WorldWideScience

Sample records for pretreat industrial effluents

  1. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    Science.gov (United States)

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment

    Directory of Open Access Journals (Sweden)

    Ivanildo Hespanhol

    2012-12-01

    Full Text Available The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 oxidation process, when compared with the direct effluent oxidation. Reaction time for obtaining a TOC removal higher than 90% was reduced to approximately half of the time needed when no pretreatment was applied. Considering both pretreatment processes it was not possible to notice any significant difference on the UV/H2O2 oxidation process performance. However, the complexity of physicochemical process due to the use of three different chemicals and sludge production made the HF-UF process the best pretreatment alternative, without increasing the Total Dissolved Solids of the effluent, a very important issue when water reuse is considered.

  3. Treatment of some Textile Industrial Effluents using Dry Corn Stalk ...

    African Journals Online (AJOL)

    Corn stalk ground to various mesh sizes was used to treat textile effluents obtained from three different industries. These effluents were first pretreated with alum and then charcoal; passing the water through a column, (20cm long and 5cm diameter) containing the ground corn stalk of size diameters of 300mm, 355mm ...

  4. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  5. Industrial effluent quality, pollution monitoring and environmental management.

    Science.gov (United States)

    Ahmad, Maqbool; Bajahlan, Ahmad S; Hammad, Waleed S

    2008-12-01

    Royal Commission Environmental Control Department (RC-ECD) at Yanbu industrial city in Kingdom of Saudi Arabia has established a well-defined monitoring program to control the pollution from industrial effluents. The quality of effluent from each facility is monitored round the clock. Different strategic measures have been taken by the RC-ECD to implement the zero discharge policy of RC. Industries are required to pre-treat the effluent to conform pretreatment standards before discharging to central biological treatment plant. Industries are not allowed to discharge any treated or untreated effluent in open channels. After treatment, reclaimed water must have to comply with direct discharge standards before discharge to the sea. Data of industrial wastewater collected from five major industries and central industrial wastewater treatment plant (IWTP) is summarized in this report. During 5-year period, 3,705 samples were collected and analyzed for 43,436 parameters. There were 1,377 violations from pretreatment standards from all the industries. Overall violation percentage was 3.17%. Maximum violations were recorded from one of the petrochemical plants. The results show no significant pollution due to heavy metals. Almost all heavy metals were within RC pretreatment standards. High COD and TOC indicates that major pollution was due to hydrocarbons. Typical compounds identified by GC-MS were branched alkanes, branched alkenes, aliphatic ketones, substituted thiophenes, substituted phenols, aromatics and aromatic alcohols. Quality of treated water was also in compliance with RC direct discharge standards. In order to achieve the zero discharge goal, further studies and measures are in progress.

  6. Methanization of industrial liquid effluents; Methanisation des effluents industriels liquides

    Energy Technology Data Exchange (ETDEWEB)

    Frederic, S.; Lugardon, A. [Societe Naskeo Environnement, 92 - Levallois-Perret (France)

    2007-09-15

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  7. Short communication: Industrial effluent treatments using heavy ...

    African Journals Online (AJOL)

    Bioflocculants produced by Herbaspirillium sp. CH7, Paenibacillus sp. CH11, Bacillus sp. CH15 and a Halomonas sp. were preliminarily evaluated as flocculating agents in the treatment of industrial wastewater effluents. Industrial (1 local chemical-industry and 2 textile-industry: Biavin 109-medium blue dye and Whale dye) ...

  8. Cytogenotoxicity evaluation of two industrial effluents using Allium ...

    African Journals Online (AJOL)

    ISHIOMA

    textile effluent was 4.5 times more toxic than the paint effluent. ... Key words: Genotoxicity, paint, textile, industrial effluents, Allium cepa, mutation, pollution, chromosomal .... concentration of a chemical producing 50% of the total effect).

  9. Cyanobacterial flora from polluted industrial effluents.

    Science.gov (United States)

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  10. Agricultural utilization of industrial thermal effluents

    International Nuclear Information System (INIS)

    Guillermin, P.; Delmas, J.; Grauby, A.

    1976-01-01

    An assessment is made of the utilization of thermal effluent for agricultural purpose (viz. early vegetables, cereals, trees). Heated waters are being used in field experiments on soil heating, improvement of agricultural procedures and crop yields. Thermal pollution cannot be removed yet it is reduced to acceptable limits. New prospects are open to traditional agriculture, leading towards a more competitive industrial model [fr

  11. Introduction to Effluent Treatment and Industrial Methods

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 11. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni Mugdha Deshpande A B Pandit. General Article Volume 5 Issue 11 November 2000 pp 56-68 ...

  12. Chromium removal from tanning industries effluents

    International Nuclear Information System (INIS)

    Chaudry, M.A.; Ahmad, S.

    1997-01-01

    Air and water are the basic needs of human being and other living entities on the earth. Tanning industry uses water and some chemicals and so creates environmental problems, depending basically on two principal sources, hide and water. The processes of tanning are based on chromium sulphate and vegetable treatment of hide. According to the national environmental quality standards (NEQS) the effluent or disposed water should contain phenol less than 0.5 ppm, Cr, sulphates, chloride and other salts content. About 30-40 liters of water are used to process one Kg of raw hide into finished goods. Total installed capacity of hides and skins chrome tanning is 53.5 million square meter, earning a large amount of foreign exchange for our country. In the present work, seven tanning industries effluents from the suburbs of Multan city have been collected and analysed. The pH of the liquors have been found to vary from 2.72 to 4.4 and the constituent Cr have been found to be from zero to 8000 ppm from vegetable to chrome tanning industrial effluents studied. The stages involved in tanning and treatment of the effluent water waste including chemical treatment of Cr has been described with a special reference to supported liquid membranes process for removal of chromium ions. (author)

  13. Recycling liquid effluents in a ceramic industry

    International Nuclear Information System (INIS)

    Araujo Almeida, B.; Almeida, M.; Martins, S.; Alexandra Macarico, V.; Tomas da Fonseca, A.

    2016-01-01

    In this work is presented a study on the recycling of liquid effluents in a ceramic installation for sanitary industry. The effluents were characterized by X-ray diffraction and inductively coupled plasma to evaluate their compositions. It was also assessed the daily production rate. Several glaze-slurry mixtures were prepared and characterized according to procedures and equipment of the company's quality laboratory. The results show that for most of the properties, the tested mixtures exhibited acceptable performance. However, the pyro plasticity parameter is highly influenced by the glaze content and imposes the separation of glaze and slurry liquid effluents. In addition, it is necessary to invest on a storage plant, including tanks with constant stirring and a new pipeline structure to implement the reincorporation method on the slurry processing. (Author)

  14. The Effect of Pretreatments on Surfactin Production From Potato Process Effluent by Bacillus Subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    2000-05-01

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  15. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  16. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  17. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  18. Ion exchange for treatment of industrial effluents

    International Nuclear Information System (INIS)

    Moreno Daudinot, Aurora Maria; Ge Leyva, Midalis

    2016-01-01

    The acid leaching and ammoniacal carbonate technologies of laterite respectively, are responsible for the low quality of life of the local population, the big deforested areas due to the mining tilling, the elevated contents of solids in the air and waters, as well as the chemical contamination by metals presence, the acidity or basicity of the effluents of both industries, that arrive through the river and the bay to aquifer's mantle. The ion exchange resins allow ions separation contained in low concentrations in the solutions, where the separation of these elements for solvents, extraction or another chemical methods would be costly. Technological variants are proposed in order to reduce the impact produced on the flora and the fauna, by the liquid effluents of nickel industry, by means of ion exchange resins introduction as well as the recuperation of metals and their re incorporation to the productive process. (Author)

  19. Evaluation of some industrial effluents in Jos metropolis, Plateau ...

    African Journals Online (AJOL)

    Sometimes effluents gain access into wells or streams within the community. Analyses aimed to determine the strength of effluents of three different industries in Jos metropolis: industry A (a food industry), industry B (a pharmaceutical outfit) and Industry C (a water treatment plant) using parameters such as physicochemical, ...

  20. Physiochemical Treatment of Textile Industry Effluents

    International Nuclear Information System (INIS)

    Latif, M. I.; Qazi, M. A.; Khan, H.; Ahmad, N.

    2015-01-01

    The study mainly focuses on the application of chemical Coagulants (Lime, Alum and Ferrous Sulfate) and Advanced Oxidation Processes (AOPs) (Ozone Treatment and Fenton Process, alone and in combination) to treat textile industry effluents, optimization of coagulation process for various Coagulants in terms of process conditions, including coagulant dose, pH and settling time. The results revealed that Alum was most effective. The efficiency of coagulation process was dose dependent and 400 mg/L dose of Alum alone showed maximum color removal of 47%, 57% and 54% of yellow, red and blue dyes, respectively in addition to the COD removal of 44%. The combined applications of Alum and Lime (300:75 mg/L) and Lime and Alum (300:75 mg/L) showed slightly better COD removal of 51%. However, color removal efficiency of all coagulants was at par. The Ozonation process appeared the most promising for the treatment of waste water and color/COD removal, the efficiency of which increased with increasing the treatment time at constant Ozone dose. For less polluted effluents, 97% color removal was obtained after 1 minute and after 15 minutes for highly polluted effluents; The COD removal efficiency of the process for less polluted effluents was around 89% after 5 minutes Ozonation and for highly polluted effluents 88% COD removal after 40 minutes. The performance of Fenton process was extremely low as compared to Ozonation process. Increase in pH, significantly decreased the color removal efficiency of the process. COD removal efficiency of Fenton process increased with an increase in settling time. (author)

  1. Sulphate removal from industrial effluents through barium sulphate precipitation

    CSIR Research Space (South Africa)

    Swanepoel, H

    2011-11-01

    Full Text Available The pollution of South Africa’s water resources puts a strain on an already stressed natural resource. One of the main pollution sources is industrial effluents such as acid mine drainage (AMD) and other mining effluents. These effluents usually...

  2. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  3. Effect of industrial effluents on the growth and anatomical structures ...

    African Journals Online (AJOL)

    The authors investigated the impact of industrial effluents from 5 different industrial concerns in Lagos, Nigeria on Okra (Abelmoschus esculentus). During the study, it was observed that these effluents induced detrimental effects on the flowering, fruiting, stem length, leaf width and leaf length of okra. Other parameters ...

  4. Effect of pre-treatment of Palm oil Mill effluent (POME) and Cassava ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: Pretreatment measures in effluents' management comprised of phase separation involving sedimentation, aeration to enhance biodegradation and pH neutralization. A randomized complete block design experiment in factorial arrangement was set up to assess effects of aeration, settling and pH neutralization ...

  5. Potential for reuse of effluent from fish-processing industries

    Directory of Open Access Journals (Sweden)

    Luana Morena Rodrigues Vitor Dias Ferraciolli

    2017-09-01

    Full Text Available The most common problems in the fish processing industry relate to high water consumption and the generation of effluents with concentrated organic loads. Given that reuse can represent an alternative for sustainable development, this study sought to assess the potential for recycling effluents produced in a fish-processing plant. In order to do so, the final industrial effluent was analyzed using the American Public Health Association (APHA standard effluent-analysis method (2005. In addition, the study assessed treatments which produce effluents meeting the requirements prescribed by different countries' regulations for reuse and recycling. The results found that effluents with smaller organic loads, such as those from health barriers and monoblock washing, can be treated in order to remove nutrients and solids so that they can be subsequently reused. For effluents produced by the washing and gutting cylinders, it is recommended that large fragments of solid waste be removed beforehand. Effluents can in this way attain a quality compatible with industrial reuse. This study further highlights the possibility of treating effluents so as comply with drinking water standards. This would potentially allow them to be used within the actual fish-processing procedure; in such a case, a revision of standards and measures for controlling use should be considered to prevent microbiological damage to products and risks to handlers and final consumers.

  6. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  7. Treatment of effluents in uranium industry

    International Nuclear Information System (INIS)

    Ghosh, S.K.

    2009-01-01

    Uranium processing technology in India has matured in the last 50 years and is able to meet the country's requirement. Right from mining of the ore to milling and refining, effluents are generated and are being processed for their safe disposal. While the available technology is able to meet the regulatory limits of the effluents, the same may not be enough to meet the increased demand of uranium in the future. The increased population, urbanization and climate change are not only going to decrease the supply of process water but will also place increased restrictions on disposal to environment. This demands technologies that will generate less effluent for disposal and enable reuse and recycle concept to the extent possible. Presently used conventional physical-chemical methods, to contain the contaminants would, therefore, require further refinements. Contaminants like sulfates, chlorides etc in the effluent of uranium mill based on acid leach process are the concerns for the future plants. Hence, there is an urgent need for development of suitable methods for maximum recycle of the process effluents, which will also enable in minimizing the consumption of process water. A suitable membrane based process can be an option leaving a concentrated brine for reuse or for further treatment and disposal

  8. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    Science.gov (United States)

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.

  9. A Novel Methylotrophic Bacterial Consortium for Treatment of Industrial Effluents.

    Science.gov (United States)

    Hingurao, Krushi; Nerurkar, Anuradha

    2018-01-01

    Considering the importance of methylotrophs in industrial wastewater treatment, focus of the present study was on utilization of a methylotrophic bacterial consortium as a microbial seed for biotreatment of a variety of industrial effluents. For this purpose, a mixed bacterial methylotrophic AC (Ankleshwar CETP) consortium comprising of Bordetella petrii AC1, Bacillus licheniformis AC4, Salmonella subterranea AC5, and Pseudomonas stutzeri AC8 was used. The AC consortium showed efficient biotreatment of four industrial effluents procured from fertilizer, chemical and pesticide industries, and common effluent treatment plant by lowering their chemical oxygen demand (COD) of 950-2000 mg/l to below detection limit in 60-96 h in 6-l batch reactor and 9-15 days in 6-l continuous reactor. The operating variables of wastewater treatment, viz. COD, BOD, pH, MLSS, MLVSS, SVI, and F/M ratio of these effluents, were also maintained in the permissible range in both batch and continuous reactors. Therefore, formation of the AC consortium has led to the development of an efficient microbial seed capable of treating a variety of industrial effluents containing pollutants generated from their respective industries.

  10. Benthos of Cochin backwaters receiving industrial effluents

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Venugopal, P.

    into the river. This stretch with a station 2 km further upstream forms the area of study. Faunal groups/species are rich at barmouth (st 1), gradually decline upstream and record lowest density at the effluent discharge point (st 8). Five major and 26 other...

  11. Microbial degradation of textile industrial effluents | Palamthodi ...

    African Journals Online (AJOL)

    Textile waste water is a highly variable mixture of many polluting substance ranging from inorganic compounds and elements to polymers and organic products. To ensure the safety of effluents, proper technologies need to be used for the complete degradation of dyes. Traditionally, treatments of textile waste water involve ...

  12. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    Science.gov (United States)

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    Directory of Open Access Journals (Sweden)

    M. Šabić

    2015-05-01

    Full Text Available In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmented activated sludge with isolated mixed bacterial culture. The experiments were conducted in a batch reactor in submerged conditions, at initial concentration of organic matter in pharmaceutical wastewater, expressed as COD, 5.01 g dm–3 and different initial concentrations of activated sludge, which ranged from 1.16 to 3.54 g dm–3. During the experiments, the COD, pH, concentrations of dissolved oxygen and biomass were monitored. Microscopic analyses were performed to monitor the quality of activated sludge. Before starting with the bioremediation in the batch reactor, toxicity of the pharmaceutical wastewater was determined by toxicity test using bacteria Vibrio fischeri. The obtained results showed that the effective concentration of the pharmaceutical wastewater was EC50 = 17 % and toxicity impact index was TII50 = 5.9, meaning that the untreated pharmaceutical industrial effluent must not be discharged into the environment before treatment. The results of the pharmaceutical wastewater bioremediation process in the batch reactor are presented in Table 1. The ratio γXv ⁄ γX maintained high values throughout all experiments and ranged from 0.90 and 0.95, suggesting that the concentrations of biomass remained unchanged during the experiments. The important kinetic parameters required for performance of the biological removal process, namely μmax, Ks, Ki, Y and kd were calculated from batch experiments (Table 2. Figs. 1 and 2 show the experimental

  14. Treatment of textile dyehouse effluent using ceramic membrane based process in combination with chemical pretreatment.

    Science.gov (United States)

    Bhattacharya, Priyankari; Ghosh, Sourja; Majumdar, Swachchha; Bandyopadhyay, Sibdas

    2013-10-01

    Treatment of highly concentrated dyebath effluent and comparatively dilute composite effluent having mixture of various reactive dyes collected from a cotton fabric dyeing unit was undertaken in the present study. Ceramic microfiltration membrane prepared from a cost effective composition of alumina and clay was used. Prior to microfiltration, a chemical pretreatment was carried out with aluminium sulphate in combination with a polymeric retention aid. An optimum dose of 100 mg/L of aluminium sulphate and 1 ml/L of a commercial flocculant Afilan RAMF was found effective for dye removal (> 98%) from the synthetic solutions of reactive dyes with initial concentration of 150 mg/L in both the single component and two component systems. In the microfiltration study, effect of operating pressure in the permeate flux was observed for both the pretreated and untreated effluents and permeate samples were analyzed for dye concentration, COD, turbidity, TSS, etc. during constant pressure filtration. About 98-99% removal of dyes was obtained in the combined process with COD reduction of 54-64%.

  15. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  16. Bentonite chemical modification for use in industrial effluents

    International Nuclear Information System (INIS)

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F.

    2010-01-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  17. Effect of Industrial Effluent on the Growth of Marine Diatom ...

    African Journals Online (AJOL)

    The marine centric diatom,Chaetoceros simplex (Ostenfeld, 1901) was exposed to five different concentrations of industrial effluent for 96 hrs to investigate the effect on growth. The physico-chemical parameters viz. colour, odour, temperature, salinity, dissolved oxygen, turbidity, pH, alkalinity, hardness, ammonia, nitrite, ...

  18. Effects of industrial effluents and fertilizer applications on the growth ...

    African Journals Online (AJOL)

    A field experiment was conducted in south-western Nigeria to determine the effects of different fertilizer applications on the growth performance of sunflower when cultivated in an Alfisols contaminated with effluents from a paints industry. This was with a view to assessing the yield and nutrient quality of harvested sunflower ...

  19. Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent

    Directory of Open Access Journals (Sweden)

    Milton M. Arimi

    2017-04-01

    Full Text Available Industrial effluents with high recalcitrants should undergo post-treatment after biological treatment. The aim of this study was to use cheap and abundantly available natural materials to develop heterogeneous Fenton catalysts for the removal of colored recalcitrants in molasses distillery wastewater (MDW. The pellets of zeolite, which is naturally available in many countries, were modified by pre-treatment with sulphuric acid, nitric acid and hydrochloric acid, before embedding on them the ferrous ions. The effects of pH and temperature on heterogeneous Fenton were studied using the modified catalysts. The sulphuric acid-ferrous modified catalysts showed the highest affectivity which achieved 90% color and 60% TOC (total organic carbon removal at 150 g/L pellet catalyst dosage, 2 g/L H2O2 and 25 °C. The heterogeneous Fenton with the same catalyst caused improvement in the biodegradability of anaerobic effluent from 0.07 to 0.55. The catalyst was also applied to pre-treat the raw MDW and increased it's biodegradability by 4%. The color of the resultant anaerobic effluent was also reduced. The kinetics of total TOC removal was found to depend on operation temperature. It was best described by simultaneous first and second order kinetics model for the initial reaction and second order model for the rest of the reaction.

  20. Improved biohydrogen production and treatment of pulp and paper mill effluent through ultrasonication pretreatment of wastewater

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2015-01-01

    Highlights: • Ultrasonication facilitated the reuse of PPME in biohydrogen production. • Ultrasonication at an amplitude of 60% for 45 min produced the highest biohydrogen. • Ultrasonication increased the solubilization of PPME. • Higher net savings were obtained in pretreated PPME compared to raw PPME. - Abstract: Pulp and paper mill effluent (PPME), a rich cellulosic material, was found to have great potential for biohydrogen production through a photofermentation process. However, pretreatments were needed for degrading the complex structure of PPME before biohydrogen production. The aim of this study was to gain further insight into the effect of an ultrasonication process on PPME as a pretreatment method and on photofermentative biohydrogen production using Rhodobacter sphaeroides NCIMB. The ultrasonication amplitudes and times were varied between 30–90% and 15–60 min, respectively, and no dilution or nutrient supplementation was introduced during the biohydrogen production process. A higher biohydrogen yield, rate, light efficiency and COD removal efficiency were attained in conditions using ultrasonicated PPME. Among these different pretreatment conditions, PPME with ultrasonication pretreatment employing an amplitude of 60% and time of 45 min (A60:T45) gave the highest yield and rate of 5.77 mL H_2/mL medium and 0.077 mL H_2/mL h, respectively, while the raw PPME without ultrasonication showed a significantly lower yield and rate of 1.10 mL H_2/mL medium and 0.015 mL H_2/mL h, respectively. The results of this study demonstrated the potential of using ultrasonication as a pretreatment for PPME because the yield and rate of biohydrogen production were highly enhanced compared to the raw PPME. Economic analysis was also performed in this study, and in comparison with raw PPME, the highest net saving was $0.2132 for A60:T45.

  1. Arsenic removal from industrial effluent through electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, N. [Central Electrochemical Research Inst., Karaikudi (India). Dept. of Pollution Control; Madhavan, K. [Coimbatore Inst. of Technology, Coimbatore (India). Dept. of Chemistry

    2001-05-01

    In the present investigation, it is attempted to remove arsenic from smelter industrial wastewater through electro-coagulation. Experiments covering a wide range of operating conditions for removal of the arsenic present in the smelter wastewater are carried out in a batch electrochemical reactor. It has been observed from the present work that arsenic can be removed effectively through electrocoagulation. (orig.)

  2. TOXICITY OF INDUSTRIAL EFFLUENT ON TOTAL CHLOROPHYLL CONTENT OF CERTAIN AQUATIC MACROPHYTES

    OpenAIRE

    Singh Priti; Vishen Ashish; Wadhwani R; Pandey Y.N

    2012-01-01

    To assess the toxicity of industrial effluents on certain macrophytes, the total chlorophyll content of free floating, submerged and emergent macrophytes were estimated in concentrations of industrial effluents at varying exposure duration. The result revealed reduction in total chlorophyll content of exposed macrophytes at higher concentrations of industrial effluents on prolonged duration.

  3. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    Science.gov (United States)

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  4. Deep Eutectic Solvents pretreatment of agro-industrial food waste.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2018-01-01

    Waste biomass from agro-food industries are a reliable and readily exploitable resource. From the circular economy point of view, direct residues from these industries exploited for production of fuel/chemicals is a winning issue, because it reduces the environmental/cost impact and improves the eco-sustainability of productions. The present paper reports recent results of deep eutectic solvent (DES) pretreatment on a selected group of the agro-industrial food wastes (AFWs) produced in Europe. In particular, apple residues, potato peels, coffee silverskin, and brewer's spent grains were pretreated with two DESs, (choline chloride-glycerol and choline chloride-ethylene glycol) for fermentable sugar production. Pretreated biomass was enzymatic digested by commercial enzymes to produce fermentable sugars. Operating conditions of the DES pretreatment were changed in wide intervals. The solid to solvent ratio ranged between 1:8 and 1:32, and the temperature between 60 and 150 °C. The DES reaction time was set at 3 h. Optimal operating conditions were: 3 h pretreatment with choline chloride-glycerol at 1:16 biomass to solvent ratio and 115 °C. Moreover, to assess the expected European amount of fermentable sugars from the investigated AFWs, a market analysis was carried out. The overall sugar production was about 217 kt yr -1 , whose main fraction was from the hydrolysis of BSGs pretreated with choline chloride-glycerol DES at the optimal conditions. The reported results boost deep investigation on lignocellulosic biomass using DES. This investigated new class of solvents is easy to prepare, biodegradable and cheaper than ionic liquid. Moreover, they reported good results in terms of sugars' release at mild operating conditions (time, temperature and pressure).

  5. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  6. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  7. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  8. Physicochemical assessment of industrial textile effluents of Punjab (India)

    Science.gov (United States)

    Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder

    2018-06-01

    Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.

  9. Mapping of industrial effluent on coastal sediments using EDX

    CSIR Research Space (South Africa)

    Gregory, MA

    2003-01-01

    Full Text Available isotopes [14], magnetic and rare-earth markers such as Ta and Co [15] and bacterial tracers [16]. Passive tracers are materials/substances already present in the effluent as they leave the factory or treatment works. In the case of ?sludges? from sewage... for industrial waste [1,2]. To date, while EDX has been used to determine the speciation of marine suspended particles [21], monitor the translocation and mixing of fill sands [22] and describe the source and intermixing of sea-floor sediments [23...

  10. Industrial water and effluent management in the milk processing industry

    CSIR Research Space (South Africa)

    Funke, JW

    1970-01-01

    Full Text Available One of the most important commodities used in any food-processing industry is water which must be of the right quality. Water which comes into direct contact with milk or milk products must meet standards which are even stricter than those for a...

  11. Impact of Industrial Effluents on Water Quality of Streams in Nakawa ...

    African Journals Online (AJOL)

    Impact of Industrial Effluents on Water Quality of Streams in Nakawa-Ntinda, Uganda. ... Journal of Applied Sciences and Environmental Management ... physicochemical parameters of streams that receive effluents from different categories of industries in Nakawa -Ntinda industrial area of Kampala. the stream water quality ...

  12. Determination of amino acids in industrial effluents contaminated soil

    International Nuclear Information System (INIS)

    Mahar, M.T.; Khuhawar, M.Y.

    2014-01-01

    38 samples of soil for 19 locations partially irrigated on the effluents of sugar mill and oil andghee mill, bottom sediments of evaporation ponds of sugar and fertilizer industries were collected and analyzed for amino acids after acid digestion by gas chromatography using pre column derivatization with trifluroacetyleacetone and ethyl chloroformate. The results obtained were compared with the soil samples irrigated with fresh water. The soil samples were also analyzed for pH, total nitrogen contents and organic carbon. Nine essential (leucine (Leu), threonine (Thr), lysine (Lys), L-phenylalanine (Phe), tryptophan (Trp), histadine (His), L-valine (Val), methionine (Met) and isoleucine Ile) and ten non-essential ( alanine (Ala), cysteine (Cys), asparagine (Asn), glutamic acid (Glu), serine (Ser), glycine (Gly), proline (Pro), Glutamine (Gln), aspartic acid (Asp), tyrosine (Tyr)) amino acids were analyzed 13-15 amino acids were identified and determined quantitatively from soil samples. Amino acids Met, Asn, Gln and Trp were observed absent from all the samples. The variation in the amino acids contents in soil with the industrial effluents added and total nitrogen and organic carbon is discussed. (author)

  13. Bioprospecting of lipolytic microorganisms obtained from industrial effluents

    Directory of Open Access Journals (Sweden)

    GREICE H.S. PEIL

    2016-01-01

    Full Text Available ABSTRACT The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r. Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  14. Bioprospecting of lipolytic microorganisms obtained from industrial effluents.

    Science.gov (United States)

    Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S

    2016-01-01

    The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  15. Physio-Chemical Analysis of Industrial Effluents in parts of Edo ...

    African Journals Online (AJOL)

    Physio-Chemical Analysis of Industrial Effluents in parts of Edo States Nigeria. ... Journal of Applied Sciences and Environmental Management ... particularly, surface water results from all activities of man involving indiscriminate waste disposal from industry such as effluents into waterways, waste, agricultural waste, and all ...

  16. Microbial conversion of Cr (VI) in to Cr (III) in industrial effluent ...

    African Journals Online (AJOL)

    These bacterial strains also take up and reduce Cr (VI) present in industrial effluents, and their reduction potential was not significantly affected in the presence of different metallic salts. Key Words: Cr (VI) reduction, bacteria, industrial effluent, heavy metals. African Journal of Biotechnology Vol.3(11) 2004: 610-617 ...

  17. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    Science.gov (United States)

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  18. The influence of agro-industrial effluents on River Nile pollution

    Directory of Open Access Journals (Sweden)

    Sayeda M. Ali

    2011-01-01

    Full Text Available The major agro-industrial effluents of sugarcane and starch industries pose a serious threat to surface waters. Their disposal in the River Nile around Cairo city transitionally affected the microbial load. In situ bacterial enrichment (50–180% was reported and gradually diminished downstream; the lateral not vertical effect of the effluent disposal was evident. Disposed effluents increased BOD and COD, and then progressively decreased downstream. Ammoniacal N was elevated, indicating active biological ammonification and in situ biodegradability of the effluents. In vitro, the nitrogen-fixing rhizobacteria Crysomonas luteola, Azospirillum spp., Azomonas spp. and K. pneumoniae successfully grew in batch cultures prepared from the crude effluents. This was supported by adequate growth parameters and organic matter decomposition. Therefore, such biodegradability of the tested agro-industrial effluents strongly recommends their use for microbial biomass necessary for the production of bio-preparates.

  19. Synergistic effect of ultrasonic pre-treatment combined with UV irradiation for secondary effluent disinfection.

    Science.gov (United States)

    Jin, Xin; Li, Zifu; Xie, Lanlan; Zhao, Yuan; Wang, Tingting

    2013-11-01

    The ultraviolet (UV) disinfection efficiency is often affected by suspended solids (SS). Given their high concentration or large particle size, SS can scatter UV light and provide shielding for bacteria. Thus, ultrasound is often employed as a pre-treatment process to improve UV disinfection. This work investigated the synergistic effect of ultrasound combined with UV for secondary effluent disinfection. Bench-scale experiments were conducted in using samples obtained from secondary sedimentation tanks. These tanks belonged to three wastewater treatment plants in Beijing that use different kinds of biological treatment methods. Several parameters may contribute to the changes in the efficiency of ultrasound and UV disinfection. Thus, the frequency and energy density of ultrasound, as well as the SS, were investigated. Results demonstrated that samples which have relatively higher SS concentrations or higher percentages of larger particles have less disinfection efficiency using UV disinfection alone. However, the presence of ultrasound could improve the disinfection efficiency because it has synergistic effect. Changes in the particle size distribution and SS concentration notably affected the efficiency of UV disinfection. The efficiency of Escherichia coli elimination can be decreased by 1.2 log units as the SS concentration increases from 16.9 mg/l to 25.4 mg/l at a UV energy density of 40 mJ/cm(2). UV disinfection alone reduced the E. coli population by 3.4 log units. However, the synergistic disinfection of ultrasound and UV could reach 5.4 log units during the reduction of E. coli at a 40 kHz frequency and an energy density of 2.64 kJ/l. The additional synergistic effect is 1.1 log units. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  1. Assessment of the Impact of Industrial Effluents on Groundwater Quality in Okhla Industrial Area, New Delhi, India

    Directory of Open Access Journals (Sweden)

    Wequar Ahmad Siddiqui

    2009-01-01

    Full Text Available In the present study physicochemical parameters like pH, hardness, TDS, chloride, sulphate, nitrate, fluoride, DO, COD and conductivity of some important heavy metals such as iron, cobalt, cadmium, lead, mercury, chromium, selenium and arsenic were first analyzed in effluent water of Okhla industrial area phase-II and then groundwater of near by areas. Obtained values of effluent water were compared with ISI standard for effluent water discharge and groundwater values were compared with ISI and WHO drinking water standards. The result shows that discharge of untreated effluents by the industries is leading to contamination of groundwater of the surrounding areas. Lead, mercury, fluoride, TDS, sulphate was above the desirable limit in effluent water (ISI standard for effluent water discharge. Subsequent analysis of groundwater of nearby areas was rated as unacceptable for drinking because of presence of fluoride in all the samples above the desirable limit. Lead, mercury, cadmium, chloride was also detected in many samples.

  2. The effect of industrial effluent stream on the groundwater

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.

    2005-01-01

    This study was performed to investigate the effect of the industrial wastewater stream on the groundwater. Wastewater was characterized in terms of inorganic and organic constituents. Inorganic constituents included Na/sup +/, Ca/sup 2+/ K/sup +/, Cl/sup -/, NO/sub 3//sup -/ and SO/sub 4//sup 2-/ coupled with heavy metal elements such as, Cd, Cr, Pb, Mn, Cu, Ni, Fe and In. Organic load of the stream was determined in terms of chemical oxygen demand (COD), biological oxygen demand (BOD/sub 5/) and ammonia-nitrogen (NH/sub 3/-N) contents. Other characteristics were pH, electrical conductivity (EC) and total dissolved solids (TDS). The correlation coefficients between quality parameter pairs of stream water and groundwater were determined to ascertain the source of groundwater contamination. At station 1, BOD/sub 5/ and COD contents were 20 times and Cr concentration was 10 times higher than the permissible limits for stream water [1]. Contents of these parameters reflected the level of industrial and domestic pollution coming from India. However, large variations in the levels of these parameters at down stream sites of the drain were characteristic of type and nature of industrial effluents and domestic sewage joining the stream. Analysis results of more than one hundred groundwater samples from shallow and deep wells around the drain showed that groundwater of shallow aquifers was contaminated due to drain water. A comparison of the contents of these parameters in shallow wells with WHO standards showed that some parameters such as turbidity, TDS, Na/sup +/, F -and heavy metals like Cr were found higher than the permissible limits. (author)

  3. 40 CFR 403.10 - Development and submission of NPDES State pretreatment programs.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND... Industrial User is in compliance with Pretreatment Standards; (iv) Seek civil and criminal penalties, and...

  4. Effluent generation by the dairy industry: preventive attitudes and opportunities

    Directory of Open Access Journals (Sweden)

    V. B. Brião

    2007-12-01

    Full Text Available Work aimed to identify the effluent is generating areas in a dairy company for purpose of changing concept pollution prevention. methodology consisted measuring volumes and collecting samples effluents production sectors. analysis was conducted by sector, order those which generated excessive amounts effluents. results show that dry products (powdered milk powdered whey are greatest generators BOD, nitrogen phosphorus, while fluid form (UHT milk, formulated UHT, pasteurized cream butter produced large quantities oils grease. solids recovery, waste segregation water reuse can be applied with saving potential as much R$ 28,000 ($ 11,200 per month only raw materials also environmental gains in pollution prevention.

  5. Analysis of tannery effluents from the Challawa industrial estate in ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... and some physicochemical parameters such as conductivity, solids, chloride, chromium, alkalinity, sulphide, chemical oxygen demand, COD, and biochemical oxygen demand, BOD, of the waste water were determined. ... Keywords: tannery, effluent, pollution, environment

  6. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  7. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  8. Removal of cadmium, copper, lead and zinc from simulated industrial effluents using silica powder

    International Nuclear Information System (INIS)

    Javed, T.; Awan, A.; Arshad, M.; Khan, S.N.

    2013-01-01

    Rapid industrial development have led to the recognition and increasing understanding of interrelationship between pollution, public health and environment. Industrial development results in the generation of industrial effluents, and if untreated results in water, sediment and soil pollution. In Pakistan most of the industrial effluents are discharged into surrounding ecosystems without any treatment. Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health. Extensive efforts are being made around the world for the removal of heavy metal from industrial effluents. A laboratory scale study was designed for removal of Cd, Cu, Pb and Zn from simulated solutions at various weight of silica (0.5gm, 1gm, 2 gm, 3gm and 4 gm), Voltammeter was used to quantify the metals. Maximum removal of all metals was achieved with 4 gm of silica. Absorption of lead onto silic a was higher than other metals. (author)

  9. Electrocoagulation for the treatment of textile industry effluent--a review.

    Science.gov (United States)

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.

  10. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Svensson, Sven-Erik; Prade, Thomas

    2014-01-01

    In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and etha......In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis...... pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment and subsequent enzymatic hydrolysis and ethanol fermentation....

  11. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is acidic, thus enhancing leaching and corrosive tendencies of the irrigation ... of heavy metals in the soil indicated contamination from the effluent from the .... well (SAR = 11.1), which contained high pH (pH= 6.65) and high Chloride ion (Cl-of.

  12. An Assessment of Physicochemical Parameters of Selected Industrial Effluents in Nepal

    Directory of Open Access Journals (Sweden)

    Abhinay Man Shrestha

    2017-01-01

    Full Text Available It is a well-known fact that the effluents released from the industries and environmental degradation go hand in hand. With the ongoing global industrialization this problem has been further aggravated. As such, Nepal is no exception. Hundreds of industries are being registered in the country annually which inevitably brings the issues regarding environmental pollution. This study has been conducted with samples of wastewater from 5 different industrial sites in 4 districts of Nepal, namely, Makwanpur, Sunsari, Morang, and Kathmandu, among which two were Waste Water Treatment Plants which treated the combined effluents collected from various sources. The other three sites were from wires and cables industry, paint manufacturing industry, and plastic cutting industry. The physicochemical parameters analysed were pH, temperature, conductivity, turbidity, and Cu, Cr, SO42-, and PO43- levels. Possible onsite measurements were recorded using portable, handheld devices whereas other parameters were assessed in the laboratory. The observed parameter levels in the collected samples were compared against the available Nepal national standards for industrial effluents and in the absence of standards for industrial effluents, with other relevant standard levels. Most of the parameters analysed were within the permissible limits with the exception of pH and Cr levels in some sites.

  13. Towards the design of a zero effluent facility in the pharmaceutical industry

    CSIR Research Space (South Africa)

    Gouws, JF

    2007-05-01

    Full Text Available . The pharmaceutical production industry has some unique characteristics that make it possible to reach the goal of zero effluent. In such industries wastewater is generally produced from washing out of mixing vessels. The wastewater thus contains valuable product...

  14. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    International Nuclear Information System (INIS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-01-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L −1 , respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation. - Highlights: ► Livestock effluent showed strong estrogenic activity due to E2, E1 and EE2. ► EE2 remained in all effluents after gamma-irradiation even at a dose of 10 kGy. ► DOMs in effluents inhibited degradation and activity of estrogenic compounds.

  15. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  16. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Integrated process for the removal of emulsified oils from effluents in the steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  18. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    Directory of Open Access Journals (Sweden)

    Vidyadharani Gopalakrishnan

    2014-01-01

    Full Text Available Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM (specific algal medium produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC with oleic acid pure (98% control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae.

  19. Desalination of brackish water and concentration of industrial effluents by electrodialysis

    Directory of Open Access Journals (Sweden)

    J. J. Schoeman

    1983-03-01

    Full Text Available Electrodialysis (ED is, at present, used mainly for the desalination of brackish drinking-water. Brackish water with a high scaling potential can be successfully treated, using the electrodialysis reversal (EDR process without the addition of chemicals. The reliability of the ED process makes it very attractive for water treatment. Although used mainly for brackish water desalination, ED also has certain industrial applications. Plating wash waters, cooling tower recirculation water and glass etching effluents have been treated successfully with ED for water recovery and effluent volume reduction, while ED treatment of nickel plating wash waters is an established industrial process.

  20. Effect of textile industrial effluent on tree plantation and soil chemistry.

    Science.gov (United States)

    Singh, G; Bala, N; Rathod, T R; Singh, B

    2001-01-01

    A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.

  1. Genotoxicity Screening of Industrial Effluents using Onion bulbs ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The potential cytotoxicity and genotoxicity of three industrial wastewaters (brewery .... National recommended water quality criteria – correction; cWorld Health Organisation (1996). ..... Industrial Pollution Policy Management Study.

  2. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  3. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  4. Biological treatment of the liquid effluents of a paper industry

    International Nuclear Information System (INIS)

    Mejia, Juan Felipe; Ramirez, Gladys Eugenia; Arias Zabala, Mario

    2001-01-01

    The objective of this paper is to determine the effect of the microorganisms Candida utilis and Candida tropicalis in the reduction of the chemical oxygen demand (COD) of the liquid effluents of a producing factory of paper kraft type, by means of fermentations made to pH of 5 and a 30 centigrade degrees during 6 days. The biological processing is preceded by a physicochemical process of directed acidulation to reduce pH of the effluent (liquor black) from its initial value, of approximately 13, to 5, in order to it is adapted for the growth of yeast. In this process, which forms precipitated, that is necessary to eliminate by centrifugation and filtration to facilitate the growth of the microorganisms, with is obtained one first removal of the COD of the order of 70 %. With the biological processing obtains for both yeasts a percentage of removal of 45 -50% of the COD surplus. The total removal of the COD, that is to say, obtained with the pre-cure and the fermentation it is of the order of 84% for the yeast. Additionally the possibility studied of implementing some complementary procedures to the biological processing, with a view to obtaining greater growth of yeast in the black liquor and thus obtaining additional reductions in the OCD of the same one

  5. Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review.

    Science.gov (United States)

    Das, Pallabi; Mondal, Gautam C; Singh, Siddharth; Singh, Abhay K; Prasad, Bably; Singh, Krishna K

    2018-05-01

      Iron and steel industry is the principal driving force propelling economic and technological growth of a nation. However, since its inception this industry is associated with widespread environmental pollution and enormous water consumption. Different units of a steel plant discharge effluents loaded with toxic, hazardous pollutants, and unutilized components which necessitates mitigation. In this paper, pollutant removal efficiency, effluent volume product quality, and economic feasibility of existing treatments are studied vis-à-vis their merits, demerits, and innovations to access their shortcomings which can be overcome with new technology to identify future research directions. While conventional methods are inadequate for complete remediation and water reclamation, the potential of advanced treatments, like membrane separation, remains relatively untapped. It is concluded that integrated systems combining membrane separation with chemical treatments can guarantee a high degree of contaminant removal, reusability of effluents concurrently leading to process intensification ensuring ecofriendliness and commercial viability.

  6. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.

    Science.gov (United States)

    Bielen, Ana; Šimatović, Ana; Kosić-Vukšić, Josipa; Senta, Ivan; Ahel, Marijan; Babić, Sanja; Jurina, Tamara; González Plaza, Juan José; Milaković, Milena; Udiković-Kolić, Nikolina

    2017-12-01

    Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Color pollution control in textile dyeing industry effluents using tannery sludge

    Directory of Open Access Journals (Sweden)

    Sajjala Sreedhar Reddy

    2008-12-01

    Full Text Available Effective treatment of dyestuff containing textile dyeing industry effluents require advanced treatment technologies such as adsorption for the removal of dyestuffs. Powdered commercial coal based activated carbon has been the most widely used adsorbent for the removal of dyestuffs from dyeing industry effluents. As an alternative to commercial coal based activated carbon, activated carbon prepared from dried tannery sludge was used as an adsorbent for dyestuff removal from simulated textile dying industry effluent in this study. The color removal performance of tannery sludge derived activated carbon and commercial coal based activated carbon has been investigated using parameters such as adsorbent dosage, initial dye concentration, pH and temperature. It was found that tannery sludge derived activated carbon exhibits dye removal efficiency that is about 80–90 % of that observed with commercial coal based activated carbon. The amount of dye adsorbed on to tannery sludge derived activated carbon is lower compared with commercial activated carbon at equilibrium and dye adsorption capacity increased with increase of initial dye concentration and temperature, and deceasing pH. It was found that the Langmuir isotherm appears to fit the isotherm data better than the Freundlich isotherm. The leachate of heavy metals from tannery sludge derived activated carbon to the environment is very low, which are within the standard limit of industrial effluent and leachable substances.

  8. Strategy for the investigation of hazardous substances in industrial effluents: IDA (Industrial Discharge Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Reemtsma, T.; Klinkow, N.

    2001-08-01

    The assessment of amounts and effects of hazardous substances in industrial effluents necessitates a combination of chemical and biological investigations. Therefore in this study a strategy for the investigation of hazardous substances in wastewater discharges was developed which connects the parameters persistence, bioaccumulation, and aquatic toxicity. The strategy IDA (Industrial Discharge Assessment) was elaborated based on the evaluation of existing investigation strategies and the available test systems. The strategy has a modular structure to assure a flexible investigation with regard to the particularities of a given wastewater. After the determination of acute and chronic toxicity and genotoxicity a microbial degradation test is carried out to obtain the persistent wastewater fraction. The bioaccumulating substances are determined from this fraction by solid-phase extraction. Within the strategy differences between direct and indirect discharges are taken into account and particulate matter is considered as well. By the modular linking it can be determined if a wastewater contains toxic and persistent and bioaccumulating substances, which present an important potential of hazard for the aquatic environment. The first application of the strategy on three wastewater samples of the chemical and the metal processing industry showed that the strategy can be used as planned. (orig.) [German] Die Erfassung der Gehalte und Wirkungen gefaehrlicher Stoffe in Abwassereinleitungen der Industrie erfordert eine Kombination chemischer und biologischer Untersuchungen, die ueber das bisher in der AbwV festgelegte Mass hinausgeht. In dieser Studie wurde deshalb eine Untersuchungsstrategie fuer gefaehrliche Stoffe in Abwasserleitungen entwickelt, die die Parameter Persistenz, Bioakkumulierbarkeit und Toxizitaet auch experimentell verknuepft. Die Ausarbeitung erfolgte nach Auswertung der international bestehenden Untersuchungsstrategien sowie der zur Verfuegung stehenden

  9. Application of the natural cellulosic supports modified chemically for the treatment of the industrial effluents

    International Nuclear Information System (INIS)

    Kassale, A.; Elbariji, S.; Lacherai, A.; Elamine, M.; Kabli, H.; Albourine, A.

    2009-01-01

    The process of purification and discoloration of industrial waters (and particularly effluents of the textile industry) can meet major difficulties: certain dyes agents get through the devices of purge without being to stop. the cost of equipment and products of purification is prohibitive. Finally, in many cases, the discoloration can be only partial because waters to be treated containing mixtures of dyes of different nature, the material of purification can be effective only screw/screw of some of them. (Author)

  10. Chemical investigation of the effluents of selected chemical industries in NWFP (Pakistan)

    International Nuclear Information System (INIS)

    Jan, M.R.; Shah, J.; Shah, H.

    2002-01-01

    Samples of effluents were collected from the waste water drains of selected chemical industries, located at small industries estate Kohat Road Peshawar on monthly basis from November 1994 to October 1995. These samples were studied for physico chemical properties and heavy metals like Pb, Ag, Cu, Zn, Fe, Cr, Cd, Mn and Ni using spectroscopic techniques. The results of our investigation are presented and discussed. (author)

  11. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries

    Directory of Open Access Journals (Sweden)

    Sironmani Palraj

    2016-02-01

    Full Text Available Waterborne epoxy coatings were prepared on aluminium (Al surfaces by cathodic electro-deposition on the pretreated surface of pickling, phosphating, chromating and anodizing. The electro-deposition experiments were done at two different voltages, 15 V and 25 V at room temperature in 10% epoxy coating formulations. Corrosion and thermal behavior of these coatings were investigated using electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The coating exhibits better corrosion resistance in anodized Al surface than the other. But, TGA studies show that the thermal stability is higher in anodized and chromated Al surfaces. The surface morphology of these coatings were analyzed by SEM and AFM studies.

  12. Bacterial removal of toxic phenols from an industrial effluent

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... Chlorinated phenols, widely used in industries, are of growing concern owing to their high toxicity, .... phenol-degradation ability of bacterial isolate at the high phenol .... ed virtually no decrease in the respiratory response over.

  13. Effect of soda ash industry effluent on agarophytes, alginophytes and carrageenophyte of west coast of India.

    Science.gov (United States)

    Jadeja, R N; Tewari, A

    2009-02-15

    This paper presents the results of a study on the impact of the effluent released by the soda ash industry on important red and brown macro algal species Gelidiella acerosa, Gracilaria corticata, Soleria robusta, Sargassum tenerrimum, Padina tetrastromatica in the tidal zone around Veraval, on the west coast of India, in the lowest low water tide of December 2003. The study examined the effect of effluent discharge on availability of biomass and percentage of phyco-colloids extraction such as agar, alginic acid and carrageen of these commercial seaweeds.

  14. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    Science.gov (United States)

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  15. Assessment of Nelumbo nucifera and Hydrilla verticillata in the treatment of pharmaceutical industry effluent from 24 Parganas, West Bengal

    Directory of Open Access Journals (Sweden)

    Shamba Chatterjee

    2014-10-01

    Full Text Available Modern day technologies employed in industrialization and unhygienic lifestyle of mankind has led to a severe environmental menace resulting in pollution of freshwater bodies. Pharmaceutical industry effluents cause eutrophication and provide adequate nutrients for growth of pathogenic bacteria. This study has been conducted with aquatic plants water lotus (Nelumbo nucifera and hydrilla (Hydrilla verticillata with an novel aim to treat pharmaceutical industry effluents showing the outcome of the experiments carried out with the effluents collected from rural areas of 24 Parganas, West Bengal, India. Determination of pH, solid suspend, BOD5, NH3-N, MPN and coliform test were used for this notioned purpose. Pharmaceutical waste effluent water treated with water lotus showed less pH, solid suspend, DO, BOD, NH3-N, MPN and coliform bacteria than hydrilla treatment when compared to the control. In conclusion, water lotus is found to be more efficient in treatment of pharmaceutical industry effluent waste water than hydrilla.

  16. Collective dose to the European Community from nuclear industry effluents discharge in 1978

    CERN Document Server

    Camplin, W C

    1983-01-01

    The results are presented of a study to evaluate the collective dose commitment to the population of the European Community from effluents released by the nuclear industry within the EC in 1978. Airborne and liquid effluent discharge data have been taken from published sources, and computer modelling techniques have been used to predict the transfer of radioactivity through the environment to man. The collective dose commitments due to discharges from each nuclear installation have been evaluated and the comparative significance of individual radionuclides and their pathways to man have been considered. Airborne releases resulted in an estimated collective effective dose equivalent commitment of 95 man Sv, the major part of which is due to carbon-14 from both power stations and reprocessing plants. The collective effective dose equivalent commitment from liquid effluents is estimated to be 408 man Sv, mostly due to caesium-137 and other radionuclides from the Sellafield (formerly Windscale) reprocessing plant...

  17. Distribution of 137Cs Radionuclide in Industrial Wastes Effluents of Gresik, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Muslim

    2015-04-01

    Full Text Available The distribution of anthropogenic radionuclides 137Cs was measured from industrial waste effluent of Gresik to Gresik Sea in east Java, Indonesia. The activity of 37Cs detected at all stations was much lower than in northeast Japan both before and after NPP Fukushima accident. This indicated that in Gresik industrials waste did not consist of 137Cs. The lowest activity 137Cs occurred at the station nearest to the industrial waste effluent that contained some particle ions that were able to scavenge 137Cs and then precipate this radionuclide. Furthermore, the greatest 137Cs occured at the station that has high current speeds that stirred up sediment to release 137Cs in seawater as a secondary source. The lowest salinity did not effect on the activity of 137Cs even though the lowest salinity and activity 137Cs occured at the same station

  18. Radiation purification of the chemical industry effluents and possibilities of realization of this method

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kovalevskaya, A.M.; Shlyk, V.G.; Savushkin, I.A.; Kazazyan, V.T.

    1977-01-01

    Radiation-chemical methods for synthetic fibre industry effluents purification from cyanides, sulphides and monomers, as well as for disinfection of circulation water and improvement in sedimental and filtering properties of waste active slurry in petrochemical industry are described. Chemical plant effluents are purified by 70-90% from cyanides at the dose rate of 0,3 - 0,5 Mrad, by 60 - 70% from sulphides and monomers at the dose of 0,2 Mrad. Circulation water of petroleum processing plant is disinfected at the dose of 0,08 Mrad; the rates of filtration and sedimentation of waste active slurry increase two and three fold, correspondingly, at the dose of 0,6 Mrad. The power of radiation sources required for the industrial realization of radiation purification of liquid wastes has been calculated

  19. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  20. The treatment of liquid effluents from the nuclear industry

    International Nuclear Information System (INIS)

    Carley-Macauly, K.W.

    1983-01-01

    This paper reviews the sources, and principles of management, of radioactive liquid wastes in the nuclear industry. The selection of processes for their treatment is based on consideration of the solution chemistry and of the total system for active waste disposal which must ensure that the activity or radiation dose arriving in the biosphere is kept within acceptable limits. Treatment processes aim primarily at concentration of the active species into a small volume, as by evaporation, selective ion exchange or precipitation. These well established methods have counterparts or developments among the more novel means of separation, such as membrane processes. (author)

  1. Pretreatment of industrial phosphoric acid by Algerian filter-aids

    International Nuclear Information System (INIS)

    Mellah, A.; Setti, Louisa; Chegrouche, Salah

    1993-01-01

    The present work involves the filtration of industrial phosphoric acid by different filter-aids such as kieselguhr, celite and bleaching clay. The retention of substances contained in wet phosphoric acid was determined using the three filter-aids. Thus, the phosphoric acid, obtained by filtration on kieselguhr has the same specifications as technical phosphoric acid produced by Rhone-Poulenc (France) as standard

  2. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  3. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    Science.gov (United States)

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Peat wetland as a natural filter of effluents from adjacent industrial areas

    OpenAIRE

    József DEZSO; Gabriella TÓTH; Dénes LÓCZY

    2015-01-01

    The main objective of the project is the study of a peat wetland functioning as recipient of effluents from former and present-day industrial activities. The investigation was focused on heavy metal contaminations and their probable mobilization or fixation. The studied peatbog is a typical Eastern European wetland, located in Hungary on the border between medium mountains (Bakony Mountains) and a Neogene basin (the Sárrét, an area under nature conservation). Watercourses and prevailing air c...

  5. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  6. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  7. Effect of soap industry effluents on soil and ground water in Albageir area

    International Nuclear Information System (INIS)

    Awadalla, S. O.

    2004-02-01

    This study investigates the effect on soil and ground water produced by the effluent from soap industry discharged from Alsheikh Mustafa Alamin (SMA) factory, in Albageir industrial area, located 45 Km south of Khartoum. Soil samples were taken from the periphery of the effluent pond and from 25 and 50 cm depths from pits at different distances from the pond.The samples were analyzed for the following chemical and physical characteristics PH, EC, sodium, chloride ions and their grain size, in order to investigate any possible soil degradation. The results showed that there is an increase in soil salinity and sodicity resulting from the improper discharge of the liquid waste, and from lack of treatment before the discharge. Hence, there are definitive signs for soil degradation in the study area, which could reach a high magnitude in the long.This situation could be rectified by adopting updated techniques for treatment and disposal of effluent, and by regular inspection, by the authorities in order to make sure that the regulations are not violated. Chemical and physical analyses of ground water samples showed no signs of pollution. However, if the disposal practices are not revised, the possibility of pollution in the near future is likely to occur. A package of measurements is proposed in order to curb the impact of the industry on the environment. (Author)

  8. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    Science.gov (United States)

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  9. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Balasubramani, Aparna; Howell, Nathan L.; Rifai, Hanadi S.

    2014-01-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K oc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K ow , organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  10. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    Science.gov (United States)

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.

  11. New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds.

    Science.gov (United States)

    Boczkaj, Grzegorz; Makoś, Patrycja; Fernandes, André; Przyjazny, Andrzej

    2016-10-01

    We present a new procedure for the determination of volatile organosulfur compounds in samples of industrial effluents using dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection. Initially, the extraction parameters were optimized. These included: type and volume of extraction solvent, volume of disperser solvent, salting out effect, pH, time and speed of centrifugation as well as extraction time. The procedure was validated for 30 compounds. The developed procedure has low detection limits of 0.0071-0.49 μg/L and a good precision (relative standard deviation values of 1.2-5.0 and 0.6-4.1% at concentrations of 1 and 10 μg/L, respectively). The procedure was used to determine the content of volatile organosulfur compounds in samples of effluents from the production of bitumens before and after chemical treatment, in which six compounds were identified, including 2-mercaptoethanol, thiophenol, thioanisole, dipropyl disulfide, 1-decanethiol, and phenyl isothiocyanate at concentrations ranging from 0.47 to 8.89 μg/L. Problems in the determination of organosulfur compounds related to considerable changes in composition of the effluents, increase in concentration of individual compounds and appearance of secondary pollutants during effluent treatment processes are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Response of Penaeid Prawns (Metapanaeus monoceros) to textile dye industrial effluents (TDIE): An indicator of stress

    Digital Repository Service at National Institute of Oceanography (India)

    Praneeth, R.R.; Shirodkar, P.V.; ManiMurali, R.; Ravindran, J.; Brahma, S.; Vethamony, P.

    and decaying food materials [8]. In order to reduce the excreted waste in the test tanks, the feeding was stopped 24hrs prior to the commencement of acute bioassay tests. Test method Short-term LC50 (median lethal concentration) toxicity tests were carried... of India. Material and Method The TDIE or the RO rejects were collected from 9 textile industries from the Erode Industrial area. Part of these collected effluents was used for physico-chemical analyses at the site itself and the other part was taken...

  13. Treatment and Energy Valorisation of an Agro-Industrial Effluent in Upflow Anaerobic Sludge Reactor (UASB)

    Science.gov (United States)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.

  14. Evaluation of toxic metals in the industrial effluents and their segregation through peanut husk fence for pollution abatement

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    The industrial pollution is exponentially growing in the developing countries due to the discharge of untreated effluents from the industries in the open atmosphere. This may cause severe health hazards in the general public. To reduce this effect, it is essential to remove the toxic and heavy metals from the effluents before their disposal into the biosphere. In this context, samples of the effluents were collected from the textile/yarn, ceramics and pulp/paper industries and the concentrations of the toxic metal ions were determined using neutron activation analysis (NAA) technique. The observed concentration values of the As, Cr and Fe ions, in the unprocessed industrial effluents, were 4.91 ± 0.8, 9.67 ± 0.7 and 9.71 ± 0.8 mg/L, respectively which was well above the standard recommended limits (i.e. 1.0, 1.0 and 2.0 mg/L, respectively). In order to remove the toxic metal ions from the effluents, the samples were treated with pea nut husk fence. After this treatment, 91.5% arsenic, 81.9% chromium and 66.5% iron metal ions were successfully removed from the effluents. Then the treated effluents contained concerned toxic metal ions concentrations within the permissible limits as recommended by the national environmental quality standards (NEQS). (author)

  15. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    Science.gov (United States)

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  16. Improvement of conventional parameters of actual industrial effluent by electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Silveira, C.G.

    1998-01-01

    The ordinary process to treat wastewater from the dye, textile, chemical, pharmaceutical and paper mill industries do not degrade easily the coloured substances and organic compounds. A study on the improvement of this treatment using high energy electron irradiation was carried out. Experiments were conducted using samples from the public Wastewater Treatment Plant (WTP) that receives about 80% of wastewater from industrial sources and 20% from domestic sources. A large amount of industrial wastewater comes from chemical and textile industries, which change everyday the quality, quantity and colour these characteristics depend on for the production line of each particular industry. Samples from WTP influent and effluent were collected every 15 days and irradiated in a batch system; the delivered doses were 3.0 kGy, 4.0 kGy, 6.0 kGy, 8.0 kGy and 10.0 kGy. For the non-irradiated and irradiated samples the following parameters were analyzed: chemical oxygen demand (COD), fixed and volatile total solids and fixed and volatile suspended solids, absorption spectrum (300-700nm) and gas chromatography. For samples from effluent irradiated with 3.0 kGy dose, the COD value presented a reduction average of 45%, and this result was fixed for higher doses, however the COD of influent sample did not show significant change for all the delivered doses

  17. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmidevi, Rajendran; Muthukumar, Karuppan [Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University Chennai, Chennai 600 025 (India)

    2010-04-15

    Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8-2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H{sub 2}/mol sugar and specific hydrogen production rate of 225 mmol of H{sub 2}/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production. (author)

  18. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    Science.gov (United States)

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  19. EVALUATING THE EFFECT OF INDUSTRIAL EFFLUENTS ON CHEMICAL COMPOSITION OF SOIL IN VILLAGE DINGI, DISTRICT HARIPUR

    Directory of Open Access Journals (Sweden)

    K. Asghar

    2016-08-01

    Full Text Available The present report is an outcome of research work conducted in Dingi village, District Haripur in 2012. The research aimed to assess and analyze the effects of industrial effluents on the soil fertility of the village, investigate contributing factors responsible for soil pollution and underlying causes creating the problems. Data analysis revealed that area had problems pertaining to water and soil quality. The key factors affecting soil fertility were the careless discharge of the untreated industrial effluents from Hattar Industrial Estate (HIE into the natural stream passing through village. The results were compared with the soil standards set by the World Wide Fund for Nature (WWF and European Committee Commission (ECC and all of these were exceeding the permissible limits and affecting the soil fertility. The soils were found not fit for agriculture. The investigation highlighted the need to take some effective steps to manage the monitoring program set for checking of industries by the government according to set rules and regulation.

  20. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    Science.gov (United States)

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  1. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    Science.gov (United States)

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Physico-chemical studies of effluents and emission of ghee/edible oil industries in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, I.; Ali, S.; Jan, M.R.

    1999-01-01

    Samples of the effluents from various Ghee/Edible Oil Industries were collected on fortnightly basis from July 1993 to June 1994 and the emissions from January to April 1994. Parameters such as temperature, pH, conductivity, total dissolved solids (TDS), total suspended solids (TSS), total alkalinity total acidity, total hardness, chemical oxygen demand (COD). chlorides, sulphates, phosphates, silica, calcium magnesium, sodium, and iron were determined in the effluents, Trace metals like copper, manganese, nickel, and zinc were determined by atomic absorption spectroscopy, whereas SO/sub 2/, CO CO/sub 2/, hydrocarbons, hydrogen, nitrogen, oxygen and argon were examined in the flue gases by Gas Chromatography and other standard techniques such as Orsat Gas Analyzer and Dragger Detection Tubes. Remedial measures were suggested for the pollutants exceeding the National Environmental Quality Standards, (NEQS). Parameters like chlorine, ammonia, sulphides, arsenic, cadmium, chromium, cobalt, lead and tin were also analyzed in the effluents and were found to be nil or below the detection limit, while particulate matters, HCl, chlorine, HF, H/sub 2/S, mercaptans and NH/sub 3/ were found to be nil in the flue gases. (author)

  3. Adsorption behavior of rice husk for the decontamination of chromium from industrial effluents

    International Nuclear Information System (INIS)

    Khalid, N.; Rahman, A.; Ahmad, S.; Toheed, A.; Ahmed, J.

    1999-01-01

    Rice husk, an agricultural waste product, was studied as a potential decontaminant for chromium in the effluents of leather tanning industries. Physico-chemical parameters such as selection of appropriate electrolyte, shaking time, concentration of absorbent and absorbate were studied to optimize the best conditions in which this material can be utilized on commercial scale for the decontamination of effluents. The radiotracer technique was used to determine the distribution of chromium. In certain cases atomic absorption spectrophotometry was also employed. Maximum adsorption was observed at 0.01 mol x dm -3 acid solutions (HNO 3 , HCl, H 2 SO 4 and HClO 4 ) using 3.0 g of absorbent for 2.73 x 10 -3 mol x dm -3 chromium concentration in five minutes equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all acids. The adsorption data follows the Freundlich isotherm over the range of 2.73 x 10 -3 to 2.73 x 10 -2 mol x dm -3 chromium concentration. The characteristic Freundlich constants, i.e., 1/n = 0.86 ± 0.06 and A = 2.35 ± 0.06 mmol x g -1 have been computed for the sorption system. Thermodynamic parameters, i.e., ΔG deg, ΔS deg and ΔH deg have also been calculated for the system. Application of the method to a test case of a medium size industry showed that 21 kg of rice husk was sufficient to maintain the NEQS limits of chromium for industrial effluents. (author)

  4. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    Science.gov (United States)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  5. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2017-07-24

    The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.

  6. Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart. and Panicum maximum (Jacq.

    Directory of Open Access Journals (Sweden)

    N.A. Noukeu

    2016-12-01

    Full Text Available In this study, effluents from 11 food processing industries from various sectors were characterized through analysis of physical and chemical parameters. In general, effluents pHs are between 4.07 and 7.63. Lead (Pb2+ and cadmium (Cd+ concentrations range from 0.083 to 1.025 mg/l and 0.052–0.158 mg/l respectively. The biodegradability of the effluent is very low. The principal component analysis (PCA grouped industries according to their organic matter levels; thus, stillage, livestock, molasses and sugar refinery effluents show some similarities, as well as confectionery, oil mill, dairy and brewery effluents. Forms of nitrogen measured show low levels of nitrites (NO2−, high levels of nitrates (NO3−, ammonium (NH4+ and Kjeldahl nitrogen (TKN. Among these effluents, a treatment trial with Eichhornia crassipes and Panicum maximum was applied to stillage effluent from Fermencam distillery. The results show that Panicum maximum and Eichhornia crassipes reduce pollutant loads of Fermencam's wastewater.

  7. Efficiency of chitosan (Poly-[D] Glucosamine as natural organic coagulant in pre-treatment of active carbon effluent in Panacan, Davao City

    Directory of Open Access Journals (Sweden)

    Rezel A. Cinco

    2016-12-01

    Full Text Available The utilization of environmental friendly coagulant is widened which can be proposed as an imperative option for water treatment. In this study, the efficiency of Chitosan, a natural organic coagulant in pre-treating Active Carbon Effluent (ACE as alternative to conventional metal based coagulants in terms of Turbidity (T, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS was evaluated. Collection of effluent for testing was conducted at the Philippine – Japan Active Carbon Corporation, Panacan, Davao City, Philippines. Chitosan (Deacetylated chitin; Poly- [1- 4] – β- glucosamine was obtained from Qingdao Develop Chemistry Co., Ltd., China. Suspensions added with experimental coagulant dosages (0.1, 0.5, 1.0, 5.0 and 10.0 mgL-1 were made by sediment mixer maintained at pH 5 and analyzed with the following parameters: Total Suspended Solid (TSS, Chemical Oxygen Demand (COD and Turbidity (T. The efficiency of the chitosan coagulation was found to be high in terms of turbidity (99.2%, Chemical Oxygen Demand (97.2% in 5 mg/L dose of chitosan and Total Suspended Solid (99.15% in 10 mg/L dose of chitosan. It can be concluded that Chitosan is an effective coagulant which can significantly reduce the level of turbidity, COD and TSS. A further study with different types of effluent and higher Chitosan doses are needed for recommending it for practical application as a natural organic coagulant.

  8. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  9. Steam pretreatment of dry and ensiled industrial hemp for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Sipos, Balint; Reczey, Kati [Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Szt. Gellert ter 4., H-1111 Budapest (Hungary); Kreuger, Emma; Bjoernsson, Lovisa [Lund University, Department of Biotechnology, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Sven-Erik [Swedish University of Agricultural Sciences, Department of Agriculture - Farming Systems, Technology and Product Quality, P.O. Box 104, SE-230 53 Alnarp (Sweden); Zacchi, Guido [Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00 Lund (Sweden)

    2010-12-15

    Biomass can be converted into liquid and gaseous biofuels with good efficiency. In this study, the conversion of industrial hemp (Cannabis sativa L.), a biomass source that can be cultivated with a high biomass yield per hectare, was used. Steam pretreatment of dry and ensiled hemp was investigated prior to ethanol production. The pretreatment efficiency was evaluated in terms of sugar recovery and polysaccharide conversion in the enzymatic hydrolysis step. For both materials, impregnation with 2% SO{sub 2} followed by steam pretreatment at 210 C for 5 min were found to be the optimal conditions leading to the highest overall yield of glucose. Simultaneous saccharification and fermentation experiments carried out with optimised pretreatment conditions resulted in ethanol yields of 163 g kg{sup -1} ensiled hemp (dry matter) (71% of the theoretical maximum) and 171 g kg{sup -1} dry hemp (74%), which corresponds to 206-216 l Mg{sup -1} ethanol based on initial dry material. (author)

  10. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    Science.gov (United States)

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Inorganic ion-exchangers for the treatment and disposal of industrial effluents

    International Nuclear Information System (INIS)

    Hasany, S.M.

    2000-01-01

    Ion-exchangers can be broadly classified into organic and inorganic ion-exchangers. Inorganic ion-exchangers are stable at high temperatures and radiation dosage, resistant towards oxidizing agents and organic solvents. They are cheap and easy to prepare. Inorganic ion-exchangers, due to their superiority over organic ion-exchangers, have been extensively used for a wide variety of applications including treatment and management of industrial effluents. The criteria governing the division into essential and toxic elements for animal life have been described. The occupational sources of toxic elements and their compounds in the environment have been identified and their tolerance limits prescribed in air, water and food are given. The toxicity and adverse effects of harmful elements and their hazardous compounds are mentioned. Factors influencing sorption of trace elements onto inorganic ion-exchangers are highlighted. Examples of inorganic ion-exchangers are cited where they can be utilized for the treatment of industrial effluents before their safe discharge into waterways and biosphere. (author)

  12. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  13. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    Science.gov (United States)

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Las Casas, Alexandre

    2004-01-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  15. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Aparna, E-mail: aparna.27889@gmail.com; Howell, Nathan L., E-mail: nlhowell@central.uh.edu; Rifai, Hanadi S., E-mail: rifai@uh.edu

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K{sub oc} values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K{sub ow}, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs.

  16. Bioassessment of the Effluents Discharged from Two Export Oriented Industrial Zones Located in Kelani River Basin, Sri Lanka Using Erythrocytic Responses of the Fish, Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Hemachandra, C K; Pathiratne, A

    2017-10-01

    Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.

  17. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    Science.gov (United States)

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents.

    Science.gov (United States)

    Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula

    2018-08-01

    Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for

  19. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-06-01

    Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea, Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community. Copyright © 2016. Published by Elsevier B.V.

  20. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology

    Directory of Open Access Journals (Sweden)

    P. Asaithambi

    2016-11-01

    Full Text Available The removal of organic compounds from a simulated sugar industrial effluent was investigated through the electrochemical oxidation technique. Effect of various experimental parameters such as current density, concentration of electrolyte and flow rate in a batch electrochemical reactor was studied on the percentage of COD removal and power consumption. The electrochemical reactor performance was analyzed based on with and without recirculation of the effluent having constant inter-electrodes distance. It was found out that the percentage removal of COD increased with the increase of electrolyte concentration and current density. The maximum percentage removal of COD was achieved at 80.74% at a current density of 5 A/dm2 and 5 g/L of electrolyte concentration in the batch electrochemical reactor. The recirculation electrochemical reactor system parameters like current density, concentration of COD and flow rate were optimized using response surface methodology, while COD removal percents were maximized and power consumption minimized. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.9888.

  1. Using Artificial Neural Networks to Determine Significant Factors Affecting the Pricing of WPT Effluent for Industrial Uses in Isfahan

    Directory of Open Access Journals (Sweden)

    Masoud Mirmohamadsaseghi

    2017-03-01

    Full Text Available The evidence indicates increasing trend of use of municipal wastewater treatment effluent as an alternative source of water both in developed and developing countries. Proper pricing of this unconventional water is one of the most effective economic tools to encourage optimum use of fresh water resources. In this study, artificial neural network is employed to identify and assess the factors affecting effluent tariffs supplied to local industries in Isfahan region. Given the wide variety of factors involved in the ultimate value of wastewater traement plant effluent, an assortment of relevant factors  has been considered in this study; the factors include the population served by the treatment plant, volume of effluent produced, maintenance, repair and replacement. costs of operating plants, topography, different water uses in the region, industrial wastewater collection fees, unit cost of pipe and fittings, and the volumes of water supplied from springs and aqueducts  in the region. Neural network modeling is used as a tool to determine the significance of each factor for pricing effluent. Based on the available data and the neural network models, the effects of different model architectures with different intermediate layers and numbers of nodes in each layer on the price of wastewater were investigated to develop aand adopt a final neural network model. Results indicate that the proposed neural network model enjoys a high potential and has been well capable of determining the weights of the parameter affecting in pricing effluent. Based on the the results of this study, the factors with the greatest role in effluent pricing are unit cost of pipe and fittings, industrial use of water, and the costs of plant maintentance, repair and replacement.

  2. A comparative analysis of selected wastewater pretreatment processes in food industry

    Science.gov (United States)

    Jaszczyszyn, Katarzyna; Góra, Wojciech; Dymaczewski, Zbysław; Borowiak, Robert

    2018-02-01

    The article presents a comparative analysis of the classical coagulation with the iron sulphate and adsorption on bentonite for the pretreatment of wastewater in the food industry. As a result of the studies, chemical oxygen demand (COD) and total nitrogen (TN) reduction were found to be comparable in both technologies, and a 29% higher total phosphorus removal efficiency by the coagulation was observed. After the coagulation and adsorption processes, a significant difference between mineral and organic fraction in the sludge was found (49% and 51% for bentonite and 28% and 72% for iron sulphate, respectively).

  3. Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production

    OpenAIRE

    Conesa Domínguez, Claudia; Seguí Gil, Lucía; Laguarda-Miro, Nicolas; Fito Maupoey, Pedro

    2016-01-01

    [EN] The pineapple industry generates significant amounts of residues which are classified as lignocellulosic residual biomass. In the present paper, microwaves are studied as a pretreatment to improve pineapple waste saccharification. Different microwave (MW) powers (10.625, 8.5, 6.375, 4.25 and 2.125 W/g) and exposure times (1-20 min) were applied to the solid part of the waste before enzymatic hydrolysis. Infrared thermography was used to assess temperature evolution and structural modific...

  4. Electro-coagulation applied to the treatment of industrial effluents; Electrocoagulation appliquee en traitement des effluents industriels

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, C.; Leboucher, G.; Coste, M. [Anjou Recherche, Vivendi Water, 78 - Maisons-Laffitte (France)

    2001-07-01

    The electro-coagulation is a water treatment technic in electrolysis cell with double anode. In substitution to the coagulant reagent often used in water de-pollution, it realizes also the coloring decomposition, the DCO abatement and sometimes improving the sludges processing. The technic presents meanwhile some limitations as its poor treatment capacity and the necessity of a high effluent conductivity. An example of application shows that this technic is economically competitive. (A.L.B.)

  5. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit Kumar

    2016-01-01

    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Utilization of ALANPOL dosemeter composed by alanine and polyethylene for determination of doses in industrial effluents

    International Nuclear Information System (INIS)

    Rela, Carolina S.; Sampa, Maria Helena de O.; Napolitano, Celia M.; Pontuschka, Walter M.

    2005-01-01

    A study of traceability and accuracy was performed with the dosimetry system ALANPOL developed by IVHTJ/ Poland that uses alanine as a dosimeter and EPR as the read out system. The dosimeter ALANPOL is a polymer compound that aggregates alanine. The dosimeter has the outside diameter 3 mm, and the length of 25,4 mm (1 inch). In order to use this dosimeter for monitoring the existing real time calorimetry dosimeter system set up in a electron beam waste treatment plant. Electron beam and gamma irradiation experiments with ALANPOL was carried out under demineralized water and industrial effluent. The result show that in the dose range of 1-40 kGy the ALANPOL dosimeter system is suitable underwater monitoring for absorbed dose and can be applied for the evaluation of the on line calorimetry dosimeter system. (author)

  7. Computerized effluent control and evaluation of environmental impact for an industrial plant

    International Nuclear Information System (INIS)

    Martinez de Angulo, L.F.; Garcia Gutierrez, M.S.

    1993-01-01

    Growing public interest and concern for the environment is translated at official level into regulatory standards to limit, control and evaluate the environmental impact produced by polluting facilities. This paper seeks to demonstrate the convenience of automatizing all these computerized systems. This philosophy has been put into practice to computerize processes in the industry with the most complex standards: the nuclear industry. The application used has the capacity to store and manage data on all the discharges, evaluate the effect produced by them and generate information to be sent periodically to the competent authority. The conceptual definition of the application can be adapted to any industrial or public utility facility releasing polluting effluents which must undergo control, monitoring and analysis of the environmental impact by the relevant regulatory body, bearing in mind the environmental standard applicable to the category of the facility and the type of polluting substance released. The application can be run interactively in a personal computer on the basis of menus and screens, under a relational Data Base Management System (DBMS). Its implementation is independent of the DBMS used and the hardware with supports it. (author)

  8. Effluent Guidelines

    Science.gov (United States)

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  9. Performance evaluation of membrane bioreactor for treating industrial wastewater: A case study in Isfahan Mourchekhurt industrial estate

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2016-01-01

    Conclusion: The MBR technology was used to treat the combined industrial wastewater was efficient, and its effluent can be perfectly used for water reuse. The MBR performance was improved by applying an anaerobic pretreatment unit.

  10. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Science.gov (United States)

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-01-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  11. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2016-06-01

    Full Text Available The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015 [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  12. Peat wetland as a natural filter of effluents from adjacent industrial areas

    Directory of Open Access Journals (Sweden)

    József DEZSO

    2015-12-01

    Full Text Available The main objective of the project is the study of a peat wetland functioning as recipient of effluents from former and present-day industrial activities. The investigation was focused on heavy metal contaminations and their probable mobilization or fixation. The studied peatbog is a typical Eastern European wetland, located in Hungary on the border between medium mountains (Bakony Mountains and a Neogene basin (the Sárrét, an area under nature conservation. Watercourses and prevailing air currents can transport contaminants from industrial areas to the wetland. At first the basic parameters of surface waters and subsurface conditions (soils, groundwater were investigated. These parameters (EC, Cl are possible indicators of contamination. Subsequently, the amounts of heavy metals (Cd, Pb extracted by solution in two steps (HCl, CaCl2 were measured using atomic absorption spectroscopy (AAS. The extracted values indicate what amounts of which elements could be mobilized by human impact and/or production of humic acids, which occasionally emerges during the remediation works. The total heavy metal concentrations in the samples were investigated by X-ray fluorescence method. Based on the investigation, the peatbog is claimed to function as a natural filter.

  13. Remediation of lead from lead electroplating industrial effluent using sago waste.

    Science.gov (United States)

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  14. Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa.

    Science.gov (United States)

    Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho

    2010-06-15

    Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste

    International Nuclear Information System (INIS)

    Foo, K.Y.; Hameed, B.H.

    2010-01-01

    Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

  16. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, M.C.F.; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I.

    2004-01-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  17. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  18. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    Science.gov (United States)

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  19. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin

    Directory of Open Access Journals (Sweden)

    T Benvenuti

    Full Text Available The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO. The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  20. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry.

    Science.gov (United States)

    Satapanajaru, Tunlawit; Anurakpongsatorn, Patana; Pengthamkeerati, Patthra

    2006-01-01

    The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v-1) to treat 0.014 mM (5 mgL-1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d-1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg-1) was incubated with 5% (wt v-1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.

  1. Analytical strategies for uranium determination in natural water and industrial effluents samples

    International Nuclear Information System (INIS)

    Santos, Juracir Silva

    2011-01-01

    The work was developed under the project 993/2007 - 'Development of analytical strategies for uranium determination in environmental and industrial samples - Environmental monitoring in the Caetite city, Bahia, Brazil' and made possible through a partnership established between Universidade Federal da Bahia and the Comissao Nacional de Energia Nuclear. Strategies were developed to uranium determination in natural water and effluents of uranium mine. The first one was a critical evaluation of the determination of uranium by inductively coupled plasma optical emission spectrometry (ICP OES) performed using factorial and Doehlert designs involving the factors: acid concentration, radio frequency power and nebuliser gas flow rate. Five emission lines were simultaneously studied (namely: 367.007, 385.464, 385.957, 386.592 and 409.013 nm), in the presence of HN0 3 , H 3 C 2 00H or HCI. The determinations in HN0 3 medium were the most sensitive. Among the factors studied, the gas flow rate was the most significant for the five emission lines. Calcium caused interference in the emission intensity for some lines and iron did not interfere (at least up to 10 mg L -1 ) in the five lines studied. The presence of 13 other elements did not affect the emission intensity of uranium for the lines chosen. The optimized method, using the line at 385.957 nm, allows the determination of uranium with limit of quantification of 30 μg L -1 and precision expressed as RSD lower than 2.2% for uranium concentrations of either 500 and 1000 μg L -1 . In second one, a highly sensitive flow-based procedure for uranium determination in natural waters is described. A 100-cm optical path flow cell based on a liquid-core waveguide (LCW) was exploited to increase sensitivity of the arsenazo 111 method, aiming to achieve the limits established by environmental regulations. The flow system was designed with solenoid micro-pumps in order to improve mixing and minimize reagent consumption, as well as

  2. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    Science.gov (United States)

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.

  3. Mitigation of solid waste and reuse of effluent from paint and varnish automotive and industrial treated by irradiation at electron beam accelerator

    International Nuclear Information System (INIS)

    Nascimento, Fernando C.; Ribeiro, Marcia A.; Duarte, Celina Lopes; Minamidani, Pedro T.; Guzella, Catia C.

    2011-01-01

    One of the most representative industrial segments is the polymeric coatings for house paint, automotive, industrial, marine, maintenance, and repainting markets. The general consumption of paint market in 2010 was 438,364 10 3 gallons of paint, in Brazil. However, when produce paints and varnishes, various kinds of solid wastes and liquid effluent are generated. The present research focus on the effluent from resins, water base paint and paint for electrophoresis, automotive industry, and general industrial coatings. The goal of this study is to use ionizing radiation to destroy the pollutants allowing the use of part of effluent as reuse water, and the rest discarded within the specified requirements. Actual industrial effluent samples were irradiated at Electron beam Accelerator applying absorbed doses of 10 kGy, 30 kGy and 50 kGy. The results, in this preliminary stage, showed a reduction of organic compounds and suspended solids. (author)

  4. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    Science.gov (United States)

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  5. Study of technical and economical feasibility for implementation of a movable unit for treatment of industrial effluents with electron beam

    International Nuclear Information System (INIS)

    Rela, Carolina Sciamarelli

    2006-01-01

    The treatment of industrial effluents is a practice that is disseminating in accelerated rhythm, of contributing to reinforce the public image, through the combat of the pollution, it brings economical advantages allowing the companies the reuse of the treated water in their own processes. The liquid effluent treatment technique studied in the present work is the one that uses the chemical oxidation/reduction standing out the use of the electron beam (e.b.) radiation. This technique uses an advanced oxidation process, generating radicals highly reagents that provoke the oxidation, reduction, dissociation and degradation in composed organic and exercising lethal effect in general in the microorganisms and parasites. In this work a conceptual and basic project of a movable unit of effluents treatment using electron beam radiation process was developed, in order that the unit moves until the treatment point, where the effluent is produced, facilitating the logistics. A technical and economical feasibility study was also elaborated allowing data on the capacity and cost of effluents processing to consolidate the values of the necessary investments to be presented to foundations organs for the construction of a movable unit. The results of the studies demonstrated that it is technically viable attending the pertinent legislation of Brazil, in the aspects of Radiation Protection and transport limit capacity. The unitary cost of the e.b. radiation processing in the movable unit was shown more expensive than in the fixed unit, the reason is the decrease of the efficiency of the interaction of the incident electrons in the effluent, due to the reduction of electron energy operation time of the unit. (author)

  6. Bioremediation of Synthetic and Industrial Effluents by Aspergillus niger Isolated from Contaminated Soil Following a Sequential Strategy.

    Science.gov (United States)

    Gulzar, Tahsin; Huma, Tayyaba; Jalal, Fatima; Iqbal, Sarosh; Abrar, Shazia; Kiran, Shumaila; Nosheen, Sofia; Hussain, Waqar; Rafique, Muhammad Asim

    2017-12-16

    The present study aimed to assess and compare the ability to remediate synthetic textile and industrial wastewaters by Fenton treatment, a biological system and sequential treatments using Aspergillus niger ( A. niger ). All studied treatments were found to be effective in decolorization of the effluents under study. Fenton treatment followed by A. niger showed excellent potential for the maximum decolorization of the synthetic and industrial effluents under study. The effectiveness of sequential treatment was evaluated by water quality parameters such as total organic carbon (TOC), Biological Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) before and after each treatment. The results indicated that A. niger is an effective candidate for detoxification of textile wastewaters.

  7. Bioremediation of Synthetic and Industrial Effluents by Aspergillus niger Isolated from Contaminated Soil Following a Sequential Strategy

    Directory of Open Access Journals (Sweden)

    Tahsin Gulzar

    2017-12-01

    Full Text Available The present study aimed to assess and compare the ability to remediate synthetic textile and industrial wastewaters by Fenton treatment, a biological system and sequential treatments using Aspergillus niger (A. niger. All studied treatments were found to be effective in decolorization of the effluents under study. Fenton treatment followed by A. niger showed excellent potential for the maximum decolorization of the synthetic and industrial effluents under study. The effectiveness of sequential treatment was evaluated by water quality parameters such as total organic carbon (TOC, Biological Oxygen Demand (BOD5 and Chemical Oxygen Demand (COD before and after each treatment. The results indicated that A. niger is an effective candidate for detoxification of textile wastewaters.

  8. 40 CFR 403.6 - National pretreatment standards: Categorical standards.

    Science.gov (United States)

    2010-07-01

    ... falls within that particular subcategory. If an existing Industrial User adds or changes a process or... best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW...

  9. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    Science.gov (United States)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  11. Assessment of the effluent quality from a gold mining industry in Ghana.

    Science.gov (United States)

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.

  12. effect of Indomie industrial effluent discharge on the fish fauna of New

    African Journals Online (AJOL)

    PROF EKWUEME

    . KEYWORDS: Effluent, pollution, environment, fish and fauna. .... Atlantic ocean near Bonny and it contains fresh water till ... swamp forests and municipal sewers within the. Choba area of .... Risk and Water Quality Assessment. Overview of ...

  13. Physical factors related to the marine disposal of industrial effluents off Pondicherry

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Vijayakumar, C.V.; Govindan, K.; Desai, B.N.

    the nearshore bed was mostly composed of sand. Dye-diffusion studies showed that the waters off Pondicherry proper were less turbulent than those off Pilliarkuppam. The results are discussed in the context of locating effluent outlets...

  14. An assessment of whole effluent toxicity testing as a means of regulating waters produced by the oil and gas industry

    International Nuclear Information System (INIS)

    Hill, S.L.; Bergman, H.L.

    1993-01-01

    Approximately 500 million barrels of produced water are discharged to Wyoming's surface waters by the oil and gas industry. This discharges are of two types: direct and indirect. The direct discharges have been issued NPDES permits requiring whole effluent toxicity testing. Toxicity testing requirements have not been incorporated into permits written for indirect discharges because of the applicability of toxicity testing for regulating these waters has not been determined. Preliminary testing has shown that most produced waters are toxic at the point of discharge because of high concentrations of hydrogen sulfide, but that the toxicity of an indirect discharge is often lost before it reaches a receiving stream. Thus, whole effluent toxicity testing of an indirect discharge may be overly stringent, resulting in treatment or reinjection of the water or closure of the well. Any of these options would have severe economic consequences for oil producers and the state's agricultural industry. The purpose of this study was to determine whether whole effluent toxicity testing actually predicts the in-stream effects of indirect discharges on water quality and benthic invertebrate populations. The authors will report the results of short-term ambient toxicity tests and in-stream bioassessments performed upstream and downstream of six indirect discharges located in four drainages in Wyoming

  15. Evaluation of Changes in Effluent Quality from Industrial Complexes on the Korean Nationwide Scale Using a Self-Organizing Map

    Directory of Open Access Journals (Sweden)

    Mi-Jung Bae

    2012-04-01

    Full Text Available One of the major issues related to the environment in the 21st century is sustainable development. The innovative economic growth policy has supported relatively successful economic development, but poor environmental conservation efforts, have consequently resulted in serious water quality pollution issues. Hence, assessments of water quality and health are fundamental processes towards conserving and restoring aquatic ecosystems. In this study, we characterized spatial and temporal changes in water quality (specifically physico-chemical variables plus priority and non-priority pollutants of discharges from industrial complexes on a national scale in Korea. The data were provided by the Water Quality Monitoring Program operated by the Ministry of Environment, Korea and were measured from 1989 to 2008 on a monthly basis at 61 effluent monitoring sites located at industrial complexes. Analysis of monthly and annual changes in water quality, using the seasonal Mann-Kendall test, indicated an improvement in water quality, which was inferred from a continuous increase in dissolved oxygen and decrease in other water quality factors. A Self-Organizing Map, which is an unsupervised artificial neural network, also indicated an improvement of effluent water quality, by showing spatial and temporal differences in the effluent water quality as well as in the occurrence of priority pollutants. Finally, our results suggested that continued long-term monitoring is necessary to establish plans and policies for wastewater management and health assessment.

  16. Evaluation of Changes in Effluent Quality from Industrial Complexes on the Korean Nationwide Scale Using a Self-Organizing Map

    Science.gov (United States)

    Bae, Mi-Jung; Kim, Jun-Su; Park, Young-Seuk

    2012-01-01

    One of the major issues related to the environment in the 21st century is sustainable development. The innovative economic growth policy has supported relatively successful economic development, but poor environmental conservation efforts, have consequently resulted in serious water quality pollution issues. Hence, assessments of water quality and health are fundamental processes towards conserving and restoring aquatic ecosystems. In this study, we characterized spatial and temporal changes in water quality (specifically physico-chemical variables plus priority and non-priority pollutants) of discharges from industrial complexes on a national scale in Korea. The data were provided by the Water Quality Monitoring Program operated by the Ministry of Environment, Korea and were measured from 1989 to 2008 on a monthly basis at 61 effluent monitoring sites located at industrial complexes. Analysis of monthly and annual changes in water quality, using the seasonal Mann-Kendall test, indicated an improvement in water quality, which was inferred from a continuous increase in dissolved oxygen and decrease in other water quality factors. A Self-Organizing Map, which is an unsupervised artificial neural network, also indicated an improvement of effluent water quality, by showing spatial and temporal differences in the effluent water quality as well as in the occurrence of priority pollutants. Finally, our results suggested that continued long-term monitoring is necessary to establish plans and policies for wastewater management and health assessment. PMID:22690190

  17. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.

    Directory of Open Access Journals (Sweden)

    Joel T Kidgell

    Full Text Available Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models.

  18. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.

    Science.gov (United States)

    Kidgell, Joel T; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models.

  19. The exposure of the EC (European Community) population from nuclear industry effluents

    International Nuclear Information System (INIS)

    Broomfield, M.

    1983-01-01

    The collective dose commitment to the EC population from routine effluents released from nuclear power stations and reprocessing plants within the Community in 1978 amounted to approximately 500 man Sv. The collective dose commitments associated with discharges from the nuclear power stations was approximately 50 man Sv, being almost entirely due to airborne carbon-14. The total collective dose commitment from the reprocessing plants was approximately 450 man Sv, about two-thirds of which was due to radiocaesium in the liquid effluent from Sellafield. (UK)

  20. The use of PHP in the radioactive effluent treatment in rare earth industry

    International Nuclear Information System (INIS)

    Shitang, Q.; Ruensheng, W.

    1985-01-01

    Monazite is one of the most important rare earth resources, processing monazite, however, is accompanied by radioactive effluent that needs treatment. A satisfactory treatment should be able not only to insolubilize the radioactive isotopes but also to clarify the suspension quickly and completely. In this study, out of 15 different coagulants, partially hydrolyzed polyacrylamide (PHP) of molecular weight 1000 has been chosen as the most efficient one for the clarification of the treated effluent in question. Satisfactory performance has been attained in a continuous clarifier

  1. Biosorption of Cr (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass.

    Science.gov (United States)

    Chhikara, S; Dhankhar, R

    2008-09-01

    A fungus, Aspergillus niger was chemically treated with 0.1 M H2SO4 and 0.1 N NaOH to form biosorbent and it was immobilized in calcium alginate beads. The biosorption capacity of immobilized biosorbents for Cr (VI) was found to depend on pH, contact time, biosorbent dose and initial concentration of Cr (VI). The maximum uptake of Cr (VI) was 92.5, 95.9 and 98.4 mg respectively at a pH of 1.5 and with an increase in pH up to 10.5 the metal uptake decreased gradually up to 38.75, 50.19 and 65.28 mg respectively for acid treated, untreated and base treated fungal biosorbents. Increase in biosorbent dose up to 1 g of biomass and contact time up to 60 min resulted in an increase in biosorption from 19.6, 15.6 and 26.1 mg at a biosorbent dose of 0.1 g 100 ml(-1) to 92.45, 95.7 and 98.52 mg at a biosorbent dose of 1.0 g 100 ml(-1) and then further increase in adsorbent dose and contact time did not resulted in more Cr (VI) adsorption by per unit weight of biosorbent. The value of Kad (adsorption rate constant) revealed the pseudo-first order nature of biosorption. The percentage metal uptake by the biosorbent was found to decrease upto 62.33, 52.67 and 83.5 percent respectively for acid treated, untreated and base treated fungal biosorbents at the 300 mgl(-1) Cr (VI) ion concentration. The resulted data was found to fit well in Langmuir model of adsorption isotherm with a high value of correlation coefficient. The value of Qmax, b (Langmuir constants), R(L) (separation factor) and delta G (Gibb's free energy) revealed the favourable nature of adsorption. The biosorbed metal was eluted from the biosorbent by using 0.1 M H2SO4 as elutant. Immobilized biosorbent can be reused for five consecutive biosorption/desorption cycles without apparent loss of efficiency after its reconditioning. The biosorbent was found to perform well in the electroplating industrial effluent.

  2. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    OpenAIRE

    García-Morales, Marco A.; Juárez, Julio César González; Martínez-Gallegos, Sonia; Roa-Morales, Gabriela; Peralta, Ever; del Campo López, Eduardo Martin; Barrera-Díaz, Carlos; Miranda, Verónica Martínez; Blancas, Teresa Torres

    2018-01-01

    The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD) when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high conte...

  3. New procedure for the examination of the degradation of volatile organonitrogen compounds during the treatment of industrial effluents.

    Science.gov (United States)

    Boczkaj, Grzegorz; Makoś, Patrycja; Fernandes, Andre; Przyjazny, Andrzej

    2017-03-01

    We present a new procedure for the determination of 32 volatile organonitrogen compounds in samples of industrial effluents with a complex matrix. The procedure, based on dispersive liquid-liquid microextraction followed by gas chromatography with nitrogen-phosphorus and mass spectrometric detection, was optimized and validated. Optimization of the extraction included the type of extraction and disperser solvent, disperser solvent volume, pH, salting out effect, extraction, and centrifugation time. The procedure based on nitrogen-phosphorus detection was found to be superior, having lower limits of detection (0.0067-2.29 μg/mL) and quantitation as well as a wider linear range. The developed procedure was applied to the determination of content of volatile organonitrogen compounds in samples of raw effluents from the production of bitumens in which 13 compounds were identified at concentrations ranging from 0.15 to 10.86 μg/mL and in samples of effluents treated by various chemical methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    Science.gov (United States)

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Modelling of Far-Field Mixing of Industrial Effluent Plume in Ambient ...

    African Journals Online (AJOL)

    This study sought to describe the dynamics of advective and dispersive transport of the effluent plume in the river and also ascertain the extent of its effect from discharge location to downstream far-field region. A homogenous differential equation was used as analytics to describe the physical process that describes the ...

  6. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. UNC Nuclear Industries reactor and fuels production facilities 1985 effluent release report

    International Nuclear Information System (INIS)

    Rokkan, D.J.

    1986-01-01

    Analyses of routine samples from radioactive liquid and airborne streams were performed using UNC's Radioanalytical Laboratory and the analytical services of US Testing Company. All significant effluent discharges from UNC facilities to the environment during CY 1985 are reported in this document

  8. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    Directory of Open Access Journals (Sweden)

    Fernando Postalli Rodrigues

    2010-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus hepatoma cells (HTC were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa and mammal (HTC cells, for more accurately assessing genotoxicity in environmental samples.

  9. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays.

    Science.gov (United States)

    Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

  10. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    Science.gov (United States)

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  11. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  12. Metal concentration of liquid effluents and surroundings of a pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    E.I. Adeyeye

    2007-04-01

    Full Text Available Major and trace metals (Mg, Na, K, Ca, Fe, Zn, Cu, Sn, Al, Pb, As, Cr, Cd, Mn and Ti in liquid effluents, soil sediments and plant parts (roots and leaves from Tisco Nigeria Limited, Akure, were determined in both open effluent channel and closed direct tank. The plant in the open effluent channel was Pennisetum purpureum while the one around the direct tank was Chloris pilosa. The correlation coefficient (Cc of the metals in the open channel gave the values: soil sediments/water (0.61, roots/leaves (0.709; and (0.34, (0.91, respectively, in direct tank. F-test values showed that 67 % of the metals were significantly different (p < 0.05 among the samples. The soil sediments would serve as reservoir for all the metals determined. This was also the case for both plant roots with species variation. The plant leaves showed evidence of bioaccumulation of some metals. The high levels of Pb, As and Cd in the samples call for concern as environmental contaminants.

  13. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Enzymatic saccharification and structural properties of industrial wood sawdust: Recycled ionic liquids pretreatments

    International Nuclear Information System (INIS)

    Auxenfans, Thomas; Buchoux, Sébastien; Larcher, Dominique; Husson, Gérard; Husson, Eric; Sarazin, Catherine

    2014-01-01

    Highlights: • 1-Ethyl-3-metylimidazolium acetate is an effective catalyst for pretreatment of hardwood and softwood sawdust. • Regeneration of cellulosic fraction from ionic liquid is discussed. • 1-Ethyl-3-methylimidazolium acetate can be reused at least 7 times without loss of its efficiency. • Removal of extractives and lignin with slight cellulose and xylan losses were observed. • Better cellulase accessibility to cellulose thanks to the expansion of the powder and the creation of a large porous volume. - Abstract: Wood residues constitute a promising challenge for biochemical processing into bioethanol and chemicals with competitive costs. Here, we report the impacts of pretreatments in a hydrophilic ionic liquid ([C2mim][OAc]), onto the physicochemical properties and enzymatic saccharification of softwood (spruce) and hardwood (oak) sawdust. Enzymatic saccharification of IL- pretreated sawdust is significantly increased (up to 7 times) when compared to untreated ones. Methanol, ethanol or water can be used as polar anti-solvent for the recovery of a cellulose rich fraction after dissolution in IL (i.e regeneration step) without any effect on enzymatic saccharification. Chemical, textural and structural modifications possibly induced by the IL pretreatments have been investigated through various means (Infra-red spectroscopy, NMR, X-ray diffraction) in order to correlate the observed modifications in enzymatic saccharification. This mild pretreatment seemed to mainly act in a breakdown of lignocellulosic organization leading to better cellulase accessibility to cellulose thanks to the expansion of the powder and the creation of a large porous volume (5 times more apparent porous volume). Partial removal of lignin and extractives may also contribute to the best enzymatic performances. The recyclability and reuse up to 7 times of [C2mim][OAc] is shown without the need of strictly anhydrous conditions and any alteration of the pretreatment

  15. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe_3O_4) nanoparticles

    International Nuclear Information System (INIS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-01-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe_3O_4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe_3O_4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe_3O_4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe_3O_4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe_3O_4 proved to be the potential material for the adsorption of

  16. Pretreatment of furfural industrial wastewater by Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate processes: a comparative study.

    Science.gov (United States)

    Yang, C W; Wang, D; Tang, Q

    2014-01-01

    The Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate (PDS) processes have been applied for the treatment of actual furfural industrial wastewater in this paper. Through the comparative study of the three processes, a suitable pretreatment technology for actual furfural wastewater treatment was obtained, and the mechanism and dynamics process of this technology is discussed. The experimental results show that Fenton technology has a good and stable effect without adjusting pH of furfural wastewater. At optimal conditions, which were 40 mmol/L H₂O₂ initial concentration and 10 mmol/L Fe²⁺ initial concentration, the chemical oxygen demand (COD) removal rate can reach 81.2% after 90 min reaction at 80 °C temperature. The PDS process also has a good performance. The COD removal rate could attain 80.3% when Na₂S₂O₈ initial concentration was 4.2 mmol/L, Fe²⁺ initial concentration was 0.1 mol/L, the temperature remained at 70 °C, and pH value remained at 2.0. The electro-Fenton process was not competent to deal with the high-temperature furfural industrial wastewater and only 10.2% COD was degraded at 80 °C temperature in the optimal conditions (2.25 mA/cm² current density, 4 mg/L Na₂SO₄, 0.3 m³/h aeration rate). For the Fenton, electro-Fenton and PDS processes in pretreatment of furfural wastewater, their kinetic processes follow the pseudo first order kinetics law. The pretreatment pathways of furfural wastewater degradation are also investigated in this study. The results show that furfural and furan formic acid in furfural wastewater were preferentially degraded by Fenton technology. Furfural can be degraded into low-toxicity or nontoxic compounds by Fenton pretreatment technology, which could make furfural wastewater harmless and even reusable.

  17. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    International Nuclear Information System (INIS)

    Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-01-01

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  18. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Choi, Yoon-E, E-mail: yechoi@korea.ac.kr [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Department of Bioprocess Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of)

    2016-08-05

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  19. Management of effluents and waste from pharmaceutical industry in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Eleonora Deschamps

    2012-12-01

    Full Text Available Today the management of solid waste and wastewater is a major concern for humanity. In the last decade, traces of pharmaceuticals have been reported in the water cycle and have raised concerns among regulators, water suppliers and the public regarding the potential risks to human health. This study evaluated solid waste management in the state of Minas Gerais and concluded that the main fate of hazardous waste has been incineration, while the non-hazardous waste has been recycled or sent to landfills. However, complaints to the Environmental Agency - FEAM have indicated that a significant number of companies just send their hazardous wastes to landfills or even to garbage dumps, thus highlighting the urgent need for adequate waste management in Minas Gerais. Most of the pharmaceutical companies in Minas Gerais use conventional wastewater treatment. Mass spectrometry with electrospray ionization (ESI-MS showed that the treatment routes adopted by the two 2 selected pharmaceutical industries were not effective enough since residues and degradation products of antibiotics were detected. The physicochemical analysis of the effluents showed variability in their characteristics, which may influence their treatability. The degradation assay with Fenton's reagent stood out as a promising route in achieving a higher removal capacity compared to the conventional treatment. This study contributes to enhancing our knowledge of the management of wastewater as well as of solid waste from the pharmaceutical industry in Minas Gerais and points out the need for further research.Atualmente, a gestão de resíduos sólidos e águas residuais é uma grande preocupação para a humanidade. Na ultima década, a detecção de traços de medicamentos no ciclo da água tem sido reportada e tem gerado preocupação entre os agentes reguladores, fornecedores de água e público devido os riscos potenciais para a saúde humana. As empresas farmacêuticas, em Minas Gerais

  20. Generation of continuous packed bed reactor with PVA-alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, S.; Kumar, M. Santosh [Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka (India); Siddavattam, D. [Department of Animal Sciences, University of Hyderabad, Hyderabad 500046 (India); Karegoudar, T.B., E-mail: goudartbk@gmail.com [Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka (India)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Removal of DMF was compared by free and immobilized cells of Ochrobactrum sp. DGVK1. Black-Right-Pointing-Pointer Ochrobactrum sp. DGVK1 cells entrapped in PVA-alginate have shown more tolerance. Black-Right-Pointing-Pointer PVA-alginate beads removed DMF even in the presence of other organic solvents. Black-Right-Pointing-Pointer Removal of DMF from industrial effluents by PVA-alginate blended batch operations. Black-Right-Pointing-Pointer Development of industrially feasible remediation strategy for DMF removal. - Abstract: Effective removal of dimethylformamide (DMF), the organic solvent found in industrial effluents of textile and pharma industries, was demonstrated by using free and immobilized cells of Ochrobactrum sp. DGVK1, a soil isolate capable of utilizing DMF as a sole source of carbon, nitrogen. The free cells have efficiently removed DMF from culture media and effluents, only when DMF concentration was less than 1% (v/v). Entrapment of cells either in alginate or in polyvinyl alcohol (PVA) failed to increase tolerance limits. However, the cells of Ochrobactrum sp. DGVK1 entrapped in PVA-alginate mixed matrix tolerated higher concentration of DMF (2.5%, v/v) and effectively removed DMF from industrial effluents. As determined through batch fermentation, these immobilized cells have retained viability and degradability for more than 20 cycles. A continuous packed bed reactor, generated by using PVA-alginate beads, efficiently removed DMF from industrial effluents, even in the presence of certain organic solvents frequently found in effluents along with DMF.

  1. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Manikandan, B.; Shirodkar, P.V.; Francis, K.X.; ManiMurali, R.; Vethamony, P.

    essential and important in view of environmental pollution. Analysis of these effluents using physical and chemical methods is insufficient due to their complex nature and they may not reflect the biological effects (Coombe et al. 1999). In-vivo tests....K., and Duffy, L.K. 2007. Effects of total dissolved solids on aquatic organism: A review of literature and recommendation for salmonid species. Am. J Environ. Sci. 3: 1-6. 3. Coombe, V.T., Moore, K.W., and Hutchings, M.J. 1999. TIE and TRE: An abbreviated...

  2. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  3. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India.

    Science.gov (United States)

    Tiwari, K K; Dwivedi, S; Mishra, S; Srivastava, S; Tripathi, R D; Singh, N K; Chakraborty, S

    2008-12-01

    Phytoremediation is a novel, solar-driven and cost-effective technology for the remediation of heavy metal contaminated environments through exploitation of plants ability to accumulate heavy metals in their harvestable shoot parts. In the present investigation, we collected plants of two species of Portulaca i.e. P. tuberosa and P. oleracea from field sites in Vadodra, Gujrat, India. At one site, field was being irrigated with industrial effluent while at other with tube well water. Analysis of heavy metals was performed in industrial effluent, tube well water, soils irrigated with them, and in different parts viz., roots, stem, leaves and flowers of the plant samples. Industrial effluent and soil irrigated with it had very high level of heavy metals (Fe, Zn, Cd, Cr and As) as compared to the tube well water and soil irrigated with that. Plants of both the species growing in effluent irrigated soils showed high accumulation of metals in all plant parts with the maximum being in roots and the least in flowers. Interestingly, both species of Portulaca hyperaccumulated more than one heavy metal viz., Cd, Cr and As. The total shoot concentrations (microg g(-1) dw) of Cd, Cr and As in P. tuberosa were 1,571, 7,957 and 3,118, respectively while in P. oleracea, these were 1,128, 7,552 and 2,476, respectively. Portulaca plants have good biomass and high regeneration potential; hence appear to be suitable for the remediation of effluent (metal) contaminated areas.

  4. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  5. HPLC determination of chloride, bromide and iodide ions in drinking water and industrial effluents using trifluoromethylmercuric nitrate as derivatizing reagent

    International Nuclear Information System (INIS)

    Arain, M.A.; Bhanger, M.I.; Khuhawar, M.Y.

    1997-01-01

    A simple procedure for the simultaneous determination of various halides in drinking water and industrial effluents of Hyderabad and Iodized salt is reported. The method utilizes derivatization of halides through trifluoromethylmercuric nitrate in aqueous solution, extraction in petroleum ether followed by reverse phase HPLC separation using c-18 Lichrosorb column, 150 x 4 mm i.d., mobile phase methanol : water (20: 80) and UV detection at 225 nm. Linear calibration ranges for chloride, bromide and iodide (0-10 ug/mL) with correlation coefficient 0.996, 0.998 and 0.989 have been determined with lowest possible detection limit as 1.0, 0.25 and 1.5 Mu g/ml, respectively. The effect of various interfering ions is also discussed. (author)

  6. Regulatory impact analysis of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    For all major rulemaking actions, Executive Order 12291 requires a Regulatory Impact Analysis (RIA), in which benefits of the regulation are compared to costs imposed by the regulation. The report presents the Environmental Protection Agency's (EPA, or the Agency) RIA of the final rule on the effluent limitations guidelines for the Offshore Subcategory of the Oil and Gas Extraction Industry. The principal requirement of the Executive Order is that the Agency perform an analysis comparing the benefits of the regulation to the costs that the regulation imposes. Three types of benefits are analyzed in this RIA: quantified and monetized benefits; quantified and non-monetized benefits; and non-quantified and non-monetized benefits

  7. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    Science.gov (United States)

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent

    Energy Technology Data Exchange (ETDEWEB)

    Djouider, Fathi; Aljohani, Mohammed S. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.

    2017-08-01

    Cr(VI) compounds are major water contaminants in most industrial effluents, due to their carcinogenicity, while Cr(III) is an important element for human metabolism. In a previous work, we showed that Cr(VI) was radiolytically reduced to Cr(III) by the CO{sub 2}{sup -.} radical at pH 3 N{sub 2}O-saturated solution in the presence of formate. Here in the present work, this removal was investigated by steady state irradiation and pulse radiolysis in aerated solution at neutral pH, which is close to natural conditions in most wastewaters, where the reducing agent is the superoxide radical anion O{sub 2}{sup -.} The degradation of Cr(VI) increased linearly with the absorbed dose and was significantly enhanced by the added formate but not by the radiolitically produced hydrogen peroxide at this pH. The rate constant for this reduction was found to be 1.28 x 10{sup 8} M{sup -1} s{sup -1} and the absorption spectrum of Cr(V) transient species was obtained. A partial recovery of Cr(VI) is observed over a period of ca. 5 ms following a second order kinetics with a rate constant 8.0 x 10{sup 6} M{sup -1} s{sup -1}. These outcomes suggest that gamma-irradiation of Cr(VI)-contaminated wastewaters and industrial effluents in presence of formate can be simple, effective and economical means for the remediation of this major contaminant.

  9. The Implementation of Effluent Taxes for Cambodian Industry: An Assessment of Pollutant Levies

    OpenAIRE

    Sideth Muong

    2006-01-01

    This study looks at how the Cambodian government might introduce a pollution levy system to address the country's industrial pollution problem. Using information drawn from a variety of sources, including a recent industrial survey, it estimates the levels of pollution charges that would reduce pollution by 25%-85%. It also calculates the overall revenue that such levies would produce and estimates the costs that industry would have to bear in terms of abatement costs and pollution charges. B...

  10. Utilisation of respirometry to assess organic matter reduction of effluents from the Camaçari industrial complex (BA, Brazil

    Directory of Open Access Journals (Sweden)

    Carla A. Oliveira

    2007-03-01

    Full Text Available The treatment efficiency of industrial effluents, after biological treatment by activated sludge in aeration tanks (AT, was assessed through the utilisation of respirometry tests at the Cetrel's-wastewater treatment plant (WTP. Samples of the equalised effluent (EE, prior to treatment, and of the treated effluent (TE, after treatment, were analysed. Twenty bioassays batch were carried out to AT (AT-2, AT-3 and AT-4. Each test consisted of: a basic test, a basic test with peptone added, a test using EE and a test using TE. The data showed that there was no statistically significant difference (p>0.05 in the respiration activity between the aeration tanks. Regarding the specific oxygen uptake rate there was a mean reduction of 70.8% between the tests performed with EE and TE. The results demonstratd that respirometry tests could successfully assess the efficiency of the activated sludge process and, therefore, be adopted as tool for the monitoring from the WTP.Este trabalho avaliou, através de ensaios de respirometria, a eficiência do tratamento de efluentes industriais, após tratamento por lodo ativado em tanques de aeração (TA. Foram analisadas amostras do efluente equalisado (EE, antes do tratamento, e do efluente tratado (ET. Vinte baterias de ensaios foram realizadas com cada um dos TA (TA-2, TA-3 e TA-4. Cada bateria consistiu de um ensaio básico, contendo apenas o licor misto, um ensaio com adição de peptona, um ensaio com o EE e um com o ET. Não houve diferença estatística significativa (p>0,05 na atividade respiratória dos TA. Quanto à taxa de consumo de oxigênio específica houve uma redução média de 70,8% entre os ensaios realizados com EE e ET. Os ensaios de respirometria determinaram com eficiência o nível de tratamento através de lodo ativado, e deve ser adotado no monitoramento dos efluentes da estação de tratamento de efluentes do Pólo Industrial de Camaçari.

  11. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Science.gov (United States)

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  12. Comprehensive evaluation of the effluents eluted from different processes of the textile industry and its immobilization to trim down the environmental pollution

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    Due to the significance of industrial waste water pollution, which creates severe health hazards in humans, this study concentrates over the reduction and determination of the amounts of toxic metals/pollution parameters in the effluents leached from different processes of the textile industry. The concentrations of metal ions were measured by using neutron activation analysis (NAA) technique. The values of toxic metals such as As (49.1 ± 1.8 mg/L), Cu (42.7 ± 1.5 mg/L), Ni (41.1 ± 3.3 mg/L), Mn (51.1 ± 0.7 mg/L), Sb (1.89 ± 0.04 mg/L), Se (0.41 ± 0.01 mg/L), Co (7.5 ± 0.3 mg/L), Cr (8.5 ± 0.5 mg/L) and Cd (1.21 ± 0.08 mg/L) were found very high in crude textile's effluents as compared to their standard recommended limits. The immense variation observed among the injurious pollutants of the effluents i.e. pH, temperature, electrical conductivity, turbidity, biological oxygen demands, chemical oxygen demands, total suspended solids, total dissolved solids, total solids etc. The toxic metals and injurious pollutants in the unprocessed effluents have been reduced in the post filtration effluents up to 98% and 96% respectively with the help of an ultra-filtration membrane therapy unit. (author)

  13. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    Science.gov (United States)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  14. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Phthalates and alkylphenols in industrial and domestic effluents: case of Paris conurbation (France).

    Science.gov (United States)

    Bergé, A; Gasperi, J; Rocher, V; Gras, L; Coursimault, A; Moilleron, R

    2014-08-01

    Phthalates and alkylphenols are toxics classified as endocrine disrupting compounds (EDCs). They are of particular concern due to their ubiquity and generally higher levels found in the environment comparatively to other EDCs. Industrial and domestic discharges might affect the quality of receiving waters by discharging organic matter and contaminants through treated waters and combined sewer overflows. Historically, industrial discharges are often considered as the principal vector of pollution in urban areas. If this observation was true in the past for some contaminants, no current data are today available to compare the quality of industrial and domestic discharges as regards EDCs. In this context, a total of 45 domestic samples as well as 101 industrial samples were collected from different sites, including 14 residential and 33 industrial facilities. This study focuses more specifically on 4 phthalates and 2 alkylphenols, among the most commonly studied congeners. A particular attention was also given to routine wastewater quality parameters. For most substances, wastewaters from the different sites were heavily contaminated; they display concentrations up to 1200 μg/l for di-(2-ethylhexyl) phthalate and between 10 and 100 μg/l for diethyl phthalate and nonylphenol. Overall, for the majority of compounds, the industrial contribution to the flux of contaminant reaching the wastewater treatment plants ranges between 1 and 3%. The data generated during this work constitutes one of the first studies conducted in Europe on industrial fluxes for a variety of sectors of activity. The study of the wastewater contribution was used to better predict the industrial and domestic contributions at the scale of a huge conurbation heavily urbanized but with a weak industrial cover, illustrated by Paris. Our results indicate that specific investigations on domestic discharges are necessary in order to reduce the release of phthalates and alkylphenols in the sewer systems

  16. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek

    Digital Repository Service at National Institute of Oceanography (India)

    Volvoikar, S.P.; Nayak, G.N.

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores...

  17. Comparative studies of utilization of industrial electron accelerators and adsorption with activated carbon for industrial effluent treatment

    International Nuclear Information System (INIS)

    Sampa, Maria Helena de O.; Rela, Paulo R.; Duarte, Celina Lopes; Las Casas, Alexandre; Mori, Manoel Nunes; Omi, Nelson M.

    2005-01-01

    A technical and economical feasibility study was performed comparing the use electron beam and activated charcoal for treatment of industrial wastewater. In this study was used synthetic solutions, prepared in laboratory with organic compounds standards, where the composition was focused on the critical organic contaminants usually presented in wastewater from petrochemical industry. For the sample irradiation was used an industrial electron beam from Radiation Dynamics Inc. 1.5 MeV - 37.5 kW setup in IPEN. The doses ranged from 5 kGy to 100 kGy. A common granulated activated charcoal in a fixed-bed absorber glass column was used to study the pollutants absorption performance. The results show that if the adequate irradiation dose was delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is, in aspect of organic removal efficiency, similar to the activated carbon process. (author)

  18. 40 CFR 439.37 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS PHARMACEUTICAL MANUFACTURING POINT SOURCE CATEGORY Chemical Synthesis... achieve the pretreatment standard for ammonia (as N). (b) The pretreatment standards for cyanide are as...

  19. Cadmium tolerance and bioremediation potential of bacteria isolated from soils irrigated with untreated industrial effluent

    International Nuclear Information System (INIS)

    Ahmad, R.; Hassan, M.M.U.

    2015-01-01

    The present study was aimed to investigate the Cd tolerance of bacteria isolated from municipal effluent irrigated soils. Thirty bacterial strains were isolated and screened for their Cd+ tolerance by growing on nutrient agar plates amended with varying amount of Cd +. Out of them four bacteria (GS 2, GS5, GS10 and GS20) were found highly Cd tolerant (600 ppm Cd). The minimum inhibitory concentration of Cd+ was found 200 ppm. The isolates showed optimum growth at 30 degree C and pH 7.5-8.5. Growth curve study against different concentrations of Cd (0-600 ppm) revealed that GS2 was more tolerant among selected strains showing only 33% reduction in growth compared to 64% by GS5 and 77% by both GS 10 and GS20 at 600 ppm Cd. Inoculation of maize seeds with Cd tolerant bacteria for root elongation demonstrated upto 1.7 fold increase in root elongation (in the absence of Cd) and up to 1.5 fold (in the presence of 50 ppm Cd) compared to the un-inoculated plants. The results of the study revealed that the bacterial isolates exhibiting great Cd tolerance and growth promoting activity can be potential candidates for bioremediation of metal contaminated soils and wastewaters. (author)

  20. p-Chlorophenol Oxidation in Industrial Effluent by Ultrasonic/Fenton Technology

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid Mohammadi

    2012-01-01

    Full Text Available Phenolic compounds have become a cause for of worldwide concern due to their persistence, toxicity and health risks. Hence, removal of these pollutants from aqueous effluents is an important practical problem. Ultrasonic technology may be used for water and wastewater treatment as an advanced oxidation process. Application of this technology, leads to the decomposition of many organic compounds during cavitation process. The degradation of 4-chlorophenol in aqueous solution under sonolysis at 45 kHz coupled with fFenton process was is investigated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, catalyst (FeSO4 and initial p-chlorophenol concentration. The experimental results showed that the decomposition of p-chlorophenol was affected by the various reaction conditions. The optimum conditions obtained for the best degradation rate were pH=3, H2O2 concentration of 0.05 mol/L and 0.025 mmol/L for catalyst, respectively. Also it was observed that the degradation of p-chlorophenol depended on its initial concentration

  1. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    International Nuclear Information System (INIS)

    Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J.

    2011-01-01

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm 2 current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m 3 depending on the operating conditions. Under optimal operating condition such as 15 mA/cm 2 current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m 3 . The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  2. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, R., E-mail: sridhar36k@yahoo.co.in [Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Sivakumar, V., E-mail: drvsivakumar@yahoo.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Prince Immanuel, V., E-mail: princeimmanuel79@yahoo.com [Department of Chemical Engineering, Erode Sengunthar Engineering College, Thudupathi, Erode 638057, TN (India); Prakash Maran, J., E-mail: prakashmaran@gmail.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India)

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m{sup 3} depending on the operating conditions. Under optimal operating condition such as 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m{sup 3}. The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  3. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Doan Thai Hoa

    2017-11-01

    Full Text Available The cost of raw materials continues to be a limiting factor in the production of bio-ethanol from traditional raw materials, such as sugar and starch. At the same time, there are large amount of agricultural residues as well as industrial wastes that are of low or negative value (due to costs of current effluent disposal methods. Dilute sulfuric acid pretreatment of elephant grass and wood residues for the enzymatic hydrolysis of cellulose has been investigated in this study.    Elephant grass (agricultural residue and sawdust (Pulp and Paper Industry waste with a small particulate size were treated using different dilute sulfuric acid concentrations at a temperature  of 140-170°C within 0.5-3 hours. The appropriate pretreatment conditions give the highest yield of soluble saccharides and total reducing sugars.

  4. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    Science.gov (United States)

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.

  5. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    Directory of Open Access Journals (Sweden)

    Marco A. García-Morales

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high content of color (5952 ± 76 Pt-Co, turbidity (1648 ± 49 FAU, and COD (3608 ± 250 mg/L. Therefore, enhanced performance could be achieved by combining pretreatment techniques to increase the efficiencies of the physical, chemical, and biological treatments. In the integrated process, there was a turbidity reduction of 96.1 ± 0.2% and an increase in dissolved oxygen from 3.8 ± 0.05 mg/L (inlet sand filtration to 6.05 ± 0.03 mg/L (outlet sand filtration after 120 min of treatment. These results indicate good water quality necessary for all forms of elemental life. Color and COD removals were 98.2 ± 0.2% and 39.02 ± 2.2%, respectively, during the electrocoagulation process (0.2915 mA/cm2 current density and 120 min of treatment. The proposed integrated process could be an attractive alternative of pretreatment of real wastewater to increase water quality of conventional treatments.

  6. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  7. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z.; Głuszewski, W. [Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2012-07-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  8. Laboratory and Feasibility Study for Industrial Wastewater Effluents Treatment by Radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Głuszewski, W.

    2012-01-01

    The study of wastewater treatment by radiation regarding chemical processes contribution and physical-chemical separation of highly concentrated non-organic pollutants deposited in specific industrial waste are proposed. Laboratory stand should be build and the study should be performed to confirm possible mechanism of the sedimentation process of nonorganic pollutants during separation initiated by ionizing radiation. Evaluation from technical and economical point of view of this specific radiation technology and feasibility study preparation for industrial facility will be the main output at the final stage of the project. (author)

  9. Application of a pneumatic flotation process for the treatment of oil-burdened industrial effluents

    International Nuclear Information System (INIS)

    Kinabo, C.

    1993-01-01

    Different industrial waste waters containing oil emulsions were investigated using pneumatic flotation techniques. The separation efficiency is determined by the zeta potential of the oil/water emulsion. The electrophoretic measurements indicated that, the iep of the emulsion lies within the region of pH 5. Within this pH region it was possible to reduce the oil mud to a minimum level from the waste water using flotation. The laboratory flotation results showed the rest oil concentration amounts to 0.2 and 0.01% depending on the loading grade of oil in the waste water. Applying an emulsion with an oil content of 12%, it was possible to achieve a product in industrial scale with a rest oil concentration of 0.08%. (orig.) [de

  10. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    Science.gov (United States)

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  11. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Joo [Department of Biobased Materials, College of Agriculture and Life Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Shin, Soo-Jeong [Department of Wood and Paper Science, College of Agriculture and Life Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2011-07-15

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using {sup 1}H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: {yields} The more severe degradation of structural components induced by higher irradiation. {yields} Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. {yields} Xylan was more sensitive to electron beam irradiation than cellulose.

  12. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    Sung, Yong Joo; Shin, Soo-Jeong

    2011-01-01

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1 H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  13. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    Science.gov (United States)

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production

    Science.gov (United States)

    Martin, Carlos; Alriksson, Björn; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122°C during 20, 40, or 60 min using 2% H2SO4 at a solid-to-liquid ratio of 1∶10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26-33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7-to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

  15. Aerobic granular SBR systems applied to the treatment of industrial effluents

    International Nuclear Information System (INIS)

    Rio, V. del; Figueroa, M.; Arrojo, B.; Mosquera-Corral, A.; Campos, J. L.; Garcia-Torriello, G.; Mendez, R.

    2009-01-01

    Systems based on aerobic granular biomass are an alternative to the conventional activated sludge plants for wastewater treatment. Large organic and nitrogen loads are treated in these systems where biomass grown as granules, easy to separate by setting, make unnecessary the construction of secondary settler reducing the surface requirements for the treatment system construction. Furthermore, in aerobic granular reactors simultaneously carbon and nitrogen removal is feasible. These systems have been already applied at laboratory scale for the treatment of different types of industrial and urban wastewater. (Author)

  16. Aerobic granular SBR systems applied to the treatment of industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Rio, V. del; Figueroa, M.; Arrojo, B.; Mosquera-Corral, A.; Campos, J. L.; Garcia-Torriello, G.; Mendez, R.

    2009-07-01

    Systems based on aerobic granular biomass are an alternative to the conventional activated sludge plants for wastewater treatment. Large organic and nitrogen loads are treated in these systems where biomass grown as granules, easy to separate by setting, make unnecessary the construction of secondary settler reducing the surface requirements for the treatment system construction. Furthermore, in aerobic granular reactors simultaneously carbon and nitrogen removal is feasible. These systems have been already applied at laboratory scale for the treatment of different types of industrial and urban wastewater. (Author)

  17. Pretreatment of worn waters of the dairy industry by sand filtration process

    International Nuclear Information System (INIS)

    Bouzid, H.; Derriche, Z.; Bettahar, N.

    2009-01-01

    The problem of the environment started to become a concern with the demographic increase and the industrial and agricultural development, especially in the great agglomeration, the relative increase out of water became a major concern. Water of the factories takes care of mineral substances and organics during manufacture and constitutes one of the principal sources of contamination of the environment. (Author)

  18. Organization of industrial application of academic research on biocatalytic pre-treatment processes of cotton

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Warmoeskerken, M.M.C.G. (Marijn)

    2011-01-01

    A lot of research effort is put in developing enzymatic treatment of textiles by focusing on the performance of enzymes on lab-scale. Despite all this work upgrading of these developments from lab-scale to industrial scale has not been really successful. Companies are nowadays confronted with rapid

  19. Biocatalytic pre-treatment processes of cotton : Industrial application of academic research

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Brinks, G.J. (Ger); Warmoeskerken, van M.M.C.G. (Marijn); Warmoeskerken, van M.M.C.G. (Marijn)

    2011-01-01

    Much research effort is invested in developing enzymatic treatments of textiles by focusing on the performance of enzymes at the laboratory scale. Despite all of this work, upgrading these developments from the laboratory scale to an industrial scale has not been very successful.Nowadays,companies

  20. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    Science.gov (United States)

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  2. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  3. Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects.

    Science.gov (United States)

    Brar, Amandeep; Kumar, Manish; Vivekanand, Vivek; Pareek, Nidhi

    2017-05-01

    Growth of the industrial sector, a result of population explosion has become the root cause of environmental deterioration and has raised the concerns for efficient wastewater management and reuse. Photoautotrophic cultivation of microorganisms is a boon and considered as a potential biological treatment for remediation of wastewater as it sequesters CO 2 during growth. Photoautotrophs viz. cyanobacteria, micro-algae and macro-algae can photosynthetically assimilate the excessive pollutants present in the wastewater. The present review emphasizes on the achievability of microorganisms to bestow wastewater as the nutrient source for biomass production, which can further be reused for feed, food and fertilizers. To support this, various case studies have been cited that prove phycoremediation as a cost-effective and sustainable process over conventional wastewater treatment processes that requires high chemical load and more energy inputs.

  4. Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.

    Science.gov (United States)

    Tayeb, A; Chellali, M R; Hamou, A; Debbah, S

    2015-09-15

    In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chemical pretreatment of continuous galvanized steel sheet in the automotive industry

    OpenAIRE

    Kuhm, P.

    2013-01-01

    Since several years, new products appeared on the market replacing classic phosphate – based conversioncoatings. This presentation will focus on the replacement of tricationic zinc phosphating systems for theautomotive industry. The basic chemistry and coating properties are presented.In the second part of the presentation, an outlook will be given on anti-corrosion packages for the comingdecade. An example of a very lean automotive paint shop will be discussed.

  6. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    Science.gov (United States)

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  7. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  8. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  9. Ecotoxicological assessment of the impact of fluoride (F-) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent.

    Science.gov (United States)

    Camargo, Julio A; Alonso, Álvaro

    2017-06-01

    We carried out field studies and laboratory experiments to assess the impact of fluoride (F - ) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent (the middle Duraton River, Central Spain). Fluoride concentrations and turbidity levels significantly increased downstream from the industrial effluent (with the highest values being 0.6 mg F - /L and 55.2 nephelometric turbidity unit). In addition, higher deposition of fine inorganic matter was evident at polluted sampling sites. Conversely, the abundance of P. acuta significantly declined (until its virtual disappearance) downstream from the industrial effluent. Toxicity bioassays showed that P. acuta is a relatively tolerant invertebrate species to fluoride toxicity, with estimated safe concentrations (expressed as LC 0.10 values for infinite hours of exposure) for juvenile and adult snails being 2.4 and 3.7 mg F - /L, respectively. Furthermore, juvenile snails (more sensitive than adult snails) did not show significant alterations in their behavior through 15 days of exposure to 2.6 mg F - /L: mean values of the proportion of test snails located on the water surface habitat, as well as mean values of the sliding movement rate (velocity) of test snails, never showed significant differences when comparing control and treatment glass vessels. It is concluded that instream habitat degradation, derived from increased turbidity levels, might be a major cause for significant reductions in the abundance of P. acuta downstream from the industrial effluent. The presence of the competing gastropod Ancylus fluviatilis could also affect negatively the recovery of P. acuta abundance.

  10. Aerosol ionization gas analyzer for continious detection of toxic compounds in industrial gaseous effluents

    International Nuclear Information System (INIS)

    Groze, Kh.; Dering, Kh.; Gleizberg, F.

    1979-01-01

    In is noted that the problem of the environment protection as well as protection of the personnel at their working places against influence of harmful substances in air, demands continious measuring of an increasing number of harmful substances with provision of high sensitivity and accuracy of measurements. The demands are listed to the gas analyzers developed for these purposes: flexibility towards solution of different problems of measurement; great number of the substances to be measured; acceptable threshold of determination of different substances concentration in air and small measurement error; simplicity of maintanance and technical service and high reliability in exploitation; economy of fabrication and application. The data are given for the aerosol ionization gas analyzer which, in many cases, met the requirements listed. In the gas analyzer described, the analysed substance is converted for measuring its concentration into an aerosol by means of the aerosol generator, especially designed for this substance or group of substances. The produced aerosol is introduced into an ionization chamber with build-in radiation source and caused decrease of the ionization current in it. According to the decrease of the ionization current, concentration of the harmful substance in air is determined. Characteristics and possibilities of the gas analyzer exploitation are given and discussed on the base of the results of determination of some harmful substances concentrations in air in the laboratory conditions and in the real conditions of industrial production and in the health protection system [ru

  11. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2008-01-01

    The level of heavy metal pollution in Singrauli, an industrial region in India, was assessed and the phytoremediation capacity of a small water fern, Azolla pinnata R.BR (Azollaceae), was observed to purify waters polluted by two heavy metals, i.e., mercury (Hg) and cadmium (Cd) under a microcosm condition. Azolla pinnata is endemic to India and is an abundant and easy-growing free-floating water fern usually found in the rice fields, polluted ponds, and reservoirs of India. The fern was grown in 24 40-L aquariums containing Hg2+ and Cd2+ ions each in concentrations of 0.5, 1.0, and 3.0 mgL(-1) during the course of this study. The study revealed an inhibition of Azolla pinnata growth by 27.0-33.9% with the highest in the presence of Hg (II) ions at 0.5 mgL(-1) in comparison to the control After 13 days of the experiment, metal contents in the solution were decreased up to 70-94%. In the tissues of Azolla pinnata, the concentration of selected heavy metals during investigation was recorded between 310 and 740 mgKg(-1) dry mass, with the highest levelfoundfor Cd (II) treatment at 3.0 mgL(-1) containing a metal solution.

  12. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    Science.gov (United States)

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.

  13. Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz

    2018-02-23

    We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Simultaneous Treatment of Agro-Industrial and Industrial Wastewaters: Case Studies of Cr(VI/Second Cheese Whey and Cr(VI/Winery Effluents

    Directory of Open Access Journals (Sweden)

    Triantafyllos I. Tatoulis

    2018-03-01

    Full Text Available Hexavalent chromium (Cr(VI was co-treated either with second cheese whey (SCW or winery effluents (WE using pilot-scale biological trickling filters in series under different operating conditions. Two pilot-scale filters in series using plastic support media were used in each case. The first filter (i.e., Cr-SCW-filter or Cr-WE-filter aimed at Cr(VI reduction and the partial removal of dissolved chemical oxygen demand (d-COD from SCW or WE and was inoculated with indigenous microorganisms originating from industrial sludge. The second filter in series (i.e., SCW-filter or WE-filter aimed at further d-COD removal and was inoculated with indigenous microorganisms that were isolated from SCW or WE. Various Cr(VI (5–100 mg L−1 and SCW or WE (d-COD, 1000–25,000 mg L−1 feed concentrations were tested. Based on the experimental results, the sequencing batch reactor operating mode with recirculation of 0.5 L min−1 proved very efficient since it led to complete Cr(VI reduction in the first filter in series and achieved high Cr(VI reduction rates (up to 36 and 43 mg L−1 d−1, for SCW and WW, respectively. Percentage d-COD removal for SCW and WE in the first filter was rather low, ranging from 14 to 42.5% and from 4 to 29% in the Cr-SCW-filter and Cr-WE-filter, respectively. However, the addition of the second filter in series enhanced total d-COD removal to above 97% and 90.5% for SCW and WE, respectively. The above results indicate that agro-industrial wastewater could be used as a carbon source for Cr(VI reduction, while the use of two trickling filters in series could effectively treat both industrial and agro-industrial wastewaters with very low installation and operational costs.

  15. The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain.

    Science.gov (United States)

    Gonzalo, Cristina; Camargo, Julio A

    2013-10-01

    This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F(-)L(-1)) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC₅₀ of 7.5 mg F(-)L(-1) and an estimated safe concentration of 0.56 mg F(-)L(-1). The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. 40 CFR 407.74 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Vegetables Subcategory § 407.74 Pretreatment standards for existing sources...

  17. 40 CFR 427.34 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.34 Pretreatment standards for existing sources. Any existing source subject to...

  18. 40 CFR 427.44 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.44 Pretreatment standards for existing sources. Any existing source subject to...

  19. 40 CFR 417.84 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.84 Pretreatment standards for existing sources. Any existing source...

  20. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    Science.gov (United States)

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  1. Tolerance of Myriophyllum aquaticum to exposure of industrial wastewater pretreatment with electrocoagulation and their efficiency in the removal of pollutants.

    Science.gov (United States)

    Cano-Rodríguez, Claudia Teodora; Roa-Morales, Gabriela; Amaya-Chávez, Araceli; Valdés-Arias, Ricardo Antonio; Barrera-Díaz, Carlos Eduardo; Balderas-Hernández, Patricia

    2014-01-01

    The wastewater used in this study was obtained from a treatment plant where it mixed with wastewater of 142 industries and was treated using electrocoagulation with iron electrode and phytoremediation with Myriophyllum aquaticum, likewise certain biomarkers of oxidative stress of the plant were evaluated to find out its resistance to contaminant exposure. Electrocoagulation was performed under optimum operating conditions at pH 8 and with a current density of 45.45 A m(-2) to reduce the COD by 42%, color 89% and turbidity 95%; the electrochemical method produces partial elimination of contaminants, though this was improved using phytoremediation. Thus the coupled treatment reduced the COD by 94%, color 97% and turbidity 98%. The exposure of M. aquaticum to electrocoagulated wastewater did not have an effect on the ratio of chlorophyll a/b (2.84 + 0.24); on the activity of SOD, CAT and lipoperoxidation. The results show the potential of M. aquaticum to remove contaminants from pretreated wastewater since the enzymatic system of the plants was not significantly affected.

  2. Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents.

    Science.gov (United States)

    Giustinianovich, Elisa A; Campos, José-Luis; Roeckel, Marlene D; Estrada, Alejandro J; Mosquera-Corral, Anuska; Val Del Río, Ángeles

    2018-03-01

    The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L -1 and 112 - 267 mg-TAN L -1 . The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 18.33 g-NaCl L -1 ; (B) direct application of high salt concentration (18 g-NaCl L -1 ). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L -1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 ± 0.007 g N/L·d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 ± 0.017 g-N L -1 d -1 was obtained with direct exposure of the inoculum to 18 g-NaCl L -1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L -1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biomass as blast furnace injectant – Considering availability, pretreatment and deployment in the Swedish steel industry

    International Nuclear Information System (INIS)

    Wang, Chuan; Mellin, Pelle; Lövgren, Jonas; Nilsson, Leif; Yang, Weihong; Salman, Hassan; Hultgren, Anders; Larsson, Mikael

    2015-01-01

    . The complete replacement of PC in BF M3 can reduce 17.3% of the total emissions from the Swedish steel industry

  4. Rapid analysis of effluents generated by the dairy industry for fat determination by preconcentration in nylon membranes and attenuated total reflectance infrared spectroscopy measurement.

    Science.gov (United States)

    Moliner Martínez, Y; Muñoz-Ortuño, M; Herráez-Hernández, R; Campíns-Falcó, P

    2014-02-01

    This paper describes a new approach for the determination of fat in the effluents generated by the dairy industry which is based on the retention of fat in nylon membranes and measurement of the absorbances on the membrane surface by ATR-IR spectroscopy. Different options have been evaluated for retaining fat in the membranes using milk samples of different origin and fat content. Based on the results obtained, a method is proposed for the determination of fat in effluents which involves the filtration of 1 mL of the samples through 0.45 µm nylon membranes of 13 mm diameter. The fat content is then determined by measuring the absorbance of band at 1745 cm(-1). The proposed method can be used for the direct estimation of fat at concentrations in the 2-12 mg/L interval with adequate reproducibility. The intraday precision, expressed as coefficients of variation CVs, were ≤ 11%, whereas the interday CVs were ≤ 20%. The method shows a good tolerance towards conditions typically found in the effluents generated by the dairy industry. The most relevant features of the proposed method are simplicity and speed as the samples can be characterized in a few minutes. Sample preparation does not involve either additional instrumentation (such as pumps or vacuum equipment) or organic solvents or other chemicals. Therefore, the proposed method can be considered a rapid, simple and cost-effective alternative to gravimetric methods for controlling fat content in these effluents during production or cleaning processes. © 2013 Published by Elsevier B.V.

  5. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity

    NARCIS (Netherlands)

    Beek, van T.A.; Kuster, B.; Claassen, F.W.; Tienvieri, T.; Bertaud, F.; Lennon, G.; Petit-Concil, M.; Sierra-Alvarez, R.

    2007-01-01

    Lipophilic low molar-mass constituents in wood chips for the paper industry result in low quality pulp, pitch deposition, and effluent toxicity. New biotechnological solutions such as fungal pre-treatment of wood chips can reduce pitch problems. This laboratory-scale study focuses on the potential

  6. Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Ng, Boon Junn; Juan, Joon Ching; Md Jahim, Jamaliah

    2016-01-01

    Highlights: • Ultrasonication pretreatment on R. sphaeroides enhanced biohydrogen production. • Pretreatment using amplitude 30% for 10 min gave the highest biohydrogen yield. • Pretreatment using amplitude 45% for 15 min inhibited biohydrogen production. - Abstract: Pulp and paper industry is a water-intensive industry. This industry commonly produces considerable amount of effluent, especially from virgin raw materials processing. The effluent, namely pulp and paper mill effluent has the potential to adversely affect the receiving watercourses. However, the nutrients in the pulp and paper mill effluent could be reused as a substrate in biohydrogen production. In this study, photofermentative biohydrogen production was investigated using Rhodobacter sphaeroides and pulp and paper mill effluent as a substrate. An application of low power ultrasound on R. sphaeroides was predicted to increase photofermentative biohydrogen production but excessive ultrasound effects might inhibit the production due to possible cell disruption. Hence, various ultrasonication duration (5, 10 and 15 min) and amplitude (15%, 30% and 45%) were applied on the bacteria to determine the recommended ultrasonication conditions for improving biohydrogen production. The recommended conditions were operated at ultrasonication amplitude and duration of 30% and 10 min, respectively. A maximum biohydrogen yield of 9.62 mL bioH_2/mL medium was obtained under this condition, which was 66.7% higher than the result obtained using R. sphaeroides without undergoing ultrasonication (control). The light efficiency and cell concentration were increased by 67% and 150%, respectively, using ultrasonication amplitude and duration of 30% and 10 min, respectively as compared to the control. The present results demonstrated that moderate power of ultrasonication applied on R. sphaeroides was an effective method for enhancing photofermentative biohydrogen production using raw pulp and paper mill effluent as a

  7. Industrial effluent costs in some Spanish regions and other parts of the EU. Canons and taxes of water treatment; El coste del vertido industrial en varias comunidades autonomas espanolas y en algunos territorios europeos. Los canones y tasas de depuracion

    Energy Technology Data Exchange (ETDEWEB)

    Grau Rahola, J.; Munoz Requena, A.; Ruaix Prat, T.

    2009-07-01

    In this article, the different systems existing in the Spanish regions for paying all the expense related to industrial effluents are examined and compared with the ones in use in other parts of the EU. Also, the degree of fulfillment of the economic objectives of the Water Framework Directives is determined. The findings are quite clear that there is a comparative disadvantage in the sense that some of the regions have not even regulated and instrument to ensure the principle of Who pollutes, pays, there is a widespread unequal treatment for the same type of effluent within Spain and there is clear evidence of a transfer of resources from the industrial use to the domestic one. (Author)

  8. Different techniques recently used for the treatment of textile dyeing effluents: a review

    International Nuclear Information System (INIS)

    Altaf, A.; Noor, S.; Sharif, Q.M.; Najeebullah, M.

    2010-01-01

    Industrial textile processing comprises the operation of pretreatment dyeing printing and finishing. These production processes produce a substantial amount of chemical pollution. Textile finishing's wastewater, especially dye house effluent, contain different classes of organic dyes, chemicals and auxiliaries. They are colored and have extreme pH, COD and BOD values, and contain different salts, surfactants heavy metals and mineral oils. Therefore, dye bath effluents have to be treated before being discharge into the environment or municipal wastewater reservoir. This paper presents the review of different techniques currently used for the treatment of textile effluent, which are based on carbon adsorption, filtration, chemical precipitation, photo degradation, biodegradation and electrolytic chemical treatment. Membrane Technology has also been applied with the objective of recovering dyes and water. Biological processes could be adopted as a pretreatment decolorization step, combined with conventional treatment system (eg. coagulation flocculation, adsorption on activated carbon) to reduce the COD and BOD, an effective alternative for use by the textile dyeing industries. Electrochemical oxidation is an efficient process for the removal of colour and total organic carbon in reactive dyes textile wastewater. The ozonation is effective for decolorization of several dyes of different classes. Practical application of this process is feasible by treating industrial textile effluent after biological treatment. Processes using membranes technique, very interesting possibilities of separating hydrolyzed dyestuffs, dyeing auxiliaries and reuse treated wastewater in different finishing operation of textile industries. (author)

  9. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  11. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    Science.gov (United States)

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D M; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  14. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D.M.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  15. Economic benefits of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    The report provides an overview of the benefits analysis of the effluent limitation guidelines for offshore oil and gas facilities. Regulatory options were evaluated for two wastestreams: (1) drilling fluids (muds) and cuttings; and (2) produced water. The analysis focuses on the human health-related benefits of the regulatory options considered. These health risk reduction benefits are associated with reduced human exposure to various carcinogenic and noncarcinogenic contaminants, including lead, by way of consumption of shrimp and recreationally caught finfish from the Gulf of Mexico. Most of the health-risk reduction benefits analysis is based upon a previous report (RCG/Hagler, Bailly, January 1991), developed in support of the proposed rulemaking. Recreational, commercial, and nonuse benefits have not been estimated for these regulations, due to data limitations and the difficulty of estimating these values for effluent controls in the open-water marine environment

  16. Determination of Kr-85 in environmental samples and gaseous effluents from nuclear industries using the standard method

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.

    1983-01-01

    The determination of the Kr-85 activity in environmental samples and gaseous effluents from Spanish Nuclear Power Stations is described. The method employed has been published elsewhere. The determinations has been carried out in environmental samples token at JEN Laboratories (Madrid) and the Nuclear Power Stations, Jose Cabrera (Zorita), Garona and Vandellos. Also samples of gaseous effluents of the three plants has been analyzed. Values of the Kr-85 environmental background activity in the Almaraz Nuclear Power Stations, has been determined, before the beginning of its nuclear activity. In this paper the sampling equipment used is described and the values found of Kr-85 activity in all the samples in given. (Author) 29 refs

  17. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay

    Energy Technology Data Exchange (ETDEWEB)

    Schiliro, Tiziana, E-mail: tiziana.schiliro@unito.it [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Porfido, Arianna [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Spina, Federica; Varese, Giovanna Cristina [Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino (Italy); Gilli, Giorgio [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy)

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17{beta}-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35 {+-} 1.68 ng/L pre-ozonation and 0.72 {+-} 0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18 {+-} 3.54 ng/L pre-ozonation and 2.53 {+-} 2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p < 0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67 {+-} 26% and 52 {+-} 27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S = 0.650, p = 0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms. -- Highlights: Black-Right-Pointing-Pointer The two in vitro tests are suited for oestrogenic activity assessment in textile WWTP. Black-Right-Pointing-Pointer There is a significant correlation between the results of the two in vitro tests. Black-Right-Pointing-Pointer The oestrogenic activity of the effluent is reduced by ozonation. Black-Right-Pointing-Pointer The input of estrogenic substances into the river via textile WWTP is low.

  18. Pilot Control of Viscous Bulking in the Activated Sludge Treatment of Industrial Effluent from Soft Drink Plants

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Esfahani

    2007-06-01

    Full Text Available Viscous bulking is a typical problem arising in activated sludge facilities treating effluent from soft drink plants. The drawbacks associated with this phenomenon include increased effluent organic loading and undesirable sludge settlement. In order to investigate this phenomenon, a soft drink factory was selected as a pilot plant for a case study (where metal tanks were used as a biological selector, an aeration basin, and a clarifier. The study shows that the major causes of viscous bulking are high organic loading and undesirable ratio of monovalent to divalent cations. In the biological selector (with a retention time of 20 hours, while the organic load in the influent to the aeration basin decreased by about 50%, with an impact on reduced viscous bulking, pH value decreased from 12 to 6.5 due to fatty acids production. Adjustment of Na/Ca ratio improved bacterial surface hydrophobicity and prevented degradation of biological flocs. This resulted in improved sludge settleability. Application of this method improved sludge settling, made flocs stronger, and reduced effluent organic load (COD to less than 150 mg/l, indicating stability of the system.

  19. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe{sub 3}O{sub 4}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena [Centre for Nanosciences, Central University of Gujarat, Gandhainagar-382030 (India); Pathak, Bhawana; Fulekar, M. H., E-mail: mhfulekar@yahoo.com [School of Environment and Sustainable Development, Central University of Gujarat, Gandhainagar-382030 (India)

    2016-04-13

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved to be

  20. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, V

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  1. Assessment of industrial liquid waste management in Omdurman Industrial Area

    International Nuclear Information System (INIS)

    Elnasri, R. A. A.

    2003-04-01

    This study was conducted mainly to investigate the effects of industrial liquid waste on the environment in the Omdurman area. Various types of industries are found around Omdurman. According to the ISC the major industries are divided into eight major sub-sectors, each sub-sector is divided into types of industries. Special consideration was given to the liquid waste because of its effects. In addition to the available data, personal observation supported by photographs, laboratory analyses were carried on the industrial effluents. The investigated parameters in the analysis were, BOD, COD, O and G, Cr, TDS, TSS, pH, temp and conductivity. Interviews were conducted with waste handling workers in the industries, in order to assess the effects of industrial pollution. The results obtained showed that pollutants produced by all the factories were found to exceed the accepted levels of the industrial pollution control. The effluents disposed of in the sites allotted by municipal authorities have adverse effects on the surrounding environment and public health and amenities. Accordingly the study recommends that the waste water must be pretreated before being disposed of in site allotted by municipal authorities. Develop an appropriate system for industrial waste proper management. The study established the need to construct a sewage system in the area in order to minimize the pollutants from effluents. (Author)

  2. Assessment of industrial liquid waste management in Omdurman Industrial Area

    Energy Technology Data Exchange (ETDEWEB)

    Elnasri, R A. A. [Institute of Environmental Studies, University of Khartoum, Khartoum (Sudan)

    2003-04-15

    This study was conducted mainly to investigate the effects of industrial liquid waste on the environment in the Omdurman area. Various types of industries are found around Omdurman. According to the ISC the major industries are divided into eight major sub-sectors, each sub-sector is divided into types of industries. Special consideration was given to the liquid waste because of its effects. In addition to the available data, personal observation supported by photographs, laboratory analyses were carried on the industrial effluents. The investigated parameters in the analysis were, BOD, COD, O and G, Cr, TDS, TSS, pH, temp and conductivity. Interviews were conducted with waste handling workers in the industries, in order to assess the effects of industrial pollution. The results obtained showed that pollutants produced by all the factories were found to exceed the accepted levels of the industrial pollution control. The effluents disposed of in the sites allotted by municipal authorities have adverse effects on the surrounding environment and public health and amenities. Accordingly the study recommends that the waste water must be pretreated before being disposed of in site allotted by municipal authorities. Develop an appropriate system for industrial waste proper management. The study established the need to construct a sewage system in the area in order to minimize the pollutants from effluents. (Author)

  3. Removal of micropollutants during physicochemical pretreatment of Hospital Wastewater

    International Nuclear Information System (INIS)

    Suarez, S.; Omil, F.; Lema, J. M.

    2009-01-01

    The fate and occurrence of micro-pollutants, such as pharmaceuticals, hormones or cosmetic ingredients, has attracted an increasing attention in environmental research. The main sources for such compounds in the environment include domestic sewage. hospital effluents and discharges from the pharmaceutical manufacturing industry. The aim of the presented work was to analyse the efficiency of coagulation-flocculation and flotation processes for the pre-treatment of hospital wastewaters, focusing on the removal of 12 Pharmaceutical and Personal Care Products (PPCPs), including musk fragrances, anti-epileptics, tranquillisers, anti-inflammatory drugs, antibiotics and one iodinated contras media. (Author)

  4. Removal of micropollutants during physicochemical pretreatment of Hospital Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.; Omil, F.; Lema, J. M.

    2009-07-01

    The fate and occurrence of micro-pollutants, such as pharmaceuticals, hormones or cosmetic ingredients, has attracted an increasing attention in environmental research. The main sources for such compounds in the environment include domestic sewage. hospital effluents and discharges from the pharmaceutical manufacturing industry. The aim of the presented work was to analyse the efficiency of coagulation-flocculation and flotation processes for the pre-treatment of hospital wastewaters, focusing on the removal of 12 Pharmaceutical and Personal Care Products (PPCPs), including musk fragrances, anti-epileptics, tranquillisers, anti-inflammatory drugs, antibiotics and one iodinated contras media. (Author)

  5. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  6. Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    International Nuclear Information System (INIS)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge; Hioka, Noboru

    2009-01-01

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO 2 ) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m -2 , 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO 2 /H 2 O 2 (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L -1 TiO 2 and 10 mmol L -1 H 2 O 2 shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L -1 for the sample from the factory, 160 mg L -1 after EC and 50 mg L -1 after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification

  7. Combined electrocoagulation and TiO{sub 2} photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil)], E-mail: nhioka2@yahoo.com.br

    2009-02-15

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO{sub 2}) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m{sup -2}, 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO{sub 2}/H{sub 2}O{sub 2} (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L{sup -1} TiO{sub 2} and 10 mmol L{sup -1} H{sub 2}O{sub 2} shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L{sup -1} for the sample from the factory, 160 mg L{sup -1} after EC and 50 mg L{sup -1} after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification.

  8. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    Science.gov (United States)

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.

  9. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    Science.gov (United States)

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  10. CONCAWE effluent speciation project

    Energy Technology Data Exchange (ETDEWEB)

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  11. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newly designed free electrolytic diffusion approach

    International Nuclear Information System (INIS)

    Ahmed, Sheikh Asrar; Qadir, Muhammad Abdul; Zafar, Muhammad Nadeem; Hussain, Ishtiaq; Tufail, Shahid; Rashid, Saima; Shah, Hamid Ali

    2008-01-01

    The present work deals with the development of a newly designed free electrolytic diffusion approach (the distribution of charge over microelectrodes) for the purification of metals and was successfully applied for the purification of nickel from the industrial effluent containing high proportion of nickel. Atomic absorption spectrophotometer (AAS) analyzed the purified nickel deposited on working microelectrodes. The results obtained show that the purity of nickel was enhanced from 95% to 99.9% with traces of copper etc. It was concluded that distribution of charge over the microcathodes at a rate of 50 cycles per second (cps) shows better results for the production of high purity (HP) nickel as compared to 25 cycles per second (cps)

  12. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newly designed free electrolytic diffusion approach

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sheikh Asrar; Qadir, Muhammad Abdul [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan); Zafar, Muhammad Nadeem [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan)], E-mail: znadeempk@yahoo.com; Hussain, Ishtiaq [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan); Tufail, Shahid [PCSIR Laboratories Complex, Feroz pur Road, Lahore (Pakistan); Rashid, Saima; Shah, Hamid Ali [Institute of Chemistry, University of the Punjab, Lahore, 54590 (Pakistan)

    2008-09-15

    The present work deals with the development of a newly designed free electrolytic diffusion approach (the distribution of charge over microelectrodes) for the purification of metals and was successfully applied for the purification of nickel from the industrial effluent containing high proportion of nickel. Atomic absorption spectrophotometer (AAS) analyzed the purified nickel deposited on working microelectrodes. The results obtained show that the purity of nickel was enhanced from 95% to 99.9% with traces of copper etc. It was concluded that distribution of charge over the microcathodes at a rate of 50 cycles per second (cps) shows better results for the production of high purity (HP) nickel as compared to 25 cycles per second (cps)

  13. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  14. Effect of alkaline and acidic fractions of industrial effluents on some lymphoid cells of the fish Rasbora daniconius

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth, T K; Balasubramanian, N K; John, P A

    1981-01-01

    The percentage frequency of the different types of lymphoid cell found in the head-kidney of Rasbora daniconius exposed for 24 h to lc/sub 50/ levels of the ammonia (alkali), phosphoric and sulphuric acid fractions of the effluent from a fertiliser factory was determined by the imprint method. 'T' tests showed that both the alkaline and the acidic fractions could significantly affect the composition of the lymphoid cell population. Different types of lymphoid cell reacted differently to the different fractions; some cell types increased in number while others decreased. Some cell types were not affected. This indicated some sort of specificity in the action of the fractions on the lymphoid cells.

  15. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Steam Cleaning Effluent Ponds

    International Nuclear Information System (INIS)

    1996-02-01

    This plan presents the strategy for the characterization of the Area 6 South and North Steam Cleaning Effluent Ponds (SCEPs) at the Nevada Test Site (NTS) to be conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration Division (ERD). The purposes of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste (IDW). The scope of the characterization may include excavation, drilling, and sampling of soil in and around both ponds; sampling of the excavated material; in situ sampling of the soil at the bottom and on the sides of the excavations as well as within subsurface borings; and conducting sample analysis for both characterization and waste management purposes. Contaminants of concern include RCRA-regulated VOCs and metals

  16. Anaerobic digestion of organic by-products from meat-processing industry. The effect of pre-treatments and co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.

    2011-07-01

    Anaerobic digestion is a multi-beneficial biological treatment during which micro-organisms degrade organic material producing biogas (i.e. methane) and stabilised end-product (i.e. digestate). Methane is a versatile renewable energy source and digestate can be used as an organic fertiliser and/or soil improver. Because of the increasing consumption and tightening environment and health legislation, production of organic wastes suitable for anaerobic digestion increases. Animal by-products (ABP) from the meat-processing industry are often rendered (contaminated material), used as feedstock (in fur breeding), or composted. However, ABPs studied could not be utilised in fodder or in animal food production and have currently been rendered or directed to composting, despite being mostly considered unsuitable for composting. Many ABPs are energy-rich, wet and pasty materials and suitable for the anaerobic digestion process. Moreover, suitable pre-treatment to hydrolyse solid materials and/or co-digestion of two or several materials may improve the anaerobic digestion with ultimate goal to increase the methane production, stabilisation and reusability of digestate. The case chosen for more detailed research was that of a middle-sized Finnish meat-processing industry. The aim of the thesis was to evaluate the feasibility of different ABPs presently available for treatment as raw material for anaerobic digestion. Another objective was to enhance the anaerobic digestion process via specific pre-treatments and co-digestion cases with the ultimate aim to increase the methane production and the quality of the digestate. The general goal was to observe the overall process from the perspective of real-circumstances in Finland to rise to needs in practice and to produce exploitable information for adopting sustainable development locally and case-specifically into practice via versatile anaerobic digestion technology. The ABPs studied were highly bio-degradable and especially

  17. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study; Tratamento de efluentes industriais utilizando a radiacao ionizante de acelerador industrial de eletrons e por adsorcao com carvao ativado. Estudo comparativo

    Energy Technology Data Exchange (ETDEWEB)

    Las Casas, Alexandre

    2004-07-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  18. Characterization of tuna cooking effluents generated in seafood canning industries; Caracterizacion de los efluentes de coccion de atum generados en la industrias conserveras de productos marinos

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Paz, D.; Torres Ayaso, A. B.; Vieites Baptista de Sousa, J. M.

    2006-07-01

    Tuna cooking effluents from different factories were analyzed, in this work. It has been analyzed effluents form water cooking and steam cooking processes. Steam cooking effluents are more appropriate for protein recovery due to the higher protein concentrations (up to 10 g/l, in some cases) and lower volume. Besides, steam cooking effluents, chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) were up to 50 and 5 g/l, respectively. Different correlations between the main parameters the main parameters have been found, for example protein and TKN concentrations of a tuna cooking effluent can be estimated from COD concentrations. (Author) 9 refs.

  19. Evaluation of Adsorption Capacity of Chitosan-Citral Schiff Base for Wastewater Pre-Treatment in Dairy Industries

    Directory of Open Access Journals (Sweden)

    Desislava K. Tsaneva

    2017-06-01

    Full Text Available In this study, we aimed to evaluate the adsorption capacity of the Schiff base chitosan-citral for its application in dairy wastewater pre-treatment. Chemical oxygen demand (COD reduction was the factor used to evaluate the adsorption efficiency. The maximum COD percentage reduction of 35.3% was obtained at 40.0 °C, pH 9.0, adsorbent dose 15 g L-1, contact time 180 min and agitation speed 100 rpm. It was found that the Langmuir isotherm fitted well the equilibrium data of COD uptake (R2 = 0.968, whereas the kinetic data were best fitted by the pseudo-second order model (R2=0.999. Enhancement of the adsorption efficiency up to 29.8% in dependence of the initial COD concentration of the dairy wastewater was observed by adsorption with the Schiff base chitosan-citral adsorbent compared to the non-modified chitosan at the same experimental conditions. The results indicated that the Schiff base chitosan-citral can be used for dairy wastewater physicochemical pretreatment by adsorption, which might be applied before the biological unit in the wastewater treatment plant to reduce the load.

  20. Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation.

    Science.gov (United States)

    Pérez, J F; Llanos, J; Sáez, C; López, C; Cañizares, P; Rodrigo, M A

    2017-06-15

    Wastewater produced in pharmaceutical manufacturing plants (PMPs), especially the one coming from organic-synthesis facilities, is characterized by its large variability due to the wide range of solvents and chemical reagents used in the different stages of the production of medicines. Normally, the toxicity of the organic compounds prevent the utilization of biological processes and more powerful treatments are needed becoming advanced oxidation processes (AOPs) a valid alternative. In this work, the efficiency in abatement of pollution by Fenton oxidation (FO) and conductive-diamond electro-oxidation (CDEO) are compared in the treatment of 60 real effluents coming from different processes carried out in a pharmaceutical facility, using standardized tests. In 80% of the samples, CDEO was found to be more efficient than FO and in the remaining 20%, coagulation was found to exhibit a great significance in the COD abatement mechanism during FO, pointing out the effectiveness of the oxidation promoted by the electrochemical technology. Mean oxidation state of carbon was found to be a relevant parameter to understand the behavior of the oxidation technologies. It varied inversely proportional to efficiency in FO and it showed practically no influence in the case of CDEO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    Science.gov (United States)

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  2. Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L. and Determination of Phenolic Compounds in Textile Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Rafael Souza Antunes

    2018-05-01

    Full Text Available In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo (Genipa americana L. fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r2 = 0.9982 and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.

  3. Toxicity Identification Evaluation (TIE) of Belford Roxo industrial plant effluent and its contribution in water quality of downstream of Sarapui River, Iguacu River sub-basin, Baia da Guanabara Basin, RJ, Brazil

    International Nuclear Information System (INIS)

    Pires, Luiz Eduardo Botelho

    2006-01-01

    The quality of Belford Roxo Industrial Plant effluent and water from Sarapui River were evaluated with Daphnia similis, Ceriodaphnia dubia and Danio rerio acute and chronic toxicity tests. In association with the ecotoxicological monitoring, the Toxicity Identification Evaluation procedure were performed and the identification of the toxic compounds was possible. The Chloride ion was identified as the major toxic compound in the effluent with additional effects of Metals, Ammonium and Sulfide. For the Sarapui River, the compounds of Phosphorus and Nitrogen were identified as the major toxic compounds with addictive effects of Metals, Ammonium and Sulfide. Although the environmental impact estimation based on the effluent toxicity suggests a minor impact on the water quality of Sarapui River, this was already sufficiently contaminated to make impracticable the establishment of an aquatic community. The constant discharge of untreated sludge promotes the eutrophication of this water body and makes impossible the equilibrium of this ecosystem. (author)

  4. Improving photofermentative biohydrogen production by using intermittent ultrasonication and combined industrial effluents from palm oil, pulp and paper mills

    International Nuclear Information System (INIS)

    Budiman, Pretty Mori; Wu, Ta Yeong; Ramanan, Ramakrishnan Nagasundara; Md Jahim, Jamaliah

    2017-01-01

    Highlights: • Intermittent ultrasonication onto broth improved biohydrogen production. • A20T10 treatment produced 14.438 mL H_2/mL_m_e_d_i_u_m with 7.412% light efficiency. • Excessive ultrasonication (>306.1 J/mL) inhibited biohydrogen production. - Abstract: An ultrasonication technique was applied intermittently onto photofermentation broth during the first six hours of photofermentation to improve biohydrogen production by using Rhodobacter sphaeroides NCIMB8253. In this research, photofermentation broth consisted of a combination of palm oil (25%, v/v), pulp and paper (75%, v/v) mill effluents as well as liquid inoculum. The effects of amplitude (10, 20 and 30%, A) and ultrasonication duration (5, 10 and 15 min, T) were investigated in terms of their influences on photofermentative biohydrogen yield and total chemical oxygen demand (COD_t_o_t_a_l) removal. The recommended ultrasonication parameters were found at the middle range of amplitude and duration (A20T10). Using A20T10 intermittent treatment, the production of biohydrogen could be maximized up to 14.438 mL H_2/mL_m_e_d_i_u_m with a COD_t_o_t_a_l removal and light efficiency of 52.2% and 7.412%, respectively. By comparing the treatment without intermittent ultrasonication, an increase of biohydrogen yield by 44.6% was achieved in A20T10 treatment. A total energy input of 306.1 J/mL (A20T10 treatment) was supplied to improve substrate consumption and light distribution during the photofermentation, which led to the increase of biohydrogen yield.

  5. Automated gravimetric sample pretreatment using an industrial robot for the high-precision determination of plutonium by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Surugaya, Naoki; Hiyama, Toshiaki; Watahiki, Masaru

    2008-01-01

    A robotized sample-preparation method for the determination of Pu, which is recovered by extraction reprocessing of spent nuclear fuel, by isotope dilution mass spectrometry (IDMS) is described. The automated system uses a six-axis industrial robot, whose motility is very fast, accurate, and flexible, installed in a glove box. The automation of the weighing and dilution steps enables operator-unattended sample pretreatment for the high-precision analysis of Pu in aqueous solutions. Using the developed system, the Pu concentration in a HNO 3 medium was successfully determined using a set of subsequent mass spectrometric measurements. The relative uncertainty in determining the Pu concentration by IDMS using this system was estimated to be less than 0.1% (k=2), which is equal to that expected of a talented analysis. The operation time required was the same as that for a skilled operator. (author)

  6. Effluent standards

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  7. Analytical strategies for uranium determination in natural water and industrial effluents samples; Estrategias analiticas para determinacao de uranio em amostras de aguas e efluentes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Juracir Silva

    2011-07-01

    The work was developed under the project 993/2007 - 'Development of analytical strategies for uranium determination in environmental and industrial samples - Environmental monitoring in the Caetite city, Bahia, Brazil' and made possible through a partnership established between Universidade Federal da Bahia and the Comissao Nacional de Energia Nuclear. Strategies were developed to uranium determination in natural water and effluents of uranium mine. The first one was a critical evaluation of the determination of uranium by inductively coupled plasma optical emission spectrometry (ICP OES) performed using factorial and Doehlert designs involving the factors: acid concentration, radio frequency power and nebuliser gas flow rate. Five emission lines were simultaneously studied (namely: 367.007, 385.464, 385.957, 386.592 and 409.013 nm), in the presence of HN0{sub 3}, H{sub 3}C{sub 2}00H or HCI. The determinations in HN0{sub 3} medium were the most sensitive. Among the factors studied, the gas flow rate was the most significant for the five emission lines. Calcium caused interference in the emission intensity for some lines and iron did not interfere (at least up to 10 mg L{sup -1}) in the five lines studied. The presence of 13 other elements did not affect the emission intensity of uranium for the lines chosen. The optimized method, using the line at 385.957 nm, allows the determination of uranium with limit of quantification of 30 {mu}g L{sup -1} and precision expressed as RSD lower than 2.2% for uranium concentrations of either 500 and 1000 {mu}g L{sup -1}. In second one, a highly sensitive flow-based procedure for uranium determination in natural waters is described. A 100-cm optical path flow cell based on a liquid-core waveguide (LCW) was exploited to increase sensitivity of the arsenazo 111 method, aiming to achieve the limits established by environmental regulations. The flow system was designed with solenoid micro-pumps in order to improve mixing and

  8. 40 CFR 407.64 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Fruits Subcategory § 407.64 Pretreatment standards for existing sources. Any...

  9. Ultratrace Determination of Cr(VI and Pb(II by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Jameel Ahmed Baig

    2013-01-01

    Full Text Available Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI and lead (Pb(II by dispersive liquid-liquid microextraction (DLLME using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS. For the current study, ammonium pyrrolidine dithiocarbamate (APDC, carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI and Pb(II were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, were 96%. The proposed method was successfully applied to the determination of Cr(VI and Pb(II at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.

  10. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    International Nuclear Information System (INIS)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-01-01

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l -1 to 8 mg TPH l -1 . Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  11. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    Science.gov (United States)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  13. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    Science.gov (United States)

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    Science.gov (United States)

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected.

  15. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.

    Science.gov (United States)

    Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina

    2010-04-01

    The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.

  16. Remediação de efluentes derivados da indústria de papel e celulose: tratamento biológico e fotocatalítico Remediation of effluents from paper and cellulose industry: biological and photocatalytic treatment

    Directory of Open Access Journals (Sweden)

    P. Peralta-Zamora

    1997-04-01

    Full Text Available The contribution of the industrial activities to the environmental contamination phenomena is evident. Great efforts are dedicated to the establishment of methodologies which permits an adequate treatment of the produced effluents, as a manner of minimizing the environmental impact of these wastes. The methodologies based on photocatalytic processes are very promise alternatives, because permits degradation of a great number of chemical substances of high toxic potential, without the use of other chemicals. The present work is an overview about the principal environmental aspects related with the paper and cellulose industry and the main alternatives employed for the reduction of environmental impact produced for its residues. The principal results of the photocatalytic treatment of this kind of effluents using metallic semiconductors is also showed.

  17. Decree no 96-761 from August 27, 1996 authorizing the company for industrial wastes and effluents conditioning to create a basic nuclear installation, named Centraco, in the town of Codolet (Gard department)

    International Nuclear Information System (INIS)

    Juppe, A.; Borotra, F.; Lepage, C.

    1996-01-01

    This decree from the French prime minister, the minister of environment and the minister of industry and postal services gives permission to the Socodei company to create a basic nuclear installation, named Centraco, in the town of Codolet (Gard department, France) for the selection, decontamination, valorization, treatment and conditioning of low radioactive effluents and wastes from French and foreign industries. The decree describes the Centraco installation (buildings, incineration and storage unit, maintenance unit). It summarizes the technical rules which must be applied concerning the quality assurance, the protection against risks of radioactive or chemical materials dissemination, the personnel and public protection against ionizing radiations, the control of environmental pollution with liquid and gaseous effluents, the reduction of volume and radioactivity of solid wastes, the transport and handling of radioactive materials, the protection against earthquakes and fire, the safety systems for plant operation, and the personnel training. (J.S.)

  18. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Tanmay Sanyal

    2015-11-01

    Full Text Available Accumulation of chromium (Cr was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2 and riverine resources (S3 & S4 showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1. Fish specimens collected from the polluted sites (S3 & S4 of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1 during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1 and gut of G. giuris (123.7 μg g−1 during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1 while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1 in different tissues except in gill (64.4 μg g−1.

  19. The status of wastewater management in Shokuhieh industrial park (A case study of Qom province

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2015-12-01

    Full Text Available Background: Water resource management is a strategic issue in Qom city. Water scarcity is one of the most critical concerns of industrial estates. This study aimed to evaluate wastewater management in the Shokuhieh industrial park of Qom province in 2013. Methods: This is a descriptive cross-sectional study done by visiting the industrial units in person, completing questionnaires and analyzing the results. The questionnaire had 25 questions, including general information, the status of water supply, treatment and consumption, wastewater production, reuse or discharge of produced wastewater and the status of wastewater treatment and discharge of effluent. The industrial units evaluated were active with over 50 personnel and numbered 44 in total. Results: The water suppliers in the industries included network (70.5%, network and reverse osmosis (RO (22.5%, network and tanker (2.4% and tanker (4.6%. 63.63% of the industries had water treatment systems. 19.5% reused wastewater and 31.8% performed pretreatment before discharge of wastewater. The discharge sites of water treatment units’ effluent included the absorption well (17%, greenbelt (18% and sewer (65%. Discharge sites of sanitary wastewater in 50% of the industries was sewer and in 50%, it was absorption well. The discharge sites of processed wastewater was reuse (2%, sewer (52% and absorption well (46%. Discharge sites of exiting effluent from pretreatment units in the industrial park, included sewer (85.5%, transport by tanker (7.1% and absorption well (7.1%. The type of pretreatment process in 35.7% of the industries was chemical and in 64.3%, it was septic tank. Conclusion: The results of this study showed that pre-treatment is not done in most industries and wastewater reuse is performed in few industries. The main method of wastewater disposal in industries was by discharge into the sewer and absorbent well.

  20. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    Science.gov (United States)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  1. Investigation of hydrogenase molecular marker to optimize hydrogen production from organic wastes and effluents of agro-food industries [abstract

    Directory of Open Access Journals (Sweden)

    Hamilton, C.

    2010-01-01

    Full Text Available In recent years policy makers have started looking for alternatives to fossil fuels, not only to counter the threat of global warming, but also to reduce the risk of overdependence on imported oil and gas supplies. By contrast with hydrocarbon fuels, hydrogen (H2, whether burned directly or used in fuel cells, is intrinsically a clean energy vector with near zero emission. However the main current method of producing hydrogen, steam reforming of methane, involves the release of large quantities of greenhouse gases. So although hydrogen already accounts for around 2% of world consumption of energy, its more widespread adoption is limited by several challenges. Therefore new processes are investigated, especially those using renewable raw material, e.g. woods and organic wastes, and/or involving microorganisms. Indeed, for some algae and bacteria, the generation of molecular hydrogen is an essential part of their energy metabolism. The approach with the greatest commercial potential is fermentative hydrogen generation (dark fermentation by bacteria from the Clostridium genus. This biological process, as a part of the methane-producing anaerobic digestion process, is very promising since it allows the production of hydrogen from a wide variety of renewable resources such as carbohydrate waste from the agricultural and agro-food industries or processed urban waste and sewage. To date most publications on hydrogen production by Clostridium strains have focused on the effects of operating parameters (such as temperature, pH, dilution rate, etc.. We now need to extend this knowledge by identifying and monitoring the various different metabolic agents involved in high H2 activity. Consequently the aim of this research at the CWBI in the University of Liege is to investigate the role of [Fe] hydrogenases, the key enzymes that remove excess electrons accumulating during fermentation. Clostridium butyricum CWBI1009, the strain used for these investigations

  2. Upflow anaerobic sludge reactors for the treatment of combined industrial effluent in subtropical conditions: a comparison between UASB and UASF reactors

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.; Masood, T.; Yaqub, A.

    2005-01-01

    The performance of anaerobic biological process is heavily process conditions dependent. In this study, an attempt has been made to investigate the influence of process conditions like temperature, sludge age and hydraulic retention time (HRT) on the efficiency of an upflow anaerobic sludge blanket (UASB) reactor and upflow anaerobic sludge filter (UASF) to treat combined industrial wastewater. Reactors were operated at easing ambient temperatures (38, 30, 20 and 14 deg. C) and correspondingly increasing sludge ages (60, 90, 120 and 150 days). At temperature 38 deg. C and sludge age of 60 days, UASF showed better performance than VASE reactor. This mainly due to the enhanced filtration through well-graded sand filter and fairly good biological activity in UASF. At this stage, lack of sludge granulation in VASE reactor resulted in poor biological activity; hence, relatively poor performance. At temperatures 30 and 20 deg. C with sludge ages of 90 and 120 days, respectively, UASB gave better results than UASF. The reason was rapid biological degradation due to proper sludge granulation and favorable temperature. At temperature 14 deg. C, a substantial decrease in the efficiency of UASB reactor as compared to the UASF was evident. Drop in efficiency was because of inhabitation of methanogenic bacteria and liquidation of sludge granules. These factors mounted to a decrease in biological activity, stoppage as production and an increase in total suspended solids (TSS) in the effluent. The influence of hydraulic retention time (ranging between 3-12 hours at an increment of 3 hours) on the removal efficiency of both UASB and UASF was not significant. At favorable temperature (20 to 30 deg. C) and sludge age (90 to 120 days) UASB reactor appeared to be more efficient than UASF.(author)

  3. 40 CFR 406.26 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 406.26 Section 406.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling Subcategory § 406.26 Pretreatment...

  4. 40 CFR 406.16 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 406.16 Section 406.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory § 406.16 Pretreatment...

  5. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  6. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    Science.gov (United States)

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  7. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    Science.gov (United States)

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  8. Study of whole effluent acute toxicity test (Daphnia magna as an evaluation of Ministry of Environment and Forestry Decree No. 3 In 2014 concerning industrial performance rank in environmental management

    Directory of Open Access Journals (Sweden)

    Rohmah Neng

    2018-01-01

    Full Text Available Only 15% of the industries in Citarum Watershed, specifically in Bandung Regency, West Bandung Regency, Sumedang Regency, Bandung City and Cimahi City, are registered as PROPER industries. They must comply to indicators as set in the Minister of Environment and Forestry Decree No. 3 In 2014 concerning Industrial Performance Rank in Environmental Management, as a requirement to apply for PROPER. Wastewater treatment and management, referencing to Minister of Environment and Forestry Decree No. 5 In 2014 concerning Wastewater Effluent Standards, must be performed to be registered as PROPER industries. Conducting only physical-chemical parameter monitoring of wastewater is insufficient to determine the safety of wastewater discharged into the river, therefore additional toxicity tests involving bioindicator are required to determine acute toxicity characteristic of wastewater. The acute toxicity test quantifies LC50 value based on death response of bioindicators from certain dosage. Daphnia magna was used as bioindicator in the toxicity test and probit software for analysis. In 2015-2016, the number of industries that discharged wastewater exceeding the standard was found greater in non-PROPER industries than in PROPER industries. Based on the toxicity level, both PROPER and non-PROPER industries have toxic properties, however PROPER industries of 2015-2016 is more toxic with LC5096 value reaching 2.79%.

  9. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.

    2016-01-01

    the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments...

  10. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.; Hussen, Mustefa; Amy, Gary L.

    2011-01-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  11. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.

    2011-08-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  12. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  13. Effect of type of fungal culture, type of pellets and pH on the semi-continuous post-treatment of an anaerobically-pretreated weak black liquor from kraft pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Robledo-Narvaez, P. N.; Ortega-Clemente, L. A.; Ponce-Noyola, M. T.; Rinderknecht-Seijas, N. F.; Poggi-Varaldo, H. M.

    2009-07-01

    It is well known that fungi belonging to the Basidiomycetes (such as Trametes versicolor, Lentinus edodes, Phanerochaete chrysosporium) are microorganisms with a demonstrated capability of degrading lignin and its derivatives using a powerful and diverse group of enzymes. Because of these features, ligninolytic fungi have been used for the treatment or post-treatment of a variety of recalcitrant and toxic effluents, those of the Kraft industry among them. Yet, most of reported fungal treatments so far required the supplementation with glucose or other soluble carbohydrates, pH 4 to 4,5, and their effective performance was demonstrated only for short periods of operation time. (Author)

  14. Hydrolytic pretreatment of oily wastewater by immobilized lipase

    International Nuclear Information System (INIS)

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-01-01

    The purpose of this study was to evaluate the hydrolysis of wastewater with high oil and grease (O and G) concentration from a pet food industry using immobilized lipase (IL) as a pretreatment step for anaerobic treatment through batch and continuous-flow experiments. The intrinsic Michaelis constant (K m ) and maximum reaction rate (V max ) were estimated experimentally and the K m value of IL (22.5 g O and G/L) was six-folds higher than that of the free lipase (FL) (3.6 g O and G/L), whereas V max of both FL (31.3 mM/g min) and IL (33.1 mM/g min) were similar. Preliminary batch anaerobic respirometric experiments showed that chemical oxygen demand (COD) and O and G reduction were 49 and 45% without pretreatment and 65 and 64% with IL pretreatment respectively, while the maximum growth rate (μ max ) for pretreated wastewater (0.17 d -1 ) was 3.4-folds higher than that of raw wastewater (0.05 d -1 ) with similar Monod half-saturation constants (K s ∼ 2.7 g COD/L). The continuous-flow experimental study showed the feasibility of employing the hybrid packed bed reactor (PBR)-upflow anaerobic sludge blanket (UASB) system for the treatment of high-strength oily wastewater, as reflected by its ability to operate at an oil loading rate (LR) of 4.9 kg O and G/m 3 d (to the PBR) without any problems for a period of 100 days. During pseudo-steady-state conditions, the hybrid UASB produced relatively higher biogas compared to the control UASB, The effluent COD and O and G concentrations of hybrid system were 100 mg/L lower than that of the control UASB reactor and no foam production was observed in the hybrid UASB compared to the control UASB reactor

  15. Hydrolytic pretreatment of oily wastewater by immobilized lipase.

    Science.gov (United States)

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-06-25

    The purpose of this study was to evaluate the hydrolysis of wastewater with high oil and grease (O&G) concentration from a pet food industry using immobilized lipase (IL) as a pretreatment step for anaerobic treatment through batch and continuous-flow experiments. The intrinsic Michaelis constant (K(m)) and maximum reaction rate (V(max)) were estimated experimentally and the K(m) value of IL (22.5g O&G/L) was six-folds higher than that of the free lipase (FL) (3.6gO&G/L), whereas V(max) of both FL (31.3mM/gmin) and IL (33.1mM/gmin) were similar. Preliminary batch anaerobic respirometric experiments showed that chemical oxygen demand (COD) and O&G reduction were 49 and 45% without pretreatment and 65 and 64% with IL pretreatment respectively, while the maximum growth rate (micromax) for pretreated wastewater (0.17d(-1)) was 3.4-folds higher than that of raw wastewater (0.05d(-1)) with similar Monod half-saturation constants (K(s) approximately 2.7gCOD/L). The continuous-flow experimental study showed the feasibility of employing the hybrid packed bed reactor (PBR)-upflow anaerobic sludge blanket (UASB) system for the treatment of high-strength oily wastewater, as reflected by its ability to operate at an oil loading rate (LR) of 4.9kgO&G/m(3)d (to the PBR) without any problems for a period of 100days. During pseudo-steady-state conditions, the hybrid UASB produced relatively higher biogas compared to the control UASB, The effluent COD and O&G concentrations of hybrid system were 100mg/L lower than that of the control UASB reactor and no foam production was observed in the hybrid UASB compared to the control UASB reactor.

  16. Anaerobic co-digestion of crude glycerin and starch industry effluent Codigestão anaeróbia de glicerina bruta e efluente de fecularia

    Directory of Open Access Journals (Sweden)

    Andrea C. Larsen

    2013-04-01

    Full Text Available The Brazil's Biodiesel Production and Use Program introduces biodiesel in the Brazilian energy matrix, bringing along the perspective of a growth of the glycerin offer, co-product generated in the proportion of 10 kg for each 100 L of biodiesel. The aim of this study was to evaluate the addition of crude glycerin in the anaerobic digestion of cassava starch industry effluent (cassava wastewater, in a horizontal semi-continuous flow reactor of one phase in laboratory scale. It was used a reactor with a 8.77 L of useful volume, a medium support for corrugated conduit of polyvinyl chloride (PVC, temperature of 261 ºC, fed with cassava wastewater and glycerin, with hydraulic detention times of 4 and 5 days and increasing volumetric organic load of 3.05; 9.32; 14.83 and 13.59 g COD L-1 d-1, obtained with the addition of glycerin at 0; 2; 3 and 2% (v/v, respectively. The average removal efficiencies of TS and TVS were decreasing from the addition of glycerin to the cassava wastewater, averaging 81.19 to 55.58% for TS and 90.21 to 61.45% for TVS. The addition of glycerin at 2% increased the biogas production compared to the control treatment, reaching 1.979 L L-1 d-1. The biogas production as a function of the consumed COD was higher for the control treatment than for the treatments with addition of glycerin, which indicates lower conversion of organic matter into biogas.O Programa Nacional de Produção e Uso do Biodiesel introduziu o biodiesel na matriz energética brasileira, trazendo a perspectiva de aumento da oferta de glicerina, coproduto gerado na proporção de 10 kg para cada 100 L de biodiesel. O objetivo principal deste trabalho foi avaliar a adição de glicerina bruta na digestão anaeróbia de efluente de indústria de fécula de mandioca (manipueira, em reator de fluxo semicontínuo horizontal de uma fase, em escala de laboratório. Foi utilizado um reator com volume útil de 8,77 L, meio suporte em eletroduto corrugado de policloreto

  17. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Science.gov (United States)

    Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael

    2017-01-01

    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.

  18. Biossorção de níquel e cromo de um efluente de galvanoplastia utilizando alga marinha pré-tratada em coluna = Biosorption of nickel and chromium from a galvanization effluent using seaweed pre-treated on a fixed-bed column

    Directory of Open Access Journals (Sweden)

    Márcia Teresinha Veit

    2009-04-01

    Full Text Available Este trabalho teve por objetivo o estudo da biossorção dos íons cromo e níquel presentes no efluente do processo de uma indústria de galvanoplastia, utilizando como biossorvente a biomassa de alga marinha pré-tratada Sargassum filipendula. As condições deoperação da coluna foram: massa de biossorvente de 8 g, pH do efluente de alimentação 3,85, temperatura de 30ºC, vazão de 6 mL min.-1 e concentrações iniciais de alimentação (cromo+níquel de 7,12 e 3,66 meq L-1. Foi empregado um modelo matemático para representar a dinâmica da biossorção em coluna de leito fixo. O modelo da isotermamulticomponente de Langmuir (qm= 2,78 meq g-1, bCr = 0,85 L meq-1, bNi = 0,08 L meq-1 foi utilizado para representar os dados de equilíbrio da coluna e para simular a dinâmica de biossorção dos íons. Os resultados da simulação demonstraram que o modelo matemáticoempregado foi capaz de descrever satisfatoriamente a complexa dinâmica de biossorção dos íons presentes no efluente.This work investigated the biosorption of chromium (III and nickel (II present in the effluent of a galvanoplasty plant using the pre-treated biomass of Sargassum filipendula seaweed. The column operation conditions were 8 g of biosorbent mass, 3.85 pH for the feed effluent, 30ºC temperature, 6 mL min.-1 flow rate, 7.12 meq L-1 initial chromium concentration and 3.66 meq L-1 initialnickel concentration. A mathematical model was used to represent the dynamics of biosorption of the metals in a fixed-bed column. The Langmuir multicomponent isotherm model (qm = 2.78 meq g-1, bCr = 0.85 L meq-1, bNi = 0.08 L meq-1 was used to represent the equilibrium data of the column and to simulate the biosorption dynamics of the ions. The simulation results showed that the mathematical model described satisfactory the complex binary biosorption of chromium and nickel in the effluent.

  19. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  20. Life cycle analysis as a tool for assessing new waste water treatment systems. A case study of textile industry effluent; Analisis del ciclo de vida como herramienta de evaluacion de nuevos sistemas de depuracion de aguas residulaes. Caso practico: efluentes de la industria textil

    Energy Technology Data Exchange (ETDEWEB)

    Hospido, A.; Novo, E.; Moreira, M. T.; Feijoo, G.

    2001-07-01

    Life cycle analysis (LCA) is a technique that analyses the life cycle of a product process or activity in an attempt to identify its overall environmental impact. This approach can be of great help in strategic or operational decision-making in industry or business. This article takes as an example a comparative study of systems for treating strongly coloured industrial effluent. To this end, two well established technologies for dealing with industrial waste were examined: a) the physico-chemical treatment of effluents by coagulation-flocculation: b) a process combining physico-chemical treatment and biological aerobic activated sludge treatment. In addition, the viability of an emerging technology based on the decolouring of effluents with ligninolytic fungi was considered, although this process is still at the study stage. (Author) 13 refs.

  1. Caractérisation de deux effluents industriels au Togo :étude d'impact ...

    African Journals Online (AJOL)

    Characterization of two industrial effluents in Togo : environment impact study. Environment pollution due to two industrial effluents has been investigated. Results how that effluent derive from the factory of the treatment of Kpémé posphate ore was loaded with settling suspended matter (> 90 % of total suspended solids).

  2. Some considerations on the use of gamma spectrometry for Kr-85 determination at gaseous effluents in the nuclear industry and environmental samples

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.; Travesi, A.

    1983-01-01

    The possibilities of using high resolution gamma ray spectrometry with GeLi semiconductor detector for measured the 0.514 KeV gamma radiation of Kr-B5 la explored, The detection limit of Kr-85 for a measuring time is 4.10 - 4 μCi with a counting time of 1000 minutes in a GeLi detector with a 20% efficiency relative to the INa (Tl). It is concluded that the use of gamma ray spectrometry for measuring the Kr-85 is not useful for environmental samples, but it can be used for the Kr-85 effluents control in Nuclear Stations. (Author) 26 refs

  3. Membrane processes for the treatment of exhausted effluents from leather industry; Processi a membrana per il trattamento degli effluenti esausti dell'industria conciaria

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, A.; Molinari, R.; Drioli, E. [Arcavata di Rende Univ. della Calabria, Arcavata di Rende, CS (Italy). Istituto di Ricerca su Membrane e Modellistica di Reattori Chimici

    2001-03-01

    This paper considers the potentiality of some membrane processes such as ultrafiltration (UF), nano filtration (NF) and reverse osmosis (RO), in the treatment of exhausted effluents produced by the tanning cycle, based on the experimental results of the Research Group. [Italian] In questo studio vengono analizzate le potenzialita' applicative di alcuni processi a membrana, quali ultrafiltrazione (UF), nanofiltrazione (NF) e osmosi inversa (Ol), nel trattamento degli effluenti esausti del ciclo conciario, sulla base di risultati sperimentali del gruppo di ricerca del Cnr-Irmerc.

  4. Improving Methane Production through Co-Digestion of Canola Straw and Buffalo Dung by H2O2 Pretreatment

    Directory of Open Access Journals (Sweden)

    ALTAF ALAM NOONARI

    2017-01-01

    Full Text Available In this study an effect of acidic pre-treatment on the CS (Canola Straw and BD (Buffalo Dung by anaerobic co-digestion was investigated. H2O2 (Hydrogen Peroxide is a mainly accustomed reagent, used as a bleaching agent in the different industries such as paper and wood. In the present study, it was used as a pre-treatment chemical at varying concentrations in batch reactors. The co-digestion of CS and BD was carried out in SAMPTS (Semi-Automatic Methane Potential Test System at mesophilic (37±1oC conditions. The CS was pretreated in glass bottles with different concentrations of the H2O2 for seven days. The inoculum used in the present study was an effluent of the CSTR (Continuous Stirred Tank Reactor, which was treating BD at mesophilic conditions. The specific methane production from the codigestion of canola straw and BD, by the pre-treatment of H2O2 at concentrations of 0.5, 1.0, and 1.5% were 530.8, 544.5, and 510.3 NmL CH4 g/VS, respectively. The significant reduction in the volatile solids of CS was observed at the optimum pre-treatment of 1.0% H2O2.

  5. 40 CFR 415.346 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.346 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR...

  6. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  7. EFFECTS OF REFINERY EFFLUENT ON THE PHYSICO ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... Abstract. Managing oil and gas industrial environment requires constant monitoring of the effluent discharges from such industries. The essence of such ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...

  8. Biodegradation of BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) composites present in the petrochemical effluents industries; Biodegradacao dos compostos BTX (Benzeno, Tolueno e Xilenos) presentes em efluentes petroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Minatti, Gheise; Mello, Josiane M.M. de; Souza, Selene M.A. Guelli Ulson de; Ulson de, Antonio Augusto [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2008-07-01

    The compounds BTX inside of the petrochemical effluent have presented a high potential of pollution, representing a serious risk to the environment and to the human. The great improvements in the field of biological treatment of liquid effluent were reached through the process using biofilm capable of degrading toxic compounds. The objective of this paper is to determine the degradation kinetics of BTX using biofilm. The experimental data were compared with two kinetic models, kinetic of first order and model of Michaelis-Menten. The kinetic parameters of BTX compounds were experimentally obtained in a bioreactor in batch with biomass immobilized in activated-carbon, being fed daily with solution of nutrients and BTX. For the kinetic models studied in this paper, the best performance was achieved with the model of Michaelis-Menten showing a good correlation coefficient for the three compounds. The biomass amount in these bioreactors was 49.18, 28.35 and 5.15 mg of SSV per gram of support for the toluene, benzene and o-xylene, respectively. The experimental tests showed that the biomass inside of bioreactor is capable to degrade all compounds in a time of approximately 300 minutes. (author)

  9. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

    Directory of Open Access Journals (Sweden)

    Wolfgang M. Samhaber

    2014-04-01

    Full Text Available Nanofiltration (NF is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m3 treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  10. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  11. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The effect of water treatment plant effluent on its receiving river (Kaduna) was examined. Samples were ... Agency (FEPA) limits for effluent discharge into surface water. .... municipal sewage, garbages, domestic and industrial.

  12. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  13. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  14. Utilization of ALANPOL dosemeter composed by alanine and polyethylene for determination of doses in industrial effluents; Utilizacao do dosimetro ALANPOL composto por alanina e polietileno para determinacao de doses em efluentes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Rela, Carolina S.; Sampa, Maria Helena de O.; Napolitano, Celia M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: csrela@ipen.br; Pontuschka, Walter M. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2005-07-01

    A study of traceability and accuracy was performed with the dosimetry system ALANPOL developed by IVHTJ/ Poland that uses alanine as a dosimeter and EPR as the read out system. The dosimeter ALANPOL is a polymer compound that aggregates alanine. The dosimeter has the outside diameter 3 mm, and the length of 25,4 mm (1 inch). In order to use this dosimeter for monitoring the existing real time calorimetry dosimeter system set up in a electron beam waste treatment plant. Electron beam and gamma irradiation experiments with ALANPOL was carried out under demineralized water and industrial effluent. The result show that in the dose range of 1-40 kGy the ALANPOL dosimeter system is suitable underwater monitoring for absorbed dose and can be applied for the evaluation of the on line calorimetry dosimeter system. (author)

  15. Simulation of adsorption process of benzene present in effluent of the petrochemical industry; Simulacao do processo de adsorcao do benzeno presente em efluentes da industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Adriana D. da; Mello, Josiane M.M. de; Souza, Antonio Augusto Ulson de; Souza, Selene M.A. Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Silva, Adriano da [Universidade Comunitaria Regional de Chapeco (UNOCHAPECO), SC (Brazil)

    2008-07-01

    The adsorption processes have shown quite efficient in the removal of pollutant in liquid effluents, especially hydrocarbons of difficult removal, such as benzene. This work presents a phenomenological model that describes the process of benzene removal through the adsorption in a fixed bed column, being used coal activated as adsorbent. The model considers the internal and external resistances of mass transfer to the adsorbent particle. The method of Finite Volumes is used in the discretization of the equations. The numerical results obtained through the simulation presented good correlation when compared with experimental data found in the literature, demonstrating that the developed computational code, together with the mathematical modeling, represents an important tool for the project of adsorption columns. (author)

  16. Pré-hidrólise enzimática da gordura de efluente da indústria de pescado objetivando o aumento da produção de metano Enzymatic hydrolysis of fat from fish industry effluents aimed at increasing methane production

    Directory of Open Access Journals (Sweden)

    Angélica Moreira Valente

    2010-06-01

    Full Text Available A aplicação de preparados enzimáticos sólidos (PES ricos em lipases foi avaliada no tratamento anaeróbio de efluente de indústria de conservas de pescado. O PES foi produzido pelo fungo Penicillium simplicissimum por fermentação em meio sólido (FMS de resíduo industrial, sendo empregado na hidrólise de gorduras presentes no efluente a fim de viabilizar a utilização de metano como fonte de energia. O efluente contendo 1500 mg O&G.L-1 foi hidrolisado com 0,2, 0,5 e 1,0% (m/v de PES a 30 °C por até 18 horas. O efeito do pré-tratamento enzimático dos O&G não foi significativo com relação à remoção de DQO, pois, independente das condições adotadas, obtiveram-se valores de 91 a 95%. Por outro lado, a produção específica de metano apresentou valores que variaram com a adição do PES e o tempo de hidrólise. Em experimentos controle (sem adição de PES, a produção específica de metano aumentou com o tempo de incubação, atingindo um máximo com 18 horas (138 mL CH4.g-1 DQOinicial. No entanto, valores mais elevados de produção específica de metano foram obtidos com 0,5 e 1,0% de PES, destacando-se a hidrólise com 0,5% de PES e 8 horas de hidrólise, com 216 mL CH4.g-1 DQOinicial. Quando se compara o experimento controle 0 horas (efluente bruto com o efluente hidrolisado com 0,5% de PES durante 8 horas, um aumento de 2,7 vezes na produção específica de metano foi observado, indicando que a matéria orgânica foi mais facilmente assimilada pelos microrganismos anaeróbios nesta última condição.The application of solid lipase-rich enzymatic preparations (SEP in the anaerobic treatment of industrial effluents from canned fish processing was investigated. SEP was produced by the fungus Penicillium simplicissimum through solid-state fermentation (SSF of industrial wastes, and it was used in the hydrolysis of fats present in the effluents in order to facilitate the use of methane as a source of energy. The effluent

  17. Desalination of effluent using fin type solar still

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan, V. [Department of Mechanical Engineering, Infant Jesus College of Engineering, Thoothukudi, Tamil Nadu 628 851 (India); Deenadayalan, C.K.; Vinod, H.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625 015 (India)

    2008-11-15

    In this work, an attempt is made to produce potable water from industrial effluents. An ordinary basin type solar still integrated with fins at the basin plate is used for experimentation. Since industrial effluent is used as feed, before this still, an effluent settling tank is provided to get clarified effluent. This effluent settling tank is fabricated with three chambers, consists of pebble, coal and sand for settling the impurities and removing the bacteria in the effluents. Sponges, pebbles, black rubber and sand are used in the fin type single basin solar still for enhancing the yield. Results show that the productivity increases considerably due to this modification. A theoretical analysis is also carried out which, closely converges with experimental results. The economic analysis proved that the approximate payback period of such kinds of still is 1 year. (author)

  18. Evaluation on ecological stability and biodegradation of dyeing wastewater pre-treated by electron beam

    International Nuclear Information System (INIS)

    Lee, M.J.; Park, C.K.; Yoo, D.H.; Lee, J.K.; Lee, B.J.; Han, B.S.; Kim, J.K.; Kim, Y.R.

    2005-01-01

    Biological treatment of dye wastewater pre-treated by electron beam has been performed in order to evaluate the biodegradation and ecological stability of effluent. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. Partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages like as biological processing. Dyeing wastewater contains many kind of pollutants which are difficult to be decomposed completely by microorganisms. In this study, biodegradation with dyeing wastewater pre-treated by electron beams was observed. On the other hand, consideration on public acceptance in terms of ecological stability of biological effluent pre-treated by electron beams was given in this study. The results of laboratory investigations on biodegradation and ecological stability of effluent showed that biodegradation of dye wastewater pre-treated by electron beam was enhanced compared to unirradiated one. In the initial stage of biological oxidation regardless of different HRT, dye wastewater pre-treated by electron beam could be oxidized easily compare to without treated one. More number of survived daphnia magna could be observed in the biological effluent pre-treated by electron beam. This means that biological effluent pre-treated by electron beam can be said 'it is safe on the ecological system'

  19. Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor.

    Science.gov (United States)

    España-Gamboa, Elda; Vicent, Teresa; Font, Xavier; Dominguez-Maldonado, Jorge; Canto-Canché, Blondy; Alzate-Gaviria, Liliana

    2017-01-01

    During hydrous ethanol production from the sugar refinery industry in Mexico, vinasse is generated. Phenolic compounds and melanoidins contribute to its color and make degradation of the vinasse a difficult task. Although anaerobic digestion (AD) is feasible for vinasse treatment, the presence of recalcitrant compounds can be toxic or inhibitory for anaerobic microorganism. Therefore, this study presents new data on the coupled of the FBR (Fluidized Bed Bioreactor) to the UASB (Upflow Anaerobic Sludge Blanket) reactor under non-sterile conditions by T. versicolor . Nevertheless, for an industrial application, it is necessary to evaluate the performance in this kind of proposal system. Therefore, this study used a FBR for the removal of phenolic compounds (67%) and COD (38%) at non-sterile conditions. Continuous operation of the FBR was successfully for 26 days according to the literature. When the FBR was coupled to the UASB reactor, we obtained a better quality of effluent, furthermore methane content and yield were 74% and 0.18 m 3 CH 4 / kg COD removal respectively. This study demonstrated the possibility of using for an industrial application the coupled of the FBR to the UASB reactor under non-sterile conditions. Continuous operation of the FBR was carried out successfully for 26 days, which is the highest value found in the literature.

  20. 40 CFR 403.8 - Pretreatment Program Requirements: Development and Implementation by POTW.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND... applicable civil and criminal penalties for violation of Pretreatment Standards and requirements, and any... authority to seek or assess civil or criminal penalties in at least the amount of $1,000 a day for each...

  1. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 40 CFR 407.14 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 407.14 Section 407.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE...

  3. 40 CFR 407.34 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 407.34 Section 407.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE...

  4. 40 CFR 407.24 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 407.24 Section 407.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE...

  5. 40 CFR 407.26 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 407.26 Section 407.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Apple...

  6. 40 CFR 407.16 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 407.16 Section 407.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Apple...

  7. 40 CFR 406.36 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 406.36 Section 406.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Wheat Flour Milling Subcategory § 406.36...

  8. 40 CFR 406.14 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 406.14 Section 406.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory § 406.14...

  9. 40 CFR 406.46 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 406.46 Section 406.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Bulgur Wheat Flour Milling Subcategory § 406.46...

  10. 40 CFR 406.24 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources. 406.24 Section 406.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling Subcategory § 406.24...

  11. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Science.gov (United States)

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  12. 40 CFR 421.275 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... Nickel 0.000 0.000 (e) Sodium hypochlorite filter backwash. PSES for the Primary Rare Earth Metals...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals Subcategory § 421.275 Pretreatment standards for existing sources. Except as provided in 40 CFR...

  13. 40 CFR 427.46 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 427.46 Section 427.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder...

  14. 40 CFR 427.36 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 427.36 Section 427.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder...

  15. 40 CFR 417.86 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.86 Section 417.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps...

  16. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability of sulfide pretreatment standards. 425.04 Section 425.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY General Provisions...

  17. 40 CFR 428.66 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 428.66 Section 428.66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded...

  18. Effluent treatment efficiency and compliance monitoring in Nigerian ...

    African Journals Online (AJOL)

    The effectiveness of effluent treatment at the Eleme Petrochemical Industry, Port Harcourt, Nigeria was monitored weekly for six weeks to assess their level of compliance with the Directorate of Petroleum Resources (DPR) guidelines and standards for environmental safety. Effluent samples were taken from the untreated ...

  19. Toxicity Identification Evaluation (TIE) of Belford Roxo industrial plant effluent and its contribution in water quality of downstream of Sarapui River, Iguacu River sub-basin, Baia da Guanabara Basin, RJ, Brazil; Avaliacao e identificacao da toxicidade (Toxity Identification Evaluation - TIE) do efluente liquido do polo industrial de Belford Roxo, RJ, e sua contribuicao na qualidade das aguas do corso inferior do Rio Sarapui, sub-bacia do Rio Iguacu, Bacia da Baia da Guanabara, RJ, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiz Eduardo Botelho

    2006-07-01

    The quality of Belford Roxo Industrial Plant effluent and water from Sarapui River were evaluated with Daphnia similis, Ceriodaphnia dubia and Danio rerio acute and chronic toxicity tests. In association with the ecotoxicological monitoring, the Toxicity Identification Evaluation procedure were performed and the identification of the toxic compounds was possible. The Chloride ion was identified as the major toxic compound in the effluent with additional effects of Metals, Ammonium and Sulfide. For the Sarapui River, the compounds of Phosphorus and Nitrogen were identified as the major toxic compounds with addictive effects of Metals, Ammonium and Sulfide. Although the environmental impact estimation based on the effluent toxicity suggests a minor impact on the water quality of Sarapui River, this was already sufficiently contaminated to make impracticable the establishment of an aquatic community. The constant discharge of untreated sludge promotes the eutrophication of this water body and makes impossible the equilibrium of this ecosystem. (author)

  20. Industry

    International Nuclear Information System (INIS)

    Schindler, I.; Wiesenberger, H.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO 2 , NO x , CO 2 , CO, CH 4 , N 2 O, NH 3 , Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  1. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the degree of effluent... 6.0 and water quality criteria in water quality standards approved under the Act authorize such lower pH, the pH limitation for such discharge may be adjusted downward to the pH water quality...

  2. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  3. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  4. Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent - A comparative study

    Czech Academy of Sciences Publication Activity Database

    Antošová, Zuzana; Herkommerová, Klára; Pichová, I.; Sychrová, Hana

    2018-01-01

    Roč. 34, č. 1 (2018), s. 69-80 ISSN 8756-7938 R&D Projects: GA TA ČR(CZ) TA01011461 Institutional support: RVO:67985823 Keywords : laccase * decolorization * gene expression * expression optimization * Saccharomyces cerevisiae Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Industrial biotechnology Impact factor: 1.986, year: 2016

  5. Improving methane production through co-digestion of canola straw and buffalo dung by H/sub 2/O/sub 2/ pretreatment

    International Nuclear Information System (INIS)

    Noonari, A.A.; Sahito, A.R.; Brohi, K.M.

    2017-01-01

    In this study an effect of acidic pre-treatment on the CS (Canola Straw) and BD (Buffalo Dung) by anaerobic co-digestion was investigated. H2O2 (Hydrogen Peroxide) is a mainly accustomed reagent, used as a bleaching agent in the different industries such as paper and wood. In the present study, it was used as a pre-treatment chemical at varying concentrations in batch reactors. The co-digestion of CS and BD was carried out in SAMPTS (Semi-Automatic Methane Potential Test System) at mesophilic (37+-1oC) conditions. The CS was pretreated in glass bottles with different concentrations of the H2O2 for seven days. The inoculum used in the present study was an effluent of the CSTR (Continuous Stirred Tank Reactor), which was treating BD at mesophilic conditions. The specific methane production from the codigestion of canola straw and BD, by the pre-treatment of H2O2 at concentrations of 0.5, 1.0, and 1.5% were 530.8, 544.5, and 510.3 NmL CH4 g/VS, respectively. The significant reduction in the volatile solids of CS was observed at the optimum pre-treatment of 1.0% H2O2. (author)

  6. physico-chemical characteristics of effluents from garri processing

    African Journals Online (AJOL)

    DR. AMIN

    0.62ppm all in contrast to World Health Organization maximum admissible limit of 0.07ppm. A two- ... indiscriminate discharge of industrial effluents [Salami and Egwin, 1997]. ..... Wastewater Engineering, Treatment and Refuse,. 4th edition ...

  7. Diffusion characteristics of the Kakinada Bay for effluent assessment

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Asthana, V.

    The present study reports the determination of diffusion characteristics of the Kakinada Bay to choose a suitable marine outfall location for industrial discharge of effluents from a proposed fertilizer plant. The study consisted of dye diffusion...

  8. Bioremediation of chromium in tannery effluent by microbial consortia

    African Journals Online (AJOL)

    USER

    2010-05-24

    May 24, 2010 ... Chromium is the most toxic and common among the heavy metal pollutants of industrial effluents .... Chromium (Cleseari and Green, 1995) included the oxidation of .... like uranium in its cells might also match with its tendency.

  9. Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach.

    Science.gov (United States)

    Castro, Laura; Blázquez, M Luisa; González, Felisa; Muñoz, Jesús A; Ballester, Antonio

    2017-11-15

    The aim of this work was to demonstrate the feasibility of the application of biosorption in the treatment of metal polluted wastewaters through the development of several pilot plants to be implemented by the industry. The use as biosorbents of both the brown seaweed Fucus vesiculosus and a sugar beet pulp was investigated to remove heavy metal ions from a wastewater generated in an electroplating industry: Industrial Goñabe (Valladolid, Spain). Batch experiments were performed to study the effects of pH, contact time and initial metal concentration on metal biosorption. It was observed that the adsorption capacity of the biosorbents strongly depended on the pH, increasing as the pH rises from 2 to 5. The adsorption kinetic was studied using three models: pseudo first order, pseudo second order and Elovich models. The experimental data were fitted to Langmuir and Freundlich isotherm models and the brown alga F. vesiculosus showed higher metal uptake than the sugar beet pulp. The biomasses were also used for zinc removal in fixed-bed columns. The performance of the system was evaluated in different experimental conditions. The mixture of the two biomasses, the use of serial columns and the inverse flow can be interesting attempts to improve the biosorption process for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Preparation, characterization, and application of Ti/TiO2-NTs/Sb-SnO2 electrode in photo-electrochemical treatment of industrial effluents under mild conditions.

    Science.gov (United States)

    Subba Rao, Anantha N; Venkatarangaiah, Venkatesha T

    2018-04-01

    Ti/TiO 2 -NTs/Sb-SnO 2 electrode was prepared by gradient pulsed electrodeposition, and its electrochemical properties were evaluated. The catalytic activity and reusability of the electrode were tested by electrochemical oxidation (EO) and photoelectrochemical oxidation (PEO) of organics present in textile industry wastewater (TWW) and coffee bean processing industry wastewater (CWW). COD removal of ~ 41% was achieved after 5-h electrolysis under a constant applied current density of 30 mA cm -2 for TWW and 50 mA cm -2 for CWW. Nearly 14 and 18% increment in COD removal was observed under PEO for TWW and CWW, respectively. The turbidity of TWW reduced from 15 to ~ 3 NTU and the turbidity of CWW reduced from 27 to ~ 3 NTU by both EO and PEO. The % COD removal observed after 5-h electrolysis remained consistent for 7 repeated cycles; however, the catalytic activity of the electrode reduced gradually. These results suggested that the Ti/TiO 2 -NTs/Sb-SnO 2 can be a potential electrode for the treatment of industrial wastewater.

  11. Superheated water pretreatment combined with CO2 activation/regeneration of the exhausted activated carbon used in the treatment of industrial wastewater.

    Science.gov (United States)

    Xiao, Jin; Yu, Bailie; Zhong, Qifan; Yuan, Jie; Yao, Zhen; Zhang, Liuyun

    2017-10-01

    This paper examines a novel method of regenerating saturated activated carbon after adsorption of complex phenolic, polycyclic aromatic hydrocarbons with low energy consumption by using superheated water pretreatment combined with CO 2 activation. The effects of the temperature of the superheated water, liquid-solid ratio, soaking time, activation temperature, activation time, and CO 2 flow rate of regeneration and adsorption of coal-powdered activated carbon (CPAC) were studied. The results show that the adsorption capacity of iodine values on CPAC recovers to 102.25% of the fresh activated carbon, and the recovery rate is 79.8% under optimal experimental conditions. The adsorption model and adsorption kinetics of methylene blue on regenerated activated carbon (RAC) showed that the adsorption process was in accordance with the Langmuir model and the pseudo-second-order kinetics model. Furthermore, the internal diffusion process was the main controlling step. The surface properties, Brunauer-Emmett-Teller (BET) surface area, and pore size distribution were characterized by Fourier transform infrared spectroscopy (FT-IR) and BET, which show that the RAC possesses more oxygen-containing functional groups with a specific surface area of 763.39 m 2 g -1 and a total pore volume of 0.3039 cm 3 g -1 . Micropores account for 79.8% and mesopores account for 20.2%.

  12. Industrialization

    African Journals Online (AJOL)

    Lucy

    . African states as ... regarded as the most important ingredients that went to add value to land and labour in order for countries ... B. Sutcliffe Industry and Underdevelopment (Massachusetts Addison – Wesley Publishing Company. 1971), pp.

  13. Industrialization

    African Journals Online (AJOL)

    Lucy

    scholar, Walt W. Rostow presented and supported this line of thought in his analysis of ... A Brief Historical Background of Industrialization in Africa ... indicative) The western model allowed for the political economy to be shaped by market.

  14. Treatment of wastewater from rubber industry in Malaysia ...

    African Journals Online (AJOL)

    Treatment of wastewater from rubber industry in Malaysia. ... Discharge of untreated rubber effluent to waterways resulted in water pollution that affected the human health. ... Key words: Rubber industry, effluent, waste management, Malaysia.

  15. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    Science.gov (United States)

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  16. The Kaldnes Moving Bed biofilm technology for treatment of industrial wastewater; Tecnologia Kaldnes Moving Bed biofilm (KMT) para la depuracion de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, V.; Garcia Carrion, M.; Farre Solsona, C.

    2004-07-01

    The Kaldnes Moving bed biofilm technology is a biofilm process which is very suitable for treatment of industrial wastewaters. Biofilm processes have several acknowledged advantages compared to suspended biomass processes, e. g. resistance to toxicity and load variations. Traditionally biofilm processes have been known to clog at high loads and hence have not been suited for industrial effluents: however, the Kaldnes Moving Bed biofilm process has overcome this problem. This article describes how the process has been used as pre-treatment up front of activated sludge at a dairy in USA, and as sole treatment at pharmaceutical industry in Sweden. (Author)

  17. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    Science.gov (United States)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  18. modelling effluent assimila modelling effluent assimilat modelling

    African Journals Online (AJOL)

    eobe

    G EFFLUENT ASSIMILATIVE CAPACITY OF IKPOBA RIVE. BENIN CITY, NIGERIA ... l purposes to communities rse such as ... treat in order for it to meet the aforeme of the communities. It is therefore i ..... Substituting and integrating yields the following equations ..... Purification Potentials of Small Tropical Urban. Stream: A ...

  19. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  20. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. III. Concentration and genotoxicity of mercury in the industrial effluent and contaminated water of Rushikulya estuary, India.

    Science.gov (United States)

    Panda, K K; Lenka, M; Panda, B B

    1992-01-01

    Aquatic mercury pollution of the Rushikulya estuary in the vicinity of the chloralkali plant at Ganjam, India was monitored over a period from October 1987 to May 1989. The concentrations of aquatic mercury in the water samples taken from the effluent channel and from different sites along the course of the estuary covering a distance of 2 km were periodically recorded and ranged from 0 to 0.5 mg/l. The bioconcentration and genotoxicity of aquatic mercury in the samples were assessed by the Allium micronucleus (MNC) assay. The frequency of cells with MNC was highly correlated not only with bioconcentrated mercury (root mercury) but also with the levels of aquatic mercury. The threshold assessment values such as effective concentration fifty (EC50) for root growth, lowest effective concentration tested (LECT), and highest ineffective concentration tested (HICT) for induction of MNC in Allium MNC assay for the present aquatic industrial mercury were determined to be 0.14, 0.06 and 0.02 mg/l, respectively.

  1. Complementary cold water production for a dairy industry: the use of biogas generated in the effluent treatment station; Producao de agua gelada complementar para um laticinio: o uso do biogas produzido na estacao de tratamento de efluentes

    Energy Technology Data Exchange (ETDEWEB)

    Villela, I.A.C. [Faculdade de Engenharia Quimica de Lorena, SP (Brazil). Dept. de Matematica Aplicada]. E-mail: iraides@debas.faenquil.br; Napoleao, D.A.S.; Silveira, J.L. [UNESP, Guaratingueta, SP (Brazil). Dept. de Energia]. E-mails: diovana@feg.unesp.br; joseluz@feg.unesp.br

    2000-07-01

    In this paper is analysed the possibility energetic utilization of biogas in the effluent treatment station of a medium dairy industry located in Sao Paulo state, Brazil. In this station is produced about 80 N m3/h of biogas, with a molar composition of 62,5% of CH{sub 4}, 13,4% of N{sub 2}, 5% of CO, 2,4% of CO{sub 2}, 2,4% of steam H{sub 2}O e 14,1% of H{sub 2}S. The generated biogas is today burning in a flair, according the national rule, with evident losses of energetic utilization potential.. The purpose of this paper is the direct utilization of this biogas to run an absorption refrigeration system utilizing H{sub 2}O + NH{sub 3} mixture. The level of H{sub 2}S in the biogas permits the energy recovery of the available heating minimum temperature level up to 230 deg C, according to the pinch point proceeding.This potential of energy recovery permits a complementation of the cold water production (7,3 kg/s) at 1 deg C. So, is made the energetic analysis of the proposed installation showing the technical feasibility of the actual use of the generated biogas, to produce useful energy. (author)

  2. Study of technical and economical feasibility for implementation of a movable unit for treatment of industrial effluents with electron beam; Estudo de viabilidade tecnica e economica para implementacao de uma unidade movel para tratamento de efluentes industriais com feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Rela, Carolina Sciamarelli

    2006-07-01

    The treatment of industrial effluents is a practice that is disseminating in accelerated rhythm, of contributing to reinforce the public image, through the combat of the pollution, it brings economical advantages allowing the companies the reuse of the treated water in their own processes. The liquid effluent treatment technique studied in the present work is the one that uses the chemical oxidation/reduction standing out the use of the electron beam (e.b.) radiation. This technique uses an advanced oxidation process, generating radicals highly reagents that provoke the oxidation, reduction, dissociation and degradation in composed organic and exercising lethal effect in general in the microorganisms and parasites. In this work a conceptual and basic project of a movable unit of effluents treatment using electron beam radiation process was developed, in order that the unit moves until the treatment point, where the effluent is produced, facilitating the logistics. A technical and economical feasibility study was also elaborated allowing data on the capacity and cost of effluents processing to consolidate the values of the necessary investments to be presented to foundations organs for the construction of a movable unit. The results of the studies demonstrated that it is technically viable attending the pertinent legislation of Brazil, in the aspects of Radiation Protection and transport limit capacity. The unitary cost of the e.b. radiation processing in the movable unit was shown more expensive than in the fixed unit, the reason is the decrease of the efficiency of the interaction of the incident electrons in the effluent, due to the reduction of electron energy operation time of the unit. (author)

  3. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  4. Nuclear reactor effluent monitoring

    International Nuclear Information System (INIS)

    Minns, J.L.; Essig, T.H.

    1993-01-01

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC's program results

  5. The possibility of palm oil mill effluent for biogas production

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ≥40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  6. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  7. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  8. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  9. The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models

    Science.gov (United States)

    Indhumathi, Ponnuswamy; Sathiyaraj, Subbaiyan; Koelmel, Jeremy P.; Shoba, Srinivasan U.; Jayabalakrishnan, Chinnasamy; Saravanabhavan, Munusamy

    2018-05-01

    The ability of green micro algae Chlorella vulgaris for biosorption of Cu(II) ions from an aqueous solution was studied. The biosorption process was affected by the solution pH, contact time, temperature and initial Cu(II) concentration. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intra particle diffusion models. Results showed that the sorption process of Cu(II) ions followed pseudo-second order kinetics. The sorption data of Cu(II) ions are fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms, and the Temkin isotherm. The thermodynamic study shows the Cu(II) biosorption was exothermic in nature. The Cu(II) ions were recovered effectively from Chlorella vulgaris biomass using 0.1 M H2SO4 with up to 90.3% recovery, allowing for recycling of the Cu. Green algae from freshwater bodies showed significant potential for Cu(II) removal and recovery from industrial wastewater.

  10. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    Science.gov (United States)

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. REMOVAL OF REACTIVE DYES FROM WASTEWATER OF TEXTILE INDUSTRIES BY USING ENVIRONMENTAL FRIENDLY ADSORBENTS

    Directory of Open Access Journals (Sweden)

    ALAM Md Shamim

    2016-05-01

    Full Text Available This paper is aimed at developing a method to treat wastewater by using inexpensive adsorbents. Textile industries produce wastewater, otherwise known as effluent, as a bi-product of their production. The effluent contains several pollutants. Among the various stages of textile production, the operations in the dyeing plant, which include pre-treatments, dyeing, printing and finishing, produce the most pollution. The textile dyeing wastes contain unused or partially used organic compounds, and high level of different pollutants. They are often of strong color and may also be of high temperature. When disposed into water bodies or onto land these effluents will result in the deterioration of ecology and damage to aquatic life. Furthermore they may cause damage to fisheries and economic loss to fishermen and farmer, there may be impacts on human health which can be removed with the help of an effluent treatment plant (ETP. The “clean” water can then be safely discharged into the environment and ultimately save our environment from pollution. In this study, rice husk and cotton dust were used as an adsorbent. In this research work waste water was characterized with this useless adsorbents. The parameters which were tested in this study are DO, BOD, COD, TS, TDS and TSS. The results showed that the selected bio adsorbents have good potential for removal of reactive dyes from textile effluent.

  12. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  13. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  14. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  15. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Shoucheng, Wen

    2014-01-01

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  16. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    Geens, L.; Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Belien, H.; Ooms, E.; Smets, D.; Stevens, J.; van Vlerken, J.

    1988-01-01

    From 1975 until 1982 - within the framework of the CEC indirect action programme on management and storage of radioactive waste - the SCK/CEN has developed the ELEX process from laboratory scale experiments up to the construction of an integrated pilot installation. The ELEX process combines water electrolysis and catalytical isotope exchange for the separation of tritium from aqueous reprocessing effluents by isotope enrichment. Consequently, the pilot installation consists of two main parts: an 80 kW water electrolyser and a 10 cm diameter trickle bed exchange column. The feed rate of tritiated water amounts to 5 dm 3 .h -1 , containing up to 3.7 GBq.dm -3 of tritium. This report describes the further development of the process during the second phase of the second programme. Three main items are reported: (i) research work in the field of pretreatment of real reprocessing effluents, before feeding them to an ELEX installation; (ii) demonstration of the technical feasibility of the ELEX process with simulated active effluent streams in the pilot installation; (iii) a cost estimation for the ELEX installation, comprising the required investments and the annual operation costs

  17. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    International Nuclear Information System (INIS)

    Smolders, R.; Bervoets, L.; Blust, R.

    2004-01-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  18. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Smolders, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: roel.smolders@ua.ac.be; Bervoets, L. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2004-11-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  19. EVALUACIÓN DE LOS EFLUENTES PROVENIENTES DE LA AGROINDUSTRIA DEL FIQUE EN EL MUNICIPIO DE TOTORÓ - CAUCA. EVALUATION OF THE ORIGINATING EFFLUENTS OF THE AGRO-INDUSTRY OF THE FIQUE IN THE MUNICIPALITY OF TOTORÓ - CAUCA.

    Directory of Open Access Journals (Sweden)

    CRISTIAN F DAGUA-MOSQUERA

    2008-12-01

    Full Text Available Se evaluaron los efluentes provenientes de la agroindustria del fique en el río Molino del corregimiento de Paniquitá (Totoró-Cauca en tres fincas y en cuatro sitios a lo largo del río (1: Bocatoma del acueducto de Paniquitá, 2: Finca La Esperanza, 3: El Puente y 4: San José Bajo para generar alternativas de manejo. Los resultados muestran que la carga contaminante para el sitio 3 fue la DBO5 (8.42 kg/día, SST (61.16 kg/día, el 4 registró un valor de DBO5 (113.33 kg/día, SST (70.76 kg/día y el 1 presenta las características del nacimiento de un río. Para las tres fincas evaluadas registraron valores promedios de DBO5 (3113.88 kg/día, SST (3673.13 kg/día.The originating effluents of the agro-industry of fique in the Molino river of the group of judges of Paniquitá (Totoró-Cauca in three farms and four sites along river (1: Of the aqueduct of Paniquitá, 2: Farm La Esperanza, 3: El Puente, 4: San José Bajo generating handling alternatives. The results show that the polluting load for site 3 was the DBO5 (8,42 kg/día, SST (61,16 kg/día, the 4 registered a value of DBO5 (113,33 kg/día, SST (70,76 kg/ día and the 1 presents/displays the characteristics of the birth of a river. For the three evaluated farms they registered values averages of DBO5 (3113,88 kg/día, SST (3673,13 kg/día.

  20. Biotechnological reduction of sulfide in an industrial primary wastewater treatment system: A sustainable and successful case study

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, S. [Central Leather Research Institute, Madras (India)

    1996-12-31

    The leather industry is an important export-oriented industry in India, with more than 3,000 tanneries located in different clusters. Sodium sulfide, a toxic chemical, is used in large quantities to remove hair and excess flesh from hides and skins. Most of the sodium sulfide used in the process is discharged as waste in the effluent, which causes serious environmental problems. Reduction of sulfide in the effluent is generally achieved by means of chemicals in the pretreatment system, which involves aerobic mixing using large amounts of chemicals and high energy, and generating large volumes of sludge. A simple biotechnological system that uses the residual biosludge from the secondary settling tank was developed, and the commercial-scale application established that more than 90% of the sulfide could be reduced in the primary treatment system. In addition to the reduction of sulfide, foul smells, BOD and COD are reduced to a considerable level. 3 refs., 2 figs., 1 tab.

  1. Impact of pre-treatment technologies on soil aquifer treatment

    Directory of Open Access Journals (Sweden)

    A. Besançon

    2017-03-01

    Full Text Available This study investigates the impact of pre-treatment options on the performances of soil columns simulating soil aquifer treatment (SAT. For this purpose a conventional activated sludge (CAS process, a membrane bioreactor (MBR and vertical flow reed beds were used as single units or in combination before SAT. The influent and effluent from each treatment train were monitored over three successive 6-month periods, corresponding to changes in the operational conditions of the MBR and CAS units from 6 days' sludge retention time (SRT to 12 and 20 days. All the columns acted as efficient polishing steps for solids and bacteria. The column receiving effluent from the CAS system running at 6 days' SRT also presented high total nitrogen and total phosphorus removals, but this column was also associated with the lowest infiltration rates over that period. While the quality of the effluent from the column following the CAS process increased over 18 months of operation, the effluent quality of the columns receiving MBR effluent degraded. No correlations were found between variations in SRT of the MBR and CAS processes and the columns' performances. Overall, all columns, except the one receiving CAS effluent, underwent a reduction in infiltration rate over 18 months.

  2. Utilization of vinasse effluents from an anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F J.C.B.; Rocha, B B.M.; Viana, C E; Toledo, A C

    1986-01-01

    An anaerobic reactor was developed to biodigest alcohol distillery wastes. A further post-treatment of the effluent reduced the level of pollution to the point of eventually discharging into streams and rivers. The present work also analyses the use of biodigested vinasse as a source of food for fish. Very high efficiencies were obtained during primary and secondary treatment of vinasse effluent, as demonstrated by the greatly reduced organic load. The utilization of the treated effluent as a source of fish food presents an excellent alternative for the Brazilian alcohol industry. (Refs. 6).

  3. Radioactive clearance discharge of effluent from nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Liu Xinhua; Xu Chunyan

    2013-01-01

    On the basis of the basic concepts of radiation safety management system exemption, exclusion and clearance, we expound that the general industrial gaseous and liquid effluent discharges are exempted or excluded, gaseous and liquid effluent discharged from nuclear and radiation facilities are clearance, and non-radioactive. The main purpose of this paper is to clarify the concepts, reach a consensus that the gaseous and liquid effluent discharged from nuclear and radiation facilities are non-radioactive and have no hazard to human health and natural environment. (authors)

  4. Dental Effluent Guidelines

    Science.gov (United States)

    Overview and documents for Dental Office Category regulation (40 CFR Part 441); comprising pretreatment standards for discharges of dental amalgam pollutants, including mercury, into publicly owned treatment works (POTWs).

  5. Design parameters for waste effluent treatment unit from beverages production

    Directory of Open Access Journals (Sweden)

    Mona A. Abdel-Fatah

    2017-09-01

    Full Text Available Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been considered as the basis for full scale design of the industrial capacity of 1600 m3/day treatment plant. Final effluent characteristics after treatment comply with Egyptian legalizations after reducing COD and BOD5 by about 97% and 95% respectively. So it is recommended to reuse treated effluent in textile industry in dyeing process.

  6. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Chen Hong; Zhang Can; Han Jianbo; Yu Yixuan; Zhang Peng

    2012-01-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K OC ) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  7. Ação de Micoflora de efluentes agroindustriais sobre diferentes corantes e substratos lignocelulósicos =Action of mycoflora from agri-industrial effluents on different dyes and lignocellulosic substrates

    Directory of Open Access Journals (Sweden)

    Ana Maria Queijeiro López

    2011-09-01

    activity of the mycoflora of effluents from sugar-alcohol industry, to the ones of other fungi acquired in official collection. The tested dyes proved to be excellent substitutes for Poly R478. The isolate that showed more intense decolorant activity than the diameter of its growth (Cladosporium sp. was then tested on two natural and one synthetic substrate (sugarcane bagasse, sawing wood, and methylene blue in liquid medium. This isolate removed highconcentrations of reducing sugars, proteins and total phenols, and reduced the COD in medium containing sawdust as natural substrate of phenols. This fungus, therefore, seems promising to form consortia for co-metabolism and bioremediation of effluents in which there is a presence of phenolic or other recalcitrant compounds with similar structure to lignin.

  8. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    OpenAIRE

    M. Šabić; M. Vuković Domanovac; Z. Findrik Blažević; E. Meštrović

    2015-01-01

    In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmente...

  9. Volatile organic monitor for industrial effluents

    International Nuclear Information System (INIS)

    Laguna, G.R.; Peter, F.J.; Stuart, A.D.; Loyola, V.M.

    1993-07-01

    1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower ampersand instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing

  10. Contaminant Characterization of Effluent from Pennsylvania Brine Treatment, Inc., Josephine Facility: Implications for Disposal of Oil and Gas Flowback Fluids from Brine Treatment Plants

    Science.gov (United States)

    The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.

  11. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available of major concern identified in the effluent are the large volume of byproduct calcium sulphate (phosphogypsum) which would smother marine life, high concentrations of fluoride highly toxic to marine life, heavy metals, chlorinated organic material... ........................ 9 THE RICHARDS BAY PIPELINE ........................................ 16 Environmental considerations ................................... 16 - Phosphogypsum disposal ................................... 16 - Effects of fluoride on locally occurring...

  12. Liquid effluent at Dounreay

    International Nuclear Information System (INIS)

    Sinclair, N.R.

    1995-01-01

    This short paper reviews the liquid effluent treatment at the Dounreay site. The significant reductions in volume and activity discharged from the site to the environment have been achieved over the many years of operation, and some of the techniques are highlighted. The Regulator interaction and the effect on the environment is discussed, while some of the requirements of the Regulator are presented. (author)

  13. The treatment of effluents

    International Nuclear Information System (INIS)

    Wormser, G.; Rodier, J.; Robien, E. de; Fernandez, N.

    1964-01-01

    For several years the French Atomic Energy Commission has been studying with interest problems presented by radio-active effluents. Since high activities have not yet received a definite solution we will deal only, in this paper, with the achievements and research concerning low and medium activity effluents. In the field of the achievements, we may mention the various effluent treatment stations which have been built in France; a brief list will be given together with an outline of their main new features. Thus in particular the latest treatment stations put into operation (Grenoble, Fontenay-aux-Roses, Cadarache) will be presented. From all these recent achievements three subjects will be dealt with in more detail. 1 - The workshop for treating with bitumen the sludge obtained after concentration of radionuclides. 2 - The workshop for treating radioactive solid waste by incineration. 3 - A unit for concentrating radio-active liquid effluents by evaporation. In the field of research, several topics have been undertaken, a list will be given. In most cases the research concerns the concentration of radionuclides with a view to a practical and low cost storage, a concentration involving an efficient decontamination of the aqueous liquids in the best possible economic conditions. For improving the treatments leading to the concentration of nuclides, our research has naturally been concerned with perfecting the treatments used in France: coprecipitation and evaporation. In our work we have taken into account in particular two conditions laid down in the French Centres. 1 - A very strict sorting out of the effluents at their source in order to limit in each category the volume of liquid to be dealt with. 2 - The necessity for a very complete decontamination due to the high population density in our country. In the last past we present two original methods for treating liquid effluents. 1 - The use of ion-exchange resins for liquids containing relatively many salts. The

  14. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  15. Detection, in real time, of metallic pollutants present in the industrial atmospheric effluents by inductively coupled plasma torch; Detection, en temps reel, d'elements metalliques presents dans les rejets atmospheriques industriels par torche a plasma a couplage inductif

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, D.

    2001-12-15

    This work is devoted to the development of a process of detection in real time of metallic pollutants present in industrial atmospheric effluents. The method of measurement is the atomic spectrometry of emission coupled to an ICP torch (Inductively coupled Plasma). The technology of the fluidized beds is used as system of introduction of the metallic particles into the ICP torch, the interest of the principle of detection resting on the stamping from the usual procedure of calibration of the analytical system. The results are presented in two parts. The first relates to the diagnosis of plasmas formed with various mixtures of N{sub 2}/O{sub 2} which one corresponds to pure air, the second presents the setting process of detection in real time starting from the intensities ratios of the spectral lines of the metallic element with those of the plasma-producing element (argon or pure air) The study of the diagnosis of plasmas made up of mixtures N{sub 2}/O{sub 2} relates to the determination of the atomic excitation temperature from the spectral lines of the copper element and the evaluation of the thermal disequilibrium q Te/Th. This last is obtained by considering the mass enthalpy of various mixtures N{sub 2}/O{sub 2}. The existence of a small thermal disequilibrium is highlighted. The study of detection in real time by ICP torch, without calibration of the system, is based on three points: - spectroscopic data processing to determine the values of the intensities ratios of spectral lines; - the insertion of the intensities ratios and the characteristics of plasma (argon or pure air) into a calculation code of plasma composition; - the comparison of the mass flux values of the metallic pollutants, in real time, obtained by experiments with those resulting from the elutriation calculation, term which defines the phenomenon of entrainment of the particles out of the fluidized bed. The results made it possible to show the similarity of the analytical system response

  16. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  17. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  18. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Science.gov (United States)

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  19. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    He Pinjing; Qu Xian; Shao Liming; Li Guojian; Lee Duujong

    2007-01-01

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l -1 , but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  20. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL's sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL's outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE's purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives

  1. Radiation-adsorption purification of effluents containing pesticides

    International Nuclear Information System (INIS)

    Brusentseva, S.A.; Shubin, V.N.; Nikonorova, G.K.; Zorin, D.M.; Sosnovskaya, A.A.; Petryaev, E.P.; Vlasova, V.I.; Edimicheva, I.P.; Subbotina, N.N.; Belorusskij Gosudarstvennyj Univ., Minsk)

    1986-01-01

    The radiation-adsorption purification is one of the new direction in the radiation purification of natural wastes and effluents containing pesticides. This method combines the conventional adsorption purification with radiation treatment of the sorbent, and the result the protection time of the sorbent increases due to the radiation regeneration of carbon. In present work the method was used for purification of effluents from pesticides, such as 4,4'Dichlorodiphenyltrichloroethane /DDT/, 1,2,3,4,5,6-hexachlorocyclohexane /HCCH/, dimethyl 2,2-dichlorovinylphosphate /DDVF/ and petroleum products (a mixture of kerosene and xylene in ratio 7:1). Such effluents are formed at factories producing an insecticide aerosol 'Prime-71'. Three investigations were carried out on model with a solution similar composition to industrial effluents. (author)

  2. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  3. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  4. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  5. 40 CFR 415.646 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.646 Pretreatment standards for new sources (PSNS). (a) Except as provided in 40 CFR 403.7, any new source subject to this subpart and producing cadmium pigments...

  6. 40 CFR 415.644 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... Pigments and Salts Production Subcategory § 415.644 Pretreatment standards for existing sources (PSES). (a... cadmium pigments which introduces pollutants into a publicly owned treatment works must comply with 40 CFR...—Cadmium Pigments Pollutant or pollutant property PSES effluent limitations Maximum for any 1 day Average...

  7. 40 CFR 425.25 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.25 Section 425.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Hair Save, Chrome Tan...

  8. 40 CFR 425.75 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.75 Section 425.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Shearling Subcategory...

  9. 40 CFR 425.46 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.46 Section 425.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Retan-Wet Finish...

  10. 40 CFR 425.15 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.15 Section 425.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Hair Pulp, Chrome Tan...

  11. 40 CFR 425.66 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.66 Section 425.66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Through-the-Blue...

  12. 40 CFR 425.95 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.95 Section 425.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Retan-Wet Finish...

  13. 40 CFR 425.86 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.86 Section 425.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Pigskin Subcategory...

  14. 40 CFR 425.65 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.65 Section 425.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Through-the-Blue...

  15. 40 CFR 425.96 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.96 Section 425.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Retan-Wet Finish...

  16. 40 CFR 425.85 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.85 Section 425.85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Pigskin Subcategory...

  17. 40 CFR 425.16 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.16 Section 425.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Hair Pulp, Chrome Tan...

  18. 40 CFR 425.55 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.55 Section 425.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY No Beamhouse...

  19. 40 CFR 425.26 - Pretreatment standards for new sources (PSNS)

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS) 425.26 Section 425.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Hair Save, Chrome Tan...

  20. 40 CFR 425.36 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.36 Section 425.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Hair Save or Pulp...

  1. 40 CFR 425.76 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.76 Section 425.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Shearling Subcategory...

  2. 40 CFR 425.56 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources (PSNS). 425.56 Section 425.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY No Beamhouse...

  3. 40 CFR 425.45 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for existing sources (PSES). 425.45 Section 425.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Retan-Wet Finish...

  4. 40 CFR 415.116 - Pretreatment standards for new sources (PSNS).

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Potassium Metal Production Subcategory § 415.116 Pretreatment standards for new sources (PSNS). Except as provided in § 403.7... (PSNS): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  5. 40 CFR 415.474 - Pretreatment standards for existing sources (PSES).

    Science.gov (United States)

    2010-07-01

    ... sources (PSES). 415.474 Section 415.474 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Nickel Salts Production Subcategory § 415.474 Pretreatment standards for existing sources (PSES). (a) Except as...

  6. Cultivo hidropônico de tomate cereja utilizando-se efluente tratado de uma indústria de sorvete Hydroponic production of cherry tomatoes using treated effluent of ice cream industry

    Directory of Open Access Journals (Sweden)

    Samuel M. M. Malheiros

    2012-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o uso de doses de efluente oriundo de indústria de sorvete, na cultura do tomate cereja em relação ao consumo hídrico e no desenvolvimento vegetativo em sistema hidropônico. O delineamento experimental foi o inteiramente casualizado, com seis tratamentos e quatro repetições. Os tratamentos foram compostos pelo uso de doses de efluente (0, 25, 50, 75 e 100% com complementação de nutrientes e com o uso de 100% de efluente sem complementação nutriente. O aumento das doses de efluente na solução nutritiva proporcionou redução linear no consumo hídrico. O efluente com 25% proporcionou a melhor produtividade. A adição de até 50% de efluente de sorvete à solução nutritiva permitiu o cultivo de tomate cereja sem redução na produtividade, com melhor eficiência do uso da água na produção de matéria seca da parte aérea, produção de frutos e máxima substituição de minerais solúveis na solução nutritiva.The objective of this study was to evaluate the effect of ice cream raw effluent doses on consumption and vegetative development of cherry tomato under hydroponic system. The experiment was conducted in completely randomized design with six treatments and four replications. Treatments consisted of 5 different levels of effluent (0, 25, 50, 75 and 100% complemented with the amount of nutrient recommended for growing tomatoes and 100% of effluent without nutrient complementation. Increasing doses of effluent provided linear reduction in water consumption.Addition of effluent in proportion of 25% provided best production results. Addition up to 50% ice cream effluent to nutrient solution allowed growth of cherry tomato without yield reduction providing better efficiency of water use in terms of dry weight of shoots and fruit production as well as maximum substitution of soluble mineral fertilizers in nutrient solution.

  7. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  8. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  9. PRETREATING THORIUM FOR ELECTROPLATING

    Science.gov (United States)

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  10. An assessment of the quality of liquid effluents from opaque beer ...

    African Journals Online (AJOL)

    driniev

    2005-01-01

    Jan 1, 2005 ... The effluent treatment plants in both plants were not only inadequate but also ... Keywords: industrial effluents, opaque beer-brewery, pollution load, quality, quantity ... to hydraulic overloading and corrosion of the sewer pipe system ... The two breweries studied in this paper produce African traditional.

  11. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  12. Homogeneous sonophotolysis of food processing industry wastewater: Study of synergistic effects, mineralization and toxicity removal.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; Sanmartín, I; Gómez, P

    2013-03-01

    The mineralization of industrial wastewater coming from food industry using an emerging homogeneous sonophotolytic oxidation process was evaluated as an alternative to or a rapid pretreatment step for conventional anaerobic digestion with the aim of considerably reducing the total treatment time. At the selected operation conditions ([H(2)O(2)]=11,750ppm, pH=8, amplitude=50%, pulse length (cycles)=1), 60% of TOC is removed after 60min and 98% after 180min when treating an industrial effluent with 2114ppm of total organic carbon (TOC). This process removed completely the toxicity generated during storing or due to intermediate compounds. An important synergistic effect between sonolysis and photolysis (H(2)O(2)/UV) was observed. Thus the sonophotolysis (ultrasound/H(2)O(2)/UV) technique significantly increases TOC removal when compared with each individual process. Finally, a preliminary economical analysis confirms that the sono-photolysis with H(2)O(2) and pretreated water is a profitable system when compared with the same process without using ultrasound waves and with no pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Phytoremediation potential of aquatic herbs from steel foundry effluent

    Directory of Open Access Journals (Sweden)

    N. Aurangzeb

    2014-12-01

    Full Text Available Discharge of industrial effluents in aquatic environments is a serious threat to life due to toxic heavy metals. Plants can be used as cheap phytoremedients in comparison to conventional technologies. The present study was conducted to check the phytoremediation capability of two free-floating plants, i.e., Pistia stratiotes and Eichhornia crassipes, for the removal of heavy metals from steel effluent by using Atomic Absorption Spectrophotometry. P. stratiotes was able to remove some of the heavy metals, showing the highest affinity for Pb and Cu with 70.7% and 66.5% efficiency, respectively, while E. crassipes proved to be the best phytoremediant for polluted water as its efficiency was greatest progressively for Cd, Cu, As, Al and Pb, i.e., 82.8%, 78.6%, 74%, 73% and 73%, respectively. In conclusion, aquatic plants can be a better candidate for phytoextraction from industrial effluents due to cost effectiveness.

  14. Treating radioactive effluent

    International Nuclear Information System (INIS)

    Kirkham, I.A.

    1981-01-01

    In the treatment of radioactive effluent it is known to produce a floc being a suspension of precipitates carrying radioactive species in a mother liquor containing dissolved non-radioactive salts. It is also known and accepted practice to encapsulate the floc in a solid matrix by treatment with bitumen, cement and the like. In the present invention the floc is washed with water prior to encapsulation in the solid matrix whereby to displace the mother liquor containing the dissolved non-radioactive salts. This serves to reduce the final amount of solidified radioactive waste with consequent advantages in the storage and disposal thereof. (author)

  15. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  16. Evaporation behaviour of different organic effluents from open surfaces.

    Science.gov (United States)

    Jhorar, B S; Malik, R S

    1993-01-01

    Production of large quantities of effluents from different industrial units and the problems of their disposal necessitated this evaporation study. The evaporation of water, sewage water, oil refinery effluent, papermill effluent and liquor distillery effluent was observed in glass beakers when placed (i) in an oven at 60 degrees C and (ii) in screen house for 30 days, by periodically weighing of the beakers. In other experiments, the effect of increasing the frequency of stirring on increasing the evaporation efficiency of the liquor distillery effluent (ELD) was examined in detail. All of the organic effluents except ELD had similar evaporation behaviours as water, but formation of a self-forming film caused the evaporation of ELD to be considerably lower. Resistance to evaporation caused by this film was found to be a decreasing function of the frequency of stirring. This study has a bearing on improving the efficiency of evaporation lagoons, and three stirrings in a day with a manually drawn stirrer in a full-scale lagoon are proposed as a practical and economically viable technique to save 44% of lagoon land in arid and semi-arid regions of the world.

  17. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  18. 40 CFR 35.907 - Municipal pretreatment program.

    Science.gov (United States)

    2010-07-01

    ... industrial survey as required by § 403.8 of this chapter including identification of system users, the... program; (4) A determination of technical information necessary to support development of an industrial waste ordinance or other means of enforcing pretreatment standards; (5) Design of a monitoring...

  19. Filtration device for active effluents

    International Nuclear Information System (INIS)

    Guerin, M.; Meunier, G.

    1994-01-01

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter

  20. Bioremediation of chromium in tannery effluent by microbial consortia

    African Journals Online (AJOL)

    Chromium is the most toxic and common among the heavy metal pollutants of industrial effluents. In the present work the chromium remediation ability of Bacillus subtilis, Pseudomonas aeruginosa and Saccharomyces cerevisiae in consortia and in their immobilized forms was studied and their efficiencies were compared.

  1. Modelling Effluent Assimilative Capacity of Ikpoba River, Benin City ...

    African Journals Online (AJOL)

    The sheer display of reprehensible propensity on the part of public hospitals, abattoirs, breweries and city dwellers at large to discharge untreated waste, debris, scum and, in particular, municipal and industrial effluents into Ikpoba River has morphed into a situation whereby the assimilative capacity of the river has reached ...

  2. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells

    KAUST Repository

    Ullery, Mark L.; Logan, Bruce E.

    2014-01-01

    between the two reactor designs for individual samples, with 66-92% of COD removed for all samples. Current generation was consistent between the reactor types for acetate (AC) and fermentation effluent (FE) samples, but less consistent with industrial (IW

  3. Method for the recovery of Cr and Co species from effluents using ...

    African Journals Online (AJOL)

    Method for the recovery of Cr and Co species from effluents using agricultural adsorbent ... International Journal of Biological and Chemical Sciences ... recovery of Cr and Co species in microbial-treated industrial wastewater using agricultural ...

  4. Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum

    Science.gov (United States)

    Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan

    2017-12-01

    Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.

  5. Complete physico-chemical treatment for coke plant effluents.

    Science.gov (United States)

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  6. Determination of nitrate in effluents from Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Dudwadkar, Ayushi; Kumar, Sangita D.; Reddy, A.V.R.

    2014-01-01

    Determination of nitrate concentration in the effluent samples from Uranium Extraction Plant is required before its safe discharge. As the different streams are diluted with sea water these samples contain high concentration of chloride. The large concentration of chloride poses a challenge in the determination of nitrate; hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The present study was carried out to develop a simple, accurate and rapid analytical methodology for the determination of nitrate in the above matrices. The quantitative determination of nitrate was accomplished using anion exchange chromatography with conductometric detection. (author)

  7. Ten years of investigation on radioactive contamination of the marine environment. Incorporation, by marine algae and animals, of hydrogen-3 and other radionuclides present in effluents of nuclear or industrial origin

    International Nuclear Information System (INIS)

    Bonotto, S.; Colard, J.; Koch, G.; Kirchmann, R.; Strack, S.; Luettke, A.; Carraro, G.

    1981-01-01

    Several marine plants and animals were investigated for their capability of incorporating the main radionuclides present in selected effluents. Accumulation factors are reported for 3 H, 134 Cs, 136 Cs, 137 Cs, 58 Co, 60 Co, 54 Mn, 131 I 226 Ra and 124 Sb. Marine algae, which are involved in food chains leading to man, show the highest accumulation factors. The stable element composition of the alga Acetabularia was determined by gamma-activation analysis. The preferential accumulation of particular radionuclides by marine organisms suggests that they may have a significant role in the turnover rate of elements in the marine environment. (author)

  8. Economic Assessment of an Integrated Membrane System for Secondary Effluent Polishing for Unrestricted Reuse

    Directory of Open Access Journals (Sweden)

    Gideon Oron

    2012-03-01

    Full Text Available Extra treatment stages are required to polish the secondary effluent for unrestricted reuse, primarily for agricultural irrigation. Improved technology for the removal of particles, turbidity, bacteria and cysts, without the use of disinfectants is based on MicroFiltration (MF and UltraFiltration (UF membrane technology and in series with Reverse Osmosis (RO for dissolved solids removal. Field experiments were conducted using a mobile UF and RO membrane pilot unit at a capacity of around 1.0 m3/hr. A management model was defined and tested towards optimal polishing of secondary effluent. The two major purposes of the management model are: (i to delineate a methodology for economic assessment of optimal membrane technology implementation for secondary effluent upgrading for unrestricted use, and; (ii to provide guidelines for optimal RO membrane selection in regards to the pretreatment stage. The defined linear model takes into account the costs of the feed secondary effluent, the UF pretreatment and the RO process. Technological constraints refer primarily to the longevity of the membrane and their performance. Final treatment cost (the objective function includes investment, operation and maintenance expenses, UF pretreatment, RO treatment, post treatment and incentive for low salinity permeate use. The cost range of water for irrigation according to the model is between 15 and 42 US cents per m3.

  9. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  10. Design parameters for waste effluent treatment unit from beverages production

    OpenAIRE

    Mona A. Abdel-Fatah; H.O. Sherif; S.I. Hawash

    2017-01-01

    Based on a successful experimental result from laboratory and bench scale for treatment of wastewater from beverages industry, an industrial and efficient treatment unit is designed and constructed. The broad goal of this study was to design and construct effluent, cost effective and high quality treatment unit. The used technology is the activated sludge process of extended aeration type followed by rapid sand filters and chlorination as tertiary treatment. Experimental results have been con...

  11. Disposal of tritiated effluents

    International Nuclear Information System (INIS)

    Hartmann, K.; Bruecher, H.

    1981-06-01

    After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described (deep well injection, in-situ solidification, deep-sea dumping) and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m 3 of tritiated waste water with a tritium content of 6.5 x 10 12 Bq/m 3 as well as a residual fission product and actinide content. An assessment of the three methods under the aspects of simplicity, reliability, safety, costs, state of development and materials handling revealed advantages in favour of 'injection', followed by 'dumping' and 'in-situ solidification'. (orig./HP) [de

  12. Technical feasibility of reuse of effluent generated from reverse osmosis system in a pharmaceutical plant

    Directory of Open Access Journals (Sweden)

    Bárbara de A. S. de Andrade

    2017-09-01

    Full Text Available Reuse reduces the consumption of freshwater supplies and the negative environmental impact caused by the discharge of industrial effluents. Some industries have already adopted this practice; however, no studies were found in the literature regarding this subject in the pharmaceutical industry. This work investigated the potential reuse of effluent (concentrate generated from the Reverse Osmosis/Electro-deionization System (RO/EDI that is used for the production of purified water in a Brazilian pharmaceutical plant. This industrial complex consumed about 200,000 m3 of water per year between 2012 and 2013 to produce one million of doses of vaccines, i.e., 2 L of water per dose of vaccine produced. During this period, the RO/EDI produced 27,000 m3 of purified water annually and generated 24,000 m3 of effluent (concentrate. This amount of effluent could be used to supply the production of industry steam (boilers and/or cold water (cooling towers that annually consumed an average of 12,000 m3 and 40,000 m3, respectively. The reuse of this effluent would result in a gross financial savings of 96,000 USD per year, excluding the costs of installation and control. From what has been researched in the literature, this work showed for the first time the possibility of reuse of effluent from RO/EDI System in the pharmaceutical industry.

  13. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    Science.gov (United States)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2017-09-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  14. Pollution characterization of waste water of an industrial zone - Example of a dairy water clarification

    International Nuclear Information System (INIS)

    Hazourli, S.; Ziati, M.; Boudiba, L.; Fedaoui, D.

    2009-01-01

    The objective of this study is the estimation of the polluting load generated by domestic effluents added to those of various industries in one of the most important industrial zone in Africa. Analysis of waste water showed strong and irregular pollution which is prejudicial for the aquatic receiving medium (river, sea). This pollution is confirmed among others by COD/BOD ratio which may attain the value of 1.8. Pre-treatment by coagulation floculation of waste water used in a dairy belonging to this industrial zone showed a considerable reduction of the initial pollution by a systematic decreasing of pollution parameters. Aluminium sulphates and iron chloride tested in this experience have reduced considerably all the studied parameters; the organic charge has received a very significant reduction up to 99%. The discharge of treated effluent in the surrounding river or its use for recycling aims is then possible for this industry. However, the formed sludge can be the subject of a suitable treatment for possible agricultural, avicolous valorisation or other. (author)

  15. A Comprehensive Study on the Application of Reverse Osmosis (RO Technology for the Petroleum Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Shahryar Jafarinejad

    2017-10-01

    Full Text Available Large quantities of oily wastewaters can be generated from the activities and processes in the petroleum industry which draining of these effluents not only pollutes the environment but also reduces the yield of oil and water. Therefore, development of treatment processes for petroleum industry wastewaters is vital in order to prevent serious environmental damage and provide a source of water for beneficial use. Reverse osmosis (RO can be the most common membrane process used for desalination from oily wastewater and can produce water suitable for reuse at the petroleum industry. In this study, the application of RO technology for the petroleum industry wastewater treatment in different laboratory, pilot, field, and industrial scales have been reviewed. In addition, membrane fouling control, performance efficiency, treatment system configurations, pretreatment methods, quality of treated water, and economic issues have been investigated. With mixtures as complex as petroleum industry wastewaters, membrane fouling becomes a significant hurdle to implement the RO-based purification system. Operating the system within the critical flux range or adding chemicals, and/or pretreatment can usually control membrane fouling. Salt rejection of RO membranes can be 99% or higher.

  16. Enzymatic recovery of platinum (IV) from industrial wastewater using a biosulphidogenic hydrogenase

    CSIR Research Space (South Africa)

    Rashamuse, KJ

    2008-04-01

    Full Text Available with the industrial effluent, containing 7.9 mg.l-1 platinum, only 10 – 15% recovery was noted pointing to a suppression of enzyme activity due to the low pH (0.38) of the effluent. Bioremediation studies on industrial effluent using resting SRB cells showed a 34...

  17. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  18. Process for processing and conditioning radioactive effluents of low and medium activity

    International Nuclear Information System (INIS)

    Taponier, Jean; Pierlas, Rene.

    1979-01-01

    Preferably continuous process for processing radioactive effluents of low and medium activity, comprising an effluent pre-treatment: precipitation of radioactive compounds to form a stable suspension that can be concentrated. Then a mix is made of 0.6 to 2 parts of cement by weight for one part by weight of suspension, from 0.5 to 5% by weight, in relation to the cement, of asbestos fibre and, if necessary, added water for the cement to set, this suspension containing from 15 to 75% by weight of dry extract and a suspension agent. The homogeneous mix achieved is poured into a container [fr

  19. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  20. Study about the integrated treatment of chemical and radioactive effluents, introducing the zero release concept

    International Nuclear Information System (INIS)

    Mierzwa, Jose Carlos

    1996-01-01

    An Integrated System to the treatment of Chemical and Radioactive Effluents to the Centro Experimental Aramar is proposed and evaluated, introducing the Effluent Zero Release concept, where factors related to the environmental regulation in vigor in the country, as well as the availability of hydrological resources in the place where CEA have been implanted, are considered. Through a literature analysis of the main effluents treatment techniques available nowadays and after a case of study selection, take into account two industrial installations that will be implanted at CEA, it was defined an arrangement to compose the Integrated System to the Treatment of Chemicals and Radioactive Effluents, focusing the Zero Release concept consolidation. A defined arrangement uses a combination among three treatment processes, it means chemical precipitation, reverse osmosis and evaporation, that were experimentally evaluated. The proposed arrangement was evaluated using synthetic effluents, that were prepared based on data from literature and conception documents of the installation considered in this work. Three kinds of effluents were simulated, one arising from a nuclear reactor laundry, one arising from the water refrigeration system and demineralized water production to the nuclear reactor and the other one arising from a nuclear material production laboratory. Each effluent were individually submitted to the selected treatment processes, to get the best operational conditions for each treatment process. The results got during the laboratory assays show that the proposed Integrated System to the Treatment of Chemicals and Radioactive Effluents is feasible, consolidating the Effluent Zero Release concept, which is the proposition of this work. (author)