Jung; Hsu, Hsian-He

    2014-01-01

    Purpose To investigate the performance of hematoma shape, hematoma size, Glasgow coma scale (GCS) score, and intracerebral hematoma (ICH) score in predicting the 30-day mortality for ICH patients. To examine the influence of the estimation error of hematoma size on the prediction of 30-day mortality. Materials and Methods This retrospective study, approved by a local institutional review board with written informed consent waived, recruited 106 patients diagnosed as ICH by non-enhanced computed tomography study. The hemorrhagic shape, hematoma size measured by computer-assisted volumetric analysis (CAVA) and estimated by ABC/2 formula, ICH score and GCS score was examined. The predicting performance of 30-day mortality of the aforementioned variables was evaluated. Statistical analysis was performed using Kolmogorov-Smirnov tests, paired t test, nonparametric test, linear regression analysis, and binary logistic regression. The receiver operating characteristics curves were plotted and areas under curve (AUC) were calculated for 30-day mortality. A P value less than 0.05 was considered as statistically significant. Results The overall 30-day mortality rate was 15.1% of ICH patients. The hematoma shape, hematoma size, ICH score, and GCS score all significantly predict the 30-day mortality for ICH patients, with an AUC of 0.692 (P = 0.0018), 0.715 (P = 0.0008) (by ABC/2) to 0.738 (P = 0.0002) (by CAVA), 0.877 (Phematoma shape, hematoma size, ICH scores and GCS score all significantly predict the 30-day mortality in an increasing order of AUC. The effect of overestimation of hematoma size by ABC/2 formula in predicting the 30-day mortality could be remedied by using ICH score. PMID:25029592

  5. Biosynthesis of Inorganic Nanoparticles: A Fresh Look at the Control of Shape, Size and Composition

    Directory of Open Access Journals (Sweden)

    Si Amar Dahoumane

    2017-02-01

    Full Text Available Several methodologies have been devised for the design of nanomaterials. The “Holy Grail” for materials scientists is the cost-effective, eco-friendly synthesis of nanomaterials with controlled sizes, shapes and compositions, as these features confer to the as-produced nanocrystals unique properties making them appropriate candidates for valuable bio-applications. The present review summarizes published data regarding the production of nanomaterials with special features via sustainable methodologies based on the utilization of natural bioresources. The richness of the latter, the diversity of the routes adopted and the tuned experimental parameters have led to the fabrication of nanomaterials belonging to different chemical families with appropriate compositions and displaying interesting sizes and shapes. It is expected that these outstanding findings will encourage researchers and attract newcomers to continue and extend the exploration of possibilities offered by nature and the design of innovative and safer methodologies towards the synthesis of unique nanomaterials, possessing desired features and exhibiting valuable properties that can be exploited in a profusion of fields.

  6. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  7. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan

    Science.gov (United States)

    Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito

    2014-05-01

    Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.

  8. Modeling size effects on the transformation behavior of shape memory alloy micropillars

    International Nuclear Information System (INIS)

    Hernandez, Edwin A Peraza; Lagoudas, Dimitris C

    2015-01-01

    The size dependence of the thermomechanical response of shape memory alloys (SMAs) at the micro and nano-scales has gained increasing attention in the engineering community due to existing and potential uses of SMAs as solid-state actuators and components for energy dissipation in small scale devices. Particularly, their recent uses in microelectromechanical systems (MEMS) have made SMAs attractive options as active materials in small scale devices. One factor limiting further application, however, is the inability to effectively and efficiently model the observed size dependence of the SMA behavior for engineering applications. Therefore, in this work, a constitutive model for the size-dependent behavior of SMAs is proposed. Experimental observations are used to motivate the extension of an existing thermomechanical constitutive model for SMAs to account for the scale effects. It is proposed that such effects can be captured via characteristic length dependent material parameters in a power-law manner. The size dependence of the transformation behavior of NiFeGa micropillars is investigated in detail and used as model prediction cases. The constitutive model is implemented in a finite element framework and used to simulate and predict the response of SMA micropillars with different sizes. The results show a good agreement with experimental data. A parametric study performed using the calibrated model shows that the influence of micropillar aspect ratio and taper angle on the compression response is significantly smaller than that of the micropillar average diameter. It is concluded that the model is able to capture the size dependent transformation response of the SMA micropillars. In addition, the simplicity of the calibration and implementation of the proposed model make it practical for the design and numerical analysis of small scale SMA components that exhibit size dependent responses. (paper)

  9. Particle shape accounts for instrumental discrepancy in ice core dust size distributions

    Science.gov (United States)

    Folden Simonsen, Marius; Cremonesi, Llorenç; Baccolo, Giovanni; Bosch, Samuel; Delmonte, Barbara; Erhardt, Tobias; Kjær, Helle Astrid; Potenza, Marco; Svensson, Anders; Vallelonga, Paul

    2018-05-01

    The Klotz Abakus laser sensor and the Coulter counter are both used for measuring the size distribution of insoluble mineral dust particles in ice cores. While the Coulter counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter counter. We show that the difference between the Abakus and the Coulter counter measurements is mainly caused by the irregular shape of dust particles in ice core samples. The irregular shape means that a new calibration routine based on standard spheres is necessary for obtaining fully comparable data. This new calibration routine gives an increased accuracy to Abakus measurements, which may improve future ice core record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter counter data. For verification, we measured the aspect ratio of the same samples directly using a single-particle extinction and scattering instrument. The results demonstrate that the model is accurate enough to discern between samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter counter data.

  10. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico

    Science.gov (United States)

    Maga, A. Murat; Navarro, Nicolas; Cunningham, Michael L.; Cox, Timothy C.

    2015-01-01

    We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest. PMID:25859222

  11. Hematoma shape, hematoma size, Glasgow coma scale score and ICH score: which predicts the 30-day mortality better for intracerebral hematoma?

    Directory of Open Access Journals (Sweden)

    Chih-Wei Wang

    Full Text Available To investigate the performance of hematoma shape, hematoma size, Glasgow coma scale (GCS score, and intracerebral hematoma (ICH score in predicting the 30-day mortality for ICH patients. To examine the influence of the estimation error of hematoma size on the prediction of 30-day mortality.This retrospective study, approved by a local institutional review board with written informed consent waived, recruited 106 patients diagnosed as ICH by non-enhanced computed tomography study. The hemorrhagic shape, hematoma size measured by computer-assisted volumetric analysis (CAVA and estimated by ABC/2 formula, ICH score and GCS score was examined. The predicting performance of 30-day mortality of the aforementioned variables was evaluated. Statistical analysis was performed using Kolmogorov-Smirnov tests, paired t test, nonparametric test, linear regression analysis, and binary logistic regression. The receiver operating characteristics curves were plotted and areas under curve (AUC were calculated for 30-day mortality. A P value less than 0.05 was considered as statistically significant.The overall 30-day mortality rate was 15.1% of ICH patients. The hematoma shape, hematoma size, ICH score, and GCS score all significantly predict the 30-day mortality for ICH patients, with an AUC of 0.692 (P = 0.0018, 0.715 (P = 0.0008 (by ABC/2 to 0.738 (P = 0.0002 (by CAVA, 0.877 (P<0.0001 (by ABC/2 to 0.882 (P<0.0001 (by CAVA, and 0.912 (P<0.0001, respectively.Our study shows that hematoma shape, hematoma size, ICH scores and GCS score all significantly predict the 30-day mortality in an increasing order of AUC. The effect of overestimation of hematoma size by ABC/2 formula in predicting the 30-day mortality could be remedied by using ICH score.

  12. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  13. Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters.

    Science.gov (United States)

    Wang, Yingying; Hammes, Frederik; Düggelin, Marcel; Egli, Thomas

    2008-09-01

    Sterilization of fluids by means of microfiltration is commonly applied in research laboratories as well as in pharmaceutical and industrial processes. Sterile micropore filters are subject to microbiological validation, where Brevundimonas diminuta is used as a standard test organism. However, several recent reports on the ubiquitous presence of filterable bacteria in aquatic environments have cast doubt on the accuracy and validity of the standard filter-testing method. Six different bacterial species of various sizes and shapes (Hylemonella gracilis, Escherichia coli, Sphingopyxis alaskensis, Vibrio cholerae, Legionella pneumophila, and B. diminuta) were tested for their filterability through sterile micropore filters. In all cases, the slender spirillum-shaped Hylemonella gracilis cells showed a superior ability to pass through sterile membrane filters. Our results provide solid evidence that the overall shape (including flexibility), instead of biovolume, is the determining factor for the filterability of bacteria, whereas cultivation conditions also play a crucial role. Furthermore, the filtration volume has a more important effect on the passage percentage in comparison with other technical variables tested (including flux and filter material). Based on our findings, we recommend a re-evaluation of the grading system for sterile filters, and suggest that the species Hylemonella should be considered as an alternative filter-testing organism for the quality assessment of micropore filters.

  14. Basic properties of full-size st ructural flakeboards fabricated with flakes on a shaping lathe

    Science.gov (United States)

    Eddie W. Prie

    1977-01-01

    Structural exterior flakeboards manufactured in 4 by 8 ft (1.22 by 2.44 m ) size with phenolic resin and flakes produced on a shaping-lathe headrig were evaluated for plate shear modulus, internal bond, bending properties, and 24-hour water soak stability. Both mixed and single species flakeboards were produced. Panels with mixed flakes had 20% by weight of hickory,...

  15. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  16. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    Science.gov (United States)

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  17. Positional dependence of scale size and shape in butterfly wings: wing-wide phenotypic coordination of color-pattern elements and background.

    Science.gov (United States)

    Kusaba, Kiseki; Otaki, Joji M

    2009-02-01

    Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.

  18. Effect of Specimen Shape and Size on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Sudin M.A.S.

    2014-03-01

    Full Text Available Lightweight concrete, in the form of foamed concrete, is a versatile material that primarily consists of a cement based mortar, mixed with at least 20% volume of air. Its dry density is typically below 1600 kg/m3 with a maximum compressive strength of 15MPa. The ASTM standard provision specifies a correction factor for concrete strength of between 14 and 42Mpa, in order to compensate for a reduced strength, when the aspect height-to-diameter ratio of a specimen is less than 2.0. However, the CEB-FIP provision specifically mentions a ratio of 150mm dia. × 300mm cylinder strength to 150 mm cube strength; though, both provision requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength to lightweight concrete (in this case, foamed concrete. The focus of this work is to study the effect of specimen size and shape on the axial compressive strength of concrete. Specimens of various sizes and shapes were cast with square and circular cross-sections i.e., cubes, prisms, and cylinders. Their compression strength behaviours at 7 and 28 days were investigated. The results indicate that, as the CEB-FIP provision specified, even for foamed concrete, 100mm cubes (l/d = 1.0 produce a comparable compressive strength with 100mm dia. × 200mm cylinders (l/d = 2.0.

  19. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico.

    Directory of Open Access Journals (Sweden)

    A. Murat eMaga

    2015-03-01

    Full Text Available We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl and 30 QTL responsible for the skull shape (SSH.qtl. Size, sex and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315MB and contained 2,476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest.

  20. The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Bligaard, Thomas

    2014-01-01

    We present first principle investigation of the influence of platinum nanoparticle shape and size on the oxygen reduction reaction activity. We compare the activities of nanoparticles with specific shapes (tetrahedron, octahedron, cube and truncated octahedron) with that of equilibrium particle s...

  1. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  2. Thermal-Hydraulic Effects of Stud Shape and Size on the Safety Margin of Core Catcher System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The newly engineered corium cooling system, that is, an ex-vessel core catcher system has been designed and adapted in some nuclear power plants such as VVER-1000, EPR, ESBWR, EU-APR1400 to mention a few. For example, Russia adopted a crucible-type core catcher for VVER-1000. On the other hand, a way to catch melt spreading is adopted by several countries, such as EPR in France, ESBWR in USA, ABWR in japan, and EU-APR1400 in Korea In Korea, the core catcher system has been designed and implemented for the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while maintaining a coolable geometry in case that RPV failure occurs. The core catcher system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the overall thermal-hydraulic performance including two-phase heat transfer coefficient and critical heat flux (CHF) of the system. Thus, it is of importance to investigate the thermal-hydraulic effects of studs on the coolability, especially the CHF of the core catcher system. With aforementioned importance, pool boiling experiments were carried out with stud shape of, rectangular, cylinder, and elliptic and for stud sizes of 10, 15, 20, and 25 mm under the condition of atmospheric saturated water. A particular attention was focused on observing local vapor behavior around the studs and finding any hot spots, where the vapors are accumulated. The occurrence of the CHF is anticipated at the back side of the studs. The visual observation and CHF measurements indicate that the

  3. Thermal-Hydraulic Effects of Stud Shape and Size on the Safety Margin of Core Catcher System

    International Nuclear Information System (INIS)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Kim, Sung Joong

    2015-01-01

    With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The newly engineered corium cooling system, that is, an ex-vessel core catcher system has been designed and adapted in some nuclear power plants such as VVER-1000, EPR, ESBWR, EU-APR1400 to mention a few. For example, Russia adopted a crucible-type core catcher for VVER-1000. On the other hand, a way to catch melt spreading is adopted by several countries, such as EPR in France, ESBWR in USA, ABWR in japan, and EU-APR1400 in Korea In Korea, the core catcher system has been designed and implemented for the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while maintaining a coolable geometry in case that RPV failure occurs. The core catcher system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the overall thermal-hydraulic performance including two-phase heat transfer coefficient and critical heat flux (CHF) of the system. Thus, it is of importance to investigate the thermal-hydraulic effects of studs on the coolability, especially the CHF of the core catcher system. With aforementioned importance, pool boiling experiments were carried out with stud shape of, rectangular, cylinder, and elliptic and for stud sizes of 10, 15, 20, and 25 mm under the condition of atmospheric saturated water. A particular attention was focused on observing local vapor behavior around the studs and finding any hot spots, where the vapors are accumulated. The occurrence of the CHF is anticipated at the back side of the studs. The visual observation and CHF measurements indicate that the

  4. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity

    Science.gov (United States)

    Logaranjan, Kaliyaperumal; Raiza, Anasdass Jaculin; Gopinath, Subash C. B.; Chen, Yeng; Pandian, Kannaiyan

    2016-11-01

    Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses and further supported by surface-enhanced Raman spectroscopy/Raman scattering (SERS) study. UV-visible spectrum has shown a sharp peak at 420 nm and further evidenced by FTIR peak profile (at 1587.6, 1386.4, and 1076 cm-1 with corresponding compounds). The main band position with SERS was noticed at 1594 cm-1 (C-C stretching vibration). When samples were heated under microwave radiation, AgNP with octahedron shapes with 5-50 nm were found and this method can be one of the easier ways to synthesis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and shape of the nanoparticles. Enhanced antibacterial effects (two- to fourfold) were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs.

  5. Food web structure shaped by habitat size and climate across a latitudinal gradient.

    Science.gov (United States)

    Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago

    2016-10-01

    Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.

  6. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  7. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia.

    Science.gov (United States)

    Yassin, Syed M

    2016-12-01

    Dental anomalies are not an unusual finding in routine dental examination. The effect of dental anomalies can lead to functional, esthetic and occlusal problems. The Purpose of the study was to determine the prevalence and distribution of selected developmental dental anomalies in Saudi children. The study was based on clinical examination and Panoramic radiographs of children who visited the Pediatric dentistry clinics at King Khalid University College of Dentistry, Saudi Arabia. These patients were examined for dental anomalies in size, shape, number, structure and position. Data collected were entered and analyzed using statistical package for social sciences version. Of the 1252 children (638 Boys, 614 girls) examined, 318 subjects (25.39%) presented with selected dental anomalies. The distribution by gender was 175 boys (27.42%) and 143 girls (23.28%). On intergroup comparison, number anomalies was the most common anomaly with Hypodontia (9.7%) being the most common anomaly in Saudi children, followed by hyperdontia (3.5%). The Prevalence of size anomalies were Microdontia (2.6%) and Macrodontia (1.8%). The prevalence of Shape anomalies were Talon cusp (1.4%), Taurodontism (1.4%), Fusion (0.8%).The prevalence of Positional anomalies were Ectopic eruption (2.3%) and Rotation (0.4%). The prevalence of structural anomalies were Amelogenesis imperfecta (0.3%) Dentinogenesis imperfecta (0.1%). A significant number of children had dental anomaly with Hypodontia being the most common anomaly and Dentinogenesis imperfecta being the rare anomaly in the study. Early detection and management of these anomalies can avoid potential orthodontic and esthetic problems in a child. Key words: Dental anomalies, children, Saudi Arabia.

  8. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study

    OpenAIRE

    Winkler, Thomas W.; Heid, Iris M.; Gorski, Mathias

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of Eur...

  9. Otolith shape and size: The importance of age when determining indices for fish-stock separation

    OpenAIRE

    Mapp, James; Hunter, Ewan; Van Der Kooij, Jeroen; Songer, Sally; Fisher, Mark

    2017-01-01

    Stock-separation of highly mobile Clupeids (sprat – Sprattus sprattus and herring – Clupea harengus) using otolith morphometrics was explored. Analysis focused on three stock discrimination problems with the aim of reassigning individual otoliths to source populations using experiments undertaken using a machine learning environment known as \\{WEKA\\} (Waikato Environment for Knowledge Analysis). Six feature sets encoding combinations of size and shape together with nine learning algorithms we...

  10. Plastic superconductor bearings any size-any shape: 77 K and up

    Science.gov (United States)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  11. Plastic superconductor bearings any size-any shape: 77 K and up

    International Nuclear Information System (INIS)

    Reick, F.G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics

  12. Twin study of genetic and environmental influences on adult body size, shape and composition

    DEFF Research Database (Denmark)

    Schousboe, K.; Visscher, P.M.; Erbas, B.

    2004-01-01

    ), we determined zygosity by DNA similarity, and performed anthropometry and bioelectrical impedance analysis of body composition. The contribution to the total phenotypic variance of genetic, common environment, and individual environment was estimated in multivariate analysis using the FISHER program...... effects under the assumptions of no nonadditive effect. The pattern of age trends was inconsistent. However, when significant there was a decrease in heritability with advancing age. DISCUSSION: These findings suggest that adult body size, shape, and composition are highly heritable in both women and men...

  13. Relationship between chromosome configurations/associations and nuclear size/shape

    International Nuclear Information System (INIS)

    Ostashevsky, J.Y.

    2003-01-01

    Full text: Chromosome configurations (linear,folded,loop,etc.,which are defined through a pattern of centromere and/or telomere anchoring to the nuclear membrane) and chromosome associations (homologous pairing, number of centromere or telomere clusters per nucleus, number of chromosome arms per cluster, etc.) are critical for the formation of radiation-induced chromosome aberrations and DSB repair. However, the rules of nuclear architecture are poorly understood. A polymer approach for chromosome configurations, associations, and attachments was developed, based on the coil-like behavior of chromosomal fibers and the tight packing of discrete chromatin domains in a nucleus. The model considers chromatin anchoring to nuclear structures and shows that confinement of chromatin diffusion in a nucleus can be related to its anchoring and higher-order chromatin structure. The model was applied to nuclei of budding and fission yeast, Drosophila, worm, newt, mammals (human, Indian and Chinese muntjac, mouse) and plants (Arabidopsis, maize, barley, wheat). Quantitative agreement between results calculated from the model and observed data was obtained in all considered (∼25) cases. This supports the model and means that permitted chromosome configurations and associations can be predicted from the geometrical constraints imposed on chromosomes by nuclear size and shape

  14. Chromosomal inversions effect body size and shape in different breeding resources in Drosophila buzzatii.

    Science.gov (United States)

    Fernández Iriarte, P J; Norry, F M; Hasson, E R

    2003-07-01

    The cactophilic Drosophila buzzatii provides an excellent model for the study of reaction norms across discrete environments because it breeds on rotting tissues (rots) of very different cactus species. Here we test the possible effects of second chromosome inversions on body size and shape (wing loading) across suitable natural breeding substrates. Using homokaryotypic stocks derived from several lines homozygous for four naturally occurring chromosomal inversions, we show that arrangements significantly affect size-related traits and wing loading. In addition, karyotypes show differing effects, across natural breeding resources, for wing loading. The 2st and 2jz(3) arrangements decrease and the 2j arrangement increases wing loading. For thorax length and wing loading, karyotypic correlations across host plants are slightly lower in females than in males. These results support the hypothesis that these traits have a genetic basis associated with the inversion polymorphism.

  15. Prevalence of advanced adenomas in small and diminutive colon polyps using direct measurement of size.

    Science.gov (United States)

    Tsai, Franklin C; Strum, Williamson B

    2011-08-01

    Most studies reporting polyp size use visual estimates. Determining the prevalence of advanced histology based on direct measurement of polyp size may help guide the management of polyps found at optical colonoscopy (OC) and CT colonography (CTC). We designed a large, prospective study to assess the prevalence of advanced adenomas based on direct measurement of polyp size by a certified pathologists' assistant as reported in the pathology report. Patients between 40 and 89 years of age who presented for screening colonoscopy were included in our study. Advanced adenomas were defined as ≥10 mm or ≥25% villous features, high grade dysplasia or cancer. Polyps were divided by size into three groups: diminutive (≤5 mm), small (6-9 mm) and large (≥10 mm). If more than one adenoma was present, the most advanced was used for analysis. We evaluated 6,905 consecutive patients referred for colonoscopy between January 2005 and December 2006. Of the 4,967 who met the inclusion criteria, the mean age was 58.8 and consisted of 59% women. Overall, 930 (18.7%) had an adenoma; 248 (5%) were advanced adenomas including 8 (0.16%) cancers. Of 89 polyps≥10 mm, 76 (85%) had advanced histology; of 247 polyps 6-9 mm, 67 (27%) were advanced; of 1,025 polyps ≤5 mm, 105 (10%) were advanced. Thus, 172 of 248 (69%) patients with advanced adenomas had small or diminutive adenomas. Our data indicate the majority (69%) of advanced adenomas are advanced adenomas (10%). These findings may help guide the management of sub-centimeter colon polyps found by OC or CTC.

  16. Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys.

    Science.gov (United States)

    Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul

    2011-02-25

    We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle. © 2011 American Physical Society

  17. Direct measurement of aerosol shape factors

    International Nuclear Information System (INIS)

    Zeller, W.

    1983-12-01

    The dynamic shape factor whereas the coagulation shape factor is an average over the total examined size range. The experiments have shown that the results of experiments with a certain aerosol system cannot be transferred to other aerosol systems without further consideration. The outer shape of particles of a certain size depends on the specific properties of the material as well as on the experimental conditions during the aerosol generation. For both aerosol systems examined the mean dynamic shape factor, averaged over the total examined size range, agrees roughly with the coagulation shape factor. (Description of aerosol centrifuge and of differential mobility analyzer). (orig./HP) [de

  18. Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor

    Science.gov (United States)

    Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.

    2009-09-01

    The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.

  19. Edge energies and shapes of nanoprecipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  20. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    Science.gov (United States)

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  1. Determination of size and shape distributions of metal and ceramic powders; Odredjivanje raspodele velicina, specificne povrsine i oblika metalnih i keramickih prahova

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, DI [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders.

  2. Morphological and morphometric analysis of the shape, position, number and size of mental foramen on human mandibles

    Directory of Open Access Journals (Sweden)

    Alma Voljevica

    2015-05-01

    Full Text Available Objective. To provide anatomical information on the position, morphological variations and incidence of mental foramen (MF and accessorymental foramen (AMF as they are important for dental surgeons, anesthetists in nerve block and surgical procedures, to avoid injury to the neurovascular bundle in the mental foramen area. Methods. Our study was conducted on 150 adult dry human mandibles from the osteological collection of the Department of Anatomy of the Faculty of Medicine, University of Sarajevo. The location and shape of the MF and the presence of the AMF were studied by visual examination. The size and position of the MF were measured using a digital vernier caliper. SPSS, version 17 software was used for the statistical analysis. Results. Bilateral mental foramina were presented in all 150 mandibles. In the majority of mandibles, the MF was located between the first and second premolar (20.3% or on the level of the root of the second premolar (60.3%, midway between the inferior margin and the alveolar margin of the mandible. Most of the mental foramina were oval in shape (83.3%. An AMF was present in four mandibles (2.7% on the right side. Conclusion. This study may be a very useful new supplement to data on variations in the incidence, position, shape and size of mental and accessory mental foramina, which may help surgeons, anaesthetists, neurosurgeons and dentists in carrying out surgical procedures successfully.

  3. Audiometric shape and presbycusis.

    Science.gov (United States)

    Demeester, Kelly; van Wieringen, Astrid; Hendrickx, Jan-jaap; Topsakal, Vedat; Fransen, Erik; van Laer, Lut; Van Camp, Guy; Van de Heyning, Paul

    2009-04-01

    The aim of this study was to describe the prevalence of specific audiogram configurations in a healthy, otologically screened population between 55 and 65 years old. The audiograms of 1147 subjects (549 males and 598 females between 55 and 65 years old) were collected through population registries and classified according to the configuration of hearing loss. Gender and noise/solvent-exposure effects on the prevalence of the different audiogram shapes were determined statistically. In our population 'Flat' audiograms were most dominantly represented (37%) followed by 'High frequency Gently sloping' audiograms (35%) and 'High frequency Steeply sloping' audiograms (27%). 'Low frequency Ascending' audiograms, 'Mid frequency U-shape' audiograms and 'Mid frequency Reverse U-shape' audiograms were very rare (together less than 1%). The 'Flat'-configuration was significantly more common in females, whereas the 'High frequency Steeply sloping'-configuration was more common in males. Exposure to noise and/or solvents did not change this finding. In addition, females with a 'Flat' audiogram had a significantly larger amount of overall hearing loss compared to males. Furthermore, our data reveal a significant association between the prevalence of 'High frequency Steeply sloping' audiograms and the degree of noise/solvent exposure, despite a relatively high proportion of non-exposed subjects showing a 'High frequency Steeply sloping' audiogram as well.

  4. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    Science.gov (United States)

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  5. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach

    Directory of Open Access Journals (Sweden)

    Sami Ullah

    2017-11-01

    Full Text Available Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space–time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.

  6. Sizes and shapes of short-lived nuclei via laser spectroscopy. Progress report, May 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    Lewis, D.A.

    1981-02-01

    The first stage of the program to study the sizes and shapes of short-lived nuclei through their atomic hyperfine structure is to develop a movable laser spectroscopy system. This system is now almost complete and is described in this report along with plans for measurements at Argonne National Laboratory and Brookhaven National Laboratory

  7. An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles

    Science.gov (United States)

    Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.

    2004-12-01

    We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.

  8. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition.

    Science.gov (United States)

    Holmberg, Rebecca J; Aharen, Tomoko; Murugesu, Muralee

    2012-12-20

    Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.

  9. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Directory of Open Access Journals (Sweden)

    Ryan C Oliver

    Full Text Available Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS, micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  10. Influence of size and shape of sub-micrometer light scattering centers in ZnO-assisted TiO2 photoanode for dye-sensitized solar cells

    Science.gov (United States)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2018-03-01

    Sub-micrometer cavities have been incorporated in the TiO2 photoanode of dye-sensitized solar cell to enhance its optical property with light scattering effect. These are large pores of several hundred nanometers in size and scatter incident light due to the difference refraction index between the scattering center and the surrounding materials, according to Mie theory. The pores are created using polystyrene (PS) or zinc oxide (ZnO) templates reported previously which resulted in ellipsoidal and spherical shapes, respectively. The effect of size and shape of scattering center was modeled using a numerical analysis finite-difference time-domain (FDTD). The scattering cross-section was not affected significantly with different shapes if the total displacement volume of the scattering center is comparable. Experiments were carried out to evaluate the optical property with varying size of ZnO templates. Photovoltaic effect of dye-sensitized solar cells made from these ZnO-assisted films were investigated with incident-photon-to-current efficiency to understand the effect of scattering center size on the enhancement of absorption. With 380 nm macropores incorporated, the power conversion efficiency has increased by 11% mostly thanks to the improved current density, while 170 nm and 500 nm macropores samples did not have increment in sufficiently wide range of absorbing wavelengths.

  11. Invesigation of prevalence of dental anomalies by using digital panoramic radiographs.

    Science.gov (United States)

    Bilge, Nebiha Hilal; Yeşiltepe, Selin; Törenek Ağırman, Kübra; Çağlayan, Fatma; Bilge, Osman Murat

    2017-09-21

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 6 to 40 year-old patients by using panoramic radiographs. This cross-sectional study was conducted by analyzing digital panoramic radiographs of 1200 patients admitted to our clinic in 2014. Dental anomalies were examined under 5 types and 16 subtypes. Dental anomalies were divided into five types: (a) number (including hypodontia, oligodontia and hyperdontia); (b) size (including microdontia and macrodontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia); (d) position (including transposition, ectopia, displacement, impaction and inversion); (e) shape (including fusion-gemination, dilaceration and taurodontism); RESULTS: The prevalence of dental anomalies diagnosed by panoramic radiographs was 39.2% (men (46%), women (54%)). Anomalies of position (60.8%) and shape (27.8%) were the most common types of abnormalities and anomalies of size (8.2%), structure (0.2%) and number (17%) were the least in both genders. Anomalies of impaction (45.5%), dilacerations (16.3%), hypodontia (13.8%) and taurodontism (11.2%) were the most common subtypes of dental anomalies. Taurodontism was more common in the age groups of 13-19 years. The age range of the most frequent of all other anomalies was 20-29. Anomalies of tooth position were the most common type of dental anomalies and structure anomalies were the least in this Turkish dental population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies. Digital panoramic radiography is a very useful method for the detection of dental anomalies.

  12. Phase diagrams of magnetic state transformations in multiferroic composites controlled by size, shape and interfacial coupling strain

    Directory of Open Access Journals (Sweden)

    Qiang Sheng

    2017-10-01

    Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.

  13. Fourier-based quantification of renal glomeruli size using Hough transform and shape descriptors.

    Science.gov (United States)

    Najafian, Sohrab; Beigzadeh, Borhan; Riahi, Mohammad; Khadir Chamazkoti, Fatemeh; Pouramir, Mahdi

    2017-11-01

    Analysis of glomeruli geometry is important in histopathological evaluation of renal microscopic images. Due to the shape and size disparity of even glomeruli of same kidney, automatic detection of these renal objects is not an easy task. Although manual measurements are time consuming and at times are not very accurate, it is commonly used in medical centers. In this paper, a new method based on Fourier transform following usage of some shape descriptors is proposed to detect these objects and their geometrical parameters. Reaching the goal, a database of 400 regions are selected randomly. 200 regions of which are part of glomeruli and the other 200 regions are not belong to renal corpuscles. ROC curve is used to decide which descriptor could classify two groups better. f_measure, which is a combination of both tpr (true positive rate) and fpr (false positive rate), is also proposed to select optimal threshold for descriptors. Combination of three parameters (solidity, eccentricity, and also mean squared error of fitted ellipse) provided better result in terms of f_measure to distinguish desired regions. Then, Fourier transform of outer edges is calculated to form a complete curve out of separated region(s). The generality of proposed model is verified by use of cross validation method, which resulted tpr of 94%, and fpr of 5%. Calculation of glomerulus' and Bowman's space with use of the algorithm are also compared with a non-automatic measurement done by a renal pathologist, and errors of 5.9%, 5.4%, and 6.26% are resulted in calculation of Capsule area, Bowman space, and glomeruli area, respectively. Having tested different glomeruli with various shapes, the experimental consequences show robustness and reliability of our method. Therefore, it could be used to illustrate renal diseases and glomerular disorders by measuring the morphological changes accurately and expeditiously. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    Science.gov (United States)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  15. Sizing for ethnicity in multi-cultural societies: development of size ...

    African Journals Online (AJOL)

    ... years, and fell in the size 6/10 to size 14/38 size range. The findings of the study suggest that young South African women of African descent with a triangular body shape may experience loose fit in the upper body of garments sized according to the size specifications currently used in the South African apparel industry.

  16. Beyond body size: muscle biochemistry and body shape explain ontogenetic variation of anti-predatory behaviour in the lizard Salvator merianae.

    Science.gov (United States)

    de Barros, Fábio Cury; de Carvalho, José Eduardo; Abe, Augusto Shinya; Kohlsdorf, Tiana

    2016-06-01

    Anti-predatory behaviour evolves under the strong action of natural selection because the success of individuals avoiding predation essentially defines their fitness. Choice of anti-predatory strategies is defined by prey characteristics as well as environmental temperature. An additional dimension often relegated in this multilevel equation is the ontogenetic component. In the tegu Salvator merianae, adults run away from predators at high temperatures but prefer fighting when it is cold, whereas juveniles exhibit the same flight strategy within a wide thermal range. Here, we integrate physiology and morphology to understand ontogenetic variation in the temperature-dependent shift of anti-predatory behaviour in these lizards. We compiled data for body shape and size, and quantified enzyme activity in hindlimb and head muscles, testing the hypothesis that morphophysiological models explain ontogenetic variation in behavioural associations. Our prediction is that juveniles exhibit body shape and muscle biochemistry that enhance flight strategies. We identified biochemical differences between muscles mainly in the LDH:CS ratio, whereby hindlimb muscles were more glycolytic than the jaw musculature. Juveniles, which often use evasive strategies to avoid predation, have more glycolytic hindlimb muscles and are much smaller when compared with adults 1-2 years old. Ontogenetic differences in body shape were identified but marginally contributed to behavioural variation between juvenile and adult tegus, and variation in anti-predatory behaviour in these lizards resides mainly in associations between body size and muscle biochemistry. Our results are discussed in the ecological context of predator avoidance by individuals differing in body size living at temperature-variable environments, where restrictions imposed by the cold could be compensated by specific phenotypes. © 2016. Published by The Company of Biologists Ltd.

  17. Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism

    International Nuclear Information System (INIS)

    Chandrasekar, Govindasamy; Mougin, Karine; Haidara, Hamidou; Vidal, Loic; Gnecco, Enrico

    2011-01-01

    The anisotropic shape transformation of gold nanorods (GNRs) with H 2 O 2 was observed in the presence of 'cethyl trimethylammonium bromide' (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H 2 O 2 : Au 0 → Au + , Au 0 + Au n+ → 2Au 3+ , n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H 2 O 2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H 2 O 2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au 3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br - ions.

  18. Characteristics of Teeth: A Review of Size, Shape, Composition, and Appearance of Maxillary Anterior Teeth.

    Science.gov (United States)

    McGowan, Steve

    2016-03-01

    Although digital technologies play an increasingly integral role in dentistry, there remains a need for dental professionals to understand the fundamentals of tooth anatomy, form, occlusion, and color science. In this article, the size, shape, composition, and appearance of maxillary anterior teeth will be discussed from esthetic and functional perspectives. A total of 600 extracted maxillary incisors were studied: 200 each of central incisors, lateral incisors, and cuspids. The purpose of the article is to exhibit and discuss factors that make teeth unique and diverse. Understanding these aspects of teeth aids dental professionals in more effectively creating realistic and highly esthetic restorations for patients.

  19. Body size and shape misperception and visual adaptation: An overview of an emerging research paradigm.

    Science.gov (United States)

    Challinor, Kirsten L; Mond, Jonathan; Stephen, Ian D; Mitchison, Deborah; Stevenson, Richard J; Hay, Phillipa; Brooks, Kevin R

    2017-12-01

    Although body size and shape misperception (BSSM) is a common feature of anorexia nervosa, bulimia nervosa and muscle dysmorphia, little is known about its underlying neural mechanisms. Recently, a new approach has emerged, based on the long-established non-invasive technique of perceptual adaptation, which allows for inferences about the structure of the neural apparatus responsible for alterations in visual appearance. Here, we describe several recent experimental examples of BSSM, wherein exposure to "extreme" body stimuli causes visual aftereffects of biased perception. The implications of these studies for our understanding of the neural and cognitive representation of human bodies, along with their implications for clinical practice are discussed.

  20. The impact of size and shape of particles of undergrowth and herbs mixtures on aerodynamic properties

    Directory of Open Access Journals (Sweden)

    Marian Panasiewicz

    2014-09-01

    Full Text Available The impact of the size and shape of a selected group of herbs (dried juniper berries Juniperus communis, dry blueberries Vaccinium myrtillus, petals of cornflower Centaurea cyanus on the value of the volatility coefficient, the coefficient of sphericity and the critical speed was analysed in the presented research. A laboratory anemometer to measure the speed of air was used. The determination of the volatility coefficient of particular size fractions was conducted on the basis of critical speed values, calculated as an average established after five measurements. The established aerodynamic properties of particular mixtures allow the determination and the assessment of differences among fractions of valuable resources and different impurities. The presented data might constitute a basis to determine the scope of differences among them and establish interrelations which allow the application of proper parameters for the pneumatic separation process in practice.

  1. Size and Shape of Chariklo from Multi-epoch Stellar Occultations

    Science.gov (United States)

    Leiva, R.; Sicardy, B.; Camargo, J. I. B.; Ortiz, J.-L.; Desmars, J.; Bérard, D.; Lellouch, E.; Meza, E.; Kervella, P.; Snodgrass, C.; Duffard, R.; Morales, N.; Gomes-Júnior, A. R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Braga-Ribas, F.; Assafin, M.; Morgado, B. E.; Colas, F.; De Witt, C.; Sickafoose, A. A.; Breytenbach, H.; Dauvergne, J.-L.; Schoenau, P.; Maquet, L.; Bath, K.-L.; Bode, H.-J.; Cool, A.; Lade, B.; Kerr, S.; Herald, D.

    2017-10-01

    We use data from five stellar occultations observed between 2013 and 2016 to constrain Chariklo’s size and shape, and the ring reflectivity. We consider four possible models for Chariklo (sphere, Maclaurin spheroid, triaxial ellipsoid, and Jacobi ellipsoid), and we use a Bayesian approach to estimate the corresponding parameters. The spherical model has a radius R = 129 ± 3 km. The Maclaurin model has equatorial and polar radii a=b={143}-6+3 {km} and c={96}-4+14 {km}, respectively, with density {970}-180+300 {kg} {{{m}}}-3. The ellipsoidal model has semiaxes a={148}-4+6 {km}, b={132}-5+6 {km}, and c={102}-8+10 {km}. Finally, the Jacobi model has semiaxes a = 157 ± 4 km, b = 139 ± 4 km, and c = 86 ± 1 km, and density {796}-4+2 {kg} {{{m}}}-3. Depending on the model, we obtain topographic features of 6-11 km, typical of Saturn icy satellites with similar size and density. We constrain Chariklo’s geometric albedo between 3.1% (sphere) and 4.9% (ellipsoid), while the ring I/F reflectivity is less constrained between 0.6% (Jacobi) and 8.9% (sphere). The ellipsoid model explains both the optical light curve and the long-term photometry variation of the system, giving a plausible value for the geometric albedo of the ring particles of 10%-15%. The derived mass of Chariklo of 6-8 × 1018 kg places the rings close to 3:1 resonance between the ring mean motion and Chariklo’s rotation period. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  2. On the Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids confined in a Small-Pore Metal-Organic Framework

    KAUST Repository

    Skarmoutsos, Ioannis

    2018-05-15

    Force field based-Molecular dynamics simulations were deployed to systematically explore the dynamics of confined molecules of different shapes and sizes, i.e. linear (CO2 and N2) and spherical (CH4) fluids, in a model small pore system, i.e. the Metal-Organic Framework SIFSIX-2-Cu-i. These computations unveil an unprecedented molecular symmetry dependence of the translational and rotational dynamics of fluids confined in channel-like nanoporous materials. In particular this peculiar behaviour is reflected by the extremely slow decay of the Legendre reorientational correlation functions of even-parity order for the linear fluids which is associated to jump-like orientation flips, while the spherical fluid shows a very fast decay taking place in a sub-picosecond time scale. Such a fundamental understanding is relevant to diverse disciplines such as in chemistry, physics, biology and materials science where diatomic or polyatomic molecules of different shapes/sizes diffuse through nanopores.

  3. Shape-and size-controlled Ag nanoparticles stabilized by in situ generated secondary amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Meneses, E., E-mail: esther.ramirez@ibero.mx [Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Distrito Federal C.P. 01219 (Mexico); Montiel-Palma, V. [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, Morelos C.P. 62209 (Mexico); Domínguez-Crespo, M.A.; Izaguirre-López, M.G. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-IPN, Unidad Altamira. Km 14.5 Carretera Tampico-Puerto Industrial, 89600 Altamira, Tamaulipas (Mexico); Palacios-Gonzalez, E. [Laboratorio de Microscopia de Ultra alta Resolución, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas No. 152, C.P. 07730 México D.F. (Mexico); Dorantes-Rosales, H. [Departamento de Metalurgia, E.S.I.Q.I.E.-I.P.N., Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación. Gustavo A. Madero, C.P. 07738 México D.F. (Mexico)

    2015-09-15

    Highlights: • Ag nanoparticles were generated from Ag amido complexes AgN{sup i}Pr{sub 2} and AgN(SiMe{sub 3}){sub 2}. • Ag nanoparticles were stabilized by in situ generated HN{sup i}Pr{sub 2} or HN(SiMe{sub 3}){sub 2}. • 1 or 5 equiv. of ethylenediamine as additional capping agent decreases the average size of the particles. • Ethylenediamine favor the formation of spherical particles. - Abstract: Silver amides such as AgN{sup i}Pr{sub 2} and AgN(SiMe{sub 3}){sub 2} have been employed successfully as precursors for the yield synthesis of silver nanoparticles under mild conditions of dihydrogen gas reduction (2 atm) in organic media. Transmission electron microscopy (TEM) showed the formation of silver nanoparticles with FCC structure, variously sized from 26 to 35 nm for AgN{sup i}Pr{sub 2} and from 14 to 86 nm for AgN(SiMe{sub 3}){sub 2}, the synthesis could take place in absence of added stabilizers due to the in situ formation of secondary amines from the reaction of dihydrogen gas with the amide ligands of the silver precursor. Indeed, the presence of HNR{sub 2} (R = iPr{sub 2}, N(SiMe{sub 3}){sub 2}) on the surface of the nanoparticle was confirmed by spectroscopic means. Finally, the addition of ethylenediamine as additional capping agent allowed not only the control of the structural characteristics of the resulting Ag nanoparticles (well-dispersed with spherical shape), but that regarding the nanoparticle size as it inhibited overgrowth, limiting it to ca. 25 nm.

  4. Effect of crystal shape, size and reflector type on operation characteristics of gamma-radiation detectors based on CsI(Tl) and CsI(Na) scintillators

    International Nuclear Information System (INIS)

    Globus, M.E.; Grinyov, B.V.; Ratner, M.A.

    1996-01-01

    Operation characteristics of CsI(Tl) and CsI(Na) scintillation detectors, to a large degree connected with light collection in crystals, are calculated for various shapes, sizes and reflecting surface types. Allowance is made for the true light reflection indicatrix which is characterized by the effective mirror constituent of the reflected light, p. Its value , averaged over incidence angle, is used for the classification of reflecting surfaces. Operation characteristics (in particular, spectrometric ones) are found to be essentially dependent on . Tables of operation characteristics, given below, permit one to make inferential conclusions on an optimal combination of the shape, sizes an the reflecting surface version

  5. Generalization of Wilemski-Fixman-Weiss decoupling approximation to the case involving multiple sinks of different sizes, shapes, and reactivities.

    Science.gov (United States)

    Uhm, Jesik; Lee, Jinuk; Eun, Changsun; Lee, Sangyoub

    2006-08-07

    We generalize the Wilemski-Fixman-Weiss decoupling approximation to calculate the transient rate of absorption of point particles into multiple sinks of different sizes, shapes, and reactivities. As an application we consider the case involving two spherical sinks. We obtain a Laplace-transform expression for the transient rate that is in excellent agreement with computer simulations. The long-time steady-state rate has a relatively simple expression, which clearly shows the dependence on the diffusion constant of the particles and on the sizes and reactivities of sinks, and its numerical result is in good agreement with the known exact result that is given in terms of recursion relations.

  6. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  7. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    Science.gov (United States)

    Schmitt, Oliver; Steinmann, Paul

    2017-09-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  8. Preparation and characterization of Ba{sub 0.2}Sr{sub 0.2}La{sub 0.6}MnO{sub 3} nanoparticles and investigation of size & shape effect on microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Peymanfar, Reza; Javanshir, Shahrzad, E-mail: shjavan@iust.ac.ir

    2017-06-15

    Highlights: • Hydrothermal synthesis of Ba{sub 0.2}Sr{sub 0.2}La{sub 0.6}MnO{sub 3} performed in the presence of PMMA. • Shape and size-controlled synthesis of NPs over the range 15–50 Nm was explored. • Investigation of shape and size effect of NPs on microwave absorption properties. - Abstract: In this paper, the design and characterization of a radar absorbing material (RAM) was investigated at microwave frequency. Ba{sub 0.2}Sr{sub 0.2}La{sub 0.6}MnO{sub 3} magnetic nanoparticles was synthesized thru a facile hydrothermal method in the presence of polymethyl methacrylate (PMMA) and the possibility of shape and size-controlled synthesis of nanoparticles (NPs) over the range 15–50 Nm was also explored. Afterward, the effect of shape and size of the synthesized Ba{sub 0.2}Sr{sub 0.2}La{sub 0.6}MnO{sub 3} NPs on microwave absorption properties was investigated in KU-band. The crystal structures and morphology of as-synthesized nanoparticles were characterized and confirmed by FESEM, XRD, VSM, FTIR analysis. The RAM samples were prepared by dispersion of magnetic NPs in silicone rubber in an ultrasonic bath. The maximum reflection loss (RL) values NPs were 12.04 dB at 14.82 GHz and a broad absorption band (over 1.22 GHz) with RL values <−10 dB are obtained and the maximum reflection loss (RL) values of decrease and shaped NPs were 22.36 dB at 14.78 GHz and a broad absorption band (over 2.67 GHz) with RL values <−10 dB are obtained. The results indicated that the particle size and shape play a major role on the absorption properties of the composites in the 12.4–18 GHz frequency range. It is observed that microwave absorption properties increased with the decrease in average particle size of NPs.

  9. Prevalence and distribution of dental anomalies in orthodontic patients.

    Science.gov (United States)

    Montasser, Mona A; Taha, Mahasen

    2012-01-01

    To study the prevalence and distribution of dental anomalies in a sample of orthodontic patients. The dental casts, intraoral photographs, and lateral panoramic and cephalometric radiographs of 509 Egyptian orthodontic patients were studied. Patients were examined for dental anomalies in number, size, shape, position, and structure. The prevalence of each dental anomaly was calculated and compared between sexes. Of the total study sample, 32.6% of the patients had at least one dental anomaly other than agenesis of third molars; 32.1% of females and 33.5% of males had at least one dental anomaly other than agenesis of third molars. The most commonly detected dental anomalies were impaction (12.8%) and ectopic eruption (10.8%). The total prevalence of hypodontia (excluding third molars) and hyperdontia was 2.4% and 2.8%, respectively, with similiar distributions in females and males. Gemination and accessory roots were reported in this study; each of these anomalies was detected in 0.2% of patients. In addition to genetic and racial factors, environmental factors could have more important influence on the prevalence of dental anomalies in every population. Impaction, ectopic eruption, hyperdontia, hypodontia, and microdontia were the most common dental anomalies, while fusion and dentinogenesis imperfecta were absent.

  10. Illustrating ontogenetic change in the dentition of the Nile monitor lizard, Varanus niloticus: a case study in the application of geometric morphometric methods for the quantification of shape-size heterodonty.

    Science.gov (United States)

    D'Amore, Domenic C

    2015-05-01

    Many recent attempts have been made to quantify heterodonty in non-mammalian vertebrates, but the majority of these are limited to Euclidian measurements. One taxon frequently investigated is Varanus niloticus, the Nile monitor. Juveniles possess elongate, pointed teeth (caniniform) along the entirety of the dental arcade, whereas adults develop large, bulbous distal teeth (molariform). The purpose of this study was to present a geometric morphometric method to quantify V. niloticus heterodonty through ontogeny that may be applied to other non-mammalian taxa. Data were collected from the entire tooth row of 19 dry skull specimens. A semilandmark analysis was conducted on the outline of the photographed teeth, and size and shape were derived. Width was also measured with calipers. From these measures, sample ranges and allometric functions were created using multivariate statistical analyses for each tooth position separately, as well as overall measures of heterodonty for each specimen based on morphological disparity. The results confirm and expand upon previous studies, showing measurable shape-size heterodonty in the species with significant differences at each tooth position. Tooth size increases with body size at most positions, and the allometric coefficient increases at more distal positions. Width shows a dramatic increase at the distal positions with ontogeny, often displaying pronounced positive allometry. Dental shape varied in two noticeable ways, with the first composing the vast majority of shape variance: (i) caniniformy vs. molariformy and (ii) mesially leaning, 'rounded' apices vs. distally leaning, 'pointed' apices. The latter was twice as influential in the mandible, a consequence of host bone shape. Mesial teeth show no significant shape change with growth, whereas distal teeth change significantly due primarily to an increase in molariformy. Overall, heterodonty increases with body size concerning both tooth size and shape, but shape

  11. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals

    International Nuclear Information System (INIS)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W.; Rogach, Andrey L.

    2018-01-01

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Size and shape of the associations of glucose, HbA, insulin and HOMA-IR with incident type 2 diabetes : the Hoorn Study

    NARCIS (Netherlands)

    Ruijgrok, Carolien; Dekker, Jacqueline M; Beulens, Joline W; Brouwer, Ingeborg A; Coupé, Veerle M H; Heymans, Martijn W; Sijtsma, Femke P C; Mela, David J; Zock, Peter L; Olthof, Margreet R; Alssema, Marjan

    AIMS/HYPOTHESIS: Glycaemic markers and fasting insulin are frequently measured outcomes of intervention studies. To extrapolate accurately the impact of interventions on the risk of diabetes incidence, we investigated the size and shape of the associations of fasting plasma glucose (FPG), 2 h

  13. Particle shape impacts export and fate in the ocean through interactions with the globally abundant appendicularian Oikopleura dioica.

    Science.gov (United States)

    Conley, Keats R; Sutherland, Kelly R

    2017-01-01

    Marine microbes exhibit highly varied, often non-spherical shapes that have functional significance for essential processes, including nutrient acquisition and sinking rates. There is a surprising absence of data, however, on how cell shape affects grazing, which is crucial for predicting the fate of oceanic carbon. We used synthetic spherical and prolate spheroid microbeads to isolate the effect of particle length-to-width ratios on grazing and fate in the ocean. Here we show that the shape of microbe-sized particles affects predation by the appendicularian Oikopleura dioica, a globally abundant marine grazer. Using incubation experiments, we demonstrate that shape affects how particles are retained in the house and that the minimum particle diameter is the key variable determining how particles are ingested. High-speed videography revealed the mechanism behind these results: microbe-sized spheroids oriented with the long axis parallel to fluid streamlines, matching the speed and tortuosity of spheres of equivalent width. Our results suggest that the minimum particle diameter determines how elongated prey interact with the feeding-filters of appendicularians, which may help to explain the prevalence of ellipsoidal cells in the ocean, since a cell's increased surface-to-volume ratio does not always increase predation. We provide the first evidence that grazing by appendicularians can cause non-uniform export of different shaped particles, thereby influencing particle fate.

  14. Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature

    International Nuclear Information System (INIS)

    Cao, H L; Qian, X F; Gong, Q; Du, W M; Ma, X D; Zhu, Z K

    2006-01-01

    Single crystalline ZnO nanorods with a diameter of about 5 nm were synthesized without the presence of any surfactants in ethanol solvent at room temperature. Nanodots and nanorods with different size and shape could be observed by TEM via simply altering NaOH concentration and reaction time. The polar ZnO nanorod growth mechanism was discussed by the 'Ostwald ripening' mechanism. Optical absorption and photoluminescence properties of ZnO nanorods have been characterized. The UV absorption spectrum revealed a clear blue-shift with a single absorption peak centred at 350 nm

  15. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  16. [Eyeball shape in children with emmetropia and myopia].

    Science.gov (United States)

    Dolzhich, G I; Shurygina, I P; Shapovalova, V M

    1991-01-01

    In order to determine the eyeball shape, the authors have carried out ultrasonic biometry of its three major parameters, the anteroposterior axis (APA), horizontal diameter (HD), and vertical diameter (VD), and estimated the ratios of these values (APA/HD and APA/VD) in children with emmetropia (234 eyes) and those with slight and medium-grave myopia (660 eyes), aged 7 to 14. The findings evidence a compressed ellipsoidal shape of the eyeball, presenting as a vertical oval, in all subjects with emmetropic refraction, whatever their age. In myopia the eyeball shape transforms, and all the eyeball sizes are increased, but the APA size is growing more rapidly than the rest sizes, and the eyeball acquires the ball shape with a trend to an elongated ellipsoidal shape. The mean APA length in 7-14-year-old children with emmetropia was up to 23 +/- 0.15 mm, whereas in those with the ball shape of the eyeball it was distended.

  17. CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.

  18. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    Overview: The chemical and physical characteristics of sedimentary material can provide valuable clues about transport processes, distance traveled, and provenance, all of which are aspects of Martian geography that we would like to better understand. For a typical sedimentary deposit on Earth, for example, it has been shown that the ratio of feldspar to quartz can be used to assess the maturity (or transport distance) of a terrestrial deposit, because feldspar is more vulnerable to weathering than quartz. Further, chemical analysis can also be used to determine potential sediment sources, and grain-size sorting can be used to distinguish aeolian sediments (typically well-sorted) from fluvial sediments (poorly sorted in high energy environments). It is also common to use the shapes of individual quartz particles to determine transport process and distance, all of which can help us better understand the history of a sample of sedimentary material and the geological processes that created and emplaced it. These traditional sedimentological concepts are now being applied to our interpretation of Martian surface materials. Sullivan et al. [2008], for example, used grain-size and shape to assess eolian processes and to qualify transport distances of deposits found at the Spirit landing site in Gusev Crater. Stockstill-Cahill et al. [62008 used variations in mineral abundances observed in multispectral data to determine the provenance of dark dunes found in Amazonis Planitia craters. While applying our understanding of terrestrial sedimentary materials to Martian surface materials is intuitively sound and logical, the problem is that most of our current understanding is based on sediments derived from felsic materials (e.g., granite) primarily because that is the composition of most of the landmass on the Earth. However, the Martian surface is composed primarily of mafic material, or basalt, which generates much different sedimentary particles as it weathers. Instead of

  19. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W; Rogach, Andrey L

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sizing for ethnicity in multi-cultural societies: development of size

    African Journals Online (AJOL)

    user

    biggest complaint concerning apparel products, ... aimed to develop size specifications for young ... study of South African women has never been ... measurement difference between two adjacent .... sizes according to current industry practice. A ..... Comparison of body shape between USA ... Englewood Cliffs, New. Jersey.

  1. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    International Nuclear Information System (INIS)

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-01-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone

  2. Size and shape control in the overgrowth of gold nanorods

    International Nuclear Information System (INIS)

    Ratto, Fulvio; Matteini, Paolo; Rossi, Francesca; Pini, Roberto

    2010-01-01

    We report on a new sustainable approach to manipulate the optical behaviour and geometrical properties of gold nanorods in aqueous solutions by fine control of their overgrowth. In our approach, the overgrowth is realized by modulation of the reduction of the gold ions which are left as Au 1+ after the primary step of the synthesis (typically as much as ∼80% of the gold ions available in the growth solution). The progress of the reduction requires the gradual addition of ascorbic acid, which transforms the Au 1+ into Au 0 and may be performed in the original growth solution with no need for any further manipulation. By control of the total amount and rate of administration of the ascorbic acid, we prove the possibility to realize a systematic modulation of the average lengths, diameters, shapes (rod or dog-bone like), and light extinction of the nanoparticles. A slow overgrowth leads to a gradual enlargement of the lengths and diameters at almost constant shape. In contrast, a faster overgrowth results into a more complex modification of the overall shape of the gold nanorods.

  3. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations

    International Nuclear Information System (INIS)

    Mori, Taizo; Hegmann, Torsten

    2016-01-01

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.Graphical abstract

  4. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Taizo, E-mail: MORI.Taizo@nims.go.jp; Hegmann, Torsten, E-mail: thegmann@kent.edu [Kent State University, Chemical Physics Interdisciplinary Program, Liquid Crystal Institute (United States)

    2016-10-15

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.Graphical abstract.

  5. Egg shape mimicry in parasitic cuckoos.

    Science.gov (United States)

    Attard, M R G; Medina, I; Langmore, N E; Sherratt, E

    2017-11-01

    Parasitic cuckoos lay their eggs in nests of host species. Rejection of cuckoo eggs by hosts has led to the evolution of egg mimicry by cuckoos, whereby their eggs mimic the colour and pattern of their host eggs to avoid egg recognition and rejection. There is also evidence of mimicry in egg size in some cuckoo-host systems, but currently it is unknown whether cuckoos can also mimic the egg shape of their hosts. In this study, we test whether there is evidence of mimicry in egg form (shape and size) in three species of Australian cuckoos: the fan-tailed cuckoo Cacomantis flabelliformis, which exploits dome nesting hosts, the brush cuckoo Cacomantis variolosus, which exploits both dome and cup nesting hosts, and the pallid cuckoo Cuculus pallidus, which exploits cup nesting hosts. We found evidence of size mimicry and, for the first time, evidence of egg shape mimicry in two Australian cuckoo species (pallid cuckoo and brush cuckoo). Moreover, cuckoo-host egg similarity was higher for hosts with open nests than for hosts with closed nests. This finding fits well with theory, as it has been suggested that hosts with closed nests have more difficulty recognizing parasitic eggs than open nests, have lower rejection rates and thus exert lower selection for mimicry in cuckoos. This is the first evidence of mimicry in egg shape in a cuckoo-host system, suggesting that mimicry at different levels (size, shape, colour pattern) is evolving in concert. We also confirm the existence of egg size mimicry in cuckoo-host systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. Influence of zeolite shape and particle size on their capacity to adsorb uremic toxin as powders and as fillers in membranes.

    Science.gov (United States)

    Lu, Limin; Chen, Chen; Samarasekera, Champika; Yeow, John T W

    2017-08-01

    Membranes with zeolites are promising for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the size and the shape of zeolite particles can potentially influence the performance of the membranes with respect of creatinine uptake level, it is not clear what sizes and shapes lead to better performance. In this paper, we carry out experiments to answer this question. Spherical microparticle 840, spherical nanoparticle P-87 and rod-like nanoparticle P-371 zeolites were chosen to be used in all the experiments. Their creatinine uptake levels were first measured as powders in creatinine solutions with different concentrations, volumes and adsorption times. Then, nanofibrous membranes with zeolites were electrospun and their ability to adsorb creatinine was measured and compared against their respective powders' creatinine uptake level. The experiment shows that the zeolites have similar creatinine uptake ability as powders. However, they have significantly different creatinine uptake ability after being incorporated inside the membranes. Spherical microparticle 840 in the membrane presented the best creatinine uptake ability, at 8957 µg g -1 , which was half of its powders'. On the other hand, P-87 presented largely decreased, while P-371 presented even lower creatinine uptake ability in membranes when compared to respective powders'. The results shows that microparticle and sphere shaped particles perform better inside the membranes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1594-1601, 2017. © 2016 Wiley Periodicals, Inc.

  7. Apparel styles suitable for young Swazi women with the prevalent ...

    African Journals Online (AJOL)

    Young Swazi women conform to different body shapes, with the most prevalent body shapes being the triangular and hourglass, yet ready-to-wear apparel is traditionally manufactured using the Western hourglass body shape. Most consumers are not aware of their body shape; hence lack knowledge on apparel styles that ...

  8. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    KAUST Repository

    Sarawade, Pradip; Tan, Hua; Anjum, Dalaver H.; Cha, Dong Kyu; Polshettiwar, Vivek

    2013-01-01

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    KAUST Repository

    Sarawade, Pradip

    2013-11-25

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Size estimation, HIV prevalence and risk behaviours of female sex workers in Pakistan

    International Nuclear Information System (INIS)

    Altaf, A.; Aga, A.; McKinizie, M.H.; Abbas, Q.; Jafri, S.B.

    2012-01-01

    Objective: To provide size estimation and to determine risky behaviours and HIV prevalence among female sex workers in Pakistan, which has progressed from a low to concentrated level of HIV epidemic. Methods: A cross-sectional study (geographic mapping and integrated behavioural and biological survey-IBBS) was conducted between August 2005 to January 2006 in Karachi, Hyderabad and Sukkur. A detailed questionnaire and dry blood spot (DBS) specimen for HIV testing were collected by trained interviewers after informed consent. The study was ethically approved by review boards in Canada and Pakistan. Results: About 14,900 female sex workers were estimated to be functional in Sindh. A total of 1158 of them were interviewed for the study. Average age of sex workers was 27.4+- 6.7 years, and the majority 787 (67.9%) were married, and uneducated 764 (65.9%). Sindhi (26.4%) was the predominant ethnicity. Mean number of paid clients was 2.1+-1.2. Three workers were confirmed HIV positive (0.75%, 95 percent CI 0.2-2.2%) from Karachi. Condom use at last sexual act was highest (68%) among brothel-based workers from Karachi, and the lowest in Sukkur where only 1.3% street-based workers reported using a condom at last sexual act. Overall use of illicit drugs through injections was negligible. Conclusion: HIV prevalence among female sex workers in Sindh, Pakistan is low but risky behaviours are present. Well organised service delivery programmes can help promoting safer practices. (author)

  11. Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals

    Science.gov (United States)

    2018-01-01

    A binary ligand system composed of aliphatic carboxylic acids and primary amines of various chain lengths is commonly employed in diverse synthesis methods for CsPbBr3 nanocrystals (NCs). In this work, we have carried out a systematic study examining how the concentration of ligands (oleylamine and oleic acid) and the resulting acidity (or basicity) affects the hot-injection synthesis of CsPbBr3 NCs. We devise a general synthesis scheme for cesium lead bromide NCs which allows control over size, size distribution, shape, and phase (CsPbBr3 or Cs4PbBr6) by combining key insights on the acid–base interactions that rule this ligand system. Furthermore, our findings shed light upon the solubility of PbBr2 in this binary ligand system, and plausible mechanisms are suggested in order to understand the ligand-mediated phase control and structural stability of CsPbBr3 NCs. PMID:29381326

  12. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  13. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation.

    Science.gov (United States)

    Ortiz, J L; Santos-Sanz, P; Sicardy, B; Benedetti-Rossi, G; Bérard, D; Morales, N; Duffard, R; Braga-Ribas, F; Hopp, U; Ries, C; Nascimbeni, V; Marzari, F; Granata, V; Pál, A; Kiss, C; Pribulla, T; Komžík, R; Hornoch, K; Pravec, P; Bacci, P; Maestripieri, M; Nerli, L; Mazzei, L; Bachini, M; Martinelli, F; Succi, G; Ciabattari, F; Mikuz, H; Carbognani, A; Gaehrken, B; Mottola, S; Hellmich, S; Rommel, F L; Fernández-Valenzuela, E; Bagatin, A Campo; Cikota, S; Cikota, A; Lecacheux, J; Vieira-Martins, R; Camargo, J I B; Assafin, M; Colas, F; Behrend, R; Desmars, J; Meza, E; Alvarez-Candal, A; Beisker, W; Gomes-Junior, A R; Morgado, B E; Roques, F; Vachier, F; Berthier, J; Mueller, T G; Madiedo, J M; Unsalan, O; Sonbas, E; Karaman, N; Erece, O; Koseoglu, D T; Ozisik, T; Kalkan, S; Guney, Y; Niaei, M S; Satir, O; Yesilyaprak, C; Puskullu, C; Kabas, A; Demircan, O; Alikakos, J; Charmandaris, V; Leto, G; Ohlert, J; Christille, J M; Szakáts, R; Farkas, A Takácsné; Varga-Verebélyi, E; Marton, G; Marciniak, A; Bartczak, P; Santana-Ros, T; Butkiewicz-Bąk, M; Dudziński, G; Alí-Lagoa, V; Gazeas, K; Tzouganatos, L; Paschalis, N; Tsamis, V; Sánchez-Lavega, A; Pérez-Hoyos, S; Hueso, R; Guirado, J C; Peris, V; Iglesias-Marzoa, R

    2017-10-11

    Haumea-one of the four known trans-Neptunian dwarf planets-is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo's rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

  14. Direct synthesis of nano-sized glass powders with spherical shape by RF (radio frequency) thermal plasma

    International Nuclear Information System (INIS)

    Seo, J.H.; Kim, J.S.; Lee, M.Y.; Ju, W.T.; Nam, I.T.

    2011-01-01

    A new route for obtaining very small, spheroid glass powders is demonstrated using an RF (radio frequency) thermal plasma system. During the process, four kinds of chemicals, here SiO 2 , B 2 O 3 , BaCO 3 , and K 2 CO 3 , were mixed at pre-set weight ratios, spray-dried, calcined at 250 deg. C for 3 h, and crushed into fragments. Then, they were successfully reformed into nano-sized amorphous powders (< 200 nm) with spherical shape by injecting them along the centerline of an RF thermal plasma reactor at ∼ 24 kW. The as-synthesized powders show negligible (< 1%) composition changes when compared with the injected precursors of raw material compounds.

  15. Ancestral Variations in the Shape and Size of the Zygoma.

    Science.gov (United States)

    Oettlé, Anna C; Demeter, Fabrice P; L'abbé, Ericka N

    2017-01-01

    The variable development of the zygoma, dictating its shape and size variations among ancestral groups, has important clinical implications and valuable anthropological and evolutionary inferences. The purpose of the study was to review the literature regarding the variations in the zygoma with ancestry. Ancestral variation in the zygoma reflects genetic variations because of genetic drift as well as natural selection and epigenetic changes to adapt to diet and climate variations with possible intensification by isolation. Prominence of the zygoma, zygomaxillary tuberosity, and malar tubercle have been associated with Eastern Asian populations in whom these features intensified. Prominence of the zygoma is also associated with groups from Eastern Europe and the rest of Asia. Diffusion of these traits occurred across the Behring Sea to the Arctic areas and to North and South America. The greatest zygomatic projections are exhibited in Arctic groups as an adaptation to extreme cold conditions, while Native South American groups also present with other features of facial robusticity. Groups from Australia, Malaysia, and Oceania show prominence of the zygoma to a certain extent, possibly because of archaic occupations by undifferentiated Southeast Asian populations. More recent interactions with Chinese groups might explain the prominent cheekbones noted in certain South African groups. Many deductions regarding evolutionary processes and diversifications of early groups have been made. Cognisance of these ancestral variations also have implications for forensic anthropological assessments as well as plastic and reconstructive surgery. More studies are needed to improve accuracy of forensic anthropological identification techniques. Anat Rec, 300:196-208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    Directory of Open Access Journals (Sweden)

    Yue Bin

    Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.

  17. Hippocampal neurons respond uniquely to topographies of various sizes and shapes

    International Nuclear Information System (INIS)

    Fozdar, David Y; Chen Shaochen; Lee, Jae Young; Schmidt, Christine E

    2010-01-01

    A number of studies have investigated the behavior of neurons on microfabricated topography for the purpose of developing interfaces for use in neural engineering applications. However, there have been few studies simultaneously exploring the effects of topographies having various feature sizes and shapes on axon growth and polarization in the first 24 h. Accordingly, here we investigated the effects of arrays of lines (ridge grooves) and holes of microscale (∼2 μm) and nanoscale (∼300 nm) dimensions, patterned in quartz (SiO 2 ), on the (1) adhesion, (2) axon establishment (polarization), (3) axon length, (4) axon alignment and (5) cell morphology of rat embryonic hippocampal neurons, to study the response of the neurons to feature dimension and geometry. Neurons were analyzed using optical and scanning electron microscopy. The topographies were found to have a negligible effect on cell attachment but to cause a marked increase in axon polarization, occurring more frequently on sub-microscale features than on microscale features. Neurons were observed to form longer axons on lines than on holes and smooth surfaces; axons were either aligned parallel or perpendicular to the line features. An analysis of cell morphology indicated that the surface features impacted the morphologies of the soma, axon and growth cone. The results suggest that incorporating microscale and sub-microscale topographies on biomaterial surfaces may enhance the biomaterials' ability to modulate nerve development and regeneration.

  18. Near Net Shape Fabrication Technology for Shape Memory Alloy Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I effort proposes to develop an innovative, affordable processing route for larger-sized shape memory alloy (SMA) components. Despite significant...

  19. Anterior mediastinal masses in the Framingham Heart Study: Prevalence and CT image characteristics

    International Nuclear Information System (INIS)

    Araki, Tetsuro; Nishino, Mizuki; Gao, Wei; Dupuis, Josée; Washko, George R.; Hunninghake, Gary M.; Murakami, Takamichi; O’Connor, George T.; Hatabu, Hiroto

    2015-01-01

    To investigate the prevalence and CT image characteristics of anterior mediastinal masses in a population-based cohort and their association with the demographics of the participants. Chest CT scans of 2571 Framingham Heart Study participants (mean age 58.9 years, 51% female) were evaluated by two board-certified radiologists with expertise in thoracic imaging for the presence of anterior mediastinal masses, their shape, contour, location, invasion of adjacent structures, fat content, and calcification. For participants with anterior mediastinal masses, a previous cardiac CT scan was reviewed for interval size change of the masses, when available. The demographics of the participants were studied for any association with the presence of anterior mediastinal masses. Of 2571, 23 participants (0.9%, 95% CI: 0.6–1.3) had anterior mediastinal masses on CT. The most common CT characteristics were oval shape, lobular contour, and midline location, showing soft tissue density (median 32.1 HU). Fat content was detected in a few cases (9%, 2/23). Six out of eight masses with available prior cardiac CT scans demonstrated an interval growth over a median period of 6.5 years. No risk factors for anterior mediastinal masses were detected among participants’ demographics, including age, sex, BMI, and cigarette smoking. The prevalence of anterior mediastinal masses is 0.9% in the Framingham Heart Study. Those masses may increase in size when observed over 5–7 years. Investigation of clinical significance in incidentally found anterior mediastinal masses with a longer period of follow-up would be necessary

  20. Size and shape of the associations of glucose, HbA1c, insulin and HOMA-IR with incident type 2 diabetes: the Hoorn Study

    NARCIS (Netherlands)

    Ruijgrok, Carolien; Dekker, Jacqueline M.; Beulens, Joline W.; Brouwer, Ingeborg A.; Coupé, Veerle M.H.; Heymans, Martijn W.; Sijtsma, Femke P.C.; Mela, David J.; Zock, Peter L.; Olthof, Margreet R.; Alssema, Marjan

    AIMS/HYPOTHESIS: Glycaemic markers and fasting insulin are frequently measured outcomes of intervention studies. To extrapolate accurately the impact of interventions on the risk of diabetes incidence, we investigated the size and shape of the associations of fasting plasma glucose (FPG), 2 h

  1. Size, shape, and diffusivity of a single Debye-Hückel polyelectrolyte chain in solution

    Science.gov (United States)

    Soysa, W. Chamath; Dünweg, B.; Prakash, J. Ravi

    2015-08-01

    Brownian dynamics simulations of a coarse-grained bead-spring chain model, with Debye-Hückel electrostatic interactions between the beads, are used to determine the root-mean-square end-to-end vector, the radius of gyration, and various shape functions (defined in terms of eigenvalues of the radius of gyration tensor) of a weakly charged polyelectrolyte chain in solution, in the limit of low polymer concentration. The long-time diffusivity is calculated from the mean square displacement of the centre of mass of the chain, with hydrodynamic interactions taken into account through the incorporation of the Rotne-Prager-Yamakawa tensor. Simulation results are interpreted in the light of the Odjik, Skolnick, Fixman, Khokhlov, and Khachaturian blob scaling theory (Everaers et al., Eur. Phys. J. E 8, 3 (2002)) which predicts that all solution properties are determined by just two scaling variables—the number of electrostatic blobs X and the reduced Debye screening length, Y. We identify three broad regimes, the ideal chain regime at small values of Y, the blob-pole regime at large values of Y, and the crossover regime at intermediate values of Y, within which the mean size, shape, and diffusivity exhibit characteristic behaviours. In particular, when simulation results are recast in terms of blob scaling variables, universal behaviour independent of the choice of bead-spring chain parameters, and the number of blobs X, is observed in the ideal chain regime and in much of the crossover regime, while the existence of logarithmic corrections to scaling in the blob-pole regime leads to non-universal behaviour.

  2. Bat distribution size or shape as determinant of viral richness in african bats.

    Directory of Open Access Journals (Sweden)

    Gaël D Maganga

    Full Text Available The rising incidence of emerging infectious diseases (EID is mostly linked to biodiversity loss, changes in habitat use and increasing habitat fragmentation. Bats are linked to a growing number of EID but few studies have explored the factors of viral richness in bats. These may have implications for role of bats as potential reservoirs. We investigated the determinants of viral richness in 15 species of African bats (8 Pteropodidae and 7 microchiroptera in Central and West Africa for which we provide new information on virus infection and bat phylogeny. We performed the first comparative analysis testing the correlation of the fragmented geographical distribution (defined as the perimeter to area ratio with viral richness in bats. Because of their potential effect, sampling effort, host body weight, ecological and behavioural traits such as roosting behaviour, migration and geographical range, were included into the analysis as variables. The results showed that the geographical distribution size, shape and host body weight have significant effects on viral richness in bats. Viral richness was higher in large-bodied bats which had larger and more fragmented distribution areas. Accumulation of viruses may be related to the historical expansion and contraction of bat species distribution range, with potentially strong effects of distribution edges on virus transmission. Two potential explanations may explain these results. A positive distribution edge effect on the abundance or distribution of some bat species could have facilitated host switches. Alternatively, parasitism could play a direct role in shaping the distribution range of hosts through host local extinction by virulent parasites. This study highlights the importance of considering the fragmentation of bat species geographical distribution in order to understand their role in the circulation of viruses in Africa.

  3. Prevalence and associated risk factors of dyslexic children in a middle-sized city of China: a cross-sectional study.

    Science.gov (United States)

    Sun, Zhao; Zou, Li; Zhang, Jiajia; Mo, Shengnan; Shao, Shanshan; Zhong, Rong; Ke, Juntao; Lu, Xuzai; Miao, Xiaoping; Song, Ranran

    2013-01-01

    There are many discussions about dyslexia based on studies conducted in western countries, and some risk factors to dyslexia, such as gender and home literacy environment, have been widely accepted based on these studies. However, to our knowledge, there are few studies focusing on the risk factors of dyslexia in China. Therefore, the aim of our study was to investigate the prevalence of dyslexia and its potential risk factors. A cross-sectional study was conducted in Qianjiang, a city in Hubei province, China. Two stages sampling strategy was applied to randomly selected 5 districts and 9 primary schools in Qianjiang. In total, 6,350 students participated in this study and there were 5,063 valid student questionnaires obtained for the final analyses. Additional questionnaires (such as Dyslexia Checklist for Chinese Children and Pupil Rating Scale) were used to identify dyslexic children. The chi-square test and multivariate logistic regression were employed to reveal the potential risk factors to dyslexia. Our study revealed that the prevalence of dyslexia was 3.9% in Qianjiang city, which is a middle-sized city in China. Among dyslexic children, the gender ratio (boys to girls) was nearly 3∶1. According to the P-value in the multivariate logistic regression, the gender (Pdyslexia. The prevalence rate of dyslexic children in middle-sized cities is 3.9%. The potential risk factors of dyslexic children revealed in this study will have a great impact on detecting and treating dyslexic children in China as early as possible, although more studies are still needed to further investigate the risk factors of dyslexic children in China.

  4. Size and shape of the associations of glucose, HbA1c, insulin and HOMA-IR with incident type 2 diabetes : the Hoorn Study

    NARCIS (Netherlands)

    Ruijgrok, Carolien; Dekker, Jacqueline M.; Beulens, Joline W.; Brouwer, Ingeborg A.; Coupé, Veerle M.H.; Heymans, Martijn W.; Sijtsma, Femke P.C.; Mela, David J.; Zock, Peter L.; Olthof, Margreet R.; Alssema, Marjan

    Aims/hypothesis: Glycaemic markers and fasting insulin are frequently measured outcomes of intervention studies. To extrapolate accurately the impact of interventions on the risk of diabetes incidence, we investigated the size and shape of the associations of fasting plasma glucose (FPG), 2 h

  5. Size and Shape of the Pituitary Gland with MR Imaging from Newborn to 30 Years: A Study at Siriraj Hospital

    International Nuclear Information System (INIS)

    Keanninsiri, C.; Cheiwvit, P.; Tritrakarn, S.; Thepamongkhol, K.; Santiprabhop, J.

    2012-01-01

    MRI can provide the best visualization of structures in cranio - spinal region, especially the anatomy of the pituitary gland.This study was a retrospective with the purpose to determine the size and shape of the pituitary gland in normal puberty groups of both genders at age 1-30 years at Siriraj Hospital.Two planar views of the MRI, sagittal and coronal views for measurement the height, width and the shape of pituitary gland. The sample size (299 cases, 149 male and 150 female) were included the patients in both in-patient and out-patient groups at Siriraj Hospital, during age 1-30 years old and divided into six groups. All cases have Medical Record and MRI brain scan, without pathology history related to the pituitary gland or hormonal disorders, surgery and treated by hormone therapy. The mean and standard deviation of the height of pituitary gland in group 1 (1-10 years) were 5.4 ± 1.2mm in male, n = 50, 5.1 ± 1.3mm in female, n = 50, group 2 (11-20 years) were 6.8 ± 1.7mm in male, n = 50, 5.8 ± 1.3 mm. in female, n 50 and group 3 (21-30 years) were 5.4 ± 1.3mm in male, n = 50, 5.9 ± 1.5mm in female, n = 50 and significantly different in female (p<0.001) but no significantly different in male (p = 0.181). The mean and standard deviation of the width of pituitary gland of group1 (1-10 years) were10.8 ± 1.9mm in male, n = 50, 10.2 ± 2.2mm.in female, n = 50, group 2 (11-20 years) were12.9 ± 2.0mm in male, n = 50, 13.5 ± 1.5mm in female, n 50 and group 3 (21-30 years) were 13.4 ± 1.7mm in male, n = 49 and 13.8 ± 1.7mm in female, n = 50 and significant different for both sexes (p<0.001). The most frequency grade shape of ''flatwas'' shown in all groups except female groups 2(11-20 years) higher frequency of ''convex'' for both sagittal and coronal views.The study was analyzed by two experienced neuroradiologists. This aim to the demonstrated of database in Thai people with age range newborns to 30 years which an

  6. Water-assisted size and shape control of CsPbBr{sub 3} perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Zhang, Wei; Zheng, Weitao [Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Yu, William W. [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Chemistry and Physics, Louisiana State University, Shreveport, LA (United States); Rogach, Andrey L. [Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon (China)

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr{sub 3} nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr{sub 3} nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr{sub 3} nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m{sup -2} and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. In situ temperature tunable pores of shape memory polyurethane membranes

    International Nuclear Information System (INIS)

    Ahn, Joon-Sung; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Youk

    2011-01-01

    Conventional shape memory polymers, such as shape memory polyurethanes (SMPU), can exhibit net two-way shape memory behavior (2WSM), i.e., upon heating and subsequent cooling, their macroscopic shapes change reversibly under an applied bias load. This paper is aimed at reporting similar 2WSM behavior, especially by focusing on the size of nanopores/micropores in SMPU membranes, i.e., the size of the pores can be reversibly changed by up to about 300 nm upon repeated heating and cooling. The SMPU membranes were prepared by electrospinning and elongated at temperatures higher than the transition temperature of the SMPU. Under the constant stress, the size change of the pores in the membranes was measured by applying cyclic temperature change. It was observed that the pore size changed from 150 to 440 nm according to the temperature change, demonstrating that the SMPU membrane can be utilized as a smart membrane to selectively separate substances according to their sizes by just controlling temperature

  8. Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast

    Science.gov (United States)

    Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng

    2017-11-01

    Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.

  9. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    Science.gov (United States)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  10. Measuring the X-shaped structures in edge-on galaxies

    Science.gov (United States)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  11. PATERNAL GENOTYPE INFLUENCES INCUBATION PERIOD, OFFSPRING SIZE, AND OFFSPRING SHAPE IN AN OVIPAROUS REPTILE.

    Science.gov (United States)

    Olsson, Mats; Gullberg, Annica; Shine, Richard; Madsen, Thomas; Tegelström, Håkan

    1996-06-01

    Theoretical models for the evolution of life-history traits assume a genetic basis for a significant proportion of the phenotypic variance observed in characteristics such as hatching date and offspring size. However, recent experimental work has shown that much of the phenotypic variance in hatchling reptiles is induced by nongenetic factors, such as maternal nutrition and thermoregulation, and the physical conditions experienced during embryogenesis. Thus, there is no unambiguous evidence for strictly genetic (intraspecific) influences on the phenotypes of hatchling reptiles. We report results from a technique that uses a genetic marker trait and DNA fingerprinting to determine paternity of offspring from multiply sired clutches of European sand lizards, Lacerta agilis. By focusing on paternal rather than maternal effects, we show that hatchling genotypes exert a direct influence on the duration of incubation, the size (mass, snout-vent length) and shape (relative tail length) of the hatchling, and subsequent growth rates of the lizard during the first 3 mo of life. Embryos with genes that code for a few days' delay in hatching are thereby larger when they hatch, having undergone further differentiation (and hence, have changed in bodily proportions), and are able to grow faster after hatching. Our data thus provide empirical support for a crucial but rarely tested assumption of life-history theory, and illuminate some of the proximate mechanisms that produce intraspecific variation in offspring phenotypes. © 1996 The Society for the Study of Evolution.

  12. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    Science.gov (United States)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  13. Prevalence of any size adenomas and advanced adenomas in 40- to 49-year-old individuals undergoing screening colonoscopy because of a family history of colorectal carcinoma in a first-degree relative.

    Science.gov (United States)

    Gupta, Akshay K; Samadder, Jewel; Elliott, Eric; Sethi, Saurabh; Schoenfeld, Philip

    2011-07-01

    Per current guidelines, patients with a first-degree relative (FDR) with colorectal cancer (CRC) should get screened at least at age 40. Data about the prevalence of adenomas and advanced adenomas (AAs) in these patients are lacking. To examine the prevalence of adenomas and AAs in 40- to 49-year-old individuals undergoing screening colonoscopy for family history of CRC. Retrospective chart review. Asymptomatic patients 40 to 49 years of age undergoing their first screening colonoscopy at the University of Michigan during the period 1999 to 2009 because of an FDR with CRC. Prevalence of adenomas (any size), AAs, and risk factors associated with adenomas. Among 640 study patients, the prevalence of adenomas (any size) was 15.4% and 3.3% for AAs. Adenoma prevalence was lower if the FDR with CRC was younger than 60 years of age versus an FDR with CRC older than 60 years of age (12.4% vs 19%, P = .034). Male sex (odds ratio 2.6; 95% CI, 1.06-4.4) and advancing age (odds ratio 1.16; 95% CI, 1.03-1.31) were associated with adenomas. Limited data on risk factor exposure and insufficient sample size to assess risk factors for AAs. Among 40- to 49-year-old patients undergoing screening colonoscopy because of an FDR with CRC, the prevalence of adenomas and AAs is low. Further research should determine whether these individuals have a higher prevalence of adenomas compared with average-risk individuals. Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  14. The effect of the shape and size of gold seeds irradiated with ultrasound on the bio-heat transfer in tissue.

    Science.gov (United States)

    Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana

    2015-01-01

    The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.

  15. Shape-memory polymer foam device for treating aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Jason M.; Benett, William J.; Small, Ward; Wilson, Thomas S.; Maitland, Duncan J; Hartman, Jonathan

    2017-05-30

    A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicity of pores are located in the dome of the aneurysm.

  16. Evaluating the Association of Tooth Form of Maxillary Central Incisors with Face Shape Using AutoCAD Software: A Descriptive Study.

    Science.gov (United States)

    Mehndiratta, Aditi; Bembalagi, Mahantesh; Patil, Raghunath

    2017-12-27

    To assess the different forms of maxillary central incisors (MCI) and determine their association with the shape of the face for men and women. A total of 200 subjects (100 women, 100 men) aged between 18 and 30 years with healthy dentition were randomly selected from K.L.E. V.K Institute of Dental Sciences, Belagavi, India. Two standardized photographs (portrait and shape of the MCI) were taken for each subject and opened in AutoCAD 2009 software that was used to prepare technical drawings of face and tooth forms. The dental ratios (extent of line TA: extent of line TB) obtained after the tracings, were classified as tapered (≤0.61), ovoid (>0.61 and <0.69), or square (≥0.70). This classification was used to relate tooth form to the shape of the face and compare the form of MCI between men and women. Association between the shape of the MCI and the face was determined by Chi-square test using R 3.3.1 software. The most prevalent tooth form among the subjects was ovoid (women, 32%; men, 31%) followed by tapered (women, 13%; men, 16%). The least prevalent shape was square (women, 5%; men, 3%). The most prevalent face shape was tapered (women, 34%; men, 25%) followed by ovoid (women, 15%; men, 22%) and the least prevalent was square (women, 1%; men, 3%). An association between face shape and tooth form was statistically not significant. The most prevalent tooth form in both men and women was ovoid, and the least prevalent was square. The association between face shape and tooth form was not significant and did not abide by William's "Law of Harmony." However, there was an association between face shape and gender. © 2017 by the American College of Prosthodontists.

  17. Direct observation of enhanced magnetism in individual size- and shape-selected 3 d transition metal nanoparticles

    Science.gov (United States)

    Kleibert, Armin; Balan, Ana; Yanes, Rocio; Derlet, Peter M.; Vaz, C. A. F.; Timm, Martin; Fraile Rodríguez, Arantxa; Béché, Armand; Verbeeck, Jo; Dhaka, R. S.; Radovic, Milan; Nowak, Ulrich; Nolting, Frithjof

    2017-05-01

    Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3 d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.

  18. Immobilization thresholds of electrofishing relative to fish size

    Science.gov (United States)

    Dolan, C.R.; Miranda, L.E.

    2003-01-01

    Fish size and electrical waveforms have frequently been associated with variation in electrofishing effectiveness. Under controlled laboratory conditions, we measured the electrical power required by five electrical waveforms to immobilize eight fish species of diverse sizes and shapes. Fish size was indexed by total body length, surface area, volume, and weight; shape was indexed by the ratio of body length to body depth. Our objectives were to identify immobilization thresholds, elucidate the descriptors of fish size that were best associated with those immobilization thresholds, and determine whether the vulnerability of a species relative to other species remained constant across electrical treatments. The results confirmed that fish size is a key variable controlling the immobilization threshold and further suggested that the size descriptor best related to immobilization is fish volume. The peak power needed to immobilize fish decreased rapidly with increasing fish volume in small fish but decreased slowly for fish larger than 75-100 cm 3. Furthermore, when we controlled for size and shape, different waveforms did not favor particular species, possibly because of the overwhelming effect of body size. Many of the immobilization inconsistencies previously attributed to species might simply represent the effect of disparities in body size.

  19. Prevalence of microplastics in the marine waters of Qatar.

    Science.gov (United States)

    Castillo, Azenith B; Al-Maslamani, Ibrahim; Obbard, Jeffrey Philip

    2016-10-15

    Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar's Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71particlesm(-3) (range 0-3particlesm(-3)). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125μm to 1.82mm or fibrous with sizes from 150μm to 15.98mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2011-05-01

    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  1. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  2. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    Science.gov (United States)

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  4. Shape, size, velocity and field-aligned currents of dayside plasma injections: a multi-altitude study

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2009-03-01

    Full Text Available On 20 February 2005, Cluster in the outer magnetosphere and Double Star-2 (TC-2 at mid-altitude are situated in the vicinity of the northern cusp/mantle, with Cluster moving sunward and TC-2 anti-sunward. Their magnetic footprints come very close together at about 15:28 UT, over the common field-of-view of SuperDARN radars. Thanks to this conjunction, we determine the velocity, the transverse sizes, perpendicular and parallel to this velocity, and the shape of three magnetic flux tubes of magnetosheath plasma injection. The velocity of the structures determined from the Cluster four-spacecraft timing analysis is almost purely antisunward, in contrast with the antisunward and duskward convection velocity inside the flux tubes. The transverse sizes are defined from the Cluster-TC-2 separation perpendicular to the magnetic field, and from the time spent by a Cluster spacecraft in one structure; they are comprised between 0.6 and 2 RE in agreement with previous studies. Finally, using a comparison between the eigenvectors deduced from a variance analysis of the magnetic perturbation at the four Cluster and at TC-2, we show that the upstream side of the injection flux tubes is magnetically well defined, with even a concave front for the third one giving a bean-like shape, whereas the downstream side is far more turbulent. We also realise the first quantitative comparison between field-aligned currents at Cluster calculated with the curlometer technique and with the single-spacecraft method, assuming infinite parallel current sheets and taking into account the velocity of the injection flux tubes. The results agree nicely, confirming the validity of both methods. Finally, we compare the field-aligned current distribution of the three injection flux tubes at the altitudes of Cluster and TC-2. Both profiles are fairly similar, with mainly a pair of opposite field-aligned currents, upward at low-latitude and downward at high-latitude. In terms of

  5. Prevalence of Haemoglobine s in Araraquara-SP Population.

    Directory of Open Access Journals (Sweden)

    Bruno Rocha de Jesus

    2015-01-01

    Full Text Available The Sickle Cell Anemia is a genetic hemoglobionopathy, characterized by an alteration in the hemoglobin molecule struture (HbA1, called hemoglobin S (HbS, which causes a distortion in the erythocytes structure, changing from spherical shape to sickle shape (sickle-cell, a sickling phenomenon, which leads to severe anemia in homozygous, while sickle cell trait (heterozygote leads to pain crisis, according to pathophysiology, in low O2 blood pressure situations. The most specific and sensitive test used to diagnose this anemia is the hemoglobin eletrophoresis test, which is, however, hard to be incorporated in routine laboratories, due to its high cost. The objective of this work was to estimate the sickle cell trait prevalence in Araraquara - SP population. The prevalence of asymptomatic individuals with the sickle cell trait was 1.5%. Considering the study of race prevalence, 0,6% of sickle cell trait in white individuals and 15,4% in black ones were found.

  6. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving.

    Science.gov (United States)

    Tal, Aner; Niemann, Stina; Wansink, Brian

    2017-02-06

    Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1) and its effects on food serving in the context of cereal (study 2). Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 65.84% larger (221 vs. 134 calories) than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 20% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 45% over the suggested serving size. Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  7. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving

    Directory of Open Access Journals (Sweden)

    Aner Tal

    2017-02-01

    Full Text Available Abstract Background Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1 and its effects on food serving in the context of cereal (study 2. Methods Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Results Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 64.7% larger (221 vs. 134 calories than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 17.8% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 42% over the suggested serving size. Conclusions Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  8. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  9. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  10. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Wei, Zung-Hang, E-mail: wei@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan (China); Lai, Mei-Feng; Ger, Tzong-Rong [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu City 300, Taiwan (China)

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  11. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    International Nuclear Information System (INIS)

    Huang, Chen-Yu; Wei, Zung-Hang; Lai, Mei-Feng; Ger, Tzong-Rong

    2015-01-01

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering

  12. Variations in Hip Shape Are Associated with Radiographic Knee Osteoarthritis: Cross-sectional and Longitudinal Analyses of the Johnston County Osteoarthritis Project.

    Science.gov (United States)

    Nelson, Amanda E; Golightly, Yvonne M; Renner, Jordan B; Schwartz, Todd A; Liu, Felix; Lynch, John A; Gregory, Jenny S; Aspden, Richard M; Lane, Nancy E; Jordan, Joanne M

    2016-02-01

    Hip shape by statistical shape modeling (SSM) is associated with hip radiographic osteoarthritis (rOA). We examined associations between hip shape and knee rOA given the biomechanical interrelationships between these joints. Bilateral baseline hip shape assessments [for those with at least 1 hip with a Kellgren-Lawrence arthritis grading scale (KL) 0 or 1] from the Johnston County Osteoarthritis Project were available. Proximal femur shape was defined on baseline pelvis radiographs and evaluated by SSM, producing mean shape and continuous variables representing independent modes of variation (14 modes = 95% of shape variance). Outcomes included prevalent [baseline KL ≥ 2 or total knee replacement (TKR)], incident (baseline KL 0/1 with followup ≥ 2), and progressive knee rOA (KL increase of ≥ 1 or TKR). Limb-based logistic regression models for ipsilateral and contralateral comparisons were adjusted for age, sex, race, body mass index (BMI), and hip rOA, accounting for intraperson correlations. We evaluated 681 hips and 682 knees from 342 individuals (61% women, 83% white, mean age 62 yrs, BMI 29 kg/m(2)). Ninety-nine knees (15%) had prevalent rOA (4 knees with TKR). Lower modes 2 and 3 scores were associated with ipsilateral prevalent knee rOA, and only lower mode 3 scores were associated with contralateral prevalent knee rOA. No statistically significant associations were seen for incident or progressive knee rOA. Variations in hip shape were associated with prevalent, but not incident or progressive, knee rOA in this cohort, and may reflect biomechanical differences between limbs, genetic influences, or common factors related to both hip shape and knee rOA.

  13. High prevalence of homing behaviour among juvenile coral-reef fishes and the role of body size

    Science.gov (United States)

    Streit, Robert P.; Bellwood, David R.

    2017-12-01

    Adult coral-reef fishes display a remarkable ability to return home after being displaced. However, we know very little about homing behaviour in juvenile fishes. Homing behaviour in juvenile fishes is of interest because it will shape subsequent spatial distributions of adult fish communities. Comparing multiple species, families and functional groups allows us to distinguish between species-specific traits and more generalised, species-independent traits that may drive homing behaviour. Using displacement experiments of up to 150 m, we quantified homing behaviour of juvenile, newly recruited reef fishes of seven species in three families, including herbivorous parrotfishes and rabbitfishes, carnivorous wrasse and planktivorous damselfishes. All species showed the ability to home successfully, but success rates differed among species. Juvenile parrotfishes were the most successful (67% returning home), while return rates in the other species ranged from 10.5% ( Siganus doliatus) to 28.9% ( Coris batuensis). However, across all species body size appeared to be the main driver of homing success, rather than species-specific traits. With every cm increase in body size, odds of returning home almost tripled (170% increase) across all species. Interestingly, the probability of getting lost was not related to body size, which suggests that mortality was not a major driver of unsuccessful homing. Homing probability halved beyond displacement distances of 10 m and then remained stable. Higher likelihood of homing over short distances may suggest that different sensory cues are used to navigate. Overall, our results suggest that homing ability is a widespread trait among juvenile reef fishes. A `sense of home' and site attachment appear to develop early during ontogeny, especially above taxon-specific size thresholds. Hence, spatial flexibility exists only in a brief window after settlement, with direct implications for subsequent patterns of connectivity and ecosystem

  14. Shape and size of jatropha beans (Jatropha curcas L. during drying at different temperatures

    Directory of Open Access Journals (Sweden)

    Valdiney Cambuy Siqueira

    2013-12-01

    Full Text Available This study was carried out to study the physical properties of the jatropha beans over the drying under six air conditions, based on measurements of roundness, sphericity, volume, superficial area, projected area and surface/volume ratio. Jatropha beans with moisture content around 0.61 (decimal d.b. were subjected to thin-layer drying in oven with forced-air circulation under six temperature conditions (36, 45, 60, 75, 90 and 105 °C and relative humidity of 31.7; 19.6; 9.4; 4.8; 2.6 and 1.5% respectively, until reaching the moisture content of 0.11 ± 0.006 (decimal d. b.. The results showed that the necessary time for jatropha beans to reach the moisture content of 0.11 ± 0.006 (decimal d.b. were 1.5; 2.25; 3.0; 4.75; 6.75 and 12.0 h for the drying temperatures of 105, 90, 75, 60, 45 and 36 °C, respectively; and the reduction in the moisture content as well as the drying conditions promoted changes in the shape and reduced the size of the jatropha beans.

  15. On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

    Directory of Open Access Journals (Sweden)

    S. Otto

    2011-05-01

    Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.

  16. Pb nanoprecipitates in Al: Magic-shape effects due to elastic strain

    DEFF Research Database (Denmark)

    Hamilton, J.C.; Leoard, F.; Johnson, Erik

    2007-01-01

    We present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of "magic shapes," i.e., shapes having near-zero homogeneous elastic strains. Our quantitative atomistic calculations of edge energies show their effect on precipitate shape to be negligible, thus...

  17. Correlation of Shape and Size of Sella Turcica With the Type of Facial Skeletal Class in an Iranian Group

    International Nuclear Information System (INIS)

    Valizadeh, Solmaz; Shahbeig, Shahrzad; Mohseni, Sudeh; Azimi, Fateme; Bakhshandeh, Hooman

    2015-01-01

    In orthodontic science, diagnosis of facial skeletal type (class I, II, and III) is essential to make the correct treatment plan that is usually expensive and complicated. Sometimes results from analysis of lateral cephalometry radiographies are not enough to discriminate facial skeletal types. In this situation, knowledge about the relationship between the shape and size of the sella turcica and the type of facial skeletal class can help to make a more definitive decision for treatment plan. The present study was designed to investigate this relationship in patients referred to a dental school in Iran. In this descriptive-analytical study, cephalometric radiographies of 90 candidates for orthodontic treatment (44 females and 46 males) with an age range of 14 - 26 years and equal distribution in terms of class I, class II, and class III facial skeletal classification were selected. The shape, length, diameter, and depth of the sella turcica were determined on the radiographs. Linear dimensions were assessed by one-way analysis of variance while the correlation between the dimensions and age was investigated using Pearson’s correlation coefficient. Sella turcica had normal morphology in 24.4% of the patients while irregularity (notching) in the posterior part of the dorsum sella was observed in 15.6%, double contour of sellar floor in 5.6%, sella turcica bridge in 23.3%, oblique anterior wall in 20% and pyramidal shape of the dorsum sella in 11.1% of the subjects. In total, 46.7% of class I patients had a normal shape of sella turcica, 23.3% of class II patients had an oblique anterior wall and a pyramidal shape of the dorsum sella, and 43.3% of class III individuals had sella turcica bridge (the greatest values). Sella turcica length was significantly greater in class III patients compared to class II and class I (P < 0.0001). However, depth and diameter of sella turcica were similar in class I, class II, and class III patients. Furthermore, age was significantly

  18. Prevention of the Portion Size Effect

    NARCIS (Netherlands)

    I. Versluis (Iris)

    2016-01-01

    markdownabstractAn increase in the portion size leads to an increase in energy intake, a phenomenon which is also referred to as the portion size effect. The increase in portion sizes in recent years is regarded as an important contributor to the increase in the prevalence of obesity. Hence, the aim

  19. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    Science.gov (United States)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  20. Eye shape and the nocturnal bottleneck of mammals.

    Science.gov (United States)

    Hall, Margaret I; Kamilar, Jason M; Kirk, E Christopher

    2012-12-22

    Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal 'bottleneck' in the early evolution of crown mammals.

  1. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    Science.gov (United States)

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  2. Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions

    Science.gov (United States)

    Liu, C.; Charpentier, R.R.; Su, J.

    2011-01-01

    Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.

  3. Using Micromanipulation to Analyze Control of Vertebrate Meiotic Spindle Size

    Directory of Open Access Journals (Sweden)

    Jun Takagi

    2013-10-01

    Full Text Available The polymerization/depolymerization dynamics of microtubules (MTs have been reported to contribute to control of the size and shape of spindles, but quantitative analysis of how the size and shape correlate with the amount and density of MTs in the spindle remains incomplete. Here, we measured these parameters using 3D microscopy of meiotic spindles that self-organized in Xenopus egg extracts and presented a simple equation describing the relationship among these parameters. To examine the validity of the equation, we cut the spindle into two fragments along the pole-to-pole axis by micromanipulation techniques that rapidly decrease the amount of MTs. The spheroidal shape spontaneously recovered within 5 min, but the size of each fragment remained small. The equation we obtained quantitatively describes how the spindle size correlates with the amount of MTs while maintaining the shape and the MT density.

  4. Prevalence and clinical characteristics of tori and jaw exostoses in a teaching hospital in Jordan.

    Science.gov (United States)

    Sawair, Faleh A; Shayyab, Mohammad H; Al-Rababah, Mohammad A; Saku, Takashi

    2009-12-01

    To determine the prevalence and clinical characteristics of oral bony outgrowths (OBOs); torus palatinus (TP), torus mandibularis (TM), and exostoses in Jordanian dental patients. This cross-sectional study was conducted between November 1 and December 31, 2008 at the University of Jordan Hospital, Amman, Jordan. Clinical examinations of 618 patients (354 men and 264 women), 10-82 years of age, were conducted to determine the presence of OBOs. There were 239 subjects (38.7%) who had OBOs. Nearly one-third (34.6%) had TP, TM, or both. The prevalence rates were 25.7% for TM, 15.4% for TP, and 14.4% for exostoses. The OBOs were mostly noted in patients in their fifth decade of life, with attrition, clenching, or bruxism. Women had more TP, but gender differences were not statistically significant in cases of TM and exostoses. Most TP were large in size (71.6%), spindle (41.1%), or flat (40%) in shape, and located at the premolar-molar region (45.3%). The TM were mostly medium to large in size (84.9%), bilateral (81.1%), composed of single node (69.2%), and located at the premolar region (65.4%). Of the studied subjects, 7.1% had mandibular buccal exostosis, 10% had maxillary buccal, and 2.4% had palatal exostoses. Statistically significant associations were noticed between the concurrent existence of OBOs. A relatively high prevalence of OBOs was noted, and this should be taken into consideration when planning periodontal surgery and prosthodontic treatment.

  5. Ligand induced shape transformation of thorium dioxide nanocrystals.

    Science.gov (United States)

    Wang, Gaoxue; Batista, Enrique R; Yang, Ping

    2018-04-27

    Nanocrystals (NCs) with size and shape dependent properties are a thriving research field. Remarkable progress has been made in the controlled synthesis of NCs of stable elements in the past two decades; however, the knowledge of the NCs of actinide compounds has been considerably limited due the difficulties in handling them both experimentally and theoretically. Actinide compounds, especially actinide oxides, play a critical role in many stages of the nuclear fuel cycle. Recently, a non-aqueous surfactant assisted approach has been developed for the synthesis of actinide oxide NCs with different morphologies, but an understanding of its control factors is still missing to date. Herein we present a comprehensive study on the low index surfaces of thorium dioxide (ThO2) and their interactions with relevant surfactant ligands using density functional calculations. A systematic picture on the thermodynamic stability of ThO2 NCs of different sizes and shapes is obtained employing empirical models based on the calculated surface energies. It is found that bare ThO2 NCs prefer the octahedral shape terminated by (111) surfaces. Oleic acid displays selective adsorption on the (110) surface, leading to the shape transformation from octahedrons to nanorods. Other ligands such as acetylacetone, oleylamine, and trioctylphosphine oxide do not modify the equilibrium shape of ThO2 NCs. This work provides atomic level insights into the anisotropic growth of ThO2 NCs that was recently observed in experiments, and thus may contribute to the controlled synthesis of actinide oxide NCs with well-defined size and shape for future applications.

  6. Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2018-04-01

    Full Text Available In this study, simultaneous size, shape, and topology optimization of planar and space trusses are investigated. Moreover, the trusses are subjected to constraints for element stresses, nodal displacements, and kinematic stability conditions. Truss Topology Optimization (TTO removes the superfluous elements and nodes from the ground structure. In this method, the difficulties arise due to unacceptable and singular topologies; therefore, the Grubler’s criterion and the positive definiteness are used to handle such issue. Moreover, the TTO is challenging due to its search space, which is implicit, non-convex, non-linear, and often leading to divergence. Therefore, mutation-based metaheuristics are proposed to investigate them. This study compares the performance of four improved metaheuristics (viz. Improved Teaching–Learning-Based Optimization (ITLBO, Improved Heat Transfer Search (IHTS, Improved Water Wave Optimization (IWWO, and Improved Passing Vehicle Search (IPVS and four basic metaheuristics (viz. TLBO, HTS, WWO, and PVS in order to solve structural optimization problems. Keywords: Structural optimization, Mutation operator, Improved metaheuristics, Modified algorithms, Truss topology optimization

  7. Near net shape processing of zirconium or hafnium metals and alloys

    International Nuclear Information System (INIS)

    Evans, S.C.

    1992-01-01

    This patent describes a process for producing a metal shape. It comprises: plasma arc melting a metal selected from zirconium, hafnium and alloys thereof comprising at least about 90 w/o of these metals to form a liquid pool; pouring the metal form the pool into a mold to form a near net shape; and reducing the metal from its near net shape to a final size while maintaining the metal temperature below the alpha-beta transition temperature throughout the size reducing step

  8. Effect of kibble size, shape and additives on plaque in cats

    NARCIS (Netherlands)

    Clarke, D.E.; Servet, E.; Hendriks, W.H.; Thomas, D.G.; Weidgraaf, K.; Biourge, V.C.

    2010-01-01

    Forty mixed-breed cats completed a parallel-group, clinical study to compare supragingival plaque accumulation using a triangular or rectangular shaped dry-expanded diet, with or without an anti-calculus agent (sodium tripolyphosphate) or an anti-plaque agent (plaquereducing nutrient). The cats were

  9. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  10. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    Science.gov (United States)

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  11. Size did not matter: An evolutionary account of the variation in penis size and size anxiety

    Directory of Open Access Journals (Sweden)

    Menelaos Apostolou

    2016-12-01

    Full Text Available The human penis exhibits considerable variation in size, while a substantial proportion of the adult male population experiences size anxiety. This paper employs an evolutionary framework in order to understand this variation, as well as the concern men exhibit about the adequacy of the size of their penis. It is argued that female choice has been one important sexual selection force, responsible for shaping the size of the penis. However, this force has been relatively weak, because women do not consider the size of their partners’ penis to be the most important determinant of their sexual satisfaction. Also, in ancestral human societies, sexual satisfaction was a secondary concern, while women had limited space to exercise mate choice. The mismatch between ancestral and modern conditions, with female choice being stronger in the present than in the past, causes anxiety in men about their ability to satisfy their partners, which is also manifested in their concerns about size.

  12. False consensus effect for attitudes related to body shape in normal weight women concerned with body shape.

    Science.gov (United States)

    Muller, S L; Williamson, D A; Martin, C K

    2002-06-01

    This study investigated the presence of the False Consensus Effect (FCE) with body and shape-related attitudes in 30 normal weight women who scored high or low on a measure of concern with body shape. The participants were asked to rate depressive, positive, neutral, and body shape self-statements for relevance to self and to others. They also estimated the percentage of individuals that would agree with each attitudinal statement. Women with high body shape concerns rated themselves and others as significantly more likely to agree with the statements expressing such concerns than those with low concerns. They also believed that a significantly higher percentage of others would favor those attitudes. This pattern of findings is supportive of the presence of a FCE in normal weight women preoccupied with body shape and size.

  13. Challenges for precision shape measurements

    International Nuclear Information System (INIS)

    Jarvis, M

    2014-01-01

    We discuss a number of physical effects about deeply depleted CCDs that have a significant impact on shape estimation. In particular, the focus is on issues related to measuring accurate shear values of galaxies for weak lensing science. There are three types of effects we discuss: effects related to the world coordinate system (WCS), the so-called brighter-fatter relation, and variable pixel size. In each case, we describe the effect, explain the impact on shape measurements, and propose possible solutions

  14. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  15. Molecular dynamics simulations of the effect of shape and size of SiO2 nanoparticle dopants on insulation paper cellulose

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-12-01

    Full Text Available The effect of silica nanoparticle (Nano-SiO2 dopants on insulation paper cellulose, and the interaction between them, was investigated using molecular dynamics simulations. The mechanical properties, interactions, and cellulose-Nano-SiO2 compatibility of composite models of cellulose doped with Nano-SiO2 were studied. An increase in Nano-SiO2 size leads to a decrease in the mechanical properties, and a decrease in the anti-deformation ability of the composite model. The binding energies and bond energies per surface area of the composite models indicate that the bonding interaction between spherical Nano-SiO2 and cellulose is the strongest among the four different Nano-SiO2 shapes that are investigated. The solubilities of the four composite models decrease with increasing Nano-SiO2 size, and the difference between the solubility of pure cellulose and those of the composite models increases with increasing Nano-SiO2 size. Good doping effects with the highest cellulose-Nano-SiO2 compatibility are achieved for the cellulose model doped with spherical Nano-SiO2 of 10 Å in diameter. These findings provide a method for modifying the mechanical properties of cellulose by doping, perhaps for improving insulation dielectrics.

  16. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    Science.gov (United States)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  17. Arthroscopic repair of large U-shaped rotator cuff tears without margin convergence versus repair of crescent- or L-shaped tears.

    Science.gov (United States)

    Park, Jin-Young; Jung, Seok Won; Jeon, Seung-Hyub; Cho, Hyoung-Weon; Choi, Jin-Ho; Oh, Kyung-Soo

    2014-01-01

    For large-sized tears of the rotator cuff, data according to the tear shape have not yet been reported for repair methodology, configuration, and subsequent integrity. The retear rate after the repair of large mobile tears, such as crescent- or L-shaped tears, is believed to be lower compared with retear rates after the repair of large U-shaped tears that are accompanied by anterior or posterior leaves of the rotator cuff. Cohort study; Level of evidence, 3. Data were collected and analyzed from 95 consecutive patients with a large-sized rotator cuff tear who underwent arthroscopic suture-bridge repair. Patients were divided into 2 groups: those having crescent- or L-shaped tears (mobile tear group, 53 patients) and those having U-shaped tears (U-shaped tear group, 42 patients). The integrity of the repaired constructs was determined by ultrasonography at 4.5, 12, and 24 months. Moreover, clinical evaluations were performed by using the Constant score, the American Shoulder and Elbow Surgeons (ASES) score, and muscle strength at intervals of 3, 6, 12, and 24 months postoperatively. On ultrasonography at 4.5, 12, and 24 months, a retear was detected in 6, 2, and 1 patients in the mobile tear group and in 5, 2, and 1 patients in the U-shaped tear group, respectively. Significant differences in retear rates were not detected between the groups overall or at each time point. Moreover, clinical scores were similar between groups, except for the presence of a temporarily higher Constant score at 12 months in the mobile tear group. With regard to shoulder strength, between-group comparisons indicated no statistically significant difference, either in abduction or external rotation, except for the presence of temporarily higher external rotation strength at 3 months in the mobile tear group. Arthroscopic repair of large-sized rotator cuff tears yielded substantial improvements in shoulder function, regardless of tear retraction, during midterm follow-up. Moreover, the

  18. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  19. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Moteabbed, Maryam; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-01-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D_m_e_a_n) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D_m_e_a_n and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D_m_e_a_n and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  20. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-05-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  1. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  2. A statistical model for mapping morphological shape

    Directory of Open Access Journals (Sweden)

    Li Jiahan

    2010-07-01

    Full Text Available Abstract Background Living things come in all shapes and sizes, from bacteria, plants, and animals to humans. Knowledge about the genetic mechanisms for biological shape has far-reaching implications for a range spectrum of scientific disciplines including anthropology, agriculture, developmental biology, evolution and biomedicine. Results We derived a statistical model for mapping specific genes or quantitative trait loci (QTLs that control morphological shape. The model was formulated within the mixture framework, in which different types of shape are thought to result from genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate QTL genotype-specific shapes based on a shape correspondence analysis. Computer simulation was used to investigate the statistical property of the model. Conclusion By identifying specific QTLs for morphological shape, the model developed will help to ask, disseminate and address many major integrative biological and genetic questions and challenges in the genetic control of biological shape and function.

  3. Association between inaccurate estimation of body size and obesity in schoolchildren

    Directory of Open Access Journals (Sweden)

    Larissa da Cunha Feio Costa

    2015-12-01

    Full Text Available Objectives: To investigate the prevalence of inaccurate estimation of own body size among Brazilian schoolchildren of both sexes aged 7-10 years, and to test whether overweight/obesity; excess body fat and central obesity are associated with inaccuracy. Methods: Accuracy of body size estimation was assessed using the Figure Rating Scale for Brazilian Children. Multinomial logistic regression was used to analyze associations. Results: The overall prevalence of inaccurate body size estimation was 76%, with 34% of the children underestimating their body size and 42% overestimating their body size. Obesity measured by body mass index was associated with underestimation of body size in both sexes, while central obesity was only associated with overestimation of body size among girls. Conclusions: The results of this study suggest there is a high prevalence of inaccurate body size estimation and that inaccurate estimation is associated with obesity. Accurate estimation of own body size is important among obese schoolchildren because it may be the first step towards adopting healthy lifestyle behaviors.

  4. Tuning of size and shape of Au–Pt nanocatalysts for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.; Colon-Mercado, Hector R.; Torres, Ricardo D.; Heroux, Katie J.; Fox, Elise B.; Thompson, Lucas B.; Haasch, Richard T.

    2011-01-01

    In this article, we report the precise control of the size, shape, and surface morphology of Au–Pt nanocatalysts (cubes, blocks, octahedrons, and dogbones) synthesized via a seed-mediated approach. Gold “seeds” of different aspect ratios (1–4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au–Pt nanocatalysts at a low temperature (40 °C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis, UV–Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was employed to evaluate the Au–Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction of direct methanol fuel cells. The results indicate the Au–Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au–Pt dogbones and Pt-black; however, its performance is affected by the presence of MeOH.

  5. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  6. Mapping genetic variants for cranial vault shape in humans

    DEFF Research Database (Denmark)

    Roosenboom, Jasmien; Lee, Myoung Keun; Hecht, Jacqueline T

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the geneti...

  7. The study of shape and size of normal sella turcica in cephalometric radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wook Jin; Hwang, Eui Hwan; Lee, Sang Rae [Kyung Hee Univ. College of Dentistry, Seoul (Korea, Republic of)

    2001-03-15

    To investigate the shape and size of normal sella turcica on cephalometric radiograms. Cephalometric radiograms of 200 orthodontic patients of age ranging 6-42 years were examined. All subjects were divided into 5 groups by age, the dimensional change of sella turcica was examined according to age, and the configurations of sella turcica floor, tuberculum sella, and anterior and posterior clinoid process were also observed. The contours of sella turcica floor were flat type in 54% and concave type in 46%. The contours of tuberculum sella were right angle type in 55% and obtuse angle type in 44%; Acute angle type and plane type were very rare comprising 0.5%, 0.5% each. The configurations of anterior clinoid process were point type in 80% and round type in 20% of cases, and those of posterior clinoid processes were point type in 60% and round type in 40% of cases. The dimensional change of sella turcica according to age range had significantly positive linear trend to sella turcica length, height, and width until 25 years. After 26 years, no significant increase was found in sella turcica dimension. Especially, the sella turcica length had more proportional increase than that of sella turcica height and width. The results of this study revealed that the configuration of normal sella turcia was variable and the dimensional change of normal sella turcica had a linear tendency with age until 26 years.

  8. Prevalence of Earth-size planets orbiting Sun-like stars

    OpenAIRE

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account...

  9. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  10. Eccentric Protons? Sensitivity of Flow to System Size and Shape in p +p, p +Pb, and Pb +Pb Collisions

    Science.gov (United States)

    Schenke, Björn; Venugopalan, Raju

    2014-09-01

    We determine the transverse system size of the initial nonequilibrium Glasma state and of the hydrodynamically evolving fireball as a function of produced charged particles in p +p, p +Pb, and Pb+Pb collisions at the Large Hadron Collider. Our results show features similar to those of recent measurements of Hanbury Brown-Twiss (HBT) radii by the ALICE Collaboration. Azimuthal anisotropy coefficients vn generated by combining the early time Glasma dynamics with viscous fluid dynamics in Pb +Pb collisions are in excellent agreement with experimental data for a wide range of centralities. In particular, event-by-event distributions of the vn values agree with the experimental data out to fairly peripheral centrality bins. In striking contrast, our results for p +Pb collisions significantly underestimate the magnitude and do not reproduce the centrality dependence of data for v2 and v3 coefficients. We argue that the measured vn data and HBT radii strongly constrain the shapes of initial parton distributions across system sizes that would be compatible with a flow interpretation in p +Pb collisions. Alternately, additional sources of correlations may be required to describe the systematics of long-range rapidity correlations in p +p and p +Pb collisions.

  11. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  12. Optical properties of graphene nanoflakes: Shape matters.

    Science.gov (United States)

    Mansilla Wettstein, Candela; Bonafé, Franco P; Oviedo, M Belén; Sánchez, Cristián G

    2016-06-14

    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

  13. Optical properties of graphene nanoflakes: Shape matters

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla Wettstein, Candela; Bonafé, Franco P.; Sánchez, Cristián G., E-mail: cgsanchez@fcq.unc.edu.ar [Instituto de Investigaciones Fisicoquímicas de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INFIQC - CONICET), Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Oviedo, M. Belén [Department of Chemical & Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 (United States)

    2016-06-14

    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

  14. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.

    Directory of Open Access Journals (Sweden)

    Thomas W Winkler

    2015-10-01

    Full Text Available Genome-wide association studies (GWAS have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI, a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE, sex-specific effects (G x SEX or age-specific effects that differed between men and women (G x AGE x SEX. For BMI, we identified 15 loci (11 previously established for main effects, four novel that showed significant (FDR<5% age-specific effects, of which 11 had larger effects in younger (<50y than in older adults (≥50y. No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.

  15. sizing for ethnicity in multi-cultural societies: validation of the size ...

    African Journals Online (AJOL)

    user

    2012). This challenges manufacturers and retailers in South. Africa to provide black consumers with well- fitting clothes. Muthambi et al. (2015) proposed size ...... 2007. Comparison of body shape between USA and Korean women. International Journal of. Clothing Science and Technology 19(5):374–. 391. MAKHANYA ...

  16. Shape of vaginal suppositories affects willingness-to-try and preference.

    Science.gov (United States)

    Li, Bangde; Zaveri, Toral; Ziegler, Gregory R; Hayes, John E

    2013-03-01

    HIV and other sexually transmitted infections (STIs) are a global threat to public health that may be countered, in part, by microbicides. A successful microbicide must be both biologically efficacious and highly acceptable to users. Sensory attributes have a direct influence on product acceptability. We created a series of vaginal suppositories appropriate for use as microbicides to investigate the influence of shape on women's willingness-to-try. The influence of perceived size and firmness on acceptability was also assessed. Sexually-active women (n=99) were invited to participate in an evaluation of vaginal suppositories in 5 different shapes including: Bullet, Long Oval, Round Oval, Teardrop and Tampon. The volume (3mL) and formulation for these five prototypes were identical. After manipulating prototypes ex vivo (in their hands), participants rated their willingness-to-try on a 100-point visual analog scale. The appropriateness of size and firmness were evaluated using 5-point just-about-right (JAR) scales. Each participant evaluated all five prototypes individually. Samples were presented in a counterbalanced monadic sequence using a Williams design. Mean willingness-to-try varied by shape, with Bullet and Long Oval receiving significantly higher scores. This was consistent with JAR data for size, as 70% and 65% of women indicated these shapes were 'just-about-right', respectively. In contrast, a minority of women endorsed the other 3 shapes as having a size that was 'just-about-right'. The proportion of women who felt the firmness was 'just-about-right' was uniformly high, irrespective of shape, suggesting prior attempts to optimize the formula were successful. Perceptions of size and firmness were influenced by the physical length and width of the prototypes, in spite of having constant volume. Women showed high willingness-to-try when asked to assume they were at risk. These results are relevant for behavioral and formulation scientists working on

  17. Impacted Maxillary Canine Prevalence and Its Association with Other Dental Anomalies in a Mexican Population

    Directory of Open Access Journals (Sweden)

    José Rubén Herrera-Atoche

    2017-01-01

    Full Text Available Objective. We quantified the prevalence of impacted maxillary canines (IMC and their association with other dental anomalies (DAs. Materials and Methods. A retrospective study was done with 860 patients 12 to 39 years of age. The prevalence of IMC was calculated and compared by sex. The sample was divided into a control group and an impaction group, and the prevalence was calculated in both for a series of anomalies: agenesis, supernumerary teeth, shape anomalies of the upper laterals (microdontia, peg and barrel shape, and talon cusp, fusion, gemination, other impacted teeth, transposition, and amelogenesis imperfecta. The prevalence values for both groups were compared (Pearson’s χ2 test, p≤0.05. Results. IMC were present in 6.04% of the sample with no difference by sex (p=0.540. Other DAs occurred in 51.92% of the IMC group and in 20.17% of the controls (p<0.05. Significant associations (p<0.05 were identified between IMC and four other DAs: microdontia, barrel shape, other impacted teeth, and transposition. The prevalence of all anomalies was lower in the control group. Conclusion. IMC were seen in 6.04% of patients. Patients with this condition also had a higher prevalence of other DAs. These other anomalies should be used as risk indicators for early diagnosis.

  18. Shaping ability of 4 different single-file systems in simulated S-shaped canals.

    Science.gov (United States)

    Saleh, Abdulrahman Mohammed; Vakili Gilani, Pouyan; Tavanafar, Saeid; Schäfer, Edgar

    2015-04-01

    The aim of this study was to compare the shaping ability of 4 different single-file systems in simulated S-shaped canals. Sixty-four S-shaped canals in resin blocks were prepared to an apical size of 25 using Reciproc (VDW, Munich, Germany), WaveOne (Dentsply Maillefer, Ballaigues, Switzerland), OneShape (Micro Méga, Besançon, France), and F360 (Komet Brasseler, Lemgo, Germany) (n = 16 canals/group) systems. Composite images were made from the superimposition of pre- and postinstrumentation images. The amount of resin removed by each system was measured by using a digital template and image analysis software. Canal aberrations and the preparation time were also recorded. The data were statistically analyzed by using analysis of variance, Tukey, and chi-square tests. Canals prepared with the F360 and OneShape systems were better centered compared with the Reciproc and WaveOne systems. Reciproc and WaveOne files removed significantly greater amounts of resin from the inner side of both curvatures (P files was significantly faster compared with WaveOne and F360 files (P file instruments were safe to use and were able to prepare the canals efficiently. However, single-file systems that are less tapered seem to be more favorable when preparing S-shaped canals. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Directory of Open Access Journals (Sweden)

    Haniu H

    2014-04-01

    Full Text Available Hisao Haniu,1,2 Naoto Saito,2,3 Yoshikazu Matsuda,4 Tamotsu Tsukahara,5 Yuki Usui,1,6,7 Kayo Maruyama,2,3 Seiji Takanashi,1 Kaoru Aoki,1 Shinsuke Kobayashi,1 Hiroki Nomura,1 Manabu Tanaka,1 Masanori Okamoto,1 Hiroyuki Kato1 1Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Japan; 2Insutitute for Biomedical Sciences, Shinshu University, Nagano, Japan; 3Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Nagano, Japan; 4Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Saitama, Japan; 5Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan; 7Aizawa Hospital, Sports Medicine Center, Nagano, Japan Abstract: This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs and cup-stacked carbon nanotubes (CSCNTs on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively – and three CSCNTs of different lengths (CS-L, 20–80 µm; CS-S, 0.5–20 µm; and CS-M, of intermediate length were tested. Human bronchial epithelial (BEAS-2B and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 µg/mL, and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT

  20. Computational and experimental study of effects of sediment shape on erosion of hydraulic turbines

    International Nuclear Information System (INIS)

    Poudel, L; Thapa, B; Shrestha, B P; Thapa, B S; Shrestha, K P; Shrestha, N K

    2012-01-01

    Hard particles as Quartz and Feldspar are present in large amount in most of the rivers across the Himalayan basins. In run-off-river hydro power plants these particles find way to turbine and cause its components to erode. Loss of turbine material due to the erosion and subsequent change in flow pattern induce several operational and maintenance problems in the power plants. Reduction in overall efficiency, vibrations and reduced life of turbine components are the major effects of sediment erosion of hydraulic turbines. Sediment erosion of hydraulic turbines is a complex phenomenon and depends upon several factors. One of the most influencing parameter is the characteristics of sediment particles. Quantity of sediment particles, which are harder than the turbine material, is one of the bases to indicate erosion potential of a particular site. Research findings have indicated that shape and size of the hard particles together with velocity of impact play a major role to decide the mode and rate of erosion in turbine components. It is not a common practice in Himalayan basins to conduct a detail study of sediment characteristics as a part of feasibility study for hydropower projects. Lack of scientifically verified procedures and guidelines to conduct the sediment analysis to estimate its erosion potential is one of the reasons to overlook this important part of feasibility study. Present study has been conducted by implementing computational tools to characterize the sediment particles with respect to their shape and size. Experimental studies have also been done to analyze the effects of different combinations of shape and size of hard particles on turbine material. Efforts have also been given to develop standard procedures to conduct similar study to compare erosion potential between different hydropower sites. Digital image processing software and sieve analyzer have been utilized to extract shape and size of sediment particles from the erosion sensitive power

  1. Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.

    2014-05-01

    Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future

  2. Effect of grain size of parent phase on twinning modes of B19` martensite in an equiatomic Ti-Ni shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, M. [Kumamoto Univ. (Japan). Dept. of Mater. Sci. and Resource Eng.; Itai, I. [Kumamoto Univ. (Japan). Dept. of Mater. Sci. and Resource Eng.; Kitamura, K. [Kumamoto Univ. (Japan). Dept. of Mater. Sci. and Resource Eng.; Chiba, A. [Kumamoto Univ. (Japan). Dept. of Mater. Sci. and Resource Eng.; Yamauchi, K. [Tokin Corp., Sendai (Japan)

    1995-12-01

    The effect of grain size of B2 parent phase on the twinning modes of B19` martensite in a Ti-50.0 at% Ni shape memory alloy has been studied. The grain size of parent phase was controlled from submicrons to several ten microns by cold-rolling and subsequent annealing. (001) compound twins were dominantly observed in the grain less than 4 {mu}m in diameter, although the (001) compound twinning did not give a solution to the phenomenological crystallographic theory. The triangular self-accommodating morphology of the martensite variants consisting of left angle 011 right angle Type II twins which were theoretically and experimentally recognized as a lattice invariant shear of the present transformation appeared in the whole grain more than 4 {mu}m in diameter. The formation mechanism of the (001) compound twinning in the fine grain is also discussed. (orig.).

  3. Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions

    Science.gov (United States)

    Huang, Hailong; Xia, Hui; Xie, Wenke; Guo, Zhibo; Li, Hongjian

    2018-06-01

    A size-efficient tunable metamaterial absorber (MA) composed of metallic leaf-shaped cell, graphene layer, silicon substrate, and bottom metal film is investigated theoretically and numerically at near-infrared (NIR) regions. Simulation results reveal that the single-band high absorption of 91.9% is obtained at 1268.7 nm. Further results show that the single-band can be simply changed into dual-band high absorption by varying the geometric parameters of top metallic layer at same wavelength regions, yielding two high absorption coefficients of 96.6% and 95.3% at the wavelengths of 1158.7 nm and 1323.6 nm, respectively. And the effect of related geometric parameter on dual-band absorption intensities is also investigated to obtain the optimized one. The peak wavelength can be tuned via modifying the Fermi energy of the graphene layer through controlling the external gate voltage. The work shows that the proposed strategy can be applied to other design of the dual-band structure at infrared regions.

  4. Size dependence of magnetization reversal of ring shaped magnetic tunnel junction

    International Nuclear Information System (INIS)

    Chen, C.C.; Kuo, C.Y.; Chang, Y.C.; Chang, C.C.; Horng, Lance; Wu, Teho; Chern, G.; Huang, C.Y.; Tsunoda, M.; Takahashi, M.; Wu, J.C.

    2007-01-01

    The size dependence of magnetization reversal of magnetic tunnel junction (MTJ) rings has been investigated. The MTJ rings, with outer diameter of 4, 2 and 1 μm and inner diameter of 1.5, 1 and 0.5 μm were fabricated by a top-down technique. The magnetoresistance curves manifest all of the magnetic domain configurations during magnetization reversal in different sized rings. Various transition processes were observed, such as four transition, three transition and two transition in the largest, middle and smallest MTJ ring, respectively. Furthermore, the biasing fields observed from major loops decrease with decreasing size, which may result from edge roughness produced in the ion-milling process

  5. Shape and texture analysis of the carotid plaque, and its correlation with cerebral infarctions on CT, and cerebrovascular symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Kalomiris, Konstantinos; Tegos, Thomas J; Sabetai, Michael; Nicolaides, Andrew N [Irvine Laboratory for Cardiovascular Investigations and Research, Imperial College School of Medicine at St Mary` , Praed Street, London W2 1NY (United Kingdom)

    1999-12-31

    This work has studied the relationship between ultrasonic texture characteristics, ultrasonic shape characteristics, cerebral infarctions on CT, and cerebrovascular symptoms, in an attempt to identify the unstable carotid plaque, i.e. the plaque associated with high prevalence of ipsilateral cerebral infarctions on CT, and cerebrovascular symptoms. The morphological features used were : the grey scale median (GSM) for the texture, and the bending energy (BE) for the shape. It has been shown that echoluscent plaques (plaques with low GSM) with irregular shape (high BE) are associated with high prevalence of ipsilateral cerebral infarctions on CT and cerebrovascular symptoms, whereas echogenic plaques (high GSM) with smooth shape (low BE) are associated with low prevalence of ipsilateral cerebral infarctions on CT and cerebrovascular symptoms. Previous work has demonstrated the significance of the GSM in identifying the unstable carotid plaques, but no attempt, to our knowledge, has been made to establish the clinical significance of the ultrasonic shape characteristics of the carotid plaque. The importance of the ultrasonic texture and shape characteristics will be established in prospective studies of patients with asymptomatic carotid plaques, aiming at the identification of patients with a high risk for stroke, and therefore for a better selection of asymptomatic patients who might benefit from a carotid endarterectomy. (authors) 5 refs., 3 figs.

  6. 3D primary grain shapes resulting from semi-solid metal processing

    CSIR Research Space (South Africa)

    Curle, Ulyate A

    2017-07-01

    Full Text Available ) size. Are these 2D globules also spherical in shape in 3D or are these 2D shapes remnants of the 3D shapes after sectioning along planes? An Al-Si-Mg alloy is semi-solid processed using a patented processing coil that induces contactless stirring while...

  7. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  8. Membrane shape modulates transmembrane protein distribution.

    Science.gov (United States)

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia

    2014-01-27

    Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  10. PREDICTION OF THE EXTREMAL SHAPE FACTOR OF SPHEROIDAL PARTICLES

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the stereological unfolding problem for spheroidal particles the extremal shape factor is predicted. The theory of extreme values has been used to show that extremes of the planar shape factor of particle sections tend to the same limit distribution as extremes of the original shape factor for both the conditional and marginal distribution. Attention is then paid to the extreme shape factor conditioned by the particle size. Normalizing constants are evaluated for a parametric model and the numerical procedure is tested on real data from metallography.

  11. Gender Difference in the Prevalence of Eating Disorder Symptoms

    Science.gov (United States)

    Striegel-Moore, Ruth H.; Rosselli, Francine; Perrin, Nancy; DeBar, Lynn; Wilson, G. Terence; May, Alexis; Kraemer, Helena C.

    2009-01-01

    Objective This study examined gender differences in prevalence of eating disorder symptoms including body image concerns (body checking or avoidance), binge eating, and inappropriate compensatory behaviors. Method A random sample of members (ages 18 to 35) of a health maintenance organization was recruited to complete a survey by mail or on-line. Items were drawn from the Patient Health Questionnaire and the Body Shape Questionnaire. Results Among the 3,714 women and 1,808 men who responded, men were more likely to report overeating whereas women were more likely to endorse loss of control while eating. Although statistically significant gender differences were observe, with women significantly more likely than men to report body checking and avoidance, binge eating, fasting, and vomiting, effect sizes (“Number Needed to Treat”) were small to moderate. Conclusions Few studies of eating disorders include men, yet our findings suggest that a substantial minority of men also report eating disorder symptoms. PMID:19107833

  12. Integrated topology and shape optimization in structural design

    Science.gov (United States)

    Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.

    1990-01-01

    Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.

  13. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta.

    Science.gov (United States)

    Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia

    2016-05-31

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover

  14. Improved Genetic Algorithm with Two-Level Approximation for Truss Optimization by Using Discrete Shape Variables

    Directory of Open Access Journals (Sweden)

    Shen-yan Chen

    2015-01-01

    Full Text Available This paper presents an Improved Genetic Algorithm with Two-Level Approximation (IGATA to minimize truss weight by simultaneously optimizing size, shape, and topology variables. On the basis of a previously presented truss sizing/topology optimization method based on two-level approximation and genetic algorithm (GA, a new method for adding shape variables is presented, in which the nodal positions are corresponding to a set of coordinate lists. A uniform optimization model including size/shape/topology variables is established. First, a first-level approximate problem is constructed to transform the original implicit problem to an explicit problem. To solve this explicit problem which involves size/shape/topology variables, GA is used to optimize individuals which include discrete topology variables and shape variables. When calculating the fitness value of each member in the current generation, a second-level approximation method is used to optimize the continuous size variables. With the introduction of shape variables, the original optimization algorithm was improved in individual coding strategy as well as GA execution techniques. Meanwhile, the update strategy of the first-level approximation problem was also improved. The results of numerical examples show that the proposed method is effective in dealing with the three kinds of design variables simultaneously, and the required computational cost for structural analysis is quite small.

  15. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.

    2017-12-06

    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  16. Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.

    Science.gov (United States)

    Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes

    2015-06-01

    The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Melo, Tadeu Antonio de A; Gomes, Rodinei M.; Lima, Severino Jackson G. de; Tavares, Joao Manuel R.S.

    2010-01-01

    Research highlights: → This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. → The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. → Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. → First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. → The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  18. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Victor Hugo C. de, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Melo, Tadeu Antonio de A, E-mail: tadeu@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Gomes, Rodinei M., E-mail: gomes@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Lima, Severino Jackson G. de, E-mail: jackson@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica (DEMec)/Instituto de Engenharia Mecanica e Gestao Industrial INEGI, Rua Dr. Roberto Frias, S/N 4200-465 Porto (Portugal)

    2010-11-25

    Research highlights: {yields} This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. {yields} The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. {yields} Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. {yields} First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. {yields} The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  19. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  20. How Rural Market Imperfections Shape the Relation Between Farm Size and Productivity

    DEFF Research Database (Denmark)

    Heltberg, Rasmus

    The subject of this article is the alleged inverse relationship between farm size and productivity in developing countries. The recent controversy is reviewed, and a framework is provided to explain the inverse relationship based on plausible assumptions about imperfections in the markets for labor......, credit and land. On this basis testable hypotheses are derived. Using fram.level panel data from Pakistan, the framework is assessed by regressing output on operational fram size, size of owned holding, family size, tenurial status and irrigation status of the land. Household fixed effects are used...... to account for remaining unobserved heterogenity. It is concluded that an inverse relationship is present in Pakistan, and that the market imperfections framework performs well with the data...

  1. Shape-morphing composites with designed micro-architectures.

    Science.gov (United States)

    Rodriguez, Jennifer N; Zhu, Cheng; Duoss, Eric B; Wilson, Thomas S; Spadaccini, Christopher M; Lewicki, James P

    2016-06-15

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  2. Size-Dictionary Interpolation for Robot's Adjustment

    Directory of Open Access Journals (Sweden)

    Morteza eDaneshmand

    2015-05-01

    Full Text Available This paper describes the classification and size-dictionary interpolation of the three-dimensional data obtained by a laser scanner to be used in a realistic virtual fitting room, where automatic activation of the chosen mannequin robot, while several mannequin robots of different genders and sizes are simultaneously connected to the same computer, is also considered to make it mimic the body shapes and sizes instantly. The classification process consists of two layers, dealing, respectively, with gender and size. The interpolation procedure tries to find out which set of the positions of the biologically-inspired actuators for activation of the mannequin robots could lead to the closest possible resemblance of the shape of the body of the person having been scanned, through linearly mapping the distances between the subsequent size-templates and the corresponding position set of the bioengineered actuators, and subsequently, calculating the control measures that could maintain the same distance proportions, where minimizing the Euclidean distance between the size-dictionary template vectors and that of the desired body sizes determines the mathematical description. In this research work, the experimental results of the implementation of the proposed method on Fits.me's mannequin robots are visually illustrated, and explanation of the remaining steps towards completion of the whole realistic online fitting package is provided.

  3. Vacuum atomization of powder and shaping of net-shape components of molybdenum

    International Nuclear Information System (INIS)

    Devillard, Jacques.

    1979-01-01

    The paper reports an electron beam process and furnace for the production of spherical molybdenum powders of varying particle size prepared by vacuum atomization. Technical parameters of this process are discussed in an industrial plant. Powders of molybdenum alloys were extruded into round bars and tubes and the conditions of extrusion are specified. The mechanical properties in the as extruded state and after recrystallization were found to depend on the interstitial elements content and the particle size of the powder used. Tubes were cold bent to a 5 cm radius of curvature before or after uncanning. In the as-extruded state the tubes have a ligneous surface, the roughness depends on the particle size of the powder used. A new step of development in shaping molybdenum tubes is investigated and the cost of this process in an industrial plant is discussed [fr

  4. Prevalence of carriers of premutation-size alleles of the FMR1 gene-and implications for the population genetics of the fragile X syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, F.; Rouillard, P.; Morel, M.L. [Universite Laval, Quebec City (Canada)] [and others

    1995-11-01

    The fragile X syndrome is the second leading cause of mental retardation after Down syndrome. Fragile X premutations are not associated with any clinical phenotype but are at high risk of expanding to full mutations causing the disease when they are transmitted by a carrier woman. There is no reliable estimate of the prevalence of women who are carriers of fragile X premutations. We have screened 10,624 unselected women by Southern blot for the presence of FMR1 premutation alleles and have confirmed their size by PCR analysis. We found 41 carriers of alleles with 55-101 CGG repeats, a prevalence of 1/259 women (95% confidence interval 1/373-1/198). Thirty percent of these alleles carry an inferred haplotype that corresponds to the most frequent haplotype found in fragile X males and may indeed constitute premutations associated with a significant risk of expansion on transmission by carrier women. We identified another inferred haplotype that is rare in both normal and fragile X chromosomes but that is present on 13 (57%) of 23 chromosomes carrying FMR1 alleles with 53-64 CGG repeats. This suggests either (1) that this haplotype may be stable or (2) that the associated premutation-size alleles have not yet reached equilibrium in this population and that the incidence of fragile X syndrome may increase in the future. 42 refs., 3 figs., 4 tabs.

  5. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  6. The quintuple-shape memory effect in electrospun nanofiber membranes

    International Nuclear Information System (INIS)

    Zhang, Fenghua; Zhang, Zhichun; Lu, Haibao; Leng, Jinsong; Liu, Yanju

    2013-01-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future. (paper)

  7. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.

    Science.gov (United States)

    Ninan, Elizabeth; Berzins, David W

    2013-01-01

    Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Spatial shape of avalanches

    Science.gov (United States)

    Zhu, Zhaoxuan; Wiese, Kay Jörg

    2017-12-01

    In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x ) 〉 ℓ given ℓ , as well as its fluctuations encoded in the second cumulant 〈S2(x ) 〉 ℓ c. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.

  9. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  10. Fluid Flow in a Porous Tree-Shaped Network

    OpenAIRE

    Miguel, A. F.

    2014-01-01

    Tree-shaped flow networks connect one point to an infinity of points and are everywhere in Nature. These networks often own minimal flow resistance and vessel sizes obey to scaling power-laws. In this paper presents a model for fluid flow through a tree-shaped network with porous tubes. Hagen–Poiseuille flow is assumed for tubes and Darcy flow for the porous wall.

  11. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    Science.gov (United States)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  12. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  13. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  14. Determining shapes and dimensions of dental arches for the use of straight-wire arches in lingual technique.

    Science.gov (United States)

    Kairalla, Silvana Allegrini; Scuzzo, Giuseppe; Triviño, Tarcila; Velasco, Leandro; Lombardo, Luca; Paranhos, Luiz Renato

    2014-01-01

    This study aims to determine the shape and dimension of dental arches from a lingual perspective, and determine shape and size of a straight archwire used for lingual Orthodontics. The study sample comprised 70 Caucasian Brazilian individuals with normal occlusion and at least four of Andrew's six keys. Maxillary and mandibular dental casts were digitized (3D) and the images were analyzed by Delcam Power SHAPET 2010 software. Landmarks on the lingual surface of teeth were selected and 14 measurements were calculated to determine the shape and size of dental arches. Shapiro-Wilk test determined small arch shape by means of 25th percentile (P25%)--an average percentile for the medium arch; and a large one determined by means of 75th percentile (P75%). T-test revealed differences between males and females in the size of 12 dental arches. The straight-wire arch shape used in the lingual straight wire technique is a parabolic-shaped arch, slightly flattened on its anterior portion. Due to similarity among dental arch sizes shown by males and females, a more simplified diagram chart was designed.

  15. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  16. Size and shape information serve as labels in the alarm calls of Gunnison's prairie dogs Cynomys gunnisoni

    Directory of Open Access Journals (Sweden)

    C. N. SLOBODCHIKOFF, William R. BRIGGS, Patricia A DENNIS, Anne-Marie C. HODGE

    2012-10-01

    Full Text Available Some animals have the capacity to produce different alarm calls for terrestrial and aerial predators. However, it is not clear what cognitive processes are involved in generating these calls. One possibility is the position of the predator: Anything on the ground receives a terrestrial predator call, and anything in the air receives an aerial predator call. Another possibility is that animals are able to recognize the physical features of predators and incorporate those into their calls. As a way of elucidating which of these mechanisms plays a primary role in generating the structure of different calls, we performed two field experiments with Gunnison’s prairie dogs. First, we presented the prairie dogs with a circle, a triangle, and a square, each moving across the colony at the same height and speed. Second, we presented the prairie dogs with two squares of differing sizes. DFA statistics showed that 82.6 percent of calls for the circle and 79.2 percent of the calls for the triangle were correctly classified, and 73.3 percent of the calls for the square were classified as either square or circle. Also, 100 percent of the calls for the larger square and 90 percent of the calls for the smaller square were correctly classified. Because both squares and circles are features of terrestrial predators and triangles are features of aerial predators, our results suggest that prairie dogs might have a cognitive mechanism that labels the abstract shape and size of different predators, rather than the position of the predator [Current Zoology 58 (5: 741-748, 2012].

  17. Comparison of 3D laser-based photonic scans and manual anthropometric measurements of body size and shape in a validation study of 123 young Swiss men

    Directory of Open Access Journals (Sweden)

    Nikola Koepke

    2017-02-01

    Full Text Available Background Manual anthropometric measurements are time-consuming and challenging to perform within acceptable intra- and inter-individual error margins in large studies. Three-dimensional (3D laser body scanners provide a fast and precise alternative: within a few seconds the system produces a 3D image of the body topography and calculates some 150 standardised body size measurements. Objective The aim was to enhance the small number of existing validation studies and compare scan and manual techniques based on five selected measurements. We assessed the agreement between two repeated measurements within the two methods, analysed the direct agreement between the two methods, and explored the differences between the techniques when used in regressions assessing the effect of health related determinants on body shape indices. Methods We performed two repeated body scans on 123 volunteering young men using a Vitus Smart XXL body scanner. We manually measured height, waist, hip, buttock, and chest circumferences twice for each participant according to the WHO guidelines. The participants also filled in a basic questionnaire. Results Mean differences between the two scan measurements were smaller than between the two manual measurements, and precision as well as intra-class correlation coefficients were higher. Both techniques were strongly correlated. When comparing means between both techniques we found significant differences: Height was systematically shorter by 2.1 cm, whereas waist, hip and bust circumference measurements were larger in the scans by 1.17–4.37 cm. In consequence, body shape indices also became larger and the prevalence of overweight was greater when calculated from the scans. Between 4.1% and 7.3% of the probands changed risk category from normal to overweight when classified based on the scans. However, when employing regression analyses the two measurement techniques resulted in very similar coefficients, confidence

  18. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    Science.gov (United States)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  19. Efficiency of swimming of micro-organism and singularity in shape space

    OpenAIRE

    Kawamura, Masako

    1996-01-01

    Micro-organisms can be classified into three different types according to their size. We study the efficiency of the swimming of micro-organism in two dimensional fluid as a device for helping the explanation of this hierarchy in the size. We show that the efficiency of flagellate becomes unboundedly large, whereas that of ciliate has the upper bound. The unboundedness is related to the curious feature of the shape space, that is, a singularity at the basic shape of flagellate.

  20. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    Science.gov (United States)

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  1. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-05

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  2. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Science.gov (United States)

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  3. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta

    International Nuclear Information System (INIS)

    Bruse, Jan L.; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N.; Capelli, Claudio

    2016-01-01

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient’s anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously

  4. Topological Derivatives in Shape Optimization

    CERN Document Server

    Novotny, Antonio André

    2013-01-01

    The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intende...

  5. Hearing shapes of few electrons quantum drums: A configuration–interaction study

    International Nuclear Information System (INIS)

    Ţolea, F.; Ţolea, M.

    2015-01-01

    The – highly remarkable – existence of non-congruent yet vibrationally isospectral shapes has been first proved theoretically and then also tested experimentally – by using electromagnetic waves in cavities, vibrating smectic films or electrons in nanostructures. In this context, we address the question whether isospectrality holds if two or more electrons interact electrostatically, using the accurate configuration–interaction method, in a discrete representation of the Bilby and Hawk shapes. Isospectral pairs offer an unique possibility to test how identical sets of single-particle energies may combine differently in the few-electrons eigenmodes, due to different wave functions spatial distributions. Our results point towards the break down of isospectrality in the presence of interactions. Thus one should be able to ”hear” the shapes of few electrons quantum drums. Interestingly however, for the analyzed two and three electrons cases, there exists an interaction strength (which can be tuned by changing the size of the shapes), for which the ground states energies of Bilby and Hawk coincide, but not the excited states as well. Wigner localization is studied and shown to occur at about the same size for both Bilby and Hawk shapes. Next, an exercise is proposed to use the two-electrons charge density of the Bilby and Hawk ground states in the phase extraction scheme as proposed by Moon et al. (2008). Results show that out-of-phase regions appear if the linear size of the shapes exceeds the Bohr radius as occupation of higher Slater determinants becomes significant

  6. Hearing shapes of few electrons quantum drums: A configuration–interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Ţolea, F.; Ţolea, M., E-mail: tzolea@infim.ro

    2015-02-01

    The – highly remarkable – existence of non-congruent yet vibrationally isospectral shapes has been first proved theoretically and then also tested experimentally – by using electromagnetic waves in cavities, vibrating smectic films or electrons in nanostructures. In this context, we address the question whether isospectrality holds if two or more electrons interact electrostatically, using the accurate configuration–interaction method, in a discrete representation of the Bilby and Hawk shapes. Isospectral pairs offer an unique possibility to test how identical sets of single-particle energies may combine differently in the few-electrons eigenmodes, due to different wave functions spatial distributions. Our results point towards the break down of isospectrality in the presence of interactions. Thus one should be able to ”hear” the shapes of few electrons quantum drums. Interestingly however, for the analyzed two and three electrons cases, there exists an interaction strength (which can be tuned by changing the size of the shapes), for which the ground states energies of Bilby and Hawk coincide, but not the excited states as well. Wigner localization is studied and shown to occur at about the same size for both Bilby and Hawk shapes. Next, an exercise is proposed to use the two-electrons charge density of the Bilby and Hawk ground states in the phase extraction scheme as proposed by Moon et al. (2008). Results show that out-of-phase regions appear if the linear size of the shapes exceeds the Bohr radius as occupation of higher Slater determinants becomes significant.

  7. Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles

    Science.gov (United States)

    Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo

    2003-01-01

    Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.

  8. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  9. Foveal shape and structure in a normal population.

    Science.gov (United States)

    Tick, Sarah; Rossant, Florence; Ghorbel, Itebeddine; Gaudric, Alain; Sahel, José-Alain; Chaumet-Riffaud, Philippe; Paques, Michel

    2011-07-29

    The shape of the human fovea presents important but still poorly characterized variations. In this study, the variability of the shape and structure of normal foveae were examined. In a group of 110 eyes of 57 healthy adults, the shape and structure of the fovea were analyzed by automated segmentation of retinal layer on high-resolution optical coherence tomography scans. In an additional group of 10 normal eyes of 10 patients undergoing fluorescein angiography, the size of the foveal avascular zone (FAZ) was correlated to foveal shape. From the thickest to the thinnest fovea, there was a structural continuum ranging from a shallow pit with continuity of the inner nuclear layer (INL) over the center (seven eyes; 6.7%), to a complete separation of inner layers overlying a flat and thinner central outer nuclear layer (ONL; eight eyes; 7.3%). Central foveal thickness correlated inversely to the degree of inner layer separation and to the surface of the FAZ. Foveal structure strongly correlates with its neurovascular organization. The findings support a developmental model in which the size of the FAZ determines the extent of centrifugal migration of inner retinal layers, which counteracts in some way the centripetal packing of cone photoreceptors.

  10. Study on the Size Effects of H-Shaped Fusion Zone of Fiber Laser Welded AZ31 Joint

    Directory of Open Access Journals (Sweden)

    Guang-Feng Lu

    2018-03-01

    Full Text Available There are two kinds of typical cross-section profiles for the fusion zone (FZ of a laser welded thin section joint, i.e., a V-shaped cross-section and an H-shaped cross-section. Previous researches indicated that tensile strength of the V-shaped joint was lower than that of the H-shaped one due to the greater heterogeneity of strain distribution on the V-shaped joint during tensile process. In this work, impacts of the aspect ratio of FZ on the mechanical properties of laser welded thin section joints with an H-shaped cross-section profile were investigated. Welding conditions corresponding to two typical H-shaped joints (i.e., Wnarrower with a narrower FZ, and Wwider with a wider FZ were decided through a laser welding orthogonal experimental plan. Then, the microstructure and properties of both joints were examined and compared. The results show that the tensile strength of joint Wnarrower and joint Wwider was about 72% and 80.9% that of the base metal, respectively. Both joints fractured in the FZ during tensile processes. The low-cycle fatigue life of the base metal, the joint Wnarrower and the joint Wwider were 3377.5 cycles, 2825 cycles and 3155.3 cycles, respectively. By using high-speed imaging, it was found that the fatigue crack of joint Wnarrower initiated and propagated inside the fusion zone, while the fatigue crack of the joint Wwider initiated at the edge of the base metal and propagated for a distance within the base metal before entering into the fusion zone. This work promoted our understanding about the influence of the weld bead shape on the properties of laser welded thin section joints.

  11. Particle size and shape modification of hydroxyapatite nanostructures synthesized via a complexing agent-assisted route

    International Nuclear Information System (INIS)

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2014-01-01

    In this work, hydroxyapatite (HAP), Ca 10 (PO 4 ) 6 (OH) 2 , nanostructures including nanorods, nanobundles and nanoparticles have been prepared via a simple precipitation method. In the present method, Ca(NO 3 ) 2 ·4H 2 O and (NH 4 ) 2 HPO 4 were used as calcium and phosphorus precursors, respectively. Besides, the Schiff bases derived from 2-hydroxyacetophenone and different diamines were used as complexing agents for the in situ formation of Ca 2+ complexes. The formation mechanism of 0-D and 1-D nanostructures of HAP was also considered. When the complexing agents could coordinate to the Ca 2+ ions through N and O atoms to form the [CaN 2 O 2 ] 2+ complexes, HAP nanoparticles were generated. On the other hand, nanorods and nanobundles of HAP were obtained by forming the [CaN 2 ] 2+ as well as [CaO 2 ] 2+ complexes in the reaction solution. This work is the first successful synthesis of pure HAP nanostructures in the presence of Schiff bases instead of using the common surfactants. - Highlights: • HAP nanostructures have been prepared by a simple precipitation method. • To control shape and particle size of HAP, different Schiff bases were employed. • 0-D and 1-D HAP nanostructures have been formed by this method

  12. Light-dependent governance of cell shape dimensions in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Beronda L Montgomery

    2015-05-01

    Full Text Available The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.

  13. A modified approach to estimating sample size for simple logistic regression with one continuous covariate.

    Science.gov (United States)

    Novikov, I; Fund, N; Freedman, L S

    2010-01-15

    Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.

  14. Generalized Bragg-Williams model for the size-dependent order-disorder transition of bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Li, Y J; Qi, W H; Wang, M P; Liu, J F; Xiong, S Y; Huang, B Y

    2011-01-01

    Considering the different effects of exterior atoms (face, edge and corner atoms), the Bragg-Williams model is generalized to account for the size, shape and composition-dependent order-disorder transition of bimetallic nanoparticles (NPs) with B 2 , L1 0 and L1 2 ordered structures. The results show that the order-disorder temperatures T C,p are different for different shapes even in the identical particle size. The order of order-disorder temperatures of different shapes varies for different sizes. The long-range order parameter decreases with the increase in temperature in all size ranges and decreases smoothly in large sizes, but drops dramatically in small sizes. Moreover, it is also found that the order-disorder temperature of bimetallic NPs rises with increasing particle sizes and decreases with a deviation from the ideal compositions. The present predictions are consistent with the available literature results, indicating its capability in predicting other order-disorder transition phenomena of bimetallic NPs.

  15. Determining shapes and dimensions of dental arches for the use of straight-wire arches in lingual technique

    Directory of Open Access Journals (Sweden)

    Silvana Allegrini Kairalla

    2014-10-01

    Full Text Available INTRODUCTION: This study aims to determine the shape and dimension of dental arches from a lingual perspective, and determine shape and size of a straight archwire used for lingual Orthodontics. METHODS: The study sample comprised 70 Caucasian Brazilian individuals with normal occlusion and at least four of Andrew's six keys. Maxillary and mandibular dental casts were digitized (3D and the images were analyzed by Delcam Power SHAPET 2010 software. Landmarks on the lingual surface of teeth were selected and 14 measurements were calculated to determine the shape and size of dental arches. RESULTS: Shapiro-Wilk test determined small arch shape by means of 25th percentile (P25% - an average percentile for the medium arch; and a large one determined by means of 75th percentile (P75%. T-test revealed differences between males and females in the size of 12 dental arches. CONCLUSION: The straight-wire arch shape used in the lingual straight wire technique is a parabolic-shaped arch, slightly flattened on its anterior portion. Due to similarity among dental arch sizes shown by males and females, a more simplified diagram chart was designed.

  16. Automated Method for Fractographic Analysis of Shape and Size of Dimples on Fracture Surface of High-Strength Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Ihor Konovalenko

    2018-03-01

    Full Text Available An automated method for analyzing the shape and size of dimples of ductile tearing formed during static and impact fracture of titanium alloys VT23 and VT23M is proposed. The method is based on the analysis of the image topology. The method contains the operations of smoothing the initial fractographic image; its convolution with a filter to identify the topological ridges; thresholding with subsequent skeletonization to identify boundaries between dimples; clustering to isolate the connected areas that represent the sought objects—dimples. For each dimple, the following quantitative characteristics were calculated: area, coefficient of roundness and visual depth in units of image intensity. The surface of ductile tearing was studied by analyzing the peculiarities of parameter distribution of the found dimples. The proposed method is applied to fractograms of fracture surfaces of titanium alloys VT23 and VT23M.

  17. Morphology, Growth, and Size Limit of Bacterial Cells

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean X.

    2010-07-01

    Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach, we show that the cell shape can be regarded as a steady state of a growing network under the influence of turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are discussed within the context of our model.

  18. Pressuring and restrictive feeding styles influence infant feeding and size among a low-income African-American sample.

    Science.gov (United States)

    Thompson, Amanda L; Adair, Linda S; Bentley, Margaret E

    2013-03-01

    The prevalence of overweight among infants and toddlers has increased dramatically in the past three decades, highlighting the importance of identifying factors contributing to early excess weight gain, particularly in high-risk groups. Parental feeding styles and the attitudes and behaviors that characterize parental approaches to maintaining or modifying children's eating behavior are an important behavioral component shaping early obesity risk. Using longitudinal data from the Infant Care and Risk of Obesity Study, a cohort study of 217 African-American mother-infant pairs with feeding styles, dietary recalls, and anthropometry collected from 3 to 18 months of infant age, we examined the relationship between feeding styles, infant diet, and weight-for-age and sum of skinfolds. Longitudinal mixed models indicated that higher pressuring and indulgent feeding style scores were positively associated with greater infant energy intake, reduced odds of breastfeeding, and higher levels of age-inappropriate feeding of liquids and solids, whereas restrictive feeding styles were associated with lower energy intake, higher odds of breastfeeding, and reduced odds of inappropriate feeding. Pressuring and restriction were also oppositely related to infant size with pressuring associated with lower infant weight-for-age and restriction with higher weight-for-age and sum of skinfolds. Infant size also predicted maternal feeding styles in subsequent visits indicating that the relationship between size and feeding styles is likely bidirectional. Our results suggest that the degree to which parents are pressuring or restrictive during feeding shapes the early feeding environment and, consequently, may be an important environmental factor in the development of obesity. Copyright © 2012 The Obesity Society.

  19. Extra Facial Landmark Localization via Global Shape Reconstruction

    Directory of Open Access Journals (Sweden)

    Shuqiu Tan

    2017-01-01

    Full Text Available Localizing facial landmarks is a popular topic in the field of face analysis. However, problems arose in practical applications such as handling pose variations and partial occlusions while maintaining moderate training model size and computational efficiency still challenges current solutions. In this paper, we present a global shape reconstruction method for locating extra facial landmarks comparing to facial landmarks used in the training phase. In the proposed method, the reduced configuration of facial landmarks is first decomposed into corresponding sparse coefficients. Then explicit face shape correlations are exploited to regress between sparse coefficients of different facial landmark configurations. Finally extra facial landmarks are reconstructed by combining the pretrained shape dictionary and the approximation of sparse coefficients. By applying the proposed method, both the training time and the model size of a class of methods which stack local evidences as an appearance descriptor can be scaled down with only a minor compromise in detection accuracy. Extensive experiments prove that the proposed method is feasible and is able to reconstruct extra facial landmarks even under very asymmetrical face poses.

  20. Phylogeny and adaptation shape the teeth of insular mice.

    Science.gov (United States)

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. © 2016 The Author(s).

  1. Does the Size of a Company Make a Difference in the Prevalence of Exposure to Asthmagens and in the Use of Respiratory Protective Equipment?

    Science.gov (United States)

    El-Zaemey, Sonia; Carey, Renee N; Darcey, Ellie; Reid, Alison; Rushton, Lesley; McElvenny, Damien M; Fritschi, Lin

    2018-05-08

    About half of all workers in high-income countries work in small companies. However, regulatory bodies and researchers predominantly work with large companies because they are more convenient to study and easier to reach. We aimed to estimate the prevalence of exposure to asthmagens and the use of respiratory protective equipment (RPE) by company size. This analysis used data from the Australian Work Exposures Study-Asthma, a telephone survey which investigated exposure to 27 asthmagen groups. Among 4844 respondents, 18.8, 19.9, 31.9, and 29.4% of workers reported working in micro (200 employees) companies, respectively. Compared to workers in large companies, workers in micro, small, or medium companies had higher prevalence of exposure to most asthmagens and lesser use of RPE. Our results suggest that policy actions and regulatory measures should target micro/small companies in order to have the greatest effect.

  2. Characteristics of the Papua New Guinean dentition. I Shovel-shaped incisors and canines associated with lingual tubercles.

    Science.gov (United States)

    Doran, G A

    1977-10-01

    The prevalence of shovel-shaped and lingual tubercles in maxillary incisors and canines in four groups of people in Papua New Guinea is reported. The shovel shape was not common among the people of Highland New Guinea but its presence in Papuans was comparable with that in Mongoloid races.

  3. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  4. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong; Fan, Fengru; Tian, Zhongqun; Wang, Zhong Lin

    2009-01-01

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face

  5. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Directory of Open Access Journals (Sweden)

    Soichiro Kawabe

    Full Text Available Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  6. Prevalence of Body Dysmorphic Disorder Symptoms and Body Weight Concerns in Patients Seeking Abdominoplasty.

    Science.gov (United States)

    Brito, Maria José Azevedo de; Nahas, Fábio Xerfan; Cordás, Táki Athanássios; Gama, Maria Gabriela; Sucupira, Eduardo Rodrigues; Ramos, Tatiana Dalpasquale; Felix, Gabriel de Almeida Arruda; Ferreira, Lydia Masako

    2016-03-01

    Body dysmorphic disorder (BDD) is one of the most common psychiatric conditions found in patients seeking cosmetic surgery, and body contouring surgery is most frequently sought by patients with BDD. To estimate the prevalence and severity of BDD symptoms in patients seeking abdominoplasty. Ninety patients of both sexes were preoperatively divided into two groups: patients with BDD symptoms (n = 51) and those without BDD symptoms (n = 39) based both on the Body Dysmorphic Disorder Examination (BDDE) and clinical assessment. Patients in the BDD group were classified as having mild to moderate or severe symptoms, according to the BDDE. Body weight and shape concerns were assessed using the Body Shape Questionnaire (BSQ). The prevalence of BDD symptoms was 57%. There were significant associations between BDD symptoms and degree of body dissatisfaction, level of preoccupation with physical appearance, and avoidance behaviors. Mild to moderate and severe symptoms of BDD were present in 41% and 59% of patients, respectively, in the BDD group. It was found that the more severe the symptoms of BDD, the higher the level of concern with body weight and shape (P < .001). Patients having distorted self-perception of body shape, or distorted comparative perception of body image were respectively 3.67 or 5.93 times more likely to show more severe symptoms of BDD than those with a more accurate perception. Candidates for abdominoplasty had a high prevalence of BDD symptoms, and body weight and shape concerns were associated with increased symptom severity. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  7. The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water–oil interfaces via molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Jiao, Yang; Dai, Lenore L., E-mail: Lenore.Dai@asu.edu [Arizona State University, School of Engineering of Matter, Transport, and Energy (United States)

    2016-04-15

    We have employed molecular dynamics simulations to systematically investigate the effects of nanoparticles’ structural and chemical properties on their diffusive behaviors at/across the water–benzene interface. Four different nanoparticles were studied: modified hydrocarbon nanoparticles with a mean diameter of 1.2 nm (1.2HCPs), modified hydrocarbon nanoparticles with a mean diameter of 0.6 nm (0.6HCPs), single-walled carbon nanotubes (SWCNTs), and buckyballs. We found that the diffusion coefficients of 0.6 and 1.2HCP were larger than the corresponding values predicted using the Stokes–Einstein (SE) equation and attributed this deviation to the small particle size and the anisotropy of the interface system. In addition, the observed directional diffusive behaviors for various particles were well-correlated with the derivative of the potential of mean force (PMF), which might indicate an effective driving force for the particles along the direction perpendicular to the interface. We also found that nanoparticles with isotropic shape and uniform surface, e.g., buckyballs, tend to have smaller diffusion coefficients than those of nanoparticles with comparable dimensions but anisotropic shapes and non-uniform surface composition, e.g., SWCNT and 0.6HCP. One possible hypothesis for this behavior is that the “perfect” isotropic shape and uniform surface of buckyballs result in a better-defined “solvation shell” (i.e., a shell of solution molecules), which leads to a larger “effective radius” of the particle, and thus, a reduced diffusion coefficient.

  8. Determining wood chip size: image analysis and clustering methods

    Directory of Open Access Journals (Sweden)

    Paolo Febbi

    2013-09-01

    Full Text Available One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149- 1:2010. Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm; the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors and size descriptors (area, perimeter, Feret diameters, eccentricity was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3- dimensional acquisition process.

  9. PICTORIAL INTERLUDES Flake-shaped rice bodies

    African Journals Online (AJOL)

    removing the rice bodies and the bursa.3. In summary: rice bodies can occur without underlying systemic disorder, have different shapes and sizes, and have specific signal characteristics on. MRI that allow discrimination from synovial chondromatosis. 1. Cheung HS, Ryan LM, Kozin F, McCarty DJ. Synovial origins of rice ...

  10. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  11. The shape of contention: adaptation, history, and contingency in ungulate mandibles.

    Science.gov (United States)

    Raia, Pasquale; Carotenuto, Francesco; Meloro, Carlo; Piras, Paolo; Pushkina, Diana

    2010-05-01

    Mandibles and teeth of ungulates have been extensively studied to discern the functional significance of their design. Grazing ungulates have deeper mandibles, longer coronoid processes, flatter incisor arcades, and more hypsodont molars in comparison to browsers. If the functional significance of both mandible and teeth shapes is well-established, it remains uncertain to what extent mandible shapes are really adapted to grazing, meaning that they evolved either to serve their current biological function or just as a structural requirement to accommodate higher crowned molars. Here, we address this question by studying the contribution of phylogeny, hypsodonty, and body size to mandibular shape variation. The mandible shape appeared to be significantly influenced by hypsodonty but not by body size. Interestingly, hypsodonty-related changes influenced the tooth row in artiodactyls and perissodactyls significantly but in the opposite directions, which is ultimately related to their different digestive strategies. Yet, we obtained a strong phylogenetic effect in perissodactyls, suggesting that their mandible shape should be strongly inherited. The strength of this effect was not significant within artiodactyls (where hypsodonty explained much more variance in mandible shape). Digestive strategy is deemed to interplay with hypsodonty to produce different paths of adaptation to particular diets in ungulates.

  12. Controlling the shapes and sizes of metallic nanoantennas for detection of biological molecules using hybridization phase of plasmon resonances and photonic lattice modes

    Science.gov (United States)

    Gutha, Rithvik R.; Sharp, Christina; Wing, Waylin J.; Sadeghi, Seyed M.

    2018-02-01

    Chemical sensing based on Localized Surface Plasmonic Resonances (LSPR) and the ultra-sharp optical features of surface lattice resonances (SLR) of arrays of metallic nanoantennas have attracted much attention. Recently we studied biosensing based on the transition between LSPR and SLR (hybridization phase), demonstrating significantly higher refractive index sensitivity than each of these resonances individually. In this contribution we study the impact of size and shape of the metallic nanoantennas on the hybridization process and the way they influence application of this process for biosensing, wherein miniscule variation of the refractive index of the environment leads to dramatic changes in the spectral properties of the arrays.

  13. General method for designing wave shape transformers.

    Science.gov (United States)

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu

    2008-12-22

    An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.

  14. Protein structure and ionic selectivity in calcium channels: selectivity filter size, not shape, matters.

    Science.gov (United States)

    Malasics, Attila; Gillespie, Dirk; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Boda, Dezso

    2009-12-01

    Calcium channels have highly charged selectivity filters (4 COO(-) groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na(+) and Ca(2+)) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca(2+) is more efficient in balancing the charge of the filter because it provides twice the charge as Na(+) while occupying the same space. The CSC mechanism further implies that the main determinant of Ca(2+) versus Na(+) selectivity is the density of charged particles in the selectivity filter, i.e., the volume of the filter (after fixing the number of charged groups in the filter). In this paper we test this hypothesis by changing filter length and/or radius (shape) of the cylindrical selectivity filter of our reduced model. We show that varying volume and shape together has substantially stronger effects than varying shape alone with volume fixed. Our simulations show the importance of depletion zones of ions in determining channel conductance calculated with the integrated Nernst-Planck equation. We show that confining the protein side chains with soft or hard walls does not influence selectivity.

  15. Size Effect Studies on Tensile Tests for Hot Stamping Steel

    Science.gov (United States)

    Chen, Xiaodu; Li, Yuanyuan; Han, Xianhong; Zhang, Junbo

    2018-02-01

    Tensile tests have been widely used to determine basic mechanical properties of materials. However, the properties measured may be related to geometrical factors of the tested samples especially for high-strength steels; this makes the properties' definitions and comparisons difficult. In this study, a series of tensile tests of ultra-high-strength hot-stamped steel were performed; the geometric shapes and sizes as well as the cutting direction were modified. The results demonstrate that the hot-stamped parts were isotropic and the cutting direction had no effect; the measured strengths were practically unrelated to the specimen geometries, including both size and shape. The elongations were slightly related to sample sizes within the studied range but highly depended on the sample shape, represented by the coefficient K. Such phenomena were analyzed and discussed based on microstructural observations and fracture morphologies. Moreover, two widely used elongation conversion equations, the Oliver formula and Barba's law, were introduced to verify their applicability, and a new interpolating function was developed and compared.

  16. Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes

    Science.gov (United States)

    Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.

  17. Seed size, shape and vertical distribution in the soil : indicators of seed longevity

    NARCIS (Netherlands)

    Bekker, RM; Bakker, JP; Grandin, U; Kalamees, R; Milberg, P; Poschlod, P; Thompson, K; Willems, JH

    1998-01-01

    1. We investigated the vertical distribution of seeds in the soil, using data from nine studies in five European countries. We discovered significant correlations between seed shape and distribution in the soil. 2. The classification of the longevity of seeds of plant species has been improved by

  18. Assessing bed net damage: comparisons of three measurement methods for estimating the size, shape, and distribution of holes on bed nets.

    Science.gov (United States)

    Vanden Eng, Jodi L; Mathanga, Don P; Landman, Keren; Mwandama, Dyson; Minta, Anna A; Shah, Monica; Sutcliffe, James; Chisaka, Joseph; Lindblade, Kim A; Steinhardt, Laura

    2017-10-10

    Measuring the physical condition of long-lasting insecticidal nets (LLINs) under field conditions is of great importance for malaria control programmes to guide decisions on how frequently to replace LLINs. Current guidelines by the World Health Organization Pesticide Evaluation Scheme (WHOPES) propose a proportionate hole index (pHI) for assessing LLIN condition by counting the number of holes the size of a thumb, fist, head, and larger than a head. However, this method does not account for irregular hole shapes or exact hole sizes which could result in inaccurate decisions about when to replace LLINs. LLINs were collected during a 2013 health facility-based malaria case control study in Machinga District, Malawi. To evaluate the accuracy of the pHI, the physical condition of 277 LLINs was estimated by the WHOPES method and then compared with two more thorough measurement methods: image analysis of digital photographs of each LLIN side; and for 10 nets, ruler measurements of the length, width, and location of each hole. Total hole counts and areas per net were estimated by each method, and detailed results of hole shapes and composite pictures of hole locations were generated using image analysis. The WHOPES method and image analysis resulted in similar estimates of total hole counts, each with a median of 10 (inter-quartile range (IQR) 4-24 and 4-23, respectively; p = 0.004); however, estimated hole areas were significantly larger using the WHOPES method (median 162 cm 2 , IQR 28-793) than image analysis (median 13 cm 2 , IQR 3-101; p holes than image analysis did (p = 0.002) in 10 LLINs; however, total hole area was not significantly different (p = 0.16). Most holes were not circular but roughly 2-5 times longer in one direction. The lower quarter of LLIN sides was found to have the most holes. The WHOPES method overestimated total hole area, likely because holes are elongated rather than circular, suggesting further adjustments to the pHI formula may be

  19. The Italian primary school-size distribution and the city-size: a complex nexus

    Science.gov (United States)

    Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-06-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.

  20. [Prevalence and diagnosis of depression in Mexico].

    Science.gov (United States)

    Belló, Mariana; Puentes-Rosas, Esteban; Medina-Mora, María Elena; Lozano, Rafael

    2005-01-01

    To present the prevalence of depressive episodes, as well as the percentage of the population with medical diagnosis. The definition of depression was based on a schedule with DSM IV diagnostic criteria. Using data from the 2002-2003 National Assessment Performance Survey, the prevalence of depression was estimated at the national level, by sex, age, education, size of residence community, and state. The percentage of individuals with medically diagnosed depression and the percentage of those under treatment were also estimated. The national prevalence of depression was 4.5%: 5.8% in women and 2.5% in men. The prevalence of depression increased with age and decreased with higher education. Among males, the prevalence was higher in rural than urban communities. A large percentage of affected individuals have no medical diagnosis. Depression is a frequent disease in adults.A higher prevalence is associated with social vulnerability. The low percentage of diagnosis represents a challenge for mental health service planning and provision.

  1. Influence of Pre-Storage Irradiation on the Oxidative Stress Markers, Membrane Integrity, Size and Shape of the Cold Stored Red Blood Cells.

    Science.gov (United States)

    Antosik, Adam; Czubak, Kamila; Gajek, Arkadiusz; Marczak, Agnieszka; Glowacki, Rafal; Borowczyk, Kamila; Zbikowska, Halina Malgorzata

    2015-05-01

    To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving.

  2. Coevolving parasites and population size shape the evolution of mating behaviour

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2013-02-01

    Full Text Available Abstract Background Coevolution with parasites and population size are both expected to influence the evolution of mating rates. To gain insights into the interaction between these dual selective factors, we used populations from a coevolution experiment with the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. We maintained each experimental population at two different population sizes. We assayed the mating behaviour of both males and females from coevolved and paired non-coevolved control populations after 24 generations of coevolution with parasites. Results Males from large, coevolved populations (i.e. ancestors were exposed to parasites showed a reduced eagerness to mate compared to males from large, non-coevolved populations. But in small populations, coevolution did not lead to decreased male mating rates. Coevolved females from both large and small populations appeared to be more willing to accept mating than non-coevolved females. Conclusions This study provides unique, experimental insights into the combined roles of coevolving parasites and population size on the evolution of mating rate. Furthermore, we find that males and females respond differently to the same environmental conditions. Our results show that parasites can be key determinants of the sexual behaviour of their hosts.

  3. Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles.

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2018-01-01

    Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO 2 , N 2 O and CH 4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH 4 emissions while temporarily increasing N 2 O fluxes. Interestingly, N 2 O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO 2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO 2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions. © 2017 John

  4. Classification of obstacle shape for generating walking path of humanoid robot

    International Nuclear Information System (INIS)

    Park, Chan Soo; Kim, Do Ik

    2013-01-01

    To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cast. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load

  5. Classification of obstacle shape for generating walking path of humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Soo; Kim, Do Ik [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-02-15

    To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cast. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

  6. DNA nanotechnology: Bringing lipid bilayers into shape

    Science.gov (United States)

    Howorka, Stefan

    2017-07-01

    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research.

  7. Intraspecific variation in body size and shape in an Andean highland anole species, Anolis ventrimaculatus (Squamata: Dactyloidae

    Directory of Open Access Journals (Sweden)

    Martha L. Calderón-Espinosa

    2013-03-01

    Full Text Available Variation in body characteristics related to lizard locomotion has been poorly studied at the intraspecific level in Anolis species. Local adaptation due to habitat heterogeneity has been reported in some island species. However, studies of mainland species are particularly scarce and suggest different patterns: high variability among highland lizards and poorly differentiated populations in one Amazonian species. We characterized inter population variation of body size and shape in the highland Andean Anolis ventrimaculatus, an endemic species from Western Colombia. A total of 15 morphometric variables were measured in specimens from the reptile collection of the Instituto de Ciencias Naturales, Universidad Nacional, Colombia. The study included individuals from seven different highland localities. We found size and shape sexual dimorphism, both of which varied among localities. Patterns of variation in body proportions among populations were different in both males and females, suggesting that either sexual or natural selective factors are different in each locality and between sexes. Since this species exhibits a fragmented distribution in highlands, genetic divergence may also be a causal factor of the observed variation. Ecological, behavioral, additional morphological as well as phylogenetic data, may help to understand the evolutionary processes behind the geographic patterns found in this species.La diversificación fenotípica al interior de una especie en características de dimensiones corporales relacionadas con la locomoción de los lagartos, se ha estudiado poco en especies de Anolis. Los datos de algunas especies de isla revelan patrones distintos de variación geográfica y sugieren que la adaptación local, debida a la heterogeneidad del hábitat, ocurre a este nivel. Los estudios de especies de continente son particularmente escasos y sugieren patrones distintos: un lagarto altoandino altamente variable y poblaciones poco

  8. Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Directory of Open Access Journals (Sweden)

    Christine E Schmidt

    2010-12-01

    Full Text Available David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm or submicroscale (approximately 300 nm holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits

  9. Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids

    Science.gov (United States)

    Akman, Nurten; Özdoğan, Cem

    2018-04-01

    We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.

  10. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  11. Arrested of coalescence of emulsion droplets of arbitrary size

    Science.gov (United States)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  12. Body shape dissatisfaction is a ‘normative discontent’ in a young-adult Nigerian population: A study of prevalence and effects on health-related quality of life

    Directory of Open Access Journals (Sweden)

    Chukwunonso E.C.C. Ejike

    2015-12-01

    Full Text Available This study investigates the prevalence of weight misperception, weight preference, and body shape dissatisfaction (BSD among young-adult Nigerians and assesses the impact of these factors on population quality-of-life (QOL. Relevant anthropometric data were collected according to internationally accepted protocols. Weight perception, weight preference, and BSD were measured using Stunkard silhouettes, while QOL was determined by subjective self-reporting. The results show that 26.7% of the population (18.8% for males and 34.5% for females misperceived their weight. Among overweight participants, 56.6% (males and 38.3% (females thought they were thinner, while 11.5% (males and 43.3% (females thought they were heavier. Thin and obese males misperceived their weights more than their female counterparts. BSD was found in 62% of the population (52% for males and 71% for females and was highest among obese participants (91.9% and lowest among normal-weight participants (58.2%, irrespective of sex. In participants with BSD, QOL was worse in thin and normal-weight respondents who preferred to be heavier and in overweight respondents who preferred to be thinner. The high prevalence of weight misperception may lead to inappropriate weight loss habits, while BSD, a normative discontent in this population, negatively impacts subject QOL.

  13. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging

    Science.gov (United States)

    Kohan, Zohreh; Azmi, Reza

    2016-03-01

    There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.

  14. Role of nano-precipitation on the microstructure and shape memory characteristics of a new Ni{sub 50.3}Ti{sub 34.7}Zr{sub 15} shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Evirgen, A. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Karaman, I., E-mail: ikaraman@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Pons, J.; Santamarta, R. [Departament de Fisica, Universitat de les Illes Balears, E07122 Palma de Mallorca (Spain); Noebe, R.D. [Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH 44135 (United States)

    2016-02-08

    The microstructure and shape memory characteristics of the Ni{sub 50.3}Ti{sub 34.7}Zr{sub 15} shape memory alloy were investigated as a function of aging heat treatments that result in nanometer to submicron size precipitates. Microstructure–property relationships were developed by characterizing samples using transmission electron microscopy, differential scanning calorimetry, and load-biased thermal cycling experiments. The precipitate size was found to strongly influence the martensitic transformation–precipitate interactions and ultimately the shape memory characteristics of the alloy. Aging treatments resulting in relatively fine precipitates, which are not an obstacle to twin boundaries and easily bypassed by martensite variants, exhibited higher transformation strain, lower transformation thermal hysteresis, and better thermal and dimensional stability compared to samples with relatively large precipitates. When precipitate dimensions approached several hundred nanometers in size they acted as obstacles to martensite growth, limiting martensite variant and twin size resulting in reduced functional and structural properties. Aging heat treatments were also shown to result in a wide range of transformation temperatures, increasing them above 100 °C in some cases, and affected the stress dependence of the transformation hysteresis and the stress versus transformation temperature relationships for the Ni{sub 50.3}Ti{sub 34.7}Zr{sub 15} alloy.

  15. Role of nano-precipitation on the microstructure and shape memory characteristics of a new Ni_5_0_._3Ti_3_4_._7Zr_1_5 shape memory alloy

    International Nuclear Information System (INIS)

    Evirgen, A.; Karaman, I.; Pons, J.; Santamarta, R.; Noebe, R.D.

    2016-01-01

    The microstructure and shape memory characteristics of the Ni_5_0_._3Ti_3_4_._7Zr_1_5 shape memory alloy were investigated as a function of aging heat treatments that result in nanometer to submicron size precipitates. Microstructure–property relationships were developed by characterizing samples using transmission electron microscopy, differential scanning calorimetry, and load-biased thermal cycling experiments. The precipitate size was found to strongly influence the martensitic transformation–precipitate interactions and ultimately the shape memory characteristics of the alloy. Aging treatments resulting in relatively fine precipitates, which are not an obstacle to twin boundaries and easily bypassed by martensite variants, exhibited higher transformation strain, lower transformation thermal hysteresis, and better thermal and dimensional stability compared to samples with relatively large precipitates. When precipitate dimensions approached several hundred nanometers in size they acted as obstacles to martensite growth, limiting martensite variant and twin size resulting in reduced functional and structural properties. Aging heat treatments were also shown to result in a wide range of transformation temperatures, increasing them above 100 °C in some cases, and affected the stress dependence of the transformation hysteresis and the stress versus transformation temperature relationships for the Ni_5_0_._3Ti_3_4_._7Zr_1_5 alloy.

  16. Mapping Historic Hookworm Disease Prevalence in the Southern Us, Comparing Percent Prevalence with Percent Soil Drainage Type Using GIS

    Directory of Open Access Journals (Sweden)

    Alice L. Anderson

    2011-01-01

    Full Text Available Mapping of Historic US Hookworm prevalence data from the Rockefeller Sanitary Commission (early 1900s using current GIS (Geographic Information System software (county shape files illustrates the extremely high prevalence of hookworm disease (Uncariasis in the Southeastern US at the time. Some counties in 7 states recorded 50% to 100% of the population with positive screens for hookworm in a monumental surveillance and treatment campaign. Narrative descriptions mentioned higher prevalence in “sand districts” vs. “clay districts”. In order to validate this description for historic data, further GIS databases (STATSGO were used to classify and quantify the % acreage in Eastern North Carolina falling into moderately- to well-drained soil types. These were then mapped and compared with the historic prevalence data. Most severely infested counties had at least 50% moderately to well-drained soil. Further analysis on soil data for other states with “coastal plains” could provide more background information on Environmental conditions for hookworm prevalence and distribution in US history. “Since history has no properly scientific value, its only purpose is educative. And if historians neglect to educate the public, if they fail to interest it intelligently in the past, then all their historical learning is valueless except in so far as it educates themselves”. Trevelyan, (1922.

  17. Optomechanical tests of hydrated biological tissues subjected to laser shaping

    International Nuclear Information System (INIS)

    Omel'chenko, A I; Sobol', E N

    2008-01-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light. (laser biology)

  18. Development of a multi-lane X-ray mirror providing variable beam sizes

    Energy Technology Data Exchange (ETDEWEB)

    Laundy, D., E-mail: david.laundy@diamond.ac.uk; Sawhney, K.; Nistea, I.; Alcock, S. G.; Pape, I.; Sutter, J.; Alianelli, L.; Evans, G. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    Grazing incidence mirrors are used on most X-ray synchrotron beamlines to focus, collimate or suppress harmonics. Increasingly beamline users are demanding variable beam shapes and sizes at the sample position. We have now developed a new concept to rapidly vary the beam size and shape of a focused X-ray beam. The surface of an elliptically figured mirror is divided into a number of laterally separated lanes, each of which is given an additional longitudinal height profile calculated to shape the X-ray beam to a top-hat profile in the focal plane. We have now fabricated two prototype mirrors and present the results of metrology tests and measurements made with one of the mirrors focusing the X-rays on a synchrotron beamline. We envisage that such mirrors could be widely applied to rapid beam-size switching on many synchrotron beamlines.

  19. [Prevalence and predictors of psychoactive substance use among men in prisons].

    Science.gov (United States)

    Caravaca-Sánchez, Francisco; Falcón Romero, María; Luna, Aurelio

    2015-01-01

    The use of psychoactive substances among the prison population is an important public health issue because of its magnitude and health consequences. The aim of this study was to estimate the prevalence of psychoactive substance use among the prison population and to analyse its association with sociodemographic and penitentiary factors, particularly the size of the prison. Data were gathered using a self-administered questionnaire among 2,484 random male inmates in eight prisons of different sizes in Spain. The prevalence of psychoactive substance use with 95% confidence intervals (95% CI) during the last 6 months in prison were estimated. Prevalence ratios were used to estimate the association between psychoactive substance use and sociodemographic and penitentiary characteristics. The prevalence of psychoactive substance use in the past 6 months in prison was 59.9% (95% CI: 57.9-62.0). Notable among the sociodemographic variables associated with substance use were drug consumption prior to imprisonment (6.90; 95% CI: 5.51-8.65) and recidivism in prison (2.41; 95% CI: 2.04-2.85). The largest prisons showed a higher frequency of drug use than other prisons. A high prevalence of psychoactive substance use was found in prisons and significant differences were found according to delinquent profile and the size of the prison. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  20. An Investigation on Flame Shape and Size for a High-Pressure Turbulent Non-Premixed Swirl Combustion

    Directory of Open Access Journals (Sweden)

    Zhongya Xi

    2018-04-01

    Full Text Available Flame shape and size for a high-pressure turbulent non-premixed swirl combustion were experimentally investigated over a wide range of varying parameters including fuel mass flow rate, combustor pressure, primary-air mass flow rate, and nozzle exit velocity. A CFD simulation was conducted to predict the flame profile. Meanwhile, a theoretical calculation was also performed to estimate flame length. It was observed that flame length increased linearly with increasing fuel mass flow rate but decreased with the increment of combustor pressure in the power function. The flame diminished at a larger primary-air mass flow rate but remained unaffected by the increasing nozzle exit velocity. Considering the global effect of all parameters at a particular pressure, the flame length generally decreased as the primary-air to fuel ratio increased. This was attributed to the reduced air entrainment required to dilute the fuel to stoichiometric proportions. The CFD simulation offered a good prediction of the variation trends of flame length, although some deviations from experimental values were observed. The theoretical calculation estimated the trends of flame length variation particularly well. Nevertheless the difference between the theoretical and experimental results was found to be due to the swirl influence. Hence, a swirl factor was proposed to be added to the original equation for swirl flames.

  1. Class size versus class composition

    DEFF Research Database (Denmark)

    Jones, Sam

    Raising schooling quality in low-income countries is a pressing challenge. Substantial research has considered the impact of cutting class sizes on skills acquisition. Considerably less attention has been given to the extent to which peer effects, which refer to class composition, also may affect...... bias from omitted variables, the preferred IV results indicate considerable negative effects due to larger class sizes and larger numbers of overage-for-grade peers. The latter, driven by the highly prevalent practices of grade repetition and academic redshirting, should be considered an important...

  2. Deformation of HyFlex CM instruments and their shape recovery following heat sterilization.

    Science.gov (United States)

    Alfoqom Alazemi, M; Bryant, S T; Dummer, P M H

    2015-06-01

    To assess the deformation of HyFlex CM instruments (Coltene Whaledent) when used in two instrumentation sequences and to assess their shape recovery after heat sterilization. Simulated root canals with four different shapes were prepared with HyFlex CM instruments using a single-length technique (n = 40) or a crown down technique (n = 40). Pre-preparation, post-preparation and post-sterilization standardized images of each instrument were recorded. Assessment of instrument deformation and their subsequent shape recovery was carried out visually and by comparing the digitised images. Data analysis was carried out using chi-square tests. None of the 400 instruments fractured. Visual assessment of instruments post-preparation revealed that 30.5% had unwound and 0.5% had reverse winding. Following sterilization 8.5% remained unwound and 0.5% remained with reverse winding. When assessing instrument shape using digital images, 35.25% were unwound post-preparation, which reduced to 11% post-sterilization. Nine size 25, 0.08 instruments deformed, but none fully regained their original shape after sterilization; however, other sizes of deformed instruments did regain their shape (P recovery. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Dental Number Anomalies and Their Prevalence According To Gender and Jaw in School Children 7 To 14 Years.

    Science.gov (United States)

    Sejdini, Milaim; Çerkezi, Sabetim

    2018-05-20

    This study aimed to find the prevalence of Hypodontia and Hyperdontia in different ethnicities in patients from 7 to 14 years old. A group of 520 children were included aged 7 to 14 years, only the children who went to primary schools. Controls were performed by professional people to preserve the criteria of orthodontic abnormalities evaluation. The data were recorded in the individual card specially formulated for this research and all the patients suspected for hypodontia and hyperdontia the orthopantomography for confirmation was made. The data were analysed using descriptive statistical analysis using χ 2 test for the significant difference for p ˂ 0.05 and Fisher test for p counting the patients with missing third molars was found in 18 patients researched or 3.46%. The most commonly missing teeth were the second lower premolars, the second upper premolars, second upper lateral incisors followed by the lower incisors. Hyperdontia not including the third molars was found in 4 cases of the participants or 0.76% from which the most frequent atypical tooth mesiodens and one case of bilateral hypodontia of a lateral upper incisor with typical shape and size. But there were no significant differences when tested between genders and jaws. The prevalence we found is similar to the prevalence in the region. Our findings indicate that there is a difference between the genders in the prevalence of hypodontia, but without statistical significance, while for hyperdontia we can't see such a difference between the sexes.

  4. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    Science.gov (United States)

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.

  5. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    Science.gov (United States)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  6. Weber's Illusion and Body Shape: Anisotropy of Tactile Size Perception on the Hand

    Science.gov (United States)

    Longo, Matthew R.; Haggard, Patrick

    2011-01-01

    The perceived distance between touches on a single skin surface is larger on regions of high tactile sensitivity than those with lower acuity, an effect known as "Weber's illusion". This illusion suggests that tactile size perception involves a representation of the perceived size of body parts preserving characteristics of the somatosensory…

  7. Computer vision-based evaluation of pre- and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress.

    Science.gov (United States)

    Misimi, E; Erikson, U; Digre, H; Skavhaug, A; Mathiassen, J R

    2008-03-01

    The present study describes the possibilities for using computer vision-based methods for the detection and monitoring of transient 2D and 3D changes in the geometry of a given product. The rigor contractions of unstressed and stressed fillets of Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) were used as a model system. Gradual changes in fillet shape and size (area, length, width, and roundness) were recorded for 7 and 3 d, respectively. Also, changes in fillet area and height (cross-section profiles) were tracked using a laser beam and a 3D digital camera. Another goal was to compare rigor developments of the 2 species of farmed fish, and whether perimortem stress affected the appearance of the fillets. Some significant changes in fillet size and shape were found (length, width, area, roundness, height) between unstressed and stressed fish during the course of rigor mortis as well as after ice storage (postrigor). However, the observed irreversible stress-related changes were small and would hardly mean anything for postrigor fish processors or consumers. The cod were less stressed (as defined by muscle biochemistry) than the salmon after the 2 species had been subjected to similar stress bouts. Consequently, the difference between the rigor courses of unstressed and stressed fish was more extreme in the case of salmon. However, the maximal whole fish rigor strength was judged to be about the same for both species. Moreover, the reductions in fillet area and length, as well as the increases in width, were basically of similar magnitude for both species. In fact, the increases in fillet roundness and cross-section height were larger for the cod. We conclude that the computer vision method can be used effectively for automated monitoring of changes in 2D and 3D shape and size of fish fillets during rigor mortis and ice storage. In addition, it can be used for grading of fillets according to uniformity in size and shape, as well as measurement of

  8. Size structures sensory hierarchy in ocean life

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Wadhwa, Navish; Jacobsen, Nis Sand

    2015-01-01

    Life in the ocean is shaped by the trade-off between a need to encounter other organisms for feeding or mating, and to avoid encounters with predators. Avoiding or achieving encounters necessitates an efficient means of collecting the maximum possible information from the surroundings through...... predict the body size limits for various sensory modes, which align very well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic...

  9. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  10. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  11. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  12. Ecogeographical Variation in Skull Shape of South-American Canids: Abiotic or Biotic Processes?

    Science.gov (United States)

    de Moura Bubadué, Jamile; Cáceres, Nilton; Dos Santos Carvalho, Renan; Meloro, Carlo

    Species morphological changes can be mutually influenced by environmental or biotic factors, such as competition. South American canids represent a quite recent radiation of taxa that evolved forms very disparate in phenotype, ecology and behaviour. Today, in the central part of South America there is one dominant large species (the maned wolf, Chrysocyon brachyurus ) that directly influence sympatric smaller taxa via interspecific killing. Further south, three species of similar sized foxes ( Lycalopex spp.) share the same habitats. Such unique combination of taxa and geographic distribution makes South American dogs an ideal group to test for the simultaneous impact of climate and competition on phenotypic variation. Using geometric morphometrics, we quantified skull size and shape of 431 specimens belonging to the eight extant South American canid species: Atelocynus microtis , Cerdocyon thous , Ch. brachyurus , Lycalopex culpaeus , L. griseus , L. gymnocercus , L. vetulus and Speothos venaticus . South American canids are significantly different in both skull size and shape. The hypercarnivorous bush dog is mostly distinct in shape from all the other taxa while a degree of overlap in shape-but not size-occurs between species of the genus Lycalopex . Both climate and competition impacts interspecific morphological variation. We identified climatic adaptations as the main driving force of diversification for the South American canids. Competition has a lower degree of impact on their skull morphology although it might have played a role in the past, when canid community was richer in morphotypes.

  13. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation

    Science.gov (United States)

    Pang, Yan; Wang, Xiang; Liu, Zhaomiao

    2018-03-01

    Droplet generation in a T-shape microchannel, with a main channel width of 50 μm , side channel width of 25 μm, and height of 50 μm, is simulated to study the effects of the forced fluctuation of the bottom wall. The periodic fluctuations of the bottom wall are applied on the near junction part of the main channel in the T-shape microchannel. Effects of bottom wall's shape, fluctuation periods, and amplitudes on the droplet generation are covered in the research of this protocol. In the simulation, the average size is affected a little by the fluctuations, but significantly by the fixed shape of the deformed bottom wall, while the droplet size range is expanded by the fluctuations under most of the conditions. Droplet sizes are distributed in a periodic pattern with small amplitude along the relative time when the fluctuation is forced on the bottom wall near the T-junction, while the droplet emerging frequency is not varied by the fluctuation. The droplet velocity is varied by the bottom wall motion, especially under the shorter period and the larger amplitude. When the fluctuation period is similar to the droplet emerging period, the droplet size is as stable as the non-fluctuation case after a development stage at the beginning of flow, while the droplet velocity is varied by the moving wall with the scope up to 80% of the average velocity under the conditions of this investigation.

  14. Growing axons analysis by using Granulometric Size Distribution

    International Nuclear Information System (INIS)

    Gonzalez, Mariela A; Ballarin, Virginia L; Rapacioli, Melina; CelIn, A R; Sanchez, V; Flores, V

    2011-01-01

    Neurite growth (neuritogenesis) in vitro is a common methodology in the field of developmental neurobiology. Morphological analyses of growing neurites are usually difficult because their thinness and low contrast usually prevent to observe clearly their shape, number, length and spatial orientation. This paper presents the use of the granulometric size distribution in order to automatically obtain information about the shape, size and spatial orientation of growing axons in tissue cultures. The results here presented show that the granulometric size distribution results in a very useful morphological tool since it allows the automatic detection of growing axons and the precise characterization of a relevant parameter indicative of the axonal growth spatial orientation such as the quantification of the angle of deviation of the growing direction. The developed algorithms automatically quantify this orientation by facilitating the analysis of these images, which is important given the large number of images that need to be processed for this type of study.

  15. Are range-size distributions consistent with species-level heritability?

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Gotelli, Nicholas; Rahbek, Carsten

    2012-01-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has...... been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output...

  16. SizeChina : A 3D Anthropometric Survey of the Chinese Head

    NARCIS (Netherlands)

    Ball, R.M.

    2011-01-01

    Problem The design of consumer products that are worn on the head relies on the availability of accurate anthropometric information describing the shape and size of the human head and face. Historical anthropometric studies with univariate data have documented the existence of shape differences

  17. Effects of climate on size structure and functioning of aquatic food webs

    NARCIS (Netherlands)

    Lacerot, G.

    2010-01-01

    In aquatic food webs, the role of body size is notoriously strong. It is also well known that temperature has an effect on body size. For instance, Bergmann’s rule states that body size increases from warm to cold climates. This thesis addresses the question how climate shapes the size structure of

  18. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  19. Audiovisual correspondence between musical timbre and visual shapes.

    Directory of Open Access Journals (Sweden)

    Mohammad eAdeli

    2014-05-01

    Full Text Available This article investigates the cross-modal correspondences between musical timbre and shapes. Previously, such features as pitch, loudness, light intensity, visual size, and color characteristics have mostly been used in studies of audio-visual correspondences. Moreover, in most studies, simple stimuli e.g. simple tones have been utilized. In this experiment, 23 musical sounds varying in fundamental frequency and timbre but fixed in loudness were used. Each sound was presented once against colored shapes and once against grayscale shapes. Subjects had to select the visual equivalent of a given sound i.e. its shape, color (or grayscale and vertical position. This scenario permitted studying the associations between normalized timbre and visual shapes as well as some of the previous findings for more complex stimuli. 119 subjects (31 females and 88 males participated in the online experiment. Subjects included 36 claimed professional musicians, 47 claimed amateur musicians and 36 claimed non-musicians. 31 subjects have also claimed to have synesthesia-like experiences. A strong association between timbre of envelope normalized sounds and visual shapes was observed. Subjects have strongly associated soft timbres with blue, green or light gray rounded shapes, harsh timbres with red, yellow or dark gray sharp angular shapes and timbres having elements of softness and harshness together with a mixture of the two previous shapes. Color or grayscale had no effect on timbre-shape associations. Fundamental frequency was not associated with height, grayscale or color. The significant correspondence between timbre and shape revealed by the present work allows designing substitution systems which might help the blind to perceive shapes through timbre.

  20. Size Matters: Penis Size and Sexual Position in Gay Porn Profiles.

    Science.gov (United States)

    Brennan, Joseph

    2018-01-01

    This article combines qualitative and quantitative textual approaches to the representation of penis size and sexual position of performers in 10 of the most visited gay pornography Web sites currently in operation. Specifically, in excess of 6,900 performer profiles sourced from 10 commercial Web sites are analyzed. Textual analysis of the profile descriptions is combined with a quantitative representation of disclosed penis size and sexual position, which is presented visually by two figures. The figures confirm that these sites generally market themselves as featuring penises that are extraordinarily large and find a sample-wide correlation between smaller penis sizes (5-6.5 inches) and receptive sexual acts (bottoming), and larger (8.5-13 inches) with penetrative acts (topping). These observations are supported through the qualitative textual readings of how the performers are described on these popular sites, revealing the narratives and marketing strategies that shape the construction of popular porn brands, performers, and profitable fantasies.

  1. Organisation and shape of micellar solutions of block copolymers

    Science.gov (United States)

    Gaspard, J. P.; Creutz, S.; Bouchat, Ph.; Jérôme, R.; Cohen Stuart, M.

    1997-02-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The micellar core size is in agreement with the theoretical evaluation for copolymers with a short hydrophobic sequence. In contrast, in case of larger hydrophobic blocks, the measured size is incompatible with a star-like model. Various hypotheses are presented for the latter.

  2. Evolution of extreme body size disparity in monitor lizards (Varanus).

    Science.gov (United States)

    Collar, David C; Schulte, James A; Losos, Jonathan B

    2011-09-01

    Many features of species' biology, including life history, physiology, morphology, and ecology are tightly linked to body size. Investigation into the causes of size divergence is therefore critical to understanding the factors shaping phenotypic diversity within clades. In this study, we examined size evolution in monitor lizards (Varanus), a clade that includes the largest extant lizard species, the Komodo dragon (V. komodoensis), as well as diminutive species that are nearly four orders of magnitude smaller in adult body mass. We demonstrate that the remarkable body size disparity of this clade is a consequence of different selective demands imposed by three major habitat use patterns-arboreality, terrestriality, and rock-dwelling. We reconstructed phylogenetic relationships and ancestral habitat use and applied model selection to determine that the best-fitting evolutionary models for species' adult size are those that infer oppositely directed adaptive evolution associated with terrestriality and rock-dwelling, with terrestrial lineages evolving extremely large size and rock-dwellers becoming very small. We also show that habitat use affects the evolution of several ecologically important morphological traits independently of body size divergence. These results suggest that habitat use exerts a strong, multidimensional influence on the evolution of morphological size and shape disparity in monitor lizards. © 2011 The Author(s).

  3. The zebrafish world of colors and shapes: preference and discrimination.

    Science.gov (United States)

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  4. Leaf shape responds to temperature but not CO2 in Acer rubrum.

    Science.gov (United States)

    Royer, Dana L

    2012-01-01

    The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO(2) concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO(2) has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO(2) conditions. The CO(2) treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate.

  5. Analytical model for shape anisotropy in thin-film nanostructured arrays: Interaction effects

    International Nuclear Information System (INIS)

    Alvarez-Sanchez, R.; Costa-Kraemer, J.L.; Briones, F.

    2006-01-01

    When reducing the size of array elements and interelement separations to the nanoscale, long-range magnetostatic interactions become important. A methodology that extends the study of conventional single-element magnetostatics is presented, adding the effect of stacking nanoelements into close proximity in arrays and the consequent interaction effects. This would be very time consuming to model by micromagnetic simulations that are also very vulnerable to artifacts due to cell or boundary condition selection. The proposed method considers an analytical expression valid for short interelement separations and not very costly to evaluate by computational means. This approach allows the quantitative study of shape anisotropy in non-square-shaped arrays. It is also shown how it can be used to find anisotropy compensation conditions, where an anisotropy due to a magnetic element shape can be compensated by the shape anisotropy due to the array. The obtained results can be used to establish a criterion for the minimum number of elements to be considered for a micromagnetic simulation of an array to be realistic depending on the element size and separation

  6. Shape-forming and densification of ceramic superconductors

    International Nuclear Information System (INIS)

    Prakash, Om; Thomas, C.A.; Magadum, A.P.; Anklekar, R.M.; Khosla, N.K.; Kumar, Sunil; Chaudhuri, B.; Ramesh, M.; Rao, B.T.; Rama Mohan, T.R.

    1991-01-01

    Processing studies on varied shape-forming and densification of bulk ceramic superconductor, YBa 2 Cu 3 Osub(7-δ), are reported in this paper. Polyvinyl butyral-polyethylene glycol-trichloroethylene has been found to be the best binder-plasticizer-solvent system in plastic shape-forming. The effect of initial particle morphology on final densification has been the most sensitive single parameter as compared to compaction pressure and final sintering durations at ∼930degC. 1-2-3 powders of mean particle size ∼1.94μm have yielded sintered densities ∼92%T.D. albeit with lower oxygen intake Osub(6.7). (author). 8 refs., 8 figs

  7. Prevalence of body dysmorphic disorder on a psychiatric inpatient ward and the value of a screening question.

    Science.gov (United States)

    Veale, David; Akyüz, Elvan U; Hodsoll, John

    2015-12-15

    The aim of this study was to estimate the prevalence of body dysmorphic disorder (BDD) on an inpatient ward in the UK with a larger sample than previously studied and to investigate the value of a simple screening question during an assessment interview. Four hundred and thirty two consecutive admissions were screened for BDD on an adult psychiatric ward over a period of 13 months. Those who screened positive had a structured diagnostic interview for BDD. The prevalence of BDD was estimated to be 5.8% (C.I. 3.6-8.1%). Our screening question had a slightly low specificity (76.6%) for detecting BDD. The strength of this study was a larger sample size and narrower confidence interval than previous studies. The study adds to previous observations that BDD is poorly identified in psychiatric inpatients. BDD was identified predominantly in those presenting with depression, substance misuse or an anxiety disorder. The screening question could be improved by excluding those with weight or shape concerns. Missing the diagnosis is likely to lead to inappropriate treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixing; Yang, LV [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Xu, Kele [College of Electronical Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Zhu, Li [Institute of Electrostatic and Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang, Hebei (China)

    2016-06-15

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape - to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.

  9. The skeletal maturation status estimated by statistical shape analysis: axial images of Japanese cervical vertebra.

    Science.gov (United States)

    Shin, S M; Kim, Y-I; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B

    2015-01-01

    To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. The sample included 24 female and 19 male patients with hand-wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index.

  10. Influence of Au Nanoparticle Shape on Au@Cu2O Heterostructures

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2015-01-01

    Full Text Available Synthesis of metal-semiconductor heterostructures may allow the combination of function of the corresponding components and/or the enhanced performance resulting from the interactions between all the components. In this paper, Au@Cu2O core-shell heterostructures are prepared by a seed-growth method, using different-shaped Au nanocrystals as the seeds such as nanorods, octahedra, decahedra, dots, and nanocubes. The results revealed that the final structure of Au@Cu2O was greatly influenced by the shape of the seeds used. Exposure of Cu2O{111} and Cu2O{001} favored when the overgrowth happened on Au{111} and Au{001} surface, respectively. The size of the product can also be tuned by the amount of the seeds. The results reported here provide a thinking clue to modulate the shape and size of core-shell nanocrystals, which is useful in developing new materials with desired performance.

  11. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong

    2009-12-18

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face-centered cubic metals are more stable when the temperature is close to the melting point.

  12. Release of carbon nanoparticles of different size and shape from nanocomposite poly(lactic) acid film into food simulants.

    Science.gov (United States)

    Velichkova, Hristiana; Kotsilkov, Stanislav; Ivanov, Evgeni; Kotsilkova, Rumiana; Gyoshev, Stanislav; Stoimenov, Nikolay; Vitanov, Nikolay K

    2017-06-01

    Poly(lactic) acid (PLA) film with 2 wt% mixed carbon nanofillers of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) in a weight ratio of 1:1 with impurities of fullerene and carbon black (CB) was produced by layer-to-layer deposition and hot pressing. The release of carbon nanoparticles from the film was studied at varying time-temperature conditions and simulants. Migrants in simulant solvents were examined with laser diffraction analysis and transmission electron microscopy (TEM). Film integrity and the presence of migrants on the film surfaces were visualised by scanning electron microscopy (SEM). The partial dissolution of PLA polymer in the solvents was confirmed by swelling tests and differential scanning calorimetry (DSC). Nanoparticle migrants were not detected in the simulants (at the LOD 0.020 μm of the laser diffraction analysis) after migration testing at 40°C for 10 days. However, high-temperature migration testing at 90°C for 4 h provoked a release of GNPs from the film into ethanol, acetic acid and oil-based food simulants. Short carbon nanotubes were observed rarely to release in the most aggressive acetic acid solvent. Obviously, the enhanced molecular mobility at temperatures above the glass transition and partial dissolution of PLA polymer by the food simulant facilitate the diffusion processes. Moreover, shape, size and concentration of nanoparticles play a significant role. Flexible naked GNPs (lateral size 100-1000 nm) easily migrate when the polymer molecules exhibit enhanced mobility, while fibrous MWCNTs (> 1 μm length) formed entangled networks on the film surfaces as the PLA polymer is partly dissolved, preventing their release into food simulants. The impurities of fullerenes and CB (5-30 nm) were of minor concentration in the polymer, therefore their migration is low or undetectable. The total amount of released migrants is below overall migration limits.

  13. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    Science.gov (United States)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  14. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    OpenAIRE

    Ovidiu Hâruţa

    2011-01-01

    Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression ...

  15. Rapid de novo shape encoding: a challenge to connectionist modeling

    OpenAIRE

    Greene, Ernest

    2018-01-01

    Neural network (connectionist) models are designed to encode image features and provide the building blocks for object and shape recognition. These models generally call for: a) initial diffuse connections from one neuron population to another, and b) training to bring about a functional change in those connections so that one or more high-tier neurons will selectively respond to a specific shape stimulus. Advanced models provide for translation, size, and rotation invariance. The present dis...

  16. Size of quorum sensing communities

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Sams, Thomas

    2014-01-01

    Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell–cell regulatory system termed quorum sensing. In the generic....... For a disk-shaped biofilm the geometric factor is the horizontal dimension multiplied by the height, and the square of the height of the biofilm if there is significant flow above the biofilm. A remarkably simple factorized expression for the size is obtained, which separates the all-or-none ignition caused...

  17. Sexual differences in size and shape of the Mosor rock lizard [Dinarolacerta mosorensis (Kolombatović, 1886] (squamata: lacertidae: A case study of the Lovćen mountain population (Montenegro

    Directory of Open Access Journals (Sweden)

    Ljubisavljević Katarina

    2008-01-01

    Full Text Available Sexual differences in size and shape of the Mosor rock lizard, Dinarolacerta mosorensis (Kolombatović, 1886, from Lovćen Mountain (Montenegro were examined on the basis of the intersex variation pattern of nine morphometric, eight pholidotic, and four qualitative traits. Sexual dimorphism was apparent for all morphometric characters except snout-vent length, while scalation and dorsal pattern exhibited small differences between sexes. The value of the sexual size difference (SSD index based on snout-vent length was 1.028. The sex-specific allometric slopes for head dimensions and interlimb distance significantly diverged. Head dimensions, especially head height, showed strong positive allometry in males, while interlimb distance was the only character which showed positive allometry in females. Generally, males had significantly greater body size than females. This was true of all body measurements except interlimb distance. The influence of sexual and natural selection on the examined traits is discussed.

  18. On the intraspecific variation in morphometry and shape of sagittal otoliths of common sardine, Strangomera bentincki, off central-southern Chile

    Directory of Open Access Journals (Sweden)

    Sandra Curin-Osorio

    2012-11-01

    Full Text Available Size and shape of fish otoliths are species-specific, but some species also display intraspecific variations. The common sardine, Strangomera bentincki, is a small pelagic fish inhabiting a seasonal upwelling ecosystem off central-southern Chile, having two discrete spawning sites along its latitudinal distribution. Otoliths of specimens were collected from commercial catches in Talcahuano and Corral, representing the central and south spawning zones. On the basis of otolith images, size-based shape descriptors were used to detect ontogenetic variation, and morphometric variables (length, breadth, area, perimeter and weight were used to detect geographical differences in size and shape of otoliths. Outline analysis was studied on the basis of elliptic Fourier descriptors through multivariate statistical procedures. Size-based shape descriptors showed that otolith shape starts to be stable for fish larger than 12 cm total length, which keep an elliptical form. Morphometric variables for fish larger than 12 cm revealed intraspecific variation between central and south zones, which were associated with otolith weight and breadth. Outline analysis did not reveal significant spatial differences, but extreme intraspecific variation was due to the antirostrum, excisure, and posterior part of otoliths. Intraspecific variation in otolith size could be linked to differences in each spawning habitat and related to geographical origin, whose differences are not clearly identified. It is concluded that intraspecific variability in morphometric variables of sardine otoliths revealed geographic differences in size that are not attributable to allometric effects, and that otolith shape was similar between specimens from different geographic origin.

  19. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  20. Recent advances in understanding how rod-like bacteria stably maintain their cell shapes [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sven van Teeffelen

    2018-02-01

    Full Text Available Cell shape and cell volume are important for many bacterial functions. In recent years, we have seen a range of experimental and theoretical work that led to a better understanding of the determinants of cell shape and size. The roles of different molecular machineries for cell-wall expansion have been detailed and partially redefined, mechanical forces have been shown to influence cell shape, and new connections between metabolism and cell shape have been proposed. Yet the fundamental determinants of the different cellular dimensions remain to be identified. Here, we highlight some of the recent developments and focus on the determinants of rod-like cell shape and size in the well-studied model organisms Escherichia coli and Bacillus subtilis.

  1. Tamanho e forma de parcela em experimentos com morangueiro cultivado em solo ou em hidroponia Plot size and shape in trials using strawberry cultivated with soil or using hydroponics

    Directory of Open Access Journals (Sweden)

    Carine Cocco

    2009-07-01

    Full Text Available O objetivo deste trabalho foi estimar a forma e o tamanho de parcela ótimos para ensaios com a cultura do morangueiro (Fragaria x ananassa em cultivo hidropônico e em solo. Foram conduzidos dois, experimentos, um em cultivo convencional no solo, em túneis baixos, e outro em cultivo hidropônico. Em cada experimento, avaliaram-se os efeitos do tamanho e do formato das parcelas sobre a precisão experimental. Cada planta foi considerada uma unidade básica, e o número de unidades básicas por parcela variou de 1 (48 parcelas a 24 (duas parcelas. Foram ajustadas funções para a determinação do coeficiente de variação entre as parcelas e para a determinação da variância por unidade básica entre as parcelas. O cultivo no solo apresentou maior variabilidade experimental que o cultivo hidropônico. O aumento no número de plantas por parcela causou redução acentuada na variabilidade experimental, especialmente quando se usou o formato de parcela retangular. O tamanho ótimo estimado das parcelas é de dez plantas, no cultivo com solo, e de seis plantas, no cultivo hidropônico.The objective of this work was to estimate the optimal size and shape of plots to be used in experiments of strawberry (Fragaria x ananassa cultivation in soil or using hydroponics. Two experiments were conducted, one in soil in low tunnels, and another in a hydroponic system. In each experiment, the effects of plot sizes and shapes on experimental accuracy were evaluated. Each plant was considered an experimental basic unit, and the number of plants per plot varied from 1 (48 plots to 24 (two plots. Functions were adjusted to determine the coefficient of variation among plots and the variance per basic unit between plots. Plants grown in soil had higher experimental variability than the plants grown in hydroponics. Increasing the number of plants per plot caused strong reduction in the experimental variability, especially when a rectangular plot shape was used

  2. Woven type smart soft composite beam with in-plane shape retention

    International Nuclear Information System (INIS)

    Wu, Renzhe; Han, Min-Woo; Lee, Gil-Yong; Ahn, Sung-Hoon

    2013-01-01

    Shape memory alloy (SMA) wire embedded composites (SMAECs) are widely used as morphing structures in small-size and high-output systems. However, conventional SMAECs cannot keep deformed shapes without additional energy. In this paper, a new kind of smart structure named the woven type smart soft composite (SSC) beam is introduced, which is not only capable of morphing, but also maintaining its deformed shape without additional energy. The woven type SSC beam consists of two parts: woven wires and matrix. The selected woven wires are nitinol (Ni–Ti) SMA wires and glass fibers, while the matrix part is polydimethylsiloxane (PDMS). In order to evaluate the performance of the woven type SSC beam in areas such as in-plane deformation, blocking force and repeatability, a beam-shape specimen is prepared of size 100 mm (length) × 8 mm (width) ×3 mm (thickness). The fabricated SSC beam achieved 21 mm deformation and 16 mm shape retention. Blocking force was measured using a dynamometer, and was about 60 mN. In the repeatability test, it recovered almost the same position when its cooling time was 90 s more. Consequently, the woven type SSC beam can be applied to bio-mimicking, soft morphing actuators, consuming less energy than traditional SMAECs. (paper)

  3. Superlattices assembled through shape-induced directional binding

    Science.gov (United States)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  4. Efficacy of extra corporal shock wave lithotripsy (ESWL) in upper and lower urinary tract calculi with reference to stone site, size shape and radio density according to age rule (abstract)

    International Nuclear Information System (INIS)

    Khan, S.A.; Akhlaq, M.; Ahmed, N.

    1998-01-01

    50 patients having renal ureteral and vesical stones 5-20 mm and having age range 1 years with mean of 30.5 were studied. 70% (35/50) were male and 30% (15/50) female with 2.33:1 ratio 1,1,2,32,10,4 patients were of 0-2, 2-12, 12-18, 18-40, 40-55 and above 55 years age group respectively. Stone site, size, shape and radio density were seen by X-ray plain abdomen, IVU and ultrasound. At 4 months ESWL treatment was considered successful if the patients were stone free or had residual fragments 4 mm or less. Over all success rate was 64% in renal stones it was 62.7% (25/40), in ureteral 62.5% (5/8) and in vesical stone 100% (2/2). 5-10 mm, 11-15 mm and 16-20 mm stones had success rate of 76% (19/25), 61.1% (11/18) and 28.8% (2/7) respectively. Equi bone density, low density, high density and radiolucent stones had success rate of 57.1% (16/28), 92.85% (13/14). 16.6% (1/6) and 100% (2/2). Shape of stones is mere reflection of stone size. In conclusion, the liberal use of ESWL for every type of stone in terms of radio density equal to or less than bone and size up to 20 mm were amenable to ESWL monotherapy. Upper urinary tract stone 96% (48/50) and 18-40 years age group is the commonest. (author)

  5. Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation.

    Science.gov (United States)

    Chatzigianni, Athina; Halazonetis, Demetrios J

    2009-10-01

    Cervical vertebrae shape has been proposed as a diagnostic factor for assessing skeletal maturation in orthodontic patients. However, evaluation of vertebral shape is mainly based on qualitative criteria. Comprehensive quantitative measurements of shape and assessments of its predictive power have not been reported. Our aims were to measure vertebral shape by using the tools of geometric morphometrics and to evaluate the correlation and predictive power of vertebral shape on skeletal maturation. Pretreatment lateral cephalograms and corresponding hand-wrist radiographs of 98 patients (40 boys, 58 girls; ages, 8.1-17.7 years) were used. Skeletal age was estimated from the hand-wrist radiographs. The first 4 vertebrae were traced, and 187 landmarks (34 fixed and 153 sliding semilandmarks) were used. Sliding semilandmarks were adjusted to minimize bending energy against the average of the sample. Principal components analysis in shape and form spaces was used for evaluating shape patterns. Shape measures, alone and combined with centroid size and age, were assessed as predictors of skeletal maturation. Shape alone could not predict skeletal maturation better than chronologic age. The best prediction was achieved with the combination of form space principal components and age, giving 90% prediction intervals of approximately 200 maturation units in the girls and 300 units in the boys. Similar predictive power could be obtained by using centroid size and age. Vertebrae C2, C3, and C4 gave similar results when examined individually or combined. C1 showed lower correlations, signifying lower integration with hand-wrist maturation. Vertebral shape is strongly correlated to skeletal age but does not offer better predictive value than chronologic age.

  6. Grippers for the micro assembly containing shape memory actuators and sensors

    International Nuclear Information System (INIS)

    Mertmann, M.; Hornbogen, E.

    1997-01-01

    Shape memory alloys (SMA) show a high ratio of work capacity per material volume. This makes the application of SMA especially useful in micron-sized systems. The development of robotic grippers is one important prerequisite for the successful automation of the assembly of micro systems. Therefore the SMA may also play a role, for example, as actuators in micron-sized grippers. This paper presents the development of micron-sized grippers. Due to a special relation between the electrical resistance and the shape change of a NiTi-wire the actuator may also be used simultaneously as a sensor. Besides these functional properties a superelastic SMA may be used for structural purposes, i.e. as solid-state flexure hinges. The sensoric features of binary and ternary NiTi-based alloys are investigated using different Ti 50 Ni 50-x Cu x alloys with 0 50 Ni 50-x Cu x alloys and their influence on the functional properties are compared. The effect of the TMT on the amount and the stability of the shape memory effect has to be taken into account if the optimum alloy and condition for the use in grippers for micro assembly are investigated. The function and the properties of the developped gripping devices are demonstrated by prototypes. (orig.)

  7. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy

    Science.gov (United States)

    Waddington‐Cruz, Márcia; Botteman, Marc F.; Carter, John A.; Chopra, Avijeet S.; Hopps, Markay; Stewart, Michelle; Fallet, Shari; Amass, Leslie

    2018-01-01

    ABSTRACT Introduction: This study sought to estimate the global prevalence of transthyretin familial amyloid polyneuropathy (ATTR‐FAP). Methods: Prevalence estimates and information supporting prevalence calculations was extracted from records yielded by reference‐database searches (2005–2016), conference proceedings, and nonpeer reviewed sources. Prevalence was calculated as prevalence rate multiplied by general population size, then extrapolated to countries without prevalence estimates but with reported cases. Results: Searches returned 3,006 records; 1,001 were fully assessed and 10 retained, yielding prevalence for 10 “core” countries, then extrapolated to 32 additional countries. ATTR‐FAP prevalence in core countries, extrapolated countries, and globally was 3,762 (range 3639–3884), 6424 (range, 1,887–34,584), and 10,186 (range, 5,526–38,468) persons, respectively. Discussion: The mid global prevalence estimate (10,186) approximates the maximum commonly accepted estimate (5,000–10,000). The upper limit (38,468) implies potentially higher prevalence. These estimates should be interpreted carefully because contributing evidence was heterogeneous and carried an overall moderate risk of bias. This highlights the requirement for increasing rare‐disease epidemiological assessment and clinician awareness. Muscle Nerve 57: 829–837, 2018 PMID:29211930

  8. Prediction of bedload sediment transport for heterogeneous sediments in shape

    Science.gov (United States)

    Durafour, Marine; Jarno, Armelle; Le Bot, Sophie; Lafite, Robert; Marin, François

    2015-04-01

    Key words: Particle shape, in-situ measurements, bedload transport, heterogeneous sediments Bedload sediment transport in the coastal area is a dynamic process mainly influenced by the type of hydrodynamic forcings involved (current and/or waves), the flow properties (velocity, viscosity, depth) and sediment heterogeneity (particle size, density, shape). Although particle shape is recognized to be a significant factor in the hydrodynamic behavior of grains, this parameter is not currently implemented in bedload transport formulations: firstly because the mechanisms of initiation of motion according to particle shape are still not fully understood, and secondly due to the difficulties in defining common shape parameters. In March 2011, a large panel of in-situ instruments was deployed on two sites in the Eastern English Channel, during the sea campaign MESFLUX11. Samples of the sediment cover available for transport are collected, during a slack period, per 2cm thick strata by divers and by using a Shipeck grab. Bedload discharges along a tidal cycle are also collected with a Delft Nile Sampler (DNS; Gaweesh and Van Rijn, 1992, 1994) on both sites. The first one is characterized by a sandy bed with a low size dispersion, while the other study area implies graded sediments from fine sands to granules. A detailed analysis of the data is performed to follow the evolution of in-situ bedload fluxes on the seabed for a single current. In-situ measurements are compared to existing formulations according to a single fraction approach, using the median diameter of the mixture, and a fractionwise approach, involving a discretization of the grading curve. Results emphasize the interest to oscillate between these two methods according to the dispersion in size of the site considered. The need to apply a hiding/exposure coefficient (Egiazaroff, 1965) and a hindrance factor (Kleinhans and Van Rijn, 2002) for size heterogeneous sediments is also clearly highlighted. A really good

  9. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    Science.gov (United States)

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Shape of Field-Induced Nanostructures Formed by STM

    Directory of Open Access Journals (Sweden)

    Subhashis Gangopadhyay

    2007-01-01

    Full Text Available Creation of controlled and reproducible nanostructures on material surfaces using scanning tunneling microscope is a novel technique, which can be used for a variety of applications. We have examined the shape of the nanostructures so formed on the gold film using tungsten tip and examined the formation parameters, which govern their shape and size. During our investigations it is found that the reproducibility of mound formation can reach up to 90% under optimum operating conditions, whereas the pit formation can be made with almost 100% reproducibility. Formation mechanism of such nanostructures is also discussed.

  11. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    Science.gov (United States)

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  12. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  13. How acoustic signals scale with individual body size: common trends across diverse taxa

    OpenAIRE

    Rafael L. Rodríguez; Marcelo Araya-Salas; David A. Gray; Michael S. Reichert; Laurel B. Symes; Matthew R. Wilkins; Rebecca J. Safran; Gerlinde Höbel

    2015-01-01

    We use allometric analysis to explore how acoustic signals scale on individual body size and to test hypotheses about the factors shaping relationships between signals and body size. Across case studies spanning birds, crickets, tree crickets, and tree frogs, we find that most signal traits had low coefficients of variation, shallow allometric scalings, and little dispersion around the allometric function. We relate variation in these measures to the shape of mate preferences and the level of...

  14. Consideration of correlativity between litho and etching shape

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2012-03-01

    We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.

  15. Net Shape 3D Printed NdFeB Permanent Magnet

    OpenAIRE

    Jacimovic, J.; Binda, F.; Herrmann, L. G.; Greuter, F.; Genta, J.; Calvo, M.; Tomse, T.; Simon, R. A.

    2016-01-01

    For two decades, NdFeB based magnets have been a critical component in a range of electrical devices engaged in energy production and conversion. The magnet shape and the internal microstructure of the selected NdFeB grade govern their efficiency and size. However, stricter requirements on device efficiency call for better performing magnets preferably with novel functionality not achievable today. Here we use 3D metal printing by Selective Laser Melting to fabricate dense net shape permanent...

  16. Nanoparticle shapes by using Wulff constructions and first-principles calculations

    Directory of Open Access Journals (Sweden)

    Georgios D. Barmparis

    2015-02-01

    Full Text Available Background: The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material.Results: We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage.Conclusion: Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species.

  17. 3D shaping of electron beams using amplitude masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Arie, Ady

    2017-06-15

    Highlights: • Electron beams are shaped in 3D with examples of curves and lattices. • Computer generated holograms are manifested as binary amplitude masks. • Applications in electron-optical particle trapping, manipulation, and synthesis. • Electron beam lithography fabrication scheme explained in detail. • Measurement paradigms of 3D shaped beams are discussed. - Abstract: Shaping the electron wavefunction in three dimensions may prove to be an indispensable tool for research involving atomic-sized particle trapping, manipulation, and synthesis. We utilize computer-generated holograms to sculpt electron wavefunctions in a standard transmission electron microscope in 3D, and demonstrate the formation of electron beams exhibiting high intensity along specific trajectories as well as shaping the beam into a 3D lattice of hot-spots. The concepts presented here are similar to those used in light optics for trapping and tweezing of particles, but at atomic scale resolutions.

  18. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU; Yuantai; HU; Hongping; YANG; Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  19. On the Relationship Between Tooth Shape and Masticatory Efficiency: A Finite Element Study.

    Science.gov (United States)

    Berthaume, Michael A

    2016-05-01

    Dental topography has successfully linked disparate tooth shapes to distinct dietary categories, but not to masticatory efficiency. Here, the relationship between four dental topographic metrics and brittle food item breakdown efficiency during compressive biting was investigated using a parametric finite element model of a bunodont molar. Food item breakdown efficiency was chosen to represent masticatory efficiency as it isolated tooth-food item interactions, where most other categories of masticatory efficiency include several aspects of the masticatory process. As relative food item size may affect the presence/absence of any relationship, four isometrically scaled, hemispherical, proxy food items were considered. Topographic metrics were uncorrelated to food item breakdown efficiency irrespective of relative food item size, and dental topographic metrics were largely uncorrelated to one another. The lack of a correlation between topographic metrics and food item breakdown efficiency is not unexpected as not all food items break down in the same manner (e.g., nuts are crushed, leaves are sheared), and only one food item shape was considered. In addition, food item breakdown efficiency describes tooth-food item interactions and requires location and shape specific information, which are absent from dental topographic metrics. This makes it unlikely any one efficiency metric will be correlated to all topographic metrics. These results emphasize the need to take into account how food items break down during biting, ingestion, and mastication when investigating the mechanical relationship between food item shape, size, mechanical properties, and breakdown, and tooth shape. © 2016 Wiley Periodicals, Inc.

  20. Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape.

    Science.gov (United States)

    Richetelli, Nicole; Nobel, Madonna; Bodziak, William J; Speir, Jacqueline A

    2017-01-01

    Forensic footwear evidence can prove invaluable to the resolution of a criminal investigation. Naturally, the value of a comparison varies with the rarity of the evidence, which is a function of both manufactured as well as randomly acquired characteristics (RACs). When focused specifically on the latter of these two types of features, empirical evidence demonstrates high discriminating power for the differentiation of known match and known non-match samples when presented with exemplars of high quality and exhibiting a sufficient number of clear and complex RACs. However, given the dynamic and unpredictable nature of the media, substrate, and deposition process encountered during the commission of a crime, RACs on crime scene prints are expected to exhibit a large range of variability in terms of reproducibility, clarity, and quality. Although the pattern recognition skill of the expert examiner is adept at recognizing and evaluating this type of natural variation, there is little research to suggest that objective and numerical metrics can globally process this variation when presented with RACs from degraded crime scene quality prints. As such, the goal of this study was to mathematically compare the loss and similarity of RACs in high quality exemplars versus crime-scene-like quality impressions as a function of RAC shape, perimeter, area, and common source. Results indicate that the unpredictable conditions associated with crime scene print production promotes RAC loss that varies between 33% and 100% with an average of 85%, and that when the entire outsole is taken as a constellation of features (or a RAC map), 64% of the crime-scene-like impressions exhibited 10 or fewer RACs, resulting in a 0.72 probability of stochastic dominance. Given this, individual RAC description and correspondence were further explored using five simple, but objective, numerical metrics of similarity. Statistically significant differences in similarity scores for RAC shape and size