WorldWideScience

Sample records for prevailing climatic conditions

  1. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  2. The Prevailing Weather and Traffic Conditions in the Evaluation of a Future ECA in the Mediterranean Sea. A view into the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Marcella Castells i Sanabra

    2014-03-01

    Full Text Available Appendix III of MARPOL's Annex VI sets out the criteria and procedures for designating an emission control area (ECA.These criteria includes: a clear delineation of the proposed ECA; types of emissions proposed for control, land and sea areas at risk; emission quantification and impact assessment; prevailing weather conditions; data and quality on marine traffic; land based measures concurrent with the ECA adoption and the relative costs of reducing emissions from ships. This paper analyses the climate parameter together with traffic conditions: prevailing weather conditions as a parameter to be kept in mind for the adoption of a future ECA in the Mediterranean Sea. Preliminary results would show how marine emissions coming from existing traffic will impact the sea and land ecology in the Mediterranean area.

  3. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    Science.gov (United States)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2018-02-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  4. Hygienic features of working conditions prevailing in X-ray cabinets

    International Nuclear Information System (INIS)

    Usol'tsev, V.I.; Serebryanyj, V.A.

    1975-01-01

    The results of an investigation of 352 x-ray cabinets showed that their personnel is subjected to simultaneous action of a number of factors: discomfortable microclimate, small concentrations of ozone and nitrogen oxides (within 0.1 of the maximum permissible concentration). The hands of the personnel, especially those of the x-ray laboratory assistants are contaminated with lead (2.38mg in the hands washings). Therefore the assessment of labour conditions prevailing in an x-ray cabinet and the accomplishment of measures of their provement should be carried out with due regards to all the complex of the above mentioned factors besides the ionizing radiation

  5. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Weiler, Markus; Matzarakis, Andreas

    2018-01-01

    Estimation of drought in a certain temporal and spatial scale is crucial in climate change studies. The current study targets on three agricultural areas widespread in Greece, Ardas River Basin in Northeastern Greece, Sperchios River Basin in Central Greece, and Geropotamos River Basin in Crete Island in South Greece that are characterized by diverse climates as they are located in various regions. The objective is to assess the spatiotemporal variation of drought conditions prevailing in these areas. The Standardized Precipitation Index (SPI) was used to identify and assess the present and future drought conditions. Future simulated data were derived from a number of Regional Climatic Models (RCMs) from the ENSEMBLES European Project. The analysis was performed for the future periods of 2021-2050 and 2071-2100, implementing A1B and B1 scenarios. The spatial analysis of the drought conditions was performed using a combined downscaling technique and the Ordinary Kriging. The Mann-Kendall test was implemented for trend investigation. During both periods and scenarios, drought conditions will tend to be more severe in the upcoming years. The decrease of the SPI values in the Sperchios River Basin is expected to be the strongest, as it is the only study area that will show a negative balance (in SPI values), regarding the drought conditions. For the Ardas and the Geropotamos River Basins, a great increase of the drought conditions will occur during the 2021-2050 period, while for 2071-2100 period, the decrease will continue but it will be tempered. Nevertheless, the situation in all study areas according to the SPI classification is characterized as "Near-normal", in terms of drought conditions.

  6. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  7. Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus Basin

    Directory of Open Access Journals (Sweden)

    S. U. Hasson

    2017-05-01

    Full Text Available Largely depending on the meltwater from the Hindukush–Karakoram–Himalaya, withdrawals from the upper Indus Basin (UIB contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250–4500 m a.s.l. for their overlapping period of record (1995–2012 and, separately, from six stations of their long-term record (1961–2012. For this, a Mann–Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field- significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995–2012, we find warming and drying of spring (field-significant in March and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field-significant cooling within the monsoon period (particularly in July and September, which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid- to late melt season (particularly in July. Such tendencies, being largely consistent with the long-term trends (1961–2012, most likely indicate dominance of the nival but suppression of the glacial melt regime

  8. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2017-05-01

    Largely depending on the meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus Basin (UIB) contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012) and, separately, from six stations of their long-term record (1961-2012). For this, a Mann-Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field-) significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995-2012), we find warming and drying of spring (field-significant in March) and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field-significant cooling within the monsoon period (particularly in July and September), which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid- to late melt season (particularly in July). Such tendencies, being largely consistent with the long-term trends (1961-2012), most likely indicate dominance of the nival but suppression of the glacial melt regime, altering overall hydrology of the UIB in

  9. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    Science.gov (United States)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  10. Evaluation of operational numerical weather predictions in relation to the prevailing synoptic conditions

    Science.gov (United States)

    Pytharoulis, Ioannis; Tegoulias, Ioannis; Karacostas, Theodore; Kotsopoulos, Stylianos; Kartsios, Stergios; Bampzelis, Dimitrios

    2015-04-01

    The Thessaly plain, which is located in central Greece, has a vital role in the financial life of the country, because of its significant agricultural production. The aim of DAPHNE project (http://www.daphne-meteo.gr) is to tackle the problem of drought in this area by means of Weather Modification in convective clouds. This problem is reinforced by the increase of population and the water demand for irrigation, especially during the warm period of the year. The nonhydrostatic Weather Research and Forecasting model (WRF), is utilized for research and operational purposes of DAPHNE project. The WRF output fields are employed by the partners in order to provide high-resolution meteorological guidance and plan the project's operations. The model domains cover: i) Europe, the Mediterranean sea and northern Africa, ii) Greece and iii) the wider region of Thessaly (at selected periods), at horizontal grid-spacings of 15km, 5km and 1km, respectively, using 2-way telescoping nesting. The aim of this research work is to investigate the model performance in relation to the prevailing upper-air synoptic circulation. The statistical evaluation of the high-resolution operational forecasts of near-surface and upper air fields is performed at a selected period of the operational phase of the project using surface observations, gridded fields and weather radar data. The verification is based on gridded, point and object oriented techniques. The 10 upper-air circulation types, which describe the prevailing conditions over Greece, are employed in the synoptic classification. This methodology allows the identification of model errors that occur and/or are maximized at specific synoptic conditions and may otherwise be obscured in aggregate statistics. Preliminary analysis indicates that the largest errors are associated with cyclonic conditions. Acknowledgments This research work of Daphne project (11SYN_8_1088) is co-funded by the European Union (European Regional Development Fund

  11. 12 CFR 747.603 - Prevailing party.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Prevailing party. 747.603 Section 747.603 Banks... in NCUA Board Adjudications § 747.603 Prevailing party. An eligible applicant may be a “prevailing... dismissed. In appropriate situations an applicant may also have prevailed if the outcome of the proceeding...

  12. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    OpenAIRE

    Cho, Hyun Jung

    2007-01-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were...

  13. High-Arctic climate conditions for the last 7000 years inferred from multi-proxy analysis of the Bliss Lake record, North Greenland

    DEFF Research Database (Denmark)

    Olsen, Jesper; Kjær, Kurt H.; Funder, Svend Visby

    2012-01-01

    , Peary Land, Greenland. The early Holocene (10 850–10 480 cal. a BP) is characterized by increased erosion and gradually more marine conditions. Full marine conditions developed from 10 480 cal. a BP until the lake was isolated at 7220 cal. a BP. From its marine isolation at 7220 cal. a BP Bliss Lake...... becomes a lacustrine environment. Evidence from geochemical proxies (δ13C and total organic carbon) suggests that warmer conditions prevailed between 7220 and 6500 cal. a BP, corresponding to the Holocene thermal maximum, and from 3300 until 910 cal. a BP. From 850 to 500 cal. a BP colder climate...

  14. Analysis of the prevailing standard and technical documents for their applicability under conditions of the 'Ukrytie' operation and technical proposals relating to the elaboration of new ones concerning fire safety

    International Nuclear Information System (INIS)

    Nazarenko, B.S.; Emets, V.G.

    1998-01-01

    An analysis of the prevailing laws and standards and technical documents (STD) to ensure safe operation of nuclear power installations, with requirements of nuclear, radiation and fire safety taken into account, has been performed. Proposals on application of some items of prevailing STD under conditions of the 'Ukrytie' operation are presented. Also given are technical proposals on correction of the prevailing operational standard documents and elaboration of special STD

  15. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Matzarakis, Andreas

    2016-03-01

    The assessment of future precipitation variations prevailing in an area is essential for the research regarding climate and climate change. The current paper focuses on 3 selected areas in Greece that present different climatic characteristics due to their location and aims to assess and compare the future variation of annual and seasonal precipitation. Future precipitation data from the ENSEMBLES anthropogenic climate-change (ACC) global simulations and the Climate version of the Local Model (CLM) were obtained and analyzed. The climate simulations were performed for the future periods 2021-2050 and 2071-2100 under the A1B and B1 scenarios. Mann-Kendall test was applied to investigate possible trends. Spatial distribution of precipitation was performed using a combination of dynamic and statistical downscaling techniques and Kriging method within ArcGIS 10.2.1. The results indicated that for both scenarios, reference periods and study areas, precipitation is expected to be critically decreased. Additionally, Mann-Kendall test application showed a strong downward trend for every study area. Furthermore, the decrease in precipitation for the Ardas River basin characterized by the continental climate will be tempered, while in the Sperchios River basin it will be smoother due to the influence of some minor climatic variations in the basins' springs in the highlands where milder conditions occur. Precipitation decrease in the Geropotamos River basin which is characterized by Mediterranean climate will be more vigorous. B1 scenario appeared more optimistic for the Ardas and Sperchios River basins, while in the Geropotamos River basin, both applied scenarios brought similar results, in terms of future precipitation response.

  16. 12 CFR 263.102 - Prevailing party.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Prevailing party. 263.102 Section 263.102 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM RULES... Prevailing party. Only an eligible applicant that prevailed on the merits of an adversary proceeding may...

  17. 12 CFR 308.173 - Prevailing party.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Prevailing party. 308.173 Section 308.173 Banks....173 Prevailing party. (a) General rule. An eligible applicant who, following an adversary adjudication has gained victory on the merits in the proceeding is a “prevailing party”. An eligible applicant may...

  18. Flight activity and responses to climatic conditions of two subspecies of Melipona marginata Lepeletier (Apidae, Meliponinae)

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert-Giovannini, A; Imperatriz-Fonseca, V L

    1986-01-01

    The flight activity of two colonies of M. m. marginata and six colonies of M. m. obscurior was studied in Sao Paulo, Brazil during three periods in 1981-1983. All colonies were hived except for one colony of M. m. obscurior which nested in a hollow tree. The two subspecies showed the same responses to the climatic factors analyzed. Flight activity was correlated positively with temperature and negatively with RH. In favorable conditions foraging took place throughout the day but both species were most active between 11 and 13 h. In the last observation period (October 1982-January 1983), when only two obscurior colonies were studied, flight activity was not correlated to RH, occurring even when RH was unfavorably high. This was a very rainy season, and it is suggested that the behavior of the bees indicates a flexible response to prevailing weather conditions.

  19. Financing Educational Facility Construction: Prevailing Wage Litigation.

    Science.gov (United States)

    Goldblatt, Steven M.; Wood, R. Craig

    This chapter presents an up-to-date analysis of prevailing state wage laws that affect educational facility construction or renovation and highlights relevant prevailing wage litigation in many states. Currently, 13 states have no prevailing wage laws for public works. The other 37 states and the District of Columbia do have prevailing wage laws…

  20. Epistaxis: Prevailing Factors and Treatment

    Directory of Open Access Journals (Sweden)

    Secchi, Myrian Marajó Dal

    2009-12-01

    Full Text Available Introduction: The epistaxis is one the most frequent otorhinolaryngologic emergencies in the medical practice. It is a benign affection, but the refractory cases require hospital admission. Objective: To evaluate prevailing factors in patients with epistaxis and treatment. Form of study: Retrospective study. Method: 60 patients with diagnosis of epistaxis were evaluated and they needed hospital admission between 2005 and 2006. Results: The main prevailing factors were: Systemic arterial hypertension 36% (n= 22, trauma 16% (n=10 and coagulopathy 5% (n=3. The treatment was the use of nasal splint: anterior 58% (n=35 and antero-posterior 27% (n=16, the electrocauterization of the identified bloody point 7% (n=4, endoscopic arterial bandage 8% (n=5 in severe epistaxis. For the patients with antero-posterior splint with recurrence of bleeding in the first 24 hours (five patients, after clinical stabilization, an arterial bandage was indicated by endoscopic means; four patients had systemic arterial hypertension and in one patient no prevailing factor was identified. Conclusion: The main associated prevailing factors were systemic arterial hypertension, trauma and coagulopathy. The treatment depends on the type, severity and cause of bleeding, initially the anterior and antero-posterior splint for bleeding control. The early endoscopic arterial bandage is indicated in patients with severe epistaxis and prevailing factors, and prolonged admission and morbidities associated with nasal splint should be avoided.

  1. Empirical methods for estimating future climatic conditions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Applying the empirical approach permits the derivation of estimates of the future climate that are nearly independent of conclusions based on theoretical (model) estimates. This creates an opportunity to compare these results with those derived from the model simulations of the forthcoming changes in climate, thus increasing confidence in areas of agreement and focusing research attention on areas of disagreements. The premise underlying this approach for predicting anthropogenic climate change is based on associating the conditions of the climatic optimums of the Holocene, Eemian, and Pliocene with corresponding stages of the projected increase of mean global surface air temperature. Provided that certain assumptions are fulfilled in matching the value of the increased mean temperature for a certain epoch with the model-projected change in global mean temperature in the future, the empirical approach suggests that relationships leading to the regional variations in air temperature and other meteorological elements could be deduced and interpreted based on use of empirical data describing climatic conditions for past warm epochs. Considerable care must be taken, of course, in making use of these spatial relationships, especially in accounting for possible large-scale differences that might, in some cases, result from different factors contributing to past climate changes than future changes and, in other cases, might result from the possible influences of changes in orography and geography on regional climatic conditions over time

  2. Climatic growing conditions of Jatropha curcas L.

    Energy Technology Data Exchange (ETDEWEB)

    Maes, W.H.; Achten, W.M.J.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Trabucco, A. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); International Water Management Institute (IWMI), P.O. Box 2075, Colombo (Sri Lanka)

    2009-10-15

    The massive investment in new jatropha plantations worldwide is not sufficiently based on a profound scientific knowledge of its ecology. In this article, we define the climatic conditions in its area of natural distribution by combining the locations of herbarium specimens with corresponding climatic information, and compare these conditions with those in 83 jatropha plantations worldwide. Most specimens (87%) were found in tropical savannah and monsoon climates (A{sub m}, A{sub w}) and in temperate climates without dry season and with hot summer (C{sub fa}), while very few were found in semi-arid (B{sub S}) and none in arid climates (B{sub W}). Ninety-five percent of the specimens grew in areas with a mean annual rainfall above 944 mm year{sup -1} and an average minimum temperature of the coldest month (T{sub min}) above 10.5 C. The mean annual temperature range was 19.3-27.2 C. The climatic conditions at the plantations were different from those of the natural distribution specimens for all studied climatic variables, except average maximum temperature in the warmest month. Roughly 40% of the plantations were situated in regions with a drier climate than in 95% of the area of the herbarium specimens, and 28% of the plantations were situated in areas with T{sub min} below 10.5 C. The observed precipitation preferences indicate that jatropha is not common in regions with arid and semi-arid climates. Plantations in arid and semi-arid areas hold the risk of low productivity or irrigation requirement. Plantations in regions with frost risk hold the risk of damage due to frost. (author)

  3. 29 CFR 505.3 - Prevailing minimum compensation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Prevailing minimum compensation. 505.3 Section 505.3 Labor... HUMANITIES § 505.3 Prevailing minimum compensation. (a)(1) In the absence of an alternative determination...)(2) of this section, the prevailing minimum compensation required to be paid under the Act to the...

  4. 26 CFR 301.7430-5 - Prevailing party.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Prevailing party. 301.7430-5 Section 301.7430-5... Prevailing party. (a) In general. For purposes of an award of reasonable administrative costs under section... prevailing party only if— (1) The position of the Internal Revenue Service was not substantially justified...

  5. Hydro-Climatic Data Network (HCDN) Streamflow Data Set, 1874-1988

    Science.gov (United States)

    Slack, James Richard; Lumb, Alan M.; Landwehr, Jurate Maciunas

    1993-01-01

    The potential consequences of climate change to continental water resources are of great concern in the management of those resources. Critically important to society is what effect fluctuations in the prevailing climate may have on hydrologic conditions, such as the occurrence and magnitude of floods or droughts and the seasonal distribution of water supplies within a region. Records of streamflow that are unaffected by artificial diversions, storage, or other works of man in or on the natural stream channels or in the watershed can provide an account of hydrologic responses to fluctuations in climate. By examining such records given known past meteorologic conditions, we can better understand hydrologic responses to those conditions and anticipate the effects of postulated changes in current climate regimes. Furthermore, patterns in streamflow records can indicate when a change in the prevailing climate regime may have occurred in the past, even in the absence of concurrent meteorologic records. A streamflow data set, which is specifically suitable for the study of surface-water conditions throughout the United States under fluctuations in the prevailing climatic conditions, has been developed. This data set, called the Hydro-Climatic Data Network, or HCDN, consists of streamflow records for 1,659 sites throughout United States and its Territories. Records cumulatively span the period 1874 through 1988, inclusive, and represent a total of 73,231 water years of information. Development of the HCDN Data Set: Records for the HCDN were obtained through a comprehensive search of the extensive surface- water data holdings of the U.S. Geological Survey (USGS), which are contained in the USGS National Water Storage and Retrieval System (WATSTORE). All streamflow discharge records in WATSTORE through September 30, 1988, were examined for inclusion in the HCDN in accordance with strictly defined criteria of measurement accuracy and natural conditions. No reconstructed

  6. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Science.gov (United States)

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  7. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  8. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Directory of Open Access Journals (Sweden)

    Helder Fraga

    Full Text Available The Iberian viticultural regions are convened according to the Denomination of Origin (DO and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  9. Divestment prevails over the green paradox when anticipating strong future climate policies

    Science.gov (United States)

    Bauer, Nico; McGlade, Christophe; Hilaire, Jérôme; Ekins, Paul

    2018-01-01

    Fossil fuel market dynamics will have a significant impact on the effectiveness of climate policies1. Both fossil fuel owners and investors in fossil fuel infrastructure are sensitive to climate policies that threaten their natural resource endowments and production capacities2-4, which will consequently affect their near-term behaviour. Although weak in near-term policy commitments5,6, the Paris Agreement on climate7 signalled strong ambitions in climate change stabilization. Many studies emphasize that the 2 °C target can still be achieved even if strong climate policies are delayed until 20308-10. However, sudden implementation will have severe consequences for fossil fuel markets and beyond and these studies ignore the anticipation effects of owners and investors. Here we use two energy-economy models to study the collective influence of the two central but opposing anticipation arguments, the green paradox11 and the divestment effect12, which have, to date, been discussed only separately. For a wide range of future climate policies, we find that anticipation effects, on balance, reduce CO2 emissions during the implementation lag. This is because of strong divestment in coal power plants starting ten years ahead of policy implementation. The green paradox effect is identified, but is small under reasonable assumptions.

  10. Decision-Support System for Urban Air Pollution under Future Climate Conditions

    OpenAIRE

    Jensen , Steen ,; Brandt , Jørgen; Hvidberg , Martin; Ketzel , Matthias; Hedegaard , Gitte ,; Christensen , Jens ,

    2011-01-01

    Part 6: Climate Services and Environmental Tools for Urban Planning and Climate Change Applications and Services; International audience; Climate change is expected to influence urban living conditions and challenge the ability of cities to adapt to and mitigate climate change. Urban climates will be faced with elevated temperatures and future climate conditions are expected to cause higher ozone concentrations, increased biogenic emissions from vegetation, changes in the chemistry of the atm...

  11. Forecasting conditional climate-change using a hybrid approach

    Science.gov (United States)

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  12. Ecoclimatic indicators to study crop suitability in present and future climatic conditionsTIC CONDITIONS

    Science.gov (United States)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  13. 29 CFR 525.10 - Prevailing wage rates.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Prevailing wage rates. 525.10 Section 525.10 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS EMPLOYMENT OF WORKERS WITH DISABILITIES UNDER SPECIAL CERTIFICATES § 525.10 Prevailing wage rates. (a) A...

  14. Federal Prevailing Rate Advisory Committee (FPRAC) Annual Reports

    Data.gov (United States)

    Office of Personnel Management — Annual reports of the Federal Prevailing Rate Advisory Committee (FPRAC), which studies the prevailing (market) rate system for wages and other matters pertinent to...

  15. 29 CFR 4.51 - Prevailing in the locality determinations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Prevailing in the locality determinations. 4.51 Section 4.51... Procedures § 4.51 Prevailing in the locality determinations. (a) Information considered. The minimum monetary... benefits contained in collective bargaining agreements where they have been determined to prevail in a...

  16. Tourism and climate conditions in San Juan, Puerto Rico, 2000-2010

    Directory of Open Access Journals (Sweden)

    Pablo A. Méndez-Lázaro

    2014-06-01

    Full Text Available The general behavior of the tourism sector in Puerto Rico, with its marked seasonality, hints at a close relationship between tourism activities and climate conditions. Even if weather condition is only one of many variables considered by travelling tourists, climate conditions weigh heavily in the majority of the decisions. The effect of climate variability on the environment could be manifested in warmer temperature, heat waves, and changes in the frequency of extreme weather events, such as severe storms and hurricanes, floods, and sea level rise. These conditions affect different sectors of society, among them public health and the economy. Therefore, our research has two main objectives: to establish a tourism climate index (TCI for Puerto Rico and to analyze if occupancy rates in hotels correspond to local weather conditions. Even though there are many other variables that could have positive or negative effects on tourism activities, results showed a significant association between occupancy rate in Puerto Rico and climate indexes. According to both TCI and the mean historical climate for tourism indexes, the most favorable months for tourism in Puerto Rico were February and March (winter, whereas the worst season was the end of August and the beginning of September (summer-fall. Although winter represents dry conditions and lower temperatures in San Juan, it also represents the highest occupancy rate during the years examined. In summer and fall, data showed high occupancy rates, yet climate conditions were not suitable; these months also correspond to the hurricane season. During this season, high relative occupancy rates responded to internal and local tourism patterns. It can therefore be assumed that until the climate-tourism relationship is well characterized, there is little hope of fully understanding the potential economic effects, detrimental or beneficial, of global climate change, not only on tourism in Puerto Rico, but on

  17. Climate conditions in Sweden in a 100,000-year time perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Erik; Strandberg, Gustav (Rossby Centre, SMHI, Norrkoeping (Sweden)); Brandefelt, Jenny (Dept. of Mechanics, Royal Inst. of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Smith, Ben (Dept of Physical Geography and Ecosystems Analysis, Lund Univ., Lund (Sweden)); Wohlfarth, Barbara (Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden))

    2009-04-15

    This report presents results from a project devoted to describing the climatic extremes within which the climate in Fennoscandia may vary over a 100,000 year time span. Based on forcing conditions which have yielded extreme conditions during the last glacial-interglacial cycle, as well as possible future conditions following continued anthropogenic emissions, projections of climate conditions have been made with climate models. Three different periods have been studied; i) a stadial within Marine Isotope Stage 3 (MIS 3) during the last glacial cycle, representing a cold period with a relatively small ice sheet covering parts of Fennoscandia, ii) the Last Glacial Maximum (LGM), with an extensive ice sheet covering large parts of northern Europe and iii) a possible future period in a climate warmer than today. The future case is characterised by high greenhouse gas concentrations in the atmosphere and a complete loss of the Greenland ice sheet. The climate modelling involved the use of a global climate model (GCM) for producing boundary conditions that were used by a regional climate model (RCM). The regional model produced detailed information on climate variables like near-surface air temperature and precipitation over Europe. These climate variables were subsequently used to force a vegetation model that produced a vegetation cover over Europe, consistent with the simulated regional climate. In a final step, the new vegetation cover from the vegetation model was used in the regional climate model to produce the final regional climate. For the studied periods, data on relevant climate parameters have been extracted from the regional model for the Forsmark and Oskarshamn areas on the Swedish east coast and the Olkiluoto region on the west coast of Finland. Due to computational constraints, the modelling efforts include only one forcing scenario per time period. As there is a large degree of uncertainty in the choice of an appropriate forcing scenario, we perform

  18. Climate conditions in Sweden in a 100,000-year time perspective

    International Nuclear Information System (INIS)

    Kjellstroem, Erik; Strandberg, Gustav; Brandefelt, Jenny; Naeslund, Jens-Ove; Smith, Ben; Wohlfarth, Barbara

    2009-04-01

    This report presents results from a project devoted to describing the climatic extremes within which the climate in Fennoscandia may vary over a 100,000 year time span. Based on forcing conditions which have yielded extreme conditions during the last glacial-interglacial cycle, as well as possible future conditions following continued anthropogenic emissions, projections of climate conditions have been made with climate models. Three different periods have been studied; i) a stadial within Marine Isotope Stage 3 (MIS 3) during the last glacial cycle, representing a cold period with a relatively small ice sheet covering parts of Fennoscandia, ii) the Last Glacial Maximum (LGM), with an extensive ice sheet covering large parts of northern Europe and iii) a possible future period in a climate warmer than today. The future case is characterised by high greenhouse gas concentrations in the atmosphere and a complete loss of the Greenland ice sheet. The climate modelling involved the use of a global climate model (GCM) for producing boundary conditions that were used by a regional climate model (RCM). The regional model produced detailed information on climate variables like near-surface air temperature and precipitation over Europe. These climate variables were subsequently used to force a vegetation model that produced a vegetation cover over Europe, consistent with the simulated regional climate. In a final step, the new vegetation cover from the vegetation model was used in the regional climate model to produce the final regional climate. For the studied periods, data on relevant climate parameters have been extracted from the regional model for the Forsmark and Oskarshamn areas on the Swedish east coast and the Olkiluoto region on the west coast of Finland. Due to computational constraints, the modelling efforts include only one forcing scenario per time period. As there is a large degree of uncertainty in the choice of an appropriate forcing scenario, we perform

  19. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  20. Climate change and its potential impact on mechanical, hydraulic and chemical conditions

    International Nuclear Information System (INIS)

    Naslund, J.O.

    2009-01-01

    The strategy for managing climate related conditions in SKB ' s safety assessments are based on the notion that it is not possible to predict climate in a 100 000-year time perspective. Instead, the approach in the SR-Can safety assessment was to identify and analyse both moderate climate evolutions as well as extremes within which the climate in Scandinavia may vary. To this end, knowledge on general climate variations in Scandinavia was used to identify characteristic climate domains which in turn were used to build a number of selected climate scenarios. The relevant climate domains for the Forsmark and Laxemar sites in the 100 000-year time perspective are; 1) a temperate climate domain, 2) a peri-glacial climate domain, and 3) a glacial climate domain. Also submerged/non-submerged conditions at the sites are of importance. In the SR-Can safety assessment several climate scenarios were investigated, including a reference evolution based on a repetition of reconstructed conditions for last glacial cycle (the Weichselian glaciation and the Holocene interglacial). For this reconstruction, extensive numerical simulations of ice sheets, isostatic changes, and permafrost were conducted. The resulting scenario showed site-specific timing and duration of the three climate domains and submerged periods for the full glacial cycle. This scenario is not a prediction of a future climate evolution. Instead it is one example of a future evolution that in a realistic and consistent way covers all relevant climate related changes that can be expected in a 100 000-year time perspective. Subsequently, this scenario formed the basis for the construction of additional climate scenarios that were used to analyse the effects of more extreme climate evolutions than during the last glacial cycle. Examples of complementary scenarios are a warmer and wetter climate scenario caused by an increased greenhouse effect, and colder scenarios with deeper permafrost or thicker ice sheets than in

  1. Climate of migration? How climate triggered migration from southwest Germany to North America during the 19th century

    Science.gov (United States)

    Glaser, Rüdiger; Himmelsbach, Iso; Bösmeier, Annette

    2017-11-01

    This paper contributes to the ongoing debate on the extent to which climate and climatic change can have a negative impact on societies by triggering migration, or even contribute to conflict. It summarizes results from the transdisciplinary project Climate of migration (funded 2010-2014), whose innovative title was created by Franz Mauelshagen and Uwe Lübken. The overall goal of this project was to analyze the relation between climatic and socioeconomic parameters and major migration waves from southwest Germany to North America during the 19th century. The article assesses the extent to which climatic conditions triggered these migration waves. The century investigated was in general characterized by the Little Ice Age with three distinct cooling periods, causing major glacier advances in the alpine regions and numerous climatic extremes such as major floods, droughts and severe winter. Societal changes were tremendous, marked by the warfare during the Napoleonic era (until 1815), the abolition of serfdom (1817), the bourgeois revolution (1847/48), economic freedom (1862), the beginning of industrialization accompanied by large-scale rural-urban migration resulting in urban poverty, and finally by the foundation of the German Empire in 1871.The presented study is based on quantitative data and a qualitative, information-based discourse analysis. It considers climatic conditions as well as socioeconomic and political issues, leading to the hypothesis of a chain of effects ranging from unfavorable climatic conditions to a decrease in crop yields to rising cereal prices and finally to emigration. These circumstances were investigated extensively for the peak emigration years identified with each migration wave. Furthermore, the long-term relations between emigration and the prevailing climatic conditions, crop yields and cereal prices were statistically evaluated with a sequence of linear models which were significant with explanatory power between 22 and 38 %.

  2. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    Directory of Open Access Journals (Sweden)

    Hyun Jung Cho

    2007-06-01

    Full Text Available Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  3. Climate conditions in bedded confinement buildings

    Science.gov (United States)

    Confinement buildings are utilized for finishing cattle to allow more efficient collection of animal waste and to buffer animals against adverse climatic conditions. Environmental data were obtained from a 29 m wide x 318 m long bedded confinement building with the long axis oriented east to west. T...

  4. Vets prevail online intervention reduces PTSD and depression in veterans with mild-to-moderate symptoms.

    Science.gov (United States)

    Hobfoll, Stevan E; Blais, Rebecca K; Stevens, Natalie R; Walt, Lisa; Gengler, Richard

    2016-01-01

    Despite heightened rates of depression and posttraumatic stress disorder (PTSD) among in Iraq/Afghanistan veterans, the majority of distressed veterans will not receive mental health care. Overcoming barriers to mental health services requires innovative approaches to broaden the reach of evidence-based treatment. The current study examined the efficacy and acceptability of an innovative and dynamic online cognitive-behavioral therapy intervention for PTSD and depression called Vets Prevail. A randomized clinical trial conducted between 2011 and 2013 assessed changes in PTSD and depression in veterans with mild-to-moderate distress. Veterans randomized to Vets Prevail (n = 209) were aged 34.2 ± 7.6 years, mostly male (81.3%), and nonminority (73.7%). Veterans randomized to adjustment as usual (n = 94) were aged 34.7 ± 8.9, mostly male (81.9%), and White (67.0%). Veterans completed the PTSD Checklist-Military Version and the Center for Epidemiological Studies Depression scale (10-item version) postintervention and at 12-week follow-up. Veterans in the Vets Prevail condition reported significantly greater reductions in PTSD, t(250) = 3.24, p = .001 (Mreduction = 5.51, SD = 9.63), and depression, t(252) = 4.37, p = .001 (Mreduction = 2.31, SD = 5.34), at 12-week follow-up compared with veterans in the adjustment as usual condition (PTSD Mreduction = 1.00, SD = 7.32; depression Mreduction = 0.48, SD = 4.95), with moderate effect sizes for PTSD (Cohen's d = 0.42) and depression (Cohen's d = 0.56). Exploratory analysis shows that Vets Prevail may be effective regardless of combat trauma exposure, gender, and ethnic minority status. Vets Prevail circumvents many barriers to care and effectively addresses the dire mental health needs of veterans. (c) 2015 APA, all rights reserved).

  5. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  6. Ceramic production during changing environmental/climatic conditions

    Science.gov (United States)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  7. School Climate Assessment Programs. Technical Assistance Bulletin 38.

    Science.gov (United States)

    National School Resource Network, Washington, DC.

    Numerous studies indicate that climate, the prevailing "feeling" of the environment, not only contributes to behavioral and situational outcomes, but that climate can be changed to help bring about the behaviors and outcomes desired. Researchers have identified characteristics of positive school climates and ways of determining the presence or…

  8. Climate bifurcation during the last deglaciation?

    NARCIS (Netherlands)

    Lenton, T.M.; Livina, V.N.; Dakos, V.; Scheffer, M.

    2012-01-01

    There were two abrupt warming events during the last deglaciation, at the start of the Bolling-Allerod and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state

  9. DEVELOPMENT OF AUTOMATED SYSTEM OF CLIMATE CONDITIONS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Novikova L.V.

    2017-12-01

    Full Text Available The scientific work is devoted to the analysis and development of the automated control system of the climatic conditions of the minites. The analysis of existing automated control systems is carried out, in particular attention is paid to the systems of climate control of greenhouses. The technical means of the control system are determined. As a platform, Arduino®Uno is selected.

  10. Climate in the Western Cordillera of the Central Andes over the last 4300 years

    Science.gov (United States)

    Engel, Zbyněk; Skrzypek, Grzegorz; Chuman, Tomáš; Šefrna, Luděk; Mihaljevič, Martin

    2014-09-01

    The Distichia peat core obtained in the Carhuasanta valley near Nevado Mismi, Cordillera Chila, provides information on climatic and environmental conditions over the last ˜4300 years. The relative changes in the stable carbon isotope composition of plant remains preserved in the core reflect major temperature fluctuations in the Western Cordillera of the southern Peruvian Andes. These temperature variations can be additionally linked with the changes in precipitation patterns by analysing C% and C/N ratio in the core. Relatively warm and moist conditions prevailed from 4280 to 3040 cal. yrs BP (BC 2330-1090) with a short colder dry episode around 3850 cal. yrs BP (BC 1900). The most prominent climate changes recorded in the peat occurred between 3040 and 2750 cal. yrs BP (BC 1090-800) when the initial warming turned to a rapid cooling to temperatures at least 2 °C lower than the mean for the Late Holocene. Initially drier conditions within this event turned to a short wet phase after 2780 cal. yrs BP (BC 830) when the temperature increased again. This event coincides with significant changes in peat and ice core records in the Central Andes matching the timing of the global climate event around 2.8 cal. ka BP. Climatic conditions in the study area became relatively dry and stable after the event for about 800 years. Highly variable temperatures and humidity prevailed during the last 2000 years when an extended warm and relatively humid period occurred between 640 and 155 cal. yrs BP (AD 1310-1795) followed by predominantly colder and drier conditions. The established δ13C peat record represents the first continuous proxy for the temperature in the southern Peruvian Andes dated by the AMS 14C. Distichia peat is wide spread in the Andes and the proposed approach can be applied elsewhere in high altitudes, where no other traditional climate proxies are available.

  11. The PREVAIL Study

    DEFF Research Database (Denmark)

    Evans, Christopher P; Higano, Celestia S; Keane, Thomas

    2016-01-01

    BACKGROUND: Enzalutamide, an oral androgen receptor inhibitor, significantly improved overall survival (OS) and radiographic progression-free survival (rPFS) versus placebo in the PREVAIL trial of men with chemotherapy-naïve metastatic castration-resistant prostate cancer. OBJECTIVE: To assess...... in men with chemotherapy-naïve metastatic castration-resistant prostate cancer, with or without visceral disease, low- or high-volume bone disease, or lymph node only disease. PATIENT SUMMARY: Patients with metastatic castration-resistant prostate cancer-including those with or without visceral disease...

  12. Modeling current climate conditions for forest pest risk assessment

    Science.gov (United States)

    Frank H. Koch; John W. Coulston

    2010-01-01

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...

  13. Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia

    Science.gov (United States)

    Kozina, Antonela; Čačija, Maja; Igrc Barčić, Jasminka; Bažok, Renata

    2013-07-01

    The aims of this work were: (i) to determine the distribution and abundance of Agriotes lineatus, (ii) correlate the abundance with the prevailing climatic conditions to establish how temperature and rainfall are influencing the dominance, and (iii) to determine the activity characteristics of the adults. Investigations were conducted in 17 fields grouped in four regions characterized by different climatic conditions. Using sex pheromone traps the most important Agriotes species ( A. lineatus L., A. sputator L., A. obscurus L., A. brevis Cand. and A. ustulatus Schall.) were collected. The monitoring period for A. brevis, A. sputator, A. lineatus and A. obscurus was from the 18th to the 32nd, and for A. ustulatus from the 23rd to the 32nd week of the year. A total of 61,247 individuals Agriotes were captured, of which 24,916 individuals were A. lineatus. Abundance and dominance of A. lineatus were significantly higher in the region of Zagreb compared to other regions. Moving east, rainfall decreased and temperatures increased and associated with that the abundance and dominance indices were lower. It was determined that the abundance of A. lineatus was negatively correlated with average air temperature ( r = -0.5201; p < 0.0001). Compared to earlier data from the region of Zagreb the dominance index decreased. This might be a result of climate change as established average yearly temperature in these regions increased for 1.04 °C compared to the average data for the period 1961-1990. Other potentially damaging Agriotes species ( A. brevis and A. ustulatus) were also present in high abundances in some micro-regions.

  14. 48 CFR 22.1002-2 - Wage determinations based on prevailing rates.

    Science.gov (United States)

    2010-10-01

    ... on prevailing rates. 22.1002-2 Section 22.1002-2 Federal Acquisition Regulations System FEDERAL... Contract Act of 1965, as Amended 22.1002-2 Wage determinations based on prevailing rates. Contractors... Department of Labor to prevail in the locality or, in the absence of a wage determination, the minimum wage...

  15. 75 FR 34182 - Federal Prevailing Rate Advisory Committee; Cancellation of Upcoming Meeting

    Science.gov (United States)

    2010-06-16

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Prevailing Rate Advisory Committee; Cancellation of... Prevailing Rate Advisory Committee is issuing this notice to cancel the June 17, 2010, public [email protected] ; or FAX: (202) 606-4264. Sheldon Friedman, Chairman, Federal Prevailing Rate...

  16. 76 FR 12769 - Federal Prevailing Rate Advisory Committee; Cancellation of Upcoming Meeting

    Science.gov (United States)

    2011-03-08

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Prevailing Rate Advisory Committee; Cancellation of... Prevailing Rate Advisory Committee is issuing this notice to cancel the March 17, 2011, public meeting..., Chairman, Federal Prevailing Rate Advisory Committee. [FR Doc. 2011-5266 Filed 3-7-11; 8:45 am] BILLING...

  17. 78 FR 20359 - Federal Prevailing Rate Advisory Committee; Cancellation of Upcoming Meeting

    Science.gov (United States)

    2013-04-04

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Prevailing Rate Advisory Committee; Cancellation of... Prevailing Rate Advisory Committee is issuing this notice to cancel the April 18, 2013, public meeting... Officer, Federal Prevailing Rate Advisory Committee. [FR Doc. 2013-07875 Filed 4-3-13; 8:45 am] BILLING...

  18. 76 FR 70512 - Federal Prevailing Rate Advisory Committee; Cancellation of Upcoming Meeting

    Science.gov (United States)

    2011-11-14

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Prevailing Rate Advisory Committee; Cancellation of... Prevailing Rate Advisory Committee is issuing this notice to cancel the November 17, 2011, public meeting..., Chairman, Federal Prevailing Rate Advisory Committee. [FR Doc. 2011-29274 Filed 11-10-11; 8:45 am] BILLING...

  19. 78 FR 41962 - Federal Prevailing Rate Advisory Committee; Cancellation of Upcoming Meeting

    Science.gov (United States)

    2013-07-12

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Prevailing Rate Advisory Committee; Cancellation of... Prevailing Rate Advisory Committee is issuing this notice to cancel the July 18, 2013, public meeting... Prevailing Rate Advisory Committee. [FR Doc. 2013-16763 Filed 7-11-13; 8:45 am] BILLING CODE 6325-49-P ...

  20. 77 FR 28640 - Federal Prevailing Rate Advisory Committee; Cancellation of Upcoming Meeting

    Science.gov (United States)

    2012-05-15

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Prevailing Rate Advisory Committee; Cancellation of... Prevailing Rate Advisory Committee is issuing this notice to cancel the May 24, 2012, public meeting..., Federal Prevailing Rate Advisory Committee. [FR Doc. 2012-11728 Filed 5-14-12; 8:45 am] BILLING CODE 6325...

  1. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records

    Directory of Open Access Journals (Sweden)

    I. Dormoy

    2009-10-01

    Full Text Available Pollen-based climate reconstructions were performed on two high-resolution pollen marines cores from the Alboran and Aegean Seas in order to unravel the climatic variability in the coastal settings of the Mediterranean region between 15 000 and 4000 years BP (the Lateglacial, and early to mid-Holocene. The quantitative climate reconstructions for the Alboran and Aegean Sea records focus mainly on the reconstruction of the seasonality changes (temperatures and precipitation, a crucial parameter in the Mediterranean region. This study is based on a multi-method approach comprising 3 methods: the Modern Analogues Technique (MAT, the recent Non-Metric Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM and Partial Least Squares regression (PLS. The climate signal inferred from this comparative approach confirms that cold and dry conditions prevailed in the Mediterranean region during the Oldest and Younger Dryas periods, while temperate conditions prevailed during the Bølling/Allerød and the Holocene. Our records suggest a West/East gradient of decreasing precipitation across the Mediterranean region during the cooler Late-glacial and early Holocene periods, similar to present-day conditions. Winter precipitation was highest during warm intervals and lowest during cooling phases. Several short-lived cool intervals (i.e. Older Dryas, another oscillation after this one (GI-1c2, Gerzensee/Preboreal Oscillations, 8.2 ka event, Bond events connected to the North Atlantic climate system are documented in the Alboran and Aegean Sea records indicating that the climate oscillations associated with the successive steps of the deglaciation in the North Atlantic area occurred in both the western and eastern Mediterranean regions. This observation confirms the presence of strong climatic linkages between the North Atlantic and Mediterranean regions.

  2. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  3. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  4. PREVAIL: IBM's e-beam technology for next generation lithography

    Science.gov (United States)

    Pfeiffer, Hans C.

    2000-07-01

    PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.

  5. USGS Hydro-Climatic Data Network 2009 (HCDN-2009)

    Science.gov (United States)

    Lins, Harry F.

    2012-01-01

    The U.S. Geological Survey's (USGS) Hydro-Climatic Data Network (HCDN) is a subset of all USGS streamgages for which the streamflow primarily reflects prevailing meteorological conditions for specified years. These stations were screened to exclude sites where human activities, such as artificial diversions, storage, and other activities in the drainage basin or the stream channel, affect the natural flow of the watercourse. In addition, sites were included in the network because their record length was sufficiently long for analysis of patterns in streamflow over time. The purpose of the network is to provide a streamflow dataset suitable for analyzing hydrologic variations and trends in a climatic context. When originally published, the network was composed of 1,659 stations (Slack and Landwehr, 1992) for which the years of primarily "natural" flow were identified. Since then data from the HCDN have been widely used and cited in climate-related hydrologic investigations of the United States. The network has also served as a model for establishing climate-sensitive streamgage networks in other countries around the world.

  6. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    Science.gov (United States)

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  7. Environmental impacts of barley cultivation under current and future climatic conditions

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Birkved, Morten; Saxe, Henrik

    2017-01-01

    for the increased impacts. This finding was confirmed by the sensitivity analysis. Because this study focused solely on the impacts of climate change, technological improvements and political measures to reduce impacts in the 2050 scenario are not taken into account. Options to mitigate the environmental impacts......The purpose of this work is to compare the environmental impacts of spring barley cultivation in Denmark under current (year 2010) and future (year 2050) climatic conditions. Therefore, a Life Cycle Assessment was carried out for the production of 1 kg of spring barley in Denmark, at farm gate....... Both under 2010 and 2050 climatic conditions, four subscenarios were modelled, based on a combination of two soil types and two climates. Included in the assessment were seed production, soil preparation, fertilization, pesticide application, and harvest. When processes in the life cycle resulted in co...

  8. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  9. 29 CFR 2704.202 - Contents of application-where the applicant has prevailed.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Contents of application-where the applicant has prevailed... Information Required From Applicants § 2704.202 Contents of application—where the applicant has prevailed. (a) An application for an award under § 2704.105(a) shall show that the applicant has prevailed in a...

  10. Ecoclimatic indicators to study crop suitability in present and future climatic conditions

    Science.gov (United States)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  11. Climate related trends and meteorological conditions in European Arctic region - Porsanger fjord, Norway

    Science.gov (United States)

    Cieszyńska, Agata; Stramska, Małgorzata

    2017-04-01

    Climate change has significant effect on the Arctic environment, where global trends are amplified. In this study, we have focused on the Porsanger fjord, located in European Arctic in the coastal region of the Barents Sea. We have analyzed climate related trends and meteorological condititions in the area of interest. Meteorological data included wind speed and direction, air temperature (AT) and precipitation from Era-Interim reanalysis (1986-2015) and local observations (1996-2015) from Lakselv (L, fjord's head area) and Honningsvaag (H - fjord's exit area). Our results confirm that this region is undergoing climate change related warming, which is indicated by rising air temperatures. Based on long-term reanalysis data, estimated trends for air temperature (AT) in Porsanger fjord are: 0.0536 °C year-1 at fjord's exit and 0.0428 °C year-1 at fjord's head. The results show that climate change does not seem to have a significant effect on long-term changes of wind speed and precipitation in the Porsanger fjord. Statistical analysis underlined significant spatial variability of meteorological conditions inside the fjord. For example, there are large differences in the annual cycle of AT with monthly mean January and July values of -8.4 and 12.6 °C in L and -2.5 and 10.1 °C in H. Dominant wind directions in Lakselv are S and SSE, while in Honningsvaag S and SSW directions prevail. Strong wind events (above 12 m s-1) are more frequent in H than in L. Annual cycle is characterized by stronger winds in winter and seasonality of wind direction. Precipitation for a given location can change by about 50% between years and varies spatially. Synoptic scale and within day variability are extremely intense in the area of interest. Air temperature and wind speed and direction can change dramatically in hours. In addition, regular patterns of the daily cycle of AT have different intensity in L and H. It is interesting to note that in spring/summer season, the daily cycle of

  12. Effects of future climate conditions on terrestrial export from coastal southern California

    Science.gov (United States)

    Feng, D.; Zhao, Y.; Raoufi, R.; Beighley, E.; Melack, J. M.

    2015-12-01

    The Santa Barbara Coastal - Long Term Ecological Research Project (SBC-LTER) is focused on investigating the relative importance of land and ocean processes in structuring giant kelp forest ecosystems. Understanding how current and future climate conditions influence terrestrial export is a central theme for the project. Here we combine the Hillslope River Routing (HRR) model and daily precipitation and temperature downscaled using statistical downscaling based on localized constructed Analogs (LOCA) to estimate recent streamflow dynamics (2000 to 2014) and future conditions (2015 to 2100). The HRR model covers the SBC-LTER watersheds from just west of the Ventura River to Point Conception; a land area of roughly 800 km2 with 179 watersheds ranging from 0.1 to 123 km2. The downscaled climate conditions have a spatial resolution of 6 km by 6 km. Here, we use the Penman-Monteith method with the Food and Agriculture Organization of the United Nations (FAO) limited climate data approximations and land surface conditions (albedo, leaf area index, land cover) measured from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites to estimate potential evapotranspiration (PET). The HRR model is calibrated for the period 2000 to 2014 using USGS and LTER streamflow. An automated calibration technique is used. For future climate scenarios, we use mean 8-day land cover conditions. Future streamflow, ET and soil moisture statistics are presented and based on downscaled P and T from ten climate model projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5).

  13. Estimation of luminous efficacy of daylight and illuminance for composite climate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Jamil M.; Tiwari, G.N. [Center for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi-16 (India)

    2010-07-01

    This Daylighting is one of the basic components of passive solar building design and its estimation is essential. In India there are a few available data of measured illuminance as in many regions of the world. The Indian climate is generally clear with overcast conditions prevailing through the months of July to September, which provides good potential to daylighting in buildings. Therefore, an analytical model that would encompass the weather conditions of New Delhi was selected. Hourly exterior horizontal and slope daylight availability has been estimated for New Delhi using daylight modeling techniques based on solar radiation data. A model to estimate interior illuminance was investigated and validated using experimental hourly inside illuminance data of an existing skylight integrated vault roof mud house in composite climate of New Delhi. The interior illuminance model was found in good agreement with experimental value of interior illuminance.

  14. Assessing Lebanon's wildfire potential in association with current and future climatic conditions

    Science.gov (United States)

    George H. Mitri; Mireille G. Jazi; David McWethy

    2015-01-01

    The increasing occurrence and extent of large-scale wildfires in the Mediterranean have been linked to extended periods of warm and dry weather. We set out to assess Lebanon's wildfire potential in association with current and future climatic conditions. The Keetch-Byram Drought Index (KBDI) was the primary climate variable used in our evaluation of climate/fire...

  15. A quantitative genetic model of reciprocal altruism: a condition for kin or group selection to prevail.

    Science.gov (United States)

    Aoki, K

    1983-01-01

    A condition is derived for reciprocal altruism to evolve by kin or group selection. It is assumed that many additively acting genes of small effect and the environment determine the probability that an individual is a reciprocal altruist, as opposed to being unconditionally selfish. The particular form of reciprocal altruism considered is TIT FOR TAT, a strategy that involves being altruistic on the first encounter with another individual and doing whatever the other did on the previous encounter in subsequent encounters with the same individual. Encounters are restricted to individuals of the same generation belonging to the same kin or breeding group, but first encounters occur at random within that group. The number of individuals with which an individual interacts is assumed to be the same within any kin or breeding group. There are 1 + i expected encounters between two interacting individuals. On any encounter, it is assumed that an individual who behaves altruistically suffers a cost in personal fitness proportional to c while improving his partner's fitness by the same proportion of b. Then, the condition for kin or group selection to prevail is [Formula: see text] if group size is sufficiently large and the group mean and the within-group genotypic variance of the trait value (i.e., the probability of being a TIT-FOR-TAT strategist) are uncorrelated. Here, C, Vb, and Tb are the population mean, between-group variance, and between-group third central moment of the trait value and r is the correlation between the additive genotypic values of interacting kin or of individuals within the same breeding group. The right-hand side of the above inequality is monotone decreasing in C if we hold Tb/Vb constant, and kin and group selection become superfluous beyond a certain threshold value of C. The effect of finite group size is also considered in a kin-selection model. PMID:6575395

  16. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  17. Unusual climatic conditions and infectious diseases: observations made by Hippocrates.

    Science.gov (United States)

    Falagas, Matthew E; Bliziotis, Ioannis A; Kosmidis, John; Daikos, George K

    2010-12-01

    About 2500 years ago, Hippocrates made noteworthy observations about the influence of climate on public health. He believed that people living in cities with different climate may suffer from different diseases. Hippocrates also observed that abrupt climatic changes or unusual weather conditions affect public health, especially the incidence and severity of various infectious diseases, including gastrointestinal infections, tuberculosis, and central nervous system infections. We believe that Hippocrates' scientific observations are great early historic examples that stress to modern infectious diseases researchers and clinicians the need to study intensively the effect of the occurring global climate changes to infectious diseases in order to help in the prevention of possible epidemics of infections. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  18. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  19. The future bioclimatic conditions in Austria under the aspect of climate change scenarios

    Science.gov (United States)

    Rudel, E.; Matzarakis, A.; Neumke, R.; Endler, Ch,; Koch, E.

    2009-09-01

    The IPCC quantifies Heat Stress as a combination of air temperature and air humidity. In order to describe the future bioclimatic conditions in a human-biometeorological manner the analysis a modern thermal index has been chosen. The PET (Physiologically Equivalent Temperature) allows the assessment of the effect of the thermal environment based on the energy balance of humans including thermo-physiological information. The data for the calculation of the PET came from climate models. The required data are for the climatic parameters air temperature, relative humidity, wind velocity and mean cloud cover as the necessary inputs for Physiologically Equivalents Temperature. Regarding future climatic changes PET calculations for the time slices 1961 and 1990 and also 2070 and 2100 have been run in 0.5 ° resolution. By the use of statistical regression for the 0.5 ° resolution the results have been downscaled to 1 km resolution in order to identify and quantify the areas in Austria, which will be more affected bioclimatologically. The constructed maps present current and future climatic conditions and also differences for the different time slices and SRES-scenarios of the IPCC. Maps of the difference between the Physiological Equivalent temperature and air temperature have been constructed to show that the used thermal indices, which have been applied by the IPCC underestimate the expected thermal bioclimate conditions for future climate. The results offer fundamental information for tourism and recreation authorities for present and expected climatic and bioclimatic conditions.

  20. Energy Saving Potential of PCMs in Buildings under Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Abdo Abdullah Ahmed Gassar

    2017-11-01

    Full Text Available Energy consumption reduction under changing climate conditions is a major challenge in buildings design, where excessive energy consumption creates an economic and environmental burden. Improving thermal performance of the buildings through support applying phase change material (PCM is a promising strategy for reducing building energy consumption under future climate change. Therefore, this study aims to investigate the energy saving potentials in buildings under future climate conditions in the humid and snowy regions in the hot continental and humid subtropical climates of the east Asia (Seoul, Tokyo and Hong Kong when various PCMs with different phase change temperatures are applied to a lightweight building envelope. Methodology in this work is implemented in two phases: firstly, investigation of energy saving potentials in buildings through inclusion of three types of PCMs with different phase temperatures into the building envelop separately and use weather file in the present (2017; and, secondly, evaluation of the effect of future climate change on the performance of PCMs by analyzing energy saving potentials of PCMs with 2020, 2050 and 2080 weather data. The results show that the inclusion of PCM into the building envelope is a promising strategy to increase the energy performance in buildings during both heating and cooling seasons in Seoul, Tokyo and Hong Kong under future climate conditions. The energy savings achieved by using PCMs in those regions are electricity savings of 4.48–8.21%, 3.81–9.69%, and 1.94–5.15%, and gas savings of 1.65–16.59%, 7.60–61.76%, and 62.07–93.33% in Seoul, Tokyo and Hong Kong, respectively, for the years 2017, 2020, 2050 and 2080. In addition, BioPCM and RUBITHERMPCM are the most efficient for improving thermal performance and saving energy in buildings in the tested regions and years.

  1. Future aridity under conditions of global climate change

    Science.gov (United States)

    Asadi Zarch, Mohammad Amin; Sivakumar, Bellie; Malekinezhad, Hossein; Sharma, Ashish

    2017-11-01

    Global climate change is anticipated to cause some major changes in hydroclimatic conditions around the world. As aridity is a reliable indicator of potential available water, assessment of its changes under future climatic conditions is important for proper management of water. This study employs the UNESCO aridity/humidity index, which is a derivative of precipitation (P) and potential evapotranspiration (PET), for assessment of aridity. Historical (1901-2005) simulations and future (2006-2100) projections of 22 global climate models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are studied. The Nested Bias Correction (NBC) approach is used to correct possible biases of precipitation (simulated directly by the GCMs) and PET (estimated by applying FAO56-Penman-Monteith model on simulated parameters of the GCMs). To detect future aridity changes, the areal extents of the aridity zones in the past and future periods as well as through four sub-periods (2006-2025, 2026-2050, 2051-2075, and 2076-2100) of the future are compared. The results indicate that changes in climate will alter the areal extents of aridity zones in the future. In general, from the first sub-period towards the last one, the area covered by hyper-arid, arid, semi-arid, and sub-humid zones will increase (by 7.46%, 7.01%, 5.80%, and 2.78%, respectively), while the area of the humid regions will decrease (by 4.76%), suggesting that there will be less water over the global land area in the future. To understand the cause of these changes, precipitation and PET are also separately assumed to be stationary throughout the four future sub-periods and the resulting aridity changes are then analyzed. The results reveal that the aridity changes are mostly caused by the positive PET trends, even though the slight precipitation increase lessens the magnitude of the changes.

  2. 75 FR 18552 - Federal Prevailing Rate Advisory Committee; Open Committee Meetings

    Science.gov (United States)

    2010-04-12

    ... of Personnel Management Building, 1900 E Street, NW., Washington, DC. The Federal Prevailing Rate... business. Therefore, these caucuses will be closed to the public because of a determination made by the..., Federal Prevailing Rate Advisory Committee, Room 5H27, 1900 E Street, NW., Washington, DC 20415, (202) 606...

  3. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  4. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  5. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  6. 7 CFR 27.35 - Lower class of two samples to prevail.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lower class of two samples to prevail. 27.35 Section 27.35 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE... Micronaire Determinations § 27.35 Lower class of two samples to prevail. In case a sample drawn from one...

  7. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    Science.gov (United States)

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  8. Impact of future climatic conditions on the potential for soil organic matter priming

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Ambus, Per; Thornton, Barry

    2013-01-01

    Terrestrial carbon (C) storage and turnover are of major interest under changing climatic conditions. We present a laboratory microcosm study investigating the effects of anticipated climatic conditions on the soil microbial community and related changes in soil organic matter (SOM) decomposition....... Soil samples were taken from a heath-land after six years of exposure to elevated carbon dioxide (eCO2) in combination with summer drought (D) and increased temperature (T). Soil C-dynamics were investigated in soils from: (i) ambient, (ii) eCO2, and (iii) plots exposed to the combination of factors...... simulating future climatic conditions (TDeCO2) that simulate conditions predicted for Denmark in 2075. 13C enriched glucose (3 atom% excess) was added to soil microcosms, soil CO2 efflux was measured over a period of two weeks and separated into glucose- and SOM-derived C. Microbial biomass was measured...

  9. Climate Assessment for 1997.

    Science.gov (United States)

    Bell, Gerald D.; Halpert, Michael S.

    1998-05-01

    The global climate during 1997 was affected by both extremes of the El Niño-Southern Oscillation (ENSO), with weak Pacific cold episode conditions prevailing during January and February, and one of the strongest Pacific warm episodes (El Niño) in the historical record prevailing during the remainder of the year. This warm episode contributed to major regional rainfall and temperature anomalies over large portions of the Tropics and extratropics, which were generally consistent with those observed during past warm episodes. In many regions, these anomalies were opposite to those observed during 1996 and early 1997 in association with Pacific cold episode conditions.Some of the most dramatic El Niño impacts during 1997 were observed in the Tropics, where anomalous convection was evident across the entire Pacific and throughout most major monsoon regions of the world. Tropical regions most affected by excessive El Niño-related rainfall during the year included 1) the eastern half of the tropical Pacific, where extremely heavy rainfall and strong convective activity covered the region from April through December; 2) equatorial eastern Africa, where excessive rainfall during OctoberDecember led to widespread flooding and massive property damage; 3) Chile, where a highly amplified and extended South Pacific jet stream brought increased storminess and above-normal rainfall during the winter and spring; 4) southeastern South America, where these same storms produced above-normal rainfall during JuneDecember; and 5) Ecuador and northern Peru, which began receiving excessive rainfall totals in November and December as deep tropical convection spread eastward across the extreme eastern Pacific.In contrast, El Niño-related rainfall deficits during 1997 included 1) Indonesia, where significantly below-normal rainfall from June through December resulted in extreme drought and contributed to uncontrolled wildfires; 2) New Guinea, where drought contributed to large-scale food

  10. Does safety climate moderate the influence of staffing adequacy and work conditions on nurse injuries?

    Science.gov (United States)

    Mark, Barbara A; Hughes, Linda C; Belyea, Michael; Chang, Yunkyung; Hofmann, David; Jones, Cheryl B; Bacon, Cynthia T

    2007-01-01

    Hospital nurses have one of the highest work-related injury rates in the United States. Yet, approaches to improving employee safety have generally focused on attempts to modify individual behavior through enforced compliance with safety rules and mandatory participation in safety training. We examined a theoretical model that investigated the impact on nurse injuries (back injuries and needlesticks) of critical structural variables (staffing adequacy, work engagement, and work conditions) and further tested whether safety climate moderated these effects. A longitudinal, non-experimental, organizational study, conducted in 281 medical-surgical units in 143 general acute care hospitals in the United States. Work engagement and work conditions were positively related to safety climate, but not directly to nurse back injuries or needlesticks. Safety climate moderated the relationship between work engagement and needlesticks, while safety climate moderated the effect of work conditions on both needlesticks and back injuries, although in unexpected ways. DISCUSSION AND IMPACT ON INDUSTRY: Our findings suggest that positive work engagement and work conditions contribute to enhanced safety climate and can reduce nurse injuries.

  11. Changing climatic conditions in the Upper Thames River Basin

    International Nuclear Information System (INIS)

    Simonovic, S.P.

    2009-01-01

    'Full text:' Many climate change impact studies have been conducted using a top-down approach. First, outputs from Global Circulation Models (GCMs) are considered which are downscaled in a second step to the river basin scale using either a statistical/empirical or a dynamic approach. The local climatic signal that is obtained is then used as input into a hydrological model to assess the direct consequences in the basin. Problems related to this approach include: a high degree of uncertainty associated with GCM outputs; and an increase in uncertainty due to the downscaling approach. An original inverse approach is developed in this work in order to improve the understanding of the processes leading to hydrological hazards, including both flood and drought events. The developed approach starts with the analysis of existing guidelines and management practices in a river basin with respect to critical hydrological exposures that may lead to failure of the water resources system or parts thereof. This implies that vulnerable components of the river basin have to be identified together with the risk exposure. In the next step the critical hydrologic exposures (flood levels for example) are transformed into corresponding critical meteorological conditions (extreme precipitation events for example). These local weather scenarios are then be statistically linked to possible large-scale climate conditions that are available from the GCMs. The developed procedure allows for the assessment of the vulnerability of river basins with respect to climate forcing. It also provides a tool for identifying the spatial distribution of the vulnerability and risk. Vulnerability is here characterized by the incremental losses, expressed either quantitatively or qualitatively, due to a change in the probability and magnitude of hazard events driven by climatic forcing. Vulnerability is seen as the basis for risk mitigation measures for hydrologic extremes at the basin level. The

  12. Sales down due to particularly mild climatic conditions

    International Nuclear Information System (INIS)

    2007-01-01

    Paris, 27 July 2007 - For the six months to 30 June 2007, Gaz de France's consolidated sales amounted to euro 13,778 million, down 11 per cent compared to the same period in 2006. This performance continues the trend seen over the first quarter of 2007 and in particular reflects the continuation into the second quarter of the climatic factors that affected the start of the year: an exceptionally warm 2006/2007 winter, followed by a spring season with particularly high temperatures. The average temperature of the first half of 2007 corresponds to a heat risk of less than one per cent, meaning that the probability of such a temperature taking place is less than one per cent. Over the first half of the year, volumes distributed in France were down by 25 TWh compared to a comparable period with average weather conditions, whereas in 2006 they were 15 TWh above average. The impact of the weather had similar effects outside of France. Under average weather conditions, the downturn in Group sales was limited to only 0.8 per cent mainly due to market conditions made difficult by the climate, leading to a lower level of gas production and arbitrage activities. Over the first six months of 2007, the Group sought to: - Continue to strengthen its international presence, currently with euro 5,602 million in sales outside of France. The percentage of sales generated outside of France represented 41 per cent of the Group total at the end of June 2007 and increased by 4 percentage points between the first half of 2006 and the first half of 2007. - Prepare for the deregulation of the markets on 1 July 2007 and a new commercial policy for retail customers that has been built around multi-energy and multi-service market offerings. - Create a new subsidiary for the distribution, a process which will be effective at the end of the year as announced. In spite of this unfavourable context, the Group maintains the financial objective for 2007 presented with the 2006 accounts: '2007 will

  13. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  14. PREVAIL-EPL alpha tool electron optics subsystem

    Science.gov (United States)

    Pfeiffer, Hans C.; Dhaliwal, Rajinder S.; Golladay, Steven D.; Doran, Samuel K.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Pinckney, David J.; Quickle, Robert J.; Robinson, Christopher F.; Rockrohr, James D.; Stickel, Werner; Tressler, Eileen V.

    2001-08-01

    The IBM/Nikon alliance is continuing pursuit of an EPL stepper alpha tool based on the PREVAIL technology. This paper provides a status report of the alliance activity with particular focus on the Electron Optical Subsystem developed at IBM. We have previously reported on design features of the PREVAIL alpha system. The new state-of-the-art e-beam lithography concepts have since been reduced to practice and turned into functional building blocks of a production level lithography tool. The electron optical alpha tool subsystem has been designed, build, assembled and tested at IBM's Semiconductor Research and Development Center (SRDC) in East Fishkill, New York. After demonstrating subsystem functionality, the electron optical column and all associated control electronics hardware and software have been shipped during January 2001 to Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial e-beam stepper alpha tool. Early pre-shipment results obtained with this electron optical subsystem are presented.

  15. Impact of possible climate changes on river runoff under different natural conditions

    Science.gov (United States)

    Gusev, Yeugeniy M.; Nasonova, Olga N.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    The present study was carried out within the framework of the International Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for 11 large river basins located in different continents of the globe under a wide variety of natural conditions. The aim of the study was to investigate possible changes in various characteristics of annual river runoff (mean values, standard deviations, frequency of extreme annual runoff) up to 2100 on the basis of application of the land surface model SWAP and meteorological projections simulated by five General Circulation Models (GCMs) according to four RCP scenarios. Analysis of the obtained results has shown that changes in climatic runoff are different (both in magnitude and sign) for the river basins located in different regions of the planet due to differences in natural (primarily climatic) conditions. The climatic elasticities of river runoff to changes in air temperature and precipitation were estimated that makes it possible, as the first approximation, to project changes in climatic values of annual runoff, using the projected changes in mean annual air temperature and annual precipitation for the river basins. It was found that for most rivers under study, the frequency of occurrence of extreme runoff values increases. This is true both for extremely high runoff (when the projected climatic runoff increases) and for extremely low values (when the projected climatic runoff decreases).

  16. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  17. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  18. 76 FR 9694 - Prevailing Rate Systems; Redefinition of the Northeastern Arizona and Colorado Appropriated Fund...

    Science.gov (United States)

    2011-02-22

    ... 3206-AM33 Prevailing Rate Systems; Redefinition of the Northeastern Arizona and Colorado Appropriated... changes are based on recent consensus recommendations of the Federal Prevailing Rate Advisory Committee to... Northeastern Arizona wage area. The Federal Prevailing Rate Advisory Committee (FPRAC), the national labor...

  19. Transformational leadership climate : Performance linkages, mechanisms, and boundary conditions at the organizational level

    NARCIS (Netherlands)

    Menges, J.; Walter, F.; Vogel, B.; Bruch, H.

    2011-01-01

    Transformational leadership (TFL) climate describes the degree to which leaders throughout an organization engage in TFL behaviors. In this study, we investigate performance linkages, mechanisms, and boundary conditions of TFL climate at the organizational level of analysis. In a sample of 158

  20. 76 FR 70321 - Prevailing Rate Systems; Redefinition of the Northern Mississippi and Memphis, TN, Appropriated...

    Science.gov (United States)

    2011-11-14

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM37 Prevailing Rate Systems; Redefinition... on a consensus recommendation of the Federal Prevailing Rate Advisory Committee (FPRAC) to best match... which OPM received no comments. The Federal Prevailing Rate Advisory Committee (FPRAC), the national...

  1. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    Science.gov (United States)

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  2. 78 FR 18252 - Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System...

    Science.gov (United States)

    2013-03-26

    ...-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System... applicable sections. The Federal Prevailing Rate Advisory Committee, the national labor- management committee... proposing to amend 5 CFR part 532 as follows: PART 532--PREVAILING RATE SYSTEMS 0 1. The authority citation...

  3. 76 FR 31885 - Prevailing Rate Systems; Redefinition of the Northern Mississippi and Memphis, TN, Appropriated...

    Science.gov (United States)

    2011-06-02

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM37 Prevailing Rate Systems; Redefinition... Prevailing Rate Advisory Committee (FPRAC) to best match the county proposed for redefinition to a nearby FWS... Memphis wage area. The Federal Prevailing Rate Advisory Committee (FPRAC), the national labor-management...

  4. Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions

    Science.gov (United States)

    Fischer, Dominik; Thomas, Stephanie Margarete; Niemitz, Franziska; Reineking, Björn; Beierkuhnlein, Carl

    2011-07-01

    During the last decades the disease vector Aedes albopictus ( Ae. albopictus) has rapidly spread around the globe. The spread of this species raises serious public health concerns. Here, we model the present distribution and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the most realistic current prediction and future projection, we compare the performance of four different modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs. statistical criteria) and by the geographical range of presence records (native range vs. global range). First, models of the native and global range were built with MaxEnt and were either based on (1) statistically selected climatic input variables or (2) input variables selected with expert knowledge from the literature. Native models show high model performance (AUC: 0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-0.72). Models based on the global distribution of the species, however, were able to identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). In a second step, the modelled bioclimatic envelope of the global range was projected to future climatic conditions in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 2071-2100. For both global-driven models, the results indicate that climatically suitable areas for the establishment of Ae. albopictus will increase in western and central Europe already in 2011-2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable areas in southern Europe is pronounced in the Expert knowledge based model. Our projections appear unaffected by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis. The generated risk maps

  5. Quantifying conditional risks for water and energy systems using climate information

    Science.gov (United States)

    Lall, U.

    2016-12-01

    There has been a growing recognition of the multi-scale spatio-temporal organization of climate dynamics, and its implications for predictable, structured risk exposure to populations and infrastructure systems. At the most base level is an understanding that there are some identifiable climate modes, such as ENSO, that are associated with such outcomes. This has led to the emergence of a small cottage industry of analysts who relate different "climate indices" to specific regional outcomes. Such efforts and the associated media interest in these simplified "stories" have led to an increasing appreciation of the phenomenon, and some formal and informal efforts at decision making using such information. However, as was demonstrated through the 2014-16 El Nino forecasting season, many climate scientists over-emphasized the potential risks, while others cautioned the media as to the caveats and uncertainties associated with assuming that the forecasts of ENSO and the expected teleconnections may pan out. At least in certain sectors and regions, significant efforts or expectations as to outcomes were put in place, and some were beneficial, while others failed to manifest. Climate informed predictions for water and energy systems can be thought of as efforts to infer conditional distributions of specific outcomes given information on climate state. Invariably, the climate state may be presented as a very high dimensional spatial set of variables, with limited temporal sampling, while the water and energy attributes may be regional and constitute a much smaller dimension. One may, of course, be interested in the fact that the same climate state may lead to synchronous positive and negative effects across many locations, as may be expected under mid-latitude stationary and transient wave interaction. In this talk, I will provide examples of a few modern statistical and machine learning tools that allow a decomposition of the high dimensional climate state and its relation

  6. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    Science.gov (United States)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    In a fluvial system, mountain basins control sediment export to the lowland rivers. Hence, the analysis of the erosion processes and sediment delivery patterns that act in mountain basins is important. Several studies have investigated the alterations triggered by recent climatic change on the hydrological regime, whilst only a few works have explored the consequences on the sediment dynamics. Here we combined and analyzed the quasi-unique dataset of climatic conditions, landscape response, and sediment export produced, since 1986 in the Rio Cordon basin (5 km2, Eastern Italian Alps) to examine the sediment delivery processes occurring in the last three decades. The temperature, precipitation, and fluvial sediment fluxes in the basin were analyzed using continuous measurement executed by a permanent monitoring station, while the landscape evolution was investigated by three sediment source inventories established in 1994, 2006, and 2016. Thus, the analysis focused on the trends exhibited during the periods 1986-1993, 1994-2006, and 2007-2015. In terms of climatic conditions, three distinct climate forcing stages can be observed in the periods analyzed: a relatively stable phase (1986-1993), a period characterized by temperature and rainfall fluctuations (1994-2006), and a more recent warmer and wetter phase (2007-2015). In the 1986-1993 period, the fluvial sediment fluxes reflected the stable trend exhibited by the climatic conditions. In the subsequent 1994-2006 period, the average temperature and precipitation were in line with that previously observed, although with higher interannual variability. Notwithstanding the climate forcing and the occurrence of high magnitude/low frequency floods that strongly influenced the source areas, between 1994 and 2006 the Rio Cordon basin showed relatively limited erosion activity. Hence, the climatic conditions and the landscape response can only partially explain the strong increase of sediment export recorded in the 1994

  7. Life cycle cost analysis of HPVT air collector under different Indian climatic conditions

    International Nuclear Information System (INIS)

    Raman, Vivek; Tiwari, G.N.

    2008-01-01

    In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical

  8. Ethical Climate and Sports Personship

    Directory of Open Access Journals (Sweden)

    BASILIKI EFREMIDOU

    2010-01-01

    Full Text Available Moral behavior in sports is one of the most important issues that concern sportspersons. The aim of the present study was to examine whether the ethical work climate that prevails in non profit sport teams is related to moral behaviours (sports personship. Two hundred and fourteen students of three sport schools (n=126males, n=88females, aged between 12-18 years, from ten different sports (both individual and team have been used in this study. The students filled in the Ethical Climate Questionnaire (ECQ; Victor &Cullen, 1987, 1988 and the Multidimensional Sportsperson-ship Orientation Scale (Vallerand, Briere, Blanchard, & Provencher, 1997. The results revealed the presence of a caring climate in non profit sport teams. Moreover, it was found that the individual climate is positively related to the four dimensions of sportsperson ship, while the machiavelianism climate is negatively related to the dimension respect for rules and officials.

  9. Sales down due to particularly mild climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Paris, 27 July 2007 - For the six months to 30 June 2007, Gaz de France's consolidated sales amounted to euro 13,778 million, down 11 per cent compared to the same period in 2006. This performance continues the trend seen over the first quarter of 2007 and in particular reflects the continuation into the second quarter of the climatic factors that affected the start of the year: an exceptionally warm 2006/2007 winter, followed by a spring season with particularly high temperatures. The average temperature of the first half of 2007 corresponds to a heat risk of less than one per cent, meaning that the probability of such a temperature taking place is less than one per cent. Over the first half of the year, volumes distributed in France were down by 25 TWh compared to a comparable period with average weather conditions, whereas in 2006 they were 15 TWh above average. The impact of the weather had similar effects outside of France. Under average weather conditions, the downturn in Group sales was limited to only 0.8 per cent mainly due to market conditions made difficult by the climate, leading to a lower level of gas production and arbitrage activities. Over the first six months of 2007, the Group sought to: - Continue to strengthen its international presence, currently with euro 5,602 million in sales outside of France. The percentage of sales generated outside of France represented 41 per cent of the Group total at the end of June 2007 and increased by 4 percentage points between the first half of 2006 and the first half of 2007. - Prepare for the deregulation of the markets on 1 July 2007 and a new commercial policy for retail customers that has been built around multi-energy and multi-service market offerings. - Create a new subsidiary for the distribution, a process which will be effective at the end of the year as announced. In spite of this unfavourable context, the Group maintains the financial objective for 2007 presented with the 2006 accounts: &apos

  10. Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators

    Science.gov (United States)

    Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.

    2012-04-01

    Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of

  11. Variability of the morphometric features of Calliphora vicina (Diptera, Calliphoridae under the varying and constant micro-climatic condi-tions

    Directory of Open Access Journals (Sweden)

    L. I. Faly

    2013-03-01

    Full Text Available Variability of the main morphometric features of imago flies Calliphora vicina R.-D. (Diptera, Calliphoridae of two samples was studied. First sample consists of individuals caught in the wild (park ecosystems of Dnipropetrovsk, the second one – specimens cultured in the laboratory under the constant temperature and humidity. Possible using of C. vicina R.-D. as a bioindicator of anthropogenic factors is analysed. Environmental factors may act as the stimulators of adaptive changes in physiological functions, as the constraints that cause impossibility of the existence of certain species in particular conditions, and as modifiers that determine the morpho- anatomical and physiological changes in organisms. The most significant differences between studied samples were found for the width (“laboratory” individuals are characterized by larger head size and for the length of limbs segments. The fluctuating range of the head width in specimens collected in the wild is much wider, due to the heterogeneity of the micro-climatic conditions of the larvae development and trophic resources. Maximal negative asymmetry of the head width is observed in individuals C. vicina R.-D. of the “natural” sample as compared with “laboratory” individuals. Among imagoes caught in the wild the individuals with a relatively wide head are dominated, as evidenced by the large positive value of kurtosis. At the same time, the distribution of values in “laboratory” individuals is almost normal. In adults bred in the laboratory the shortening of segments of the leg pair I is observed in comparison with the individuals of “natural” sample. Similar results were recorded for other insect groups cultivated in a laboratory. For most other linear measurements of the C. vicina R.-D. body the differences between samples are not registered. Ephemeral existence of the substrate of blow flies leads to higher prevailing evolutionary adaptation of species to varying

  12. Climate: 15 inconvenient truths

    International Nuclear Information System (INIS)

    Marko, Istvan E.; Furfari, Samuel; Masson, Henri; Preat, Alain; Debeil, Anne; Delory, Ludovic; Godefridi, Drieu; Myren, Lars; Ripa di Meana, Carlo

    2013-01-01

    Proposed by professionals of various disciplines, this book is considered as the bible of climate sceptics. It proposes a synthesis of arguments which deny prevailing views in the domain of climate. The authors show how, since fifteen years, reality has systematically denied projections made by the IPCC and its numerous political relays and media coverage. A first objective is therefore to unlatch the debate on the climate issue in front of a systematic practice of monopolization of truth at the expense of an authentic scientific approach, and to restore a democratic debate. A second objective is to put into question again the IPCC scientific character, scientific views which are at the heart of the last report published by the IPCC, and the political, media and economic reception of IPCC reports

  13. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  14. Improvement of greenhouse design and climate control in mediterranean conditions

    NARCIS (Netherlands)

    Tuzel, Yuksel; Zwart, de Feije; Sapounas, A.; Hemming, Silke; Stanghellini, Cecilia

    2017-01-01

    The Mediterranean Region is one of the most important areas of the world in terms of protected cultivation. Turkey, with its increasing greenhouse area, is one of the representative countries of the region. Thanks to the mild winter climatic conditions, cultivation of vegetables under simple

  15. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record

    DEFF Research Database (Denmark)

    Møller, Henrik S.; Jensen, Karin G.; Kuijpers, Antoon

    2006-01-01

      Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminifera records of a 3.5 m long gravity core from Ameralik fjord, southern West Greenland, is used for reconstructing late Holocene environmental changes in this area. The changes are linked...... to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core covers the last 4400 years and may include the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4-3.2 ka BP) is characterized by high accumulation rates...... conditions were further characterised by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions...

  16. 75 FR 58339 - Prevailing Rate Systems; Redefinition of the Shreveport, LA; Texarkana, TX; Milwaukee, WI; and...

    Science.gov (United States)

    2010-09-24

    ... 3206-AM28 Prevailing Rate Systems; Redefinition of the Shreveport, LA; Texarkana, TX; Milwaukee, WI... area. These changes are based on recent consensus recommendations of the Federal Prevailing Rate... below. The Federal Prevailing Rate Advisory Committee (FPRAC), the national labor-management committee...

  17. 5 CFR 532.205 - The use of Federal, State, and local minimum wage requirements in determining prevailing rates.

    Science.gov (United States)

    2010-01-01

    ... minimum wage requirements in determining prevailing rates. 532.205 Section 532.205 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.205 The use of Federal, State, and local minimum wage requirements in determining prevailing...

  18. Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.

    Science.gov (United States)

    Sanghi, Achint; Ambrose, R P Kingsly

    2016-07-27

    Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.

  19. Climate Change Adaptation Strategies and Farm-level Efficiency in Food Crop Production in Southwestern, Nigeria

    Directory of Open Access Journals (Sweden)

    Otitoju, MA.

    2014-01-01

    Full Text Available Food crop yields depend largely on prevailing climate conditions, especially in Africa, where rain-fed agriculture predominate. The extent to which climate impacts are felt depends principally on the adaptation measures used by farmers. This study focused on the effect of climate change adaptation strategies on farm-level technical efficiency. The study used primary data collected from 360 randomly selected farmers in Southwest Nigeria. Cobb-Douglass stochastic frontier production model was used to analyse the data. Multiple cropping, land fragmentation, multiple planting dates, mulching and cover cropping were the major climate change adaptation strategies employed by the farmers. While land fragmentation and multiple planting dates had significant positive relationships, years of climate change awareness and social capital had significant inverse relationships, with technical inefficiency. This may be because while land fragmentation may hinder farm mechanization, multiple planting dates may increase the monotonousness and drudgery of farming. On the other hand, social capital and climate change awareness could help ameliorate the effects of, particularly, land fragmentation through resource pooling. It is therefore recommended that the farmers be encouraged to form cooperative societies so as to leverage their resource status through collective efforts.

  20. 78 FR 60182 - Prevailing Rate Systems; Definition of Broward County, Florida, to a Nonappropriated Fund Federal...

    Science.gov (United States)

    2013-10-01

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM83 Prevailing Rate Systems; Definition of... wage area. The Federal Prevailing Rate Advisory Committee, the national labor-management committee... follows: PART 532--PREVAILING RATE SYSTEMS 0 1. The authority citation for part 532 continues to read as...

  1. 78 FR 29658 - Prevailing Rate Systems; Definition of Broward County, Florida, to a Nonappropriated Fund Federal...

    Science.gov (United States)

    2013-05-21

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM83 Prevailing Rate Systems; Definition of... and Palm Beach Counties, FL. The Federal Prevailing Rate Advisory Committee, the national labor... 532--PREVAILING RATE SYSTEMS 0 1. The authority citation for part 532 continues to read as follows...

  2. Attributing Climate Conditions for Stable Malaria Transmission to Human Activity in sub-Saharan Africa

    Science.gov (United States)

    Sheldrake, L.; Mitchell, D.; Allen, M. R.

    2015-12-01

    Temperature and precipitation limit areas of stable malaria transmission, but the effects of climate change on the disease remain controversial. Previously, studies have not separated the influence of anthropogenic climate change and natural variability, despite being an essential step in the attribution of climate change impacts. Ensembles of 2900 simulations of regional climate in sub-Saharan Africa for the year 2013, one representing realistic conditions and the other how climate might have been in the absence of human influence, were used to force a P.falciparium climate suitability model developed by the Mapping Malaria Risk in Africa project. Strongest signals were detected in areas of unstable transmission, indicating their heightened sensitivity to climatic factors. Evidently, impacts of human-induced climate change were unevenly distributed: the probability of conditions being suitable for stable malaria transmission were substantially reduced (increased) in the Sahel (Greater Horn of Africa (GHOA), particularly in the Ethiopian and Kenyan highlands). The length of the transmission season was correspondingly shortened in the Sahel and extended in the GHOA, by 1 to 2 months, including in Kericho (Kenya), where the role of climate change in driving recent malaria occurrence is hotly contested. Human-induced warming was primarily responsible for positive anomalies in the GHOA, while reduced rainfall caused negative anomalies in the Sahel. The latter was associated with anthropogenic impacts on the West African Monsoon, but uncertainty in the RCM's ability to reproduce precipitation trends in the region weakens confidence in the result. That said, outputs correspond well with broad-scale changes in observed endemicity, implying a potentially important contribution of anthropogenic climate change to the malaria burden during the past century. Results support the health-framing of climate risk and help indicate hotspots of climate vulnerability, providing

  3. Behind the climate cacophony

    International Nuclear Information System (INIS)

    Huet, Sylvestre

    2015-01-01

    In this book, the author aims at deconstructing all the different speeches and statements on climate made as well by pessimistic activists as by 'climate sceptics', or by political marketing. He explains why there is no climate emergency and why it is however a major problem, why it is useless to listen to 'climate sceptics', why technological innovation is necessary but not sufficient, and why the UNO Conference on Climate is also necessary but not sufficient. He notices that this approach is not simple when the prevailing model is social success and unlimited wealth. He recalls the definition of the greenhouse effect, explains the warming process and how mankind accelerated it, discusses the always announced objective of a 2 degree increase, and describes the role and operation of the IPCC and of its groups. He outlines that the issues which must be addressed are energy consumption and social inequalities, notably between North and South, and that, therefore, we must consume less energy and less raw materials

  4. Weather conditions conducive to Beijing severe haze more frequent under climate change

    Science.gov (United States)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  5. 76 FR 9640 - Prevailing Rate Systems: Santa Clara, CA, Tulsa County, OK, and Angelina County, TX

    Science.gov (United States)

    2011-02-22

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM22 Prevailing Rate Systems: Santa Clara... County, Texas, as an area of application to the Dallas, TX, NAF FWS wage area. The Federal Prevailing.... Accordingly, the U.S. Office of Personnel Management amends 5 CFR part 532 as follows: PART 532--PREVAILING...

  6. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  7. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    Science.gov (United States)

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  8. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  9. Climate policy and ancillary benefits. A survey and integration into the modelling of international negotiations on climate change

    International Nuclear Information System (INIS)

    Pittel, Karen; Ruebbelke, Dirk T.G.

    2008-01-01

    Currently informal and formal international negotiations on climate change take place in an intensive way since the Kyoto Protocol expires already in 2012. A post-Kyoto regulation to combat global warming is not yet stipulated. Due to rapidly increasing greenhouse-gas emission levels, industrialized countries urge major polluters from the developing world like China and India to participate in a future agreement. Whether these developing countries will do so, depends on the prevailing incentives to participate in international climate protection efforts. This paper identifies ancillary benefits of climate policy to provide important incentives to attend a new international protocol and to positively affect the likelihood of accomplishing a post-Kyoto agreement which includes commitments of developing countries. (author)

  10. Climate windows for Polynesian voyaging to New Zealand and Easter Island.

    Science.gov (United States)

    Goodwin, Ian D; Browning, Stuart A; Anderson, Atholl J

    2014-10-14

    Debate about initial human migration across the immense area of East Polynesia has focused upon seafaring technology, both of navigation and canoe capabilities, while temporal variation in sailing conditions, notably through climate change, has received less attention. One model of Polynesian voyaging observes that as tradewind easterlies are currently dominant in the central Pacific, prehistoric colonization canoes voyaging eastward to and through central East Polynesia (CEP: Society, Tuamotu, Marquesas, Gambier, Southern Cook, and Austral Islands) and to Easter Island probably had a windward capacity. Similar arguments have been applied to voyaging from CEP to New Zealand against prevailing westerlies. An alternative view is that migration required reliable off-wind sailing routes. We investigate the marine climate and potential voyaging routes during the Medieval Climate Anomaly (MCA), A.D. 800-1300, when the initial colonization of CEP and New Zealand occurred. Paleoclimate data assimilation is used to reconstruct Pacific sea level pressure and wind field patterns at bidecadal resolution during the MCA. We argue here that changing wind field patterns associated with the MCA provided conditions in which voyaging to and from the most isolated East Polynesian islands, New Zealand, and Easter Island was readily possible by off-wind sailing. The intensification and poleward expansion of the Pacific subtropical anticyclone culminating in A.D. 1140-1260 opened an anomalous climate window for off-wind sailing routes to New Zealand from the Southern Austral Islands, the Southern Cook Islands, and Tonga/Fiji Islands.

  11. Global agricultural land resources--a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Florian Zabel

    Full Text Available Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981-2010, considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071-2100 with 1981-2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia. Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases.

  12. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    OpenAIRE

    Lundgren, Karin; Kjellström, Tord

    2013-01-01

    Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly elect...

  13. Optimization of Photovoltaic Electrolyzer Hybrid systems; taking into account the effect of climate conditions

    International Nuclear Information System (INIS)

    Sayedin, Farid; Maroufmashat, Azadeh; Sattari, Sourena; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • The optimal size of directly coupled Photovoltaic–Electrolyzer (PV/EL) is studied. • The effect of climate condition on the performance of PV/EL is studied. • PV/EL energy transfer loss and the levelized cost of hydrogen production minimized. • The model is applied to locations with different climate and solar irradiations. • Solar to electricity/electricity to hydrogen/solar to hydrogen efficiencies are derived. - Abstract: Solar energy will make a valuable contribution for power generation in the future. However the intermittency of solar energy has become an important issue in the utilization of PV system, especially small scale distributed solar energy conversion systems. The issue can be addressed through the management of production and storage of the energy in the form of hydrogen. The hydrogen can be produced by solar photovoltaic (PV) powered electrolysis of water. The amount of transferred energy to an electrolyzer from a PV module is a function of the distance between maximum power points (MPP) of PV module and the electrolyzer operating points. The distance can be minimized by optimizing the number of series and parallel units of the electrolyzer. However the maximum power points are subject to PV module characteristics, solar irradiation and ambient temperature. This means the climate condition can substantially influence the MPP and therefore the optimal size of the PV–Electrolyzer (PV/EL) system. On the other hand, system size can affect the levelized cost of hydrogen production as well. In this paper, the impact of climate conditions on the optimal size and operating conditions of a direct coupled photovoltaic–electrolyzer system has been studied. For this purpose, the optimal size of electrolyzer for six cities which have different climate condition is obtained by considering two solution scenarios, regarding two objectives which are annual energy transfer loss and levelized costs of hydrogen production and then the

  14. 76 FR 70365 - Prevailing Rate Systems; Redefinition of the Austin, TX and Waco, TX, Appropriated Fund Federal...

    Science.gov (United States)

    2011-11-14

    ... 3206-AM50 Prevailing Rate Systems; Redefinition of the Austin, TX and Waco, TX, Appropriated Fund... the Federal Prevailing Rate Advisory Committee to best match the counties proposed for redefinition to... Prevailing Rate Advisory Committee (FPRAC), the national labor-management committee responsible for advising...

  15. 77 FR 68073 - Prevailing Rate Systems; Redefinition of the St. Louis, MO; Southern Missouri; Cleveland, OH; and...

    Science.gov (United States)

    2012-11-15

    ... 3206-AM70 Prevailing Rate Systems; Redefinition of the St. Louis, MO; Southern Missouri; Cleveland, OH... Cleveland wage area. These changes are based on recent consensus recommendations of the Federal Prevailing... proposing the changes described below. The Federal Prevailing Rate Advisory Committee (FPRAC), the national...

  16. 75 FR 39460 - Prevailing Rate Systems; Redefinition of the Chicago, IL; Fort Wayne-Marion, IN; Indianapolis, IN...

    Science.gov (United States)

    2010-07-09

    ...-AM21 Prevailing Rate Systems; Redefinition of the Chicago, IL; Fort Wayne-Marion, IN; Indianapolis, IN... wage area. These changes are based on recent consensus recommendations of the Federal Prevailing Rate... below. The Federal Prevailing Rate Advisory Committee (FPRAC), the national labor-management committee...

  17. Performance Based Evaluation of Concrete Strength under Various Curing Conditions to Investigate Climate Change Effects

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Kim

    2015-07-01

    Full Text Available Recently, the manifestation of global warming-induced climate change has been observed through super typhoons, heavy snowfalls, torrential rains, and extended heat waves. These climate changes have been occurring all over the world and natural disasters have caused severe damage and deterioration of concrete structures and infrastructure. In an effort to deal with these problems due to extreme and abnormal climate changes, studies have been conducted to develop construction technologies and design guidelines. Nevertheless, study results applicable to construction sites continue to be ineffective and insufficient. Therefore, this study proposes ways to cope with climate change by considering the effect of concrete curing condition variations on concrete material performance. More specifically, the 3-, 7- and 28-day compressive and split tensile strength properties of concrete mix cured under various climatic factors including temperature, relative humidity, wind speed, and sunlight exposure time were evaluated to determine whether the concrete meets the current design requirements. Thereafter, a performance based evaluation (PBE was performed using satisfaction probabilities based on the test values to understand the problems associated with the current mix proportion design practice and to identify countermeasures to deal with climate change-induced curing conditions.

  18. Assessment of tourism and recreation destinations under climate change conditions in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Matzarakis, Andreas; Haemmerle, Martin [Freiburg Univ. (Germany). Meteorological Inst.; Endler, Christina [Freiburg Univ. (Germany). Meteorological Inst.; Research Center Human Biometeorology, Freiburg (Germany). German Weather Service; Muthers, Stefan [Freiburg Univ. (Germany). Meteorological Inst.; Bern Univ. (Switzerland). Climate and Environmental Physics; Bern Univ. (Switzerland). Oeschger Centre for Climate Change Research; Koch, Elisabeth [Central Institute for Meteorology and Geodynamcis, Vienna (Austria)

    2012-04-15

    Tourism and recreation are important economic factors which are directly connected to weather and climate of a specific destination. Based on the observation network of the Central Institute of Meteorology and Geodynamics of Austria (ZAMG), data of 37 stations has been collected and analysed for tourism and recreation purposes. The analysis was based on long term data sets which were processed in relevant ways for tourism and recreation, resulting in frequency diagrams of Physiologically Equivalent Temperature (PET) and precipitation. Additionally, we prepared the results according to the demands of tourism and recreation authorities and industry using the Climate-Tourism/Transfer-Information-Scheme (CTIS). Applying data from the regional climate models REMO and CLM we can provide information on future climate conditions in Austria's recreation areas. We chose two different time slices (2021-2050, 2071-2100) and IPCC emission scenarios (A1B, B1). The data was processed based on the threshold factors which are included in the CTIS (e.g. thermal comfort, heat stress, cold stress, sunshine, etc.). For the time slice 2021-2050 only moderate changes can be expected. But for 2071-2100 one can observe a distinct decrease of cold stress and the skiing potential. On the other hand, moderate increases of thermal comfort, heat stress, sultriness and sunshine are expected. No tendencies can be seen in precipitation and wind conditions. (orig.)

  19. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li

    2012-04-01

    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  20. Vulnerability of shortgrass prairie bird assemblages to climate change

    Science.gov (United States)

    Skagen, Susan K.; Dreitz, Victoria; Conrey, Reesa Y.; Yackel, Amy; Panjabi, Arvind O.; Knuffman, Lekha

    2016-01-01

    The habitats and resources needed to support grassland birds endemic to North American prairie ecosystems are seriously threatened by impending climate change. To assess the vulnerability of grassland birds to climate change, we consider various components of vulnerability, including sensitivity, exposure, and adaptive capacity (Glick et al. 2011). Sensitivity encompasses the innate characteristics of a species and, in this context, is related to a species’ tolerance to changes in weather patterns. Groundnesting birds, including prairie birds, are particularly responsive to heat waves combined with drought conditions, as revealed by abundance and distribution patterns (Albright et al. 2010). To further assess sensitivity, we estimated reproductive parameters of nearly 3000 breeding attempts of a suite of prairie birds relative to prevailing weather. Fluctuations in weather conditions in eastern Colorado, 1997-2014, influenced breeding performance of a suite of avian species endemic to the shortgrass prairie, many of which have experienced recent population declines. High summer temperatures and intense rain events corresponded with lower nest survival for most species. Although dry conditions favored nest survival of Burrowing Owls and Mountain Plovers (Conrey 2010, Dreitz et al. 2012), drought resulted in smaller clutch sizes and lower nest survival for passerines (Skagen and Yackel Adams 2012, Conrey et al. in review). Declining summer precipitation may reduce the likelihood that some passerine species can maintain stable breeding populations in this region of the shortgrass prairie.

  1. 78 FR 29657 - Prevailing Rate Systems; Definition of Vanderburgh County, Indiana, to a Nonappropriated Fund...

    Science.gov (United States)

    2013-05-21

    ...-AM82 Prevailing Rate Systems; Definition of Vanderburgh County, Indiana, to a Nonappropriated Fund... County, IN; and Jefferson and Pulaski Counties, MO. The Federal Prevailing Rate Advisory Committee, the... as follows: [[Page 29658

  2. Comparative transcriptome analysis of ginger variety Suprabha from two different agro-climatic zones of Odisha.

    Science.gov (United States)

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Mohanty, Sujata; Joshi, Raj Kumar; Subudhi, Enketeswara

    2016-09-01

    Ginger (Zingiber officinale Rosc.), a well-known member of family Zingiberaceae, is bestowed with number of medicinal properties which is because of the secondary metabolites, essential oil and oleoresin, it contains in its rhizome. The drug yielding potential is known to depend on agro-climatic conditions prevailing at the place cultivation. Present study deals with comparative transcriptome analysis of two sample of elite ginger variety Suprabha collected from two different agro-climatic zones of Odisha. Transcriptome assembly for both the samples was done using next generation sequencing methodology. The raw data of size 10.8 and 11.8 GB obtained from analysis of two rhizomes S1Z4 and S2Z5 collected from Bhubaneswar and Koraput and are available in NCBI accession number SAMN03761169 and SAMN03761176 respectively. We identified 60,452 and 54,748 transcripts using trinity tool respectively from ginger rhizome of S1Z4 and S2Z5. The transcript length varied from 300 bp to 15,213 bp and 8988 bp and N50 value of 1415 bp and 1334 bp respectively for S1Z4 and S2Z5. To the best of our knowledge, this is the first comparative transcriptome analysis of elite ginger cultivars Suprabha from two different agro-climatic conditions of Odisha, India which will help to understand the effect of agro-climatic conditions on differential expression of secondary metabolites.

  3. Assessing potential changes of chestnut productivity in Europe under future climate conditions

    Science.gov (United States)

    Calheiros, T.; Pereira, M. G.; Pinto, J. G.; Caramelo, L.; Gomes-Laranjo, J.; Dacamara, C. C.

    2012-04-01

    The European chestnut is cultivated for its nuts and wood. Several studies point to the dependency of chestnut productivity on specific soil and climate characteristics. For instance, this species dislikes chalky and poorly drained soils, appreciates sedimentary, siliceous and acidic to neutral soils. Chestnut trees also seems to appreciate annual mean values of sunlight spanning between 2400 and 2600 h, rainfall ranging between 600 and 1500 mm, mean annual temperature between 9 and 13°C, 27°C being the mean of the maximum temperature (Heiniger and Conedera, 1992; Gomes-Laranjo et al.,2008). The amount of heat between May and October must range between 1800°D and 2400°D (Dinis et al., 2011) . In Poland, the growing season is defined as the period of time when the mean 24-h temperature is greater than 5°C (Wilczynski and Podalski, 2007). In Portugal, maximum photosynthetic activity occurs at 24-28°C for adult trees, but exhibits more than 50% of termoinhibition when the air temperature is above 32°C, which is frequent during summer (Gomes- Laranjo et al., 2006, 2008). Recently Pereira et al (2011) identified a set of meteorological variables/parameters with high impact on chestnut productivity. The main purpose of this work is to assess the potential impacts of future climate change on chestnut productivity in Portugal as well as on European chestnut orchards. First, observed data from the European Climate assessment (ECA) and simulations with the Regional Circulation Model (RCM) COSMO-CLM for recent climate conditions are used to assess the ability of the RCM to model the actual meteorological conditions. Then, ensemble projections from the ECHAM5/COSMO-CLM model chain for two climate scenarios (A1B and B1) are used to estimate the values of relevant meteorological variables and parameters und future climate conditions. Simulated values are then compared with those obtained for present climate. Results point to changes in the spatial and temporal

  4. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO2 concentrations will increase...... carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO2. The methodology of static chamber CO2 flux measurements and applying the technology in a FACE (free air CO2 enrichment) facility is a challenge...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  5. Conditions for a market uptake of climate services for adaptation in France

    Directory of Open Access Journals (Sweden)

    Romain Cavelier

    2017-04-01

    Full Text Available This perspective paper reports the results of a collaborative survey of French research institutes concerned with environmental issues, which examined the potential for a market uptake of climate services for adaptation in France. The study is based on a review of existing reports on the market of climate services, and on interviews of 68 climate service providers and users in public and private organizations. Although the study does not allow to provide quantified estimations regarding the present and future size of the market, its results offer new perspectives with implications extending far beyond the sole case of France: first, while the market is still in its infancy, significant opportunities exist in sectors such as flooding risks, and, to a slightly lesser extent, hydro and nuclear energy and viticulture. In addition, the study identifies critical conditions for the uptake in climate services: (1 a coordinated delivery of data, information, expertise and training by public research institutes concerned with climate change and its impacts; (2 the inclusion of adaptation in the regulation and in public and private tenders. Finally, (3 uncertainties in climate projections appear as a major barrier to the uptake of climate services. However, ambitious greenhouse gas emission reduction as planned by the COP-21 Paris Agreement contribute to reducing this uncertainties by allowing users to select a subset of climate change projections, avoiding those for which adaptation is most problematic.

  6. Automatically Maintain Climatic Conditions inside Agricultural Greenhouses

    Directory of Open Access Journals (Sweden)

    Ali Jasim Ramadhan

    2016-11-01

    Full Text Available In this work, a novel system is designed to remote monitor / automatic control of the temperature, humidity and soil moisture of the agricultural greenhouses. In the proposed system, the author used the mentioned sensors for monitoring the climatic conditions of the agricultural greenhouses; and the system makes a controlling process to fix the required parameters for plant growth by running / stopping the fan, air exchanger and irrigation devices when any changes happened in these parameters. The presented system is based on XBee protocol in the implemented wireless sensor star topology network (WSN to monitor the agricultural greenhouses in real time, and used the GSM and Internet technologies to monitor the agricultural greenhouses from anywhere.

  7. Long-term sustainability of the landscape in new climatic conditions

    Science.gov (United States)

    Kubeckova, D.; Krocova, S.

    2017-10-01

    The long-term sustainability of the landscape and its natural environment must be the decisive task of the public administration and, in the wider concept, of every citizen. In new climatic conditions, this need has intensified. The following article suggests in a basic scope whether the above-mentioned task can be accomplished, and what means of solution should be used.

  8. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  9. Biocrust spectral response as affected by changing climatic conditions

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Guirado, Emilio; Escribano, Paula; Reyes, Andres; Weber, Bettina

    2017-04-01

    Drylands are characterized by scarce vegetation coverage and low rates of biological activity, both constrained by water scarcity. Under these conditions, biocrusts form key players of ecosystem functioning. They comprise complex poikilohydric communities of cyanobacteria, algae, lichens and bryophytes together with heterotrophic bacteria, archaea and fungi, which cover the uppermost soil layer. Biocrusts can cope with prolonged phases of drought, being rapidly re-activated when water becomes available again. Upon reactivation, biocrusts almost immediately turn green, fixing atmospheric carbon and nitrogen and increasing ecosystem productivity. However, due to their inconspicuous growth they have only rarely been analysed and spatially and temporally continuous information on their response to water pulses is missing. These data are particularly important under changing climatic conditions predicting an increase in aridity and variations in precipitation patterns within most of the dryland regions. In the present study, we used multi-temporal series of NDVI obtained from LANDSAT images to analyze biocrust and vegetation response to water pulses within the South African Succulent Karoo and we predicted their future response under different climate change scenarios. The results showed that biocrust and vegetation greenness are controlled by aridity, solar radiation and soil water content, showing similar annual patterns, with minimum values during dry periods that increased within the rainy season and decreased again after the onset of drought. However, biocrusts responded faster to water availability and turned green almost immediately after small rains, producing a small NDVI peak only few days after rainfall, whereas more time was needed for vegetation to grow new green tissue. However, once the photosynthetic tissue of vegetation was restored, it caused the highest increase of NDVI values after the rain. Predicted changes in precipitation patterns and aridity

  10. Climate classification and passive solar design implications in China

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Chris C.S.; Lam, Joseph C. [Building Energy Research Group, Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong (China); Yang, Liu [School of Architecture, Xi' an University of Architecture and Technology, Shaanxi 710055 (China)

    2007-07-15

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K{sub t}, as climatic variable. Five major solar climates were identified with annual average K{sub t} ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed. (author)

  11. Climate classification and passive solar design implications in China

    International Nuclear Information System (INIS)

    Lau, Chris C.S.; Lam, Joseph C.; Yang, Liu

    2007-01-01

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K t , as climatic variable. Five major solar climates were identified with annual average K t ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed

  12. Fair adaptation to climate change

    International Nuclear Information System (INIS)

    Paavola, Jouni; Adger, W. Neil

    2006-01-01

    This article identifies social justice dilemmas associated with the necessity to adapt to climate change, examines how they are currently addressed by the climate change regime, and proposes solutions to overcome prevailing gaps and ambiguities. We argue that the key justice dilemmas of adaptation include responsibility for climate change impacts, the level and burden sharing of assistance to vulnerable countries for adaptation, distribution of assistance between recipient countries and adaptation measures, and fair participation in planning and making decisions on adaptation. We demonstrate how the climate change regime largely omits responsibility but makes a general commitment to assistance. However, the regime has so far failed to operationalise assistance and has made only minor progress towards eliminating obstacles for fair participation. We propose the adoption of four principles for fair adaptation in the climate change regime. These include avoiding dangerous climate change, forward-looking responsibility, putting the most vulnerable first and equal participation of all. We argue that a safe maximum standard of 400-500 ppm of CO 2 concentrations in the atmosphere and a carbon tax of $20-50 per carbon equivalent ton could provide the initial instruments for operationalising the principles. (author)

  13. Ocean climate and seal condition

    Directory of Open Access Journals (Sweden)

    Crocker Daniel E

    2005-03-01

    Full Text Available Abstract Background The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. Results The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Conclusion Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  14. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  15. Hotter and drier conditions in the near future (2010-2035) might paradoxically improve the general adaptive capacity of a viticultural social-ecological system in Roussillon, southern France, exposed to long-term climatic and economic changes

    Science.gov (United States)

    Lereboullet, Anne-Laure; Beltrando, Gérard

    2014-05-01

    Background: Wine production in Roussillon, southern France, has been subjected to deep structural changes in cultural practices since the 1970's, due to changes in demand and market organization. In this Mediterranean region, temperature and rainfall parameters have long been adapted to fortified wine production, but might be less suited to dry wine production, which is nowadays prevailing. The wine industry in Roussillon can be studied as a social-ecological system where local economical and social characteristics are strongly linked to physical inputs. Thus changes in climate, especially warming and drying trends that have been detected and projected by the IPCC in the Mediterranean basin, may disrupt the local economy and social organization in the long term. The aim of our study is to assess the role played by recent (1956-2010) and near-future (2010-2035) changes in temperature and rainfall inputs in the evolution of the system's adaptive capacity to combined long term climatic and economic changes. Methods: Our study combined quantitative and qualitative data. We first assessed recent exposure to climate change by analysing change in daily data of temperature and rainfall observed in Perpignan weather station from 1956 to 2010. Thirty-nine in-depth interviews with local producers and key stakeholders of the local wine industry helped us understand the impacts of recent climatic conditions in the system's adaptive capacity. Then, we measured future changes in temperature and rainfall based on daily data simulated by ARPEGE-Climat (SCRATCH10 dataset) at an 8-km spatial scale, for emission scenarios A2, A1B and B1, up to 2060. Based on the impacts of recent changes in the system, we inferred the possible impacts of future climate change on the system's equilibrium. Results and discussion: Climate data analyses show that changes in temperatures and rainfall patterns have occurred in Perpignan since the mid-1980's, and that current (2001-2010) conditions are

  16. PREVAIL: latest electron optics results

    Science.gov (United States)

    Pfeiffer, Hans C.; Golladay, Steven D.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Rockrohr, James D.; Stickel, Werner; Yamaguchi, Takeshi; Okamoto, Kazuya; Umemoto, Takaaki; Shimizu, Hiroyasu; Kojima, Shinichi; Hamashima, Muneki

    2002-07-01

    The PREVAIL electron optics subsystem developed by IBM has been installed at Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial EPL stepper. The cornerstone of the electron optics design is the Curvilinear Variable Axis Lens (CVAL) technique originally demonstrated with a proof of concept system. This paper presents the latest experimental results obtained with the electron optical subsystem at Nikon's facility. The results include micrographs illustrating proper CVAL operation through the spatial resolution achieved over the entire optical field of view. They also include data on the most critical issue of the EPL exposure approach: subfield stitching. The methodology of distortion correction will be described and both micrographs and metrology data of stitched subfields will be presented. This paper represents a progress report of the IBM/Nikon alliance activity on EPL.

  17. 78 FR 60181 - Prevailing Rate Systems; Redefinition of the Clayton-Cobb-Fulton, Georgia, Nonappropriated Fund...

    Science.gov (United States)

    2013-10-01

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM84 Prevailing Rate Systems; Redefinition of the Clayton-Cobb-Fulton, Georgia, Nonappropriated Fund Federal Wage System Wage Area AGENCY: U.S... Counties). The Federal Prevailing Rate Advisory Committee, the national labor-management committee...

  18. Evaluation of growth and flowering potential of rosa hybrida cultivars under Faisalabad climatic conditions

    International Nuclear Information System (INIS)

    Nadeem, M.; Khan, M.A.; Riaz, A.

    2011-01-01

    Exotic cultivars of hybrid roses respond uncertainly to new habitat. It is necessary to explore the potential of the introduced cultivars to judge the suitability in a new habitat. In the present study, nine Rosa hybrida cultivars including Autumn Sunset, Ice Berg, Paradise, Angel Face, Louise Odier, Casino, Grand Margina, Handel and Gruss-an-Teplitz were evaluated for growth and yield attributed under the climatic conditions of Faisalabad. Results indicated that there was decreasing trend in the growth and flowering of the bushes as the temperature increased above 32 degree C and humidity decreased to 29 %. Number of flowers per bush and diameter of flower decreased as the temperature increased and humidity decreased in contrast to increment in height of the plant and num ber of primary branches per plant in succeeding months. Interaction between yield traits and months was also significant. Overall, significant variations were observed in each cultivar for length and number of petals per flower, number of prickles, fragrance, flower persistence life and color, bush shape and overall performance with respect to climatic conditions of Faisalabad. It is concluded that the cultivars 'Autumn Sunset' and Gruss-an-Teplitz performed better in climatic conditions of Faisalabad. (author)

  19. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  20. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    OpenAIRE

    Mills, SC; Barrows, TT; Telfer, MW; Fifield, LK

    2017-01-01

    publisher: Elsevier articletitle: The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa journaltitle: Geomorphology articlelink: http://dx.doi.org/10.1016/j.geomorph.2016.11.011 content_type: article copyright: Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

  1. Is the Economic Crisis Challenging the Prevailing Gender Regime?

    DEFF Research Database (Denmark)

    Leschke, Janine; Jepsen, Maria

    2014-01-01

    and analysing the corresponding position of women and men in paid and unpaid work, the paper contains an in-depth discussion of the short- and medium-term policy responses to the crisis. Our analysis shows that independent of the prevailing gender regime, scant public attention has been directed to gender...

  2. The influence of climatic conditions changes on grain yield in Winter Triticale (X Triticosecale Wittm.

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2017-05-01

    Full Text Available The aim of this paper is making out the influence of climatic changes on grain yield of winter triticale in relation with applied fertilizer. The influence of environmental conditions on growing and development of triticale plants depends of grow stages and their duration. During five experimental years (2010-2015 the climatic conditions were different year to year, with an accentuated heating trend, influencing plant phenology, accelerating or slowing down some important processes disturbing grain yield formation. The influence of drought is more accentuated by heating stress and prolonging of these conditions during the main phenological processes have a negative influence on plant growth or development with effect on the grain yield formation process.

  3. Rainfall and net infiltration probabilities for future climate conditions at Yucca Mountain

    International Nuclear Information System (INIS)

    Long, A.; Childs, S.W.

    1993-01-01

    Performance assessment of repository integrity is a task rendered difficult because it requires predicting the future. This challenge has occupied many scientists who realize that the best assessments are required to maximize the probability of successful repository sitting and design. As part of a performance assessment effort directed by the EPRI, the authors have used probabilistic methods to assess the magnitude and timing of net infiltration at Yucca Mountain. A mathematical model for net infiltration previously published incorporated a probabilistic treatment of climate, surface hydrologic processes and a mathematical model of the infiltration process. In this paper, we present the details of the climatological analysis. The precipitation model is event-based, simulating characteristics of modern rainfall near Yucca Mountain, then extending the model to most likely values for different degrees of pluvial climates. Next the precipitation event model is fed into a process-based infiltration model that considers spatial variability in parameters relevant to net infiltration of Yucca Mountain. The model predicts that average annual net infiltration at Yucca Mountain will range from a mean of about 1 mm under present climatic conditions to a mean of at least 2.4 mm under full glacial (pluvial) conditions. Considerable variations about these means are expected to occur from year-to-year

  4. A case for 'prevailing ecology' as premium determinant in home ...

    African Journals Online (AJOL)

    A case for 'prevailing ecology' as premium determinant in home-based child care ... Ewe mothers located in Dzemeni a migrant, lakeside community in Ghana. ... It builds a case from the analysis of definitions and concepts in care literature.

  5. Why would plant species become extinct locally if growing conditions improve?

    NARCIS (Netherlands)

    Kramer, K.; Bijlsma, R.J.; Hickler, T.; Thuiller, W.

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing

  6. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    Science.gov (United States)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2016-03-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  7. Variation of moisture content of some varnished woods in indoor climatic conditions

    Directory of Open Access Journals (Sweden)

    Kemal Üçüncü

    2017-11-01

    Full Text Available In this study, moisture change of varnished wood of black poplar (Populus nigra and yellow pine (Pinus silvestris L. used in indoor climate conditions with central heating in Trabzon (Turkey were investigated. 300 mm length wood specimens, with cross section of 12.5 mm in tangential and in radial and with the square sections of 25mm and 50 mm, were obtained from two species grown in Kanuni Campus of the Karadeniz Technical University. In this research, un-varnished wood samples were also used for reference. The wood moisture content was determined by the weighing method, the wood equilibrium moisture content by the Hailwood-Horrobin equation, and the relative humidity in the indoor climatic conditions by humid air thermodynamic principles. As a result; it was observed that the moisture content of varnished wood samples has a strong relationship with equilibrium moisture content, temperature and relative humidity. It was found that the moisture content of varnished woods was higher than the moisture content of un-varnished woods in the same climatic conditions. It was observed that the difference between the monthly average moisture content was lower in varnished woods in proportion to un-varnished woods. According to these results, it can be indicated that it would be more appropriate to select higher moisture content in the drying of wood than the equilibrium moisture content. Such an application would also reduce drying costs. Further, it can be recommended to use varnished wood in various applications because the low change range of average moisture content can affect the swelling or shrinking of wood.

  8. How do Changes in Hydro-Climate Conditions Alter the Risk of Infection With Fasciolosis?

    Science.gov (United States)

    Beltrame, L.; Dunne, T.; Rose, H.; Walker, J.; Morgan, E.; Vickerman, P.; Wagener, T.

    2017-12-01

    Fasciolosis is a widespread parasitic disease of livestock and is emerging as a major zoonosis. Since the parasite and its intermediate host live and develop in the environment, risk of infection is directly affected by climatic-environmental conditions. Changes in disease prevalence, seasonality and distribution have been reported in recent years and attributed to altered temperature and rainfall patterns, raising concerns about the effects of climate change in the future. Therefore, it is urgent to understand how changes in climate-environmental drivers may alter the dynamics of disease risk in a quantitative way, to guide parasite control strategies and interventions in the coming decades. In a previous work, we developed and tested a novel mechanistic hydro-epidemiological model for Fasciolosis, which explicitly represents the parasite life-cycle in connection with key environmental processes, allowing to capture the impact of previously unseen conditions. In this study, we use the new mechanistic model to assess the sensitivity of infection rates to changes in climate-environmental factors. This is challenging as processes underlying disease transmission are complex and interacting, and may have contrasting effects on the parasite life-cycle stages. To this end, we set up a sensitivity analysis framework to investigate in a structured way which factors play a key role in controlling the magnitude, timing and spread of infection, and how the sensitivity of disease risk varies in time and space. Moreover, we define synthetic scenarios to explore the space of possible variability of the hydro-climate drivers and investigate conditions that lead to critical levels of infection. The study shows how the new model combined with the sensitivity analysis framework can support decision-making, providing useful information for disease management.

  9. Exergy characteristics of a ceiling-type residential air conditioning system operating under different climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Arif [Dept. of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, Adana (Turkmenistan)

    2016-11-15

    In this study an energy and exergy analysis of a Ceiling-type residential air conditioning (CTRAC) system operating under different climatic conditions have been investigated for provinces within the different geographic regions of Turkey. Primarily, the hourly cooling load capacities of a sample building (Q{sub evap}) during the months of April, May, June, July, August and September were determined. The hourly total heat gain of the sample building was determined using the Hourly analysis program (HAP). The Coefficient of performance (COP), exergy efficiency (η) and exergy destruction (Ex{sub dest}) values for the whole system and for each component were obtained. The results showed that lower atmospheric temperature (T{sub atm}) influenced the performance of the system and each of its components.

  10. Climate Change and water resources: Scenarios of low-flow conditions in the Upper Danube River Basin

    International Nuclear Information System (INIS)

    Mauser, W; Marke, T; Stoeber, S

    2008-01-01

    Global Climate Change will have regional impacts on the water resources and will force water resources managers and farmers to adapt. Both low-flow and its duration are critical hydrological parameters, which strongly influence the state of aquatic ecosystems as well as power production, reservoir management and industry. Impacts of future climate change is analysed using scenarios for the change of meteorological drivers and regional hydrological simulation models. The project GLOWA-Danube (www.glowa-danube.de) develops integrative modelling techniques combining process knowledge from both natural and social sciences to examine the sustainability of regional water systems as well as water management alternatives in the Upper Danube watershed (A = 77000 km 2 ). Special emphasis is given to changes in low-flow condition. DANUBIA describes the regional water cycle both physical and spatially distributed. It consists of a collection of tightly coupled models, which strictly preserve energy and matter and are not calibrated to maximise their overall predictive abilities. The paper demonstrates that DANUBIA can reproduce the daily discharge for the time period from 1971-2003 with a Nash-Suttcliffe coefficient of 0.84 (gauge Achleiten). Based on a statistical climate simulator 12 realisations of the IPCC A1B climate scenario were used to investigate impacts of climate change during the simulation period of 2011-2060. The change in discharge and frequency of occurrences of low-flow in the watershed for the scenario ensemble were analysed for the outlet gauge. The analysis shows that strong changes were simulated in the frequency of occurrences of low-flow conditions. The changing climate gradually reduces a 50-years NM7Q discharge of today to less than half of its discharge in the year 2060. These results clearly indicate that the expected climate change will strongly alter the low-flow conditions in the Upper Danube watershed.

  11. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Directory of Open Access Journals (Sweden)

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  12. Self-Handicapping in School Physical Education: The Influence of the Motivational Climate

    Science.gov (United States)

    Standage, Martyn; Treasure, Darren C.; Hooper, Katherine; Kuczka, Kendy

    2007-01-01

    Background: Self-handicapping is an attribution-related process whereby individuals create performance impediments/excuses to protect self-worth in socially evaluative environments. Thus, the prevailing motivational climate would appear to be an important factor when attempting to understand the situational self-handicapping process within school…

  13. Groundwater-supported evapotranspiration within glaciated watersheds under conditions of climate change

    Science.gov (United States)

    Cohen, D.; Person, M.; Daannen, R.; Locke, S.; Dahlstrom, D.; Zabielski, V.; Winter, T.C.; Rosenberry, D.O.; Wright, H.; Ito, E.; Nieber, J.L.; Gutowski, W.J.

    2006-01-01

    This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970-1993) and lake-level (1924-2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2-4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge

  14. Diverging responses of tropical Andean biomes under future climate conditions.

    Directory of Open Access Journals (Sweden)

    Carolina Tovar

    Full Text Available Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%, there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar

  15. The Climate for Steel. Actions for, and conditions to, a Copenhagen climate agreement from the perspective of the EU steel sector

    International Nuclear Information System (INIS)

    Slingerland, S.; Werring, L.; De Bruijn, S.; Korteland, M.

    2009-02-01

    A position paper discussing the relationship between climate change policies and competitiveness in the global steel sector. Question is how the need for effective action to confront global climate change can be combined with a level playing field for competition in the global steel sector, taking into account the position of Corus Netherlands as a European steel producer. More specifically; what conditions in an international agreement could provide such a level playing field? Chapter 2 of this paper briefly outlines some essential characteristics of the global and European steel sector. Chapter 3 outlines the present status quo of the multilateral climate change negotiation process towards the December 2009 Copenhagen conference. Chapter 4 gives a view on climate and competitiveness for the EU steel sector. Chapter 5 finally provides conclusions and recommendations for provisions in an international agreement that could provide for a competitive level playing field in the steel sector

  16. Climate change and future overwintering conditions of horticultural woody-plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Laapas, M.; Jylhae, K.; Tuomenvirta, H. (Finnish Meteorological Inst., Helsinki (Finland))

    2012-07-01

    Climate in Finland offers challenging conditions for commercial horticulture. The short and insufficient growing season together with risky overwintering strongly limits species suitable for cultivation. The aim of this study was to examine the climatic conditions around Finland in the aspect of horticulture, focusing on processes relevant to woody plants and species with photoperiod controlled growth cessation, and how these conditions may be expected to change due to the projected global warming. For this, a set of temperature-related indices and threshold events were used. These indices represent the severity of coldness during winter, wintertime thaws, and frost events close to the onset and ending of the growing season. The combined results of 19 GCMs (General Circulation Model) from the CMIP3 (Coupled Model Intercomparison Project 3) multi-model data set under SRES-B1 and SRES-A2 (Special Report on Emission Scenarios) emission scenarios were used to produce the future projections. By mid-century our results suggest wintertime conditions with reduced cold stress, caused by less frequent and shorter periods of severe frost together with a rise in the extreme minimum temperature. Conversely, an increase in the number and intensity of wintertime thaw events leads to a higher risk in overwintering. Also the risk of spring frost damage is projected to decrease slightly, and the conditions for cold hardening process to improve, as the first autumnal frosts occur later. (orig.)

  17. Slarti: A boundary condition editor for a coupled climate model

    Science.gov (United States)

    Mickelson, S. A.; Jacob, R. L.; Pierrehumbert, R.

    2006-12-01

    One of the largest barriers to making climate models more flexible is the difficulty in creating new boundary conditions, especially for "deep time" paleoclimate cases where continents are in different positions. Climate models consist of several mutually-interacting component models and the boundary conditions must be consistent between them. We have developed a program called Slarti which uses a Graphical User Interface and a set of consistency rules to aid researchers in creating new, consistent, boundary condition files for the Fast Ocean Atmosphere Model (FOAM). Users can start from existing mask, topography, or bathymetry data or can build a "world" entirely from scratch (e.g. a single island continent). Once a case has been started, users can modify mask, vegetation, bathymetry, topography, and river flow fields by drawing new data through a "paint" interface. Users activate a synchronization button which goes through the fields to eliminate inconsistencies. When the changes are complete and save is selected, Slarti creates all the necessary files for an initial run of FOAM. The data is edited at the highest resolution (the ocean-land surface in FOAM) and then interpolated to the atmosphere resolution. Slarti was implemented in Java to maintain portability across platforms. We also relied heavily on Java Swing components to create the interface. This allowed us to create an object-oriented interface that could be used on many different systems. Since Slarti allows users to visualize their changes, they are able to see areas that may cause problems when the model is ran. Some examples would be lakes from the river flow field and narrow trenches within the bathymetry. Through different checks and options available through its interface, Slarti makes the process of creating new boundary conditions for FOAM easier and faster while reducing the chance for user errors.

  18. On the role of model depth and hydraulic properties for groundwater flow modelling during glacial climate conditions

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Rhen, Ingvar

    2011-03-01

    A common assumption in regional groundwater flow simulations of periods with glacial climate conditions is that the salinity at the bottom boundary of the model domain is stable (constant over time). This assumption is partly based on the general fact that water density increases with increasing salinity, but also supported by measurements, e.g. the mobile (fracture water) and immobile (porewater) salinity typically increase with depth, whereas the conductive fracture frequency and fracture transmissivity often decrease with depth. Plausibly, the depth to stable hydrogeological conditions varies between sites, and the question studied here is whether hydrogeological disturbances could occur at 2-4 km depth during glacial climate conditions. With regard to the results of SDM-Site and SR-Site, the hydrogeological conditions at repository depth indicate less groundwater flow during glacial climate conditions at Forsmark than at Laxemar. For this reason, this study uses the Laxemar site as a hypothetical site of potentially more permeable conditions, hence more readily affected during glacial climate conditions. A series of flow simulations conducted with DarcyTools in an approximately 5 km deep, super-regional model domain centred on the Laxemar site are reported. The studied cases (model variants) represent a variety of different property specifications along with variations in initial conditions concerning salinity. The model domain is subjected to a transient top boundary representing an advancing ice sheet margin. The behaviour of the grid cell pressure, Darcy flux and mobile salinity is monitored at four different elevations along a vertical scan line through the centre of the suggested location for a KBS-3 repository at Laxemar. The studied monitoring points are located at -0.5 km, -2.5 km, -3.0 km, and -3.5 km. These elevations are chosen with the objective to study the range of hydrogeological disturbance that could occur at 2-4 km depth. The flow model is run

  19. On the role of model depth and hydraulic properties for groundwater flow modelling during glacial climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB (Sweden)); Rhen, Ingvar (SWECO Environment AB (Sweden))

    2011-03-15

    A common assumption in regional groundwater flow simulations of periods with glacial climate conditions is that the salinity at the bottom boundary of the model domain is stable (constant over time). This assumption is partly based on the general fact that water density increases with increasing salinity, but also supported by measurements, e.g. the mobile (fracture water) and immobile (porewater) salinity typically increase with depth, whereas the conductive fracture frequency and fracture transmissivity often decrease with depth. Plausibly, the depth to stable hydrogeological conditions varies between sites, and the question studied here is whether hydrogeological disturbances could occur at 2-4 km depth during glacial climate conditions. With regard to the results of SDM-Site and SR-Site, the hydrogeological conditions at repository depth indicate less groundwater flow during glacial climate conditions at Forsmark than at Laxemar. For this reason, this study uses the Laxemar site as a hypothetical site of potentially more permeable conditions, hence more readily affected during glacial climate conditions. A series of flow simulations conducted with DarcyTools in an approximately 5 km deep, super-regional model domain centred on the Laxemar site are reported. The studied cases (model variants) represent a variety of different property specifications along with variations in initial conditions concerning salinity. The model domain is subjected to a transient top boundary representing an advancing ice sheet margin. The behaviour of the grid cell pressure, Darcy flux and mobile salinity is monitored at four different elevations along a vertical scan line through the centre of the suggested location for a KBS-3 repository at Laxemar. The studied monitoring points are located at -0.5 km, -2.5 km, -3.0 km, and -3.5 km. These elevations are chosen with the objective to study the range of hydrogeological disturbance that could occur at 2-4 km depth. The flow model is run

  20. Smart city planning under the climate change condition

    Science.gov (United States)

    Deng, Dexiang; Zhao, Yue; Zhou, Xi

    2017-08-01

    With the aggravation of climate change, extreme weather events occur continuously, cities are not resilient to climate change, and we need to change the concept of urban planning, centering on climate research and its research achievements, combining with the modern intelligent technology and formulating a smart city that resilience to the climate change, realizing the sustainable development of human, city, environment and society.

  1. The uncertainty cascade in flood risk assessment under changing climatic conditions - the Biala Tarnowska case study

    Science.gov (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata

    2016-04-01

    Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the

  2. Comment on "Donders, T.H. 2014. Middle Holocene humidity increase in Florida: climate or sea-level? Quaternary Science Reviews 103:170-174."

    Science.gov (United States)

    Glaser, Paul H.; Hansen, Barbara CS; Donovan, Joseph J.; Givnish, Thomas J.; Stricker, Craig A.; Volin, John C.

    2015-01-01

    Donders (2014) has recently proposed that the climate of Florida became progressively wetter over the past 5000 years in response to a marked strengthening of the El Niño regime. This reconstruction is largely based on a re-analysis of pollen records from regions north of Lake Okeechobee (Fig. 1) using a new set of pollen transfer functions. Donders concluded that a latitudinal gradient in precipitation prevailed across Florida since the mid Holocene, but the overall trend was toward progressively wetter conditions from 5000 cal BP to the present.

  3. Conditions for Emergence, Stability and Change in New Organizations in the Field of Citizens Climate Action

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina

    Climate change represents a crisis of tangible measure and the emergence of a field of action within which acting today needs to be motivated for what can contribute to benefit climate and transform society into a low carbon tomorrow. With the breadth and scope of citizen action on climate change....... This contribution is concerned with the latter. It proposes that using field analysis it is possible to understand conditions of emergence, stability and change in citizen engagement in climate action. The present contribution offers only a preliminary exploration of possibilities for how using field theory can...

  4. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  5. Disparity in elevational shifts of European trees in response to recent climate warming.

    Science.gov (United States)

    Rabasa, Sonia G; Granda, Elena; Benavides, Raquel; Kunstler, Georges; Espelta, Josep M; Ogaya, Romá; Peñuelas, Josep; Scherer-Lorenzen, Michael; Gil, Wojciech; Grodzki, Wojciech; Ambrozy, Slawomir; Bergh, Johan; Hódar, José A; Zamora, Regino; Valladares, Fernando

    2013-08-01

    Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography. © 2013 John Wiley & Sons Ltd.

  6. Impact of the climate change on the West coast of Algeria: Gulf of Oran, Arzew and Mostaganem.

    Directory of Open Access Journals (Sweden)

    Fatima Kies

    2014-10-01

    Full Text Available Different hydro climatic conditions at and above a continental shelf have significant effects on the ecology of the environment (temperature, nutrient richness and pelagic production. Indeed, bioclimatic changes defined clearly reflects the prevailing conditions imposed above the continental shelf. Based on contributions made to the sea (rainfall, temperature, wind ... and those put together by the internal dynamics can be distinguished marine years that correspond to low enrichment in terms of any change in continental and marine conditions generally short and strong enrichment of years corresponding to eventful years and transformations of continental and marine conditions, strong shifts in time. Thus, a hot or cold but very fluctuating period influence the marine ecosystem and phytoplankton growth. Also, the impact of development on the coastal and marine environment is localized mainly in the coastal metropolitan areas characterized by high urbanization and concentration of activities.

  7. Sustained Large-Scale Collective Climate Action Supported by Effective Climate Change Education Practice

    Science.gov (United States)

    Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.

    2017-12-01

    Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be

  8. Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach

    Directory of Open Access Journals (Sweden)

    C. Martín-Puertas

    2010-12-01

    Full Text Available A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G and terrestrial (Zoñar Lake, Andalucia, Spain geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP. Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.

  9. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  10. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  11. Performance evaluation of a solar adsorption chiller under different climatic conditions

    International Nuclear Information System (INIS)

    Alahmer, Ali; Wang, Xiaolin; Al-Rbaihat, Raed; Amanul Alam, K.C.; Saha, B.B.

    2016-01-01

    Highlights: • A solar adsorption cooling system was studied at different climatic conditions. • Effect of hot water temperature and flow rate on system performance was evaluated. • Solar collector area and tilting angle largely affected the system performance. • Economics of the solar adsorption cooling was analysed at real weather conditions. • Adsorption cooling could be potentially applied in cities with good solar radiation. - Abstract: Performance of an adsorption cooling system driven by solar thermal energy was studied under different climatic conditions. The effects of solar collector area, collector slope, hot water temperature and flow rate on the system performance were investigated using the real-time weather data of two cities: Perth, Australia (a representative city in the southern hemisphere) and Amman, Jordan (a representative city in the northern hemisphere). The simulation results showed that the two cities had similar solar radiation during the summer period and that the solar adsorption chiller could reliably provide cooling at a reasonably high system COP. For residential cooling with a total CPC (Compound Parabolic Collector) solar collector area of 36.22 m"2, the average system COP was 0.491 for Perth weather conditions and 0.467 for Amman weather conditions, respectively while the cooling capacity was 10.3 kW for Perth and 8.46 kW for Amman, respectively at peak times. Optimum performance occurred when the system run with the CPC collector slope of around 30°, the solar water storage tank volume of 1.4 m"3, inlet hot water temperature of 80 °C, and a hot water flow rate of 0.33 kg/s. An economic analysis was further investigated and the results showed that the solar driven adsorption cooling system could reduce the electricity consumption for Perth and Amman cities by 34% and 28%, respectively in comparison to a conventional vapour compression cooling system.

  12. Problems and Ways of Improving the Business Climate in the Regions

    Directory of Open Access Journals (Sweden)

    Nazym Aminovna Uruzbaeva

    2016-03-01

    Full Text Available The existence of the specific conditions and development factors of small and medium-sized enterprises (SMEs in the regions of Kazakhstan supposes the differentiated state policy in order to maintain a favorable business climate. The article presents the results of the research whose purpose was to determine the main issues and directions of the improvement of the business climate in the regions. This allows to intensify the activities of local authorities in support of SMEs considering the peculiarities of the territories’ development. The subject matter of this research is the conditions and factors generating the business climate of the region. As a hypothesis, a direct connection between the prevailing regional business climate and the development of the quantitative indicators of active SMEs in the field was assumed. The study used the method of comparative analysis, sociological methods of focus groups, survey research, statistical methods and statistical methods of ranking and grouping. The article theoretically substantiates the correctness of the usage of «business climate» category as a scope of the study in the framework of the project of «Implementation of «Business Climate» as an Independent Rating», which makes possible the argumentation of the used methodology and concretization of the factors affecting the functioning of SMEs in the regions. This research has confirmed the direct correlation between the established business climate in the regions and quantitative indicators of the development of SMEs at the local level. Such factors as “financial resources” and “government support” have been determined as limiting the business development in a greater degree. In conclusion, a set of measures to improve the business climate in the region both at national and regional levels of government has been provided. In addition, it has been concluded that to generate a favorable business environment in the regions of

  13. 76 FR 14679 - Prevailing Wage Rates for Construction Occupations on Guam for Purposes of the H-2B Temporary...

    Science.gov (United States)

    2011-03-17

    ...)(v)(E) and (F). If the prevailing wage rate is too low, available U.S. workers may be dissuaded from... Docket No. USCIS-2010-0006] RIN 1615-ZA98 Prevailing Wage Rates for Construction Occupations on Guam for... the public on the system that the Governor of Guam is using to determine prevailing wage rates for...

  14. Climate change and climate variability impacts on rainfed agricultural activities and possible adaptation measures. A Mexican case study

    Energy Technology Data Exchange (ETDEWEB)

    Conde, C.; Ferrer, R. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico Circuito Exterior, Mexico, D.F. (Mexico)]. E-mail: e-mail: conde@servidor.unam.mx; Orozco, S. [Escuela de Agrobiologia, Universidad Autonoma de Tlaxcala, Tlaxcala (Mexico)

    2006-07-15

    Climate extreme events (such as those associated to strong El Nino events) highly affect Mexican agriculture, since more than sixty percent of it is rainfed. The basic crop cultivated is maize, which is still the main source of nutrients for a large portion of the rural population in the country. Within the project Capacity Building for Stage II Adaptation to Climate Change in Central America, Mexico and Cuba, we analyze the strategies developed by maize producers in the central region of the country to cope with climatic adverse events. Impact on rainfed maize due to climate variability and climate change conditions are studied using a crop simulation model. Several adaptation measures can be evaluated using that model. However, the effect of other stressors must be considered in an assessment of the adaptive capacity of small farmers to climate variability and change. Key stakeholders' involvement in the region helped us to decide which of the adaptive measures could be viable under the current conditions and under future climatic conditions. The construction of greenhouses, the use of compost, and dripping irrigation, were some of the techniques selected with the participation of the stakeholders. The enthusiastic responses to these measures allow us to consider that they can prevail in the future, under climate change conditions. However, the adaptation to climate change includes -besides the stated techniques- the generation of the capacities to cope with climatic adverse events, that is, to enhance the adaptive capacities to climate change among the key stakeholders. [Spanish] Los eventos climaticos extremos (como los asociados con eventos fuertes de El Nino) afectan de manera importante a la agricultura mexicana, ya que mas del sesenta por ciento de ella es de temporal, esto es, depende fundamentalmente de una buena temporada de lluvias para producir. El cultivo que se siembra es basicamente maiz, que todavia es la principal fuente de nutrientes para

  15. A Database for Climatic Conditions around Europe for Promoting GSHP Solutions

    Directory of Open Access Journals (Sweden)

    Michele De Carli

    2018-02-01

    Full Text Available Weather plays an important role for energy uses in buildings. For this reason, it is required to define the proper boundary conditions in terms of the different parameters affecting energy and comfort in buildings. They are also the basis for determining the ground temperature in different locations, as well as for determining the potential for using geothermal energy. This paper presents a database for climates in Europe that has been used in a freeware tool developed as part of the H2020 research project named “Cheap-GSHPs”. The standard Köppen-Geiger climate classification has been matched with the weather data provided by the ENERGYPLUS and METEONORM software database. The Test Reference Years of more than 300 locations have been considered. These locations have been labelled according to the degree-days for heating and cooling, as well as by the Köppen-Geiger scale. A comprehensive data set of weather conditions in Europe has been created and used as input for a GSHP sizing software, helping the user in selecting the weather conditions closest to the location of interest. The proposed method is based on lapse rates and has been tested at two locations in Switzerland and Ireland. It has been demonstrated as quite valid for the project purposes, considering the spatial distribution and density of available data and the lower computing load, in particular for locations where altitude is the main factor controlling on the temperature variations.

  16. An economic analysis of climate negotiations: Deciphering a set of incentives for participating, acting and making commitments

    International Nuclear Information System (INIS)

    Albertini, Jean-Paul; Perrissin Fabert, Baptiste

    2015-01-01

    Given the complexity of situations, negotiations face the daunting task of motivating 'sovereign' nation-states to cooperate in the fight against climate change. As game theory shows, the interest of rational countries is always to shift the weight of efforts for curbing greenhouse gas emissions onto others so as to profit from climate policies without having to bear the costs. Although it does not account for the full complexity - historical, institutional and ethical - of a country's diplomatic motives for cooperating, the theory does shed light on the conditions for the emergence of solutions based on cooperation. An agreement ultimately comes out of a compromise between economic efficiency, a participation as broad as possible among signatories, and the goals adopted for preserving the climate. Given the shift in paradigms during negotiations at Cancun and the more decentralized approach that has prevailed since then, how credible is a worldwide goal like the 2 deg. C limit set for global warming? These factors force us to reconsider the commitments that countries can reasonably make

  17. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    Science.gov (United States)

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Carryover effects and climatic conditions influence the postfledging survival of greater sage-grouse

    Science.gov (United States)

    Blomberg, Erik J.; Sedinger, James S.; Gibson, Daniel; Coates, Peter S.; Casazza, Michael L.

    2014-01-01

    Prebreeding survival is an important life history component that affects both parental fitness and population persistence. In birds, prebreeding can be separated into pre- and postfledging periods; carryover effects from the prefledging period may influence postfledging survival. We investigated effects of body condition at fledging, and climatic variation, on postfledging survival of radio-marked greater sage-grouse (Centrocercus urophasianus) in the Great Basin Desert of the western United States. We hypothesized that body condition would influence postfledging survival as a carryover effect from the prefledging period, and we predicted that climatic variation may mediate this carryover effect or, alternatively, would act directly on survival during the postfledging period. Individual body condition had a strong positive effect on postfledging survival of juvenile females, suggesting carryover effects from the prefledging period. Females in the upper 25th percentile of body condition scores had a postfledging survival probability more than twice that (Φ = 0.51 ± 0.06 SE) of females in the bottom 25th percentile (Φ = 0.21 ± 0.05 SE). A similar effect could not be detected for males. We also found evidence for temperature and precipitation effects on monthly survival rates of both sexes. After controlling for site-level variation, postfledging survival was nearly twice as great following the coolest and wettest growing season (Φ = 0.77 ± 0.05 SE) compared with the hottest and driest growing season (Φ = 0.39 ± 0.05 SE). We found no relationships between individual body condition and temperature or precipitation, suggesting that carryover effects operated independently of background climatic variation. The temperature and precipitation effects we observed likely produced a direct effect on mortality risk during the postfledging period. Conservation actions that focus on improving prefledging habitat for sage-grouse may have indirect benefits

  19. Starch degradation in rumen fluid as influenced by genotype, climatic conditions and maturity stage of maize, grown under controlled conditions

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    Starch is the major component of maize kernels, contributing significantly to the feeding value of forage maize when fed to ruminants. The effects of genotype, climatic conditions and maturity stage on starch content in the kernels and on in vitro starch degradability in rumen fluid were

  20. Challenges of using air conditioning in an increasingly hot climate

    Science.gov (United States)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2018-03-01

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  1. Impact of NaCl Contamination and Climatic Conditions on the Reliability of Printed Circuit Board Assemblies

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    The effect of climatic conditions and ionic contamination on the reliability of printed circuit board assembly has been investigated in terms of leakage current (LC) and electrochemical migration susceptibility. The change in LC as a function of relative humidity (RH) and temperature was measured...... and 15 $^{\\circ}\\hbox{C}$ –65 $^{\\circ}\\hbox{C}$. The variation of RH at the surface of the test specimens was imposed by 1) increasing the RH of the surrounding air and 2) reducing the temperature of the printed circuit boards using a cooling stage, while maintaining a constant climatic condition...

  2. Do nurse and patient injuries share common antecedents? An analysis of associations with safety climate and working conditions.

    Science.gov (United States)

    Taylor, Jennifer A; Dominici, Francesca; Agnew, Jacqueline; Gerwin, Daniel; Morlock, Laura; Miller, Marlene R

    2012-02-01

    Safety climate and nurses' working conditions may have an impact on both patient outcomes and nurse occupational health, but these outcomes have rarely been examined concurrently. To examine the association of unit-level safety climate and specific nurse working conditions with injury outcomes for both nurses and patients in a single hospital. A cross-sectional study was conducted using nursing-unit level and individual-level data at an urban, level-one trauma centre in the USA. Multilevel logistic regressions were used to examine associations among injury outcomes, safety climate and working conditions on 29 nursing units, including a total of 723 nurses and 28 876 discharges. Safety climate was measured in 2004 using the Safety Attitudes Questionnaire (SAQ). Working conditions included registered nursing hours per patient day (RNHPPD) and unit turnover. Patient injuries included 290 falls, 167 pulmonary embolism/deep vein thrombosis (PE/DVT), and 105 decubitus ulcers. Nurse injury was defined as a reported needle-stick, splash, slip, trip, or fall (n=78). Working conditions and outcomes were measured in 2005. The study found a negative association between two SAQ domains, Safety and Teamwork, with the odds of both decubitus ulcers and nurse injury. RNHPPD showed a negative association with patient falls and decubitus ulcers. Unit turnover was positively associated with nurse injury and PE/DVT, but negatively associated with falls and decubitus ulcers. Safety climate was associated with both patient and nurse injuries, suggesting that patient and nurse safety may actually be linked outcomes. The findings also indicate that increased unit turnover should be considered a risk factor for nurse and patient injuries.

  3. Behavior of crushed rock aggregates used in road construction exposed to cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena; Pérez Fortes, Ana Patricia; Anastasio, Sara; Willy Danielsen, Svein

    2016-04-01

    Presently, about 90% of the aggregate production in Europe comes from naturally occurring resources: quarries and pits. Due to the increased demand for sand and gravel for construction purposes, not only in building but also in road construction, the last decade has seen a significant trend towards the use of more crushed rock aggregates. This resource has been more and more preferred to sand and gravel thanks to the significant technological development of its process and use phase. The performance of the aggregates is generally evaluated depending on three main factors: the geological origin (mineral composition, texture, structure, degree of weathering), the aggregate processing (crushing, sieving, washing, storing) and the user technology for a specific area of use (e.g. road construction, asphalt binders). Nevertheless climatic conditions should carefully be taken into account in application such as road construction. Large temperature gradients and high levels of humidity are known to significantly affect the performance of the material. Although the problem is, at least in the asphalt field, considered mostly from the binder point of view, this article aims to investigate the effect of aggregate properties on road performance in cold climatic conditions. Two different climatic areas will be taken into account: Norway and Spain. While both these countries are listed among the main European producers of aggregates, they represent significantly different climatic regions. While Norwegian weather is characterized by humid cold winters and relatively mild summers, Spain has temperate climate with cold regions in mountainous and internal areas. Both countries have been significantly affected by climate change with increasing temperature variations and instability. At the same time, similar winter maintenance measures, including the use of a considerable amount of solid and liquid chemicals to avoid ice formation (e.g. NaCl) and/or to provide better friction, are

  4. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    Science.gov (United States)

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  5. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  6. The climate response to five trillion tonnes of carbon

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.; Eby, Michael

    2016-09-01

    Concrete actions to curtail greenhouse gas emissions have so far been limited on a global scale, and therefore the ultimate magnitude of climate change in the absence of further mitigation is an important consideration for climate policy. Estimates of fossil fuel reserves and resources are highly uncertain, and the amount used under a business-as-usual scenario would depend on prevailing economic and technological conditions. In the absence of global mitigation actions, five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions. An approximately linear relationship between global warming and cumulative CO2 emissions is known to hold up to 2 EgC emissions on decadal to centennial timescales; however, in some simple climate models the predicted warming at higher cumulative emissions is less than that predicted by such a linear relationship. Here, using simulations from four comprehensive Earth system models, we demonstrate that CO2-attributable warming continues to increase approximately linearly up to 5 EgC emissions. These models simulate, in response to 5 EgC of CO2 emissions, global mean warming of 6.4-9.5 °C, mean Arctic warming of 14.7-19.5 °C, and mean regional precipitation increases by more than a factor of four. These results indicate that the unregulated exploitation of the fossil fuel resource could ultimately result in considerably more profound climate changes than previously suggested.

  7. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  8. Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China

    International Nuclear Information System (INIS)

    Chan, A.L.S.; Chow, T.T.

    2014-01-01

    Highlights: • A generic fully air-conditioned office building with inclined walls was modeled. • Simulations were run under climatic conditions in three modern cities in China. • Reduction in cooling load can outweigh the increase in heating load for Hong Kong. • Inclined angle of 30° is appropriate for inverted pyramidal building in Hong Kong. • Building constructed with inclined walls is not encouraged in Shanghai and Beijing. - Abstract: An inverted pyramidal building is built with inclined walls instead of the traditional vertical façades. In terms of thermal performance, an inverted pyramidal building can provide a self-shading effect against the beam solar radiation, leading to a reduction in solar heat gain as well as building cooling load. On the other hand, the heating requirement of an inverted pyramidal building will be increased in winter. There is a strong dependency of building performance on the climatic condition. In this study, a generic air-conditioned office building with inclined walls set at different inclination angles was modeled using a building energy simulation program. Computer simulations were run to assess the thermal performance of the building constructed with inclined walls under different climatic conditions in three modern cities in China–Hong Kong, Shanghai and Beijing. The results reveal that for the building cases with inclined walls set at different inclination angles in subtropical Hong Kong, the saving in annual cooling load ranges from 0.6% to 10.9% and can outweigh the increase in heating load. Moreover, an inclination angle of 30° was found as a better design option for an inverted pyramidal building with symmetrical layout design under the climatic condition in Hong Kong. For the other two cities: Shanghai and Beijing, the saving in cooling load due to self-shading effect cannot offset the increased heating requirement. Design and construction of an inverted pyramidal building is not encouraged in these two

  9. The role of seasonal, climatic and meteorological conditions in modifying nuclear accident consequences

    International Nuclear Information System (INIS)

    Mueller, H.; Proehl, G.

    1989-01-01

    One of the most important factors which influence the ingestion doses after an accidental release of radionuclides is the season of the year at which the release occurs. This is demonstrated with some examples for German conditions. This seasonal effect depends strongly on the growing periods of the different plants. Therefore it is influenced by the climatic conditions which vary to a large degree in the different countries causing very different growing periods. The influence of the meteorological conditions during and after the passing of a radioactive cloud on the initial contamination of the plants is discussed

  10. Effects of Urban Configuration on Human Thermal Conditions in a Typical Tropical African Coastal City

    Directory of Open Access Journals (Sweden)

    Emmanuel Lubango Ndetto

    2013-01-01

    Full Text Available A long-term simulation of urban climate was done using the easily available long-term meteorological data from a nearby synoptic station in a tropical coastal city of Dar es Salaam, Tanzania. The study aimed at determining the effects of buildings’ height and street orientations on human thermal conditions at pedestrian level. The urban configuration was represented by a typical urban street and a small urban park near the seaside. The simulations were conducted in the microscale applied climate model of RayMan, and results were interpreted in terms of the thermal comfort parameters of mean radiant (Tmrt and physiologically equivalent (PET temperatures. PET values, high as 34°C, are observed to prevail during the afternoons especially in the east-west oriented streets, and buildings’ height of 5 m has less effect on the thermal comfort. The optimal reduction of Tmrt and PET values for pedestrians was observed on the nearly north-south reoriented streets and with increased buildings’ height especially close to 100 m. Likewise, buildings close to the park enhance comfort conditions in the park through additional shadow. The study provides design implications and management of open spaces like urban parks in cities for the sake of improving thermal comfort conditions for pedestrians.

  11. New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates

    Science.gov (United States)

    Santos, João A.; Costa, Ricardo; Fraga, Helder

    2018-03-01

    New decision support tools for Portuguese viticulture are urging under a climate change context. In the present study, heat and chilling accumulation conditions of a collection of 44 grapevine cultivars currently grown in Portugal are assessed at very high spatial resolution ( 1 km) and for 1981-2015. Two bioclimatic indices that incorporate non-linear plant-temperature relationships are selected for this purpose: growing degree hours—GDH (February-October) and chilling portions—CP (October-February). The current thermal growing conditions of each variety are examined and three clusters of grapevine cultivars are identified based on their GDH medians, thus assembling varieties with close heat accumulation requirements and providing more physiologically consistent information when compared to previous studies, as non-linear plant-temperature relationships are herein taken into account. These new clusters are also a complement to previous bioclimatic zoning. Ensemble mean projections under two anthropogenic-driven scenarios (RCP4.5 and RCP8.5, 2041-2070), from four EURO-CORDEX simulations, reveal a widespread increase of GDH and decrease of CP, but with spatial heterogeneities. The spatial variability of these indices throughout Portugal is projected to decrease (strongest increases of GDH in the coolest regions of the northeast) and to increase (strongest decreases of CP in the warmest regions of the south and west), respectively. The typical heat accumulation conditions of each cluster are projected to gradually shift north-eastwards and to higher-elevation areas, whereas insufficient chilling may represent a new challenge in warmer future climates. An unprecedented level of detail for a large collection of grapevine varieties in Portugal is provided, thus promoting a better planning of climate change adaptation measures.

  12. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe.

    Science.gov (United States)

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before

  13. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe

    Science.gov (United States)

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J.; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before

  14. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2011-07-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8

  15. Weathering climate change. Some simple rules to guide adaptation decisions

    International Nuclear Information System (INIS)

    Fankhauser, Samuel; Smith, Joel B.; Tol, Richard S.J.

    1999-01-01

    This paper discusses some of the elements that may characterise an efficient strategy to adapt to a changing climate. Such a strategy will have to reflect the long time horizon of, and the prevailing uncertainties about, climate change. An intuitively appealing approach therefore seems to be to enhance the flexibility and resilience of systems to react to and cope with climate shocks and extremes, as well as to improve information. In addition, in the case of quasi-irreversible investments with a long lifetime (e.g. infrastructure investments, development of coastal zones), precautionary adjustments may be called for to increase the robustness of structures, or to increase the rate of depreciation to allow for earlier replacement. Many of these measures may already have to be considered now, and could be worthwhile in their own right, independent of climate change considerations

  16. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  17. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  18. Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century

    Science.gov (United States)

    Tall, Moustapha; Sylla, Mouhamadou Bamba; Diallo, Ismaïla; Pal, Jeremy S.; Faye, Aïssatou; Mbaye, Mamadou Lamine; Gaye, Amadou Thierno

    2017-07-01

    This study analyzes the impact of anthropogenic climate change in the hydroclimatology of Senegal with a focus over the lake of Guiers basin for the middle (2041-2060) and late twenty-first century (2080-2099). To this end, high-resolution multimodel ensemble based on regional climate model experiments considering two Representative Concentration Pathways (RCP4.5 and RCP8.5) is used. The results indicate that an elevated warming, leading to substantial increase of atmospheric water demand, is projected over the whole of Senegal. In the Lake basin, these increases in potential evapotranspiration (PE) range between 10 and 25 % in the near future and for RCP4.5 while for the far future and RCP8.5, they exceed 50 %. In addition, mean precipitation unveils contrasting changes with wetter (10 to 25 % more) conditions by the middle of the century and drier conditions (more than 50 %) during the late twenty-first century. Such changes cause more/less evapotranspiration and soil moisture respectively during the two future periods. Furthermore, surface runoff shows a tendency to increase in most areas amid few locations including the Lake basin with substantial reduction. Finally, it is found that while semi-arid climates develop in the RCP4.5 scenario, generalized arid conditions prevail over the whole Senegal for RCP8.5. It is thus evident that these future climate conditions substantially threaten freshwater availability for the country and irrigated cropping over the Lake basin. Therefore, strong governmental politics are needed to help design response options to cope with the challenges posed by the projected climate change for the country.

  19. Popular culture and the "new human condition": Catastrophe narratives and climate change

    Science.gov (United States)

    Bulfin, Ailise

    2017-09-01

    Striking popular culture images of burnt landscapes, tidal waves and ice-bound cities have the potential to dramatically and emotively convey the dangers of climate change. Given that a significant number of people derive a substantial proportion of their information on the threat of climate change, or the ;new human condition;, from popular culture works such as catastrophe movies, it is important that an investigation into the nature of the representations produced be embedded in the attempt to address the issue. What climate change-related messages may be encoded in popular films, television and novels, how are they being received, and what effects may they have? This article adopts the cultural studies perspective that popular culture gives us an important means by which to access the ;structures of feeling; that characterise a society at a particular historic juncture: the views held and emotional states experienced by significant amounts of people as evident in disparate forms of cultural production. It further adopts the related viewpoint that popular culture has an effect upon the society in which it is consumed, as well as reflecting that society's desires and concerns - although the nature of the effect may be difficult to quantify. From this position, the article puts forward a theory on the role of ecological catastrophe narratives in current popular culture, before going on to review existing critical work on ecologically-charged popular films and novels which attempts to assess their effects on their audiences. It also suggests areas for future research, such as the prevalent but little studied theme of natural and environmental disaster in late-Victorian science fiction writing. This latter area is of interest because it reveals the emergence of an ecological awareness or structure of feeling as early as the late-nineteenth century, and allows the relationship of this development to environmental policy making to be investigated because of the

  20. 78 FR 70599 - Federal Prevailing Rate Advisory Committee; Open Committee Meetings

    Science.gov (United States)

    2013-11-26

    ... of Personnel Management Building, 1900 E Street NW., Washington, DC. The Federal Prevailing Rate... the matters being considered and would disrupt substantially the disposition of its business... Advisory Committee, Room 5H27, 1900 E Street NW., Washington, DC 20415, (202) 606-9400. U.S. Office of...

  1. Performance of three saudi arabian date palm varieties under the agro-climatic conditions of khairpur

    International Nuclear Information System (INIS)

    Soad, A.A.A.

    2013-01-01

    Date palms of 10 year old Ajwa, Safawi and Ruthana varieties from Al-Madina, Saudi Arabia were evaluated under the agro-climatic conditions of Khairpur, Sindh, Pakistan throughout the growing seasons from 2009 to 2011. The results obtained indicated better fruit quality similar to those fruits obtained from the original place of origin. The palms of the three varieties were thriving successfully. The edible stage of vars. Ajwa and Safawi is tamer and rutab for var. Ruthana. The fruit was harvested early from 13 to 20th of July before the onset of monsoons. The fruit size of vars. Ajwa, Safawi and Ruthana at their edible stages were 3.16, 4.25 and 3.52 cm long, and 2.31, 2.05 and 2.38 cm in diameter, respectively. The average fruit and seed weight of vars. Ajwa, Safawi and Ruthana were 11.42, 10.49 and 12.42 g, and 1.23, 0.88 and 1.1 g, respectively. The fruit flesh percentage in vars. Ajwa, Safawi and Ruthana reached 89.14%, 90.84% and 90.92%, respectively. It was found that the climatic conditions of Khairpur are suitable for the cultivation of these three exotic varieties. The vegetative, flowering and fruit characteristics of the three varieties were described, and the impact of climatic conditions on fruit quality was discussed in this study. (author)

  2. Establishment and performance of an experimental green roof under extreme climatic conditions.

    Science.gov (United States)

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  3. Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions

    Science.gov (United States)

    Osadchiev, Alexander; Korshenko, Evgeniya

    2017-06-01

    This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.

  4. Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions

    Directory of Open Access Journals (Sweden)

    A. Osadchiev

    2017-06-01

    Full Text Available This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.

  5. Can phenological models predict tree phenology accurately under climate change conditions?

    Science.gov (United States)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  6. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  7. Climate policy in developing countries and conditional transfers

    International Nuclear Information System (INIS)

    Ruebbelke, Dirk T.G.

    2006-01-01

    This paper analyzes the role international transfers may play in international climate policy in consideration of the policy's ancillary benefits, such as air quality improvements. Ancillary benefits are especially important in many developing countries, while climate protection benefits or primary benefits play a minor role on the political agenda of these countries. In contrast, industrialized countries have a strong interest in combating climate change. These often neglected asymmetries between the developing and industrialized world affect the impacts of transfers. Interestingly, as we will show, the cost differentials between different environmental technologies among countries are the crucial prerequisite for the functioning of a transfer scheme and not the cost differentials in the execution of climate policy. This result has been overlooked by standard pure public good approaches

  8. 77 FR 8926 - Federal Prevailing Rate Advisory Committee; Open Committee Meetings

    Science.gov (United States)

    2012-02-15

    ... Personnel Management Building, 1900 E Street NW., Washington, DC. The Federal Prevailing Rate Advisory... considered and would disrupt substantially the disposition of its business. Therefore, these caucuses will be... 5H27, 1900 E Street NW., Washington, DC 20415, (202) 606-9400. U.S. Office of Personnel Management...

  9. 77 FR 76304 - Federal Prevailing Rate Advisory Committee; Open Committee Meetings

    Science.gov (United States)

    2012-12-27

    ... 5A06A, U.S. Office of Personnel Management Building, 1900 E Street NW., Washington, DC. The Federal... the matters being considered and would disrupt substantially the disposition of its business... Management, Federal Prevailing Rate Advisory Committee, Room 5H27, 1900 E Street NW., Washington, DC 20415...

  10. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    Science.gov (United States)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  11. The effects of climatic conditions on attitudinal changes towards ...

    African Journals Online (AJOL)

    changes associated with climate change and climatic events. The .... influence of rainfall on differences in perceptions towards building materials in poor ...... in the form of flash floods, cloud bursts, or sudden climatic events. Unusually high or ...

  12. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  13. Impact of Climate Conditions on Occupational Health and Related Economic Losses: A New Feature of Global and Urban Health in the Context of Climate Change.

    Science.gov (United States)

    Kjellstrom, Tord

    2016-03-01

    One feature of climate change is the increasing heat exposure in many workplaces where efficient cooling systems cannot be applied. Excessive heat exposure is a particular problem for working people because of the internal heat production when muscle work is carried out. The physiological basis for severe heat stroke, other clinical effects, and heat exhaustion is well known. One feature of this health effect of excessive workplace heat exposure is reduced work capacity, and new research has started to quantify this effect in the context of climate change. Current climate conditions in tropical and subtropical parts of the world are already so hot during the hot seasons that occupational health effects occur and work capacity for many working people is affected. The Hothaps-Soft database and software andClimateCHIP.orgwebsite make it possible to rapidly produce estimates of local heat conditions and trends. The results can be mapped to depict the spatial distribution of workplace heat stress. In South-East Asia as much as 15% to 20% of annual work hours may already be lost in heat-exposed jobs, and this may double by 2050 as global climate change progresses. By combining heat exposure data and estimates of the economic consequences, the vulnerability of many low- and middle-income countries is evident. The annual cost of reduced labor productivity at country level already in 2030 can be several percent of GDP, which means billions of US dollars even for medium-size countries. The results provide new arguments for effective climate change adaptation and mitigation policies and preventive actions in all countries. © 2015 APJPH.

  14. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions.

    Science.gov (United States)

    Martín, José; Ortega, Jesús; López, Pilar

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates.

  15. 75 FR 75706 - Federal Prevailing Rate Advisory Committee; Open Committee Meetings

    Science.gov (United States)

    2010-12-06

    ... Building, 1900 E Street, NW., Washington, DC. The Federal Prevailing Rate Advisory Committee is composed of... considered and would disrupt substantially the disposition of its business. Therefore, these caucuses will be... 5H27, 1900 E Street, NW., Washington, DC 20415, (202) 606-9400. U.S. Office of Personnel Management...

  16. 76 FR 75567 - Federal Prevailing Rate Advisory Committee; Open Committee Meetings

    Science.gov (United States)

    2011-12-02

    ..., 1900 E Street, NW., Washington, DC. The Federal Prevailing Rate Advisory Committee is composed of a... disrupt substantially the disposition of its business. Therefore, these caucuses will be closed to the... 5H27, 1900 E Street, NW., Washington, DC 20415, (202) 606-9400. U.S. Office of Personnel Management...

  17. Smallholder farmer’s perceived effects of climate change on crop production and household livelihoods in rural Limpopo province, South Africa

    Directory of Open Access Journals (Sweden)

    Ubisi Nomcebo R.

    2017-01-01

    Full Text Available This study investigated the perceived effects of climate change on crop production and household livelihoods of smallholder farmers in Mopani and Vhembe district, South Africa. Data was collected through a questionnaire administered to 150 smallholder farmers. The questionnaires were complemented by 8 focus group discussions and secondary data. Multinomial logit regression model was used to analyse the factors influencing smallholder farmers’ choice of climate change adaptation strategies. The study findings revealed that subsistence farmers perceived prolonged droughts (56.4% as the main shock stressing crop production. Droughts often lead to low crop yield and high crop failure (73.3%. In response to the prevailing climatic conditions different gender adopted different strategies, 41% of female farmers adapted by changing planting dates, while male farmers employed crop variety and diversification (35% and mixed cropping (15%. The smallholder farmers were vulnerable with limited adaptive capacity to withstand climate change due to compromised social, human, physical, natural and financial assets. The results showed that smallholder farmers tend to adapt better when they have access to extension officers (P<0.01. Therefore, it is important for the government to strengthen the relationship between smallholder farmers and extension officers for better climate change adaptation.

  18. Hydro-climatic conditions and thermoelectric electricity generation – Part I: Development of models

    International Nuclear Information System (INIS)

    Koch, Hagen; Vögele, Stefan

    2013-01-01

    In recent years there have been several heat waves affecting the use of thermoelectric power plants, e.g. in Europe and the U.S. In this paper the linkage between hydro-climatic conditions and possible electricity generation restrictions is described. The coupling of hydrological models and a power plant model is presented. In this approach each power plant is considered separately with its technical specifications. Also environmental regulations, e.g. permissible rise in the cooling water temperature, are considered for the respective power plant. The hydrological models developed to simulate river runoff and water temperature are also site specific. The approach presented is applied to Krümmel nuclear power plant in Germany. Analysed are the uncertainties with regard to electricity generation restrictions on account of climatic developments and corresponding higher water temperatures and low flows. Overall, increased water temperatures and declining river runoff lead to more frequent and more severe generation restrictions. It is concluded that the site-specific approach is necessary to reliably simulate power plants water demand, river runoff and water temperature. Using a simulation time step of one day, electricity generation restrictions are significantly higher than for simulations at monthly time step. - Highlights: • An approach to assess climate effects on electricity generation is presented. • Site specific models for power plants, water temperature and discharge are used. • Monthly and daily simulation time-steps give different results. • Climate change effects on generation depend on cooling system and climate scenario

  19. Prevailing of sensitive blood driving to AIDS/HIV. Provincial Blood Bank of Sancti Spíritus. 2007-2008.

    Directory of Open Access Journals (Sweden)

    Martha Quesada Concepción

    2011-09-01

    Full Text Available Because of blood transfusions are one of the ways of transmitting the immune deficiency syndrome (AIDS/HIV; it constitutes warriness from the epidemiological point of view. A descriptive research was done with the objective of determining the prevailing of sensitive blood driving AIDS/HIV in the Provincial Blood Bank from Sancti Spíritus from January 1 st , 2007 to December 31 st, 2008. The sample was conformed by 312 donants with positive diagnosis to AIDS/HIV. Some variables were used such as prevailing, age, sex, race, home town. The scores of higher prevailing to AIDS/HIV were shown by the male sex (4,42, the 26-33 year old group (1,55; it prevailing volunteer blood driving (81,0 % , and Sancti Spíritus municipality gave more cases (27,5% .Just because sensibility to tests based on antibody, that is why it is important the constant checking of all processes that guarantee blood driving to be sired.

  20. IMPACTS OF CLIMATE CHANGE ON EU AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Shailesh Shrestha

    2013-09-01

    Full Text Available The current paper investigates the medium term economic impact of climate changes on the EU agriculture. The yield change data under climate change scenarios are taken from the BIOMA (Biophysical Models Application simulation environment. We employ CAPRI modelling framework to identify the EU aggregate economic effects as well as regional impacts. We take into account supply and market price adjustments of the EU agricultural sector as well as technical adaptation of crops to climate change. Overall results indicate an increase in yields and production level in the EU agricultural sector due to the climate change. In general, there are relatively small effects at the EU aggregate. For example, the value of land use and welfare change by approximately between -2% and 0.2%. However, there is a stronger impact at regional level with some stronger effects prevailing particularly in the Central and Northern EU and smaller impacts are observed in Southern Europe. Regional impacts of climate change vary by a factor higher up to 10 relative to the aggregate EU impacts. The price adjustments reduce the response of agricultural sector to climate change in particular with respect to production and income changes. The technical adaption of crops to climate change may result in a change production and land use by a factor between 1.4 and 6 relative to no-adaptation situation.

  1. Pacific and Atlantic influences on Mesoamerican climate over the past millennium

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, D.W.; Burnette, D.J.; Fye, F.K.; Cleaveland, M.K. [University of Arkansas, Department of Geosciences, Fayetteville, AR (United States); Diaz, J.V.; Paredes, J.C. [Instituto Nacional de Investigaciones Forestales, Agricolas, y Pecuarias, Laboratorio de Dendrocronologia, Gomez Palacio, Durango (Mexico); Heim, R.R. [NOAA, National Climatic Data Center, Asheville, NC (United States); Soto, R.A. [UNAM, Departamento Microbiologia y Parastologia, Mexico, D.F. (Mexico)

    2012-09-15

    A new tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Mesoamerica from AD 771 to 2008 identifies megadroughts more severe and sustained than any witnessed during the twentieth century. Correlation analyses indicate strong forcing of instrumental and reconstructed June PDSI over Mesoamerica from the El Nino/Southern Oscillation (ENSO). Spectral analyses of the 1,238-year reconstruction indicate significant concentrations of variance at ENSO, sub-decadal, bi-decadal, and multidecadal timescales. Instrumental and model-based analyses indicate that the Atlantic Multidecadal Oscillation is important to warm season climate variability over Mexico. Ocean-atmospheric variability in the Atlantic is not strongly correlated with the June PDSI reconstruction during the instrumental era, but may be responsible for the strong multidecadal variance detected in the reconstruction episodically over the past millennium. June drought indices in Mesoamerica are negatively correlated with gridded June PDSI over the United States from 1950 to 2005, based on both instrumental and reconstructed data. Interannual variability in this latitudinal moisture gradient is due in part to ENSO forcing, where warm events favor wet June PDSI conditions over the southern US and northern Mexico, but dryness over central and southern Mexico (Mesoamerica). Strong anti-phasing between multidecadal regimes of tree-ring reconstructed June PDSI over Mesoamerica and reconstructed summer (JJA) PDSI over the Southwest has also been detected episodically over the past millennium, including the 1950-1960s when La Nina and warm Atlantic SSTs prevailed, and the 1980-1990s when El Nino and cold Atlantic SSTs prevailed. Several Mesoamerican megadroughts are reconstructed when wetness prevailed over the Southwest, including the early tenth century Terminal Classic Drought, implicating El Nino and Atlantic SSTs in this intense and widespread drought that may have contributed to social changes

  2. Extreme conditions over Europe and North America: role of the Atlantic Multidecadal Variability

    Science.gov (United States)

    Ruprich-Robert, Yohan; Msadek, Rym; Delworth, Tom

    2016-04-01

    The Atlantic Multidecadal Variability (AMV) is the result and possibly the source of marked modulations of the climate over many areas of the globe. For instance, the relatively warm and dry climate of North America throughout the 30-yr interval of 1931-60, during which the Dust Bowl and the 1950's drought occurred, has been linked to the concomitant warm phase of the AMV. During this period relative warm and wet conditions prevailed over Europe. After 1960, the Atlantic began to cool, and for almost three decades the North American climate turned wetter and cooler whereas Europe experienced cooler and dryer conditions. However, the shortness of the historical observations compared to the AMV period suggested by longer proxy (~60-80yr) does not allow to firmly conclude on the causal effect of the AMV. We use a model approach to isolate the causal role of the AMV on the occurrence of extreme events over Europe and North America. We present experiments based on two GFDL global climate models, a low resolution version, CM2.1 and a higher resolution model for the atmospheric component, FLOR. In both model experiments sea surface temperatures in the North Atlantic sector are restored to the observed AMV pattern, while the other basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (100 members for CM2.1 and 50 for FLOR) that we run for 20 years. We find that a positive phase of the AMV increases the frequency of occurrence of drought over North America and of extremely cold/warm conditions over Northern/Central Europe during winter/summer. Interestingly, we find that the AMV impacts on these extreme conditions are modulated by the Pacific response to the AMV itself. Members that develop a weak Pacific response show more extreme events over Europe whereas those that develop a strong Pacific response show more extreme events over North America.

  3. Prevailing Wage Regulations and School Construction Costs: Evidence from British Columbia.

    Science.gov (United States)

    Bilginsoy, Cihan; Philips, Peter

    2000-01-01

    Examines effects of prevailing wage laws on school construction costs, using final cost data from six British Columbia school districts. When controlling for factors such as construction business cycle, number of competitors, and school type, there was no significant unit cost change following the Skill Development and Fair Wage Policy Act.…

  4. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    Science.gov (United States)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant

  5. The Effect of Body Weight on Heat Strain Indices in Hot and Dry Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-03-01

    Full Text Available Background Being overweight is a characteristic that may influence a person’s heat exchange. Objectives The purpose of this study was to assess the effect of body weight on heat strain indices in hot and dry climatic conditions. Materials and Methods This study was completed with a sample of 30 participants with normal weights, as well as 25 participants who were overweight. The participants were physically inactive for a period of 120 minutes in a climatic chamber with hot and dry conditions (22 - 32°C and with 40% relative humidity (RH.The physiological strain index (PSI and heat strain score index (HSSI questionnaires were used. Simultaneous measurements were completed during heat exposure for periods of five minutes. The resting periods acted as the initial measurements for 15 minutes. Results In both groups, oral temperature, heart rate, and thermal perceptual responses increased during heat exposure. The means and standard deviations of heart rate and oral temperature were gathered when participants were in hot and dry climatic conditions and were not physically active. The heart rates and oral temperatures were 79.21 ± 5.93 bpm and 36.70 ± 0.45°C, respectively, for those with normal weights. For overweight individuals, the measurements for heart rate and oral temperature reached 82.21 ± 8.9 bpm and 37.84 ± 0.37°C, respectively. Conclusions The results showed that, compared to participants with normal weights, physiological and thermal perceptual responses were higher in overweight participants. Therefore, overweight individuals should avoid hot/dry weather conditions to decrease the amount of heat strain.

  6. Assessment of Dust Emission and Working Conditions in the Bamboo and Wooden Furniture Industries in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-12-01

    Full Text Available A study was carried out to assess the dust emission and working conditions in the bamboo and rubberwood furniture manufacturing industries in Malaysia. The emission of wood dust arising from these industries was measured in each main work station in the mills. Meanwhile, a questionnaire-based survey was conducted among 5900 workers in 45 companies to obtain information on the occupational accidents that occurred in the mills. The data were collected, compiled, and analyzed using the SPSS package. The highest dust emission from the sanding operation resulted in respiratory ailments among workers. The occurrence of injuries particularly to the hand, wrist, fingers and forearm was due to the prevailing working conditions, safety climate and workers characteristics. The dust exposure levels and working conditions were much more severe in the bamboo furniture manufacturing industry. As a result, a review of existing of dust exposure levels in the woodworking industry is warranted.

  7. Familiar units prevail over statistical cues in word segmentation.

    Science.gov (United States)

    Poulin-Charronnat, Bénédicte; Perruchet, Pierre; Tillmann, Barbara; Peereman, Ronald

    2017-09-01

    In language acquisition research, the prevailing position is that listeners exploit statistical cues, in particular transitional probabilities between syllables, to discover words of a language. However, other cues are also involved in word discovery. Assessing the weight learners give to these different cues leads to a better understanding of the processes underlying speech segmentation. The present study evaluated whether adult learners preferentially used known units or statistical cues for segmenting continuous speech. Before the exposure phase, participants were familiarized with part-words of a three-word artificial language. This design allowed the dissociation of the influence of statistical cues and familiar units, with statistical cues favoring word segmentation and familiar units favoring (nonoptimal) part-word segmentation. In Experiment 1, performance in a two-alternative forced choice (2AFC) task between words and part-words revealed part-word segmentation (even though part-words were less cohesive in terms of transitional probabilities and less frequent than words). By contrast, an unfamiliarized group exhibited word segmentation, as usually observed in standard conditions. Experiment 2 used a syllable-detection task to remove the likely contamination of performance by memory and strategy effects in the 2AFC task. Overall, the results suggest that familiar units overrode statistical cues, ultimately questioning the need for computation mechanisms of transitional probabilities (TPs) in natural language speech segmentation.

  8. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...... downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES...... project was used to quantify the uncertainty in RCM projections over Denmark. Three aspects of the RCMs relevant for the uncertainty quantification were first identified and investigated. These are: the interdependency of the RCMs; the performance in current climate; and the change in the performance...

  9. Inconclusive Predictions and Contradictions: A Lack of Consensus on Seed Germination Response to Climate Change at High Altitude and High Latitude

    Directory of Open Access Journals (Sweden)

    Ganesh K. Jaganathan

    2016-01-01

    Full Text Available Climate change directly affects arctic-alpine plants and acute responses to increased temperatures may be seen in their reproductive fitness and germination ability. However, uncertainties prevail in predicting whether a future warmer climate favors or hampers seed germination in high latitude and high altitude soils and seed germination research in such systems has not been able to provide generalizable patterns of response. The available literature on this subject has been conducted at various locations contributing to difficulties in predicting the response of arctic-alpine seeds to climate change. Here, we show that discrepancies in seed collection, dormancy breaking treatments, and germination conditions found in the published literature are possible reasons for our inability to draw large scale conclusions. We explore how these factors influence the results and highlight the fact that many of the previous investigations have reported the effects of warmer temperature, rather than a warmer climate and all the associated complex environmental interactions, on seed germination. We recommend that long-term monitoring of seed response to treatments that mimic the present and future alpine climate is likely to produce more ecologically meaningful insights and suggest several practical steps that researchers can take that would facilitate greater coherence between studies.

  10. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.

    Science.gov (United States)

    Du, Jiabi; Shen, Jian; Park, Kyeong; Wang, Ya Ping; Yu, Xin

    2018-07-15

    There are increasing concerns about the impact of worsened physical condition on hypoxia in a variety of coastal systems, especially considering the influence of changing climate. In this study, an EOF analysis of the DO data for 1985-2012, a long-term numerical simulation of vertical exchange, and statistical analysis were applied to understand the underlying mechanisms for the variation of DO condition in Chesapeake Bay. Three types of analysis consistently demonstrated that both biological and physical conditions contribute equally to seasonal and interannual variations of the hypoxic condition in Chesapeake Bay. We found the physical condition (vertical exchange+temperature) determines the spatial and seasonal pattern of the hypoxia in Chesapeake Bay. The EOF analysis showed that the first mode, which was highly related to the physical forcings and correlated with the summer hypoxia volume, can be well explained by seasonal and interannual variations of physical variables and biological activities, while the second mode is significantly correlated with the estuarine circulation and river discharge. The weakened vertical exchange and increased water temperature since the 1980s demonstrated a worsened physical condition over the past few decades. Under changing climate (e.g., warming, accelerated sea-level rise, altered precipitation and wind patterns), Chesapeake Bay is likely to experience a worsened physical condition, which will amplify the negative impact of anthropogenic inputs on eutrophication and consequently require more efforts for nutrient reduction to improve the water quality condition in Chesapeake Bay. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Small river plumes near the north-eastern coast of the Black Sea under climatic mean and flooding discharge conditions

    Science.gov (United States)

    Osadchiev, Alexander; Korshenko, Evgeniya

    2017-04-01

    The study is focused on the impact of discharge from small rivers on propagation and final location of fluvial waters and suspended matter at the north-eastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers inflow into the sea at the studied region and most of them, except the several largest of them, have small annual runoff and limitedly affect adjacent coastal waters under climatic mean conditions. However, discharges of these small rivers are characterized by quick response to precipitation events and can dramatically increase during and shortly after heavy rains, which are frequent in the area under consideration. Propagation and final location of fluvial waters and terrigenous sediments at the studied region under climatic mean and rain-induced flooding conditions were explored and compared using in situ data, satellite imagery and numerical modelling. It was shown that the point-source spread of continental discharge dominated by several large rivers during climatic mean conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. Intense line-source runoff of water and suspended sediments form a geostrophic alongshore current of turbid and freshened water, which induces intense transport of suspended and dissolved constituents discharged with river waters in a north-western direction. This process significantly influences water quality and causes active sediment load at large segments of narrow shelf at the north-eastern part of the Black Sea as compared to climatic mean discharge conditions.

  12. The yield of eggplant depending on climate conditions and mulching

    Directory of Open Access Journals (Sweden)

    Adamczewska-Sowińska Katarzyna

    2016-06-01

    Full Text Available The field production of eggplant in moderate climates is difficult as it depends heavily on thermal conditions. Eggplant is a species that is sensitive to low temperatures, and temperatures below 16°C constrain the growth of young plants. Other disadvantageous factors include: temperatures that are too high, water shortage and excessive soil humidity. The growth conditions for eggplant can be improved by using mulches. The purpose of the experiment was the assessment of eggplant cropping while using synthetic mulches of polyethylene foil and polypropylene textile. The research took five years (2008-2012 and on the basis of the obtained results it was possible to determine the influence of weather conditions on the yielding of this species. It was proven that eggplant cropping significantly depended on the air temperature and the amount of rainfall during the vegetation period. The highest yield was observed when the average air temperature was high and at the same time rainfall was evenly distributed throughout the vegetation season. It also turned out that the agro-technical procedure which significantly increased eggplant fruit cropping was mulching the soil with polyethylene black foil, or transparent foil, previously having applied a herbicide.

  13. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions.

    Science.gov (United States)

    Kljajevic, Nemanja V; Tomasevic, Igor B; Miloradovic, Zorana N; Nedeljkovic, Aleksandar; Miocinovic, Jelena B; Jovanovic, Snezana T

    2018-01-01

    The aim of this research was to investigate the effect of climatic conditions and their impact on seasonal variations of physico-chemical characteristics of Saanen goat milk produced over a period of 4 years. Lactation period (early, mid and late) and year were considered as factors that influence physico-chemical composition of milk. Pearson's coefficient of correlation was calculated between the physico-chemical characteristics of milk (fat, proteins, lactose, non-fat dry matter, density, freezing point, pH, titrable acidity) and climatic condition parameters (air temperature, temperature humidity index-THI, solar radiation duration, relative humidity). Results showed that all physico-chemical characteristics of Saanen goat milk varied significantly throughout the lactation period and years. The decrease of fat, protein, non-fat dry matter and lactose content in goat milk during the mid-lactation period was more pronounced than was previously reported in the literature. The highest values for these characteristics were recorded in the late lactation period. Observed variations were explained by negative correlation between THI and the physico-chemical characteristics of Saanen goat milk. This indicated that Saanen goats were very prone to heat stress, which implied the decrease of physico-chemical characteristics during hot summers.

  14. Adapting to Mother Nature's changing climatic conditions: Flexible stocking for enhancing profitability of Wyoming ranchers

    Science.gov (United States)

    Ranching is a dynamic business in which profitability is impacted by changing weather and climatic conditions. A ranch-level model using a representative ranch in southeastern Wyoming was used to compare economic outcomes from growing season precipitation scenarios of: 1) historical precipitation da...

  15. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  16. Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong

    International Nuclear Information System (INIS)

    Lam, Tony N.T.; Wan, Kevin K.W.; Wong, S.L.; Lam, Joseph C.

    2010-01-01

    Past and future trend of electricity use for air conditioning in the entire commercial sector in subtropical climates using 1979-2008 measured meteorological data as well as predictions for 2009-2100 from a general circulation model (MIROC3.2-H) was investigated. Air conditioning consumption showed an increasing trend over the past 30 years from 1979 to 2008. Principal component analysis (PCA) of measured and predicted monthly mean dry-bulb temperature, wet-bulb temperature and global solar radiation was conducted to determine a new climatic index Z for 1979-2008 and future 92 years (2009-2100) based on two emissions scenarios B1 and A1B (low and medium forcing). Through regression analysis, electricity use in air conditioning for the 92-year period was estimated. For low forcing, average consumption in 2009-2038, 2039-2068 and 2069-2100 would be, respectively, 5.7%, 12.8% and 18.4% more than the 1979-2008 average, with a mean 12.5% increase for the entire 92-year period. Medium forcing showed a similar increasing trend, but 1-4% more. Standard deviations of the monthly air conditioning consumption were found to be smaller suggesting possible reduction in seasonal variations in future years.

  17. Local climate determines intra- and interspecific variation in sexual size dimorphism in mountain grasshopper communities.

    Science.gov (United States)

    Laiolo, P; Illera, J C; Obeso, J R

    2013-10-01

    The climate is often evoked to explain broad-scale clines of body size, yet its involvement in the processes that generate size inequality in the two sexes (sexual size dimorphism) remains elusive. Here, we analyse climatic clines of sexual size dimorphism along a wide elevation gradient (i) among grasshopper species in a phylogenetically controlled scenario and (ii) within species differing in distribution and cold tolerance, to highlight patterns generated at different time scales, mainly evolutionary (among species or higher taxa) and ontogenetic or microevolutionary (within species). At the interspecific level, grasshoppers were slightly smaller and less dimorphic at high elevations. These clines were associated with gradients of precipitation and sun exposure, which are likely indicators of other factors that directly exert selective pressures, such as resource availability and conditions for effective thermoregulation. Within species, we found a positive effect of temperature and a negative effect of elevation on body size, especially on condition-dependent measures of body size (total body length rather than hind femur length) and in species inhabiting the highest elevations. In spite of a certain degree of species-specific variation, females tended to adjust their body size more often than males, suggesting that body size in females can evolve faster among species and can be more plastic or dependent on nutritional conditions within species living in adverse climates. Natural selection on female body size may therefore prevail over sexual selection on male body size in alpine environments, and abiotic factors may trigger consistent phenotypic patterns across taxonomic scales. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  18. Environmental Change: Precipitation and N, P, K, mg Fertilization Influences on Crop Yield Under Temperate Climate Conditions

    Science.gov (United States)

    László Phd, Dd. M.

    2009-04-01

    íve adaptive measures. Information on adaptation is required for governments, landscape planners, stakeholders, farmers, producers, processors, supermarkets and consumers. Not only the local effects and options, but also the spatial implications must be understood. Will yields be maintained on the present range of farms. Where will new crops be grown. Will new processing plants be required. Will there be competition for water. Most recent agricultural impact studies have concentrated on the effects of mean changes in climate on crop production, whilst only limited investigations into the effects of climate variability on agriculture have been undertaken. The paucity of studies in this area is not least due to the considerable uncertainty regarding how climate variability may change in the future in response to greenhouse gas induced warming but also as a result of the uncertainty in the response of agricultural crops to changes in climate variability, effected most probably through changes in the frequency of extreme climatic events. That changes showed in variance have a greater effect on the frequency of extreme climatic events than do changes in the mean values. Hence, it is important to attempt to include changes in variability in scenarios of climate change. Weather change in Hungary was started about of 1850. Among the natural catastrophes, drought and flooding caused by over-abundant rainfall cause the greatest problem in plant nutrition and in field crop production nowadays too [4]. It is why we found it necessary to revise and to analyse this problem. Rye (Secale cereale L.), potato (Solanum tuberosum L.) and winter wheat (Triticum aestivum L.) are most important crops of many World countries [5] but little research in the field of climate change impact assessment has been undertaken. All three plant are sensitive to the prevailing weather conditions (rainfall) and, hence, it is important to evaluate the effects of anthropogenic climate change on their production

  19. Reconstructing Past Climate Using Speleothems from Cueva de las Perlas, Northern Spain.

    Science.gov (United States)

    Deeprose, Laura; Wynn, Peter; Barker, Philip; Leng, Melanie; Noble, Stephen; Sahy, Diana

    2017-04-01

    Abrupt and severe oscillations in climate, termed Heinrich events, are documented in North Atlantic Ocean sediments between 85,000 - 30,000 years ago [1]. This time period also encapsulates the Neanderthal demise, a key transition in human evolution which is proposed to be driven at least in part by changing climate. The Iberian Peninsula represents the last known refuge of the Neanderthals. However, due to a scarcity of palaeoclimate archives from Iberia during this time period, the expression of these cooling events in the terrestrial realm remains poorly understood. As the extinction of the Neanderthal population seems to broadly coincide with the timing of Heinrich event 4, it is therefore critical to understand the terrestrial expression of these changes in ocean circulation. Speleothems from Cueva de las Perlas, northern Spain are being used to reconstruct past climatic and environmental change spanning this period of Neanderthal demise. U-Th dating has identified three suitable speleothems, allowing a precise chronology to be established. Through contemporary monitoring, the oxygen isotope composition of speleothem carbonate has been interpreted to carry a primary environmental signal of rainfall amount. The oxygen isotope values indicate a drying climate across the period of the Neanderthal population demise. Additionally, the carbon isotope record, interpreted to represent shifts in vegetation dynamics, indicates an overall drying during the studied time period. A high degree of climatic instability is superimposed on the overall drying trend, suggesting the prevailing climatic conditions could have been adding environmental pressure to an already marginalised hominin population. Further U-Th dating and high-resolution stable isotope analysis aims to constrain the magnitude and timing of these events. [1] Bond, G., Broecker, W., Johnsen, S.J., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlations between North Atlantic sediments and

  20. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali

    2015-07-01

    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  1. Method for Cost-Benefit Analysis of Improved Indoor Climate Conditions and Reduced Energy Consumption in Office Buildings

    Directory of Open Access Journals (Sweden)

    Viktoras Dorosevas

    2013-09-01

    Full Text Available Indoor climate affects health and productivity of the occupants in office buildings, yet in many buildings of this type indoor climate conditions are not well-controlled due to insufficient heating or cooling capacity, high swings of external or internal heat loads, improper control or operation of heating, ventilation and air conditioning (HVAC equipment, etc. However, maintenance of good indoor environmental conditions in buildings requires increased investments and possible higher energy consumption. This paper focuses on the relation between investment costs for retrofitting HVAC equipment as well as decreased energy use and improved performance of occupants in office buildings. The cost-benefit analysis implementation algorithm is presented in this paper, including energy survey of the building, estimation of occupants dissatisfied by key indoor climate indicators using questionnaire survey and measurements. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS analysis is used in the proposed method for data processing. A case study of an office building is presented in order to introduce an application example of the proposed method. Results of the study verify the applicability of the proposed algorithm and TOPSIS analysis as a practical tool for office building surveys in order to maximize productivity by means of cost efficient technical building retrofitting solutions.

  2. Climate and Health Vulnerability to Vector-Borne Diseases: Increasing Resilience under Climate Change Conditions in Africa

    Science.gov (United States)

    Ceccato, P.

    2015-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases ( malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities; ministries of health; the WMO Global Framework for Climate and Services; and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above with examples in South Africa, Zimbabwe, Tanzania and Malawi.

  3. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  4. Directed International Technological Change and Climate Policy: New Methods for Identifying Robust Policies Under Conditions of Deep Uncertainty

    Science.gov (United States)

    Molina-Perez, Edmundo

    : climate change, elasticity of substitution between renewable and fossil energy and three different sources of technological uncertainty (i.e. R&D returns, innovation propensity and technological transferability). The performance of eight different GCF and non-GCF based policy regimes is evaluated in light of various end-of-century climate policy targets. Then I combine traditional scenario discovery data mining methods (Bryant and Lempert, 2010) with high dimensional stacking methods (Suzuki, Stem and Manzocchi, 2015; Taylor et al., 2006; LeBlanc, Ward and Wittels, 1990) to quantitatively characterize the conditions under which it is possible to stabilize greenhouse gas emissions and keep temperature rise below 2°C before the end of the century. Finally, I describe a method by which it is possible to combine the results of scenario discovery with high-dimensional stacking to construct a dynamic architecture of low cost technological cooperation. This dynamic architecture consists of adaptive pathways (Kwakkel, Haasnoot and Walker, 2014; Haasnoot et al., 2013) which begin with carbon taxation across both regions as a critical near term action. Then in subsequent phases different forms of cooperation are triggered depending on the unfolding climate and technological conditions. I show that there is no single policy regime that dominates over the entire uncertainty space. Instead I find that it is possible to combine these different architectures into a dynamic framework for technological cooperation across regions that can be adapted to unfolding climate and technological conditions which can lead to a greater rate of success and to lower costs in meeting the end-of-century climate change objectives agreed at the 2015 Paris Conference of the Parties. Keywords: international technological change, emerging nations, climate change, technological uncertainties, Green Climate Fund.

  5. Testing Projected Climate Change Conditions on the Endoconidiophora polonica / Norway spruce Pathosystem Shows Fungal Strain Specific Effects

    Directory of Open Access Journals (Sweden)

    Riikka Linnakoski

    2017-05-01

    Full Text Available Climate changes, exemplified by increased temperatures and CO2 concentration, pose a global threat to forest health. Of particular concern are pests and pathogens, with a warming climate altering their distributions and evolutionary capacity, while impairing the ability of some plants to respond to infections. Progress in understanding and mitigating such effects is currently hindered by a lack of empirical research. Norway spruce (Picea abies is one of the most economically important tree species in northern Europe, and is considered highly vulnerable to changes in climate. It is commonly infected by the fungus Endoconidiophora polonica, and we hypothesized that damage caused to trees will increase under future climate change predictions. To test this hypothesis an in vivo greenhouse experiment was conducted to evaluate the effects of a changed growing environment on E. polonica infected Norway spruce seedlings, comparing ambient conditions to predicted temperatures and CO2 levels in Finland for the years 2030 and 2100. In total, 450 seedlings were randomized amongst the three treatments, with 25 seedlings from each allocated to inoculation with one of five different fungal strains or mock-inoculation. Seedlings were monitored throughout the thermal growing season for mortality, and lesion length and depth indices were measured at the experiment conclusion. Disease severity (mortality and lesions was consistently greater in fungal-inoculated than mock-inoculated seedlings. However, substantial differences were observed among fungal strains in response to climate scenarios. For example, although overall seedling mortality was highest under the most distant (and severe climate change expectations, of the two fungal strains with the highest mortality counts (referred to as F4 and F5, one produced greater mortality under the 2030 and 2100 scenarios than ambient conditions, whereas climate scenario had no effect on the other. This study contributes

  6. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  7. Establishment and performance of an experimental green roof under extreme climatic conditions

    International Nuclear Information System (INIS)

    Klein, Petra M.; Coffman, Reid

    2015-01-01

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  8. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  9. Agriculture: Climate

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  10. Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions

    Science.gov (United States)

    Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed

  11. Modeling daily soil temperature over diverse climate conditions in Iran—a comparison of multiple linear regression and support vector regression techniques

    Science.gov (United States)

    Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan

    2018-02-01

    The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.

  12. How Does The Climate Change?

    Science.gov (United States)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  13. A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Dasaraden Mauree

    2018-04-01

    Full Text Available Building more energy-efficient and sustainable urban areas that will both mitigate the effects of climate change and anticipate living conditions in future climate scenarios requires the development of new tools and methods that can help urban planners, architects and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099 were run, as well as a renovation scenario (Minergie-P. We analyzed the impact of climate change on the heating and cooling demand of buildings and determined the relevance of taking into account the local climate in this particular context. The results from the simulations confirmed that in the future, there will be a constant decrease in the heating demand, while the cooling demand will substantially increase. Significantly, it was further demonstrated that when the local urban climate was taken into account, there was an even higher rise in the cooling demand, but also that a set of proposed Minergie-P renovations were not sufficient to achieve resilient buildings. We discuss the implication of this work for the simulation of building energy consumption at the neighborhood scale and the impact of future local climate on energy system design. We finally give a few perspectives regarding improved urban design and possible pathways for future urban areas.

  14. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  15. Adapting the Melon Production Model to Climate Change in Giao Thuy district, Nam Dinh Province, Vietnam

    Directory of Open Access Journals (Sweden)

    Ngo, AT.

    2016-01-01

    Full Text Available Embedded in a package of climate change adaptation, researchers and farmers tested the melon hybrid variety, Kim Hoang Hau (KHH, for yield and disease resistance during the spring-summer season from March to June 2015 in Giao Thuy district, Nam Dinh province. The results were analysed and subsequently discussed with local farmers in focused groups. Analysis showed that the KHH was suitable to local soil conditions. The farmers preferred this new variety over the local melon, because not only did KHH give higher yield and pest resistance, it also showed less vulnerability to climatic stressors. Farmers decided to grow KHH based on the prevailing good market price at that time. However, farmers only shifted away from the old melon when they could anticipate the possibility of selling the new product. Those who did not continue with the KHH had difficulty in actively accessing the market for this new product. This study suggests that the market information does not solely drive the process of the adaptation itself, but it also provides relevant stimuli to farmers enabling them to successfully shift to new crop varieties. This study also implies that such process-based understanding is crucial in formulating strategies that increase the farmer's capacity to adapt to climate change.

  16. Prototype development of user specific climate services

    Science.gov (United States)

    Jacob, Daniela

    2017-04-01

    Systematic consultations in the last years with representatives from sectors particularly affected by climate change have helped the Climate Service Center Germany (GERICS) to identify the most pressing needs of stakeholders from public and private sectors. Besides the development of innovative climate service products and methods, areas are also identified, for which intensive research activities have to be initiated. An example is the demand of decision makers for high-resolution climate change information needed at regional to local levels for their activities towards climate change adaptation. For questions concerning adaptation to climate change, no standard solutions can be provided. Different from mitigation measures, adaptation measures must be framed in accordance with the specific circumstances prevailing in the local situation. Here, individual solutions, which satisfy the individual requirements and needs, are necessary. They have to be developed in close co-operation with the customers and users. For example, the implications of climate change on strategic and operative decisions, e.g. in enterprises and urban planning, are becoming increasingly important. Therefore, high-quality consultancy for businesses and public administration is needed, in order to support decision makers in identifying associated risks and opportunities. For the development of prototype products, GERICS has framed a general methodological approach, including the idea generation, the iterative development, and the prototype testing in co-development with the user. High process transparency and high product quality are prerequisite for the success of a product. The co-development process ensures the best possible communication of user tailored climate change information for different target groups.

  17. Mean versus extreme climate in the Mediterranean region and its sensitivity to future global warming conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H.; Hense, A. [Meteorological Inst., Univ. Bonn (Germany)

    2005-06-01

    The Mediterranean region (MTR) has been supposed to be very sensitive to changes in land surface and atmospheric greenhouse-gas (GHG) concentrations. Particularly, an intensification of climate extremes may be associated with severe socio-economic implications. Here, we present an analysis of climate mean and extreme conditions in this subtropical area based on regional climate model experiments, simulating the present-day and possible future climate. The analysis of extreme values (EVs) is based on the assumption that the extremes of daily precipitation and near-surface temperature are well fitted by the Generalized Pareto distribution (GPD). Return values of extreme daily events are determined using the method of L-moments. Particular emphasis is laid on the evaluation of the return values with respect to the uncertainty range of the estimate as derived from a Monte Carlo sampling approach. During the most recent 25 years the MTR has become dryer in spring but more humid especially in the western part in autumn and winter. At the same time, the whole region has been subject to a substantial warming. The strongest rainfall extremes are simulated in autumn over the Mediterranean Sea around Italy. Temperature extremes are most pronounced over the land masses, especially over northern Africa. Given the large uncertainty of the EV estimate, only 1-year return values are further analysed. During recent decades, statistically significant changes in extremes are only found for temperature. Future climate conditions may come along with a decrease in mean and extreme precipitation during the cold season, whereas an intensification of the hydrological cycle is predicted in summer and autumn. Temperature is predominantly affected over the Iberian Peninsula and the eastern part of the MTR. In many grid boxes, the signals are blurred out due to the large amount of uncertainty in the EV estimate. Thus, a careful analysis is required when making inferences about the future

  18. Climate change is affecting mortality of weasels due to camouflage mismatch.

    Science.gov (United States)

    Atmeh, Kamal; Andruszkiewicz, Anna; Zub, Karol

    2018-05-24

    Direct phenological mismatch caused by climate change can occur in mammals that moult seasonally. Two colour morphs of the weasel Mustela nivalis (M. n.) occur sympatrically in Białowieża Forest (NE Poland) and differ in their winter pelage colour: white in M. n. nivalis and brown in M. n. vulgaris. Due to their small body size, weasels are vulnerable to attacks by a range of different predators; thus cryptic coat colour may increase their winter survival. By analysing trapping data, we found that the share of white subspecies in the weasel population inhabiting Białowieża Forest decreases with decreasing numbers of days with snow cover. This led us to hypothesise that selective predation pressure should favour one of the two phenotypes, according to the prevailing weather conditions in winter. A simple field experiment with weasel models (white and brown), exposed against different background colours, revealed that contrasting models faced significantly higher detection by predators. Our observations also confirmed earlier findings that the plasticity of moult in M. n. nivalis is very limited. This means that climate change will strongly influence the mortality of the nivalis-type due to prolonged camouflage mismatch, which will directly affect the abundance and geographical distribution of this subspecies.

  19. Net energy value of maize ethanol as a response to different climate and soil conditions in the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Garcia y Garcia, Axel; Paz, Joel O.; Hoogenboom, Gerrit [Department of Biological and Agricultural Engineering, 1109 Experiment Street, The University of Georgia, Griffin, GA 30223 (United States); Jones, James W. [Department of Agricultural and Biological Engineering, Frazier Rogers Hall, University of Florida, Gainesville, FL 32611 (United States)

    2009-08-15

    A recent increase in the demand for bio-ethanol has sparked maize production in the USA and other countries across the world. The net energy value (NEV), i.e. the energy output in ethanol and co-products after accounting for energy input requirements in the production chain of ethanol, is a measure of its sustainability. Grain yield of maize, which varies substantially across different climate and soil conditions, greatly impacts the ethanol NEV. The objectives of this study were to determine i) the NEV of ethanol produced from maize grown in four production regions in the southeastern USA and, ii) the specific impact of local soil variability under the same climate conditions within the four regions on the NEV of maize-ethanol. Maize yield was simulated with the Cropping System Model (CSM)-CERES-Maize model for soil and weather conditions, and management practices representing Bulloch, Floyd, Laurens and Mitchell counties, Georgia, USA. The calculation of ethanol NEV took into account the energy inputs and outputs of the entire ethanol production chain, and was based on the crop simulations. There were statistically significant differences in ethanol NEV among the counties, and within counties due to local soil variability. Differences in ethanol NEV among counties were partially due to different transportation distances. Based on the results of this study, it was concluded that maize-ethanol NEV can be increased by accounting for the soil and climate factors in the feedstock production and by locating ethanol-processing facilities in regions with soil and climate conditions that are favorable for ethanol-maize production. (author)

  20. Icing Conditions Over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Arzhanova, N.; Groisman, P. Y.

    2013-12-01

    Climate of the Russian Federation for the national territory. This Reference Book addresses the current state of these weather phenomena. However, the ongoing and projected humidity changes in the high latitudes will strongly affect the circum-polar area (land and ocean) and impact the frequency and intensity of these potentially dangerous weather phenomena across the entire extratropical land area. Therefore the goal of the present study is to quantify icing conditions over the northern Eurasia. Our analysis includes data of 958 Russian stations from 1977 to 2012. Regional analysis of gololed characteristics was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, from 1977 to 2012). Anomalies were arithmetically averaged first within 1N x 2E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions. This approach provides a more uniform spatial field for averaging.

  1. Regional feedbacks under changing climate and land-use conditions

    Science.gov (United States)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B. J.; van Minnen, J. G.

    2012-04-01

    Ecosystem responses to a changing climate and human-induced climate forcings (e.g. deforestation) might amplify (positive feedback) or dampen (negative feedback) the initial climate response. Feedbacks may include the biogeochemical (e.g. carbon cycle) and biogeophysical feedbacks (e.g. albedo and hydrological cycle). Here, we first review the most important feedbacks and put them into the context of a conceptual framework, including the major processes and interactions between terrestrial ecosystems and climate. We explore potential regional feedbacks in four hot spots with pronounced potential changes in land-use/management and local climate: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, the relevant human-induced climate forcings and feedbacks were identified based on published literature. When evapotranspiration is limited by a soil water deficit, heat waves in Europe are amplified (positive soil moisture-temperature feedback). Drought events in the Amazon lead to further rainfall reduction when water recycling processes are affected (positive soil moisture-precipitation feedback). In SSA, the adoption of irrigation in the commonly rainfed systems can modulate the negative soil moisture-temperature feedback. In contrast, future water shortage in South and Southeast Asia can turn the negative soil moisture-temperature feedback into a positive one. Further research including advanced modeling strategies is needed to isolate the dominant processes affecting the strength and sign of the feedbacks. In addition, the socio-economic dimension needs to be considered in the ecosystems-climate system to include the essential role of human decisions on land-use and land-cover change (LULCC). In this context, enhanced integration between Earth System (ES) and Integrated Assessment (IA) modeling communities is strongly recommended.

  2. Characterizing the growth responses of three co-occurring northern conifer tree species to climate variation across a range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Green, S.; Miyamoto, Y. [Northern British Columbia Univ., Prince George, BC (Canada). Ecosystem Science and Management Program

    2006-07-01

    Climate is the key factor affecting tree growth. Trees regularly adapt to changing environmental conditions. Adjusting forest policies and practices under changing environments necessitates an understanding of species-specific tree responses to climate change. This paper discussed a study that examined the responses of 3 northern conifer tree species, notably the lodgepole pine, subalpine fir, and interior spruce. The purpose of the study was to characterize the climate sensitivities of each species growing under various environmental conditions, represented by mean annual temperatures and mean annual precipitations. The paper provided background information on climate change and tree species and discussed the objectives and implications of the study. Study methods were presented in detail and a geographical map showing the eight sampling sites located in central British Columbia and Yukon was also provided. Last, the paper provided the preliminary results and conclusions. It was found that the impacts of changing seasonal climates on tree growth will be species and site-specific. However, the magnitude of these differences were not completely analysed so that the impacts may be similar or significantly different among species or sites. 15 refs., 4 figs.

  3. Wave Runup on a Frozen Beach Under High Energy Conditions

    Science.gov (United States)

    Didier, D.; Bernatchez, P.; Dumont, D.; Corriveau, M.

    2017-12-01

    High and mid-latitude beaches have typical morphological characteristics influenced by nearshore processes prevailing under ice conditions during cold season. Nearshore ice complexes (NIC) offer a natural coastal protection by covering beach sediments, while offshore ice-infested waters dissipate incoming waves. Climate change contributes to sea ice shrinking therefore reducing its protection against erosion and flooding. In the Estuary and Gulf of the St. Lawrence (ESL, GSL) (eastern Canada), sea ice cover undergoes an overall shrinking and simulated future projections tend toward a negligible effect on wave climate by 2100. Quantifying the effect of nearshore dynamics on frozen beaches is therefore imperative for coastal management as more wave energy at the coast is expected in the future. To measure the effect of a frozen beach on wave runup elevations, this study employs a continuous video recording of the swash motion at 4Hz. Video-derived wave runup statistics have been extracted during a tidal cycle on a frozen beach, using the Pointe-Lebel beach (ESL) as a test case. Timestack analysis was combined with offshore water levels and wave measurements. A comparison of runup under icy conditions (Dec. 30 2016) with a runup distribution during summer was made under similar high energy wave conditions. Results indicate high runup excursions potentially caused by lowered sediment permeability due to high pore-ice saturation in the swash zone, accentuating the overwash of the eroding coastline and thus the risk of flooding. With projected reduction in coastal sea ice cover and thus higher wave energy, this study suggests that episodes of degradation and weakening could influence the coastal flood risk in mid- and high-latitude cold environments.

  4. A 10-days heatwave around flowering superimposed on climate change conditions significantly affects production of 22 barley accessions

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Lyngkjær, Michael F.; Peltonen-Sainio, Pirjo

    2015-01-01

    Extreme climate events as heatwaves, floods and storms cause acute changes in season variability influencing primary production and are very likely to increase in magnitude and/or frequency (IPCC, AR5, WGI). In the present study 22 primarily Nordic barley accessions were grown in four basic clima...... climate change conditions on numerous accessions in order to select appropriate genotypes for breeding future cultivars that can secure the primary production....

  5. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  6. Last Glacial vegetation and climate change in the southern Levant

    Science.gov (United States)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    limiting factor for tree growth was precipitation. Consequently, the precipitation gradient was not as strong as today, and semiarid conditions prevailed in the southern Levant during the Last Glacial. Our study will contribute to the overall aim to reconstruct the way of modern humans to Europe and to understand the complex connection between climate and vegetation change in the Eastern Mediterranean.

  7. Simulation and Validation of Cisco Lethal Conditions in Minnesota Lakes under Past and Future Climate Scenarios Using Constant Survival Limits

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2016-07-01

    Full Text Available Fish habitat in lakes is strongly constrained by water temperature (T and available dissolved oxygen (DO that are changed under climate warming. A one dimensional, dynamic water quality model MINLAKE2012 was used for T and DO simulation over 48 years. A fish habitat model FishHabitat2013 using simulated T and DO profiles as input was developed to determine lethal conditions of cisco Corgenous artedi in Minnesota lakes. Twenty-three lakes that had observations of cisco mortality or survival in the unusually warm summer of 2006 were used for model validation. The cisco habitat model used a lethal temperature of 22.1 °C and DO survival limit of 3 mg/L determined through model validation and sensitivity analysis. Cisco lethal conditions in 12 shallow, 16 medium-depth, and 30 deep virtual lakes were then simulated. Isopleths of total number of years with cisco kill and average cisco kill days for the years with kills under past (1961–2008 and future climate were generated to understand/extrapolate climate impacts on cisco in 620 Minnesota lakes. Shallow and medium-depth lakes are projected to not be good candidates for cisco refuge lakes, but deep lakes are possible cisco refuge lakes based on lethal condition projection under future warmer climate.

  8. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    International Nuclear Information System (INIS)

    Brandefelt, Jenny; Naeslund, Jens-Ove; Zhang, Qiong; Hartikainen, Juha

    2013-05-01

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next ∼60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO 2 concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO 2 concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO 2 concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO 2 concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on simulations with an Earth system model

  9. Wood density variations of Norway spruce (Picea abies (L. Karst. under contrasting climate conditions in southwestern Germany

    Directory of Open Access Journals (Sweden)

    Marieke van der Maaten-Theunissen

    2013-05-01

    Full Text Available We analyzed inter-annual variations in ring width and maximumwood density of Norway spruce (Picea abies (L. Karst. at different altitudes in Baden-Württemberg, southwestern Germany, to determine the climate response of these parameters under contrasting climate conditions. In addition, we compared maximum, average and minimum wood density between sites. Bootstrapped correlation coefficients of ring width and maximum wood density with monthly temperature and precipitation, revealed a different climate sensitivity of both parameters. Ring width showed strong correlations with climate variables in the previous year and in the first half of the growingseason. Further, a negative relationship with summer temperature was observed at the low-altitude sites. Maximum wood density correlated best with temperature during the growing season, whereby strongest correlations were found between September temperature and maximum wood density at the high-altitude sites. Observed differences in maximum, average and minimum wood density are suggested to relate to the local climate; with lower temperature and higher water availability having a negative effect on wood density.

  10. Wood density variations of Norway spruce (Picea abies (L. Karst. under contrasting climate conditions in southwestern Germany

    Directory of Open Access Journals (Sweden)

    Marieke van der Maaten-Theunissen

    2013-07-01

    Full Text Available We analyzed inter-annual variations in ring width and maximum wood density of Norway spruce (Picea abies (L. Karst. at different altitudes in Baden-Württemberg, southwestern Germany, to determine the climate response of these parameters under contrasting climate conditions. In addition, we compared maximum, average and minimum wood density between sites. Bootstrapped correlation coefficients of ring width and maximum wood density with monthly temperature and precipitation, revealed a different climate sensitivity of both parameters. Ring width showed strong correlations with climate variables in the previous year and in the first half of the growing season. Further, a negative relationship with summer temperature was observed at the low-altitude sites. Maximum wood density correlated best with temperature during the growing season, whereby strongest correlations were found between September temperature and maximum wood density at the high-altitude sites. Observed differences in maximum, average and minimum wood density are suggested to relate to the local climate; with lower temperatures and higher water availability having a negative effect on wood density. 

  11. Food Security Under Shifting Economic, Demographic, and Climatic Conditions (Invited)

    Science.gov (United States)

    Naylor, R. L.

    2013-12-01

    Global demand for food, feed, and fuel will continue to rise in a more populous and affluent world. Meeting this demand in the future will become increasingly challenging with global climate change; when production shocks stemming from climate variability are added to the new mean climate state, food markets could become more volatile. This talk will focus on the interacting market effects of demand and supply for major food commodities, with an eye on climate-related supply trends and shocks. Lessons from historical patterns of climate variability (e.g., ENSO and its global teleconnections) will be used to infer potential food security outcomes in the event of abrupt changes in the mean climate state. Domestic food and trade policy responses to crop output and price volatility in key producing and consuming nations, such as export bans and import tariffs, will be discussed as a potentially major destabilizing force, underscoring the important influence of uncertainty in achieving--or failing to achieve--food security.

  12. Towards a climate-driven dengue decision support system for Thailand

    Science.gov (United States)

    Lowe, Rachel; Cazelles, Bernard; Paul, Richard; Rodó, Xavier

    2014-05-01

    Dengue is a peri-urban mosquito-transmitted disease, ubiquitous in the tropics and the subtropics. The geographic distribution of dengue and its more severe form, dengue haemorrhagic fever (DHF), have expanded dramatically in the last decades and dengue is now considered to be the world's most important arboviral disease. Recent demographic changes have greatly contributed to the acceleration and spread of the disease along with uncontrolled urbanization, population growth and increased air travel, which acts as a mechanism for transporting and exchanging dengue viruses between endemic and epidemic populations. The dengue vector and virus are extremely sensitive to environmental conditions such as temperature, humidity and precipitation that influence mosquito biology, abundance and habitat and the virus replication speed. In order to control the spread of dengue and impede epidemics, decision support systems are required that take into account the multi-faceted array of factors that contribute to increased dengue risk. Due to availability of seasonal climate forecasts, that predict the average climate conditions for forthcoming months/seasons in both time and space, there is an opportunity to incorporate precursory climate information in a dengue decision support system to aid epidemic planning months in advance. Furthermore, oceanic indicators from teleconnected areas in the Pacific and Indian Ocean, that can provide some indication of the likely prevailing climate conditions in certain regions, could potentially extend predictive lead time in a dengue early warning system. In this paper we adopt a spatio-temporal Bayesian modelling framework for dengue in Thailand to support public health decision making. Monthly cases of dengue in the 76 provinces of Thailand for the period 1982-2012 are modelled using a multi-layered approach. Environmental explanatory variables at various spatial and temporal resolutions are incorporated into a hierarchical model in order to

  13. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    Science.gov (United States)

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of

  14. Climate indices of Iran under climate change

    OpenAIRE

    alireza kochaki; mehdi nasiry; gholamali kamali

    2009-01-01

    Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the e...

  15. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are considered as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system design

  16. Projecting climate change, drought conditions and crop productivity in Turkey

    NARCIS (Netherlands)

    Sen, B.; Topcu, S.; Türkes, M.; Warner, J.F.

    2012-01-01

    This paper focuses on the evaluation of regional climate model simulation for Turkey for the 21st century. A regional climate model, ICTP-RegCM3, with 20 km horizontal resolution, is used to downscale the reference and future climate scenario (IPCC-A2) simulations. Characteristics of droughts as

  17. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2016-12-01

    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  18. Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions.

    Science.gov (United States)

    Rugiu, Luca; Manninen, Iita; Rothäusler, Eva; Jormalainen, Veijo

    2018-03-01

    Climate change is threating species' persistence worldwide. To predict species responses to climate change we need information not just on their environmental tolerance but also on its adaptive potential. We tested how the foundation species of rocky littoral habitats, Fucus vesiculosus, responds to combined hyposalinity and warming projected to the Baltic Sea by 2070-2099. We quantified responses of replicated populations originating from the entrance, central, and marginal Baltic regions. Using replicated individuals, we tested for the presence of within-population tolerance variation. Future conditions hampered growth and survival of the central and marginal populations whereas the entrance populations fared well. Further, both the among- and within-population variation in responses to climate change indicated existence of genetic variation in tolerance. Such standing genetic variation provides the raw material necessary for adaptation to a changing environment, which may eventually ensure the persistence of the species in the inner Baltic Sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  20. Georgian climate change under global warming conditions

    Directory of Open Access Journals (Sweden)

    Mariam Elizbarashvili

    2017-03-01

    Full Text Available Georgian Climate change has been considered comprehensively, taking into account World Meteorological Organization recommendations and recent observation data. On the basis of mean temperature and precipitation decadal trend geo-information maps for 1936–2012 years period, Georgian territory zoning has been carried out and for each areas climate indices main trends have been studied, that best characterize climate change - cold and hot days, tropical nights, vegetation period duration, diurnal maximum precipitation, maximum five-day total precipitation, precipitation intensity simple index, precipitation days number of at least 10 mm, 20 mm and 50 mm, rainy and rainless periods duration. Trends of temperature indices are statistically significant. On the Black Sea coastline and Colchis lowland at high confidence level cold and hot days and tropical nights number changes are statistically significant. On eastern Georgia plains at high level of statistical significance, the change of all considered temperature indices has been fixed except for the number of hot days. In mountainous areas only hot day number increasing is significant. Trends of most moisture indices are statistically insignificant. While keeping Georgian climate change current trends, precipitation amount on the Black Sea coastline and Colchis lowland, as well as in some parts of Western Caucasus to the end of the century will increase by 50% and amounts to 3000 and 6000 mm, respectively this will strengthen humidity of those areas. Besides increasing of rainy period duration may constitute the risk for flooding and high waters. On eastern Georgia plains, in particular Kvemo Kartli, annual precipitation amount will decrease by 50% or more, and will be only 150–200 mm and the precipitation daily maximum will decrease by about 20 mm and be only 10–15 mm, which of course will increase the intensity of desertification of steppe and semi-desert landscapes.

  1. Sustainable Management of Climate Change: The Case of the Middle East and North Africa Region

    Directory of Open Access Journals (Sweden)

    Adel M. Al Taweel

    2015-08-01

    Full Text Available Climate change is one of the major environmental challenges facing the world. Particularly vulnerable are arid and low-laying coastal areas, conditions that prevail through most of the Middle East and North Africa [MENA]. This region is an economically diverse one, including both the oil-rich economies in the Gulf and countries that are resource-scarce in relation to their population.  However, with about 23 percent of MENA’s population living on less than $2 a day, it is imperative that the climate change management strategies adopted be cost-effective and emphasize economic, social and human development while addressing the concerns arising from anthropogenic climate change.Over the past decades several national and international mechanisms were developed in an attempt to reduce the emissions considered to be mainly responsible for climate change, and to assist in coping with the adverse effects that are beginning to occur as a result of climate change. Unfortunately, many of these approaches are presently associated with economic penalties that often adversely affect the socio-economic welfare of the populace, particularly in low-, and medium-income countries. In this regard, it is informative to note the experience recently gained by Trinidad and Tobago [T&T] in its attempt to reduce GHG emissions without affecting the competitiveness of the industrial and agricultural sectors. Using appropriate decision making tools and a policy environment based on a combination of regulations and incentives, the environmental challenges can be turned into a vehicle for sustainable development.This paper discusses the factors that need to be considered while developing a sustainable climate change management approach for the MENA region and develops some recommendations that may be essential for achieving the desired climate change mitigation/adaptation actions while minimizing social disruption.

  2. CONTEMPORARY CHANGES OF THE CLIMATIC CONDITIONS OF THE CASPIAN SEMI-DESERT LANDSCAPES OF THE EASTERN CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    Z. V. Ataev

    2011-01-01

    Full Text Available The article analyzes the changes in the hydrothermal conditions within the pricaspian littoral plains accumulation and denudation-accumulative in places aeolian landscapes saltwort, saltwort-sagebrush deserts and semi-deserts in light chestnut soils based on data from weather stations "Makhachkala" for years 1945-2005.Tendencies of changes in temperature, precipitation, and hydrothermal coefficient and coefficient of moisture are shown. Tendency of modern fluctuations suggests that the climatic conditions of the last period contribute to the development of dry steppes and significant deviations from the conditions of the previous period do not occur.

  3. Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea

    Directory of Open Access Journals (Sweden)

    G. Siani

    2013-02-01

    Full Text Available Holocene paleohydrology reconstruction is derived combining planktonic and benthic stable oxygen and carbon isotopes, sea surface temperatures (SSTs and oxygen isotope composition of seawater (δ18Ow from a high sedimentation core collected in the South Adriatic Sea (SAS. Core chronology is based on 10 AMS 14C measures on planktonic foraminifera and tephra layers. Results reveal two contrasted paleohydrological periods that reflect (i a marked lowering of δ18Ow/salinity during the early to mid-Holocene (11.5 ka to 6.3 ka, including the two-step sapropel S1 deposition, followed during the mid- to upper Holocene by (ii a prevailing period of increased salinity and enhanced arid conditions in the South Adriatic Basin. Superimposed on these trends, short-term centennial-scale hydrological events punctuated the Holocene period in the SAS. During the early to mid-Holocene, two main SST coolings together with prominent δ18Ow/salinity lowering delineate the sapropel S1 interruption and the post-sapropel phase between 7.3 to 6.3 ka. After 6 ka, centennial-scale δ18Ow and G. bulloides δ13C lowering, mostly centered between 3 to 0.6 ka, reflect short-term hydrological changes related to more intensive runoff of the Po and/or Apennine rivers. These short-term events, even of lesser amplitude compared to the early to mid-Holocene period, may have induced a lowering of sea surface density and consequently reduced and/or inhibited the formation of deep bottom waters in the SAS. Comparison of the emerging centennial- to millennial-scale hydrological record with previous climatic records from the central Mediterranean area and north of the Alps reveal possible synchronicities (within the radiocarbon-dating uncertainty between phases of lower salinity in the SAS and periods of wetter climatic conditions around the north-central Adriatic Sea. Finally, wavelet analyses provide new clues about the potential origin of climate variability in the SAS, confirming

  4. Spirometry Changes in Cold Climatic Conditions of Antarctica.

    Science.gov (United States)

    Udaya, Iyamanda B; Laxmi, Chettangada C; Abhishekh, Hulegar A; Raju, Trichur R; Sathyaprabha, Talakad N

    2015-01-01

    Pulmonary function is one of the important physiological measures that is known to be affected during the changes in the altitude. There is dearth of literature on changes in the pulmonary function variables in the cold climate conditions of Antarctica. We carried out spirometry before, during and after one year stay at Antarctica in members of the Indian expedition. Spirometry was carried out on 23 members of the XXVI Indian Scientific Expedition to Antarctica at baseline, after six months of expedition and at the end of one year, using standard guidelines. The tests were carried out indoor in temperature controlled laboratory. The pulmonary function test parameters did not vary across the period. Although, both forced vital capacity (FVC) and forced expiratory volume in first second (FEV1) showed a decreasing trend but did not attain any statistical significance. However, peak expiratory flow (PEFR) rate was reduced significantly. Our study did not show consistently significant change in the pulmonary function parameters in the members of the Indian Antarctic expedition.

  5. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  6. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  7. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate.

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Stroosnijder, L.

    1986-01-01

    A simple parametric model is presented to estimate daily evaporation from fallow tilled soil under spring conditions in a temperate climate. In this model, cumulative actual evaporation during a drying cycle is directly proportional to the square root of cumulative potential evaporation. The model

  8. Climatic conditions and child height: Sex-specific vulnerability and the protective effects of sanitation and food markets in Nepal.

    Science.gov (United States)

    Mulmi, Prajula; Block, Steven A; Shively, Gerald E; Masters, William A

    2016-12-01

    Environmental conditions in early life are known to have impacts on later health outcomes, but causal mechanisms and potential remedies have been difficult to discern. This paper uses the Nepal Demographic and Health Surveys of 2006 and 2011, combined with earlier NASA satellite observations of variation in the Normalized Difference Vegetation Index (NDVI) at each child's location and time of birth to identify the trimesters of gestation and periods of infancy when climate variation is linked to attained height later in life. We find significant differences by sex: males are most affected by conditions in their second trimester of gestation, and females in the first three months after birth. Each 100-point difference in NDVI at those times is associated with a difference in height-for-age z-score (HAZ) measured at age 12-59 months of 0.088 for boys and 0.054 for girls, an effect size similar to that of moving within the distribution of household wealth by close to one quintile for boys and one decile for girls. The entire seasonal change in NDVI from peak to trough is approximately 200-300 points during the 2000-2011 study period, implying a seasonal effect on HAZ similar to one to three quintiles of household wealth. This effect is observed only in households without toilets; in households with toilets, there is no seasonal fluctuation, implying protection against climatic conditions that facilitate disease transmission. We also use data from the Nepal Living Standards Surveys on district-level agricultural production and marketing, and find a climate effect on child growth only in districts where households' food consumption derives primarily from their own production. Robustness tests find no evidence of selection effects, and placebo regression results reveal no significant artefactual correlations. The timing and sex-specificity of climatic effects are consistent with previous studies, while the protective effects of household sanitation and food markets are

  9. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Energy Technology Data Exchange (ETDEWEB)

    Brandefelt, Jenny; Naeslund, Jens-Ove [Svensk Kaernbraenslehantering, Stockholm (Sweden); Zhang, Qiong [Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden); Hartikainen, Juha [School of Engineering, Aalto Univ., Aalto (Finland)

    2013-05-15

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next {approx}60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO{sub 2} concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO{sub 2} concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO{sub 2} concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO{sub 2} concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on

  10. The year-wise nodulation behavior and biological nitrogen fixation parameters of chickpea (cicer aritinum, L) at some selected sites in the southern zone of Pakistan during 1995-98

    International Nuclear Information System (INIS)

    Idris, M.

    2000-01-01

    Study was carried out during 1995-98 to know the location and year-wise nodulation response (number and weight of nodules/plant) and the related biological nitrogen fixation parameters (dry matter yield, n concentration and yield/plant) of the crop at some selected sites ( Peshawar, Kohat, Krak, Bannu and D. I. Khan ) under the agro climatic conditions prevailing in the southern zones of NWFP-Pakistan. The crop was found to be profusely nodulating under the agro climatic conditions prevailing at all sites except at Barani-Agricultural Research station (bars) Kohat, where the nodulation of the crop almost remained inclined to be nil. The nodulation behavior and biological nitrogen fixation parameters of chickpea during 1995-98 in the southern zone of NWFP- Pakistan has been described. (author)

  11. Climate and Population Health Vulnerabilities to Vector-Borne Diseases: Increasing Resilience Under Climate Change Conditions in Africa

    Science.gov (United States)

    Ceccato, P.; McDonald, K. C.; Podest, E.; De La Torre Juarez, M.; Kruczkiewicz, A.; Lessel, J.; Jensen, K.; Thomson, M. C.

    2014-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases (i.e. malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities, ministries of health and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above.

  12. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  13. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, Courtney [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Walter, Katey [Univ. of Alaska, Fairbanks, AK (United States)

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  14. Phytoremdiation Species And Their Modification Under By Weed Varying Climatic Condition A Changing Scenario

    Directory of Open Access Journals (Sweden)

    Anita Singh

    2015-08-01

    Full Text Available Abstract The major reasons for environmental contamination are population explosion increase in industrial and other urban activities. One of the consequent effect of these activities is heavy metal pollution. It is one of the serious issue to be discussed by the scientists and academicians that how to solve this problem to protect the environment. As heavy metals are non-biodegradable so they require effective cleanup technology. Most of the traditional methods such as excavation solidification and burial are very costly or they simply involve the isolation of the metals from contaminated sites. Among different technologies phytoremediation is best approach for removing metal contamination from environment. It involves plants to remove detoxify or immobilize metals from environment. Weed plants are found to be play very important role in metal remediation. They get affected by climatic variation which is also a consequent effect of environmental pollution. The physiology of plants as well as physiochemical properties of soil gets affected by varying climatic condition. Therefore the present review gives the information on metal remediation processes and how these process particularly phytoremediation by weed plants get affected by climatic changes.

  15. Productive and qualitative evaluation of onion cultivars under agro-climatic conditions of faisalabad

    International Nuclear Information System (INIS)

    Mushtaq, S.; Amjad, M.; Ziaf, K.; Cheema, K.L.

    2013-01-01

    Onion varieties are very specific in their photoperiod and vernalization requirements and therefore vary for yield, yield related traits and bolting in a specific agro-climate. Therefore, performance of nineteen onion varieties for these traits was evaluated at Vegetable Research Institute, Faisalabad. The maximum bolting percentage was recorded in Desi Red (46.67%) that indicates less vernalization requirement of this variety while it was the minimum in Faisal Red and VRIO-6 (13.33%). The cultivar Phulkara produced larger size bulbs (73.22 mm diameter) as well as highest yield (21.90 t ha/sup -1/) and bulb to neck diameter ratio (6.75). Similarly, minimum weight loss during curing was observed in Desi Red (4.64%), Pusa Red (4.76%) and Phulkara (4.83%), indicating higher dry matter contents while maximum weight loss (6%) was recorded in VRIO-6. Overall results revealed that both Phulkara and Desi Red are excellent for processing while Dark Red for cooking purpose under agro-climatic conditions of Faisalabad. (author)

  16. Climate bifurcation during the last deglaciation?

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2012-07-01

    Full Text Available There were two abrupt warming events during the last deglaciation, at the start of the Bølling-Allerød and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state loses its stability and the climate tips into an alternative state, providing an early warning signal in the form of slowing responses to perturbations, which may be accompanied by increasing variability. Alternatively, short-term stochastic variability in the climate system can trigger abrupt climate changes, without early warning. Previous work has found signals consistent with slowing down during the last deglaciation as a whole, and during the Younger Dryas, but with conflicting results in the run-up to the Bølling-Allerød. Based on this, we hypothesise that a bifurcation point was approached at the end of the Younger Dryas, in which the cold climate state, with weak Atlantic overturning circulation, lost its stability, and the climate tipped irreversibly into a warm interglacial state. To test the bifurcation hypothesis, we analysed two different climate proxies in three Greenland ice cores, from the Last Glacial Maximum to the end of the Younger Dryas. Prior to the Bølling warming, there was a robust increase in climate variability but no consistent slowing down signal, suggesting this abrupt change was probably triggered by a stochastic fluctuation. The transition to the warm Bølling-Allerød state was accompanied by a slowing down in climate dynamics and an increase in climate variability. We suggest that the Bølling warming excited an internal mode of variability in Atlantic meridional overturning circulation strength, causing multi-centennial climate fluctuations. However, the return to the Younger Dryas cold state increased climate stability. We find no consistent evidence for slowing down during the Younger Dryas, or in a longer

  17. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Directory of Open Access Journals (Sweden)

    Nicolas Casajus

    Full Text Available An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  18. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Science.gov (United States)

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  19. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Sujata; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2010-10-15

    In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a-d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle. (author)

  20. Climate and human influences on historical fire regimes (AD 1400-1900) in the eastern Great Basin (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2015-01-01

    High fire activity in western North America is associated with drought. Drought and fire prevail under negative El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) phases in the Southwest and with positive phases in the Northwest. Here, I infer climate effects on historic fire patterns in the geographically intermediate, eastern Great...

  1. Relationship between climate conditions and nosocomial infection ...

    African Journals Online (AJOL)

    EB

    Conclusion: To decrease NIRs and improve health care quality, it is necessary to strengthen the control of ... level, etc.) and environmental factors (climatic ... those in developing countries the wards are generally ... Therefore, effects of ambient.

  2. Do climate variables and human density affect Achatina fulica (Bowditch) (Gastropoda: Pulmonata) shell length, total weight and condition factor?

    Science.gov (United States)

    Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L

    2009-08-01

    The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  3. Do climate variables and human density affect Achatina fulica (Bowditch (Gastropoda: Pulmonata shell length, total weight and condition factor?

    Directory of Open Access Journals (Sweden)

    FS. Albuquerque

    Full Text Available The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm. The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.

  4. Effect of climate conditions on the uptake and translocation of trace elements in plants an behavior of ions at cell level

    International Nuclear Information System (INIS)

    Yamagami, Mutsumi; Yanai, Masumi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2003-01-01

    The present investigation was performed in order to look at the effect of various climatic conditions on the uptake and translocation of radionuclides and trace elements in plants. So far we have investigated the following three items; the effect of climate conditions including Yamase (seasonal climatic condition of low temperature, low sunshine and high humidity.) on the elemental transfer factors in rice, the effect of light conditions on the metabolism of elements in plants, and the effect of environmental factors on elemental movement at a cell level, and searched for mutant plant strains to match the elemental requirement. Among these items this paper elaborates about the effect of light condition on the metabolism of elements in plants. Young radishes (Raphanus sativus L.) were grown under various light conditions; white, blue+red and red fluorescent light. Under red light a marked spindly growth of the stem and petiole was observed. Adding blue light to red light reduced the growth to the level under control white light. The concentrations of elements, such as Fe, Cu and Zn, in the plants were affected by the light conditions. The effect of light condition on the spindly growth of hypocotyls with the plant was also studied with Arabidopsis (Arabidopsis thaliana L.), and the results showed that supplementation of blue light approximately 15% red light could control the growth. For a further investigation of the mechanism of these phenomena, several ion channel blockers and metabolic inhibitors were examined in hydroponic plants or protoplasts. The results suggested that both anion and cation channels were related to the elongation. (author)

  5. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  6. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    Science.gov (United States)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or

  7. Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models

    Science.gov (United States)

    Fowler, Keirnan J. A.; Peel, Murray C.; Western, Andrew W.; Zhang, Lu; Peterson, Tim J.

    2016-03-01

    Hydrologic models have potential to be useful tools in planning for future climate variability. However, recent literature suggests that the current generation of conceptual rainfall runoff models tend to underestimate the sensitivity of runoff to a given change in rainfall, leading to poor performance when evaluated over multiyear droughts. This research revisited this conclusion, investigating whether the observed poor performance could be due to insufficient model calibration and evaluation techniques. We applied an approach based on Pareto optimality to explore trade-offs between model performance in different climatic conditions. Five conceptual rainfall runoff model structures were tested in 86 catchments in Australia, for a total of 430 Pareto analyses. The Pareto results were then compared with results from a commonly used model calibration and evaluation method, the Differential Split Sample Test. We found that the latter often missed potentially promising parameter sets within a given model structure, giving a false negative impression of the capabilities of the model. This suggests that models may be more capable under changing climatic conditions than previously thought. Of the 282[347] cases of apparent model failure under the split sample test using the lower [higher] of two model performance criteria trialed, 155[120] were false negatives. We discuss potential causes of remaining model failures, including the role of data errors. Although the Pareto approach proved useful, our aim was not to suggest an alternative calibration strategy, but to critically assess existing methods of model calibration and evaluation. We recommend caution when interpreting split sample results.

  8. Pliocene climate

    Science.gov (United States)

    Dowsett, Harry J.; Caballero-Gill, R. P.

    2010-01-01

    The Pliocene Epoch, 5.3 Ma to 1.8 Ma, was a time when paleoclimate conditions ranged from very warm, equable climates (on a global scale), rhythmically varying every 40,000 years, to high-amplitude glacial-interglacial cycles that led to the “Ice Ages” of the Pleistocene. Evidence for paleoclimate conditions comes from fossils, geochemical data, and the integration of these data with sophisticated numerical models. The Pliocene exhibited a range in atmospheric CO2 concentrations with highs estimated to be at most ~425 ppm in the early Pliocene followed by overall decrease toward preindustrial levels by the close of the Pliocene Epoch (Pagani et al. 2010). Sea levels were estimated to be 25m higher than present day and the size and position of ice sheets in Greenland and Antarctica were decidedly different from today. On the other hand, by the mid-Pliocene, the majority of fauna and flora as well as continental configurations were basically the same as today. Man’s ability to adapt to or mitigate the effects of future climate require a deep understanding of the rates and magnitude of future climate change on an ever finer scale. Since conditions projected for the end of this century are not in the human experience, we depend upon a combination of numerical climate models and comparison to analogous conditions in the geologic past. The Pliocene contains what might be the closest analog to climate conditions expected in the near future, and therefore understanding the Pliocene is not only of academic interest but essential for human adaptation.

  9. Effect of different home-cooking methods on textural and nutritional properties of sweet potato genotypes grown in temperate climate conditions.

    Science.gov (United States)

    Nicoletto, Carlo; Vianello, Fabio; Sambo, Paolo

    2018-01-01

    The European Union (EU) market for sweet potato is small but is growing considerably and and has increased by 100% over the last 5 years. The cultivation of sweet potato in temperate climate conditions has not considered extensively and could be a new opportunity for the EU market. Healthy and qualitative traits of different sweet potato cultivars grown in temperate climate conditions were evaluated in accordance with four cooking methods. Traditional cultivars showed high hardness and adhesiveness values. The highest concentrations of sugars (especially maltose) and phenolic acids (caffeic and chlorogenic) were found in samples treated by boiling and steaming. High antioxidant activity was found in fried potatoes. Qualitative traits of sweet potatoes treated by microwaves did not report any significant variation compared to the control. Traditional and new sweet potato cultivars can be cultivated in temperate climate conditions and show interesting qualitative properties, especially as a result of the presence of antioxidant compounds. Concerning global quality, colored varieties expressed a better profile than traditional Italian ones and they are suitable for the European market, giving new opportunities for consumers and producers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Attribution of soil moisture dynamics - Initial conditions vs. atmospheric forcing and the role of climate change

    Science.gov (United States)

    Orth, Rene; Seneviratne, Sonia I.

    2014-05-01

    The world's climate has started to change more quickly in recent decades and a stronger and faster shift is expected in the future. Even if the public perception is mostly limited to a widespread warming, climate change is a complex phenomenon impacting numerous variables of the climate system in different ways, also depending on time and location. Furthermore, extreme events may change more drastically than the mean climate. There is growing evidence that climate change is mostly man-made. However, it is still a matter of debate to which extent changes of the mean climate but also of particular (extreme) events are due to human impact. These questions are addressed by the growing science of climate attribution. Pointing out the anthropogenic influence on extreme events such as the 2010 Russian heatwave or the 2002 floods in Central Europe may help to support adaptation to climate change. This study investigates soil moisture in Europe in the context of climate change, because of its role as a key variable of the land-climate system and its practical importance for instance to agriculture. To derive soil moisture dynamics from 1984-2007 we use E-OBS forcing data together with SRB radiation data and employ an observation-based approach where soil moisture is computed from a water balance equation in which runoff (normalized with precipitation) and ET (normalized with net radiation) are simple functions of soil moisture. The constant runoff function is prescribed for the whole continent, and the ET function is calibrated using temperature data. After performing a validation of the inferred soil moisture data we use it in order to analyze changes in the likelihood of droughts. Our results show increased drought risk especially in north-eastern Europe and the Mediterranean, whereby the probability of extreme droughts increases stronger as for mild dryness episodes. To assess the potential for drought forecasting we furthermore study the importance of the initial

  11. Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions

    Science.gov (United States)

    Fernández, Eduardo F.; Almonacid, Florencia; Sarmah, Nabin; Mallick, Tapas; Sanchez, Iñigo; Cuadra, Juan M.; Soria-Moya, Alberto; Pérez-Higueras, Pedro

    2014-09-01

    A model based on easily obtained atmospheric parameters and on a simple lineal mathematical expression has been developed at the Centre of Advanced Studies in Energy and Environment in southern Spain. The model predicts the maximum power of a HCPV module as a function of direct normal irradiance, air temperature and air mass. Presently, the proposed model has only been validated in southern Spain and its performance in locations with different atmospheric conditions still remains unknown. In order to address this issue, several HCPV modules have been measured in two different locations with different climate conditions than the south of Spain: the Environment and Sustainability Institute in southern UK and the National Renewable Energy Center in northern Spain. Results show that the model has an adequate match between actual and estimated data with a RMSE lower than 3.9% at locations with different climate conditions.

  12. Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions

    International Nuclear Information System (INIS)

    Gupta, Ankit; Chauhan, Yogesh K.

    2016-01-01

    In recent years, solar energy has been considered as one of the principle renewable energy source for electric power generation. In this paper, single diode photovoltaic (PV) system and double/bypass diode based PV system are designed in MATLAB/Simulink environment based on their mathematical modeling and are validated with a commercially available solar panel. The novelty of the paper is to include the effect of climatic conditions i.e. variable irradiation level, wind speed, temperature, humidity level and dust accumulation in the modeling of both the PV systems to represent a realistic PV system. The comprehensive investigations are made on both the modeled PV systems. The obtained results show the satisfactory performance for realistic models of the PV system. Furthermore, an in depth comparative analysis is carried out for both PV systems. - Highlights: • Modeling of Single diode and Double diode PV systems in MATLAB/Simulink software. • Validation of designed PV systems with a commercially available PV panel. • Acquisition and employment of key climatic factors in modeling of the PV systems. • Evaluation of main model parameters of both the PV systems. • Detailed comparative assessment of both the modeled PV system parameters.

  13. Climatic conditions as a risk factor in canine gastric dilatation-volvulus.

    Science.gov (United States)

    Dennler, R; Koch, D; Hassig, M; Howard, J; Montavon, P M

    2005-01-01

    Canine acute gastric dilatation-volvulus (GDV) is a life-threatening condition of multifactorial origin. The risk of developing GDV is influenced by a variety of factors, including breed, age, gender, temperament, diet and management. A relationship between seasonal variations and the frequency of GDV has been previously documented although no association was found with any specific climatic event. Variables in weather conditions within a defined geographic region were investigated in a retrospective study of 287 client-owned dogs diagnosed with GDV between 1992 and 1999. Monthly incidences were evaluated and differences in atmospheric temperature, humidity and pressure between days in which GDV cases were observed and days in which no case was presented were examined. Although temperature was significantly associated with the occurrence of GDV, the difference in temperatures between days with and days without GDV cases was so small that it is unlikely to be of clinical relevance. Moreover, no significant association was found between GDV occurrence and atmospheric pressure or humidity, and a seasonal variation in GDV incidence was not observed.

  14. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses

    NARCIS (Netherlands)

    Reidsma, P.; Ewert, F.; Oude Lansink, A.G.J.M.; Leemans, R.

    2010-01-01

    Climatic conditions and hence climate change influence agriculture. Most studies that addressed the vulnerability of agriculture to climate change have focused on potential impacts without considering adaptation. When adaptation strategies are considered, socio-economic conditions and farm

  15. The trophic responses of two different rodent-vector-plague systems to climate change.

    Science.gov (United States)

    Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin

    2015-02-07

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The trophic responses of two different rodent–vector–plague systems to climate change

    Science.gov (United States)

    Xu, Lei; Schmid, Boris V.; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr.; Zhang, Zhibin

    2015-01-01

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. PMID:25540277

  17. Teleconnections in a warmer climate: the pliocene perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Sonali P. [Columbia University, Deptartment of Earth and Environmental Sciences and the NASA Goddard Institute for Space Studies, New York, NY (United States); Chandler, Mark A.; Sohl, Linda E.; Jonas, Jeff; Lerner, Jean [Columbia University, Center for Climate Systems Research, New York, NY (United States); Rind, David [National Aeronautics and Space Administration, Goddard Institute for Space Studies, New York, NY (United States)

    2011-11-15

    Migrations toward altered sea surface temperature (SST) patterns in the Indo-Pacific region are present in the recent observational record and in future global warming projections. These SSTs are in the form of ''permanent'' El Nino-like (herein termed ''El Padre'') and Indian Ocean Dipole (IOD)-like patterns. The Early Pliocene Warm Period, which bears similarity to future warming projections, may have also exhibited these Indo-Pacific SST patterns, as suggested by regional terrestrial paleo-climatic data and general circulation model studies. The ability to corroborate this assessment with paleo-data reconstructions is an advantage of the warm Pliocene period that is not afforded by future warming scenarios. Thus, the Pliocene period provides us with a warm-climate perspective and test bed for understanding potential changes to future atmospheric interactions given these altered SST states. This study specifically assesses how atmospheric teleconnections from El Padre/IOD SST patterns are generated and propagate to create the regional climate signals of the Pliocene period, as these signals may be representative of future regional climatic changes as well. To do this, we construct a holistic diagnostic rubric that allows us to examine atmospheric teleconnections, both energetically and dynamically, as produced by a general circulation model. We incorporate KE', a diagnostic adapted from the eddy kinetic energy generation field, to assess the available energy transferred to these teleconnections. Using this methodology, we found that relative to our Modern Control experiments, weaker atmospheric teleconnections prevail under warm Pliocene conditions, although pathways of propagation still appear directed toward the southwestern United States from our tropical Pacific sector forcing. Propagation directly emanating from the Indian Ocean forcing sector appears to be largely blocked, although indirect teleconnective

  18. Evaluative conditioning of food technologies

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2015-01-01

    Consumer attitudes play an important role in the acceptance of new technologies. The success of food innovations depends on understanding how consumers form and change attitudes toward food technologies. Earlier post hoc explanations suggest that evaluative conditioning can change consumer...... attitudes toward food technologies. The present study tests how evaluative conditioning can affect consumer acceptance of new food technologies. Furthermore, authors investigate whether evaluative conditioning is resistant to extinction after a two-month period and whether the evaluative conditioning effect...... prevails in a product-related context. Within an evaluative conditioning paradigm including between-subjects control groups in addition to standard within-subjects control conditions, participants were presented with three food technologies (conventional, enzyme, and genetic technology) paired...

  19. Under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear?

    Science.gov (United States)

    Ye, Jian-Sheng; Pei, Jiu-Ying; Fang, Chao

    2018-03-01

    Understanding under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear is useful for accurately predicting the response of ecosystem function to global environmental change. Using long-term (2000-2016) net primary productivity (NPP)-precipitation datasets derived from satellite observations, we identify >5600pixels in the North Hemisphere landmass that fit either linear or nonlinear temporal NPP-precipitation relationships. Differences in climate (precipitation, radiation, ratio of actual to potential evapotranspiration, temperature) and soil factors (nitrogen, phosphorous, organic carbon, field capacity) between the linear and nonlinear types are evaluated. Our analysis shows that both linear and nonlinear types exhibit similar interannual precipitation variabilities and occurrences of extreme precipitation. Permutational multivariate analysis of variance suggests that linear and nonlinear types differ significantly regarding to radiation, ratio of actual to potential evapotranspiration, and soil factors. The nonlinear type possesses lower radiation and/or less soil nutrients than the linear type, thereby suggesting that nonlinear type features higher degree of limitation from resources other than precipitation. This study suggests several factors limiting the responses of plant productivity to changes in precipitation, thus causing nonlinear NPP-precipitation pattern. Precipitation manipulation and modeling experiments should combine with changes in other climate and soil factors to better predict the response of plant productivity under future climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of Humidity Conditions and Trends Based on Standardized Precipitation Evapotranspiration Index (SEPI Over Different Climatic Regions of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ghabaei S

    2017-01-01

    Full Text Available Introduction: Drought is a recurrent feature of climate that caused by deficiency of precipitation over time. Due to the rise in water demand and alarming climate change, recent year’s observer much focus on drought and drought conditions. A multiple types of deficits and relevant temporal scales can be achieved through the construction of a joint indicator that draws on information from multiple sources and will therefore enable better assessment of drought characteristics including return period, persistent and severity. The Standardized Precipitation Evapotranspiration Index (SPEI combines information from precipitation and temperature in the form of water surplus or deficit according to Standardized Precipitation Index (SPI. Rainfall over some regions of Iran during some resent year was below average while mean and maximum temperatures were very high during this period, as was evaporation. This would suggest that drought conditions were worse than in previous recent periods with similarly low rainfall. The main objective of this study is to assess the influences of humidity on the SPEI index and investigate its relation with SPI and Reconnaissance Drought Index (RDI over six different climatic regions in Iran. Materials and Methods: Iran has different climatic conditions which vary from desert in central part to costal wet near the Caspian Sea. In this study the selection of stations was done based on Alijani et al (2008 climatic classification. We chose 11 synoptic stations from six different climatic classes including costal wet (Rasht and Babolsar, semi mountains (Mashhad and Tabriz, mountains (Shiraz and Khoram Abad, semi-arid (Tehran and Semnan, arid (Kerman and Yazd and costal desert (Bandar Abas. The Meteorological datasets for the aforementioned stations were obtained from the Iran Meteorological Organization (IRIMO for the period 1960-2010. The compiled data included average monthly values of precipitation, minimum and maximum air

  1. Accounts from 19th-century Canadian Arctic explorers' logs reflect present climate conditions

    Science.gov (United States)

    Overland, James E.; Wood, Kevin

    The widely perceived failure of 19th-century expeditions to find and transit the Northwest Passage in the Canadian Arctic is often attributed to extraordinary cold climatic conditions associated with the “Little Ice Age” evident in proxy records. However, examination of 44 explorers' logs for the western Arctic from 1818 to 1910 reveals that climate indicators such as navigability, the distribution and thickness of annual sea ice, monthly surface air temperature, and the onset of melt and freeze were within the present range of variability.The quest for the Northwest Passage through the Canadian archipelago during the 19th century is frequently seen as a vain and tragic failure. Polar exploration during the Victorian era seems to us today to have been a costly exercise in heroic futility, which in many respects it was. This perspective has been reinforced since the 1970s, when paleoclimate reconstructions based on Arctic ice core stratigraphy appeared to confirm the existence of exceptionally cold conditions consistent with the period glaciologists had termed the “Little Ice Age” (Figure 1a), with temperatures more than one standard deviation colder relative to an early 20th-century mean [Koerner, 1977; Koerner and Fisher, 1990; Overpeck et al., 1998]. In recent years, the view of the Little Ice Age as a synchronous worldwide and prolonged cold epoch that ended with modern warming has been questioned [Bradley and Jones, 1993; Jones and Briffa, 2001 ;Ogilvie, 2001].

  2. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2013-04-01

    Full Text Available Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region

  3. Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions

    Directory of Open Access Journals (Sweden)

    D. Chandan

    2017-07-01

    Full Text Available The Pliocene Model Intercomparison Project Phase 2 (PlioMIP2 is an international collaboration to simulate the climate of the mid-Pliocene interglacial, corresponding to marine isotope stage KM5c (3.205 Mya, using a wide selection of climate models with the objective of understanding the nature of the warming that is known to have occurred during the broader mid-Pliocene warm period. PlioMIP2 builds on the successes of PlioMIP by shifting the focus to a specific interglacial and using a revised set of geographic and orbital boundary conditions. In this paper, we present the details of the mid-Pliocene simulations that we have performed with a slightly modified version of the Community Climate System Model version 4 (CCSM4 and the enhanced variant of the PlioMIP2 boundary conditions. We discuss the simulated climatology through comparisons to our control simulations and to proxy reconstructions of the mid-Pliocene climate. With the new boundary conditions, the University of Toronto version of the CCSM4 model simulates a mid-Pliocene that is more than twice as warm as that with the boundary conditions used for PlioMIP Phase 1. The warming is more enhanced near the high latitudes, which is where most of the changes to the PlioMIP2 boundary conditions have been made. The elevated warming in the high latitudes leads to a better match between the simulated climatology and proxy-based reconstructions than possible with the previous version of the boundary conditions.

  4. Nuclear energy is not the prevailing energy in the French energetic mix

    International Nuclear Information System (INIS)

    Destais, G.

    2011-01-01

    The author first shows that the share of nuclear energy in the French electricity production is in fact of 76% (and not 80% as usually said), and that the share of this energy in the final electricity consumption was 69% in 2009. She also outlines that nuclear electricity is only 16,5% of the total final energy consumption in France in 2009, whereas oil still prevails with 42%

  5. Safety climate and self-reported injury: assessing the mediating role of employee safety control.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Ho, Michael; Smith, Gordon S; Chen, Peter Y

    2006-05-01

    To further reduce injuries in the workplace, companies have begun focusing on organizational factors which may contribute to workplace safety. Safety climate is an organizational factor commonly cited as a predictor of injury occurrence. Characterized by the shared perceptions of employees, safety climate can be viewed as a snapshot of the prevailing state of safety in the organization at a discrete point in time. However, few studies have elaborated plausible mechanisms through which safety climate likely influences injury occurrence. A mediating model is proposed to link safety climate (i.e., management commitment to safety, return-to-work policies, post-injury administration, and safety training) with self-reported injury through employees' perceived control on safety. Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self-reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury. These findings highlight the importance of incorporating organizational factors and workers' characteristics in efforts to improve organizational safety performance.

  6. Climate conditions and drought assessment with the Palmer Drought Severity Index in Iran: evaluation of CORDEX South Asia climate projections (2070-2099)

    Science.gov (United States)

    Senatore, Alfonso; Hejabi, Somayeh; Mendicino, Giuseppe; Bazrafshan, Javad; Irannejad, Parviz

    2018-03-01

    Climate change projections were evaluated over both the whole Iran and six zones having different precipitation regimes considering the CORDEX South Asia dataset, for assessing space-time distribution of drought occurrences in the future period 2070-2099 under RCP4.5 scenario. Initially, the performances of eight available CORDEX South Asia Regional Climate Models (RCMs) were assessed for the baseline period 1970-2005 through the GPCC v.7 precipitation dataset and the CFSR temperature dataset, which were previously selected as the most reliable within a set of five global datasets compared to 41 available synoptic stations. Though the CCLM RCM driven by the MPI-ESM-LR General Circulation Model is in general the most suitable for temperature and, together with the REMO 2009 RCM also driven by MPI-ESM-LR, for precipitation, their performances do not overwhelm other models for every season and zone in which Iranian territory was divided according to a principal component analysis approach. Hence, a weighting approach was tested and adopted to take into account useful information from every RCM in each of the six zones. The models resulting more reliable compared to current climate show a strong precipitation decrease. Weighted average predicts an overall yearly precipitation decrease of about 20%. Temperature projections provide a mean annual increase of 2.4 °C. Future drought scenarios were depicted by means of the self-calibrating version of the Palmer drought severity index (SC-PDSI) model. Weighted average predicts a sharp drying that can be configured as a real shift in mean climate conditions, drastically affecting water resources of the country.

  7. Relationship between climate conditions and nosocomial infection ...

    African Journals Online (AJOL)

    Background: Nosocomial infections constitute a global health problem. Objective: To explore the relationship between nosocomial infection rates (NIRs) and climatic factors including temperature and relative humidity in Guangzhou area of China. Methods: 30892 patients in our hospital in 2009 were investigated for ...

  8. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Science.gov (United States)

    Mason-Romo, Edgard David; Farías, Ariel A; Ceballos, Gerardo

    2017-01-01

    Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall) of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian) forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian) forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods) and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because of

  9. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Directory of Open Access Journals (Sweden)

    Edgard David Mason-Romo

    Full Text Available Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because

  10. Linked Climatic, Environmental, and Societal Changes in the Lower Yellow River Area during the Neolithic-Bronze Age Transition

    Science.gov (United States)

    Yu, S. Y.

    2017-12-01

    Understanding human-environment interactions during times of large and rapid climatic changes in the second half of the Holocene may deepen our insight into human adaptation and resilience against potential climate anomalies in the future. However, the drivers and societal responses tend to be different from area to area, and the degree and nature of this link are still a matter of debate. Flooding sediments preserved within the cultural stratigraphical context at archaeological sites in the lower Yellow River area may offer an ideal framework for evaluating the association between evolution of Neolithic cultures and climate fluctuations. Here, we present evidence from a mound site for the prevalence of extreme overbank floods during the Neolithic-Bronze Age transition most likely triggered by excessive summer precipitation in the Yellow River valley when prolonged weak El Niño condition prevailed. Repeated flooding during around 4000-3500 cal yr BP substantially modified the floodplain landscape, thereby driving people to disperse to areas dominated by the Erlitou culture and eventually giving rise to a state-level society in central China historiographically identified as the Xia Dynasty. Changes in the drainage network due to repeated flooding also exerted a profound impact on the rice farming-based communities centered in the region of the floods. Our results provide a precise past analogue of the linked climatic, environmental, and societal changes at a time when human societies were evolving into a hierarchy similar to those of today.

  11. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bang Selsted, M

    2010-07-15

    Global change is a reality. Atmospheric CO{sub 2} levels are rising as well as mean global temperature and precipitation patterns are changing. These three environmental factors have separately and in combination effect on ecosystem processes. Terrestrial ecosystems hold large amounts of carbon, why understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO{sub 2} concentrations experiments imitating global change effects are therefore an important tool. This work on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO{sub 2} concentrations will increase carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO{sub 2}. The methodology of static chamber CO{sub 2} flux measurements and applying the technology in a FACE (free air CO{sub 2} enrichment) facility is a challenge. Fluxes of CO{sub 2} from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO{sub 2} gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly on the atmospheric CO{sub 2} concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO{sub 2} concentration and the CO{sub 2} soil-atmosphere gradient. (author)

  12. The importance of moisture buffering for indoor climate and energy conditions of buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2007-01-01

    A new Nordic test method specifies a test protocol for determination of the so-called Moisture Buffer Value (MBV) of building materials. But how important is moisture buffering to determine the indoor humidity condition of buildings? The paper will present the new MBV-definition. Although...... buffering to save energy by reducing the requirement for ventilation in periods, and still maintain the same quality of the indoor climate? The paper will outline some possibilities for analytical/numerical calculations, and will answer some of the posed questions on the probable benefit of taking moisture...

  13. Multidecadal climate variability in Brazil's Nordeste during the last 3000 years based on speleothem isotope records

    Science.gov (United States)

    Novello, Valdir F.; Cruz, Francisco W.; Karmann, Ivo; Burns, Stephen J.; Stríkis, Nicolás M.; Vuille, Mathias; Cheng, Hai; Lawrence Edwards, R.; Santos, Roberto V.; Frigo, Everton; Barreto, Eline A. S.

    2012-12-01

    We present the first high resolution, approximately ∼4 years sample spacing, precipitation record from northeastern Brazil (hereafter referred to as ‘Nordeste’) covering the last ∼3000 yrs from 230Th-dated stalagmites oxygen isotope records. Our record shows abrupt fluctuations in rainfall tied to variations in the intensity of the South American summer monsoon (SASM), including the periods corresponding to the Little Ice Age (LIA), the Medieval Climate Anomaly (MCA) and an event around 2800 yr B.P. Unlike other monsoon records in southern tropical South America, dry conditions prevailed during the LIA in the Nordeste. Our record suggests that the region is currently undergoing drought conditions that are unprecedented over the past 3 millennia, rivaled only by the LIA period. Using spectral, wavelet and cross-wavelet analyses we show that changes in SASM activity in the region are mainly associated with variations of the Atlantic Multidecadal Oscillation (AMO) and to a lesser degree caused by fluctuations in tropical Pacific SST. Our record also shows a distinct periodicity around 210 years, which has been linked to solar variability.

  14. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  15. The reproductive seasons of some mammals in the Kruger National

    African Journals Online (AJOL)

    It seems, therefore, that although these animals exhibit an inherent rhythm in their breeding activities, this may be considerably influenced by prevailing climatic conditions. The picture ... Brand (1963) finds no calving season in his analysis.

  16. Current-day matters of administration and law in the field of high-rise construction

    Science.gov (United States)

    Voskresenskaya, Elena; Snetkov, Vitaly; Tebryaev, Alexander

    2018-03-01

    The article touches upon main reasons for high-rise construction: increase in energy consumption and limited availability of site in the big cities of Russia. Increase in energy consumption is related with construction, transportation and applying of ventilation and air conditioning systems. Nowadays, there are developed a lot of design and engineer solutions, that include autonomous systems as well as passive methods with low energy consumption rate, which are interrelated with local climate conditions. Certain architectural solutions contribute to energy consumption decrease: building orientation with respect to the cardinal directions, taking into account the prevailing cold wind directions, maximum glazing of the southern facades and minimum glazing of the northern ones, what plays a big role in hard climate conditions. Limited availability of site for construction in the big cities resulted in rapid development of the high-rise construction, which today prevails in terms of quantitative indicators of civil engineering.

  17. False-positive findings in mammography screening induces short-term distress - breast cancer-specific concern prevails longer

    DEFF Research Database (Denmark)

    Aro, A R; Pilvikki Absetz, S; van Elderen, T M

    2000-01-01

    -ups at 2 and 12 months postscreening. At 2 months, there was a moderate multivariate effect of group on distress; and intrusive thinking and worry about breast cancer, in particular, were most frequent amongst the false positives. Intrusive thinking still prevailed at 12 months, in addition to a higher...... findings (n=1407), false-positive findings (n=492) and referents from outside the screening programme (n=1718, age 48-49 years). Distress was measured as illness worry, anxiety, depression, cancer beliefs and early detection behaviour. Measurements were one month before screening invitation with follow...... perceived breast cancer risk and susceptibility. Distress related to screening and false-positive findings seems to be moderate, but prevailing cancer-specific concerns call for improvements in screening programmes....

  18. Impact of long-term climate change on a deep geological repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Boulton, G.S.; Kautsky, U.; Moren, L.; Wallroth, T.

    2001-05-01

    -driven process domains. The process domains defined are the glacial domain, the permafrost domain and the temperate/boreal domain. Within each of these domains different regimes and subregimes have been identified, reflecting significantly different combinations of typical basic processes. These domains, regimes and subregimes are meant to depict the prevailing conditions within a certain area during a certain time period. The evolution at a studied site can then be described as a series of domains, regimes and subregimes. The climate-driven environmental processes likely to be of greatest significance for the performance of the geological barrier are: freezing; loading by a glacier; enhanced rates of groundwater flow; changes in groundwater recharge chemistry; changes in relative level of the sea and its salinity. In this report the processes for each of the domains are described qualitatively and quantitatively as divided into biosphere, thermal, hydrological, mechanical and chemical conditions. Especially, the impact on the geological barrier is described. The glaciation model has been applied to simulate the last 700,000 years and the next 200,000 years of environmental change along a flowline transect from the Norwegian coast, through Sweden and Denmark to northern Germany. The results are presented as domains and regimes in time and space and as properties such as ice thickness and basal temperature which vary continuously in time along the transect. Furthermore, site-specific climate-driven boundary conditions (ice thickness, head gradient, basal melt rate and basal temperature) have been calculated for an inland site and a Baltic coast site, respectively

  19. Impact of long-term climate change on a deep geological repository for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S. [Edinburgh Univ. (United Kingdom); Kautsky, U.; Moren, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Wallroth, T. [Bergab Consulting Geologists (Sweden)

    2001-05-01

    climate-driven process domains. The process domains defined are the glacial domain, the permafrost domain and the temperate/boreal domain. Within each of these domains different regimes and subregimes have been identified, reflecting significantly different combinations of typical basic processes. These domains, regimes and subregimes are meant to depict the prevailing conditions within a certain area during a certain time period. The evolution at a studied site can then be described as a series of domains, regimes and subregimes. The climate-driven environmental processes likely to be of greatest significance for the performance of the geological barrier are: freezing; loading by a glacier; enhanced rates of groundwater flow; changes in groundwater recharge chemistry; changes in relative level of the sea and its salinity. In this report the processes for each of the domains are described qualitatively and quantitatively as divided into biosphere, thermal, hydrological, mechanical and chemical conditions. Especially, the impact on the geological barrier is described. The glaciation model has been applied to simulate the last 700,000 years and the next 200,000 years of environmental change along a flowline transect from the Norwegian coast, through Sweden and Denmark to northern Germany. The results are presented as domains and regimes in time and space and as properties such as ice thickness and basal temperature which vary continuously in time along the transect. Furthermore, site-specific climate-driven boundary conditions (ice thickness, head gradient, basal melt rate and basal temperature) have been calculated for an inland site and a Baltic coast site, respectively.

  20. Dynamical Downscaling over Siberia: Is there an added value in representing recent climate conditions?

    Science.gov (United States)

    Klehmet, K.; Rockel, B.

    2012-04-01

    The analysis of long-term changes and variability of climate variables for the large areal extent of Siberia - covering arctic, subarctic and temperate northern latitudes - is hampered by the sparseness of in-situ observations. To counteract this deficiency we aimed to provide a reconstruction of regional climate for the period 1948-2010 getting homogenous, consistent fields of various terrestrial and atmospheric parameters for Siberia. In order to obtain in addition a higher temporal and spatial resolution than global datasets can provide, we performed the reconstruction using the regional climate model COSMO-CLM (climate mode of the limited area model COSMO developed by the German weather service). However, the question arises whether the dynamically downscaled data of reanalysis can improve the representation of recent climate conditions. As global forcing for the initialization and the regional boundaries we use NCEP-1 Reanalysis of the National Centers for Environmental Prediction since it has the longest temporal data coverage among the reanalysis products. Additionally, spectral nudging is applied to prevent the regional model from deviating from the prescribed large-scale circulation within the whole simulation domain. The area of interest covers a region in Siberia, spanning from the Laptev Sea and Kara Sea to Northern Mongolia and from the West Siberian Lowland to the border of Sea of Okhotsk. The current horizontal resolution is of about 50 km which is planned to be increased to 25 km. To answer the question, we investigate spatial and temporal characteristics of temperature and precipitation of the model output in comparison to global reanalysis data (NCEP-1, ERA40, ERA-Interim). As reference Russian station data from the "Global Summary of the Day" data set, provided by NCDC, is used. Temperature is analyzed with respect to its climatologically spatial patterns across the model domain and its variability of extremes based on climate indices derived

  1. Atmospheric particle formation in spatially and temporally varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lauros, J.

    2011-07-01

    Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further

  2. Skeletal-related events significantly impact health-related quality of life in metastatic castration-resistant prostate cancer: data from PREVAIL and AFFIRM trials.

    Science.gov (United States)

    Saad, F; Ivanescu, C; Phung, D; Loriot, Y; Abhyankar, S; Beer, T M; Tombal, B; Holmstrom, S

    2017-03-01

    We investigated the impact of skeletal-related events (SREs) on health-related quality of life (HRQoL) in patients with metastatic castration-resistant prostate cancer (mCRPC) in phase III trials of enzalutamide versus placebo. Patients with mCRPC experiencing at least one SRE during AFFIRM and PREVAIL were assessed for trajectory-adjusted mean change in HRQoL by first SRE using Functional Assessment of Cancer Therapy-Prostate (FACT-P; AFFIRM, three domains, and PREVAIL, nine domains) and EQ-5D (PREVAIL) instruments. First SREs caused HRQoL deterioration in both trials. Spinal cord compression had the largest impact, with clinically meaningful reductions in seven of nine FACT-P domains in PREVAIL and all three in AFFIRM (mean (95% confidence interval (CI)) change in FACT-P total score -16.95 (-26.47, -7.44) and -9.69 (-16.10, -3.27), respectively). In PREVAIL, first SREs caused clinically meaningful declines in EQ-5D utility index, irrespective of category; spinal cord compression had the largest impact (mean (95% CI) change -0.24 (-0.39, -0.08)). In AFFIRM, FACT-P and FACT-General total scores showed clinically meaningful declines after radiation/surgery to bone. SREs were associated with clinically meaningful functional declines in the daily lives of patients with mCRPC. Spinal cord compression had the largest impact on HRQoL.

  3. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials.

    Science.gov (United States)

    Reddy, Vivek Y; Doshi, Shephal K; Kar, Saibal; Gibson, Douglas N; Price, Matthew J; Huber, Kenneth; Horton, Rodney P; Buchbinder, Maurice; Neuzil, Petr; Gordon, Nicole T; Holmes, David R

    2017-12-19

    The PROTECT AF (WATCHMAN Left Atrial Appendage System for Embolic Protection in Patients With Atrial Fibrillation) trial demonstrated that left atrial appendage closure (LAAC) with the Watchman device (Boston Scientific, St. Paul, Minnesota) was equivalent to warfarin for preventing stroke in atrial fibrillation, but had a high rate of complications. In a second randomized trial, PREVAIL (Evaluation of the WATCHMAN LAA Closure Device in Patients With Atrial Fibrillation Versus Long Term Warfarin Therapy), the complication rate was low. The warfarin cohort experienced an unexpectedly low ischemic stroke rate, rendering the efficacy endpoints inconclusive. However, these outcomes were based on relatively few patients followed for a relatively short time. The final results of the PREVAIL trial, both alone and as part of a patient-level meta-analysis with the PROTECT AF trial, are reported with patients in both trials followed for 5 years. PREVAIL and PROTECT AF are prospective randomized clinical trials with patients randomized 2:1 to LAAC or warfarin; together, they enrolled 1,114 patients for 4,343 patient-years. Analyses are by intention-to-treat, and rates are events per 100 patient-years. For the PREVAIL trial, the first composite coprimary endpoint of stroke, systemic embolism (SE), or cardiovascular/unexplained death did not achieve noninferiority (posterior probability for noninferiority = 88.4%), whereas the second coprimary endpoint of post-procedure ischemic stroke/SE did achieve noninferiority (posterior probability for noninferiority = 97.5%); the warfarin arm maintained an unusually low ischemic stroke rate (0.73%). In the meta-analysis, the composite endpoint was similar between groups (hazard ratio [HR]: 0.820; p = 0.27), as were all-stroke/SE (HR: 0.961; p = 0.87). The ischemic stroke/SE rate was numerically higher with LAAC, but this difference did not reach statistical significance (HR: 1.71; p = 0.080). However, differences in

  4. School Climate in the Engineering and Architecture Campus of a Mexican Public University: Students’ Perspectives

    Directory of Open Access Journals (Sweden)

    María del Carmen Sandoval-Caraveo

    2017-04-01

    Full Text Available The objective of this research was to identify the school climate that prevails in the students of the faculty of Engineering and Architecture in a Mexican public University. This study was conducted in response to a need to take care of the recommendations of the agencies evaluating the educational programs. It was done with a quantitative approach, of a descriptive and correlational type with non-experimental transactional design. The studied dimensions of the school climate were: organization structure, functionality, pedagogical practices, climate between peer interaction and satisfaction. The data were collected using a Likert scale questionnaire, with a reliability of .880 of Cronbach’s Alpha coefficient and validity through confirmatory factorial analysis. The results obtained from the descriptive statistics pointed the favorable school climate in peer interaction and pedagogical practices. Organizational structure, however, was the lowest rated classroom climate dimension. ANOVA results showed significant statistical differences between the school climate and educational programs, the years that the students have remained in the university, the age and the school cycle. Pearson’s correlation analysis revealed weak and negative correlation between school climate and student age.

  5. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    Science.gov (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  6. Working with invalid boundary conditions: lessons from the field for communicating about climate change with public audiences

    Science.gov (United States)

    Gunther, A.

    2015-12-01

    There is an ongoing need to communicate with public audiences about climate science, current and projected impacts, the importance of reducing greenhouse gas emissions, and the requirement to prepare for changes that are likely unavoidable. It is essential that scientists are engaged and active in this effort. Scientists can be more effective communicators about climate change to non-scientific audiences if we recognize that some of the normal "boundary conditions" under which we operate do not need to apply. From how we are trained to how we think about our audience, there are some specific skills and practices that allow us to be more effective communicators. The author will review concepts for making our communication more effective based upon his experience from over 60 presentations about climate change to public audiences. These include expressing how your knowledge makes you feel, anticipating (and accepting) questions unconstrained by physics, respecting beliefs and values while separating them from evidence, and using the history of climate science to provide a compelling narrative. Proper attention to presentation structure (particularly an opening statement), speaking techniques for audience engagement, and effective use of presentation software are also important.

  7. Climate change and human occupations in the Lake Daihai basin, north-central China over the last 4500 years: A geo-archeological perspective

    Science.gov (United States)

    Xu, Lichen; Liu, Yan; Sun, Qianli; Chen, Jing; Cheng, Peng; Chen, Zhongyuan

    2017-05-01

    High-resolution climate variations since the last 4500 years in the monsoonal-arid transition zone of north-central China were revealed through the integration of proxies from sediment cores in the Lake Daihai basin. Human occupations in the lake basin deduced from archeological findings and historical literatures were then incorporated into the climate sequence to demonstrate the patterns of human responses to the climate changes, and the recent anthropogenic effects. It indicated that: (1) Climate dominated human-environment adaptations prevailed prior to ∼2700 cal yr BP. An amicable climate setting before ∼4100 cal yr BP would facilitate the growth of the Laohushan Culture (LC) in the lake basin, while a pronounced deterioration of water thermal condition after that had led to human exodus and the collapse of the LC. The reduced human activity in the lake basin indicated at ∼3800-3500 cal yr BP and a subsequent cultural blank at ∼3500-2700 cal yr BP, were both in response to the climate and lake level fluctuations during ∼3800-2800 cal yr BP. (2) Transition to a positive human adaptation was seen at ∼2700-1100 cal yr BP, represented by the exploitation of arable land for cultivation and animal husbandry as the lake contracted. (3) An increasing human presence that affected environmental processes became more severe over the last ∼1100 cal yr BP. This was basically due to the ongoing lake shore reclamation for cropping, and more recently heavy metals emissions from fossil fuel combustion and local industries.

  8. Sustainability standards for bioenergy-A means to reduce climate change risks?

    International Nuclear Information System (INIS)

    Schubert, Renate; Blasch, Julia

    2010-01-01

    The paper discusses the importance of standards for sustainable bioenergy production. Sustainability of bioenergy production is crucial if bioenergy is supposed to contribute effectively to climate change mitigation. First, a brief overview of current bioenergy policies and of initiatives and legislation for bioenergy sustainability are given. Then, the authors show that under free market conditions undersupply of sustainable bioenergy will prevail. Two types of market failures are identified: information asymmetry and externalities in bioenergy production. Due to these market failures bioenergy is less sustainable than it could be. It is shown that mandatory certification and subsequent labeling can help to overcome the information asymmetry and lead to a more efficient market outcome since consumers can choose products according to their preferences. The authors conclude, however, that the existence of production externalities asks for stronger market intervention, for example in the form of binding minimum standards or taxes. The paper discusses the efficiency and feasibility of such policy measures and shows that mandatory certification combined with binding minimum standards can be an adequate policy choice to regulate the bioenergy market.

  9. Planning and costing agricultural adaptation to climate change in small-scale maize production system of Malawi

    Energy Technology Data Exchange (ETDEWEB)

    Matiya, George; Lunduka, Rodney; Sikwese, Margaret

    2011-09-15

    Malawi has recently experienced an increased incidence of climate change-related hazards. More droughts and floods have occurred in the last decade (2000 - 2010) than in the past three decades before (1970 - 2000). Agriculture is one of the most vulnerable sectors and consequently has suffered from the negative impacts of climate change. As a result, communities, NGOs and the government of Malawi are adapting (adjusting to continue deriving benefits) to the changing conditions in order for Malawian farmers and their families to survive, since their livelihoods are dependent on agriculture. This adaptation is inevitable and will add a cost to the national economy and households. To successfully calculate this there is a need for proper planning and costing of adaptation strategies at household, community and national level. Currently, the exact costs of adaptation are not yet known; hence, this study was undertaken to investigate what adaptation measures are currently available in the maize subsector in Chikhwawa District in the Lower Shire Valley of Malawi and how much it will cost at household, community and national level to continue to carry out such activities. The calculation is based on climate projections that are likely to happen in Chikhwawa in the next 50 years. The study revealed that communities are already coping with climate change through a number of strategies including: use of early and drought-resistant varieties, irrigation systems, selling of assets, winter cropping and diversification. Regarding climate projections, it is expected that the temperatures in Chikhwawa will increase by 3 deg C by 2065, which will translate into having more days in a month with a mean temperature of above 32 deg C. It is also expected that drier conditions will prevail in the future (2046 - 2065). In terms of costs, Chikhwawa will require about US$55,034,932 (over five years) in the maize subsector to adapt to climate change. The results of the study suggest that

  10. A 13,500 Year Record of Holocene Climate, Fire and Vegetation from Swan Lake, Idaho, USA

    Science.gov (United States)

    Wahl, D.; Anderson, L.; Miller, D. M.; Rosario, J. J.; Starratt, S.; McGeehin, J. P.; Bright, J. E.

    2015-12-01

    Modern climate dynamics in the western US are largely determined by a combination of two factors: 1) the strength and position of midlatitude pressure systems, which, in turn, are responsible for the generation and trajectory of winter storms, and 2) the strength of the North America Monsoon (NAM) which brings summer precipitation northward in response to northern hemisphere warming. Paleoclimate records from the Great Basin of the western US suggest some coherence in the timing of major climatic shifts during the Holocene. However, knowledge of the timing and magnitude of these changes at local scales, which can help explain the relative contribution of midlatitude winter storms vs. NAM, is lacking in many places. Here we present new data that constrain the timing and magnitude of late glacial and Holocene climate variability in the northeastern Great Basin, provide insight into past spatial variability of precipitation patterns in the western US, and improve our understanding of regional scale influences on Great Basin climate. In 2011, a 7.65 m sediment core was raised from Swan Lake, a small wetland located in southeastern Idaho that was formed in the spillway channel created by the catastrophic flooding of Lake Bonneville ~18 ka BP. Pollen, charcoal, clumped isotope, diatom, ostracod, and sedimentological data are used to reconstruct vegetation, fire history, and lake level/groundwater flux over the last 13,500 years. Age control is provided by 19 AMS radiocarbon determinations, which are reported as thousands of calibrated years before present (ka BP). This effort builds on earlier work by Bright (1966) who reported on pollen, macrofossils, and sediment type from Swan Lake. Our data suggest cool and wet conditions prevailed until around 12.3 ka BP, after which a drying trend begins. The early Holocene was marked by a warmer, drier climate, which persisted until around 6.2 ka BP. Moister conditions after 6.2 ka BP likely resulted from a combination of enhanced

  11. A systematic analysis of enabling conditions for synergy between climate change mitigation and adaptation measures in developing countries

    NARCIS (Netherlands)

    Duguma, L.A.; Wambugu, S.W.; Minang, P.A.; Noordwijk, van M.

    2014-01-01

    There is a growing quest for synergy between mitigation and adaptation due to concerns of inefficiency and ineffectiveness of the compartmentalized approaches to climate change. However, little has been done to explore the necessary enabling conditions for synergistic design and implementation. This

  12. Comparison of Regression Techniques to Predict Response of Oilseed Rape Yield to Variation in Climatic Conditions in Denmark

    DEFF Research Database (Denmark)

    Sharif, Behzad; Makowski, David; Plauborg, Finn

    2017-01-01

    Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult ...

  13. Economic assessment of climate adaptation options for urban drainage design in Odense, Denmark.

    Science.gov (United States)

    Zhou, Q; Halsnæs, K; Arnbjerg-Nielsen, K

    2012-01-01

    Climate change is likely to influence the water cycle by changing the precipitation patterns, in some cases leading to increased occurrences of precipitation extremes. Urban landscapes are vulnerable to such changes due to the concentrated population and socio-economic values in cities. Feasible adaptation requires better flood risk quantification and assessment of appropriate adaptation actions in term of costs and benefits. This paper presents an economic assessment of three prevailing climate adaptation options for urban drainage design in a Danish case study, Odense. A risk-based evaluation framework is used to give detailed insights of the physical and economic feasibilities of each option. Estimation of marginal benefits of adaptation options are carried out through a step-by-step cost-benefit analysis. The results are aimed at providing important information for decision making on how best to adapt to urban pluvial flooding due to climate impacts in cities.

  14. Holocene vegetation and climatic variations in Central India: A study based on multiproxy evidences

    Science.gov (United States)

    Chauhan, M. S.; Sharma, Anupam; Phartiyal, Binita; Kumar, Kamlesh

    2013-11-01

    Palynology, texture, mineralogy, geochemistry, and magnetic susceptibility analysis of a 2 m deep sediment core from Padauna Swamp, southeastern Madhya Pradesh infers that between 8600 and 7500 cal yr BP a warm and relatively less-humid climate prevailed with open tree-savannahs dominated by grasses followed by sedges, Artemisia and members of Chenopodiaceae/Amaranthaceae with scanty trees viz., Schrebera, Aegle marmelos and Sterculia urens. This is well supported by lower organic to carbonate carbon ratio, coarser texture having relatively low CIA and magnetic susceptibility values and presence of some primary minerals. Between 7500 and 6250 cal yr BP the tree-savannahs were succeeded by open mixed deciduous forests with the invasion of a few more trees viz., Madhuca indica, Holoptelea, Emblica officinalis, Mitragyna parvifolia and members of Anacardiaceae in response to onset of a warm and humid climate. A considerable rise in organic carbon generated from the degradation of plentiful biomass along with increase in clay content with signs of kaolinite and increase in immobile over mobile elements with slightly higher CIA and magnetic susceptibility values also suggest climatic amelioration. The presence of ruderal plants such as Artemisia, Cannabis sativa and Cheno/Am further infers initiation of human activities in the region. Between 6250 and 2800 cal yr BP, the mixed deciduous forests became more diverse and dense, subduing grasses and other herbaceous elements. Sporadic incursion of Shorea robusta (Sal) in forest floristic was recorded around 5000 cal yr BP. The overall change in the vegetation mosaic reflects that a warm and more-humid climate prevailed in the region, probably on account of invigoration of southwest monsoon. This observation is further corroborated by other proxy data showing a spurt in organic/inorganic carbon ratio, increase in clay content with matured mineralogy, significantly higher CIA and magnetic susceptibility values. Since 2800 cal

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    holding capacity of the soils with the aim of explaining the suitability and adaptation of exotic vegetation types under the prevailing climatic conditions. Results indicated reasonably good performance of the model in simulating the pattern and ...

  16. Exploring the biogeophysical limits of global food production under different climate change scenarios

    Science.gov (United States)

    de Vrese, Philipp; Stacke, Tobias; Hagemann, Stefan

    2018-04-01

    An adapted Earth system model is used to investigate the limitations that future climate and water availability impose on the potential expansion and productivity of croplands. The model maximizes the cropland area under prevailing climate conditions and accounts for an optimized, sustainable irrigation practice, thus allowing us to consider the two-way feedback between climate and agriculture. For three greenhouse gas concentration scenarios (RCP2.6, RCP4.5, RCP8.5), we show that the total cropland area could be extended substantially throughout the 21st century, especially in South America and sub-Saharan Africa, where the rising water demand resulting from increasing temperatures can largely be met by increasing precipitation and irrigation rates. When accounting for the CO2 fertilization effect, only a few agricultural areas have to be abandoned owing to declines in productivity, while increasing temperatures allow for the expansion of croplands even into high northern latitudes. Without the CO2 fertilization effect there is no increase in the overall cropland fraction during the second half of the century but areal losses in increasingly water-stressed regions can be compensated for by an expansion in regions that were previously too cold. However, global yields are more sensitive and, without the benefits of CO2 fertilization, they may decrease when greenhouse gas concentrations exceed the RCP4.5 scenario. For certain regions the situation is even more concerning and guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult, even for the idealized scenarios investigated in this study.

  17. Global vegetation-fire pattern under different land use and climate conditions

    Science.gov (United States)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  18. Comparative Climatic Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Comparative Climatic Data is a publication containing data tables of meteorological elements; the publication outlines the climatic conditions at major weather...

  19. Governing climate? 20 years of international negotiations

    International Nuclear Information System (INIS)

    Aykut, Stefan; Dahan, Amy

    2015-01-01

    As greenhouse gas concentrations in the atmosphere have reached a record level in 2013, the authors propose an analysis and an assessment of international negotiations and governance on the climate issue since the Kyoto protocol. They precisely describe the mechanics of these negotiations, recall their different steps (the IPCC creation, the Rio conference, the UN Convention, the Kyoto protocol), describe the emergence of the different concepts which have been used to define the negotiation framework, comment the definition of the three main structuring principles of the struggle against climate change (precautionary principle, principle of common but differentiated responsibility, right to development), and outline the role of adaptation. They discuss the negotiation context, the emergence of a European leadership, the failure of the Copenhagen conference, and the importance of domestic policies. They also address other related concerns: the maintenance of the prevailing model of economic growth, national sovereignty, the postures of some companies and sectors. The authors present and analyse the situation and posture of different countries: USA, China, emerging powers like Brazil and India, Europe, Germany and France. They make some propositions to build up a new type of international climate governance, and outline the need of a convergence of international energy, commercial and development agendas, and of the development of a bottom-up approach

  20. Improving PAQ and comfort conditions in Spanish office buildings with passive climate control

    Energy Technology Data Exchange (ETDEWEB)

    Orosa, Jose A.; Baalina, A. [Departamento de Energia y P.M. Escuela Tecnica Superior de N. y M, Universidade da Coruna, Paseo de Ronda 51, P.C.:15011 A Coruna (Spain)

    2009-03-15

    Some researchers have demonstrated that passive moisture transfer between indoor air and hygroscopic structures has the potential to moderate variations of indoor air relative humidity and, thus, to improve comfort and PAQ [Simonson CJ, Salonvaara M, Ojalen T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air 2002; 12: 243-51; Simonson CJ, Salonvaara M, Ojalen T. Improving indoor climate and comfort with wooden structures. Espoo 2001. Technical Research Centre of Finland, VTT Publications 431.200p+app 91p]. The main objective of this study is to show the internal wall coating effect on indoor air conditions and, as a consequence of this, in comfort conditions and PAQ. In a previous paper [Orosa JA, Baalina A. Passive climate control in Spanish office buildings for long periods of time. Building and Environment 2008], we analysed the influence of permeable and impermeable materials on indoor air conditions, during the unoccupied period, in 25 office buildings in different seasons. Results obtained lead us to conclude that real coverings such as permeable, semi-permeable and impermeable types, present different behavioural patterns in indoor air conditions. Furthermore, we concluded that an absorbent structure will moderate relative humidity indoors. In this paper, we study this indoor relative humidity effect on local thermal discomfort, due to decreased respiratory cooling, and indoor ambience acceptability for the early hours of morning applying PD and Acc models [Toftum J, Jorgensen AS, Fanger PO. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy and buildings 1998; 28: 1-13; Toftum J, Jorgensen AS, Fanger PO. Upper limits of air humidity for preventing warm respiratory discomfort. Energy and Buildings 1998; 28: 15-23] such as that proposed by Simonson et al. [The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air

  1. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    Science.gov (United States)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  2. Microplankton biomass and diversity in the Vietnamese upwelling area during SW monsoon under normal conditions and after an ENSO event

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Bombar, Deniz; Doan, Hai Nhu

    2017-01-01

    to show how climatological-driven changes can have a significant influence on the distribution of microplankton communities and their biomass via its impact on nutrient concentrations in the water column. The first summer in July 2003 followed a weak El-Nino Southern Oscillation (ENSO) event...... (10–20 µm) prevailed ubiquitously during reduced upwelling. During normal upwelling, the diatom Rhizosolenia sp. dominated the cell-carbon biomass in the silicate poor upwelling waters. Trichodesmium erythraeum dominated in the Mekong-influenced and nutrient depleted offshore waters, where it co......Investigating microplankton biomass and diversity under different climatological conditions is key to the understanding of cascading effects of climate change on nutrient cycles and biological productivity. Here we have used data collected during two contrasting summers along the coast of Viet Nam...

  3. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  4. Effects of future climate conditions on streamflow dynamics in coastal southern California watersheds

    Science.gov (United States)

    Feng, D.; Zhao, Y.; Raoufi, R.; Beighley, E.; Melack, J.

    2017-12-01

    The Santa Barbara Coastal - Long Term Ecological Research Project is focused on investigating the relative importance of land and ocean processes in structuring giant kelp forest ecosystems. Understanding how current and future climate conditions influence terrestrial export of water is a central theme for the project. In this study, the Hillslope River Routing (HRR) model is forced with past measurement-based (1950 to 2005) and future model-based (2006 to 2100) precipitation and temperature to estimate daily streamflow dynamics. The study region is roughly 800 km2 with 179 watersheds ranging from 0.1 to 123 km2. The model-based forcings are downscaled to a spatial resolution of 6 km by 6 km. The Priestley and Taylor method is used to estimate potential evapotranspiration based on the Food and Agriculture Organization of the United Nations limited climate data approximations and land surface conditions (albedo, leaf area index, land cover) measured from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites. The HRR model is calibrated for the period 1984 to 2013 using USGS streamflow. Median changes in downscaled precipitation projections from 10 models and two emission scenarios (RCP 4.5 and 8.5) combined with significance testing, suggest that the distribution of precipitation throughout the rainy season will change: decrease at the beginning of the rainy season (Oct-Dec), increase during peak season (Jan-Mar) and decrease at the end (Apr-Jun). Annually, results suggest a slight increase in precipitation. The decrease of rainfall in spring and fall and increase in winter will lead to a shorter (10-15 days, 8-14%), more intense wet season. Both the magnitude and frequency of large storms (>36 mm/day) are likely to increase. Following the precipitation patterns, streamflow in spring and fall is likely to decrease while winter streamflow and annual peak flows are likely to increase due to increased winter precipitation and

  5. Can Cooler Heads Prevail?

    Science.gov (United States)

    Rice, A. R.

    2015-12-01

    The significant correlation between dropping temperatures throughout the Pliocene and the concomitant explosive expansion of the Hominid brain has led a number of workers to postulate climate change drove human evolution. Our brain (that of Homo sapiens), comprises 1-2 percent of our body weight but consumes 20 -25 percent of the body's caloric intake. We are "hotheads". Brains are extremely sensitive to overheating but we are endowed with unparalleled thermal regulation, much of it given over to protecting the Central Nervous System (CNS). Will there be reversed trends with global warming? The human brain has been shrinking since the end of the Ice Ages, losing about 150cc over the past 10,000 years. Polar bear skulls have been downsizing as well. Almost all mass extinctions or evolutionary upheavals are attributed to global warming: e.g. the Permian/Triassic (P/T) event, i.e., "The Great Dying", 250 million years ago (~90% of all life forms wiped out); the Paleocene/ Eocene Thermal Maximum (PETM) 55 million years ago. They may be analogs for what might await us. Large creatures, whose body size inhibits cooling, melted away during the PETM. Horses, initially the size of dogs then, reduced to the size of cats. An unanticipated hazard for humans that may attend extreme global warming is dumbing down or needing to retreat to the Poles as did those creatures that survived the P/T event (some references: http://johnhawks.net/research/hawks-2011-brain-size-selection-holocene; Kandel, E. et al Principles of Neural Science 4th ed. New York (US): McGraw-Hill, 2000; Selective Brain Cooling in Early Hominids:phylogenetic and evolutionary implications, Reeser, H., reeser@flmnh.ufl.edu; How the body controls brain temperature; the temperature shielding effect of cerebral blood flow, Mingming Z. et al. J Appl Physiol. 2006 November; 101(5): 1481-1488; news.nationalgeographic.com/ news/2014/03/140327-climate-change-shrinks-salamanders-global-warming-science/; Heat illness and

  6. US views on climate change and nuclear energy

    International Nuclear Information System (INIS)

    Ferguson, C.D.

    2009-01-01

    The US approach to both nuclear energy and climate change can be summarized in two words: risk management. Unpacking the layers of risk management, however, requires understanding the characteristics of the US electricity market and the influences that federal and state governments have on that market. The fi rst set of issues to understand is that electric utilities in the USA are relatively risk averse, increasingly subject to competition, acutely aware of their accountability to stock investors and relatively lacking in the large capital needed to build nuclear power plants. Chief executive officers (CEOs) of utilities know that their companies' long term financial futures ride on the decisions that they make today about what types of power plants to build because of the plants' decades long lifetimes. John Rowe, CEO of Exelon, the US based utility with the largest number of nuclear reactors, expressed this point directly: 'cost is fundamental'. Many other CEOs are receptive to countering climate change, but not at the risk of hurting the US economy. This is the prevailing perception among many US business leaders. In contrast, some experts have argued that on balance such efforts could help the economy and would mitigate catastrophic climate change effects. The bottom line is that the USA can choose to pay in the near term or delay longer - with potentially graver consequences - to address climate change

  7. Adaptation to Climate Change in France and Quebec: Convergent Institutional Constructions, Divergent Diffusion

    International Nuclear Information System (INIS)

    Marquet, Vincent; Salles, Denis

    2014-01-01

    In the space of a few decades, climate change has established itself as a central object of research for the scientific community and a high profile social and political question. Closely associated with the work of the IPCC, two dominant modes of action have supplied the institutional response: these are, respectively, attenuation and adaptation. The latter has established itself as a potential path for policy by appealing to the imperative of human survival and adopting the form of a vast normative program. By drawing upon a comparative approach, I propose to examine climate change adaptation policies as an emerging framework structuring global, transversal and multi-level public action. To this end, I examine the convergent process by which climate change adaptation policies have been institutionalized in France and Quebec. I then consider the issues involved in the spread of climate change adaptation via territorial risk management policies and water resource governance. Ultimately, the result is that the new requirements imposed by adaptation are in contradiction with the interests and shorter temporalities still prevailing within local management activities

  8. Climatic controls on Later Stone Age human adaptation in Africa's southern Cape.

    Science.gov (United States)

    Chase, Brian M; Faith, J Tyler; Mackay, Alex; Chevalier, Manuel; Carr, Andrew S; Boom, Arnoud; Lim, Sophak; Reimer, Paula J

    2018-01-01

    Africa's southern Cape is a key region for the evolution of our species, with early symbolic systems, marine faunal exploitation, and episodic production of microlithic stone tools taken as evidence for the appearance of distinctively complex human behavior. However, the temporally discontinuous nature of this evidence precludes ready assumptions of intrinsic adaptive benefit, and has encouraged diverse explanations for the occurrence of these behaviors, in terms of regional demographic, social and ecological conditions. Here, we present a new high-resolution multi-proxy record of environmental change that indicates that faunal exploitation patterns and lithic technologies track climatic variation across the last 22,300 years in the southern Cape. Conditions during the Last Glacial Maximum and deglaciation were humid, and zooarchaeological data indicate high foraging returns. By contrast, the Holocene is characterized by much drier conditions and a degraded resource base. Critically, we demonstrate that systems for technological delivery - or provisioning - were responsive to changing humidity and environmental productivity. However, in contrast to prevailing models, bladelet-rich microlithic technologies were deployed under conditions of high foraging returns and abandoned in response to increased aridity and less productive subsistence environments. This suggests that posited links between microlithic technologies and subsistence risk are not universal, and the behavioral sophistication of human populations is reflected in their adaptive flexibility rather than in the use of specific technological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Boundary Condition Effects on Hillslope Form and Soil Development Along a Climatic Gradient From Semiarid to Hyperarid in Northern Chile

    Science.gov (United States)

    Owen, J. J.; Dietrich, W. E.; Nishiizumi, K.; Bellugi, D.; Amundson, R.

    2008-12-01

    Modeling the development of hillslopes using mass balance equations has generated many testable hypotheses related to morphology, process rates, and soil properties, however it is only relatively recently that techniques for constraining these models (such as cosmogenic radionuclides) have become commonplace. As such, many hypotheses related to the effects of boundary conditions or climate on process rates and soil properties have been left untested. We selected pairs of hillslopes along a precipitation gradient in northern Chile (24°-30° S) which were either bounded by actively eroding (bedrock-bedded) channels or by stable or aggradational landforms (pediments, colluvial aprons, valley bottoms). For each hillslope we measured soil properties, atmospheric deposition rates, and bedrock denudation rates. We observe significant changes in soil properties with climate: there is a shift from thick, weathered soils in the semiarid south, to the near absence of soil in the arid middle, to salt-rich soils in the hyperarid north. Coincident with these are dramatic changes in the types and rates of processes acting on the soils. We found relatively quick, biotically-driven soil formation and transport in the south, and very slow, salt-driven processes in the north. Additionally, we observe systematic differences between hillslopes of different boundary condition within the same climate zone, such as thicker soils, gentler slopes, and slower erosion rates on hillslopes with a non-eroding boundary versus an eroding boundary. These support general predictions based on hillslope soil mass balance equations and geomorphic transport laws. Using parameters derived from our field data, we attempt to use a mass balance model of hillslope development to explore the effect of changing boundary conditions and/or shifting climate.

  10. Micro climate Simulation in new Town `Hashtgerd' using downscaled climate data

    Science.gov (United States)

    Sodoudi, S.

    2010-12-01

    One of the objectives of climatological part of project Young Cities ‘Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region’ is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions (energy-efficient fabric). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) The first results were compared with each other and show In semi-arid climates the protection from solar radiation is of major importance. This can be achieved by implementation of vegetation and geometry of buildings. Due to the geographical location and related sun’s orbit the degree of shading in this area is rather low. Technical construction such awnings have to be implemented. A second important factor is wind. The design follows the idea to block the prevailing winds from west and northwest as well as the hot and dusty winds in summer time from the southeast but at the same time

  11. A simplified tool for building layout design based on thermal comfort simulations

    Directory of Open Access Journals (Sweden)

    Prashant Anand

    2017-06-01

    Full Text Available Thermal comfort aspects of indoor spaces are crucial during the design stages of building layout planning. This study presents a simplified tool based on thermal comfort using predicted mean vote (PMV index. Thermal comfort simulations were performed for 14 different possible room layouts based on window configurations. ECOTECT 12 was used to determine the PMV of these rooms for one full year, leading to 17,808 simulations. Simulations were performed for three different climatic zones in India and were validated using in-situ measurements from one of these climatic zones. For moderate climates, rooms with window openings on the south façade exhibited the best thermal comfort conditions for nights, with comfort conditions prevailing for approximately 79.25% of the time annually. For operation during the day, windows on the north façade are favored, with thermal comfort conditions prevailing for approximately 77.74% of the time annually. Similar results for day and night time operation for other two climatic zones are presented. Such an output is essential in deciding the layout of buildings on the basis of functionality of the different rooms (living room, bedroom, kitchen corresponding to different operation times of the day.

  12. Arts and Climate

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    Arts and climate science have more in common points than it appears at first glance. Artistic works can help us to directly or indirectly learn about climatic conditions and weather events in the past, but are also very efficient in raising awareness about climate change nowadays. Long scientific articles get very little response among general public, because most people don't want to read long articles. There is a need to communicate climate change issues more powerfully and more directly, with simple words, pictures, sculptures, installations. Artistic works can inspire people to take concrete action. A number of communication media can fit this purpose. Artists can speak to people on an emotional and intellectual level; they can help people to see things from another perspective and in new ways. Artists can motivate change; they have the freedom to weave facts, opinions, thoughts, emotion and colour all together. Paintings are witnesses of the past climatic conditions. We can learn from paintings, architectural constructions and sculptures about the vegetation, weather events, animals, and way of living. Mentioning only some few examples: old paintings in caves, also Flemish painters are often shown for their winter landscapes, and paintings are very useful to illustrate how fast glaciers are melting. At the end, we shall not forget that dilapidation of art masterpieces often depends on climatic conditions.

  13. To the micro-climatic condition influence upon the environment pollution during exploitation of being oxidized mineral deposits

    International Nuclear Information System (INIS)

    Akhmedzhanov, T.K.; Al'mukhambetova, Sh.K.; Bajramov, I.M.

    1998-01-01

    Conducted researches showed dependence of environment pollution rate under exploration of being oxidized mineral deposits from number of meteorological futures of season changes. Zones of gases spreading in atmosphere from sources of pollution in dependence from micro-climatic conditions are estimated. Results can be used during preventive measures projecting for environment in deposits districts. (author)

  14. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  15. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: Precipitation mean state and seasonal cycle in South America

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Tour 45-55/Etage 4/Case 100, UPMC, Paris Cedex 05 (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Evaluating the response of climate to greenhouse gas forcing is a major objective of the climate community, and the use of large ensemble of simulations is considered as a significant step toward that goal. The present paper thus discusses a new methodology based on neural network to mix ensemble of climate model simulations. Our analysis consists of one simulation of seven Atmosphere-Ocean Global Climate Models, which participated in the IPCC Project and provided at least one simulation for the twentieth century (20c3m) and one simulation for each of three SRES scenarios: A2, A1B and B1. Our statistical method based on neural networks and Bayesian statistics computes a transfer function between models and observations. Such a transfer function was then used to project future conditions and to derive what we would call the optimal ensemble combination for twenty-first century climate change projections. Our approach is therefore based on one statement and one hypothesis. The statement is that an optimal ensemble projection should be built by giving larger weights to models, which have more skill in representing present climate conditions. The hypothesis is that our method based on neural network is actually weighting the models that way. While the statement is actually an open question, which answer may vary according to the region or climate signal under study, our results demonstrate that the neural network approach indeed allows to weighting models according to their skills. As such, our method is an improvement of existing Bayesian methods developed to mix ensembles of simulations. However, the general low skill of climate models in simulating precipitation mean climatology implies that the final projection maps (whatever the method used to compute them) may significantly change in the future as models improve. Therefore, the projection results for late twenty-first century conditions are presented as possible projections based on the &apos

  16. Postglacial Human resilience and susceptibility to abrupt climate change new insights from Star Carr

    Science.gov (United States)

    Blockley, Simon; Abrook, Ashley; Bayliss, Alex; Candy, Ian; Conneller, Chantal; Darvill, Chris; Deeprose, Laura; Kearney, Rebecca; Langdon, Pete; Langdon Langdon, Cath; Lincoln, Paul; Macleod, Alison; Matthews, Ian; Palmer, Adrian; Schreve, Danielle; Taylor, Barry; Milner, Nicky

    2017-04-01

    We know little about the lives of the early humans who lived during the early Postglacial period (the Lateglacial and Early Holocene), a time characterised by abrupt climate change after 16,000, which includes a series of abrupt climatic transitions linked to the reorganisation of the global environment after the glacial maximum and the last major global warming event at the onset of the Holocene. The hunter-gatherers who lived during the early Postglacial have been characterised as highly mobile, dispersed and living within small groups, and there is much debate as to how they adapted to climatic and environmental change: did they move in response to climatic transitions (and if so what was the climatic threshold), or instead adapt their lifeways to the new environmental conditions? A key area for examining these ideas is the British Isles as it sits on the Atlantic fringe of Northwest Europe with a climate that is highly responsive to the wider climate forcing experienced in the northern Hemisphere. Furthermore, in this period, Britain is directly linked to continental Europe due to lowered global sea levels allowing for the ease of human migration in and out of this region. In general the British record has been seen as being dominated by abandonment and reoccupation in the Postglacial during periods of climatic transition with hunter-gatherer mobility being closely linked to the prevailing environment. Recent discoveries at the Early Mesolithic site of Star Carr and surrounding area, linked to local and regional climate records, based on isotopic, chironomid and pollen proxy data and dated at high chronological resolution, offer a new picture. Postglacial human occupation of the area commences at the Pleistocene/Holocene transition but is short lived and appears to end close to the Pre-Boreal Oscillation, However, this is followed by a period where hunter-gatherers occupy Star Carr and settle and invest time and effort into building huts and large scale wooden

  17. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  18. Climate and climate-related issues for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Naeslund, Jens-Ove

    2006-11-01

    The purpose of this report is to document current scientific knowledge of the climate-related conditions and processes relevant to the long-term safety of a KBS-3 repository to a level required for an adequate treatment in the safety assessment SR-Can. The report also includes a concise background description of the climate system. The report includes three main chapters: A description of the climate system (Chapter 2); Identification and discussion of climate-related issues (Chapter 3); and, A description of the evolution of climate-related conditions for the safety assessment (Chapter 4). Chapter 2 includes an overview of present knowledge of the Earth climate system and the climate conditions that can be expected to occur in Sweden on a 100,000 year time perspective. Based on this, climate-related issues relevant for the long-term safety of a KBS-3 repository are identified. These are documented in Chapter 3 'Climate-related issues' to a level required for an adequate treatment in the safety assessment. Finally, in Chapter 4, 'Evolution of climate-related conditions for the safety assessment' an evolution for a 120,000 year period is presented, including discussions of identified climate-related issues of importance for repository safety. The documentation is from a scientific point of view not exhaustive, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of a safety assessment. As further described in the SR-Can Main Report and in the Features Events and Processes report, the content of the present report has been audited by comparison with FEP databases compiled in other assessment projects. This report follows as far as possible the template for documentation of processes regarded as internal to the repository system. However, the term processes is not used in this report, instead the term issue has been used. Each issue includes a set of processes together resulting in the behaviour of a

  19. Climate and climate-related issues for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove (comp.)

    2006-11-15

    The purpose of this report is to document current scientific knowledge of the climate-related conditions and processes relevant to the long-term safety of a KBS-3 repository to a level required for an adequate treatment in the safety assessment SR-Can. The report also includes a concise background description of the climate system. The report includes three main chapters: A description of the climate system (Chapter 2); Identification and discussion of climate-related issues (Chapter 3); and, A description of the evolution of climate-related conditions for the safety assessment (Chapter 4). Chapter 2 includes an overview of present knowledge of the Earth climate system and the climate conditions that can be expected to occur in Sweden on a 100,000 year time perspective. Based on this, climate-related issues relevant for the long-term safety of a KBS-3 repository are identified. These are documented in Chapter 3 'Climate-related issues' to a level required for an adequate treatment in the safety assessment. Finally, in Chapter 4, 'Evolution of climate-related conditions for the safety assessment' an evolution for a 120,000 year period is presented, including discussions of identified climate-related issues of importance for repository safety. The documentation is from a scientific point of view not exhaustive, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of a safety assessment. As further described in the SR-Can Main Report and in the Features Events and Processes report, the content of the present report has been audited by comparison with FEP databases compiled in other assessment projects. This report follows as far as possible the template for documentation of processes regarded as internal to the repository system. However, the term processes is not used in this report, instead the term issue has been used. Each issue includes a set of processes together resulting in the

  20. The Co-evolution of Climate Models and the Intergovernmental Panel on Climate Change

    Science.gov (United States)

    Somerville, R. C.

    2010-12-01

    As recently as the 1950s, global climate models, or GCMs, did not exist, and the notion that man-made carbon dioxide might lead to significant climate change was not regarded as a serious possibility by most experts. Today, of course, the prospect or threat of exactly this type of climate change dominates the science and ranks among the most pressing issues confronting all mankind. Indeed, the prevailing scientific view throughout the first half of the twentieth century was that adding carbon dioxide to the atmosphere would have only a negligible effect on climate. The science of climate change caused by atmospheric carbon dioxide changes has thus undergone a genuine revolution. An extraordinarily rapid development of global climate models has also characterized this period, especially in the three decades since about 1980. In these three decades, the number of GCMs has greatly increased, and their physical and computational aspects have both markedly improved. Modeling progress has been enabled by many scientific advances, of course, but especially by a massive increase in available computer power, with supercomputer speeds increasing by roughly a factor of a million in the three decades from about 1980 to 2010. This technological advance has permitted a rapid increase in the physical comprehensiveness of GCMs as well as in spatial computational resolution. In short, GCMs have dramatically evolved over time, in exactly the same recent period as popular interest and scientific concern about anthropogenic climate change have markedly increased. In parallel, a unique international organization, the Intergovernmental Panel on Climate Change, or IPCC, has also recently come into being and also evolved rapidly. Today, the IPCC has become widely respected and globally influential. The IPCC was founded in 1988, and its history is thus even shorter than that of GCMs. Yet, its stature today is such that a series of IPCC reports assessing climate change science has already

  1. Agroclimatic conditions in Europe under climate change

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Olesen, J. E.; Kersebaum, K. C.; Skjelvag, A. O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rotter, R.; Iglesias, A.; Orlandini, S.; Dubrovský, Martin; Hlavinka, P.; Balek, J.; Eckersten, H.; Cloppet, E.; Calanca, P.; Vucetic, V.; Nejedlík, P.; Kumar, S.; Lalic, B.; Mestre, A.; Rossi, F.; Kozyra, J.; Alexandrov, V.; Semerádová, D.; Žalud, Z.

    2011-01-01

    Roč. 17, č. 7 (2011), s. 2298-2318 ISSN 1354-1013 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : agroclimatic extremes * agroclimatic index * climate- change impacts * crop production * environmental zones Subject RIV: EH - Ecology, Behaviour Impact factor: 6.862, year: 2011

  2. Socio-economic vulnerability, adaptation to agro-climatic risk and the potential of user-tailored climate services for the Andean Highlands: The case of quinoa production in the region of Puno

    Science.gov (United States)

    Flubacher, Moritz; Sedlmeier, Katrin; Lechthaler, Filippo; Rohrer, Mario; Cristobal, Lizet; Vinogradova, Alexandra

    2017-04-01

    In the semi-arid Altiplano in Peru, smallholder farmers are extremely exposed to climatic hazards like drought, frost and hail. These unfavorable weather and climate events can lead to significant crop losses and thereby provoke periods of food insecurity for subsistence farmers. The use of specific climate information can serve as an adaptation strategy to reduce the impact of these natural hazards. In this context, the Climandes project (a project of the Global Framework for Climate Services led by WMO) aims at developing user-tailored seasonal forecast products for the agricultural sector in the Peruvian Andes such as indices on increased frost risk, the occurrence of long dry periods, or the start of the rainy season. In order to develop such user-tailored climate information and link it efficiently to the existing implementation context, it is important to understand the complex interrelation between climate variability and change, socio-economic vulnerability and adaptation limits. Moreover, as it has been widely shown, the process of making climate information useful for end-users, in particular for smallholder farmers in developing countries, remains a considerable challenge due to existing cognitive, cultural and institutional constraints. In this sense, it is necessary to identify these constraints and formulate strategies to overcome them. While there exist different studies about climate change and anomalies in Puno, there is no consolidated evidence on the corresponding socio-economic vulnerabilities in the specific agricultural context of Puno. In order to fill this gap, we conducted a field survey collecting primary data in the Andean highlands based on a representative sample of 726 smallholder farmers in the region of Puno (Peru). The assessment primarily focused on exploring smallholders' agro-climatic risk exposure, socio-economic profiles, existing coping strategies as well as prevailing barriers to utilization of science-based climate

  3. Projection of wave conditions in response to climate change: A community approach to global and regional wave downscaling

    Science.gov (United States)

    Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith

    2015-01-01

    Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.

  4. Monitoring and evaluation of seasonal snow cover in Kashmir valley ...

    Indian Academy of Sciences (India)

    89 to 2007–08) climatic conditions prevailed in both ranges of Kashmir valley. Region-wise ... effective use of snowmelt runoff models (Rango and Martinec ... J. Earth Syst. Sci. 118, No. ... of cloud cover can affect delineation of snow cover,.

  5. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  6. International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway.

    Science.gov (United States)

    Nawrotzki, Raphael J; Bakhtsiyarava, Maryia

    2017-05-01

    Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season.

  7. Clay mineralogical and Sr, Nd isotopic investigations in two deep-sea sediment cores from Northeast Indian Ocean

    International Nuclear Information System (INIS)

    Anil Babu, G.; Masood Ahmad, S.; Padmakumari, V.M.; Dayal, A.M.

    2004-01-01

    Sr and Nd isotopic studies in terrigenous component of the ocean sediments provide useful information about weathering patterns near source rock and climatic conditions existed on the continents. Variations in 87 Sr/ 86 Sr and 143 Nd/ 144 Nd isotopic ratios in clastic sediments depend on the source from the continents, volcanic input and circulation changes. The composition of clay minerals mainly depends on climate, geology and topography of the surrounding region. Chlorite and Illite are formed under physical weathering in arid cold climate and kaolinite and smectite are the characteristic products of chemical weathering in humid wet climatic conditions. Therefore, the variations in clay mineral composition in deep-sea sediments can be interpreted in terms of changes in the climatic conditions prevailed in the continental source areas

  8. Potential changes in the extreme climate conditions at the regional scale: from observed data to modelling approaches and towards probabilistic climate change information

    International Nuclear Information System (INIS)

    Gachon, P.; Radojevic, M.; Harding, A.; Saad, C.; Nguyen, V.T.V.

    2008-01-01

    The changes in the characteristics of extreme climate conditions are one of the most critical challenges for all ecosystems, human being and infrastructure, in the context of the on-going global climate change. However, extremes information needed for impacts studies cannot be obtained directly from coarse scale global climate models (GCMs), due mainly to their difficulties to incorporate regional scale feedbacks and processes responsible in part for the occurrence, intensity and duration of extreme events. Downscaling approaches, namely statistical and dynamical downscaling techniques (i.e. SD and RCM), have emerged as useful tools to develop high resolution climate change information, in particular for extremes, as those are theoretically more capable to take into account regional/local forcings and their feedbacks from large scale influences as they are driven with GCM synoptic variables. Nevertheless, in spite of the potential added values from downscaling methods (statistical and dynamical), a rigorous assessment of these methods are needed as inherent difficulties to simulate extremes are still present. In this paper, different series of RCM and SD simulations using three different GCMs are presented and evaluated with respect to observed values over the current period and over a river basin in southern Quebec, with future ensemble runs, i.e. centered over 2050s (i.e. 2041-2070 period using the SRES A2 emission scenario). Results suggest that the downscaling performance over the baseline period significantly varies between the two downscaling techniques and over various seasons with more regular reliable simulated values with SD technique for temperature than for RCM runs, while both approaches produced quite similar temperature changes in the future from median values with more divergence for extremes. For precipitation, less accurate information is obtained compared to observed data, and with more differences among models with higher uncertainties in the

  9. Structure and Processes in Temperate Grassland Vegetation

    DEFF Research Database (Denmark)

    Ejrnæs, R.

    , modern (geognostic, topographical, and climatic), and in part historical. The limits of distribution of a species may depend upon prevailing conditions, upon barriers now existing in the form of a mountain, sea, soil, and cli-mate, which oppose its spread ; but they may also depend upon geohistoric...... or geological and climatic conditions of ages long past, and upon the whole evolutionary history of the species, the site of this, and the facilities for and means of migration. In addition, problems must be dealt with concerning centres of development, the rise and age of species and genera ; and behind...

  10. Incidence of the phenomena El Nino and The Nina, on the climatic conditions in the valley of the River Cauca. Part I - climatological Analysis

    International Nuclear Information System (INIS)

    Pena Quinones Andres Javier; Cortes Betancourt, Enrique; Montealegre Leon, Fernando

    2001-01-01

    The influence of the phenomena known as El Nino and La Nina on the climatic conditions in the Cauca Valley (South-western Colombia) was studied by means of the analysis of climatic variability caused by these phenomena. Data were analysed from three weather stations located in the sugarcane area of influence, recorded during the 1972-1998 period. It was found that when these events are present in the Tropical Pacific Ocean, the behaviour of some climatic variables in the Cauca Valley is altered. These anomalies, which are of different magnitude for the different climatic variables, tend to be opposite in nature. The incidence of these phenomena on the Cauca Valley climate is noticeable in certain seasons and months

  11. Oxidative conditions prevail in severe IUGR with vascular disease and Doppler anomalies.

    Science.gov (United States)

    Maisonneuve, Emeline; Delvin, Edgard; Edgard, Annie; Morin, Lucie; Dubé, Johanne; Boucoiran, Isabelle; Moutquin, Jean-Marie; Fouron, Jean-Claude; Klam, Stephanie; Levy, Emile; Leduc, Line

    2015-08-01

    Intrauterine growth restriction (IUGR) and prenatal exposure to oxidative stress are thought to lead to increased risks of cardiovascular disease later in life. The objective of the present study was to document whether cord blood oxidative stress biomarkers vary with the severity of IUGR and of vascular disease in the twin pregnancy model in which both fetuses share the same maternal environment. This prospective cohort study involved dichorionic twin pairs, with one co-twin with IUGR. Oxidative stress biomarkers were measured in venous cord blood samples from each neonate of 32 twin pairs, and compared, according to severity of IUGR (IUGR <5th percentile), Doppler anomalies of the umbilical artery and early onset IUGR (in the second trimester) of the growth restricted twin. Oxidized Low-Density Lipoproteins (oxLDL) and Malondialdehyde (MDA) concentrations were increased proportionally in cases of severe IUGR. OxLDL concentrations were also increased in cases of IUGR with Doppler anomaly. Our data indicate that severe IUGR, is related to a derangement in redox balance, illustrated by increased venous cord blood oxidative stress biomarkers concentrations. Severe IUGR and IUGR with abnormal Doppler can be translated into conditions with intense oxidative stress.

  12. A review of wave climate and prediction along the Spanish Mediterranean coast

    Directory of Open Access Journals (Sweden)

    A. Sánchez-Arcilla

    2008-11-01

    Full Text Available This paper reviews the characterization of wave storms along the Spanish/Catalan Mediterranean coast. It considers the "physical" and "statistical" description of wave parameters and how they are affected by the prevailing meteo patterns and the sharp gradients in orography and bathymetry. The available field data and numerically simulated wave fields are discussed from this perspective. The resulting limits in accuracy and predictability are illustrated with specific examples. This allows deriving some conclusions for both short-term operational predictions and a long-term climatic assessment.

  13. An effective drift correction for dynamical downscaling of decadal global climate predictions

    Science.gov (United States)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  14. Further analysis of PREVAIL: enzalutamide use in chemotherapy-naïve men with metastatic castration-resistant prostate cancer.

    Science.gov (United States)

    Aragon-Ching, Jeanny B

    2014-01-01

    PREVAIL was a phase III multinational, double-blind, placebo-controlled trial that enrolled chemotherapy-naïve men with metastatic castration-resistant prostate cancer (mCRPC), which showed remarkable improvement in co-primary endpoints with an overall 81% reduction in the risk of radiographic progression, as well as 29% reduction in the risk of death in favor of the enzalutamide arm over placebo. All secondary endpoints including time to subsequent chemotherapy initiation and prostate specific antigen (PSA) progression were in favor of the enzalutamide arm. The results of PREVAIL shows the utility of enzalutamide that would likely soon expand the indication to asymptomatic or minimally symptomatic men with mCRPC not previously treated with chemotherapy.

  15. Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Shabeh ul Hasson

    2016-08-01

    Full Text Available Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB suggests that the future of its melt-dominated hydrological regime and the subsequent water availability under changing climate has yet been understood only indistinctly. Here, the future water availability from the UIB is presented under both observed and projected—though likely but contrasting—climate change scenarios. Continuation of prevailing climatic changes suggests decreased and delayed glacier melt but increased and early snowmelt, leading to reduction in the overall water availability and profound changes in the overall seasonality of the hydrological regime. Hence, initial increases in the water availability due to enhanced glacier melt under typically projected warmer climates, and then abrupt decrease upon vanishing of the glaciers, as reported earlier, is only true given the UIB starts following uniformly the global warming signal. Such discordant future water availability findings caution the impact assessment communities to consider the relevance of likely (near-future climate change scenarios—consistent to prevalent climatic change patterns—in order to adequately support the water resource planning in Pakistan.

  16. More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe

    Science.gov (United States)

    Wohland, Jan; Reyers, Mark; Weber, Juliane; Witthaut, Dirk

    2017-11-01

    Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr-1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.

  17. Social and economic impacts of climate.

    Science.gov (United States)

    Carleton, Tamma A; Hsiang, Solomon M

    2016-09-09

    For centuries, thinkers have considered whether and how climatic conditions-such as temperature, rainfall, and violent storms-influence the nature of societies and the performance of economies. A multidisciplinary renaissance of quantitative empirical research is illuminating important linkages in the coupled climate-human system. We highlight key methodological innovations and results describing effects of climate on health, economics, conflict, migration, and demographics. Because of persistent "adaptation gaps," current climate conditions continue to play a substantial role in shaping modern society, and future climate changes will likely have additional impact. For example, we compute that temperature depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in Africa by ~11%, and future warming may slow global economic growth rates by ~0.28 percentage points per year. In general, we estimate that the economic and social burden of current climates tends to be comparable in magnitude to the additional projected impact caused by future anthropogenic climate changes. Overall, findings from this literature point to climate as an important influence on the historical evolution of the global economy, they should inform how we respond to modern climatic conditions, and they can guide how we predict the consequences of future climate changes. Copyright © 2016, American Association for the Advancement of Science.

  18. Effects of elevated CO2 and drought on wheat : testing crop simulation models for different experimental and climatic conditions

    NARCIS (Netherlands)

    Ewert, F.; Rodriguez, D.; Jamieson, P.; Semenov, M.A.; Mitchell, R.A.C.; Goudriaan, J.; Porter, J.R.; Kimball, B.A.; Pinter, P.J.; Manderscheid, R.; Weigel, H.J.; Fangmeier, A.; Fereres, E.; Villalobos, F.

    2002-01-01

    Effects of increasing carbon dioxide concentration [CO2] on wheat vary depending on water supply and climatic conditions, which are difficult to estimate. Crop simulation models are often used to predict the impact of global atmospheric changes on food production. However, models have rarely been

  19. 76 FR 21036 - Application of the Prevailing Wage Methodology in the H-2B Program

    Science.gov (United States)

    2011-04-14

    ... Department to ``promulgate new rules concerning the calculation of the prevailing wage rate in the H-2B... wage methodology set forth in this Rule applies only to wages paid for work performed on or after...: Notice. SUMMARY: On January 19, 2011, the Department of Labor (Department) published a final rule, Wage...

  20. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    Science.gov (United States)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  1. The Social Impact of Climate

    Science.gov (United States)

    Hsiang, S. M.

    2013-12-01

    Managing climate change requires that we understand the social value of climate-related decisions. Rational decision-making demands that we weigh the potential benefits of climate-related investments against their costs. To date, it has been challenging to quantify the relative social benefit of living under different climatic conditions, so policy debates tend to focus on investment costs without considering their benefits. Here I will discuss challenges and advances in the measurement of climate's impact on society. By linking data and methods across physical and social sciences, we are beginning to understand when, where, and how climatic conditions have a causal impact on human wellbeing. I will present examples from this burgeoning interdisciplinary field that quantify the effect of temperature on macroeconomic performance, the effects of climate on human conflict, and the long-term health and economic impact of tropical cyclones. Each of these examples provide new insight into previously unknown benefits of various climate management strategies. I conclude by describing new efforts to systematically gather and compare findings from across the research community to support informed and rational climate management decisions.

  2. New insights into deglacial climate variability in tropical South America from molecular fossil and isotopic indicators in Lake Titicaca

    Science.gov (United States)

    Shanahan, T. M.; Hughen, K. A.; Fornace, K.; Baker, P. A.; Fritz, S. C.

    2010-12-01

    As one of the main centers of tropical convection, the South American Altiplano plays a crucial role in the long-term climate variability of South America. However, both the timing and the drivers of climate variability on orbital to millennial timescales remain poorly understood for this region. New data from molecular fossil (e.g., TEX86) and compound specific hydrogen isotope (D/H) analyses provide new insights into the climate evolution of this region over the last ~50 kyr. TEX86 temperature reconstructions suggest that the Altiplano warmed as early as 19- 21 kyr ago and proceeded rapidly, consistent with published evidence for an early retreat of LGM glaciers at this time at some locations. The early warming signal observed at Lake Titicaca also appears to be synchronous with continental temperature reconstructions at some sites in tropical Africa, but leads tropical SST changes by several thousands of years. Although the initiation of warming coincided with the peak in southern hemisphere summer insolation, subsequent temperature increases were accompanied by decreases in southern hemisphere insolation, suggesting a northern hemisphere driver for temperature changes in tropical South America. Preliminary D/H ratios from leaf waxes appear to support existing data suggesting that wet conditions prevailed until the late glacial/early Holocene and are broadly consistent with local southern hemisphere summer insolation forcing of the summer monsoon. These data suggest that temperature and precipitation changes during the last deglaciation were decoupled and that both local and extratropical drivers are important for controlling climate change in this region on orbital timescales.

  3. Projected changes in prevailing winds for transatlantic migratory birds under global warming.

    Science.gov (United States)

    La Sorte, Frank A; Fink, Daniel

    2017-03-01

    A number of terrestrial bird species that breed in North America cross the Atlantic Ocean during autumn migration when travelling to their non-breeding grounds in the Caribbean or South America. When conducting oceanic crossings, migratory birds tend to associate with mild or supportive winds, whose speed and direction may change under global warming. The implications of these changes for transoceanic migratory bird populations have not been addressed. We used occurrence information from eBird (1950-2015) to estimate the geographical location of population centres at a daily temporal resolution across the annual cycle for 10 transatlantic migratory bird species. We used this information to estimate the location and timing of autumn migration within the transatlantic flyway. We estimated how prevailing winds are projected to change within the transatlantic flyway during this time using daily wind speed anomalies (1996-2005 and 2091-2100) from 29 Atmosphere-Ocean General Circulation Models implemented under CMIP5. Autumn transatlantic migrants have the potential to encounter strong westerly crosswinds early in their transatlantic journey at intermediate and especially high migration altitudes, strong headwinds at low and intermediate migration altitudes within the Caribbean that increase in strength as the season progresses, and weak tailwinds at intermediate and high migration altitudes east of the Caribbean. The CMIP5 simulations suggest that, during this century, the likelihood of autumn transatlantic migrants encountering strong westerly crosswinds will diminish. As global warming progresses, the need for species to compensate or drift under the influence of strong westerly crosswinds during the initial phase of their autumn transatlantic journey may be diminished. Existing strategies that promote headwind avoidance and tailwind assistance will likely remain valid. Thus, climate change may reduce time and energy requirements and the chance of mortality or

  4. Climate conditions, and changes, affect microalgae communities… should we worry?

    Science.gov (United States)

    Gimenez Papiol, Gemma

    2018-03-01

    Microalgae play a pivotal role in the regulation of Earth's climate and its cycles, but are also affected by climate change, mainly by changes in temperature, light, ocean acidification, water stratification, and precipitation-induced nutrient inputs. The changes and impacts on microalgae communities are difficult to study, predict, and manage, but there is no doubt that there will be changes. These changes will have impacts beyond microalgae communities, and many of them will be negative. Some actions are currently ongoing for the mitigation of some of the negative impacts, such as harmful algal blooms and water quality, but global efforts for reducing CO 2 emissions, temperature rises, and ocean acidification are paramount for reducing the impact of climate change on microalgae communities, and eventually, on human well-being. Integr Environ Assess Manag 2018;14:181-184. © 2018 SETAC. © 2018 SETAC.

  5. Risk-adjusted morbidity in teaching hospitals correlates with reported levels of communication and collaboration on surgical teams but not with scale measures of teamwork climate, safety climate, or working conditions.

    Science.gov (United States)

    Davenport, Daniel L; Henderson, William G; Mosca, Cecilia L; Khuri, Shukri F; Mentzer, Robert M

    2007-12-01

    Since the Institute of Medicine patient safety reports, a number of survey-based measures of organizational climate safety factors (OCSFs) have been developed. The goal of this study was to measure the impact of OCSFs on risk-adjusted surgical morbidity and mortality. Surveys were administered to staff on general/vascular surgery services during a year. Surveys included multiitem scales measuring OCSFs. Additionally, perceived levels of communication and collaboration with coworkers were assessed. The National Surgical Quality Improvement Program was used to assess risk-adjusted morbidity and mortality. Correlations between outcomes and OCSFs were calculated and between outcomes and communication/collaboration with attending and resident doctors, nurses, and other providers. Fifty-two sites participated in the survey: 44 Veterans Affairs and 8 academic medical centers. A total of 6,083 surveys were returned, for a response rate of 52%. The OCSF measures of teamwork climate, safety climate, working conditions, recognition of stress effects, job satisfaction, and burnout demonstrated internal validity but did not correlate with risk-adjusted outcomes. Reported levels of communication/collaboration with attending and resident doctors correlated with risk-adjusted morbidity. Survey-based teamwork, safety climate, and working conditions scales are not confirmed to measure organizational factors that influence risk-adjusted surgical outcomes. Reported communication/collaboration with attending and resident doctors on surgical services influenced patient morbidity. This suggests the importance of doctors' coordination and decision-making roles on surgical teams in providing high-quality and safe care. We propose risk-adjusted morbidity as an effective measure of surgical patient safety.

  6. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  7. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions.

    Science.gov (United States)

    Escobar, Luis E; Ryan, Sadie J; Stewart-Ibarra, Anna M; Finkelstein, Julia L; King, Christine A; Qiao, Huijie; Polhemus, Mark E

    2015-09-01

    Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  9. Biomass production in experimental grasslands of different species richness during three years of climate warming

    Science.gov (United States)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  10. International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway

    Science.gov (United States)

    Nawrotzki, Raphael J.; Bakhtsiyarava, Maryia

    2016-01-01

    Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season. PMID:28943813

  11. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.

    Science.gov (United States)

    Hänninen, Heikki; Slaney, Michelle; Linder, Sune

    2007-02-01

    Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.

  12. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  13. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Shu, Lei; Wang, Ti-jian; Liu, Qian; Gao, Da; Li, Shu; Zhuang, Bing-liang; Han, Yong; Li, Meng-meng; Chen, Pu-long

    2017-02-01

    The natural emissions of ozone precursors (NOx and VOCs) are sensitive to climate. Future climate change can impact O3 concentrations by perturbing these emissions. To better estimate the variation of natural emissions under different climate conditions and understand its effect on surface O3, we model the present and the future air quality over the Yangtze River Delta (YRD) region by running different simulations with the aid of the WRF-CALGRID model system that contains a natural emission module. Firstly, we estimate the natural emissions at present and in IPCC A1B scenario. The results show that biogenic VOC emission and soil NOx emission over YRD in 2008 is 657 Gg C and 19.1 Gg N, respectively. According to climate change, these emissions in 2050 will increase by 25.5% and 11.5%, respectively. Secondly, the effects of future natural emissions and meteorology on surface O3 are investigated and compared. It is found that the variations in meteorological fields can significantly alter the spatial distribution of O3 over YRD, with the increases of 5-15 ppb in the north and the decreases of -5 to -15 ppb in the south. However, only approximately 20% of the surface O3 increases caused by climate change can be attributed to the natural emissions, with the highest increment up to 2.4 ppb. Finally, Ra (the ratio of impacts from NOx and VOCs on O3 formation) and H2O2/HNO3 (the ratio between the concentrations of H2O2 and HNO3) are applied to study the O3 sensitivity in YRD. The results show that the transition value of H2O2/HNO3 will turn from 0.3 to 0.5 in 2008 to 0.4-0.8 in 2050. O3 formation in the YRD region will be insensitive to VOCs under future climate condition, implying more NOx need to be cut down. Our findings can help us understand O3 variation trend and put forward the reasonable and effective pollution control policies in these famous polluted areas.

  14. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    Science.gov (United States)

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that

  15. GWAS of Barley Phenotypes Established Under Future Climate Conditions of Elevated Temperature, CO2, O3 and Elevated Temperature and CO2 Combined

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Backes, G.; Lyngkjær, M. F.

    2015-01-01

    Climate change is likely to decrease crop yields worldwide. Developing climate resilient cultivars is one way to combat this production scarcity, however, little is known of crop response to future climate conditions and in particular the variability within crops.In Scandinavia, barley is widely...... cultivated, but yields have stagnated since the start of this century. In this study we cultivated 138 spring barley accessions in a climate phytotron under four treatments mimicking forecasted levels of temperature, carbon dioxide concentration ([CO2]) and ozone ([O3]) at the end of the 21st century1...... yield, grain protein concentration, grain protein harvested, number of grains, number of ears, aboveground vegetative biomass and harvest index. In addition, stability of the production was calculated over the applied treatments for the assessed parameters.In the climate scenario of elevated temperature...

  16. Determination of optimal irrigation rates of agricultural crops under consideration of soil properties and climatic conditions

    Directory of Open Access Journals (Sweden)

    Irakli Kruashvili

    2016-09-01

    Full Text Available In conditions of increasing water shortage, further development of irrigated agriculture production is impossible without improving the methods of cultivation of agricultural crops, primarily irrigation technology. In 2015 the experiment have been conducted on the territory of irrigation farming area of village Tamarisi (Marneuli Municipality, according to which comprehensive study of local climatic and soil conditions were conducted. Received data were used for computation crop water requirements for tomato and melon under the different irrigation treatments. Obtained results have shown the possibility of water use efficiency and obtaining sufficiently high yields of crops that participated in the experiment that became possible in a case of usage of drip irrigation technology in combination with plastic mulch.

  17. Climate chamber for environmentally controlled laboratory airflow experiments.

    Science.gov (United States)

    Even-Tzur, Nurit; Zaretsky, Uri; Grinberg, Orly; Davidovich, Tomer; Kloog, Yoel; Wolf, Michael; Elad, David

    2010-01-01

    Climate chambers have been widely used in in vitro and in vivo studies which require controlled environmental temperature and humidity conditions. This article describes a new desktop climate chamber that was developed for application of respiratory airflows on cultured nasal epithelial cells (NEC) under controlled temperature and humidity conditions. Flow experiments were performed by connecting the climate chamber to an airflow generator via a flow chamber with cultured NEC. Experiments at two controlled climate conditions, 25 degrees C and 40% relative humidity (RH) and 37 degrees C and 80%RH, were conducted to study mucin secretion from the cultures inresponse to the flow. The new climate chamber is a relatively simple and inexpensive apparatus which can easily be connected to any flow system for climate controlled flow experiments. This chamber can be easily adjusted to various in vitro experiments, as well as to clinical studies with animals or human subjects which require controlled climate conditions.

  18. Economic Impacts of Climate Change on Cereal Production: Implications for Sustainable Agriculture in Northern Ghana

    Directory of Open Access Journals (Sweden)

    Anslem Bawayelaazaa Nyuor

    2016-08-01

    Full Text Available This paper investigates the economic impacts of climate change on cereal crop production in Northern Ghana using 240 households comprising maize and sorghum farmers. The Ricardian regression approach was used to examine the economic impacts of climate change based on data generated from a survey conducted in the 2013/2014 farming seasons. Forty-year time-series data of rainfall and temperature from 1974 to 2013, together with cross-sectional data, were used for the empirical analysis. The Ricardian regression estimates for both maize and sorghum showed varying degrees of climate change impacts on net revenues. The results indicated that early season precipitation was beneficial for sorghum, but harmful for maize. However, mid-season precipitation tended to promote maize production. Temperature levels for all seasons impacted negatively on net revenue for both crops, except during the mid-season, when temperature exerted a positive effect on net revenue for sorghum. Our findings suggest that appropriate adaptation strategies should be promoted to reduce the negative impacts of prevailing climate change on cereal crop production.

  19. Effect of fabric stuff of work clothing on the physiological strain index at hot conditions in the climatic chamber

    Directory of Open Access Journals (Sweden)

    Habibollah Dehghan

    2014-01-01

    Full Text Available Aims: The purpose of the present study was to evaluate the effect of fabric stuff of work clothing that are widely used in Iran industries on the physiological strain index (PSI at hot conditions in the climatic chamber. Materials and Methods: This interventional study was performed upon 18 male students in 16 trials, which included combination of four kinds of work clothing (13.7% viscose (VIS 86.3% polyester(PES, 30.2% cotton [CT]-69.8% PES, 68.5% CT-31.5% PES, 100% CT, two activity levels (light and moderate and two kinds of climatic conditions included hot-wet (T a = 35, RH = 70% and hot-dry (T a = 38, RH = 40%. During each trial, the RH and core temperature was recorded once a minute and then PSI was calculated. Data were analyzed by using SPSS-16 software. Results: The results showed that in hot-wet conditions, the least value of PSI in light and moderate activities was related to 100% CT clothing and 30.2% CT-69.8% PES clothing, respectively. In hot-dry conditions, the least value of PSI in both of activities was related to 30.2% CT-69.8% PES clothing. The mean value of PSI in hot-wet conditions, during moderate activity had significant difference for various clothing types (P = 0.044. Conclusion: The research findings showed that for a heat strain reduction in hot-wet conditions at light activity level, 100% CT clothing is suitable. Furthermore, at moderate activity level, 30.2% CT-69.8% PES clothing and in hot-dry conditions, 30.2% CT-69.8% PES is suitable.

  20. Electricity generation in Germany under the conditions of climate policy and liberalized electricity market. Valuation of power plant investments with Bayesian influence diagrams

    International Nuclear Information System (INIS)

    Oetsch, Rainald

    2012-03-01

    Power plant investors face large uncertainties due to ongoing liberalization, climate policy, and long investment horizons. This study provides a probabilistic appraisal of power plant investments within the framework of Bayesian decision theory. A Bayesian influence diagram is used for setting up a discounted cash flow model and analysing the profitability of power plants. As the study explicitly models merit order pricing, the pass-through of random fuel and carbon costs may be analysed. The study derives probabilistic statements about net present values of single investments and company portfolios and explores the sensitivity of profits to variations of select input variables. In the majority of cases, an increase in the price of emission allowances also increases the net present value of existing power plant portfolios. A substantially increased carbon prices also is the prerequisite to diversify power plant portfolios by gas and CCS plants. For the currently prevailing German electricity market, we argue that investors may lack incentives for new investments in fossil generation, a finding that holds true also with implementation of CCS. Our estimates are conservative, as profitability will further deteriorate with the build-up of renewables.

  1. Mixed precipitation occurrences over southern Québec, Canada, under warmer climate conditions using a regional climate model

    Science.gov (United States)

    Matte, Dominic; Thériault, Julie M.; Laprise, René

    2018-05-01

    Winter weather events with temperatures near 0°C are often associated with freezing rain. They can have major impacts on the society by causing power outages and disruptions to the transportation networks. Despite the catastrophic consequences of freezing rain, very few studies have investigated how their occurrences could evolve under climate change. This study aims to investigate the change of freezing rain and ice pellets over southern Québec using regional climate modeling at high resolution. The fifth-generation Canadian Regional Climate Model with climate scenario RCP 8.5 at 0.11° grid mesh was used. The precipitation types such as freezing rain, ice pellets or their combination are diagnosed using five methods (Cantin and Bachand, Bourgouin, Ramer, Czys and, Baldwin). The occurrences of the diagnosed precipitation types for the recent past (1980-2009) are found to be comparable to observations. The projections for the future scenario (2070-2099) suggested a general decrease in the occurrences of mixed precipitation over southern Québec from October to April. This is mainly due to a decrease in long-duration events (≥6 h ). Overall, this study contributes to better understand how the distribution of freezing rain and ice pellets might change in the future using high-resolution regional climate model.

  2. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  3. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    Science.gov (United States)

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Solar water heaters: possibilities of using in the climatic conditions of the Russia medium area

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.

    2001-01-01

    On the basis of mathematical simulation of the simplest solar water heating facility using up-to-date software and data of typical meteorological year it was shown that under the real climatic conditions peculiar to Russia central region it is appropriate to use seasonal solar water heaters operating from March up to September. It is shown that to promote solar water heaters in the Russian market one should elaborate engineering approaches and should introduce new materials ensuring reduction of cost of solar water heaters with the availability of high quality and durability [ru

  5. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  6. Can climate and soil conditions change the morpho-anatomy among individuals from different localities? A case study in Aldama grandiflora (Asteraceae

    Directory of Open Access Journals (Sweden)

    L. F. Muniz

    2018-02-01

    Full Text Available Abstract Vegetative aerial organs are considerably more exposed to environmental conditions and can reflect the specific adaptations of plants to their local environment. Aldama grandiflora species are known to be widely distributed in Brazil; therefore, individuals from different populations of this species are thought to be exposed to different abiotic and biotic conditions. Several anatomical studies conducted on Brazilian Aldama species have mainly focused on the qualitative anatomical characters or traits of these species, but not on their quantitative traits. In this study, we evaluated whether climate and soil conditions can change the morphometry among individuals of A. grandiflora collected from six sites in the Goiás State, Brazil, by assessing their anatomical characters. Further, soil sampling was performed, and climate data were collected from all the six sites. The analysis indicated few statistical differences among the populations evaluated, showing that A. grandiflora presented consistent leaf and stem anatomical characteristics. The small morpho-anatomical differences found among individuals of the different populations evaluated, reflected the soil conditions in which these populations were grown. Therefore, environmental factors have a significant influence on the morpho-anatomy of Aldama grandiflora.

  7. From climate-smart agriculture to climate-smart landscapes

    Directory of Open Access Journals (Sweden)

    Scherr Sara J

    2012-08-01

    Full Text Available Abstract Background For agricultural systems to achieve climate-smart objectives, including improved food security and rural livelihoods as well as climate change adaptation and mitigation, they often need to be take a landscape approach; they must become ‘climate-smart landscapes’. Climate-smart landscapes operate on the principles of integrated landscape management, while explicitly incorporating adaptation and mitigation into their management objectives. Results An assessment of climate change dynamics related to agriculture suggests that three key features characterize a climate-smart landscape: climate-smart practices at the field and farm scale; diversity of land use across the landscape to provide resilience; and management of land use interactions at landscape scale to achieve social, economic and ecological impacts. To implement climate-smart agricultural landscapes with these features (that is, to successfully promote and sustain them over time, in the context of dynamic economic, social, ecological and climate conditions requires several institutional mechanisms: multi-stakeholder planning, supportive landscape governance and resource tenure, spatially-targeted investment in the landscape that supports climate-smart objectives, and tracking change to determine if social and climate goals are being met at different scales. Examples of climate-smart landscape initiatives in Madagascar’s Highlands, the African Sahel and Australian Wet Tropics illustrate the application of these elements in contrasting contexts. Conclusions To achieve climate-smart landscape initiatives widely and at scale will require strengthened technical capacities, institutions and political support for multi-stakeholder planning, governance, spatial targeting of investments and multi-objective impact monitoring.

  8. Multidimensional HAM-conditions

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    Heat, Air and Moisture (HAM) conditions, experimental data are needed. Tests were performed in the large climate simulator at SBi involving full-scale wall elements. The elements were exposed for steady-state conditions, and temperature cycles simulating April and September climate in Denmark....... The effect on the moisture and temperature conditions of the addition of a vapour barrier and an outer cladding on timber frame walls was studied. The report contains comprehensive appendices documenting the full-scale tests. The tests were performed as a part of the project 'Model for Multidimensional Heat......, Air and Moisture Conditions in Building Envelope Components' carried out as a co-project between DTU Byg and SBi....

  9. Projections of meteorological and snow conditions in the Pyrenees using adjusted EURO-CORDEX climate projections

    Science.gov (United States)

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Soubeyroux, Jean-Michel; Lafaysse, Matthieu

    2017-04-01

    Current and future availability of seasonal snow is a recurring topic in mountain regions such as the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenues in France, Spain and Andorra. Associated changes in river discharges, their consequences on water storage management, the future vulnerability of Pyrenean ecosystems as well as the occurrence of climate-related hazards such as debris flows and avalanches are also under consideration. However, to generate projections of snow conditions, a traditional dynamical downscaling approach featuring spatial resolutions typically between 10 and 50 km is not sufficient to capture the fine-scale processes and thresholds at play. Indeed, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Moreover, simulations from general circulation models (GCMs) and regional climate models (RCMs) suffer from biases compared to local observations, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted before they can be used to drive specific models such as land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. Meteorological observations used for the quantile mapping consist of the regional scale reanalysis SAFRAN, which operates at the scale of homogeneous areas on the order of 1000 km2 within which meteorological conditions vary only with elevation. SAFRAN combines large-scale NWP reanalysis (ERA40, ARPEGE) with in-situ meteorological observations. The SAFRAN reanalysis is available

  10. Projected climatic changes on drought conditions over Spain

    Science.gov (United States)

    García-Valdecasas Ojeda, Matilde; Quishpe-Vásquez, César; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In a context of global warming, the evapotranspiration processes will have a strong influence on drought severity. For this reason, the Standardized Precipitation Evapotranspiration Index (SPEI) was computed at different timescales in order to explore the projected drought changes for the main watersheds in Spain. For that, the Weather Research and Forecasting (WRF) model has been used in order to obtain current (1980-2010) and future (2021-2050 and 2071-2100) climate output fields. WRF model was used over a domain that spans the Iberian Peninsula with a spatial resolution of 0.088°, and nested in the coarser 0.44° EURO-CORDEX domain, and driving by the global bias-corrected climate model output data from version 1 of NCAR's Community Earth System Model (CESM1), using two different Representative Concentration Pathway (RCP) scenarios: RCP 4.5 and RCP 8.5. Besides, to examine the behavior of this drought index, a comparison with the Standardized Precipitation Index (SPI), which does not consider the evapotranspiration effects, was also performed. Additionally the relationship between the SPEI index and the soil moisture has also been analyzed. The results of this study suggest an increase in the severity and duration of drought, being larger when the SPEI index is used to define drought events. This fact confirms the relevance of taking into account the evapotranspiration processes to detect future drought events. The results also show a noticeable relationship between the SPEI and the simulated soil moisture content, which is more significant at higher timescales. Keywords: Drought, SPEI, SPI, Climatic change, Projections, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  11. Decomposition of 14C-labelled plant residues in different soils and climates of Costa Rica

    International Nuclear Information System (INIS)

    Gonzalez A, M.A.; Sauerbeck, D.R.

    1982-01-01

    The decomposition of 14 C-labelled wheat straw has been studied under field and laboratory conditions since 1975 in 13 Orthents, Andepts, Tropepts, Ustolls, and other soils of Costa Rica, representing its most important groups and production zones. No reliable predictions about the degradation rate of plant residues in field soils at their natural locations can be made from data obtained under controlled laboratory studies. Although, in some cases the decomposition rates of the laboratory experiment corresponded fairly well with the ones obtained in the field, there were instances where the laboratory decomposition lags behind. The reasons for this discrepancy have not yet been clearly interpreted, but will certainly have to do with the natural climatic conditions prevailing at the particular location. It is important to do such experiments in the open field, no matter how complicated this may be. It was found after a year, that from 23 to 36 per cent of the 14 C added in the wheat straw remained in the soils under field conditions. Four years later, the residual 14 C was from 11 to 23 per cent. From this information it is assumed that a considerable fraction of the organic carbon in the plant residues ramains undecomposed during several years in these tropical soils, as it occurs in other soils from temperate areas of the world. (Author) [pt

  12. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    Science.gov (United States)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  13. Sugarcane yield estimation for climatic conditions in the state of Goiás

    Directory of Open Access Journals (Sweden)

    Jordana Moura Caetano

    Full Text Available ABSTRACT Models that estimate potential and depleted crop yield according to climatic variable enable the crop planning and production quantification for a specific region. Therefore, the objective of this study was to compare methods to sugarcane yield estimates grown in the climatic condition in the central part of Goiás, Brazil. So, Agroecological Zone Method (ZAE and the model proposed by Scarpari (S were correlated with real data of sugarcane yield from an experimental area, located in Santo Antônio de Goiás, state of Goiás, Brazil. Data yield refer to the crops of 2008/2009 (sugarcane plant, 2009/2010, 2010/2011 and 2011/2012 (ratoon sugarcane. Yield rates were calculated as a function of atmospheric water demand and water deficit in the area under study. Real and estimated yields were adjusted in function of productivity loss due to cutting stage of sugarcane, using an average reduction in productivity observed in the experimental area and the average reduction in the state of Goiás. The results indicated that the ZAE method, considering the water deficit, displayed good yield estimates for cane-plant (d > 0.90. Water deficit decreased the yield rates (r = -0.8636; α = 0.05 while the thermal sum increased that rate for all evaluated harvests (r > 0.68; α = 0.05.

  14. Post hoc analysis of Japanese patients from the placebo-controlled PREVAIL trial of enzalutamide in patients with chemotherapy-naive, metastatic castration-resistant prostate cancer—updated results

    Science.gov (United States)

    Ueda, Takeshi

    2017-01-01

    Abstract A post hoc analysis of interim results from PREVAIL, a Phase III, double-blind, placebo-controlled trial of men with metastatic castration-resistant prostate cancer, demonstrated that the treatment effects, safety and pharmacokinetics of enzalutamide in Japanese patients were generally consistent with those of the overall population. A recent longer term analysis of PREVAIL demonstrated continued benefit of enzalutamide treatment over placebo. Here, we report results from a post hoc analysis of Japanese patients enrolled in PREVAIL at the prespecified number of deaths for the final analysis. In Japanese patients, enzalutamide reduced the risk of death by 35% (hazard ratio, 0.65; 95% confidence interval, 0.28–1.51) and the risk of investigator-assessed radiographic progression or death by 60% (hazard ratio, 0.40; 95% confidence interval, 0.18–0.90). These results show that treatment effects and safety in Japanese patients in the final analysis of PREVAIL continued to be generally consistent with those of the overall population. PMID:28003320

  15. Ecosystem-level changes that may be expected in a changing global climate - a British Columbia perspective. [Canada - British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Kimmins, J.P.; Lavender, D.P. (Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Forest Science)

    1992-08-01

    British Columbia is a vast province encompassing a wide latitudinal and elevational range. Four of the five major classes of climate in the world are found in British Columbia, where prevailing westerly winds from the Pacific and a series of north-south mountain ranges have produced widely differing local climates. The predicted global warming may result in the migration of species and communities upslope and toward the north, but the heterogenous nature of the present landscape suggests that such migration may not be as pronounced as that likely to occur in regions of Canada with less relief. Effects of climatic warming on long-lived temperate zone trees include possible increased frost damage in early spring; reduced seed production; increased insect and disease incidence; increased damage to forests by wildfire; and, in the warmer parts of coastal British Columbia, a winter climate too warm to satisfy the chilling requirements of some perennial plants.

  16. Icing conditions over Northern Eurasia in changing climate

    International Nuclear Information System (INIS)

    Bulygina, Olga N; Arzhanova, Natalia M; Groisman, Pavel Ya

    2015-01-01

    Icing conditions, particularly in combination with wind, affect greatly the operation of overhead communication and transmission lines causing serious failures, which result in tremendous economic damage. Icing formation is dangerous to agriculture, forestry, high seas fishery, for land and off coast man-made infrastructure. Quantitative icing characteristics such as weight, thickness, and duration are very important for the economy and human wellbeing when their maximum values exceed certain thresholds. Russian meteorological stations perform both visual and instrumental monitoring of icing deposits. Visual monitoring is ocular estimation of the type and intensity of icing and the date of ice appearance and disappearance. Instrumental monitoring is performed by ice accretion indicator that in addition to the type, intensity and duration of ice deposits reports also their weight and size. We used observations at 958 Russian stations for the period 1977–2013 to analyze changes in the ice formation frequency at individual meteorological stations and on the territory of quasi-homogeneous climatic regions in Russia. It was found that hoar frosts are observed in most parts of Russia, but icing only occurs in European Russia and the Far East. On the Arctic coast of Russia, this phenomenon can even be observed in summer months. Statistically significant decreasing trends in occurrence of icing and hoar frost events are found over most of Russia. An increasing trend in icing weights (IWs) was found in the Atlantic Arctic region in autumn. Statistically significant large negative trends in IWs were found in the Pacific Arctic in winter and spring. (letter)

  17. Enzalutamide in Men with Chemotherapy-naïve Metastatic Castration-resistant Prostate Cancer: Extended Analysis of the Phase 3 PREVAIL Study.

    Science.gov (United States)

    Beer, Tomasz M; Armstrong, Andrew J; Rathkopf, Dana; Loriot, Yohann; Sternberg, Cora N; Higano, Celestia S; Iversen, Peter; Evans, Christopher P; Kim, Choung-Soo; Kimura, Go; Miller, Kurt; Saad, Fred; Bjartell, Anders S; Borre, Michael; Mulders, Peter; Tammela, Teuvo L; Parli, Teresa; Sari, Suha; van Os, Steve; Theeuwes, Ad; Tombal, Bertrand

    2017-02-01

    Enzalutamide significantly improved radiographic progression-free survival (rPFS) and overall survival (OS) among men with chemotherapy-naïve metastatic castration-resistant prostate cancer at the prespecified interim analysis of PREVAIL, a phase 3, double-blind, randomized study. We evaluated the longer-term efficacy and safety of enzalutamide up to the prespecified number of deaths in the final analysis, which included an additional 20 mo of follow-up for investigator-assessed rPFS, 9 mo of follow-up for OS, and 4 mo of follow-up for safety. Enzalutamide reduced the risk of radiographic progression or death by 68% (hazard ratio [HR] 0.32, 95% confidence interval [CI] 0.28-0.37; pPREVAIL provides more complete assessment of the clinical benefit of enzalutamide. PREVAIL is registered on ClinicalTrials.gov as NCT01212991. According to data from longer follow-up, enzalutamide continued to provide benefit over placebo in patients with metastatic castration-resistant prostate cancer. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  18. Unique Nature of the Quality of Life in the Context of Extreme Climatic, Geographical and Specific Socio-Cultural Living Conditions

    Science.gov (United States)

    Kulik, Anastasia; Neyaskina, Yuliya; Frizen, Marina; Shiryaeva, Olga; Surikova, Yana

    2016-01-01

    This article presents the results of a detailed empirical research, aimed at studying the quality of life in the context of extreme climatic, geographical and specific sociocultural living conditions. Our research is based on the methodological approach including social, economical, ecological and psychological characteristics and reflecting…

  19. Catchment-scale contaminant transport under changing hydro-climatic conditions in the Aral Sea Drainage Basin, Central Asia

    Science.gov (United States)

    Jarsjö, Jerker; Törnqvist, Rebecka; Su, Ye

    2013-04-01

    Dependable projections of future water availability and quality are essential in the management of water resources. Changes in land use, water use and climate can have large impacts on water and contaminant flows across extensive catchments that may contain different administrative regions where shared water resources must be managed. We consider the extensive Aral Sea Drainage Basin (ASDB) and the Amu Darya River Delta in Central Asia, which are currently under severe water stress due to large-scale irrigation expansion. We interpret data on hydro-climatic conditions, main contaminants of surface water and shallow groundwater systems, location of rivers and canal networks, and groundwater flow directions. The data are used together with climate change projections from general circulation models (GCMs) as input to hydrological and (advective) transport modelling. The main goal is to assess how regional transport pathways and travel times have changed, and are likely to change further, in response to past and projected future hydro-climatic changes. More specifically, the hydrological modelling was based on temperature and precipitation change (ΔT and ΔP) results from 65 GCM projections of 21st century conditions (specifically considering time periods around 2025, 2050, and 2100), relative to reference conditions around 1975 (taken from the reference period 1961-1990). Whereas ΔT is robustly projected to increase with time, the projected magnitude of ΔP differs more among projections for the distant future (2100) than for the near future (2025), with uncertainty remaining even about the direction of change (i.e., positive or negative ΔP). However, mainly due to the projected temperature-driven increases in evapotranspiration, ensemble average results show that the Amu Darya river discharge Q in the downstream ASDB is likely to show a decreasing trend throughout the 21st century. Notably, projected changes in the upstream, mountainous regions have a relatively

  20. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, C. Adam [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry M. [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Anthony, Katey Walter [Univ. of Alaska, Fairbanks, AK (United States); Kicklighter, David [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Gao, Xiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  1. Stress and body condition are associated with climate and demography in Asian elephants.

    Science.gov (United States)

    Mumby, Hannah S; Mar, Khyne U; Thitaram, Chatchote; Courtiol, Alexandre; Towiboon, Patcharapa; Min-Oo, Zaw; Htut-Aung, Ye; Brown, Janine L; Lummaa, Virpi

    2015-01-01

    Establishing links between ecological variation, physiological markers of stress and demography is crucial for understanding how and why changes in environmental conditions affect population dynamics, and may also play a key role for conservation efforts of endangered species. However, detailed longitudinal studies of long-lived species are rarely available. We test how two markers of stress and body condition vary through the year and are associated with climatic conditions and large-scale mortality and fertility variation in the world's largest semi-captive population of Asian elephants employed in the timber industry in Myanmar. Glucocorticoid metabolites (used as a proxy for stress levels in 75 elephants) and body weight (used as a proxy for condition in 116 elephants) were monitored monthly across a typical monsoon cycle and compared with birth and death patterns of the entire elephant population over half a century (n = 2350). Our results show seasonal variation in both markers of stress and condition. In addition, this variation is correlated with population-level demographic variables. Weight is inversely correlated with population mortality rates 1 month later, and glucocorticoid metabolites are negatively associated with birth rates. Weight shows a highly positive correlation with rainfall 1 month earlier. Determining the factors associated with demography may be key to species conservation by providing information about the correlates of mortality and fertility patterns. The unsustainability of the studied captive population has meant that wild elephants have been captured and tamed for work. By elucidating the correlates of demography in captive elephants, our results offer management solutions that could reduce the pressure on the wild elephant population in Myanmar.

  2. Climate Change Adaptation in Cities: the conditions for success. Feedback from Sub-Saharan Africa, South Africa, and Colombia

    International Nuclear Information System (INIS)

    Paugam, Anne; Henry, Alain

    2014-11-01

    Until recently, the actions to promote climate change adaptation have mainly taken the form of occasional projects for reducing vulnerabilities (infrastructures for rain drainage, early-warning systems, etc.). But for greater effective action, it is better to both develop real public policies dedicated to this theme and to incorporate this concern into the other sectoral policies and in national strategies. To this end, AFD launched three research projects to grasp a better understanding of the conditions needed for effective adaptation. The three studies look into the institutional, political, and social factors that make for success or failure in adaptation programs on a city scale. The cities studied were selected because they have initiated adaptation procedures that enable feedback not only on how adaptation has been taken into account within local priorities, but also on the implementation of strategies, which represents a relatively new research subject. The study Institutional Pathways for Local Climate Adaptation was produced by South African academics from the University of Cape Town and University of KwaZulu- Natal in 2012-2013. It identifies the political, institutional and social dimensions of effective adaptation at the municipal level, in three South African cities (Durban, Cape Town, Theewaterskloof). The 2014 study Understanding the Assessment and Reduction of Vulnerability to Climate Change in African Cities by the British research institute International Institute for Environment and Development (IIED) is more sociological and concerns social vulnerability to climate change in African cities, especially in poor neighborhoods (case studies in Kampala, Accra, and Dakar). Finally, in 2013 the Colombian research institute Fedesarrollo and the Institut de recherche et debat sur la gouvernance (IRG) produced the set of documents Ciudades y cambio climatico en Colombia, which contains an institutional analysis of climate change management in 11

  3. The upper Cenomanian-lower Turonian of the Preafrican Trough (Morocco): Platform configuration and palaeoenvironmental conditions

    Science.gov (United States)

    Lebedel, V.; Lézin, C.; Andreu, B.; Ettachfini, El M.; Grosheny, D.

    2015-06-01

    A synthetic study was carried out based on sedimentological, palaeontological, geochemical and mineralogical data of the upper Cenomanian-lower Turonian carbonate platform of the Preafrican Trough (eastern Morocco) in order to (1) propose a 3D representation of the platform and constrain the temporal framework of the dysoxic/anoxic episodes recorded during the OAE2, (2) define and discuss the prevailing climate on the platform during this period, and (3) make comparisons with other Cenomanian-Turonian platforms. During the late Cenomanian, both before and during the CCIE (Cenomanian Carbon Isotope Excursion), the platform displayed an east-west polarity. Three third-order sequences of transgression-regression can be defined. Dysoxic conditions were developed in the sediments and the bottom waters of the deepest environment (mid- to outer-ramp setting), in the western part of the platform. Well-oxygenated waters were present in the eastern part of the platform (peritidal zone to mid-ramp environment). The climate was arid before the CCIE, becoming warm with contrasted seasons during the CCIE. This climate is associated with a low palaeoproductivity over the entire platform, along with the presence of photozoan followed by heterozoan carbonate-producers, as found also in other parts of the Saharan platform. However, such conditions are not in accordance with many studies which suggest a wet climate during the CCIE, leading to intense chemical weathering of the continent favouring the appearance of high palaeoproductivity at a global scale and the establishment of dysoxic/anoxic conditions. In the Preafrican Trough, poorly-oxygenated waters spread outwards from the deep basins and covered the platform in response to sea-level rise. Many disturbances are recorded in the platform succession during the early Turonian, after the CCIE. Indeed, just after the C/T boundary, the development of an outer-ramp environment over the entire Preafrican Trough reflects flooding of

  4. Prospects for future climate

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The different climates of the past and model simulations of future climates convincingly indicate that the continuing emissions of greenhouse gases will lead to significant global warming and to changes in precipitation and other climatic variables. The projected changes in atmospheric composition and, consequently, in climatic conditions will be unique and more rapid than at any time in the past. The developing understanding of the chemical cycles controlling atmospheric composition and of the processes and behavior controlling the climate system can provide significant guidance about how the future climate will change. This chapter first summarizes the many scientific advances described in the preceding chapters that can help one better understand and describe the climate system and the resulting agricultural and hydrological impacts of these changes in climate. The chapter then draws from this understanding to outline the prospects for future climate

  5. Climatic change during historical times in japan : reconstruction from climatic hazard records

    OpenAIRE

    Maejima, Ikuo; Tagami, Yoshio

    1986-01-01

    A synoptic analysis of climatic hazard records in historical times of Japan is presented. The cool age (7-9c.), the warm age (10-14c.) and the cold age (15-19c.) are indicated. The relationship between summer and winter conditions in the climatic change is also shown. Thus, the knowledge of the climatic change in Japan from the 7th to the 19th century was systematically summarized.

  6. Power engineering under conditions of climatic changes

    International Nuclear Information System (INIS)

    Wajs, K.

    1993-01-01

    One of the climatic phenomena fairly well connected with power engineering in the so called greenhouse effect. It is caused by increase of emission to the atmosphere of the so called greenhouse gases, especially CO 2 . Mechanism of this phenomenon and the relevant observations are discussed. Basic models of the circulation of greenhouse gases are outlined and the relevant conclusions as to various probable results, especially for a large time scale, are given. Tasks in the area of power engineering activity in the present situation are described. (author). 19 refs

  7. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  8. Collaborative Research: Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry [Marine Biological Lab., Woods Hole, MA (United States)

    2017-12-12

    Our overall goal in this research was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal was motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we tested the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming. In collaboration with our Purdue and MIT colleagues, we have attempted to quantify global climate warming effects on land-atmosphere interactions, land-river network interactions, permafrost degradation, vegetation shifts, and land use influence water, carbon, and nitrogen fluxes to and from terrestrial ecosystems in the pan-arctic along with their

  9. On climate prediction: how much can we expect from climate memory?

    Science.gov (United States)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  10. Collaborative Research for Water Resource Management under Climate Change Conditions

    Science.gov (United States)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by

  11. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    Science.gov (United States)

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  12. Climate and climate change sensitivity to model configuration in the Canadian RCM over North America

    Energy Technology Data Exchange (ETDEWEB)

    De Elia, Ramon [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada); Centre ESCER, Univ. du Quebec a Montreal (Canada); Cote, Helene [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada)

    2010-06-15

    Climate simulations performed with Regional Climate Models (RCMs) have been found to show sensitivity to parameter settings. The origin, consequences and interpretations of this sensitivity are varied, but it is generally accepted that sensitivity studies are very important for a better understanding and a more cautious manipulation of RCM results. In this work we present sensitivity experiments performed on the simulated climate produced by the Canadian Regional Climate Model (CRCM). In addition to climate sensitivity to parameter variation, we analyse the impact of the sensitivity on the climate change signal simulated by the CRCM. These studies are performed on 30-year long simulated present and future seasonal climates, and we have analysed the effect of seven kinds of configuration modifications: CRCM initial conditions, lateral boundary condition (LBC), nesting update interval, driving Global Climate Model (GCM), driving GCM member, large-scale spectral nudging, CRCM version, and domain size. Results show that large changes in both the driving model and the CRCM physics seem to be the main sources of sensitivity for the simulated climate and the climate change. Their effects dominate those of configuration issues, such as the use or not of large-scale nudging, domain size, or LBC update interval. Results suggest that in most cases, differences between simulated climates for different CRCM configurations are not transferred to the estimated climate change signal: in general, these tend to cancel each other out. (orig.)

  13. CONSTRUCTION TECHNOLOGY DIFFUSION IN DEVELOPING COUNTRIES: LIMITATIONS OF PREVAILING INNOVATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Emilia van Egmond-deWilde de Ligny

    2008-12-01

    Full Text Available The diffusion of innovative technologies in the market is usually a complex and difficult process with a varying degree of success and the effects of the diffused innovative technologies are very un-balanced. The objective of our research is to gain insight into the reasons why the diffusion of innovative technology fails, even though they promise a superior performance compared to incumbent technologies. Drawing on innovation systems theories, we have identified and used the concepts of technological regime, actor network and technology sets to analyze technology diffusion in a case study in the dwelling construction industry in Costa Rica. The results showed bottlenecks in the prevailing innovation system that curtailed the diffusion of an innovative construction technology.

  14. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    composition and root colonization, with weaker influences of plant identity and soil nutrients. These two studies across scales suggest prevailing effects of climate on AM fungal distributions. Thus, incorporating climate when forecasting future ranges of AM fungi will enhance predictions of AM fungal abundance and associated ecosystem functions.

  15. Climate-induced changes in the trophic status of a Central European lake

    Directory of Open Access Journals (Sweden)

    Thomas HÜBENER

    2009-02-01

    Full Text Available We present a case study of the development of Sacrower See, a stratified, eutrophic lake in northeastern Germany, over the past 13,000 years. Total epilimnetic phosphorus (TP concentrations were reconstructed quantitatively using a diatom-TP transfer function. Fossil chironomid assemblages were used to support the trophic reconstruction and helped assessing past hypolimnetic oxygen availability. The results indicate eutrophic and anoxic conditions during the Younger Dryas cold period (~12,700-11,600 cal. BP preceding the present interglacial. Throughout the early and mid-Holocene (~11,600-4000 cal. BP stable oligo- to mesotrophic conditions with diatom-inferred TP values of ~20 μg L-1 prevailed. First evidence of increasing Holocene TP is recorded at ~3500 cal. BP associated with Bronze Age human impact and for the past 900 years diatoms indicate increasing TP values of 30-60 μg L-1. During the early Holocene and the past two millennia chironomids indicated anoxic hypolimnetic conditions. The chironomid fauna is considered typical of oligo- to mesotrophic lakes. As a consequence of strongly increased primary production the hypolimnion of Sacrower See became anoxic again during the past 140 years. Our results indicate that highly productive eutrophic conditions can exist prior to cultural eutrophication. At Sacrower See the shift from eutrophic conditions in the Lateglacial to oligo-mesotrophic conditions in the early and mid-Holocene was associated with the climatic warming at the Younger Dryas/Holocene transition. The high productive state during the cold Younger Dryas is associated with changes in seasonality: the prolonged winters caused longer ice cover, stronger stratification, anoxia in the hypolimnion, and consequent internal phosphorus loading. During the warm Holocene, however, hypolimnetic anoxia and internal phosphorus loading decreased significantly, resulting in a substantially lower productivity.

  16. Identifying the impacts of climate on the regional transport of haze pollution and inter-cities correspondence within the Yangtze River Delta.

    Science.gov (United States)

    Xiao, Hang; Huang, Zhongwen; Zhang, Jingjing; Zhang, Huiling; Chen, Jinsheng; Zhang, Han; Tong, Lei

    2017-09-01

    Regional haze pollution has become an important environmental issue in the Yangtze River Delta (YRD) region. Regional transport and inter-influence of PM 2.5 among cities occurs frequently as a result of the subtropical monsoon climate. Backward trajectory statistics indicated that a north wind prevailed from October to March, while a southeast wind predominated from May to September. The temporal relationships of carbon and nitrogen isotopes among cities were dependent on the prevailing wind direction. Regional PM 2.5 pollution was confirmed in the YRD region by means of significant correlations and similar cyclical characteristics of PM 2.5 among Lin'an, Ningbo, Nanjing and Shanghai. Granger causality tests of the time series of PM 2.5 values indicate that the regional transport of haze pollutants is governed by prevailing wind direction, as the PM 2.5 concentrations from upwind area cities generally influence that of the downwind cities. Furthermore, stronger correlation coefficients were identified according to monsoon pathways. To clarify the impacts of the monsoon climate, a vector autoregressive (VAR) model was introduced. Variance decomposition in the VAR model also indicated that the upwind area cities contributed significantly to PM 2.5 in the downwind area cities. Finally, we attempted to predict daily PM 2.5 concentrations in each city based on the VAR model using data from all cities and obtained fairly reasonable predictions. These indicate that statistical methods of the Granger causality test and VAR model have the potential to evaluate inter-influence and the relative contribution of PM 2.5 among cities, and to predict PM 2.5 concentrations as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Arctic Climate and Climate Change with a Focus on Greenland

    DEFF Research Database (Denmark)

    Stendel, Martin; Christensen, Jens Hesselbjerg; Petersen, Dorthe

    2008-01-01

    Paleoclimatic evidence suggests that the Arctic presently is warmer than during the last 125,000 years, and it is very likely11The term "likelihood" is used here as in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). According to the definition in this rep...... Ice Sheet, the fate of arctic sea ice and a possible weakening of the thermohaline circulation (THC) under future warming conditions have led to increased research activities, including an assessment of arctic climate and climate change (ACIA, 2005), the fourth assessment report (AR4...

  18. Pollen-based reconstruction of Holocene vegetation and climate in southern Italy: the case of Lago Trifoglietti

    Directory of Open Access Journals (Sweden)

    S. Joannin

    2012-12-01

    Full Text Available A high-resolution pollen record from Lago Trifoglietti in Calabria (southern Italy provides new insights into the paleoenvironmental and palaeoclimatic changes which characterise the Holocene period in the southern Italy. The chronology is based on 11 AMS radiocarbon dates from terrestrial organic material. The Holocene history of the vegetation cover shows the persistence of an important and relatively stable Fagus forest present over that entire period, offering a rare example of a beech woodstand able to withstand climate changes for more than 11 000 yr. Probably in relation with early Holocene dry climate conditions which affected southern Italy, the Trifoglietti pollen record supports a southward delay in thermophyllous forest expansion dated to ca. 13 500 cal BP at Monticchio, ca. 11 000 cal BP at Trifoglietti, and finally ca. 9800 cal BP in Sicily. Regarding the human impact history, the Trifoglietti pollen record shows only poor imprints of agricultural activities and anthopogenic indicators, apart from those indicating pastoralism activities beneath forest cover. The selective exploitation of Abies appears to have been the strongest human impact on the Trifoglietti surroundings. On the basis of (1 a specific ratio between hygrophilous and terrestrial taxa, and (2 the Modern Analogue Technique, the pollen data collected at Lago Trifoglietti led to the establishment of two palaeoclimatic records tracing changes in (1 lake depth and (2 annual precipitation. On a millennial scale, these records give evidence of increasing moisture from ca. 11 000 to ca. 9400 cal BP and maximum humidity from ca. 9400 to ca. 6200 cal BP, prior to a general trend towards the drier climate conditions that have prevailed up to the present. In addition, several successive centennial-scale oscillations appear to have punctuated the entire Holocene. The identification of a cold dry event around 11 300 cal BP, responsible for a marked decline in

  19. The evolution of climatic niches in squamate reptiles.

    Science.gov (United States)

    Pie, Marcio R; Campos, Leonardo L F; Meyer, Andreas L S; Duran, Andressa

    2017-07-12

    Despite the remarkable diversity found in squamate reptiles, most of their species tend to be found in warm/dry environments, suggesting that climatic requirements played a crucial role in their diversification, yet little is known about the evolution of their climatic niches. In this study, we integrate climatic information associated with the geographical distribution of 1882 squamate species and their phylogenetic relationships to investigate the tempo and mode of climatic niche evolution in squamates, both over time and among lineages. We found that changes in climatic niche dynamics were pronounced over their recent squamate evolutionary history, and we identified extensive evidence for rate heterogeneity in squamate climatic niche evolution. Most rate shifts involved accelerations, particularly over the past 50 Myr. Most squamates occupy similar regions of the climatic niche space, with only a few lineages diversifying into colder and humid climatic conditions. The changes from arid to mesic conditions in some regions of the globe may have provided opportunities for climatic niche evolution, although most lineages tended to remain near their ancestral niche. Variation in rates of climatic niche evolution seems common, particularly in response to the availability of new climatic conditions over evolutionary time. © 2017 The Author(s).

  20. Effects of Yamase climatic condition during the pollen mother cell developmental stage on concentrations of Cs and Sr in brown rice

    International Nuclear Information System (INIS)

    Yanai, Masumi; Kobayashi, Daisuke; Yamagami, Mutsumi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2007-01-01

    Effects of the Yamase climatic condition on the concentration of alkali metals and alkaline earth metals in brown rice were examined in relation to the soil-to-plant transfer factors of 137 Cs and 90 Sr. Rice plants (Oryza sativa L cv. Yumeakari) were cultivated in an artificial climate chamber, and exposed to a simulated Yamase condition for 3 or 7 d during the pollen mother cell developmental stage. In these simulated treatments, temperature and light intensity were set to 5degC lower and 50% lower than the respective control values. Fog was generated with visibility of 70±30 m. Concentrations of alkali metals, alkaline earth metals and the other minor elements in brown rice samples were analyzed. Measured Cs and Sr concentrations were found to be unaffected by the Yamase treatments, while concentrations of Fe, Cu, Zn and Mo were increased. (author)

  1. Decline of woody vegetation in a saline landscape in the Groundnut Basin, Senegal

    DEFF Research Database (Denmark)

    Sambou, Antoine; Theilade, Ida; Fensholt, Rasmus

    2016-01-01

    Several studies have documented that vegetation in the Sahel is highly dynamic and is affected by the prevailing climatic conditions, as well as by human use of the areas. However, little is known about vegetation dynamics in the large saline areas bordering the rivers of West Africa. Combining s...

  2. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change

    Science.gov (United States)

    Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam

    2016-04-01

    At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our

  3. Assessing the Impacts of Atmospheric Conditions under Climate Change on Air Quality Profile over Hong Kong

    Science.gov (United States)

    Hei Tong, Cheuk

    2017-04-01

    Small particulates can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Under the projected climate change as reported by literature, atmospheric stability, which has strong effects on vertical mixing of air pollutants and thus air quality Hong Kong, is also varying from near to far future. In addition to domestic emission, Hong Kong receives also significant concentration of cross-boundary particulates that their natures and movements are correlated with atmospheric condition. This study aims to study the relation of atmospheric conditions with air quality over Hong Kong. Past meteorological data is based on Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Radiosonde data provided from HKO are also adopted in testing and validating the data. Future meteorological data is simulated by the Weather Research and Forecasting Model (WRF), which dynamically downscaled the past and future climate under the A1B scenario simulated by ECHAM5/MPIOM. Air quality data is collected on one hand from the ground station data provided by Environment Protection Department, with selected stations revealing local emission and trans-boundary emission respectively. On the other hand, an Atmospheric Light Detection and Ranging (LiDAR), which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols, has also been adopted to measure vertical aerosol profile, which has been observed tightly related to the high level meteorology. Data from scattered signals are collected, averaged or some episode selected for characteristic comparison with the atmospheric stability indices and other meteorological factors. The relation between atmospheric conditions and air quality is observed by statistical analysis, and statistical models are built based on the stability indices to project the changes in sulphur dioxide, ozone and particulate

  4. Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

    Science.gov (United States)

    Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.

    2017-10-01

    The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.

  5. Experimental investigation on a coupled solar still under desert climatic conditions

    International Nuclear Information System (INIS)

    Boukar, M.; Harmim, A.

    2000-01-01

    Distillation of water is energy intensive, and the use of solar energy for this purpose has been quite well developed and applied in many places. The performance of a simple basin greenhouse-type solar still coupled to a flat plate collector is experimentally investigated. The Saharan sites of Algeria enjoys bright sunshine and dry weather during most part of year. The objective of the work is to improve the performances of a simple single basin solar still, we test the distillation system in winter, under desert climatic conditions, to improve the quality and increase the quantity of distilled water, by using a solar collector for increasing the brine temperature, enhancing the evaporation process of a simple solar still and improving distillate collection process. Experiments have been conducted in Adrar, Algerian desert town (27 degree 18' N, latitude, 0 degree 17' W longitude). The daily still productivity in winter period varies from 4.5 l/m 2 /day to 5.3 l/m 2 /day with variation of water level from 1.5 cm to 3.5 cm. (Author)

  6. Taking climate change seriously: An analysis of op-ed articles in Spanish press.

    Science.gov (United States)

    Domínguez, Martí; Lafita, Íngrid; Mateu, Anna

    2017-10-01

    In this article, we study the evolution of opinion genres regarding climate change in three Spanish newspapers ( El País, El Mundo, and ABC). Analyzing the op-ed articles in these newspapers, we observe a significant change in the evolution of opinion. While denialism was very present in conservative press in 2007, 7 years later it is almost absent from El Mundo, and its presence in ABC is much lower and inactive: this shows that scientific consensus has prevailed over time and Spanish denialism has weakened, exclusively supported by political arguments by the most conservative parties.

  7. Convergence and conflict with the ‘National Interest’: Why Israel abandoned its climate policy

    International Nuclear Information System (INIS)

    Michaels, Lucy; Tal, Alon

    2015-01-01

    This article describes how Israel abandoned its climate policy through the prism of the country's evolving energy profile, most importantly the 2009 discovery of huge natural gas reserves in Israel's Mediterranean exclusive zone. The article outlines five phases of Israeli political engagement with climate change from 1992 until 2013 when the National GHG Emissions Reduction Plan was defunded. Israel was motivated to develop its climate policy by international norms: OECD membership and the 2009 UN Summit in Copenhagen. Although the eventual Plan may not have significantly reduced Israel’s emissions, it contained immediate cost-effective, energy efficiency measures. Despite rhetorical support for renewable energy, in practice, most Israeli leaders consistently perceive ensuring supply of fossil fuels as the best means to achieve energy security. The gas finds thus effectively ended a potentially significant switch towards renewable energy production. The development of commercially competitive Israeli renewable energy technology may change this prevailing economic calculus alongside renewed international and domestic leadership and a resolution of the region's conflicts. Although Israel's political circumstances are idiosyncratic, the dynamics shaping its climate policy reflect wider trends such as competing economic priorities and failure to consider long term energy security. - Highlights: • In 2013 Israel defunded its climate policy despite cost and efficiency savings. • Initially climate policy converged with national interests: ‘climate bandwagoning’. • Deepwater natural gas finds in Israeli waters ended renewable energy ambitions. • Advocates failed to securitise ‘climate change’ which would have raised its profile. • Policy failure reflects both national idiosyncrasies and wider international trends.

  8. Do it well and do it right: The impact of service climate and ethical climate on business performance and the boundary conditions.

    Science.gov (United States)

    Jiang, Kaifeng; Hu, Jia; Hong, Ying; Liao, Hui; Liu, Songbo

    2016-11-01

    Prior research has demonstrated that service climate can enhance unit performance by guiding employees' service behavior to satisfy customers. Extending this literature, we identified ethical climate toward customers as another indispensable organizational climate in service contexts and examined how and when service climate operates in conjunction with ethical climate to enhance business performance of service units. Based on data collected in 2 phases over 6 months from multiple sources of 196 movie theaters, we found that service climate and ethical climate had disparate impacts on business performance, operationalized as an index of customer attendance rate and operating income per labor hour, by enhancing service behavior and reducing unethical behavior, respectively. Furthermore, we found that service behavior and unethical behavior interacted to affect business performance, in such a way that service behavior was more positively related to business performance when unethical behavior was low than when it was high. This interactive effect between service and unethical behaviors was further strengthened by high market turbulence and competitive intensity. These findings provide new insight into theoretical development of service management and offer practical implications about how to maximize business performance of service units by managing organizational climates and employee behaviors synergistically. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Does undernutrition still prevail among nursing home residents?

    Science.gov (United States)

    Törmä, Johanna; Winblad, Ulrika; Cederholm, Tommy; Saletti, Anja

    2013-08-01

    During recent years public awareness about malnutrition has increased and collective initiatives have been undertaken. Simultaneously, the number of older adults is increasing, and the elderly care has been placed under pressure. The aim was to assess the nutritional situation and one-year mortality among nursing home (NH) residents, and compare with historical data. Mini Nutritional Assessment-Short Form (MNA-SF), ADL Barthel Index (BI), Short Portable Mental Status Questionnaire (SPMSQ), EQ-5D, Charlson Comorbidity Index (CCI), and blood samples were collected from 172 NH residents (86.3 ± 8 years, 70% women). Mortality data was taken from NH records. Nutritional data from 166 NH residents (83.8 ± 8 years, 61% women) examined in 1996 was retrieved for historical comparison. The prevalence of malnutrition was 30%, as compared to 71% in the historical data set, corresponding to a present average body mass index of 23.7 ± 5.1 compared with 22.3 ± 4.2 kg/m(2) (p prevails and is associated with deteriorated cognition, function and increased mortality. A possible improvement in nutritional status in NH residents over time was observed. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Post hoc analysis of Japanese patients from the placebo-controlled PREVAIL trial of enzalutamide in patients with chemotherapy-naive, metastatic castration-resistant prostate cancer-updated results.

    Science.gov (United States)

    Kimura, Go; Ueda, Takeshi

    2017-03-01

    A post hoc analysis of interim results from PREVAIL, a Phase III, double-blind, placebo-controlled trial of men with metastatic castration-resistant prostate cancer, demonstrated that the treatment effects, safety and pharmacokinetics of enzalutamide in Japanese patients were generally consistent with those of the overall population. A recent longer term analysis of PREVAIL demonstrated continued benefit of enzalutamide treatment over placebo. Here, we report results from a post hoc analysis of Japanese patients enrolled in PREVAIL at the prespecified number of deaths for the final analysis. In Japanese patients, enzalutamide reduced the risk of death by 35% (hazard ratio, 0.65; 95% confidence interval, 0.28-1.51) and the risk of investigator-assessed radiographic progression or death by 60% (hazard ratio, 0.40; 95% confidence interval, 0.18-0.90). These results show that treatment effects and safety in Japanese patients in the final analysis of PREVAIL continued to be generally consistent with those of the overall population. © The Author 2016. Published by Oxford University Press.

  11. Job conditions, psychological climate, and affective commitment as predictors of intention to quit among two groups of bank employees in Nigeria

    Directory of Open Access Journals (Sweden)

    Balogun,, Anthony G.

    2013-07-01

    Full Text Available This study examined the extent to which job conditions (job demands and job control, psychological climate, and affective commitment predict turnover intention among Tellers and Interpersonal Relation Officers in some Nigerian Banks and whether affective commitment mediate the relationship between psychological climate and turnover intention. Five hundred and nineteen(tellers = 321, IRO = 198bank employees (266 males and 253 females whose ages ranged from 19 to 65 years with a mean of 34.02 years and SD of 9.54, from 11 commercial banks in Lagos, Nigeria participated in the study. Validated scales were used for data collections. The study hypotheses were tested using hierarchical multiple regression, Baron and Kenny’s (1986 mediation analysis, and t-independent sample analyses. The results revealed significant joint and independent influence of job demands, job control, psychological climate, and affective commitment on turnover intention of bank employees. Furthermore, affective commitment directly and fully mediated the relationship between psychological climate and intention to quit. The results also revealed that interpersonal relation officers (IRO showed higher tendency to quit their jobs than tellers. The researchers therefore suggested the need for bank management to modify or re-design the aspect of the job taxing their employees and invest and create positive climate that would improve their employees’ well-being.

  12. Comparison and development of advanced dosimetric techniques to be used under extreme climatic conditions

    International Nuclear Information System (INIS)

    Madhvanath, U.

    1975-08-01

    The post-irradiation fading characteristics of various dosimeters in function of relative humidity of air during storage were tested in specially set up humidity boxes. The temperature and relative humidity were varied between 5deg-35degC and 40-90%, respectively. Fading was 70% and 80% at 2 and 6 days respectively, for Kodak Type 2 film under 28degC and 76% relative humidity. Under these conditions the corresponding values for NTA emulsions were 30% and 80% respectively. Agfa-Gevaert films proved to be less sensitive and gave 20% and 30%, respectively, for the mentioned intervals. When Kodak Type 2 film was sealed in polythene bags, fading was reduced considerably, to appr. 15% in 4 weeks. Alternate storage of exposed films in humid and dry conditions also reduced fading to the same extent. When NTA emulsions were double-sealed with desiccant inside fading was reduced to 10% in 15 days. CaSO 4 :Dy (DRP and Harshaw) showed only 7% fading in 3 months. LiF TLD-100 was more sensitive, 13% in 2 months. Gamma-irradiated Li-borate has faded up to 30% at extreme climatic conditions in 3 months but thermal neutron irradiated Li-borate was resistant against fading for this period

  13. Climate economics in progress 2011; Climate economics in progress 2011

    Energy Technology Data Exchange (ETDEWEB)

    De Perthuis, Christian [Paris-Dauphine University (France); Jouvet, Pierre-Andre [Paris-Ouest University (France); Trotignon, Raphael; Simonet, Gabriela; Boutueil, Virginie [Climate Economics Chair, Paris-Dauphine University (France)

    2011-10-01

    Climate Economics in Progress offers a global overview of the present status of action on climate change. Drawing on the most recent data, it analyzes the development of carbon markets in Europe and other parts of the world. It also examines the conditions for including major players such as China and new sectors such as agriculture, forestry and transport in the fight against global warming. The book is essential reading for anyone wishing to understand current advances in climate control, which could pave the way for a new form of economic growth. The book brings together a group of researchers whose goal is to make the link between academic research on the economics of climate change and the implementation of operational tools, thereby allowing the climate issue to be integrated into the functioning of the real economy

  14. Cost-Effectiveness of Percutaneous Closure of the Left Atrial Appendage in Atrial Fibrillation Based on Results from PROTECT AF vs. PREVAIL

    Science.gov (United States)

    Freeman, James V.; Hutton, David W.; Barnes, Geoffrey D.; Zhu, Ruo P.; Owens, Douglas K.; Garber, Alan M.; Go, Alan S.; Hlatky, Mark A.; Heidenreich, Paul A.; Wang, Paul J.; Al-Ahmad, Amin; Turakhia, Mintu P.

    2016-01-01

    Background Randomized trials of left atrial appendage (LAA) closure with the Watchman device have shown varying results, and its cost-effectiveness compared to anticoagulation has not been evaluated using all available contemporary trial data. Methods and Results We used a Markov decision model to estimate lifetime quality-adjusted survival, costs, and cost-effectiveness of LAA closure with Watchman, compared directly with warfarin and indirectly with dabigatran, using data from the long-term (mean 3.8 year) follow-up of PROTECT AF and PREVAIL randomized trials. Using data from PROTECT AF, the incremental cost-effectiveness ratios (ICER) compared to warfarin and dabigatran were $20,486 and $23,422 per quality adjusted life year (QALY), respectively. Using data from PREVAIL, LAA closure was dominated by warfarin and dabigatran, meaning that it was less effective (8.44, 8.54, and 8.59 QALYs, respectively) and more costly. At a willingness-to-pay-threshold of $50,000 per QALY, LAA closure was cost-effective 90% and 9% of the time under PROTECT AF and PREVAIL assumptions, respectively. These results were sensitive to the rates of ischemic stroke and intracranial hemorrhage for LAA closure and medical anticoagulation. Conclusions Using data from the PROTECT AF trial, LAA closure with the Watchman device was cost-effective; using PREVAIL trial data, Watchman was more costly and less effective than warfarin and dabigatran. PROTECT AF enrolled more patients and has substantially longer follow-up time, allowing greater statistical certainty with the cost-effectiveness results. However, longer term trial results and post-marketing surveillance of major adverse events will be vital to determining the value of the Watchman in clinical practice. PMID:27307517

  15. Impact of Climate Change on Natural Snow Reliability, Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Osman Cenk Demiroglu

    2016-04-01

    Full Text Available Many ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971–2000 and 2021–2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year’s week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.

  16. Response and adaptation of grapevine cultivars to hydrological conditions forced by a changing climate in a complex landscape

    Science.gov (United States)

    De Lorenzi, Francesca; Bonfante, Antonello; Alfieri, Silvia Maria; Monaco, Eugenia; De Mascellis, Roberto; Manna, Piero; Menenti, Massimo

    2014-05-01

    requirements were determined. To assess cultivars adaptability, hydrological requirements were evaluated against hydrological indicators. A probabilistic assessment of adaptability was performed, and the inaccuracy of estimated hydrological requirements was accounted for by the error of estimate and its distribution. Maps of cultivars potential distribution, i.e. locations where each cultivar is expected to be compatible with climate, were derived and possible options for adaptation to climate change were defined. The 2021 - 2050 climate scenario was characterized by higher temperatures throughout the year and by a significant decrease in precipitation during spring and autumn. The results have shown the relevant variability of soils water regime and its effects on cultivars adaptability. In the future climate scenario, a hydrological indicator (i.e. relative evapotranspiration deficit - RETD), averaged over the growing season, showed an average increase of 5-8 %, and more pronounced increases occurred in the phenological phases of berry formation and ripening. At the locations where soil hydrological conditions were favourable (like the ancient terraces), hydrological indicators were quite similar in both climate scenarios and the adaptability of the cultivars was high both in the reference and future climate case. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, Vitis vinifera L., simulation model, yield response functions, potential cultivation area.

  17. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    Science.gov (United States)

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  18. Effects of lateral boundary condition resolution and update frequency on regional climate model predictions

    Science.gov (United States)

    Pankatz, Klaus; Kerkweg, Astrid

    2015-04-01

    The work presented is part of the joint project "DecReg" ("Regional decadal predictability") which is in turn part of the project "MiKlip" ("Decadal predictions"), an effort funded by the German Federal Ministry of Education and Research to improve decadal predictions on a global and regional scale. In MiKlip, one big question is if regional climate modeling shows "added value", i.e. to evaluate, if regional climate models (RCM) produce better results than the driving models. However, the scope of this study is to look more closely at the setup specific details of regional climate modeling. As regional models only simulate a small domain, they have to inherit information about the state of the atmosphere at their lateral boundaries from external data sets. There are many unresolved questions concerning the setup of lateral boundary conditions (LBC). External data sets come from global models or from global reanalysis data-sets. A temporal resolution of six hours is common for this kind of data. This is mainly due to the fact, that storage space is a limiting factor, especially for climate simulations. However, theoretically, the coupling frequency could be as high as the time step of the driving model. Meanwhile, it is unclear if a more frequent update of the LBCs has a significant effect on the climate in the domain of the RCM. The first study examines how the RCM reacts to a higher update frequency. The study is based on a 30 year time slice experiment for three update frequencies of the LBC, namely six hours, one hour and six minutes. The evaluation of means, standard deviations and statistics of the climate in the regional domain shows only small deviations, some statistically significant though, of 2m temperature, sea level pressure and precipitation. The second part of the first study assesses parameters linked to cyclone activity, which is affected by the LBC update frequency. Differences in track density and strength are found when comparing the simulations

  19. Climate considerations

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    The purpose of this paper is to investigate the conditions under which rainfall and snowmelt result in infiltration, percolation, and leachate formation, and to develop guidelines for incorporating these processes into the mine waste disposal regulations. This is important because in mine waste, and under certain circumstances, these processes can result in conditions which pose a threat to surface and ground water quality. This paper provides a general overview of infiltration, percolation, and leachate formation. It incorporates a discussion of the methods that can be used to quantify infiltration and the climatic and physical site and waste conditions under which percolation and leachate formation occur. Reference is made to case histories on infiltration, ground water recharge, and analytical procedures for calculating infiltration. An approach to infiltration prediction is outlined, and the paper concludes with a discussion on how climatic factors and prediction of infiltration could be incorporated into the regulations

  20. El suicidio: Una conducta antisocial que prevalece/Suicide: An antisocial behavior that prevails

    Directory of Open Access Journals (Sweden)

    Omar Alejandro De León Palomo

    2012-01-01

    Full Text Available The suicide has existed throughout history and has prevailed as a behavior that was contrary to the rules of the society in terms of preservation of life itself; the objective of this research was to make emphasis on the nature of antisocial behavior of this behavior and show its prevalence in the years 2006 to 2010 in Mexico and Tamaulipas, as well as from 1999 to 2008 in Reynosa, Tamaulipas. For which the data were obtained from the National Institute of Statistics and Geography to the country and the State and the books of the register of deaths by cause violent of the Regional Unit of Expert Services of the Attorney General of Justice, which has its headquarters in Reynosa; developed a theoretical framework on the impact of the conduct in society and the means to prevent it, The data obtained we revealed the continued presence of this conduct year-on-year, 23.554 cases appearing in Mexico and 819 in Tamaulipas in the period from 2006 to 2010; in Reynosa, Tamaulipas were presented 278 suicides in the period 1999 to 2008. The results show us a conduct stable in numbers, but without excessive overflows that prevails year-on-year, suicide, and the attempt of the same should be viewed as a social problem and not detract from the importance that it deserves a conduct of these dimensions, that is no more than a reflection of the situation in which are the means of social control toward the preservation of life itself.