WorldWideScience

Sample records for pretensioned concrete girders

  1. End region detailing of pretensioned concrete bridge girders.

    Science.gov (United States)

    2013-03-01

    End region detailing has significant effect on the serviceability, behavior, and capacity of pretensioned concrete girders. : In this project, experimental and analytical research programs were conducted to evaluate and quantify the effects of : diff...

  2. End region detailing of pretensioned concrete bridge girders : [summary].

    Science.gov (United States)

    2013-03-01

    Introduction of the Florida-I Beam (FIB) in 2009 renewed interest in prestressed concrete beam design, especially end region details. In this study, University of Florida researchers examined construction detailing at the FIB end region.

  3. Investigation of long-term prestress losses in pretensioned high performance concrete girders.

    Science.gov (United States)

    2005-01-01

    Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress loss...

  4. Anchorage zone design for pretensioned precast bulb-T bridge girders in Virginia.

    Science.gov (United States)

    2009-01-01

    Precast/prestressed concrete girders are commonly used in bridge construction in the United States. The application and diffusion of the prestress force in a pretensioned girder cause a vertical tension force to develop near the end of the beam. Fiel...

  5. Performance of self-consolidating concrete in prestressed girders.

    Science.gov (United States)

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  6. Development of guidelines for transportation of prestressed concrete girders.

    Science.gov (United States)

    2011-11-01

    "Prestressed concrete girders are an economical superstructure system for bridges. With the : advent of higher strength concretes and more effi cient cross sections, the use of long span (>100 : ft.) prestressed girders are now specifi ed. Such long ...

  7. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Directory of Open Access Journals (Sweden)

    Jankowiak Iwona

    2017-12-01

    Full Text Available One of the methods to increase the load carrying capacity of the reinforced concrete (RC structure is its strengthening by using carbon fiber (CFRP strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments. The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  8. Bond between smooth prestressing wires and concrete : finite element model and transfer length analysis for pretensioned concrete crossties.

    Science.gov (United States)

    2014-04-03

    Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...

  9. Shear capacity of in service prestressed concrete bridge girders.

    Science.gov (United States)

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several : decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that : was used forty years ago is very different than t...

  10. Repair of cracked prestressed concrete girders, I-565, Huntsville, Alabama.

    Science.gov (United States)

    2011-07-01

    Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal ...

  11. Self-Consolidating Concrete for Prestressed Bridge Girders : Research Brief

    Science.gov (United States)

    2017-08-01

    Self-consolidating concrete (SCC) is commonly used as an alternative to conventional concrete (CC) in precast, prestressed concrete (PSC) bridge girders. The high strength, highly workable mixture can flow through dense reinforcement to fill formwork...

  12. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    Science.gov (United States)

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  13. Strengthening of steel–concrete composite girders using carbon ...

    Indian Academy of Sciences (India)

    Regarding the high tensile strength and proper module of elasticity, CFRP plates are considered as a suitable alternative to strengthen girders. The behaviour of steel–concrete composite girders being statically loaded and strengthened by CFRP plates in this study. The CFRP plates used in this study have been stuck, with ...

  14. Self-Consolidating Concrete for Prestressed Bridge Girders

    Science.gov (United States)

    2017-07-01

    This document reports the findings of a research project designed to better understand material and structural performance of prestressed bridge girders made with Self-Consolidating Concrete (SCC) from Wisconsin. SCC has high potential to be used for...

  15. Development of guidelines for transportation of long prestressed concrete girders.

    Science.gov (United States)

    2016-12-01

    This research study investigates the behavior of two long prestressed concrete girders during lifting and : transportation from the precast yard to the bridge site, with a particular focus on cracking concerns : during transport. Different response m...

  16. Continuous prestressed concrete girder bridges volume 1 : literature review and preliminary designs.

    Science.gov (United States)

    2012-06-01

    The Texas Department of Transportation (TxDOT) is currently designing typical highway bridge structures as simply supported using standard precast, pretensioned girders. TxDOT is interested in developing additional economical design alternatives for ...

  17. Continuous prestressed concrete girder bridges, volume 2 : analysis, testing, and recommendations.

    Science.gov (United States)

    2016-12-01

    The Texas Department of Transportation designs typical highway bridge structures as simple span systems using : standard precast, pretensioned girders. Spans are limited to about 150 ft due to weight and length restrictions on : transporting the prec...

  18. Time dependent deformation in prestressed concrete girder: Measurement and prediction

    Science.gov (United States)

    Sokal, Y. J.; Tyrer, P.

    1981-11-01

    Prestressed concrete girders which are intended for composite construction in bridges and other similar structures are often stored unloaded for some time before being placed in their final positions where top deck is being poured over. During that free storage the girders are subjected to creep and shrinkage which manifests itself through increased upward deformation usually defined as camber. The analytical estimation of this deformation is important as it controls the minimum thickness of the top deck. An attempt was made to correlate on site measurements with continuous computer modeling of the time-dependent behavior using data from recently adopted international standard for concrete structures.

  19. Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nameer A. Alawsh

    2018-03-01

    Full Text Available In this paper, the general behavior of reinforced concrete hybrid box girders is studied by experimental and numerical investigation. Experimental work is included casting monolithically five specimens of box girders with trapezoidal cross section and testing it as simply supported under two point loading. Two specimens were cast as homogenous box girders (full normal strength concrete (NSC (about 35 MPa and full high strength concrete (HSC (about 55 MPa and three specimens were cast as hybrid box girders (HSC in upper flange only, HSC in upper flange and half depth of webs, and HSC in bottom flange and total depth of webs. Experimental results showed significant effects of concrete hybridization on the structural behavior of box girders specimens such as: cracking loads, cracking patterns, ultimate strengths, and failure modes. The ultimate strength of Hybrid box girders increased by 23% as average when compared with the homogenous box girder (full NSC and decreased by 9% as average when compared with homogenous box girder (full HSC. In numerical investigation, the tested specimens were modeled and analyzed using three dimensional non-linear finite element analysis. The analysis was carried out by using a computer program (ANSYS V16.1. The numerical results showed an acceptable agreement with the experimental work with difference about (3.12% and 9.588% as average for ultimate load and deflection, respectively.

  20. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  1. Investigation of transfer length, development length, flexural strength, and prestress losses in lightweight prestressed concrete girders.

    Science.gov (United States)

    2003-01-01

    Encouraged by the performance of high performance normal weight composite girders, the Virginia Department of Transportation has sought to exploit the use of high performance lightweight composite concrete (HPLWC) girders to achieve economies brought...

  2. Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.

    Science.gov (United States)

    2011-01-01

    The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...

  3. Shear capacity of in service pre-stressed concrete bridge girders.

    Science.gov (United States)

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that was used forty years ago is very different than those...

  4. Effect of Partial Shear Interaction in Steel Concrete Composite Girders

    Science.gov (United States)

    Kalibhat, Madhusudan G.; Upadhyay, Akhil

    2017-10-01

    Steel concrete composite (SCC) structural system has been commonly used both in the buildings and in the bridges because of the advantages it associates when compared to its counterparts such as RC and steel structures. A typical SCC girder consists of a concrete element placed over a steel element. The effectiveness of this composite system is characterized by the type of connection that exists between the two connecting elements. More commonly shear stud connectors are used to connect the two elements. If the shear studs are infinitely rigid, then it brings about full composite action, on the contrary there is no composite action if the studs are not used, between the two connecting elements. It has been observed that generally the composite action exists somewhere between the full composite action and the no composite action, and is called the partial composite action or the partial interaction. More often the partial composite action is overlooked during the design of SCC girders, and the girder is designed assuming that there exists full composite action, because of the complexities in the analysis incorporating the partial composite action. This might lead to the serviceability issues in the SCC girders. Keeping this in mind the present work has been carried out to understand the significance of the partial interaction in SCC girders. In the present work, a comparative study has been made between the available analytical model and the numerical model. Numerical modeling is performed by using commercially available tool such as SAP2000. The main objective of this work is to bring out the relative significance of the partial interaction with respect to the full composite action, with the help of parametric study. Here, the parametric study has been carried by considering various design parameters, such as, span length, degree of shear connection, cross section geometry of steel girder and concrete slab. It is observed that there is significant increase in

  5. Precast Prestressed Concrete Truss-Girder for Roof Applications

    Directory of Open Access Journals (Sweden)

    Peter Samir

    2014-01-01

    Full Text Available Steel trusses are the most popular system for supporting long-span roofs in commercial buildings, such as warehouses and aircraft hangars. There are several advantages of steel trusses, such as lightweight, ease of handling and erection, and geometric flexibility. However, they have some drawbacks, such as high material and maintenance cost, and low fire resistance. In this paper, a precast concrete truss is proposed as an alternative to steel trusses for spans up to 48 m (160 ft without intermediate supports. The proposed design is easy to produce and has lower construction and maintenance costs than steel trusses. The truss consists of two segments that are formed using standard bridge girder forms with block-outs in the web which result in having diagonals and vertical members and reduces girder weight. The two segments are then connected using a wet joint and post-tensioned longitudinally to form a crowned truss. The proposed design optimizes the truss-girder member locations, cross-sections, and material use. A 9 m (30 ft long truss specimen is constructed using self-consolidated concrete to investigate the constructability and structural capacity of the proposed design. A finite element analysis of the specimen is conducted to investigate stresses at truss diagonals, verticals, and connections. Testing results indicate the production and structural efficiency of the developed system.

  6. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    Science.gov (United States)

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  7. Strength Enhancement of Prestressed Concrete Dapped-End Girders

    Directory of Open Access Journals (Sweden)

    Shatha Dhia Mohammed

    2015-10-01

    Full Text Available This paper presents the application of nonlinear finite element models in the analysis of dapped-ends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped. The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experimental, but; there were a good agreements in both trends and values. The difference varies in the range (5-12% for the deflection. Results have shown that the pre-stress force has increased the static ultimate load capacity by (35% in case of straight strand and by (97% in case of draped strand

  8. Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members

    Science.gov (United States)

    Caro, L. A.; Martí-Vargas, J. R.; Serna, P.

    2013-11-01

    For design purposes, it is generally considered that prestressing strand transfer length does not change with time. However, some experimental studies on the effect of time on transfer lengths show contradictory results. In this paper, an experimental research to study transfer length changes over time is presented. A test procedure based on the ECADA testing technique to measure prestressing strand force variation over time in pretensioned prestressed concrete specimens has been set up. With this test method, an experimental program that varies concrete strength, specimen cross section, age of release, prestress transfer method, and embedment length has been carried out. Both the initial and long-term transfer lengths of 13-mm prestressing steel strands have been measured. The test results show that transfer length variation exists for some prestressing load conditions, resulting in increased transfer length over time. The applied test method based on prestressing strand force measurements has shown more reliable results than procedures based on measuring free end slips and longitudinal strains of concrete. An additional factor for transfer length models is proposed in order to include the time-dependent evolution of strand transfer length in pretensioned prestressed concrete members.

  9. Field verification for the effectiveness of continuity diaphragms for skewed continuous P/C P/S concrete girder bridges : tech summary.

    Science.gov (United States)

    2009-10-01

    The majority of highway bridges are built as cast-in-place reinforced concrete slabs and prestressed concrete : girders. The simple-span precast, prestressed concrete girders made continuous through cast-in-place decks : and diaphragms have been wide...

  10. Evaluation of bent caps in reinforced concrete deck girder bridges : part 2.

    Science.gov (United States)

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  11. Evaluation of bent caps in reinforced concrete deck girder bridges : part 1.

    Science.gov (United States)

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  12. Evaluating Louisiana new deck continuity detail for precast prestressed concrete girder bridges : research project capsule.

    Science.gov (United States)

    2014-08-01

    The goal of everyone in the transportation community is to build bridges : that are economic, easy to construct, and durable. Therefore, accelerating : bridge construction through the use of precast concrete or prefabricated : steel girders is a comm...

  13. Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area

    Directory of Open Access Journals (Sweden)

    Zhou Wangbao

    2014-01-01

    Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.

  14. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  15. A EVALUATION OF THE EFFECTIVE PRESTRESS ON TIMBER CONCRETE COMPOSITE GIRDER BRIDGE

    Science.gov (United States)

    Araki, Shogo

    In applying the glulam timber to the large-sized structures, the new types of connections have been developed. In presence, there are a few joint systems using steel plates and bolts. However, those systems are not always adequately satisfied with durability. Therefore, the new joint system by prestressing was developed. In Nagano prefecture, the timber-concrete composite bridge was provided as the standard design of timber bridges, and the joint system is by prestressing. In case of concrete girder, work of prestress decrease by elastic strain, creep, and etc. However, timber-concrete composite girder is not cleared numerically. In this study, we discussed the effective prestress on timber-concrete composite girder based on time-dependent of prestress checked in existing bridge, and we suggest the evaluation method of it.

  16. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  17. Simplified method for the transverse bending analysis of twin celled concrete box girder bridges

    Science.gov (United States)

    Chithra, J.; Nagarajan, Praveen; S, Sajith A.

    2018-03-01

    Box girder bridges are one of the best options for bridges with span more than 25 m. For the study of these bridges, three-dimensional finite element analysis is the best suited method. However, performing three-dimensional analysis for routine design is difficult as well as time consuming. Also, software used for the three-dimensional analysis are very expensive. Hence designers resort to simplified analysis for predicting longitudinal and transverse bending moments. Among the many analytical methods used to find the transverse bending moments, SFA is the simplest and widely used in design offices. Results from simplified frame analysis can be used for the preliminary analysis of the concrete box girder bridges.From the review of literatures, it is found that majority of the work done using SFA is restricted to the analysis of single cell box girder bridges. Not much work has been done on the analysis multi-cell concrete box girder bridges. In this present study, a double cell concrete box girder bridge is chosen. The bridge is modelled using three- dimensional finite element software and the results are then compared with the simplified frame analysis. The study mainly focuses on establishing correction factors for transverse bending moment values obtained from SFA.

  18. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  19. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : tech transfer summary.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of : designing pre-tensioned prestressed concrete beam (PPCB) bridges : utilizing the continuity developed in the bridge deck as opposed to the : current Iowa Department of Transportati...

  20. Understanding Pretense as Pretense.

    Science.gov (United States)

    Wellman, Henry M.; Hickling, Anne K.

    1993-01-01

    This commentary on the research reported in this monograph stresses the importance of the analogy between the processes involved in pretense comprehension and the processes required to comprehend written or spoken text. The commentary also raises the concern that children could perform correctly on pretense problems using processes of text…

  1. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  2. Destructive Testing of Composite Precast Concrete Deck Panels and Buil-up Steel Plate Girders

    OpenAIRE

    Cook, Wesley J

    2010-01-01

    The Utah Department of Transportation (UDOT) has implemented the use of precast concrete panels for bridge deck construction. A bridge utilizing these panels as a reconstruction method was decommissioned three years after the new deck installation, due to unrelated matters. Two sections of this bridge were salvaged and sent to Utah State University (USU) for destructive testing. Each bridge section consisted of two built-up steel plate girders intact with the precast concrete deck panels...

  3. NEW EVALUATION of SLENDERNESS' CLASSIFICATION FOR COMPOSITE GIRDERS CONSIDERING LOWER CONCRETE STRENGTH SLAB

    OpenAIRE

    Ahmed M. AbdElrahman Massoud*, Manar M. M. Hussein, Walid A.L. Attia

    2017-01-01

    Composite steel/concrete girder is one of the main structural systems used in bridges and buildings. Steel element mainly located in tension zone and a concrete element located in compression zone. Full integration by the shear connectors used to simulate as one section without any slippage between the two materials. The classification requirements for steel sections and composite sections in most specifications were originally derived from experimental and analytical studies based on the the...

  4. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.

    Science.gov (United States)

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  5. Application of ultra-high performance concrete to bridge girders.

    Science.gov (United States)

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  6. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae [Pukyong National University, Busan (Korea, Republic of)

    2011-12-15

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder.

  7. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae

    2011-01-01

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder

  8. Flexural and Shear Behavior of FRP Strengthened AASHTO Type Concrete Bridge Girders

    Directory of Open Access Journals (Sweden)

    Nur Yazdani

    2016-01-01

    Full Text Available Fiber-reinforced polymers (FRP are being increasingly used for the repair and strengthening of deteriorated or unsafe concrete structures, including structurally deficient concrete highway bridges. The behavior of FRP strengthened concrete bridge girders, including failure modes, failure loads, and deflections, can be determined using an analytical finite element modeling approach, as outlined in this paper. The differences in flexural versus shear FRP strengthening and comparison with available design guidelines are also beneficial to design professionals. In this paper, a common AASHTO type prestressed concrete bridge girder with FRP wrapping was analyzed using the ANSYS FEM software and the ACI analytical approach. Both flexural and shear FRP applications, including vertical and inclined shear strengthening, were examined. Results showed that FRP wrapping can significantly benefit concrete bridge girders in terms of flexure/shear capacity increase, deflection reduction, and crack control. The FRP strength was underutilized in the section selected herein, which could be addressed through decrease of the amount of FRP and prestressing steel used, thereby increasing the section ductility. The ACI approach produced comparable results to the FEM and can be effectively and conveniently used in design.

  9. Field verification for the effectiveness of continuity diaphragms for skewed continuous P/C P/S concrete girder bridges.

    Science.gov (United States)

    2009-10-01

    The research presented herein describes the field verification for the effectiveness of continuity diaphragms for : skewed continuous precast, prestressed, concrete girder bridges. The objectives of this research are (1) to perform : field load testi...

  10. Environmental durability of reinforced concrete deck girders strengthened for shear with surface bonded carbon fiber-reinforced polymer : final report.

    Science.gov (United States)

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced : concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effor...

  11. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  12. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  13. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  14. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  15. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  16. Prediction of long-term prestress loss in concrete box girder bridges

    OpenAIRE

    Kim, Seung Dae

    2009-01-01

    Post-tensioned cast-in-place concrete box girder bridges are the most popular type for new bridge construction in California since this class of bridges shows an increased ability to resist and dissipate seismic loads for long- span structures. However, due to the long-term behavior of the construction materials .i.e. concrete and steel, tension forces induced by prestressing decrease over time as a result of creep and shrinkage of concrete and steel relaxation, which is called long-term pres...

  17. Effect of Construction Method on Shear Lag in Prestressed Concrete Box Girders

    Directory of Open Access Journals (Sweden)

    Shi-Jun Zhou

    2012-01-01

    Full Text Available Most of the previous researches conducted on shear lag of box girders were only concerned about simple types of structures, such as simply supported and cantilever beams. The structural systems concerned in these previous researches were considered as determined and unchangeable. In this paper, a finite element method considering shear lag and creep of concrete was presented to analyze the effect of dynamic construction process on shear lag in different types of concrete box-girder bridges. The shear lag effect of the three types of a two-span continuous concrete beam classified by construction methods was analyzed in detail according to construction process. Also, a three-span prestressed concrete box-girder bridge was analyzed according to the actual construction process. The shear lag coefficients and stresses on cross sections along the beam including shear lag were obtained. The different construction methods, the changes of structural system with the construction process, the changes of loading and boundary conditions with the construction process and time, the prestressing, and creep were all imitated in the calculations. From comparisons between the results for beams using different construction methods, useful conclusions were made.

  18. Shear and shear friction of ultra-high performance concrete bridge girders

    Science.gov (United States)

    Crane, Charles Kennan

    Ultra-High Performance Concrete (UHPC) is a new class of concrete characterized by no coarse aggregate, steel fiber reinforcement, low w/c, low permeability, compressive strength exceeding 29,000 psi (200 MPa), tensile strength ranging from 1,200 to 2,500 psi (8 to 17 MPa), and very high toughness. These properties make prestressed precast UHPC bridge girders a very attractive replacement material for steel bridge girders, particularly when site demands require a comparable beam depth to steel and a 100+ year life span is desired. In order to efficiently utilize UHPC in bridge construction, it is necessary to create new design recommendations for its use. The interface between precast UHPC girder and cast-in-place concrete decks must be characterized in order to safely use composite design methods with this new material. Due to the lack of reinforcing bars, all shear forces in UHPC girders have to be carried by the concrete and steel fibers. Current U.S. codes do not consider fiber reinforcement in calculating shear capacity. Fiber contribution must be accurately accounted for in shear equations in order to use UHPC. Casting of UHPC may cause fibers to orient in the direction of casting. If fibers are preferentially oriented, physical properties of the concrete may also become anisotropic, which must be considered in design. The current research provides new understanding of shear and shear friction phenomena in UHPC including: (1) Current AASHTO codes provide a non-conservative estimate of interface shear performance of smooth UHPC interfaces with and without interface steel. (2) Fluted interfaces can be created by impressing formliners into the surface of plastic UHPC. AASHTO and ACI codes for roughened interfaces are conservative for design of fluted UHPC interfaces.(3) A new equation for the calculation of shear capacity of UHPC girders is presented which takes into account the contribution of steel fiber reinforcement. (4) Fibers are shown to preferentially

  19. Mechanical and Parametric Analysis of Cracks in Polypropylene Fiber Concrete U-Shaped Girder

    Directory of Open Access Journals (Sweden)

    Xu Dong

    2017-01-01

    Full Text Available The U-shaped girder is a type of open thin-walled structure, which is used in urban rail transit engineering. Although it employs polypropylene fiber concrete to avoid cracks, the girder is still easier to crack than other traditional structures owing to its special open thin-walled cross section. In this study, a cracking accident of a U-shaped girder, which happened during the prestressed steel tensioning, was studied by field investigation and mechanical analysis through the finite element (FE method. An outline of the cracks was presented. The nonlinear material properties of the polypropylene fiber concrete and steel were discussed and used in the finite element model. The effects of the main design parameters, such as the flange slab thickness, anchorage position, and prestressed steel layout, were evaluated based on the results of the FE analysis. The results indicate that the extremely low rigidity of the web and oversize of the web longitudinal prestressed steels are the main reasons for the cracks. The risk of cracks can be reduced by increasing the thickness of the flange slab and changing the anchorage position and prestressed steel layout. Some suggestions are provided for avoiding cracks based on the results of the research.

  20. Structural Optimization of Steel Cantilever Used in Concrete Box Girder Bridge Widening

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2015-01-01

    Full Text Available The structural optimization method of steel cantilever used in concrete box girder bridge widening is illustrated in this paper. The structural optimization method of steel cantilever incorporates the conceptual layout design of steel cantilever beam based on the topological theory and the determination of the optimal location of the transverse external prestressed tendons which connect the steel cantilever and the box girder. The optimal design theory and the analysis process are illustrated. The mechanical model for the prestressed steel cantilever is built and the analytical expression of the optimal position of the transverse external tendon is deduced. At last the effectiveness of this method is demonstrated by the design of steel cantilevers which are used to widen an existing bridge.

  1. 0-6652 : spliced Texas girder bridges.

    Science.gov (United States)

    2015-02-01

    Spliced girder technology continues to attract : attention due to its versatility over traditional : prestressed concrete highway bridge construction. : By joining multiple precast concrete girders using : post-tensioning, spliced girder technology :...

  2. Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties

    Science.gov (United States)

    2016-04-12

    Indented wires have been increasingly employed by : concrete crosstie manufacturers to improve the bond between : prestressing steel reinforcements and concrete, as bond can : affect several critical performance measures, including transfer : length,...

  3. Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhou

    2010-01-01

    Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.

  4. Dynamic finite element model updating of prestressed concrete continuous box-girder bridge

    Science.gov (United States)

    Lin, Xiankun; Zhang, Lingmi; Guo, Qintao; Zhang, Yufeng

    2009-09-01

    The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge.

  5. Environmental durability of reinforced concrete deck girders strengthened for shear with surface-bonded carbon fiber-reinforced polymer : final report.

    Science.gov (United States)

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort ...

  6. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  7. Finite element model updating of a prestressed concrete box girder bridge using subproblem approximation

    Science.gov (United States)

    Chen, G. W.; Omenzetter, P.

    2016-04-01

    This paper presents the implementation of an updating procedure for the finite element model (FEM) of a prestressed concrete continuous box-girder highway off-ramp bridge. Ambient vibration testing was conducted to excite the bridge, assisted by linear chirp sweepings induced by two small electrodynamic shakes deployed to enhance the excitation levels, since the bridge was closed to traffic. The data-driven stochastic subspace identification method was executed to recover the modal properties from measurement data. An initial FEM was developed and correlation between the experimental modal results and their analytical counterparts was studied. Modelling of the pier and abutment bearings was carefully adjusted to reflect the real operational conditions of the bridge. The subproblem approximation method was subsequently utilized to automatically update the FEM. For this purpose, the influences of bearing stiffness, and mass density and Young's modulus of materials were examined as uncertain parameters using sensitivity analysis. The updating objective function was defined based on a summation of squared values of relative errors of natural frequencies between the FEM and experimentation. All the identified modes were used as the target responses with the purpose of putting more constrains for the optimization process and decreasing the number of potentially feasible combinations for parameter changes. The updated FEM of the bridge was able to produce sufficient improvements in natural frequencies in most modes of interest, and can serve for a more precise dynamic response prediction or future investigation of the bridge health.

  8. GPR signal analysis of post-tensioned prestressed concrete girder defects

    International Nuclear Information System (INIS)

    Liu, Sixin; Wang, Fei; Fu, Lei; Meng, Xu; Lei, Linlin; Weng, Changnian; Jiao, Pengfei

    2013-01-01

    The accurate inspection of the duct condition in post-tensioned prestressed concrete (PPC) is an essential part of GPR concrete inspection. The purpose is to inspect the grouting condition of the ducts where the strands are located, to find out if there is a void in the ducts, and if any water exists. In order to investigate the radar image characteristics of different PPC duct defects, a number of model girders were manufactured. Three major ducts are included in our study: (1) well grouted and no void (normal condition); (2) the duct is half filled, and the void is filled by water or air; and (3) the duct is not filled at all, and the duct is water or air filled. The data corresponding to seven different situations are acquired and processed. It is found that the radar can detect the first interface in the duct, and the detailed structure inside the duct cannot be ‘seen’ from the images directly. Characteristic curves greatly help the interpretation. A completely void duct is the easiest to differentiate from the others. The signature for this situation is characterized by a strong and clear reflection interface which becomes weaker as the void is water filled. The normal condition shows the weakest reflection interface. As for the half void situation, the front scan shows a similar result to the normal condition whether it is water or air filled, and the back scan shows similar features to the completely void situation. The experiment and analysis is helpful and instructive for practical engineering inspection. (paper)

  9. GPR signal analysis of post-tensioned prestressed concrete girder defects

    Science.gov (United States)

    Liu, Sixin; Weng, Changnian; Jiao, Pengfei; Wang, Fei; Fu, Lei; Meng, Xu; Lei, Linlin

    2013-06-01

    The accurate inspection of the duct condition in post-tensioned prestressed concrete (PPC) is an essential part of GPR concrete inspection. The purpose is to inspect the grouting condition of the ducts where the strands are located, to find out if there is a void in the ducts, and if any water exists. In order to investigate the radar image characteristics of different PPC duct defects, a number of model girders were manufactured. Three major ducts are included in our study: (1) well grouted and no void (normal condition); (2) the duct is half filled, and the void is filled by water or air; and (3) the duct is not filled at all, and the duct is water or air filled. The data corresponding to seven different situations are acquired and processed. It is found that the radar can detect the first interface in the duct, and the detailed structure inside the duct cannot be ‘seen’ from the images directly. Characteristic curves greatly help the interpretation. A completely void duct is the easiest to differentiate from the others. The signature for this situation is characterized by a strong and clear reflection interface which becomes weaker as the void is water filled. The normal condition shows the weakest reflection interface. As for the half void situation, the front scan shows a similar result to the normal condition whether it is water or air filled, and the back scan shows similar features to the completely void situation. The experiment and analysis is helpful and instructive for practical engineering inspection.

  10. The effect of span length and girder type on bridge costs

    Directory of Open Access Journals (Sweden)

    Batikha Mustafa

    2017-01-01

    Full Text Available Bridges have an important role in impacting the civilization, growth and economy of cities from ancient time until these days due to their function in reducing transportation cost and time. Therefore, development of bridges has been a knowledge domain in civil engineering studies in terms of their types and construction materials to confirm a reliable, safe, economic design and construction. Girder-bridge of concrete deck and I-beam girder has been used widely for short and medium span bridges because of ease and low-cost of fabrication. However, many theoretical and practical investigations are still undertaken regarding the type of beam girder; i.e steel composite or prestressed concrete. This paper evaluates the effect of bridge span and the type of girder on the capital cost and life cycle costs of bridges. Three types of girders were investigated in this research: steel composite, pre-tensioned pre-stressed concrete and post-tensioned pre-stressed concrete. The structural design was analyzed for 5 span lengths: 20, 25, 30, 35 and 40m. Then, the capital construction cost was accounted for 15 bridges according to each span and construction materials. Moreover, the maintenance required for 50 years of bridge life was evaluated and built up as whole life costs for each bridge. As a result of this study, the influence of both span length and type of girder on initial construction cost and maintenance whole life costs were assessed to support the decision makers and designers in the selection process for the optimum solution of girder bridges.

  11. Transverse load distribution of skew cast-in-place concrete multicell box - girder bridges subjected to traffic condition

    Directory of Open Access Journals (Sweden)

    Iman Mohseni

    Full Text Available Concrete multicell box-girder bridges are a common choice among the designers for various ranges of bridges. In order to provide safer and greater speed of traffic, the roadway is built as straight as possible. The use of skewed bridges has increased considerably in the recent years for roadway. The skewed bridges have quite different mechanical behavior from the straight bridges, although for skew angles less than 20 degrees, it is reasonably safe to ignore the effect of skew angles and analyze that at the straight bridge. In this study, in developing an analytical solution, an extensive parametric study was carried out to determine the maximum positive and negative stress distribution factors and to calculate the maximum distribution factor of deflection along the mid-span of skewed multicell box-girder bridges. A total of 240 representative bridges numerical models were selected and analyzed using SAP2000 finite element software. It was found that the span length, number of boxes, number of lanes and skew angles significantly affected the distribution factors of stress and deflection. Finally, several equations were proposed for stress and deflection distribution factors of multicell box-girder bridges for the application of American Association of State Highway and Transportation officials load and resistance factor design live loads.

  12. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  13. Analysis of a damaged and repaired pre-stressed concrete bridge girder by vehicle impact and effectiveness of repair procedure

    OpenAIRE

    Domínguez Mayans, Félix

    2014-01-01

    This thesis aims to study the structural consequences of the damages produced by vehicle impact in a pres-stressed concrete bridge girder and the repair procedure in a real case-study damaged after the bridge was opened to service. From the analysis of the situation of the beam and its damage state, a study of the repair actions carried out on this beam has been analyzed in order to determine the efficiency of the repair and if other alternatives are possible or more efficient. A stat...

  14. An alternative technique to the demolition of a prestressed concrete box-girder bridge: A case study

    Directory of Open Access Journals (Sweden)

    S.S.R. Pereira

    2017-06-01

    Full Text Available This is a case study in which the partial collapse of a prestressed concrete box-girder bridge in Brazil happened only nine days after removing the supporting scaffolding. It is believed that the actual reinforcement longitudinal steel bars in the pile caps were underestimated. Although only part of the structure had collapsed, it was decided that the whole structure should be demolished. It was claimed that there was not available alternatives for ‘in situ’ structural recovery that would not compromise local traffic and safety precaution procedures. This paper presents an alternative technique for the bridge structural recovery. The application of this technique was possible because the prestressing process used unbonded pos-tensioned concrete, i.e. the sheaths were not filled with grout. The technique was based on the use of a weld torch to cut the tensioned strands in the box-girders methodically, unloading the pillars and foundations. Experimental tests were performed ‘in loco’ and proved to be effective and safe. The application of this suggested technique ‘in situ’ is believed to be an original contribution to the knowledge.

  15. Finite element analysis of contributing factors to the horizontal splitting cracks in concrete crossties pretensioned with seven-wire strands.

    Science.gov (United States)

    2017-04-04

    This paper employs the finite element (FE) modeling : method to investigate the contributing factors to the horizontal : splitting cracks observed in the upper strand plane in some : concrete crossties made with seven-wire strands. The concrete...

  16. Development of acoustic emission evaluation method for repaired prestressed concrete bridge girders.

    Science.gov (United States)

    2011-06-01

    Acoustic emission (AE) monitoring has proven to be a useful nondestructive testing tool in ordinary reinforced concrete beams. Over the past decade, however, the technique has also been used to test other concrete structures. It has been seen that ac...

  17. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    Science.gov (United States)

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  18. Application of titanium alloy bars for strengthening reinforced concrete bridge girders (part a: shear) : final report.

    Science.gov (United States)

    2017-07-04

    Large numbers of conventionally reinforced concrete bridges (RC) were constructed during the interstate highway expansion of the 1950s and remain in the national inventory. Coincidently, deformed steel reinforcing bars were standardized. The stand...

  19. Self-consolidating concrete for prestressed applications - phase I : girder fabrication and pre-erection performance.

    Science.gov (United States)

    2015-04-01

    Prior to statewide acceptance of self-consolidating concrete (SCC) in precast, prestressed bridge member production, the Alabama Department of Transportation sponsored an investigation of the material to be performed by the Auburn University Highway ...

  20. Development of bridge girder movement criteria for accelerated bridge construction.

    Science.gov (United States)

    2014-06-01

    End diaphragms connect multiple girders to form a bridge superstructure system for effective resistance to earthquake loads. Concrete : girder bridges that include end diaphragms consistently proved to perform well during previous earthquake events. ...

  1. Finite element analysis of ultra-high performance concrete : modeling structural performance of an AASHTO type II girder and a 2nd generation pi-girder

    Science.gov (United States)

    2010-10-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which has been developed in recent decades. When compared to more conventional cement-based concrete materials, UHPC tends to exhibit superior properties such as in...

  2. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    Science.gov (United States)

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  3. FE-ANN based modeling of 3D Simple Reinforced Concrete Girders for Objective Structural Health Evaluation : Tech Transfer Summary

    Science.gov (United States)

    2017-06-01

    The objective of this study was to develop an objective, quantitative method for evaluating damage to bridge girders by using artificial neural networks (ANNs). This evaluation method, which is a supplement to visual inspection, requires only the res...

  4. Finite Element Analysis of Deep Wide-Flanged Pre-stressed Girders : Draft Final Report

    Science.gov (United States)

    2011-06-01

    Hundreds of prestressed concrete girders are used each year for building bridges in Wisconsin. : The prestress transfer from the prestressing strands to concrete takes place at the girder ends. : Characteristic cracks form in this end region during o...

  5. Finite element analysis of deep wide-flanged pre-stressed girders to understand and control end cracking : [work plan].

    Science.gov (United States)

    2011-01-01

    Project -- Work Approach: The first phase will examine the critical problem of controlling cracking in the 82W : girders. This complex problem is controlled by effects of concentrated stresses, force : transfer from pre-tensioning strand, inelastic b...

  6. Study of service life of concrete girder bridge on the sea

    Directory of Open Access Journals (Sweden)

    Da Silva, T. J.

    2003-12-01

    Full Text Available The objective of this paper is to study the evolution of the failure probability of the concrete beams to estimate the service life of a sea bridge in the southeast region of Brazil. The mechanism of deterioration analyzed in the study was the corrosion of the reinforcing bars. The models utilized for that are related with the carbonation and penetration of chlorides. Tests have been carried out for the characterization of the main variables used in the calculations and in the deterioration models. The information was completed with the control data obtained during the construction. It was obtained the functions of conjoined density of the variables through simulation. The method FORM was used to estimate the failure probability. For an adopted failure probability of 10-3 cracking due the corrosion products, the obtained values for the service lives for the 25 analyzed beams were in a range of 25 up to 70 years.

    El objetivo de este trabajo es presentar el estudio de la evolución de la probabilidad de fallo de las vigas de hormigón posibilitando estimar la vida útil de un puente sobre el mar en la región sureste de Brasil. El mecanismo de deterioro analizado en el estudio ha sido la corrosión de las armaduras. Los modelos utilizados para ello están relacionados con la carbonatación y penetración de cloruros. Se han realizado diferentes ensayos para la caracterización de las principales variables empleadas en los cálculos y en los mecanismos de deterioro. Las informaciones han sido completadas con los datos de control obtenidos durante la construcción. Mediante simulación se obtuvieron las funciones de densidad conjunta de las variables. Se usa el método FORM para estimar la probabilidad de fallo. Adoptándose una probabilidad de fallo de 10-3 para la fisuración debido a los productos de corrosión, los valores obtenidos para las vidas útiles para las 25 vigas analizadas están en un rango de 25 hasta 70

  7. Finite element analysis of deep wide-flanged pre-stressed girders to understand and control end cracking.

    Science.gov (United States)

    2011-06-01

    Hundreds of prestressed concrete girders are used each year for building bridges in Wisconsin. : The prestress transfer from the prestressing strands to concrete takes place at the girder ends. : Characteristic cracks form in this end region during o...

  8. Pretense and Conceivability

    DEFF Research Database (Denmark)

    Steffensen, Asger Bo Skjerning

    2014-01-01

    is presented based on the fact that we find the nonidentity inconceivable under pretense of identity between names. On the one horn, conceivability proper is shown to be able to be the whole story of our knowledge of one de re principle, at least, primitively or by brute fact; on the second horn, the notion...

  9. Pretense and Conceivability

    DEFF Research Database (Denmark)

    Steffensen, Asger Bo Skjerning

    is presented based on the fact that we find the nonidentity inconceivable under pretense of identity between names. On the one horn, conceivability proper is shown to be able to be the whole story of our knowledge of one de re principle, at least, primitively or by brute fact; on the second horn, the notion...

  10. Developing Extended Strands in Girder-Cap Beam Connections for Positive Moment Resistance

    Science.gov (United States)

    2017-11-01

    In bridges constructed with precast prestressed concrete girders, resistance to seismic effects is achieved by the interaction between the columns, the cap beam and the girders. These components must be connected to provide flexural resistance. Under...

  11. Rational load rating of deck-girder bridges with girder end shear cracks in reverse orientation.

    Science.gov (United States)

    2017-04-01

    Reverse diagonal shear cracking at reinforced concrete girder supports affects many low-volume bridges built : in the early 1900s in Kansas. This phenomenon, however, is not addressed in the American Association of State : Highway and Transportation ...

  12. Development of high performance precast/prestressed bridge girders

    Science.gov (United States)

    Akhnoukh, Amin K.

    Demand continues to increase for bridges with long spans and shallow depths. Due to safety concerns, four-span overpasses are being replaced with two span overpasses to avoid placement of piers near the highway shoulders. In the meantime, the bridge profile is restricted due to existing businesses nearby. Thus, nearly the same superstructure depth must be used for double the span length. This dissertation focuses on topics aiming at providing precast prestressed concrete girders with the shallowest possible depth for a given span. It forms parts of larger projects conducted by the University of Nebraska for the Nebraska Department of Roads and for the Wire Reinforcement Institute. Specifically, the following issues were researched: (1) Use of 0.7 in. diameter Grade 270 ksi strands for pretensioning of precast concrete girders at a strand spacing of 2 inches by 2 inches. This arrangement gives nearly 190 percent of the prestressing with 0.5 in. diameter strands and nearly 135 percent with 0.6 in. strands. The research focuses on the required confinement steel to allow determination of transfer and development lengths according to current procedures in the AASHTO LRFD Bridge Design Specifications for smaller strands. (2) Develop a self consolidating concrete (SCC) mix, using Nebraska aggregates that will allow for a specified design strength at service of 15 ksi and a minimum strength at one day of 10 ksi, representing the demand at the time of release of the prestress to the concrete member. Prior to this study, standard concrete strength prevailing in Nebraska has been 8 ksi at service and 6.5 ksi at release. It was the goal of the research to keep the cost of materials as low as possible but not exceeding 250 per cubic yard, compared to the proprietary mixes that cost approximately four times this amount. (3) Use of 80 ksi welded wire reinforcement (WWR) as the auxiliary reinforcement for shear, web end splitting and flange confinement. This would result in higher

  13. Bending Behavior of Steel-Concrete Composite Girder with Perfobond Shear Connector Using Super-light Weight Concrete with Steel Fiber Reinforcement

    OpenAIRE

    Guo, Shenghua; Hino, Shinichi; Yamaguchi, Kohei; Choi, Jisun; Sonoda, Takatomo

    2008-01-01

    Recently, the development of the light-weight concrete with short fiber reinforcement is done to simplify the reduction and the structure section of the self-weight. It is possible of lightening about 30 percent using super-light weight concrete compared with normal concrete. On the other hand, there is a reinforcement method of usually having material strength equal with normal concrete by mixing steel short fiber. This study aims at clarify shear strength evaluation of perfobond shear conne...

  14. A Cognitive Theory of Pretense.

    Science.gov (United States)

    Nichols, Shaun; Stich, Stephen

    2000-01-01

    Presents a theory of pretense in which pretense representations are contained in a separate mental workspace, a Possible World Box, part of the basic architecture of the human mind with several similarities to beliefs. Maintains that pretend play is motivated from a desire to act in a way that fits the description being constructed in the Possible…

  15. Live-Load Testing Application Using a Wireless Sensor System and Finite-Element Model Analysis of an Integral Abutment Concrete Girder Bridge

    Directory of Open Access Journals (Sweden)

    Robert W. Fausett

    2014-01-01

    Full Text Available As part of an investigation on the performance of integral abutment bridges, a single-span, integral abutment, prestressed concrete girder bridge near Perry, Utah was instrumented for live-load testing. The live-load test included driving trucks at 2.24 m/s (5 mph along predetermined load paths and measuring the corresponding strain and deflection. The measured data was used to validate a finite-element model (FEM of the bridge. The model showed that the integral abutments were behaving as 94% of a fixed-fixed support. Live-load distribution factors were obtained using this validated model and compared to those calculated in accordance to recommended procedures provided in the AASHTO LRFD Bridge Design Specifications (2010. The results indicated that if the bridge was considered simply supported, the AASHTO LRFD Specification distribution factors were conservative (in comparison to the FEM results. These conservative distribution factors, along with the initial simply supported design assumption resulted in a very conservative bridge design. In addition, a parametric study was conducted by modifying various bridge properties of the validated bridge model, one at a time, in order to investigate the influence that individual changes in span length, deck thickness, edge distance, skew, and fixity had on live-load distribution. The results showed that the bridge properties with the largest influence on bridge live-load distribution were fixity, skew, and changes in edge distance.

  16. Serviceability and Prestress Loss Behavior of SCC Prestressed Concrete Girders Subjected to Increased Compressive Stresses at Release

    Science.gov (United States)

    2009-08-01

    There are limited measurements documented in the literature related to long-term prestress losses in self-consolidated concrete (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional HSC...

  17. Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders.

    Science.gov (United States)

    2008-09-01

    In recent years, several research projects have been conducted to study the feasibility of increasing the allowable : compressive stress in concrete at prestress transfer, currently defined as 0.60f'ci in the AASHTO LRFD Bridge : Design Specification...

  18. Comparison of Temperature Loadings of Bridge Girders

    Directory of Open Access Journals (Sweden)

    J. Římal

    2008-01-01

    Full Text Available This paper compares the effect of temperature changes on the superstructure of bridges, above all the effect of non-uniform temperature. Loadings according to standards ESN 73 6203, ENV 1991-1-5 and DIN 1072 are compared here. The paper shows a short summary of temperature loading according to each standard and shows the comparison of bending moments arisen from these temperature loadings on superstructure made from continuous girder from a steel-concrete box girder with a composite concrete slab. With respect to a variety of design processes, the comparison is made without any coefficient of loading, combination or material. 

  19. Evaluation of continuity detail for precast prestressed girders.

    Science.gov (United States)

    2011-08-01

    The construction of highway bridges using precast prestressed concrete (PSC) girders is considered one of the most : economical construction alternatives because of the advantages they offer (e.g. reducing formwork and rapid construction). : Construc...

  20. Design aids of NU I-girders bridges.

    Science.gov (United States)

    2010-05-01

    Precast prestressed concrete I-Girder bridges have become the most dominant bridge system in the United States. In the early design : stages, preliminary design becomes a vital first step in designing an economical bridge. Within the state of Nebrask...

  1. Evaluation of continuity detail for precast prestressed girders : tech summary.

    Science.gov (United States)

    2011-08-01

    Building multi-simple span bridges using precast prestressed concrete girders is an easy construction. However, the existence of : expansion joints often leads to a host of problems in their vicinity due to drainage leaks. Furthermore, debris accumul...

  2. Experiments with Externally Prestressed Continuous Composite Girders

    Directory of Open Access Journals (Sweden)

    M. Safan

    2001-01-01

    Full Text Available Steel-concrete composite girders have attractive potentials when applied in bridge construction. The serviceability performance of continuous composite girders is becoming more and more a deterministic parameter in the design of this type of structures. An effective method for improving this performance is to apply prestressing to control or completely eliminate concrete deck cracking caused by static and time dependent actions. Little literature has been found addressing the experimental analysis of continuous girders prestressed by means of external deviated tendons. The current research aims to investigate the behavior of a double-span steel composite beam externally prestressed by means of continuous tendons in terms of cracking characteristics, load deflection response, and load carrying capacity. The efficiency of prestressing is evaluated by comparing the results to those of a non-prestressed beam with similar cross sections and spans.

  3. Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng

    2018-01-01

    Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.

  4. IS SELF-DECEPTION PRETENSE?

    Directory of Open Access Journals (Sweden)

    JOSÉ EDUARDO PORCHER

    2015-01-01

    Full Text Available I assess Tamar Gendler's (2007 account of self-deception according to which its characteristic state is not belief, but imaginative pretense. After giving an overview of the literature and presenting the conceptual puzzles engendered by the notion of self-deception, I introduce Gendler's account, which emerges as a rival to practically all extant accounts of self-deception. I object to it by first arguing that her argument for abandoning belief as the characteristic state of self-deception conflates the state of belief and the process of belief-formation when interpreting David Velleman's (2000 thesis that belief is an essentially truth-directed attitude. I then call attention to the fact that Velleman's argument for the identity of motivational role between belief and imagining, on which Gendler's argument for self-deception as pretense depends, conflates two senses of 'motivational role'-a stronger but implausible sense and a weaker but explanatorily irrelevant sense. Finally, I introduce Neil Van Leeuwen's (2009 argument to the effect that belief is the practical ground of all non-belief cognitive attitudes in circum-stances wherein the latter prompt action. I apply this framework to Gendler's account to ultimately show that imaginative pretense fails to explain the existence of voluntary actions which result from self-deception.

  5. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  6. Body or Mind: Children's Categorizing of Pretense.

    Science.gov (United States)

    Lillard, Angeline S.

    1996-01-01

    Five experiments investigated whether children, ages three to eight, think of pretending as a mental state. Results indicated that most children under six see pretending as primarily physical. Eight-year-olds claimed that execution of pretense did not involve the mind, although the planning aspect of pretense did. (MOK)

  7. Numerical Analysis of Bridge Girder with Composite Dowel Shear Connection

    Science.gov (United States)

    Lacki, Piotr; Nawrot, Jacek

    2017-12-01

    The work presents a brief description of VFT-WIB® steel-concrete composite beams, examples of composite dowel shear connection shapes are presented. A steel-concrete bridge girder construction solution for the new shape of composite dowel shear connection was proposed. The geometric parameters of the steel section web cutting line are given. For the assumed cross-section dimensions, a numerical model of the girder was made. Numerical analysis was performed, the results of which were compared with the results of the analytical calculations. A program of actions aimed at further optimization of the model is presented.

  8. Design Optimization and Structural Performance Evaluation of Plate Girder Bridge Constructed Using a Turn-Over Process.

    Science.gov (United States)

    Eom, Gi-Ha; Kim, Sung Jae; Lee, Tae-Hee; Kim, Jang-Ho Jay

    2017-03-13

    A recent trend in bridge construction has been the optimization of the cost-to-performance ratio. The most effective way to optimize the cost-to-performance ratio is to maximize the efficiency of the superstructure. Currently, many bridge engineers and designers favor two- or three- girder plate superstructures, due to their cost advantages. However, research on the performance enhancements of the I-type girder in two- or three- girder plate bridges is lacking. One of the most important performance improvement technologies for the I-type girder is the "preflex" method. In the preflex method, the specimen is inverted during the construction process to apply prestressed cambering to the specimen by using self-weight. However, a problem with the preflex construction method is difficulty with inverting the girder/plate system during the concrete curing process. Therefore, a new inverting system called Turn-Over (TO) wheel was proposed. Using TO wheels, wider variations to the I-type girder design can be achieved. Using this TO construction method, various cross sectional designs of girder plate systems can be considered due to its easiness in inverting the girder/plate system. In this study, the location of concrete confinement sections between the steel I-beams and concrete plates was varied in an I-girder cross-sectional design. Design parameters included effective height, flange thickness, flange width, confining concrete section width, etc. From this study, the optimum cross-sectional design of the I-girder/concrete plate system was achieved. Then, a single 20 m TO girder/plate system and two 20 m TO girder bridges were constructed and tested to evaluate their performance. From the test, failure behavior, load carrying capacity, crack pattern, etc., are obtained. The results are discussed in detail in this paper.

  9. Design Optimization and Structural Performance Evaluation of Plate Girder Bridge Constructed Using a Turn-Over Process

    Directory of Open Access Journals (Sweden)

    Gi-Ha Eom

    2017-03-01

    Full Text Available A recent trend in bridge construction has been the optimization of the cost-to-performance ratio. The most effective way to optimize the cost-to-performance ratio is to maximize the efficiency of the superstructure. Currently, many bridge engineers and designers favor two- or three- girder plate superstructures, due to their cost advantages. However, research on the performance enhancements of the I-type girder in two- or three- girder plate bridges is lacking. One of the most important performance improvement technologies for the I-type girder is the “preflex” method. In the preflex method, the specimen is inverted during the construction process to apply prestressed cambering to the specimen by using self-weight. However, a problem with the preflex construction method is difficulty with inverting the girder/plate system during the concrete curing process. Therefore, a new inverting system called Turn-Over (TO wheel was proposed. Using TO wheels, wider variations to the I-type girder design can be achieved. Using this TO construction method, various cross sectional designs of girder plate systems can be considered due to its easiness in inverting the girder/plate system. In this study, the location of concrete confinement sections between the steel I-beams and concrete plates was varied in an I-girder cross-sectional design. Design parameters included effective height, flange thickness, flange width, confining concrete section width, etc. From this study, the optimum cross-sectional design of the I-girder/concrete plate system was achieved. Then, a single 20 m TO girder/plate system and two 20 m TO girder bridges were constructed and tested to evaluate their performance. From the test, failure behavior, load carrying capacity, crack pattern, etc., are obtained. The results are discussed in detail in this paper.

  10. Fatigue and shear behavior of HPC bulb tee girders : LTRC technical summary report.

    Science.gov (United States)

    2008-04-01

    The objectives of the research were (1) to provide assurance that full size, deep prestressed concrete girders made with HPC would perform satisfactorily under flexural fatigue, static shear, and static flexural loading conditions; (2) to determine i...

  11. Condition Assessment of PCI Bridge Girder a Result of The Reduction Prestressing Force

    Science.gov (United States)

    Suangga, Made; Hidayat, Irpan; Lutter, Bobby

    2014-03-01

    PCI bridge girders is known and widely used for many construction e.g.: bridge, wharf, flyover, and other application. PC Bridge girders have two types: Pre - tensioned girders and post - tensioned girders. In pre tensioned girders, prestressing in carried out first then after that the fresh concrete poured. The prestressing process in only carried off after the concrete has sufficient strength. In this study, analysis was conducted for PCI bridge girder with span is 40 meters. Based on the data geometry bridge dimension girder, material girder, and material strands cable, it will be analyzed to calculate the natural frequencies and moment capacity using finite element program (Midas/Civil program). So it can be estimated how much the percentage reduction prestress force on the bridge until PCI bridge structure collapses. From the calculation, it found that the pattern comparison between reduction prestressing force and natural frequency are linear. These results are also similar for natural frequency versus moment capacity.PCI bridge will collapse when the reduction prestreesing force of 45 % to 50 % from the total loss of prestressing.

  12. Maternal Behavior Modifications during Pretense and Their Long-Term Effects on Toddlers' Understanding of Pretense

    Science.gov (United States)

    Nakamichi, Naoko

    2015-01-01

    Recent studies indicate the need to investigate the sources of toddlers' understanding of another person's pretense. The present study is a cultural and longitudinal extension of the work of Lillard and Witherington (2004), who claimed that mothers modify their behaviors during pretense and that the some of these behavior modifications help their…

  13. Plate girders under bending

    NARCIS (Netherlands)

    Abspoel, R.; Dubina, D.; Ungureanu, V.

    2016-01-01

    In a material economy driven plate girder design, the lever arm between the flanges will increase. This leads to higher stiffness and bending moment resistance, but also to an in-crease of the web slenderness. This means that high strength steels can be used leading to a large reduction of the steel

  14. Finite element bond models for seven-wire prestressing strands in concrete crossties.

    Science.gov (United States)

    2015-03-23

    Seven-wire strands are commonly used in pretensioned : concrete ties, but its bonding mechanism with concrete needs : further examination to provide a better understanding of some : concrete tie failure modes. As a key component in the finite : eleme...

  15. Conflict Inhibitory Control Facilitates Pretense Quality in Young Preschoolers

    Science.gov (United States)

    Van Reet, Jennifer

    2015-01-01

    The present research explores the role of inhibitory control (IC) in young preschoolers' pretense ability using an ego depletion paradigm. In Experiment 1 (N = 56), children's pretense ability was assessed either before or after participating in conflict IC or control tasks, and in Experiment 2 (N = 36), pretense ability was measured after…

  16. 10 CFR 1008.14 - Requests under false pretenses.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Requests under false pretenses. 1008.14 Section 1008.14... for Access or Amendment § 1008.14 Requests under false pretenses. Subsection (i)(3) of the Act... individual from an agency under false pretenses shall be quilty of a misdeamenaor and fined not more than $5...

  17. Pretense and Peer Behavior: an Intersectoral Analysis

    Science.gov (United States)

    Fein, Greta G.; And Others

    1982-01-01

    Children between the ages of 19 and 41 months were videotaped with a peer in a standardized playroom for four 15-minute sessions in order to examine a developmental model describing the relation between changes in pretense (pretend play, transformations, and communications) and changes in peer-oriented social behavior. (MP)

  18. Enabling Conditions and Children's Understanding of Pretense

    Science.gov (United States)

    Sobel, David M.

    2009-01-01

    Two experiments examined whether preschoolers' difficulties on tasks that required relating pretending and knowledge (e.g., Lillard, A. S. (1993a). "Young children's conceptualization of pretense: Action or mental representational state?" "Child Development, 64," 372-386) were due to children's inability to appreciate the causal mechanism behind…

  19. Appendix C : SR-72 tests.

    Science.gov (United States)

    2013-03-01

    The Florida highway system includes some of the earliest (circa 1950s) pretensioned : concrete bridges in the United States. Shear capacity of Floridas early pretensioned girders is of : interest because the early designs had thin webs and only li...

  20. Experimental Investigation for Behavior of Spliced Continuous RC Girders Strengthened with CFRP Laminates

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2016-03-01

    Full Text Available In this paper, the behavior of spliced continuous reinforced concrete girders was experimentally investigated. The main objective was to examine the contribution of the carbon fiber reinforced polymer (CFRP laminates in strengthening the spliced continuous reinforced concrete girders. Eight models of continuous reinforced concrete girder were constructed and tested. The test variables were strengthening the splice joints by different schemes of CFRP laminates, presence of horizontal stirrups through the interfaces of the joints and using binder material at the interfaces of the joints. The results showed that strengthening the continuous spliced girders with 45° inclined CFRP laminates led to an increase in the ultimate load in a range of (47 to 74%. Besides, strengthening the continuous spliced girder with horizontal CFRP laminates bonded at its lateral faces could increase the ultimate load by 70%. Additionally, the ultimate load of the continuous spliced girder was increased by (30% due to presence of the horizontal steel stirrups through the interfaces of the joints

  1. Structural Repair Of Prestressed Concrete Bridge Beams

    OpenAIRE

    Pekyer, Bülent

    2010-01-01

    Each year a lot of prestressed concrete beams are damaged by overwheight vehicles and environmental effects. There are numerous repair techniques proposed by entrepreneurial and academic institutions which restore prestressed concrete girder flexural strength and save both material and economic resources. This document focuses on the practical application of prestressed concrete bridge girder repair methods. In this document, repair methods are presented for three prototype prestressed concre...

  2. Body or mind: children's categorizing of pretense.

    Science.gov (United States)

    Lillard, A S

    1996-08-01

    Researchers studying early social cognition have been particularly interested in pretend play and have obtained evidence indicating that young children do not understand that pretending involves mental representation. The present research investigates whether children think of pretending as a mental state at all, by looking at whether they cluster it with other mental states or with physical processes when making certain judgments. The results from 5 experiments suggest that most children under 6 years of age see pretending as primarily physical. Further, when asked about pretending as a 2-part process entailing planning and execution, even 8-year-olds claim that execution of pretense does not involve the mind, although the planning aspect of pretense does.

  3. Assessing the need for intermediate diaphragms in prestressed concrete bridges.

    Science.gov (United States)

    2008-03-01

    Reinforced concrete intermediate diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community; the use of IDs increases the cost and t...

  4. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    Science.gov (United States)

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  5. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges.

    Science.gov (United States)

    Kim, Junkyeong; Kim, Ju-Won; Lee, Chaggil; Park, Seunghee

    2017-08-30

    The tensile force of pre-stressed concrete (PSC) girders is the most important factor for managing the stability of PSC bridges. The tensile force is induced using pre-stressing (PS) tendons of a PSC girder. Because the PS tendons are located inside of the PSC girder, the tensile force cannot be measured after construction using conventional NDT (non-destructive testing) methods. To monitor the induced tensile force of a PSC girder, an embedded EM (elasto-magnetic) sensor was proposed in this study. The PS tendons are made of carbon steel, a ferromagnetic material. The magnetic properties of the ferromagnetic specimen are changed according to the induced magnetic field, temperature, and induced stress. Thus, the tensile force of PS tendons can be estimated by measuring their magnetic properties. The EM sensor can measure the magnetic properties of ferromagnetic materials in the form of a B (magnetic density)-H (magnetic force) loop. To measure the B-H loop of a PS tendon in a PSC girder, the EM sensor should be embedded into the PSC girder. The proposed embedded EM sensor can be embedded into a PSC girder as a sheath joint by designing screw threads to connect with the sheath. To confirm the proposed embedded EM sensors, the experimental study was performed using a down-scaled PSC girder model. Two specimens were constructed with embedded EM sensors, and three sensors were installed in each specimen. The embedded EM sensor could measure the B-H loop of PS tendons even if it was located inside concrete, and the area of the B-H loop was proportionally decreased according to the increase in tensile force. According to the results, the proposed method can be used to estimate the tensile force of unrevealed PS tendons.

  6. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges

    Science.gov (United States)

    Kim, Ju-Won; Lee, Chaggil; Park, Seunghee

    2017-01-01

    The tensile force of pre-stressed concrete (PSC) girders is the most important factor for managing the stability of PSC bridges. The tensile force is induced using pre-stressing (PS) tendons of a PSC girder. Because the PS tendons are located inside of the PSC girder, the tensile force cannot be measured after construction using conventional NDT (non-destructive testing) methods. To monitor the induced tensile force of a PSC girder, an embedded EM (elasto-magnetic) sensor was proposed in this study. The PS tendons are made of carbon steel, a ferromagnetic material. The magnetic properties of the ferromagnetic specimen are changed according to the induced magnetic field, temperature, and induced stress. Thus, the tensile force of PS tendons can be estimated by measuring their magnetic properties. The EM sensor can measure the magnetic properties of ferromagnetic materials in the form of a B (magnetic density)-H (magnetic force) loop. To measure the B-H loop of a PS tendon in a PSC girder, the EM sensor should be embedded into the PSC girder. The proposed embedded EM sensor can be embedded into a PSC girder as a sheath joint by designing screw threads to connect with the sheath. To confirm the proposed embedded EM sensors, the experimental study was performed using a down-scaled PSC girder model. Two specimens were constructed with embedded EM sensors, and three sensors were installed in each specimen. The embedded EM sensor could measure the B-H loop of PS tendons even if it was located inside concrete, and the area of the B-H loop was proportionally decreased according to the increase in tensile force. According to the results, the proposed method can be used to estimate the tensile force of unrevealed PS tendons. PMID:28867790

  7. Moment-Rotation Relationship for Unified Auto-Stress Design of Continuous-Span Bridge Beam and Girders

    OpenAIRE

    White, Donald W.; Ramirez, J. A.; Barth, Karl E.

    1997-01-01

    This report summarizes the development and trial application of simplified moment-rotation relationships for inelastic design of continuous-span beam and girder bridges. The research described within involves the execution of a reasonably comprehensive set of finite element parametric studies to fill in knowledge gaps in the available experimental data pertaining to the hogging moment-plastic rotation behavior of steel and composite steel-concrete bridge girders. Based on these studies, relat...

  8. Effect of releasing pretension for Rc Beams Bonded with Prestressed Fr Strip

    International Nuclear Information System (INIS)

    Chao-yang, Z.; Xue-jun, H.; Xing-guo, W.; Fei-fei, X

    2007-01-01

    In this paper, the effect of releasing pretension is theoretically and experimentally investigated for flexural members externally bonded with prestressed FRP laminate or near-surface-mounted with prestressed FRP plate or rod. The stresses of FRP on the interface and at cross sections of a beam are analyzed on the basis of linear elastic theory. The expressions are derived for effective prestress, prestress loss and camber at the midspan of the beam. Tests are performed on two reinforced concrete beams bonded with prestressed GFRP plate. The comparison between the analytical and the measured results shows the analyses in this paper are rational and correct. (author)

  9. Evaluation on Impact Interaction between Abutment and Steel Girder Subjected to Nonuniform Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2015-01-01

    Full Text Available This paper aims to evaluate the impact interaction between the abutment and the girder subjected to nonuniform seismic excitation. An impact model based on tests is presented by taking material properties of the backfill of the abutment into consideration. The conditional simulation is performed to investigate the spatial variation of earthquake ground motions. A two-span continuous steel box girder bridge is taken as the example to analyze and assess the pounding interaction between the abutment and the girder. The detailed nonlinear finite element (FE model is established and the steel girder and the reinforced concrete piers are modeled by nonlinear fiber elements. The pounding element of the abutment is simulated by using a trilinear compression gap element. The elastic-perfectly plastic element is used to model the nonlinear rubber bearings. The comparisons of the pounding forces, the shear forces of the nonlinear bearings, the moments of reinforced concrete piers, and the axial pounding stresses of the steel girder are studied. The made observations indicate that the nonuniform excitation for multisupport bridge is imperative in the analysis and evaluation of the pounding effects of the bridges.

  10. Assessing the Needs for intermediate diaphragms in prestressed concrete bridges : summary of report.

    Science.gov (United States)

    2008-05-01

    Reinforced concrete Intermediate Diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community because the use of IDs increases the cos...

  11. Preloading Effect on Strengthening Efficiency of RC Beams Strengthened with Non- and Pretensioned NSM Strips

    Directory of Open Access Journals (Sweden)

    Renata Kotynia

    2018-02-01

    Full Text Available The near surface mounted (NSM technique has been shown to be one of the most promising methods for upgrading reinforced concrete (RC structures. Many tests carried out on RC members strengthened in flexure with NSM fiber-reinforced polymer (FRP systems have demonstrated greater strengthening efficiency than the use of externally-bonded (EB FRP laminates. Strengthening with simultaneous pretensioning of the FRP results in improvements in the serviceability limit state (SLS conditions, including the increased cracking moment and decreased deflections. The objective of the reported experimental program, which consisted of two series of RC beams strengthened in flexure with NSM CFRP strips, was to investigate the influence of a number of parameters on the strengthening efficiency. The test program focused on an analysis of the effects of preloading on the strengthening efficiency which has been investigated very rarely despite being one of the most important parameters to be taken into account in strengthening design. Two preloading levels were considered: the beam self-weight only, which corresponded to stresses on the internal longitudinal reinforcement of 25% and 14% of the yield stress (depending on a steel reinforcement ratio, and the self-weight with the additional superimposed load, corresponding to 60% of the yield strength of the unstrengthened beam and a deflection equal to the allowable deflection at the SLS. The influence of the longitudinal steel reinforcement ratio was also considered in this study. To reflect the variability seen in existing structures, test specimens were varied by using different steel bar diameters. Finally, the impact of the composite reinforcement ratio and the number of pretensioned FRP strips was considered. Specimens were divided into two series based on their strengthening configuration: series “A” were strengthened with one pretensioned and two non-pretensioned carbon FRP (CFRP strips, while series

  12. Beam to Column Timber Joints with Pretensioned Bolts

    Directory of Open Access Journals (Sweden)

    Hayashikawa T.

    2011-01-01

    Full Text Available The effects of pretension in bolts on hysteretic response of timber joints exposed to a bending had been reported by the authors, but the cyclic tests were carried out at small displacement level which might not be applicable for earthquake-resistance design. In this study, similar cyclic tests but at large displacement levels were conducted. Beam to column timber joints with steel side plates were fabricated and continuously loaded until failure. At connection, the bolts were pretension in four different magnitudes: 0 kN, 5 kN, 10 kN and 15 kN. The results showed that frictional action between the steel side plates and wood member as a result of bolt pretensioning significantly increased the (frictional hysteretic damping and the equivalent viscous damping ratio. It is obvious from the test results that the pretension force in bolts has no influence on the maximum joint resistance but decreases the joint rotational deformation.

  13. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-01-26

    ... retarded, by reason of subsidized and less-than-fair-value imports from China of prestressed concrete steel... in prestressed concrete (both pre-tensioned and post- tensioned) applications. The product definition..., producers, or exporters in China of prestressed concrete steel wire strand, and that such products are being...

  14. Analysis of post-tensioned girder anchorage zones

    Science.gov (United States)

    Stone, W. C.; Breen, J. E.

    1981-06-01

    Several large thin-webbed box girders, with post-tensioned anchorage zones experienced large cracks along the tendon path in the anchorage zones at the design stressing load. Cracking provides a path for penetration of moisture and salts and thus presents a potential corrosion and frost damage threat. Such cracking negates the use of prestressed concretes. An extensive literature review which documents the state of the art in anchorage zone analysis behavior, and design recommendations is summarized. The general utilization of a three dimensional finite element program, PUZGAP3D, for analysis of the complex anchorage zone region is outlined. The program was used to study straight and curved tendon paths.

  15. Hybrid Stainless Steel Girder for Bridge Construction

    OpenAIRE

    Tetsuya Yabuki; Yasunori Arizumi; Tetsuhiro Shimozato; Samy Guezouli; Hiroaki Matsusita; Masayuki Tai

    2017-01-01

    The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate stre...

  16. Structural analysis of a composite continuous girder with a single rectangular web opening

    Directory of Open Access Journals (Sweden)

    Mohamed A. ElShaer

    2017-08-01

    In this paper, a non-linear finite element analysis has been done to analyze the deflection in the steel section and internal stresses in the concrete slab for continuous composite girders with a single rectangular opening in the steel web. ANSYS computer program (version 15 has been used to analyze the three-dimensional model. The reliability of the model was demonstrated by comparison with experimental results of continuous composite beams without an opening in the steel web carried out by another author. The parametric analysis was executed to investigate the width, height, and position of the opening in one span on the behavior of a composite girder under vertical load. The results indicated that when the width of opening is less than 0.05 of length of a single span and the height is less than 0.15 of the steel web, the deflection and internal stresses increased less than 10% comparing to continuous composite girders without an opening.

  17. Finite element modeling of wave propagation in concrete.

    Science.gov (United States)

    2008-09-01

    Three reports were produced from research sponsored by the Oregon Department of Transportation on acoustic emission (AE). The first describes the evaluation of AE techniques applied to two reinforced concrete (RC) bridge girders, which were loaded to...

  18. Research notes : capacity of cracked reinforced concrete beams.

    Science.gov (United States)

    2004-11-01

    Oregon has several hundred reinforced concrete deck girder (RCDG) bridges built in the late 40s to the early 60s that now exhibit diagonal cracks. The Oregon Department of Transportation contracted with Oregon State University to evaluate methods to ...

  19. Load Distribution Factors for Composite Multicell Box Girder Bridges

    Science.gov (United States)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  20. Studies on carbon FRP (CFRP) prestressed concrete bridge columns and piles in marine environment.

    Science.gov (United States)

    1998-11-01

    The main objective of this study was to investigate the feasibility of using concrete piles pretensioned with Carbon Fiber Reinforced Plastics (CFRP) tendons. The study reviews the available literature on mechanical properties of CFRP reinforcement, ...

  1. 45 CFR 1182.18 - Penalties for obtaining an Institute record under false pretenses.

    Science.gov (United States)

    2010-10-01

    ... false pretenses. 1182.18 Section 1182.18 Public Welfare Regulations Relating to Public Welfare... pretenses. (a) Under 5 U.S.C. 552a(i)(3), any person who knowingly and willfully requests or obtains any record from the Institute concerning an individual under false pretenses shall be guilty of a misdemeanor...

  2. 45 CFR 2508.18 - What are the penalties for obtaining a record under false pretenses?

    Science.gov (United States)

    2010-10-01

    ... under false pretenses? 2508.18 Section 2508.18 Public Welfare Regulations Relating to Public Welfare....18 What are the penalties for obtaining a record under false pretenses? The Privacy Act provides, in... individual from the Corporation under false pretenses shall be guilty of a misdemeanor and fined not more...

  3. Preschoolers Acquire General Knowledge by Sharing in Pretense

    Science.gov (United States)

    Sutherland, Shelbie L.; Friedman, Ori

    2012-01-01

    Children acquire general knowledge about many kinds of things, but there are few known means by which this knowledge is acquired. In this article, it is proposed that children acquire generic knowledge by sharing in pretend play. In Experiment 1, twenty-two 3- to 4-year-olds watched pretense in which a puppet represented a "nerp" (an unfamiliar…

  4. Pretension construction of safety shell in Chashma nuclear power plant

    International Nuclear Information System (INIS)

    Gong Zhenbin; Li Yinong; Ni Shaowen

    1999-01-01

    19T16 post-tension grouped anchor system is applied to the safety shell pretension in Chashma Nuclear Power Plant. The stretching force of each bundle is about 3800 kN and the prestressed reinforcement is stretched in five stages. The double-control measurement of stress controlling and extension checking is applied in strict accordance with the principle of symmetrical construction

  5. Temperature effect on hybrid damage monitoring of PSC girder bridges by using acceleration and impedance signatures

    Science.gov (United States)

    Hong, Dong-Soo; Park, Jae-Hyung; Kim, Jeong-Tae; Na, Won-Bae

    2009-03-01

    Acceleration and impedance signatures extracted from a structure are appealing features for a prompt diagnosis on structural condition since those are relatively simple to measure and utilize. However, the feasibility of using them for damage monitoring is limited when their changes go undisclosed due to uncertain temperature conditions, particularly for large structures. In this study, temperature effect on hybrid damage monitoring of prestress concrete (PSC) girder bridges is presented. In order to achieve the objective, the following approaches are implemented. Firstly, a hybrid monitoring algorithm using acceleration and impedance signatures is proposed. The hybrid monitoring algorithm mainly consists of three sequential phases: 1) the global occurrence of damage is alarmed by monitoring changes in acceleration features, 2) the type of damage is identified as either prestress-loss or flexural stiffness-loss by identifying patterns of impedance features, 3) the location and the extent of damage are estimated from damage index method using natural frequency and mode shape changes. Secondly, changes in acceleration and impedance signatures were investigated under various temperature conditions on a laboratory-scaled PSC girder model. Then the relationship between temperatures and those signatures is analyzed to estimate and a set of empirical correlations that will be utilized for the damage alarming and classification of PSC girder bridges. Finally, the feasibility of the proposed algorithm is evaluated by using a lab-scaled PSC girder bridge for which acceleration and impedance signatures were measured for several damage scenarios under uncertain temperature conditions.

  6. Reliability Assessment for PSC Box-Girder Bridges Based on SHM Strain Measurements

    Directory of Open Access Journals (Sweden)

    Chuang Chen

    2017-01-01

    Full Text Available A reliability assessment method for prestressed concrete (PSC continuous box-girder bridges based on structural health monitoring (SHM strain measurements was proposed. First, due to the fact that measured strain was compositive and the variation periods of its components were different, a series of limit state equations under normal use limit state were given. Then, a linear fitting method was used to determine the relationship between the ambient temperature and the measured strain, which was aimed at extracting the vehicle load effect and the temperature load effect from the measured strain. Finally, according to the equivalent normalization method, the load effects unsatisfying the normal distribution by probability density function fitting were transformed, and the daily failure probabilities of monitored positions were calculated for evaluating the safety state of the girder. The results show that (1 the top plate of the box girder is more sensitive than the bottom plate to the high temperature, (2 the daily and seasonal strain variations induced by uniform temperature reveal an inconsistent tendency to the seasonal variation for mid-span cross sections, and (3 the generalized extreme value distribution is recommended for temperature gradient stress and vehicle induced stress fitting for box-girder bridges.

  7. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  8. Appendix G : end region design models.

    Science.gov (United States)

    2013-03-01

    The 2007 AASHTO LRFD Bridge Design Specifications contain prescriptive : requirements for the quantity and placement of confinement reinforcement located in the bottom : flange of pretensioned concrete I-girders. This chapter proposes a rational mode...

  9. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  10. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  11. The Development of Substitute Object Pretense: The Differential Importance of Form and Function

    Science.gov (United States)

    Hopkins, Emily J.; Smith, Eric D.; Weisberg, Deena Skolnick; Lillard, Angeline S.

    2016-01-01

    Substitute object pretense is one of the earliest-developing forms of pretense, and yet it changes considerably across the preschool years. By 3.5 years of age, children can pretend with substitutes that are highly dissimilar from their intended referents (Elder & Pederson, 1978), but even older children have difficulty understanding such…

  12. Analysis of Pretension and Stress Stiffening in a Self-Deployable Deorbiting Space Structure

    DEFF Research Database (Denmark)

    Lauridsen, Peter Riddersholm; Nikolajsen, Jan Ánike; Kristensen, Anders Schmidt

    2017-01-01

    during the folding process of the HFF and this paper will determine the critical stress states. One of the important subjects in the stowed SDSS is the amount of stored strain energy in the HFF, and the amount of strain energy causes the pretension of the SDSS. To determine the pretension and stress...

  13. 45 CFR 1159.18 - What are the penalties for obtaining an Endowment record under false pretenses?

    Science.gov (United States)

    2010-10-01

    ... record under false pretenses? 1159.18 Section 1159.18 Public Welfare Regulations Relating to Public... under false pretenses? (a) Under 5 U.S.C. 552a(i)(3), any person who knowingly and willfully requests or obtains any record concerning an individual from the Endowment under false pretenses shall be guilty of a...

  14. ASR DIAGNOSIS BY PETROGRAPHIC INVESTIGATION AND EVALUATION OF MECHANICAL PERFORMANCE OF ASR DETERIORATED PRETENSIONED PC BEAM

    Science.gov (United States)

    Tomiyama, Jun; Yamada, Kazuo; Kaneda, Kazuo; Iraha, Shigeo; Oshiro, Takeshi

    ASR diagnosis and evaluation of load carrying capacity have been performed on the pre-tensioned PC beam which was cut out of a national high way bridge. The bridge was replaced lately after 25years service due to ASR deterioration. Comprehensive investigations such as crack measurement, material strength test, petrographic investigation, beam bending test have been performed on the deteriorated beam. Cracks have been observed on all sides and the appearance has been classified as severe deterioration grade. Petrographic investigation concluded that the reacted mineral was mainly reactive cristobalite contained in andesite of fine aggregates and EPMA investigation found that the reaction seemed to be the final stage. The late expansive ASR has been superimposed by cryptocrystalline quartz in coarse aggregates and it is still in progress. Deteriorated concrete cores with no visual crack have reduced only 10% of compressive strength compared with design strength, but significant loss has been observed on the elastic modulus. The static bending load test on the deteriorated test beam showed 95% of design load capacity indicating that the visual deterioration on surfaces has affected slight damages at this moment. But loss of bending rigidity has been appeared on the deteriorated beam .after bending cracks have started. This comprehensive study including the petrographic diagnosis and the appraisal on mechanical performance of the deteriorated beam conclude that there is a possibility of ASR deterioration in progress and further loss of mechanical performance though the beam had some margin for loading capacity at this moment.

  15. Construction engineering of steel tub-girder bridge systems for skew effects

    Science.gov (United States)

    Jimenez Chong, Juan Manuel

    Closed structural sections, such as those having circular, rectangular or trapezoidal shape, possess high rotational rigidity when compared to open sections such as I-girders. The high torsional rigidity of closed sections makes them ideal for use in highly curved bridges. In this case, the geometry of the bridge results in large torsional forces. Because of structural efficiency and economy reasons, most of these closed-section bridges consist of a trapezoidal cross-section, with a top concrete slab and bottom and side steel plates. The slab is cast after the steel is erected and thus a system of internal diaphragms and braces is necessary to stabilize the system during erection. During the steel erection and the early stages of the concrete deck placement, the section can be considered as quasi-closed as the top concrete flange has not been cast or is not yet effective. During steel erection, undetermined and/or large torsional forces and/or displacements may result in fit-up problems requiring large stresses to overcome. During concrete deck placement, the undetermined displacements can affect the control of the deck thickness and the final deck geometry, such as the alignment of deck joints and the matching of stages in phased constructions projects. Due to the interactions between their various components, the behavior of curved and skewed tub-girder bridges is significantly more complex than that of straight bridges. When skewed supports are used in tub-girders, the interaction of the girder bending rotations and the displacement constraints induced by the skewed support diaphragms causes twisting of the girders at the supports. These twist rotations introduce additional torques into the system. Both curvature and skew can cause design and construction difficulties, especially at the supports, where the corresponding steel dead load deflections and the large torsional stiffness of the girders may lead to large fit-up forces. Currently, the general

  16. Self-compacting concrete for prestressed bridge girders

    Science.gov (United States)

    Erkmen, Bulent

    The purpose of this study was to examine social mobility as a motivation for first-generation college students in reaching attainment at two-year technical colleges. The research question was to what degree has the perception of social mobility influenced first generation college students at technical colleges to complete their career educational goals. Graduates of a two-year technical college were asked a series of open-ended questions regarding their past experiences and perceptions of attending and completing a two-year technical college program; their childhood perceptions of their social status; and experiences with family members regarding their change in social class status. These questions were designed to determine their feelings, viewpoints, reflections, experiences, struggles, and thoughts about attainment (completing their post-secondary education) and the extent to which social mobility influenced their decision to complete their education. The benefits of this research include an understanding of social mobility and educational attainment. Results of this study could be used to better understand the process that first generation college students go through in order to attain their educational goals. The information from this study may be useful for technical college administrations to help design programs and processes for future first-generation college students' success and aid in retention of these students.

  17. Estimating Design Resistance of Wrought Balcony Girders

    Directory of Open Access Journals (Sweden)

    Jung Karel

    2017-06-01

    Full Text Available The contribution is focused on reliability of balcony girders of a Czech national heritage monument. As preliminary reliability assessment suggests insufficient resistance, a series of nondestructive tests supplemented by a single tensile test are performed and evaluated by the statistical methods. Values of material properties, recommended in standards for historic materials, seem to be overly conservative and it is advised to specify properties of historic metallic materials by tests.

  18. Numerical simulation of lateral-torsional buckling of coped girders

    NARCIS (Netherlands)

    Maljaars, J.; Steenbergen, H.M.G.M.; Stark, J.W.B.; Abspoel, R.

    2002-01-01

    The lateral torsional buckling resistance of girders depends on the support conditions. In floor structures for buildings, coped girders are often used. A numerical model was developed to research the influence of copes on lateral buckling resistance. The model is successfully validated with tests.

  19. Seismic response of skewed RC box-girder bridges

    Science.gov (United States)

    Abdel-Mohti, Ahmed; Pekcan, Gokhan

    2008-12-01

    It is critical to ensure the functionality of highway bridges after earthquakes to provide access to important facilities. Since the 1971 San Fernando earthquake, there has been a better understanding of the seismic performance of bridges. Nonetheless, there are no detailed guidelines addressing the performance of skewed highway bridges. Several parameters affect the response of skewed highway bridges under both service and seismic loads which makes their behavior complex. Therefore, there is a need for more research to study the effect of skew angle and other related factors on the performance of highway bridges. This paper examines the seismic performance of a three-span continuous concrete box girder bridge with skew angles from 0 to 60 degrees, analytically. Finite element (FE) and simplified beam-stick (BS) models of the bridge were developed using SAP2000. Different types of analysis were considered on both models such as: nonlinear static pushover, and linear and nonlinear time history analyses. A comparison was conducted between FE and BS, different skew angles, abutment support conditions, and time history and pushover analysis. It is shown that the BS model has the capability to capture the coupling due to skew and the significant modes for moderate skew angles. Boundary conditions and pushover load profile are determined to have a major effect on pushover analysis. Pushover analysis may be used to predict the maximum deformation and hinge formation adequately.

  20. Reliability of Hull Girder Ultimate Strength of Steel Ships

    Science.gov (United States)

    Da-wei, Gao; Gui-jie, Shi

    2018-03-01

    Hull girder ultimate strength is an evaluation index reflecting the true safety margin or structural redundancy about container ships. Especially, after the hull girder fracture accident of the MOL COMFORT, the 8,000TEU class large container ship, on June 17 2013, larger container ship safety has been paid on much more attention. In this paper, different methods of calculating hull girder ultimate strength are firstly discussed and compared with. The bending ultimate strength can be analyzed by nonlinear finite element method (NFEM) and increment-iterative method, and also the shear ultimate strength can be analyzed by NFEM and simple equations. Then, the probability distribution of hull girder wave loads and still water loads of container ship are summarized. At last, the reliability of hull girder ultimate strength under bending moment and shear forces for three container ships is analyzed by using a first order method. The conclusions can be applied to give guidance for ship design and safety evaluation.

  1. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  2. The Effect of Pre-Tension on Deformation Behaviour of Natural Fabric Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Paulė BEKAMPIENĖ

    2011-03-01

    Full Text Available In the fiber-reinforced composites industry together with the promotion of environmental friendly production, synthetic materials are attempted to be replaced by renewable, biodegradable and recyclable materials. The most important challenge is to improve strength and durability of these materials. Matrix that supports the fiber-reinforcement in composite generally is brittle and deformation causes fragmentation of the matrix. Pre-tension of reinforcement is a well-known method to increase tensile strength of woven material. The current study develops the idea to use pre-tension of woven fabric in order to improve quality and strength properties of the obtained composite. Natural (cotton fiber and synthetic (glass fiber woven fabrics were investigated. The pressure forming operation was carried out in order to study clamping imposed strain variation across the surface of woven fabric. The uniaxial tension test of single-layer composite specimens with and without pre-tension was performed to study the effect of pre-tension on strength properties of composite. The results have shown that pre-tension imposed by clamping is an effective method to improve the quality of shaped composite parts (more smoothed contour is obtained and to increase the strength properties of composite reinforced by woven natural fabric. After pre-tension the tensile strength at break increased in 12 % in warp direction, in 58 % in weft direction and in 39 % in bias direction.http://dx.doi.org/10.5755/j01.ms.17.1.250

  3. Acoustic emission monitoring of reinforced and prestressed concrete structures

    Science.gov (United States)

    Fowler, Timothy J.; Yepez, Luis O.; Barnes, Charles A.

    1998-03-01

    Acoustic emission is an important global nondestructive test method widely used to evaluate the structural integrity of metals and fiber reinforced plastic structures. However, in concrete, application of the technology is still at the experimental stage. Microcracking and crack growth are the principal sources of emission in concrete. Bond failure, anchor slippage, and crack rubbing are also sources of emission. Tension zone cracking in reinforced concrete is a significant source of emission and has made application of the technique to concrete structures difficult. The paper describes acoustic emission monitoring of full-scale prestressed concrete girders and a reinforced concrete frame during loading. The tests on the prestressed concrete girders showed three sources of emission: shear-induced cracking in the web, flexural cracking at the region of maximum moment, and strand slippage at the anchorage zone. The reinforced concrete frame was monitored with and without concrete shear panels. The research was directed to early detection of the cracks, signature analysis, source location, moment tensor analysis, and development of criteria for acoustic emission inspection of concrete structures. Cracking of concrete in the tension areas of the reinforced concrete sections was an early source of emission. More severe emission was detected as damage levels in the structure increased.

  4. Performance evaluation of corrosion-affected reinforced concrete ...

    Indian Academy of Sciences (India)

    M B Anoop

    It is noted that the use of MC with fuzzy states leads to conservative decision making for the problem considered in the case study. Keywords. Reinforced concrete; bridge girder; chloride-induced corrosion; performability; Markov chain; fuzzy sets. 1. Introduction. Development of rational methodologies for the evaluation.

  5. Unconventional Bearing Capacity Analysis and Optimization of Multicell Box Girders

    Directory of Open Access Journals (Sweden)

    Jovan Tepic

    2014-01-01

    Full Text Available This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012 for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.

  6. Falling vertical chain of oscillators, including collisions, damping, and pretensioning

    Science.gov (United States)

    Plaut, R. H.; Borum, A. D.; Holmes, D. P.; Dillard, D. A.

    2015-08-01

    A chain of point masses connected by linear springs and sometimes dashpots is considered. The chain hangs in a vertical equilibrium configuration, held by its top mass. Then the top mass is released, and the chain falls. Internal damping, modeled by the dashpots, causes the bottom mass to move faster. As the system falls, upper masses sometimes accelerate faster than gravitational acceleration, and collisions may occur between adjacent masses. The types of collisions treated here include elastic, inelastic, and perfectly inelastic (in which colliding masses often stick together thereafter). The unstretched lengths of the springs, and a compressive force caused by pretensioning, may significantly affect the characteristics of the motion. Analytical and numerical results are presented for cases involving a few masses, and some generalizations are made for systems with an arbitrary number of masses. Also, the vertical chain may be used to model the motion of a falling Slinky after release at its top end. The bottom of the continuous Slinky does not move until the coils above it have collapsed onto it, and the collapse time is estimated here using the discrete chain model. For a metal Slinky with 86 masses, the estimated time is close to that previously obtained by a continuous elastic analysis.

  7. Monitoring of temperature gradient development of highway concrete bridge

    Directory of Open Access Journals (Sweden)

    Krkoska Lukas

    2017-01-01

    Full Text Available Thermal effect is one of very important from the large bridge design procedure point of view. Especially vertical temperature gradient is being crucial. There were realized some research works of the thermal effects monitoring on the concrete bridges in the world. More of them were performed in the USA but only a few at European bridges. The short overview of our long-term monitoring of the temperature load on chosen concrete bridge is presented in this paper. We decided to analyse one concrete box girder bridge that was built by incremental launching method on highway D1 at Slovakia near Zilina city. Recorded temperature gradient was compared with thermal gradients for the concrete box girder bridge recommended by EC 1991-1-5 design specifications.

  8. Analytical Calculation And FEM Analysis Main Girder Double Girder Bridge Crane

    Directory of Open Access Journals (Sweden)

    Muamer Delić

    2017-02-01

    Full Text Available The cranes are now not replaceable mode of transport of materials and finished products both in production halls and in the open space. This paper made the whole analytical calculation of double girder bridge cranes to be used in laboratories exclusively for testing, determined by the maximum bending stress and deflection of the main girder. After calculating the dimensions, we created a model cranes in software CATIA V5. The same model was subjected to FEM analysis of the same name software. At the end of the paper comparison has been done. The objective of the calculation and analysis of the model was to develop a model crane and to serve for the next tests. Dimensions of the crane are given according to the laboratory where it will be located.

  9. Experimentally Validated Nonlinear Analysis of Bridge Plate Girders with Deformations

    Directory of Open Access Journals (Sweden)

    Kużawa Mieszko

    2015-09-01

    Full Text Available Comprehensive methodology of numerical nonlinear analysis of the consecutive phases in the structural behaviour of bridge plate girders with deformations is presented. The analysis concerns all stages of structure loading until failure and especially determination of the ultimate shear load capacity. Verification and validation of the numerical procedures proposed is based on comparison of the calculated results with effects of experimental laboratory shear capacity tests of plate girders carried out at the University of Ljubljana.

  10. Long-Term Vibration Monitoring of the Effects of Temperature and Humidity on PC Girders with and without Fly Ash considering ASR Deterioration

    Directory of Open Access Journals (Sweden)

    Tuan Minh Ha

    2017-01-01

    Full Text Available Structural responses have been used as inputs in the evaluation procedures of civil structures for years. Apart from the degradation of a structure itself, changes in the environmental conditions affect its characteristics. For adequate maintenance, it is necessary to quantify the environment-induced changes and discriminate them from the effects due to damage. This study investigates the variation in the vibration responses of prestressed concrete (PC girders, which were deteriorated because of the alkali–silica reaction (ASR, concerning ambient temperature and humidity. Three PC girders were exposed to outdoor weather conditions outside the laboratory, one of which had a selected amount of fly ash in its mixture to mitigate the ASR. The girders were periodically vibration tested for one and a half years. It was found that when the temperature and humidity increased, the frequencies and damping ratios decreased in proportion. No apparent variation in the mode shapes could be identified. A finite element model was proposed for numerical verification, the results of which were in good agreement with the measured changes in the natural frequencies. Moreover, the different dynamic performances of the three specimens indicated that the fly ash significantly affected the vibrations of the PC girders under ASR deterioration.

  11. Comparative Research of Extra-large-span Cable-stayed Bridge with Steel Truss Girder and Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Tan Manjiang

    2015-01-01

    Full Text Available To research structural performance of extra-large-span cable-stayed bridge under different section forms, with the engineering background of a 800m main-span cable-stayed bridge with steel truss girder, the cable-stayed bridge with steel box girder is designed according to the current bridge regulations when two bridges are designed in an ultimate state of the carrying capacity, so the maximum stress and minimum stress of the stress envelope diagram are substantially the same. A comprehensive comparison is given to two types of bridge on the aspect of static force, natural vibration frequency, stability, economic performance and so on. Analysis results provide future reference for the large-span cable-stayed bridge to select between the steel truss girder and the steel box girder.

  12. Rational load rating of deck-girder bridges with girder end shear cracks in reverse orientation : technical summary.

    Science.gov (United States)

    2017-04-01

    A user interface creates a grillage model of an existing bridge and places various rating trucks on the : bridge. Equivalent flexibility analysis distributes truck live loads within deck panels to surrounding : girders and diaphragms. Stiffness matri...

  13. Characterization of the behavior of ultra-high performance concrete

    Science.gov (United States)

    Graybeal, Benjamin A.

    In the past decade significant advances have been made in the field of high performance concretes. The next generation of concrete, Ultra-High Performance Concrete (UHPC), exhibits exceptional strength and durability characteristics that make it well suited for use in highway bridge structures. This material can exhibit compressive strength of 28 ksi, tensile strength of 1.3 ksi, significant tensile toughness, elastic modulus of 7600 ksi, and minimal long-term creep or shrinkage. It can also resist freeze-thaw and scaling conditions with virtually no damage and is nearly impermeable to chloride ions. Prestressed highway bridge girders were cast from this material and tested under flexure and shear loadings. The testing of these AASHTO Type II girders containing no mild steel reinforcement indicated that UHPC, with its internal passive fiber reinforcement, could effectively be used in highway bridge girders. A large suite of material characterization tests was also completed. Based on this research, a basic structural design philosophy for bridge girder design is proposed.

  14. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    Ahmad, S.; Bukhari, I.A.

    2007-01-01

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  15. Effect of implementing lean-on bracing in skewed steel I-girder bridges.

    Science.gov (United States)

    2016-09-01

    Skew of the supports in steel I-girder bridges cause undesirable torsional effects, increase cross-frame forces, and generally increase the difficulty of designing and : constructing a bridge. The girders experience differential deflections due to th...

  16. Evaluation of the Structure Stability of a Plate Girder Bridge Using MIDAS Structure Analysis

    International Nuclear Information System (INIS)

    Kim, Eui Soo; Kim, Jong Hyuk

    2014-01-01

    Recently, as a means of resolving the issue of legal liability in the event of an accident or a disaster, a wide variety of simulation techniques, such as structural and structure-fluid interaction analysis, have been used in the field of forensic engineering. The plate girder bridge discussed in this paper was being constructed between a pier and an abutment to expand an existing bridge, but an accident whereby the bridge overturned occurred at the end of the concrete laying process for a protective wall. This accident was caused by additional loads not being considered at the time of the design as well as the actual construction being different from the design. The additional loads ultimately generated a negative support force. In this study, we determined the cause of the accident by comparing the structural stability of the original design with that of the additional, non-conforming construction using MIDAS structural analysis

  17. The role of maternal behavior in children's pretense during the second year of life

    Czech Academy of Sciences Publication Activity Database

    Marková, Gabriela; Legerstee, M.

    2015-01-01

    Roč. 34, APR-JUN (2015), s. 3-15 ISSN 0885-2014 R&D Projects: GA ČR GPP407/10/P610 Institutional support: RVO:68081740 Keywords : Maternal scaffolding * Pretense * imitation Subject RIV: AN - Psychology Impact factor: 1.571, year: 2015

  18. A progressively reduced pretension method to fabricate Bradbury-Nielsen gates with uniform tension

    International Nuclear Information System (INIS)

    Ni, Kai; Guo, Jingran; Yu, Zhou; Cao, Like; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-01-01

    A Bradbury-Nielsen gate (BNG) is often used to modulate ion beams. It consists of two interleaved and electrically isolated sets of wires with uniform tension, which ideally keep parallel, equidistant, and coplanar over a wide temperature range, making the BNG reliable and robust. We have previously analyzed the non-uniformity problem of wire tensions with sequentially winding method and developed a template-based transfer method to solve this problem. In this paper, we introduced a progressively reduced pretension method, which allows directly and sequentially fixing wires onto the substrate without using a template. Theoretical analysis shows that by applying proper pretension to each wire when fixing it, the final wire tensions of all wires can be uniform. The algorithm and flowchart to calculate the pretension sequence are given, and the fabrication process is introduced in detail. Pretensions are generated by weight combination with a weaving device. A BNG with stainless steel wire and a printed circuit board substrate is constructed with this method. The non-uniformity of the final wire tensions is less than 2.5% in theory. The BNG is successfully employed in our ion mobility spectrometer, and the measured resolution is 33.5 at a gate opening time of 350 μs. Compared to the template-based method, this method is simpler, faster, and more flexible with comparable production quality when manufacturing BNGs with different configurations

  19. Play and Cognition: A Study of Pretense Play and Conservation of Quantity.

    Science.gov (United States)

    Golomb, Claire; Friedman, Laura

    The relative effectiveness of four different training conditions on the attainment of conservation of quantity was examined in a 5-Group design. Subjects were 75 nonconserving preschoolers, ranging in age from 3.10 to 5.0 years. Treatment consisted of five conditions: (1) pretense play training, (2) direct conservation training, (3) a combination…

  20. Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors

    Science.gov (United States)

    Bigham, Sally

    2010-01-01

    Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n = 60) were significantly impaired relative to controls (n = 65) when…

  1. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  2. A human body model with active muscles for simulation of pretensioned restraints in autonomous braking interventions.

    Science.gov (United States)

    Osth, Jonas; Brolin, Karin; Bråse, Dan

    2015-01-01

    The aim of this work is to study driver and passenger kinematics in autonomous braking scenarios, with and without pretensioned seat belts, using a whole-body finite element (FE) human body model (HBM) with active muscles. Upper extremity musculature for elbow and shoulder flexion-extension feedback control was added to an HBM that was previously complemented with feedback controlled muscles for the trunk and neck. Controller gains were found using a radial basis function metamodel sampled by making 144 simulations of an 8 ms(-2) volunteer sled test. The HBM kinematics, interaction forces, and muscle activations were validated using a second volunteer data set for the passenger and driver positions, with and without 170 N seat belt pretension, in 11 ms(-2) autonomous braking deceleration. The HBM was then used for a parameter study in which seat belt pretension force and timing were varied from 170 to 570 N and from 0.25 s before to 0.15 s after deceleration onset, in an 11 ms(-2) autonomous braking scenario. The model validation showed that the forward displacements and interaction forces of the HBM correlated with those of corresponding volunteer tests. Muscle activations and head rotation angles were overestimated in the HBM when compared with volunteer data. With a standard seat belt in 11 ms(-2) autonomous braking interventions, the HBM exhibited peak forward head displacements of 153 and 232 mm for the driver and passenger positions. When 570 N seat belt pretension was applied 0.15 s before deceleration onset, a reduction of peak head displacements to 60 and 75 mm was predicted. Driver and passenger responses to autonomous braking with standard and pretensioned restraints were successfully modeled in a whole-body FE HBM with feedback controlled active muscles. Variations of belt pretension force level and timing revealed that belt pretension 0.15 s before deceleration onset had the largest effect in reducing forward head and torso movement caused

  3. A Finite Segment Method for Skewed Box Girder Analysis

    Directory of Open Access Journals (Sweden)

    Xingwei Xue

    2018-01-01

    Full Text Available A finite segment method is presented to analyze the mechanical behavior of skewed box girders. By modeling the top and bottom plates of the segments with skew plate beam element under an inclined coordinate system and the webs with normal plate beam element, a spatial elastic displacement model for skewed box girder is constructed, which can satisfy the compatibility condition at the corners of the cross section for box girders. The formulation of the finite segment is developed based on the variational principle. The major advantage of the proposed approach, in comparison with the finite element method, is that it can simplify a three-dimensional structure into a one-dimensional structure for structural analysis, which results in significant saving in computational times. At last, the accuracy and efficiency of the proposed finite segment method are verified by a model test.

  4. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  5. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  6. Repair methods for prestressed girder bridges.

    Science.gov (United States)

    2009-04-30

    It is common practice that aging and structurally damaged prestressed concrete bridge members are taken out of service and replaced. : This, however, is not an efficient use of materials and resources since the member can often be repaired in situ. T...

  7. Reflective Cracking between Precast Prestressed Box Girders

    Science.gov (United States)

    2017-06-30

    The adjacent precast prestressed concrete box-beam bridge is the bridge of choice for short and short-to-medium span bridges. This choice is because of the ease of construction, favorable span-to-depth ratios, aesthetic appeal, and high torsional sti...

  8. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    reinforcement serves as a flexible concrete element between the adjacent deck segments. The use of an Engineered Cementitious Composite (ECC) material instead of conventional concrete significantly reduces crack widths under service conditions and prevents deterioration of the link slab in the tension......Deterioration of bridge structures with mechanical expansion joints between simply supported spans can cause repeated maintenance needs and high repair costs. Damage occurs due to accumulation of debris within the expansion joint, corrosion of deck reinforcement, spalling of concrete, leakage...... of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...

  9. Review of Elastic Analysis of Box Girder Bridges | Ezeokpube ...

    African Journals Online (AJOL)

    The importance of thin-walled box girder bridges has attracted the attention of researchers since the last five decades. A lot of literature has dealt with the analytical formulations as well as experimental investigations. Field studies have increased tremendously in the last decade. So far the agreement between the analytical ...

  10. Behaviour of parallel girders stabilised with U-frames

    DEFF Research Database (Denmark)

    Virdi, Kuldeep; Azzi, Walid

    2010-01-01

    overhead bracing is not practical. This paper investigates the effect of the U-frame spacing on the stability of the parallel girders. Eigenvalue buckling analysis was undertaken with four different spacings of the U-frames. Results were extracted from finite element analysis, interpreted and conclusions...

  11. The maximum bending moment resistance of plate girders

    NARCIS (Netherlands)

    Abspoel, R.

    2014-01-01

    In many steel structures like buildings, industrial halls and bridges, standard hot-rolled sections like IPE, HEA, HEB, HEM, HED and UNP in Europe and similar profiles in other regions of the world are used. The range of hot-rolled sections is limited and therefore fabricated plate girders are used

  12. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...

  13. Seismic vulnerability assessment of a continuous steel box girder ...

    Indian Academy of Sciences (India)

    Bridges are one of the most crucial facilities of transportation networks. Therefore, evaluation of the seismic vulnerability of bridge structures is perpetually regarded topic for researchers. In this study, we developed seismic fragility curves for a continuous steel box girder bridge considering the effect of differentlevels of ...

  14. Studi Pengaruh Gerak Semi-submersible Drilling Rig dengan Variasi Pre-tension Mooring Line terhadap Keamanan Drilling Riser

    Directory of Open Access Journals (Sweden)

    Arda Arda

    2012-09-01

    Full Text Available Analisis terhadap sistem tambat pada anjungan pengeboran semi-submersible drilling rig perlu dilakukan sebelum dilakukannya operasi di lapangan untuk mengetahui perencanaan sistem tambat yang tepat dan aman. Dalam penelitian ini dilakukan analisa perilaku gerak semi-submersible dengan variasi pre-tension mooring line untuk mengetahui berapa besar pre-tension minimal yang harus digunakan agar operasi pengeboran di lingkungan laut Natuna dapat berjalan dengan aman. Variasi pre-tension yang digunakan adalah sebesar 400kN-2000kN dengan penambahan sebesar 400kN. Karakteristik gerakan semi-submersible diprediksi dengan menghitung RAO free floating dengan pemodelan numerik dalam domain frekuensi. Kemudian dilakukan analisa simulasi sistem lengkap (platform, mooring dan drilling riser dengan pemodelan numerik dalam domain waktu. Hasil yang didapat yakni nilai maksimum tegangan mooring line memenuhi batas kriteria API-RP2SK untuk semua variasi pre-tension dengan safety factor terkecil 2.44. Sudut flex joint drilling riser yang terjadi melewati batas kriteria API-RP16Q pada pre-tension 400kN-800kN yang mencapai 6.20 untuk sudut maksimum dan 4.80 untuk sudut rata-rata. Tegangan von Mises yang terjadi pada drilling riser melebihi kriteria API-RP16Q pada pre-tension 400kN-1200kN karena nilainya mencapai 369 MPa (0.82 yield stress.

  15. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  16. Life-Cycle Monitoring of Long-Span PSC Box Girder Bridges through Distributed Sensor Network: Strategies, Methods, and Applications

    Directory of Open Access Journals (Sweden)

    Zheheng Chen

    2015-01-01

    Full Text Available Structural health monitoring (SHM has attracted much attention in recent years, which enables early warnings of structural failure, condition assessments, and rational maintenance/repair strategies. In the context of bridges, many long-span steel bridges in China have been installed with the SHM systems; however, the applications of the SHM in prestressed concrete (PSC bridges are still rather limited. On the other hand, the PSC box girder bridges are extensively used in highway and railway systems and premature damage of these bridges is often reported, resulting in considerable maintenance and/or replacement costs. First, this paper presents a state-of-art review on the SHM of long-span PSC bridges. Monitoring strategies, methods, and previous applications for these bridges are summarized and discussed. In order to well capture the behavior of the bridge during its whole life and to maximize the use of sensors, a life-cycle monitoring strategy is proposed, in which the sensor layout is determined according to requirements for construction monitoring, completion test, and in-service monitoring. A case study is made on a three-span PSC box girder bridge in China. The system configuration, sensor layout, and data communications, and so forth, are presented. The up-to-date monitored structural responses are analyzed and compared with the design values.

  17. Design and test of box girder for a large wind turbine blade

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Tesauro, Angelo; Bitsche, Robert

    , which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated......This report is covering the structural design and full scale test of a box girder as a part of the project “Demonstration of new blade design using manufacturing process simulations” supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions...... that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes...

  18. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  19. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  20. A software prototype for assessing the reliability of a concrete bridge superstructure subjected to chloride-induced reinforcement corrosion

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Fischer, Johannes

    2014-01-01

    A software prototype is developed for assessing and updating the reliability of single-cell prestressed concrete box girders subjected to chloride-induced reinforcement corrosion. The underlying system model consists of two integrated sub-models: a condition model for predicting the deterioration...

  1. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... taking into account whipping stresses. It is conceptually shown how such a method, which integrates onboard estimation of sea states, can be used to deduce decision support with respect to the accumulated fatigue damage in the hull girder.The paper firstly presents a set of measured full-scale wave...... method. This analysis verifies the applied multi-modal spectral analysis procedure for fatigue estimation for cases where hull girder flexibility plays a role.To obtain an automated prediction method for the fatigue damage rates it is in the second part of the paper shown how a combination of the full...

  2. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  3. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution.

    Science.gov (United States)

    Jie, Lin; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.

  4. Implementation of straight and curved steel girder erection design tools construction : summary.

    Science.gov (United States)

    2010-11-05

    Project 0-5574 Curved Plate Girder Design for Safe and Economical Construction, resulted in the : development of two design tools, UT Lift and UT Bridge. UT Lift is a spreadsheet-based program for analyzing : steel girders during lifting while ...

  5. Design and test of box girder for a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Tesauro, A.; Bitsche, R. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2012-09-15

    This report is covering the structural design and full scale test of a box girder as a part of the project ''Demonstration of new blade design using manufacturing process simulations'' supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism. (Author)

  6. review of elastic analys ew of elastic analysis of box girder bridges

    African Journals Online (AJOL)

    eobe

    Nigerian Journal of Technology,. Vol. 34, No. 1, January 2015 87 bridges under the attack of pitting corrosion. Savkovic et al. [130] proposed an optimum solution to optimization of the box section of the main girder of the bridge crane. Reduction of the girder mass was set as the objective function. Optimum dimensions of the.

  7. A new method for cerclage wire fixation to maximal pre-tension with minimal elongation to failure.

    Science.gov (United States)

    Meyer, Dominik C; Ramseier, Leo E; Lajtai, Georg; Nötzli, Hubert

    2003-12-01

    To develop and test a new cerclage wire tightening technique, yielding reproducibly maximal pre-tension, load to failure and minimal elongation to failure of the wire junction. Laboratory bench study. Cerclage wire fixation is difficult to perform by hand with reproducible quality and tightening tension, which are required for optimal performance. With the new technique, 1, 1.25 and 1.5 mm steel wires were passed through a 9 x 18 mm steel tube, grasped using a modified ASIF wire-tightener and tightened by twisting until spontaneous failure of the wires in the tube. These fixations were compared to wires pre-tightened by hand to controlled high or low pre-tension using the simple twist, the knot twist and twist secured against untwisting, loaded to failure on a testing machine. The tests assessed pre-tension, ultimate failure load and elongation to failure. Wire twists performed with the new technique were always perfectly symmetrical and may be tightened to maximal pre-tension without weakening of the wire. The twist secured against untwisting combined high stiffness with high failure load. The knot twist elongates to an unacceptable degree, unlike the secured twist. The simple twist untwists under little tension. The new technique allows to obtain maximal pre-tension and thus minimal elongation to failure of simple wire twists, without having to worry about breaking the wire at the base of the twist due to over-tightening. Cerclage wire fixation is an effective and cheap method to perform osteosynthesis. For adequate performance, maximal pre-tension, symmetrical twisting and high load to failure are necessary. The here presented technique combines all of these pre-requisites in a simple fashion.

  8. Rapid construction of Pacific Street Bridge with o.7 inch strands.

    Science.gov (United States)

    2010-10-01

    The Pacific Street Bridge over I-680 in Omaha, NE is the first bridge in the United States to use 0.7-in.-diameter prestressing : strands in pretensioned concrete girders. This project was funded by FHWA through NDOR under the Innovative Bridge Resea...

  9. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  10. Skew decks in reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    B. F. ROCHA

    Full Text Available Abstract This research investigates reinforced concrete plates and shells with skew reinforcement whose directions are not aligned with the principal internal forces. Two normal forces, one tangential force, two bending moments, and one twisting moment are defined in the plane of the element. The analysis includes two shear forces in the transverse direction. The membrane and flexural forces are distributed between two panels at the upper and lower faces of the element. The smeared cracking model, equilibrium considerations, and plasticity approach yield the design equations of the skew reinforcement. The slab reinforcement of flat bridges, with and without lateral beams and girder bridges are compared considering different skew angles. The minimum reinforcement criteria of skew meshes are discussed. The results show that skew reinforcement yields higher steel and concrete stresses.

  11. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  12. The new Volkswagen safety belt pre-tensioning system. Das neue Gurt-Straff-System von Volkswagen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.; Ensslen, A.; Guennewig, J.; Specht, M.; Krauss, W.

    1994-09-01

    The new Volkswagen Passat is taking a leading position in its class with respect to safety. In addition to its sophisticated structure, standard driver and passenger side airbags as well as the new Volkswagen Safety Belt Pre-Tensioning System (VW-GSS) make significant contributions to increased levels of passive safety. The newly developed pre-tensioning system sets new performance standards with its pre-tensioning force of 2000 N as well as with a webbing retraction of up to as much as 180 mm. Furthermore, the high pre-tensioning velocity, achieved through an optimized pyrotechnic charge, is worthy of note. For the first time a stand-alone system with an integrated mechanical sensor and a pyrotechnic energy source having an excellent price/performance ratio was able to be realized for a production vehicle. The compact construction of the system facilitates installation in fully developed vehicles because a minimum of modifications to the body-in-white is required. (orig.)

  13. Design of bridge crane girder strain acquisition system based on virtual instrument

    Directory of Open Access Journals (Sweden)

    Wenxue LIU

    Full Text Available Girder is an important part of the bridge crane, which is also the main force element. In order to prevent accidents, it is necessary to collect the bridge crane girder stress data to analyse the fatigue life. This paper constructs a bridge crane girder strain acquisition system. The hardware system consists of sensors, connectors, data acquisition cards, wireless data transmission groups, POE power and host computer. The software system consists of NI MAX to interface with the computer's NI hardware and software resources,and LabVIEW programming to display and storage the girder strain data. Through this system, positions and working days strain data acquisition for the 50/10 t bridge crane girder gets the key positions strain data. The results show that the girder strain data acquisition system runs stably, channel signals of acquisition task transmit accurately, and the terminal data stores competely, meeting the detection requirements, which provides an important data support for the subsequent fatigue analysis and accurate remaining service life prediction of the crane girder.

  14. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  15. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  16. Seismic performance of an I-girder to inverted-T bent cap connection.

    Science.gov (United States)

    2011-09-01

    This report presents the research conducted as part of an investigation for the California Department of Transportation (Caltrans) regarding the seismic response and overall moment capacity of precast I-girder to inverted-T bent cap bridge connection...

  17. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research....... The present paper uses the prior research results to optimize a test-setup for concrete hinge testing by means of a universal method taking into account the application of the hinge in an arch structure. 3D CAD is utilized in all steps of the planning to reduce errors during assembly of the parts in the test...

  18. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  19. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  20. Design and Behavior of Precast, Prestressed Girders Made Continuous â An Analytical and Experimental Study

    OpenAIRE

    Newhouse, Charles David

    2005-01-01

    Over the past fifty years, many states have recognized the benefits of making precast, prestressed multi-girder bridges continuous by connecting the girders with a continuity diaphragm. Although there is widespread agreement on the benefits of continuous construction, there has not been as much agreement on either the methods used for design of these systems or the details used for the continuity connections. To aid designers in choosing the most appropriate method, an analytical and...

  1. Effect of longitudinal stiffening on bridge girder webs at incremental launching stage

    Directory of Open Access Journals (Sweden)

    Carlos Graciano

    2015-01-01

    Full Text Available Patch loading is a predominant load case at incremental bridge launching. Bridge girder webs are frequently provided with longitudinal stiffeners to increase in-service shear and bending strength, and its effect has been included in design codes. However, no straightforward rules are given to account for the influence of such stiffeners on improving the patch loading resistance. This paper presents a review of some available formulae found in the literature to estimate the girder ultimate strength including the provisions of the European, American and Colombian design codes. Additionally, a nonlinear finite element analysis is conducted on three case studies related to actual launched bridges. The case studies are also used to study the influence of the longitudinal stiffener and girder depth on the girder capacity. Different load-displacement responses are observed depending on the girder depth. Finally, the finite element analysis shows to what extent the longitudinal stiffeners can increase the patch loading capacity of bridge girder webs during launching.

  2. Buckling strength of tapered bridge girders under combined shear and bending

    Directory of Open Access Journals (Sweden)

    Metwally Abu-Hamd

    2016-08-01

    Full Text Available This paper represents the finite element results for the local buckling of tapered plate girders subjected to combine pure bending and shear stresses. An idealized model is developed representing the loading of the tapered panel that generates uniform normal stresses due to flexure, or uniform and constant shear stresses in the case of shear. Eigen-value analysis was performed for several tapered web plate girders that have different geometric parameters. A parametric study is made to reduce the FE model size showing the effect of decreasing the tapered panel adjacent straight panels, maintaining the same result accuracy as a complete girder model. The combined buckling capacity of bending and shear is determined by applying all possible load pattern combinations, together with different interaction ratios. An analysis study is presented to investigate the effect of the tapering angle on the combined bending–shear capacity of the girder. The study also includes the effect of the flange and web slenderness on the local buckling of the girder. Considering residual stresses as part of the loading stresses, the analysis procedure is repeated for some cases, and the effect of combining of the residual stresses together with the external loads is found. Empirical approximate formulae are given to estimate the combined flexure–shear buckling resistance of the tapered girder safely.

  3. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    OpenAIRE

    Zhou Danfeng; Wang Lianchun; Li Jie; Yu Peichang

    2017-01-01

    The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be inve...

  4. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  5. Study and application of micrometric alignment on the prototype girders of the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nikolaos; Mainaud-Durand, Hélène; Samochkine, Alexandre; Anastasopoulos, Michail

    2011-01-01

    The Compact LInear Collider (CLIC), currently under study at CERN, aims at the development of a Multi-TeV e+ e- collider. The micro-precision CLIC RF-structures will have an accelerating gradient of 100 MV/m and will be mounted and aligned on specially developed supporting girders. The girder fabrication constraints are dictated by stringent physics requirements. The micrometric pre-alignment over several kilometers of girders, allow for the CLIC structures to fulfill their acceleration and collision functionality. Study of such girders and their sophisticated alignment method, is a challenging case involving dedicated mechanical design as well as prototype production and experimental testing.

  6. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years....... The present paper uses the prior research results to optimize a test-setup for concrete hinge testing by means of a universal method taking into account the application of the hinge in an arch structure. 3D CAD is utilized in all steps of the planning to reduce errors during assembly of the parts in the test...

  7. Pengaruh One Direction Pre-Tension pada Reinforcement Fibre terhadap Kekuatan Tarik dan Impact Fibre-Powder Reinforcement Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Gilang Gumilar

    2017-12-01

    Full Text Available Nowadays, industrial manufacturing needs environmentally and friendly material and has special properties which are difficult to obtain from the metal material. Composite is one of the alternative materials that can be used to meet those needs. A structural composite material consisting of a combination of two or more elements bonded material at the macroscopic level. This study was conducted to determine the effect of pre-tension one direction on a hybrid composite reinforcement against tensile strength and impact strength. Composite materials prepared by C-Glass fiber types woven rovings, coconut shell powder and vinyl ester resin. manufacturing composite using hand lay-up methods. The variation of the tension given 0N, 50N, 100N, 150N, and 200N. A tensile test based on the reference standard ASTM D 3039 while testing the impact based on ASTM D 6110-04. The results were obtained giving tension to the hybrid composite reinforcement increases tensile strength and impact strength of the material. The lowest tensile strength of the composite obtained in 0N treatment (without treatment ranged 71,58N / mm², and the greatest tensile strength is obtained in the pre-tension 200N, ranging from 106.05 N / mm2. As for the lowest impact on specimens obtained without treatment ranges 1,34J / mm2 and provision of pre-tension 200N biggest impact strength values obtained, ranging 15,09J / mm2.

  8. Stainless steel prestressing strands and bars for use in prestressed concrete girders and slabs.

    Science.gov (United States)

    2015-08-01

    Corrosion decay on structures has continued to be a challenge in the scientific and engineering : communities, where significant federal and state funds have been spent towards replacement or rehabilitation : of bridges that were damaged by corrosion...

  9. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  10. STRESS-DEFORMED STATE OF A STRUT-FRAMED CRANE GIRDER

    Directory of Open Access Journals (Sweden)

    Kh. M. Muselemov

    2017-01-01

    Full Text Available Objectives. The aim of the present work is to study the influence of design parameters on the stress-deformed state of a sprengel crane girder; to compile the tables and corresponding graphs illustrating changes in internal force factors in the characteristic cross-sections of the system elements under consideration. The article describes the study of the stress-deformed state (SDS of a metal strut-framed crane girder.Methods. Numerical methods of analysis based on the use of the Green's function are used during solving this problem. A dimensionless parameter is introduced, depending on which the tables and graphs are constructed. According to the known algorithm, the calculations of internal force factors in the sections of the considered construction are performed.Results. Depending on the dimensionless parameter characterising the geometry and physical features of the system, tables of bending moments and transverse forces are compiled. According to these tables, the appropriate graphs are plotted in order to choose easily the optimal design parameters.Conclusion. The dependence of the moments and transverse forces on the dimensionless parameter k was found, the corresponding graphs were plotted and the metal costs for the girders were calculated. The minimum values of the moments and transverse forces are established to take place when the dimensionless parameter k values are close to zero. The most economical was a strut-framed crane girder having k = 0.0001. The most uneconomical had k = 0.05 and k =∞. Eventually, the sprengel girders were found to be more profitable as compared to conventional crane girders. In the examples considered in the article, the metal savings amounted up to 14%. The presented methodology allows the calculation and designing of strut-framed crane girders with two racks to be carried out. 

  11. Self-assembly of suspended graphene wrinkles with high pre-tension and elastic property

    Science.gov (United States)

    Yang, Liusi; Niu, Tianxiao; Zhang, Hui; Xu, Wenjing; Zou, Mingchu; Xu, Lu; Cao, Guoxin; Cao, Anyuan

    2017-12-01

    Wrinkles exist universally in graphene-based structures, yet their controlled fabrication remains challenging; most graphene wrinkles have been produced either in attachment to elastic substrates or limited in small single sheets. Here, we utilize the phenomenon of gel-cracking to generate uniaxial strains locally on solution-precipitated graphene oxide (GO) sheets, thus creating suspended and aligned wrinkles over the trenches between cracked TiO2 islands. In particular, those GO wrinkles are subjected to a high pre-tension, which is important for making stable suspended configuration, as confirmed by theoretical calculations based on the wrinkle geometry and measured spring constants, respectively. As a result, in situ atomic force microscope indentation reveals elastic deformation with tunable spring constants depending on the gap width. We further obtain chemically reduced GO wrinkles with enhanced spring constants and reversible behavior after 1000 indentation cycles. Our suspended and aligned graphene wrinkles have potential applications in many areas such as sensors, actuators, and micro/nano electromechanical systems.

  12. Investigation of the Use of Viscoelastic Damping Devices to Rehabilitate a Lightly Reinforced Concrete Slab- Column Structure

    Science.gov (United States)

    1998-09-01

    3,600 psi "pea gravel" mix, with superplasticizer added to enhance workability. Time-of-test compression strengths averaged approximately 5,900 psi...material properties. A superplasticizer admixture, "Daracem 100" which is manufactured by Grace Concrete Products, was used to extend slump life and...same manner as it had been for the base girder: a 3,600 psi "pea gravel" mix, with superplasticizer added to extend workability. The first story

  13. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    Science.gov (United States)

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  14. Determination of service stresses in pretensioned beams, final report, December 2009.

    Science.gov (United States)

    2009-12-01

    This report presents research on the evaluation of service flexural stresses and cracking moment in prestressed concrete members and on the minimum reinforcement requirements that are currently controlled by the flexural cracking moment. In prestress...

  15. Dynamic Analysis of Horizontally Curved Thin-Walled Box-Girder Bridge due to Moving Vehicle

    Directory of Open Access Journals (Sweden)

    K. Nallasivam

    2007-01-01

    Full Text Available The impact on curved box-girder bridges due to vehicle moving across rough bridge deck have been analyzed using bridge-vehicle coupled dynamics. The bridge deck unevenness has been assumed to be a homogeneous random process in space specified by a PSD function. The analysis incorporates the effect of centrifugal forces due to vehicle moving on curved bridge. The curved box-girder bridge has been numerically modeled using computationally efficient thin-walled box-beam finite elements which take into account the torsional warping, distortion and distortional warping, that are important features of thin-walled box girders. Rigid vehicle with longitudinal and transverse input to the wheels giving rise to heave-pitch-roll degrees of freedom has been considered. The theoretical bridge model used in simulation study has been validated by a free vibration experiment using impact excitation. The impact factors for several response parameters such as bending moment, shear force, torsional moment, torsional bi-moment, distortional moment, distortional bi-moment and vertical deflections have been obtained for various bridge-vehicle parameters. Both constant velocity and forward acceleration of the vehicle have been considered to examine impact factor. The results highlighted that the impact factors of a curved box girder bridge corresponding to torsion, distortion and their corresponding bimoments have been observed to be generally very high, while those of the other responses are also relatively higher than that of corresponding straight box girder bridge.

  16. Complex Method Mixed with PSO Applying to Optimization Design of Bridge Crane Girder

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-01-01

    Full Text Available In engineer design, basic complex method has not enough global search ability for the nonlinear optimization problem, so it mixed with particle swarm optimization (PSO has been presented in the paper,that is the optimal particle evaluated from fitness function of particle swarm displacement complex vertex in order to realize optimal principle of the largest complex central distance.This method is applied to optimization design problems of box girder of bridge crane with constraint conditions.At first a mathematical model of the girder optimization has been set up,in which box girder cross section area of bridge crane is taken as the objective function, and its four sizes parameters as design variables, girder mechanics performance, manufacturing process, border sizes and so on requirements as constraint conditions. Then complex method mixed with PSO is used to solve optimization design problem of cane box girder from constrained optimization studying approach, and its optimal results have achieved the goal of lightweight design and reducing the crane manufacturing cost . The method is reliable, practical and efficient by the practical engineer calculation and comparative analysis with basic complex method.

  17. Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test

    Science.gov (United States)

    Yang, Caiqian; Wu, Zhishen; Zhang, Yufeng

    2008-06-01

    The application of hybrid carbon fiber reinforced polymer (HCFRP) sensors was addressed to monitor the structural health of an existing prestressed concrete (PC) box girder bridge in a destructive test. The novel HCFRP sensors were fabricated with three types of carbon tows in order to realize distributed and broad-based sensing, which is characterized by long-gauge length and low cost. The HCFRP sensors were bonded on the bottom and side surfaces of the existing bridge to monitor its structural health. The gauge lengths of the sensors bonded on the bottom and side surfaces were 1.5 m and 1.0 m, respectively. The HCFRP sensors were distributed on the bridge for two purposes. One was to detect damage and monitor the structural health of the bridge, such as the initiation and propagation of new cracks, strain distribution and yielding of steel reinforcements. The other purpose was to monitor the propagation of existing cracks. The good relationship between the change in electrical resistance and load indicates that the HCFRP sensors can provide actual infrastructures with a distributed damage detection and structural health monitoring system. Corrections were made to this article on 13 May 2008. The corrected electronic version is identical to the print version.

  18. Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test

    International Nuclear Information System (INIS)

    Yang Caiqian; Wu Zhishen; Zhang Yufeng

    2008-01-01

    The application of hybrid carbon fiber reinforced polymer (HCFRP) sensors was addressed to monitor the structural health of an existing prestressed concrete (PC) box girder bridge in a destructive test. The novel HCFRP sensors were fabricated with three types of carbon tows in order to realize distributed and broad-based sensing, which is characterized by long-gauge length and low cost. The HCFRP sensors were bonded on the bottom and side surfaces of the existing bridge to monitor its structural health. The gauge lengths of the sensors bonded on the bottom and side surfaces were 1.5 m and 1.0 m, respectively. The HCFRP sensors were distributed on the bridge for two purposes. One was to detect damage and monitor the structural health of the bridge, such as the initiation and propagation of new cracks, strain distribution and yielding of steel reinforcements. The other purpose was to monitor the propagation of existing cracks. The good relationship between the change in electrical resistance and load indicates that the HCFRP sensors can provide actual infrastructures with a distributed damage detection and structural health monitoring system. Corrections were made to this article on 13 May 2008. The corrected electronic version is identical to the print version

  19. Research notes : keeping steel bars anchored in cracked girders.

    Science.gov (United States)

    2011-01-01

    Researchers at Oregon State University fabricated large-size reinforced concrete beams each with an intentional crack made by positioning a plastic sheet in the formwork when the beams were cast. By maintaining control over crack location, crack angl...

  20. Numerical analysis of heat-curved I-girders

    Directory of Open Access Journals (Sweden)

    Antoine Gergess

    2017-10-01

    Full Text Available Heat curving is a practical and economical process used by steel fabricators for curving structural steel. In this method, the flange edges of a fabricated straight girder are asymmetrically heated to induce residual curvature on cooling. Available analytical methods for predicting the resulting residual stress, strain and curvature are complex and iterative because of the need to account for material and geometric non-linearity. This paper presents a single-step, non-iterative, numerical procedure for determining the effects of heat-curving on residual stress and strain based on a previously developed simplified analysis. Thermal equilibrium equations for idealized heating profiles are first recast in a general parametric form and then solved numerically for standard heating width and temperature using modern technical computing. The resulting solutions are expressed as polynomial functions to allow the solution space for the residual curvature to be graphically represented. Curvature predictions using this simplified approach are shown to be within 11% of measured values and within 5% of values obtained using more rigorous numerical methods.

  1. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    Directory of Open Access Journals (Sweden)

    Siekierski Wojciech

    2015-03-01

    Full Text Available At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  2. CRENÇAS E ATITUDES LINGUÍSTICAS: A VARIANTE RETROFLEXA NA VARIEDADE RIO-PRETENSE

    Directory of Open Access Journals (Sweden)

    Aline Vassoler

    2016-09-01

    Full Text Available A pronúncia retroflexa do rótico em coda silábica, uma variante estigmatizada pelos falantes de outras variedades, identifica a chamada variedade caipira em que se inclui São José do Rio Preto. Para examinar se esse traço característico é também estigmatizado na variedade rio-pretense, avaliou-se, neste trabalho, o grau de prestígio ou de estigmatização dessa variante em comparação a outras duas pronúncias possíveis: o tepe alveolar e a fricativa velar, no contexto seguinte de /a/, /i/ e /u/. O procedimento metodológico incluiu uma gravação de 27 enunciados contendo essas três realizações à qual se aplicou, em seguida, testes de atitude e de crença linguística a dois grupos de informantes de Ensino Fundamental, um da rede pública e outro da rede particular e um grupo de informantes de Ensino Superior. Os resultados do teste de crença apontaram que, especificamente em contexto vocálico de /i/, não houve homogeneidade nas respostas dos três grupos. Nos resultados do teste de atitude, os informantes de ensino superior atribuíram notas mais altas que os informantes do ensino fundamental à pronúncia de tepe. No geral, os resultados mostraram que, apesar de a retroflexa constituir um traço identificador da variedade caipira, é a variante tepe que os informantes atribuem maior grau de prestígio

  3. Design proposal for ultimate shear strength of tapered steel plate girders

    Directory of Open Access Journals (Sweden)

    A. Bedynek

    2017-03-01

    Full Text Available Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.

  4. Super-light concrete with pearl-chains

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2009-01-01

    The paper presents a new technology invented by the author by means of which it is possible to create very light concrete structures. The new super-light structures are resource-saving in terms of consumption of raw materials and energy for production and transport, and the cost is often less than...... mass-produced prefabricated components are used to establish compression and tension zones for optimised or advanced shapes in super-light structures. Furthermore, the principle provides new options for prestressing light aggregate concrete structures in general. Pearl-chain reinforcement is self......-supporting. It is visible and open for inspection before being cast into a structure, and it can support moulds for the structure, reducing the need for scaffolding. Stable meshes of pearl-chain reinforcement are advantageous for both large-scale structures, such as bridges, girders, shells and domes, and for small...

  5. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  6. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  7. Deflection monitoring for a box girder based on a modified conjugate beam method

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  8. Effect of material uncertainties on dynamic response of segmental box girder bridge

    Directory of Open Access Journals (Sweden)

    Suchart Limkatanyu

    2007-11-01

    Full Text Available The main objective of this paper was to investigate the effect of material uncertainties on dynamic response of segmental box girder bridge subjected to a moving load, in this case a rapid passing trains. Literatures concerned with the design of segmental box girder bridge, the application of finite element analysis to model the segmental box girder bridge, and the minimum requirement for structural conditions of the bridge were described and discussed in detail. A series of finite element analysis was carried out using SAP2000 Nonlinear software. The effect was investigated by varying the Modulus of Elasticity by 5%, 10% and 15%. The results were then compared with the case of assumed uniform property which had already been checked for model accuracy using the Standard prEN 1991-2. The results showed that, for the uniform case, the dynamic responses of the bridge gave the highest response at the resonance speed. When considering the non-uniform material properties (non-uniform case, the effect of material uncertainties appeared to have an effect on both displacement and acceleration responses. Nonetheless, the dynamic factor provided in the design code was sufficient for designing the segmental box girder bridge with either uniform or non-uniform material properties for the train speeds considered in this study.

  9. Optimization of the box-girder of overhead crane with constrained ...

    African Journals Online (AJOL)

    haroun

    Optimization of the box-girder of overhead crane with constrained new bat algorithm. Optimisation de poutre caisson de pont roulant avec un nouvel algorithme de chauve souris sous contrainte. Asma Chakri*, Rabia Khelif & Mohamed Benouaret. Industrial Mechanics Laboratory, Department of Mechanical Engineering, ...

  10. Field testing of the Wolf Creek curved girder bridge : part I : vibration tests.

    Science.gov (United States)

    2009-01-01

    The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element model of the bridge revealed that pier flexibility may be important in modeling the bri...

  11. Sensitivity and statistical analysis within the elaboration of steel plated girder resistance

    Czech Academy of Sciences Publication Activity Database

    Melcher, J.; Škaloud, Miroslav; Kala, Z.; Karmazínová, M.

    2009-01-01

    Roč. 5, č. 2 (2009), s. 120-126 ISSN 1816-112X. [International conf. on steel and aluminium structures /6./. Oxford, 24.06.2007-27.06.2007] Institutional research plan: CEZ:AV0Z20710524 Keywords : steel structures * fatigue * sensitivity * imperfection * plated girder Subject RIV: JM - Building Engineering

  12. M324 : investigation of closure pour elimination for phased construction of steel girder bridges.

    Science.gov (United States)

    2014-10-01

    Phased construction is a common practice used by State DOTs during the : replacement of a bridge. This method allows for the traffic flow to be maintained on half : of the bridge while a new deck is constructed on the other half. For steel girder bri...

  13. Stress Distribution in Continuous Thin-Walled Multi-Cell Box Girder ...

    African Journals Online (AJOL)

    Therefore, the analytical tool for this study is a MATLAB program developed by the authors for the finite strip analysis of continuous thin-walled box girder bridges. Numerical study on stress distribution was ... The beam theory solution was also used for comparison of results in both cases. The study concluded that under ...

  14. The Influence of Shear Effects on the Deflections of Steel Box Girder Bridges

    Czech Academy of Sciences Publication Activity Database

    Křístek, V.; Škaloud, Miroslav

    2000-01-01

    Roč. 40, č. 2 (2000), s. 78-80 ISSN 1210-2709. [First International Conference on Advanced Engineering Design . Praha, 31.05.1999-02.06.1999] R&D Projects: GA ČR GA103/97/0074 Keywords : steel bridges * box girder * shear effects * deflections * design Subject RIV: JM - Building Engineering

  15. Optimization of the box-girder of overhead crane with constrained ...

    African Journals Online (AJOL)

    Keywords: Overhead crane - Box-girder - New bat algorithm - level of comparison - Higher strength steel. Optimisation de poutre caisson de pont roulant avec un nouvel algorithme de chauve souris sous contrainte. Une conception optimale pour un poids minimal de la poutre principale d'un pont roulant peut réduire ...

  16. Optimization of the box-girder of overhead crane with constrained ...

    African Journals Online (AJOL)

    haroun

    section area of the box-girder as objective function, and restrictions on plates' stress, fatigue, buckling and allowable deflection. The resulted problem is solved with constrained new bat algorithm. Four modifications have been embedded to the standard bat algorithm to increase its performances, and the level of ...

  17. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  18. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  19. Is Young Children's Recognition of Pretense Metarepresentational or Merely Behavioral? Evidence from 2- and 3-Year-Olds' Understanding of Pretend Sounds and Speech

    Science.gov (United States)

    Friedman, Ori; Neary, Karen R.; Burnstein, Corinna L.; Leslie, Alan M.

    2010-01-01

    When young children observe pretend-play, do they interpret it simply as a type of behavior, or do they infer the underlying mental state that gives the behavior meaning? This is a long-standing question with deep implications for how "theory on mind" develops. The two leading accounts of shared pretense give opposing answers. The behavioral…

  20. Valuation of the 12 year old Concrete in the Ulkebugt Bridge, Sisimiut, Greenland

    DEFF Research Database (Denmark)

    Gottlieb, Christian; Olsen, Idar; Henningsen, Jesper Frej

    2011-01-01

    The Ulkebugt bridge is a vital connection for the town Sisimiut, as it is the only link between the airport and the town. The bridge is a box girder bridge with one central pillar. Most of the pillar’s concrete surface is exposed to seawater, with a tide variation around 4 meters. In addition...... to the seawater the bridge is exposed to the rough arctic climate. Furthermore, the mean temperature is below 0 °C for two thirds of the year with many freeze-thaw passages in late autumn and early spring, which increases the opportunity for severe frost damages. The focus has been to evaluate the quality...... and condition of the concrete pillar in terms of composition and the extent of the present deterioration mechanisms, best represented by frost damage and chloride ingress. Results show critical chloride content in the concrete will be reached in approximately 10 years at the depth of the reinforcement bars...

  1. Theory of cyclic creep of concrete based on Paris law for fatigue growth of subcritical microcracks

    Science.gov (United States)

    Bazant, Zdenek P.; Hubler, Mija H.

    2014-02-01

    Recent investigations prompted by a disaster in Palau revealed that worldwide there are 69 long-span segmental prestressed-concrete box-girder bridges that suffered excessive multi-decade deflections, while many more surely exist. Although the excessive deflections were shown to be caused mainly by obsolescence of design recommendations or codes for static creep, some engineers suspect that cyclic creep might have been a significant additional cause. Many investigators explored the cyclic creep of concrete experimentally, but a rational mathematical model that would be anchored in the microstructure and would allow extrapolation to a 100-year lifetime is lacking. Here it is assumed that the cause of cyclic creep is the fatigue growth of pre-existing microcracks in hydrated cement. The resulting macroscopic strain is calculated by applying fracture mechanics to the microcracks considered as either tensile or, in the form of a crushing band, as compressive. This leads to a mathematical model for cyclic creep in compression, which is verified and calibrated by laboratory test data from the literature. The cyclic creep is shown to be proportional to the time average of stress and to the 4th power of the ratio of the stress amplitude to material strength. The power of 4 is supported by the recent finding that, on the atomistic scale, the Paris law should have the exponent of 2 and that the exponent must increase due to scale bridging. Exponent 4 implies that cyclic creep deflections are enormously sensitive to the relative amplitude of the applied cyclic stress. Calculations of the effects of cyclic creep in six segmental prestressed concrete box girders indicate that, because of self-weight dominance, the effect on deflections absolutely negligible for large spans (>150m). For small spans (bridges upward deflections. However, the cyclic creep is shown to cause in bridges with medium and small spans (<80m) a significant residual tensile strain which can produce

  2. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  3. Evaluating the performance of skewed prestressed concrete bridge after strengthening

    Science.gov (United States)

    Naser, Ali Fadhil; Zonglin, Wang

    2013-06-01

    The objectives of this paper are to explain the application of repairing and strengthening methods on the damaged members of the bridge structure, to analyze the static and dynamic structural response under static and dynamic loads after strengthening, and to evaluate the structural performance after application of strengthening method. The repairing and strengthening methods which are used in this study include treatment of the cracks, thickening the web of box girder along the bridge length and adding internal pre-stressing tendons in the thickening web, and construct reinforced concrete cross beams (diaphragms) between two box girders. The results of theoretical analysis of static and dynamic structural responses after strengthening show that the tensile stresses are decreased and become less than the allowable limit values in the codes. The values of vertical deflection are decreased after strengthening. The values of natural frequencies after strengthening are increased, indicating that the strengthening method is effective to reduce the vibration of the bridge structure. Therefore, the strengthening methods are effective to improve the bearing capacity and elastic working state of the bridge structure and to increase the service life of the bridge structure.

  4. An innovative steel-concrete joint for integral abutment bridges

    Directory of Open Access Journals (Sweden)

    Bruno Briseghella

    2015-08-01

    Full Text Available Integral abutment bridges are becoming rather common, due to the durability problems of bearings and expansion joints. At the same time, among short- and medium-span bridges, multi-beam steel-concrete composite deck with hot-rolled girder is an economical and interesting alternative to traditional pre-stressed concrete solutions. The two concepts can be linked together to design integral steel-concrete composite bridges with the benefits of two typologies. The most critical aspect for these bridges is usually the joints between deck and piers or abutments. In this paper, an innovative beam-to-pier joint is proposed and a theoretical and experimental study is introduced and discussed. The analyzed connection is aimed at combining general ease of construction with a highly simplified assembly procedure and a good transmission of hogging and sagging moment at the supports in continuous beams. For this purpose, the traditional shear studs, used at the interface between steel beam and upper concrete slab, are also used at the ends of steel profiles welded horizontally to the end plates. To better understand the behaviour of this kind of joints and the roles played by different components, three large-scale specimens were tested and an FE model was implemented. The theoretical and experimental results confirmed the potential of the proposed connection for practical applications and indicated the way to improve its structural behaviour.

  5. Multi-scale investigation of tensile creep of ultra-high performance concrete for bridge applications

    Science.gov (United States)

    Garas Yanni, Victor Youssef

    Ultra-high performance concrete (UHPC) is relatively a new generation of concretes optimized at the nano and micro-scales to provide superior mechanical and durability properties compared to conventional and high performance concretes. Improvements in UHPC are achieved through: limiting the water-to-cementitious materials ratio (i.e., w/cm ≤ 0.20), optimizing particle packing, eliminating coarse aggregate, using specialized materials, and implementing high temperature and high pressure curing regimes. In addition, and randomly dispersed and short fibers are typically added to enhance the material's tensile and flexural strength, ductility, and toughness. There is a specific interest in using UHPC for precast prestressed bridge girders because it has the potential to reduce maintenance costs associated with steel and conventional concrete girders, replace functionally obsolete or structurally deficient steel girders without increasing the weight or the depth of the girder, and increase bridge durability to between 75 and 100 years. UHPC girder construction differs from that of conventional reinforced concrete in that UHPC may not need transverse reinforcement due to the high tensile and shear strengths of the material. Before bridge designers specify such girders without using shear reinforcement, the long-term tensile performance of the material must be characterized. This multi-scale study provided new data and understanding of the long-term tensile performance of UHPC by assessing the effect of thermal treatment, fiber content, and stress level on the tensile creep in a large-scale study, and by characterizing the fiber-cementitious matrix interface at different curing regimes through nanoindentation and scanning electron microscopy (SEM) in a nano/micro-scale study. Tensile creep of UHPC was more sensitive to investigated parameters than tensile strength. Thermal treatment decreased tensile creep by about 60% after 1 year. Results suggested the possibility of

  6. Concrete evidence

    Energy Technology Data Exchange (ETDEWEB)

    Provis, J.; Duxson, P.; van Deventer, J. [University of Melbourne, Vic. (Australia)

    2008-11-15

    The time is right for a revolution in the cement industry which is responsible for 5-8% of all human-derived carbon dioxide emissions. Zeobond, an Australian company, has developed E-Crete which is a geopolymer concrete using fly ash and blast furnace slags which reduces CO{sub 2} emissions by 80% from the 0.67t of CO{sub 2} per ton of cement emitted by the Australian triple blend of cement, fly ash and slag. The article discusses the products development, standards for cements and challenges to the commercialization of E-Crete. 5 refs., 3 figs.

  7. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  8. Analysis on stress state of box-girder web under prestressing effect

    Directory of Open Access Journals (Sweden)

    Yin Haijun

    2018-01-01

    Full Text Available In order to study the effect of prestressed box girder webs stresss state, determining the stress distribution within a web, research and analysis of vertical prestressed box girder, curved beam prestressed sensitivity under the web. Establishing the finite element model of the box girder web vertical prestressing effect is analyzed, results show that the principal tensile stress of the web is sensitive to the vertical prestress, applying the vertical prestress can effectively reduce the principal tensile stress of the web; with the decrease of the effective vertical prestress, the neutral axis above the principal compressive stress decreases rapidly, while below the neutral axis decreases relatively slow; Under the same vertical preloading stress level, the roots of cross section of the compressive stress of web reserves than L / 4 section of the web. Calculation and analysis of curved beam under bending point, different bending angles and bending radius of principal stress effect on the web, Results show that the set of curved beam web when the curved beam bending stress concentration easily, appear the main tensile stress; Increase the bending radius can effectively reduce beam cross-section of web principal tensile stress, along with the rising of the next corner, principal tensile stress peak value increases gradually, thus setting bending beam, should try to reduce the bending angle.

  9. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  10. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  11. A Study on the Dynamic Interaction between Three-Axle Vehicle and Continuous Girder Bridge with Consideration of Braking Effects

    Directory of Open Access Journals (Sweden)

    Xuan-Toan Nguyen

    2017-01-01

    Full Text Available Continuous girder bridges become increasingly popular because of the rapid development of highway throughout the world. Most of previous researches on vibration analysis of a multispan continuous bridge subject to complex traffic loading and vehicle dynamic interaction focus on the girder displacement not considering braking effects. In current literature, few studies have discussed the effects of braking on continuous girder bridges. In this study, we employ the finite element method (FEM to investigate the dynamic response of continuous girder bridge due to three-axle vehicle. Vertical reaction forces of axles that change with time make bending vibration of girder increase significantly. The braking in the first span is able to create response in other spans. In addition, the dynamic impact factors are investigated by both FEM and experiments on a real bridge structure. The results of this study extend the current understanding of the bridge dynamic behaviors and can be used as additional references for bridge codes by practicing engineers.

  12. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  13. Driver kinematic and muscle responses in braking events with standard and reversible pre-tensioned restraints: validation data for human models.

    Science.gov (United States)

    Osth, Jonas; Olafsdóttir, Jóna Marín; Davidsson, Johan; Brolin, Karin

    2013-11-01

    The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males. The range of activity during steady state braking for males and females was 13-44% in the cervical and lumbar extensors, while antagonistic muscles showed a co-contraction of 2.3-19%. Seat belt pre-tension affects both the kinematic and muscle responses of drivers. In autonomous braking with standard restraints, muscle activation occurred in response to the inertial load. With pre-tensioned seat belts, EMG onset occurred earlier; between 71 ms and 176 ms after belt pre-tension. The EMG onset times decreased with repeated trials and were shorter for females than for males. With the results from this study, further improvement and validation of human models that incorporate active musculature will be made possible.

  14. Sliding-induced non-uniform pre-tension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos.

    Science.gov (United States)

    Cheng, Q H; Chen, B; Gao, H J; Zhang, Y W

    2012-02-07

    Several mechanisms have been proposed in the literature to explain the robust attachment and rapid, controllable detachment of geckos' feet on vertical walls or ceilings, yet, it is still debatable, which one is ultimately responsible for geckos' extraordinary capabilities for robust and reversible adhesion. In this paper, we re-examine some of the key movements of geckos' spatula pads and seta hairs during attachment and detachment, and propose a sequence of simple mechanical steps that would lead to the extraordinary properties of geckos observed in experiments. The central subject under study here is a linear distribution of pre-tension along the spatula pad induced by its sliding motion with respect to a surface. The resulting pre-tension, together with a control of setae's pulling force and angle, not only allows for robust and strong attachment, but also enables rapid and controllable detachment. We perform computational modelling and simulations to validate the following key steps of geckos' adhesion: (i) creation of a linear distribution of pre-tension in spatula through sliding, (ii) operation of an instability envelope controlled by setae's pulling force and angle, (iii) triggering of an adhesion instability leading to partial decohesion along the interface, and (iv) complete detachment of spatula through post-instability peeling. The present work not only reveals novel insights into the adhesion mechanism of geckos, but also develops a powerful numerical simulation approach as well as additional guidelines for bioinspired materials and devices.

  15. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  16. Connection Capacity of the Transition Zone in Steel-Concrete Hybrid Beam

    Directory of Open Access Journals (Sweden)

    Kozioł Piotr

    2017-06-01

    Full Text Available The problem of transition zone of structural steel element connected to concrete is discussed in the following paper. This zone may be located for instance in specific bridge composite girder. In such case the composite beam passes smoothly into concrete beam. Because of several dowels usage in the transition zone, the problem of uneven force distribution were discussed through analogy to bolted and welded connections. The authors present innovative solution of transition zone and discuss the results, with emphasis put on the transition zone structural response in term of bending capacity, failure model and force distribution on the connection length. The article wider the already executed experimental test and presents its newest results.

  17. Large scale high strain-rate tests of concrete

    Directory of Open Access Journals (Sweden)

    Kiefer R.

    2012-08-01

    Full Text Available This work presents the stages of development of some innovative equipment, based on Hopkinson bar techniques, for performing large scale dynamic tests of concrete specimens. The activity is centered at the recently upgraded HOPLAB facility, which is basically a split Hopkinson bar with a total length of approximately 200 m and with bar diameters of 72 mm. Through pre-tensioning and suddenly releasing a steel cable, force pulses of up to 2 MN, 250 μs rise time and 40 ms duration can be generated and applied to the specimen tested. The dynamic compression loading has first been treated and several modifications in the basic configuration have been introduced. Twin incident and transmitter bars have been installed with strong steel plates at their ends where large specimens can be accommodated. A series of calibration and qualification tests has been conducted and the first real tests on concrete cylindrical specimens of 20cm diameter and up to 40cm length have commenced. Preliminary results from the analysis of the recorded signals indicate proper Hopkinson bar testing conditions and reliable functioning of the facility.

  18. A software prototype for assessing the reliability of a concrete bridge superstructure subjected to chloride-induced reinforcement corrosion

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Fischer, Johannes

    2014-01-01

    A software prototype is developed for assessing and updating the reliability of single-cell prestressed concrete box girders subjected to chloride-induced reinforcement corrosion. The underlying system model consists of two integrated sub-models: a condition model for predicting the deterioration...... through Bayesian updating on the basis of the DBN model. To demonstrate the effect of partial inspections, the software prototype is applied to a case study of a typical highway bridge with six spans. The case study illustrates that it is possible to infer the condition of uninspected parts...

  19. FUETAP concrete

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Delzer, D.B.

    1988-01-01

    Cement-based waste forms have been used for several decades to immobilize low-level radioactive wastes. With the appropriate formulation for a given waste, the forms - whether as grout sheets placed in shale fractures deep underground, mixed with soil in a trench, or as monoliths in shallow-land burial - can be provided with the ability to immobilize various low-level radioactive components and with adequate compressive and tensile strength to ensure their durability for many years without cracking or disintegration. Because of the high activity inherent in high-level wastes, the incorporation of these wastes into cementitious forms can cause problems such as gas-pressure build-up from pore water radiolysis and expansion and subsequent cracking from the wastes' thermal activity, either of which can result in the release of radionuclides into the environment. This article discusses FUETAP concretes which utilize the thermal power of the waste to accelerate the curing process. If necessary, heat is also applied externally. In the end, a hard, dense product is obtained from which more than 98% of the unbound water has been driven off; the problems of radiolytic decomposition and thermal expansion become negligible

  20. Effect of flange and stiffener rigidity on the boundary conditions and shear buckling stress of plate girders

    OpenAIRE

    Al-Azzawi, Zaid; Stratford, Timothy; Rotter, John; Bisby, Luke

    2015-01-01

    The two essential functions of the web plate in a plate girder are to maintain a relative distance between the top and bottom flanges and to resist shear stresses. In most practical ranges of plate girder bridge spans, the shear stresses are relatively low compared to bending stresses in the flanges induced by flexure. As a result, the web plate is typically much thinner than the flanges. The web panel is therefore prone to buckling at comparatively low shear forces. To enhance the web’s buck...

  1. Mechanical behavior of the shear-patch loading interaction on transversally stiffened steel plate girders

    Directory of Open Access Journals (Sweden)

    Rolando Chacón

    Full Text Available In this paper, the behavior of the intertwined shear and patch loading mechanisms in transversally stiffened steel plate girders is described. The phenomenological insight depicted in this paper shows the influence of the web thickness and the flange yield strength as well as the influence of the transverse stiffeners on the stress distribution, the critical loads and on the equilibrium path of this particular type of loading. A previously validated numerical model is used systematically as a simulation tool. Stress-, strain-, force- and displacement fields are exploited for the sake of inferring and idealizing the most valuable features of the depicted mechanical model.

  2. FE-ANN based modeling of 3D simple reinforced concrete girders for objective structural health evaluation.

    Science.gov (United States)

    2017-06-01

    The structural deterioration of aging infrastructure systems and the costs of repairing these systems is an increasingly important issue worldwide. Structural health monitoring (SHM), most commonly visual inspection and condition rating, has proven t...

  3. Mathematical Modeling for Lateral Displacement Induced by Wind Velocity Using Monitoring Data Obtained from Main Girder of Sutong Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2014-01-01

    Full Text Available Based on the health monitoring system installed on the main span of Sutong Cable-Stayed Bridge, GPS displacement and wind field are real-time monitored and analyzed. According to analytical results, apparent nonlinear correlation with certain discreteness exists between lateral static girder displacement and lateral static wind velocity; thus time series of lateral static girder displacement are decomposed into nonlinear correlation term and discreteness term, nonlinear correlation term of which is mathematically modeled by third-order Fourier series with intervention of lateral static wind velocity and discreteness term of which is mathematically modeled by the combined models of ARMA(7,4 and EGARCH(2,1. Additionally, stable power spectrum density exists in time series of lateral dynamic girder displacement, which can be well described by the fourth-order Gaussian series; thus time series of lateral dynamic girder displacement are mathematically modeled by harmonic superposition function. By comparison and verification between simulative and monitoring lateral girder displacements from September 1 to September 3, the presented mathematical models are effective to simulate time series of lateral girder displacement from main girder of Sutong Cable-Stayed Bridge.

  4. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  5. Microscopic examination of deteriorated concrete

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.

    2010-01-01

    Concrete petrography is the integrated microscopic and mesoscale (hand specimen size) investigation of hardened concrete, that can provide information on the composition of concrete, the original relationships between the concrete's various constituents, and any changes therein, whether as a result

  6. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  7. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  8. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  9. Full Scale Test of a SSP 34m box girder 1. Data report

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between...... Risø DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Mølholt Jensen‟s PhD study. This report contains the complete test data for the final test, in which...... the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds...

  10. Statistical determination of significant curved I-girder bridge seismic response parameters

    Science.gov (United States)

    Seo, Junwon

    2013-06-01

    Curved steel bridges are commonly used at interchanges in transportation networks and more of these structures continue to be designed and built in the United States. Though the use of these bridges continues to increase in locations that experience high seismicity, the effects of curvature and other parameters on their seismic behaviors have been neglected in current risk assessment tools. These tools can evaluate the seismic vulnerability of a transportation network using fragility curves. One critical component of fragility curve development for curved steel bridges is the completion of sensitivity analyses that help identify influential parameters related to their seismic response. In this study, an accessible inventory of existing curved steel girder bridges located primarily in the Mid-Atlantic United States (MAUS) was used to establish statistical characteristics used as inputs for a seismic sensitivity study. Critical seismic response quantities were captured using 3D nonlinear finite element models. Influential parameters from these quantities were identified using statistical tools that incorporate experimental Plackett-Burman Design (PBD), which included Pareto optimal plots and prediction profiler techniques. The findings revealed that the potential variation in the influential parameters included number of spans, radius of curvature, maximum span length, girder spacing, and cross-frame spacing. These parameters showed varying levels of influence on the critical bridge response.

  11. Nonlinear Stability Analysis of a Composite Girder Cable-Stayed Bridge with Three Pylons during Construction

    Directory of Open Access Journals (Sweden)

    Xiaoguang Deng

    2015-01-01

    Full Text Available Based on the nonlinear stability analysis method, the 3D nonlinear finite element model of a composite girder cable-stayed bridge with three pylons is established to research the effect of factors including geometric nonlinearity, material nonlinearity, static wind load, and unbalanced construction load on the structural stability during construction. Besides, the structural nonlinear stability in different construction schemes and the determination of temporary pier position are also studied. The nonlinear stability safety factors are calculated to demonstrate the rationality and safety of construction schemes. The results show that the nonlinear stability safety factors of this bridge during construction meet the design requirement and the minimum value occurs in the maximum double cantilever stage. Besides, the nonlinear stability of the structure in the side of edge-pylon meets the design requirement in the two construction schemes. Furthermore, the temporary pier can improve the structure stability, effectively, and the actual position is reasonable. In addition, the local buckling of steel girder occurs earlier than overall instability under load in some cable tension stages. Finally, static wind load and the unbalanced construction load should be considered in the stability analysis for the adverse impact.

  12. Double Girder Bridge Crane with Double Cycling: Scheduling Strategy and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Dandan Wang

    2014-01-01

    Full Text Available This paper introduces a novel quay crane design, double girder bridge crane (DGBC. DGBC is capable of handling containers of two adjacent bays simultaneously, avoiding crane collisions, saving travelling and reposition cost, and eventually improving terminal efficiency. This problem is formulated as a resource-constrained project scheduling with objective to minimize the maximum completion time. A two-stage heuristic algorithm is proposed in which an operating sequences on each bay is obtained by double cycling, and the integrated timetable for both bays is constructed by solving resource conflicts using the proposed minimum cost strategy. We examine effectiveness and performance of applying DGBC with double cycling. A case study is presented to illustrate how DGBC works with the two-stage method. Three extreme cases with respective conflict types are investigated to develop the performance bounds of DGBC with double cycling. The results show that DGBC can significantly improve terminal productivity, and outperforms single girder crane in both makespan and the lift operation percentage. The highest DGBC efficiency does not require maximum double cycles in two bay schedules; rather the integrated timetable for two bays is the main contribution to the DGBC performance as it yields better cooperation between two spreaders and the driver.

  13. Alignment and girder position of MSE septa in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W; CERN. Geneva. SPS and LHC Division

    2002-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS)facility, a new fast-extraction system is being constructed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single rigid support girder, pre-aligned so as to follow the trajectory of the extracted beam and optimise the available aperture. The girder has been motorised in order to optimise the local SPS aperture during setting up, so as to avoid the risk of circulating beam impact on the septum coils. In this note, we briefly present the trajectory and apertures of the beam, we describe the calculations and methods that have been used to determine the magnet position on the girder, and finally we report on the details of the girder movement and alignment.

  14. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  15. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  16. INVESTIGATION OF LAUNCHING PROCESS FOR STEEL REINFORCED CONCRETE FRAMEWORK OF LARGE BRIDGES

    Directory of Open Access Journals (Sweden)

    V. A. Grechukhin

    2017-01-01

    Full Text Available Bridges are considered as the most complicated, labour-consuming and expensive components in roadway network of the Republic of Belarus. So their construction and operation are to be carried out at high technological level. One of the modern industrial methods is a cyclic longitudinal launching of large frameworks which provide the possibility to reject usage of expensive auxiliary facilities and reduce a construction period. There are several variants of longitudinal launching according to shipping conditions and span length: without launching girder, with launching girder, with top strut-framed beam in the form of cable-stayed system, with strut-framed beam located under span. While using method for the cyclic longitudinal launching manufacturing process of span is concentrated on the shore. The main task of the investigations is to select economic, quick and technologically simple type of the cyclic longitudinal launching with minimum resource- and labour inputs. Span launching has been comparatively analyzed with temporary supports being specially constructed within the span and according to capital supports with the help of launching girder. Conclusions made on the basis of calculations for constructive elements of span according to bearing ability of element sections during launching and also during the process of reinforced concrete plate grouting and at the stage of operation have shown that span assembly with application of temporary supports does not reduce steel spread in comparison with the variant excluding them. Results of the conducted investigations have been approbated in cooperation with state enterprise “Belgiprodor” while designing a bridge across river Sozh.

  17. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  18. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  19. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  20. Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures

    Directory of Open Access Journals (Sweden)

    O. Kohnehpooshi

    Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.

  1. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  2. Analysis of post-tensioned girders structural behaviour using continuous temperature and strain monitoring

    Science.gov (United States)

    Bednarski, Ł.; Sieńko, R.; Howiacki, T.

    2017-10-01

    This article presents the possibility of using structural health monitoring system data for the analysis of structure’s operation during its life cycle. Within the specific case study it was proved, that continuous, automatic and long term monitoring of selected physical quantities such as strains and temperatures, can significantly improve the assessment of technical condition by identifying hazardous phenomena. In this work the analysis of structural behaviour of post-tensioned girders within the roofing of sport halls in Cracow, Poland, was performed based on measurement results and verified by numerical model carried out in SOFiSTiK software. Thanks to the possibility of performing calculations in real time and informing the manager of the object about abnormalities it is possible to manage the structure in effective way by, inter alia, planning the renovations or supporting decisions about snow removal.

  3. Maintained ship hull girder ultimate strength reliability considering corrosion and fatigue

    DEFF Research Database (Denmark)

    Hu, Yong; Cui, W.; Pedersen, Preben Terndrup

    2004-01-01

    The prupose of this paper is to propose a methodology to assess the time-variant ultimate strength of ship hull girder under the degradations of corrosion and fatigue. The effects of fatigue cracks on the tensile and compressive residual ultimate strength of stiffened panels and unstiffened plates...... are analyzed by an FE method. Based on FE analysis restuls, some empirical formulae are provided for effective calculation of the compressive or tensile ultimate strength of cracked or intact unstiffened plates or stiffened panels. A non-linear corrosion model is used to determine the corrosion rate of plates......, webs and flanges, respectively. The effects of inspections and repair are taken into account. A minimum net thickness rule is used to determine repair policies. A procedure is proposed to determine the maximum allowable corrosion thickness of different parts of the hull cross section. The procedure...

  4. Prediction of Fatigue Life of a Continuous Bridge Girder Based on Vehicle Induced Stress History

    Directory of Open Access Journals (Sweden)

    V.G. Rao

    2003-01-01

    Full Text Available The fatigue damage assessment of bridge components by conducting a full scale fatigue testing is often prohibitive. A need, therefore, exists to estimate the fatigue damage in bridge components by a simulation of bridge-vehicle interaction dynamics due to the action of the actual traffic. In the present paper, a systematic method has been outlined to find the fatigue damage in the continuous bridge girder based on stress range frequency histogram and fatigue strength parameters of the bridge materials. Vehicle induced time history of maximum flexural stresses has been obtained by Monte Carlo simulation process and utilized to develop the stress range frequency histogram taking into consideration of the annual traffic volume. The linear damage accumulation theory is then applied to calculate cumulative damage index and fatigue life of the bridge. Effect of the bridge span, pavement condition, increase of vehicle operating speed, weight and suspension characteristics on fatigue life of the bridge have been examined.

  5. Load Test and Model Calibration of a Horizontally Curved Steel Box-Girder Bridge

    Directory of Open Access Journals (Sweden)

    Freydoon Rezaie

    2015-12-01

    Full Text Available In this paper, full scale load test of a horizontally curved steel box-girder bridge is carried out in order to detect structural defects, which reportedly result in unwanted vibrations in nearby buildings. The bridge is tested under the passage of six heavy vehicles at different speeds, so as to determine its static and dynamic responses. A total number of one hundred and two (102 sensors are used to measure the displacements, strains, and accelerations of different points of the bridge. It is observed that the bridge vibrates at a fundamental frequency of 2.6 Hz intensively and the first mode of vibration is torsional instead of flexural. The dominant frequency of vibration of the nearby buildings is computed to be approximately 2.5Hz using rational formulas. Thus, nearness of the fundamental frequency of the bridge to those of the adjacent buildings may be causing resonance phenomenon. However, in static load tests, low ranges of strain and displacement illustrated adequate structural capacity and appropriate safety under static loads. Numerical models are created using ANSYS and SAP2000 software products, so as to design the loading test and calibrate the finite element models. The connections of the transversal elements to the girders, transversal element spacing, and changes of the stiffness values of the slabs were found to be the most influential issues in the finite elements calibration process. Finally, considering the total damage of all members, the final health score of the bridge was evaluated as 89% indicating that the bridge is in a very good situation.

  6. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  7. Fire Resistance of Geopolymer Concretes

    Science.gov (United States)

    2010-03-21

    and general appearance to Portland cement concrete. Geopolymer concrete has been proposed as an alternative to Portland cement concrete in...1 Project report – Grant FA23860814096, "Fire resistance of geopolymer concretes" – J. Provis, University of Melbourne 1. Background and...experimental program This project provided funding for us to carry out fire testing of geopolymer concrete specimens and associated laboratory

  8. Clover, Red (Trifolium pretense)

    Science.gov (United States)

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover, an important ...

  9. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  10. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  11. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures

    Science.gov (United States)

    Zhang, Xun; Li, Xiaozhen; Hao, Hong; Wang, Dangxiong; Li, Yadong

    2016-04-01

    A side effect of high-speed railway and urban rail transit systems is the associated vibration and noise. Since the use of concrete viaducts is predominant in railway construction due to scarce land resources, low-frequency (20-200 Hz) structure-radiated noise from concrete bridges is a principal concern. Although it is the most commonly used bridge type, the mechanism of noise emission from box-shaped bridge girders when subjected to impact forces from moving trains, which sounds like beating a drum, has not been well studied. In this study, a field measurement was first made on a simply-supported box-shaped bridge to record the acceleration of the slabs and the associated sound pressures induced by running trains. These data indicated that a significant beat-wave noise occurred in the box-shaped cavity when the train speed was around 340 km/h, which arose from the interference between two sound waves of 75.0 Hz and 78.8 Hz. The noise leakage from the bridge expansion joint was serious and resulted in obvious noise pollution near the bridge once the beat-wave noise was generated in the cavity. The dominant frequency of the interior noise at 75.0 Hz was confirmed from the spectrum of the data and the modal analysis results, and originated from the peak vibration of the top slab due to resonance and the first-order vertical acoustic mode, which led to cavity resonance, amplifying the corresponding noise. The three-dimensional acoustic modes and local vibration modes of the slab were calculated by using the finite element method. A simplified vehicle-track-bridge coupling vibration model was then developed to calculate the wheel-rail interaction force in a frequency range of 20-200 Hz. Numerical simulations using the boundary element method confirmed the cavity resonance effect and the numerical results agreed well with the data. Based on the calibrated numerical model, three noise reduction measures, i.e., adding a horizontal baffle in the interior cavity, narrowing

  12. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  13. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2013-01-01

    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  14. Full scale test of a SSP 34m box girder 1. Data report; Reinforced glass fiber/expoxy used in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Find M.; Branner, K.; Nielsen, Per H. (and others)

    2008-03-15

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between Risoe DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Moelholt Jensen's PhD study. This report contains the complete test data for the final test, in which the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds of measuring equipment have been used during these tests: acoustic emission, 330 strain gauges, 24 mechanical displacement devices and two optical deformation measuring systems. The mechanical displacement devices measured both global (absolute) and local (relative) deflection and the optical systems measured surface deformation. A prediction was made on the location of the failure of the girder. At this location the majority of the measuring equipment was concentrated. The prediction was proved to be correct and valuable information of the behaviour of the box girder prior to failure was obtained. The experimental investigation consisted of the following load configurations: -Flapwise bending -Torsion Ultrasonic scanning of the box girder was performed before, during and after the test the box girder. This was done to investigate whether the girder was damaged by the load or imperfection (productions defects) growth. (au)

  15. Radiographic testing of concrete

    International Nuclear Information System (INIS)

    Porter, James F.

    1997-01-01

    The increase in construction activity in the Philippines, reinforced concrete building is still a favorite among designers, because it is much cheaper to build and it requires qualified welders, etc. and extensive nondestructive testing and inspection of metals, welds and castings. Of all the techniques radiography is widely used for concrete

  16. concrete5 Beginner's Guide

    CERN Document Server

    Laubacher, Remo

    2011-01-01

    This book is part of Packt's Beginner's Guide series. You will be guided through the set up of a Concrete5 site with step-by-step practical examples. This book is ideal for developers who would like to build their first site with Concrete5. Some k

  17. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  18. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  19. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Going back in the memory pipeline, it was M F Kaplan1 (in 1961) who tried to obtain the fracture toughness of concrete. It was observed ... of cracks. The next question is how to bring the size effect into codes of practice on the design of reinforced concrete structures, since large structures like dams, nuclear reactors, very tall.

  20. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue of S¯adhan¯a is rightly dedicated to the fracture mechanics of concrete. In particular, the size effect is highlighted. As appropriately pointed out in the first inter- national conference on fracture mechanics of concrete structures, FraMCos-I, organized by Z P Ba˘zant, at Breckenridge, Colorado in 1992, ...

  1. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; Yachmenev, V.

    1994-01-01

    Concrete structures which have been contaminated with uranium and other radioisotopes may be decontaminated using in-situ electrokinetic remediation. By placing an electrode cell on the concrete surface and using the concrete's rebar, a ground rod, or another surface cell as the counter electrode, the radioisotopes may be migrated from the concrete into this cell. The process is highly dependent upon the chemical parameters of the species involved; namely, the concrete, the contaminants, and the solubilizers used to mobilize the contaminants. In a preliminary study conducted at the K-25 Site of the Oak Ridge National Labs, an estimated removal of >40 percent of uranium has been observed for a short duration run. This removal occurred using traditional uranium solubilizers in contact with the contaminated surface

  2. Increased of the capacity integral bridge with reinforced concrete beams for single span

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    Sinapeul Bridge that was built in 2012 in Sumedang is a bridge type using a full integral system. The prototype of integral bridge with reinforced concrete girder and single span 20 meters until this year had decreased capacity. The bridge was conducted monitoring of strain that occurs in the abutment in 2014. Monitoring results show that based on the data recorded, the maximum strain occurs at the abutment on the location of the integration of the girder of 10.59 x 10-6 tensile stress of 0.25 MPa (smaller than 150 x 10-6) with 3 MPa tensile stress as limit the occurrence of cracks in concrete. Sinapeul bridge abutment with integral system is still in the intact condition. Deflection of the bridge at the time of load test is 1.31 mm. But this time the bridge has decreased exceeded permission deflection (deflection occurred by 40 mm). Besides that, the slab also suffered destruction. One cause of the destruction of the bridge slab is the load factor. It is necessary for required effort to increase the capacity of the integral bridge with retrofitting. Retrofitting method also aims to restore the capacity of the bridge structure due to deterioration. Retrofitting can be done by shortening of the span or using Fibre Reinforced Polymer (FRC). Based on the results obtained by analysis of that method of retrofitting with Fibre Reinforced Polymer (FRC) is more simple and effective. Retrofitting with FRP can increase the capacity of the shear and bending moment becomes 41% of the existing bridge. Retrofitting with FRP method does not change the integral system on the bridge Sinapeul become conventional bridges.

  3. Concrete sample point: 304 Concretion Facility

    International Nuclear Information System (INIS)

    Rollison, M.D.

    1995-01-01

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis

  4. Concrete sample point: 304 Concretion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  5. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-01-01

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers' health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE's Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building's concrete floors included ThO 2 and thorium oxalate. The nitric acid was found to facilitate Th extraction

  6. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  7. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  8. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  9. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  10. Magnetic-based NDE of steel in prestressed and post-tensioned concrete bridges

    Science.gov (United States)

    Ghorbanpoor, Al

    1998-03-01

    This paper addresses a study, funded by the Federal Highway Administration (FHWA), the U.S. Department of Transportation (DOT), that is currently underway at the University of Wisconsin-Milwaukee. The objective of the study is to develop an automated non-destructive testing system based on the magnetic flux leakage principle that would allow assessment of the condition of reinforcing and prestressing steels in concrete bridge components. Corrosion or cracking of steel within concrete members will be detected and evaluated. The system will be used as a self clamping and moving sensing device that can be installed on a concrete girder. Data from the sensing device is transmitted via a wireless communication system to data recording/analysis equipment on the ground. The sensing device may also be operated manually to allow inspection of local areas such as the end bearing or cable anchorage locations in cable bridges. Through performing a correlation analysis of recorded data, an assessment of the condition of the member under test is made. Reference data base for the correlation analysis is established through laboratory and field testing with known conditions.

  11. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  12. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  13. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  14. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  15. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  16. Static design of steel-concrete lining for traffic tunnels

    Science.gov (United States)

    Vojtasik, Karel; Mohyla, Marek; Hrubesova, Eva

    2017-09-01

    Article summarizes the results of research focused on the structural design of traffic tunnel linings that have been achieved in the framework of a research project TE01020168 that supports The Technology Agency of Czech Republic. This research aim is to find and develop a process for design structure parameters of tunnel linings. These are now mostly build up by a shotcrete technology. The shotcrete is commonly endorsed either with steel girders or steel fibres. Since the installation a lining structure is loaded while strength and deformational parameters of shotcrete start to rise till the setting time elapses. That’s reason why conventional approaches of reinforced concrete are not suitable. As well as there are other circumstances to step in shown in this article. Problem is solved by 3D analysis using numerical model that takes into account all the significant features of a tunnel lining construction process inclusive the interaction between lining structure with rock massive. Analysis output is a view into development of stress-strain state in respective construction parts of tunnel lining the whole structure around, including impact on stability of rock massive. The proposed method comprises all features involved in tunnel fabrication including geotechnics and construction technologies.

  17. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  18. Effects of Common Structural Rules on hull-girder reliability of an Aframax oil tanker

    International Nuclear Information System (INIS)

    Parunov, Josko; Guedes Soares, C.

    2008-01-01

    This paper aims at quantifying the changes in notional reliability levels that result from redesigning an existing Aframax tanker to comply with the Common Structural Rules (CSR) for double-hull oil tankers. The probability of structural failure is calculated using the first-order reliability method. The evaluation of the wave-induced load effects that occur during long-term operation of the ship in the seaway is carried out in accordance with the International Association of Classification Societies (IACS)-recommended procedure, while transfer functions are calculated using the sink-source 3D linear method. The still-water loads are defined on the basis of a statistical analysis of loading conditions from the loading manual. The ultimate collapse bending moment of the midship cross section, which is used as the basis for the reliability formulation, is evaluated by progressive collapse analysis and by a single-step procedure according to CSR. The reliability assessment is performed for 'as-built' and 'corroded' states of the existing ship and a reinforced ship complying with CSR. It is shown that the hull-girder failure probability of an Aframax tanker is reduced several times due to the reinforcements according to CSR. Sensitivity analysis and a parametric study are performed to investigate the variability of results with the change of parameters of pertinent random variables within their plausible ranges. Finally, differences between load combination approaches by Ferry-Borges and Castanheta method and Turkstra's rule are investigated

  19. COMPARATIVE ANALYSIS OF MODELS OF RAILWAY LOADS C14 AND LM71 FOR GIRDER BRIDGES

    Directory of Open Access Journals (Sweden)

    V. Artomov

    2014-01-01

    Full Text Available Purpose. The article analyzes the railway load LM71 for the purpose of its application in national design projects of the railway girder bridges. Purpose of the article is harmonization of national design codes of enginnering structures with the European standards (Eurocodes. Methodology. Analytical calculation methods (influence lines, the matrix analysis and computer programming are used in the article. Findings. Deflected mode parameters of the railway bridges under the influence of loads C14 and LM71 have certain differences. The extent of these differences depends on length, material of drift structures and also on dynamic coefficients. These dependences should be considered in national design codes and in harmonized with Eurocodes standards. In the further researches relationships between load C14 and models SW, HSLM taking into account various dynamic effects and trains speedis planned to determine. Originality. The presented results, in particular deflected mode parameters (including loads with dynamic coefficients, obtained for the first time. Practical value. Results of research are used in National Annex to the National Standard of Ukraine NSTU-N B EN 1991-2:2010. Eurocode 1. Actions on structures. Part 2. Traffic loads on bridges (EN 1991-2:2003.

  20. A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2014-01-01

    Full Text Available Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.

  1. Safety Analysis of the Patch Load Resistance of Plate Girders: Influence of Model Error and Variability

    Directory of Open Access Journals (Sweden)

    Farzad Shahabian

    2013-12-01

    Full Text Available This study aims to undertake a statistical study to evaluate the accuracy of nine models that have been previously proposed for estimating the ultimate resistance of plate girders subjected to patch loading. For each model, mean errors and standard errors, as well as the probability of underestimating or overestimating patch load resistance, are estimated and the resultant values are compared one to another. Prior to that, the models are initially calibrated in order to improve interaction formulae using an experimental data set collected from the literature. The models are then analyzed by computing design factors associated with a target risk level (probability of exceedance. These models are compared one to another considering uncertainties existed in material and geometrical properties. The Monte Carlo simulation method is used to generate random variables. The statistical parameters of the calibrated models are calculated for various coefficients of variations regardless of their correlation with the random resistance variables. These probabilistic results are very useful for evaluating the stochastic sensitivity of the calibrated models.

  2. INORGANIC CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Alisson Clay Rios Silva

    2014-07-01

    Full Text Available In this work, a Geopolymeric Cement Concrete (GCC was developed through adequate portions of geopolymer components. Its characteristics were compared with Portland Cement Concrete (PCC, through of the establishment of some parameters of design, as consumption of binders, water/aggregates ratio and mortar content. The concrete mechanical performance was evaluated with emphasis to the fatigue behavior. Were tested the effects of different tensile strength maximum (increasing and decreasing. The results of fatigue tests had shown that GCC presents a better performance when compared to PCC. Its fatigue strength was 15% higher than that of PCC, when 70% of rupture tension of the concrete in static bending (SR, was applied. Tensions of about 80% SR resulted in 96% of increase, when compared to GCC. The SEM microstructural analysis showed that the GCC has a matrix/aggregate bonding very strong, when compared to PCC, probably due to the massive nature of the geopolymeric matrix.

  3. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  4. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  5. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  6. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  7. Concrete decontamination scoping tests

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  8. Bituminous concrete overlay studies.

    Science.gov (United States)

    1971-01-01

    Deflection tests conducted on eight sections of primary highway, both before and after asphaltic concrete resurfacings, were analyzed as a study of the utility of such tests in the design of overlays. The application of tentative traffic and allowabl...

  9. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  10. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  11. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  12. Shear Resistance between Concrete-Concrete Surfaces

    Science.gov (United States)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  13. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  14. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  15. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  16. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  17. An Experimental Study on Concrete Flat Slabs Prestressed with Carbon Fibre Reinforced Polymer Sheets

    Directory of Open Access Journals (Sweden)

    Yin Shen

    2015-01-01

    Full Text Available Carbon fibre reinforced polymer (CFRP is currently used to reinforce buildings in civil engineering in the common forms of sheets, while the utilization efficiency of a CFRP materials greatly decreased when the CFRP material is directly bonded to the structure because of the lack of the effect of the exertion of a prestress. A paper spool-inspired anchoring method is proposed to overcome the shearing problem in the anchoring system through the friction between layers. Anchoring and jack-up tensioning devices for CFRP sheets are also designed and produced. A prestress is successfully applied to single and multiple CFRP sheets (80% tensioning strength is achieved, thus verifying the tensioning effect of the prestress. Based on these results, prestressed concrete flat slabs were designed with pretensioned CFRP sheets. The corresponding mechanical properties of the concrete flat slabs are tested to verify the feasibility of using CFRP sheets to apply a prestress. The results show that the uniformity of the fibre stress during the tensioning of the CFRP sheet is the key to the success of the application of the prestress.

  18. New generation concretes including reactive powder concretes

    Directory of Open Access Journals (Sweden)

    Stefania Grzeszczyk

    2015-09-01

    Full Text Available Based on a broad literature review, this paper presents characteristics of new generation composites on the basis of cements which are applied in engineering structures and in rehabilitation of structures. The role of cement, microfillers, superplasticizers and fibers in the above stated composites i.e. factors which allow for the maximum packing of particles in the cement matrix and a minimum pore volume, and the increase in composite bending strength, have been discussed. Special attention was paid to Reactive Powder Concrete in which coarse aggregate was replaced by ground quartz and sand. Such composites contain active microfillers and the applied new-generation superplasticizers allow us to decrease the water-cement ratio in the composite up to 0.2. Whereas, steel fibre additive allows us to significantly improve the bending strength.The paper presents the properties of the excellent Ductal — a composite from Reactive Powder Concrete, which at compressive strength from 180 to 230 MPa achieves the tensile strength of 30 to 50 MPa. Its application allows us to create slim profiles and tall light and slender, and simultaneously durable and corrosion-resistant structural elements of considerable span. This paper gives a few examples of Ductal application in practice.[b]Keywords[/b]: civil engineering, composite materials, reactive powder concrete

  19. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  20. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  1. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  2. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  3. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  4. Concrete Cover in Thin-Wall Reinforced Concrete Floating Piers

    Science.gov (United States)

    1976-07-01

    application of a waterproof material to the exterior surface of the concrete vessel, before immersion in seawater or brine solutions, will prevent...introduction to prestressed concrete: Volume 1. Concrete Publications Ltd., London. pp. 343-344. 17. Chapman, C. M. (1911). The effect of electrolysis on...of concrete in brine storage tanks. Proc. ACT, 44:141-147; discussion, 44:148-1 thru 148-3. 35. Kuenning, W. H. et al. (1966). Guide for the

  5. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  6. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  7. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  8. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  9. Structural Materials: 95. Concrete

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  10. Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors.

    Science.gov (United States)

    Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo

    2017-08-10

    The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams.

  11. Improved concretes for corrosion resistance

    Science.gov (United States)

    1997-07-01

    The deterioration of various reinforced concrete bridge components containing conventional black steel reinforcement is the most important problem facing U.S. highway agencies. A major cause of this concrete deterioration (cracking, delamination, and...

  12. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  13. Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge

    Directory of Open Access Journals (Sweden)

    Lipeng An

    2016-07-01

    Full Text Available To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the “set-in-right-position” rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long-span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the “general code for design of highway bridges and culverts (China”. The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle–bridge system.

  14. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  15. Concrete produced with recycled aggregates

    OpenAIRE

    Tenório, J. J. L.; Gomes, P. C. C.; Rodrigues, C. C.; Alencar, T. F. F. de

    2012-01-01

    This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were d...

  16. TEXTILE TECHNOLOGIES IN CONCRETE ENVIRONMENTS."

    OpenAIRE

    Morrow, Ruth; Belford, Patricia

    2007-01-01

    Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.Girli Concrete brings together concrete and textile technologies, testing ideas ofconcrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concre...

  17. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  18. Structural Concrete, Science into Practice

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1987-01-01

    There is a need for a more rational and unified approach to all types of concrete structure, reinforced of prestressed. The first chapter explains in a historical review why the approach of reinforced concrete and that of prestressed concrete have hitherto been very different. In outlining the

  19. From concrete repair to concrete conservation: How to preserve the heritage values of historic concrete

    NARCIS (Netherlands)

    Heinemann, H.A.; Zijlstra, H.; Hees, R.P.J. van; Nijland, T.G.

    2012-01-01

    The conservation of historic concrete is an increasing task, challenging both concrete repair specialists and conservation specialists. In practice, too often repair strategies are followed where conservation strategies would have been necessary. The application of repair techniques poses two

  20. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  1. Curing of Concrete

    African Journals Online (AJOL)

    surface coats, weak concrete blocks, leaky conduits and pipes illustrate defects frequently caused by improper curing .... Furthermore, water lost internally by self desiccation has to be replaced by water from outside, i.e. ... Other methods for preventing loss of moisture involve the use of liquid seal coat, or tight covers such as ...

  2. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    ting. It is used in industrial floorings, ship decks, railway passenger coach floorings, hospital floors, ammunition factory floors, missile silos and underground armament factories and bunkers. Recently, concrete of high compres- sive and tensile strength prepared with magnesium oxy- chloride cement and recycled rubber ...

  3. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  4. Forterra Concrete Products, Inc.

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St

  5. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  6. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  7. Teaching concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    The teaching of concrete structures has been revised and a number of new approaches have been developed, implemented and evaluated. Inductive teaching, E-learning and “patches” have been found to be improvements and may be an inspiration and help for others development of the teaching and learning...

  8. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  9. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  10. Electrical pulses protect concrete

    NARCIS (Netherlands)

    Koleva, D.; Fraaij, A.; Van Kasteren, J.

    2006-01-01

    Even concrete is not as hard as it looks. Sea water, salt on icy roads, and indirectly even carbon dioxide from the air can corrode the steel of the reinforcing bars and so threaten the strength and integrity of a bridge pier, jetty, or viaduct. Dessi Koleva, a chemical engineer from Bulgaria, spent

  11. Structural concrete and sustainability

    CSIR Research Space (South Africa)

    Grieve, G

    2010-04-01

    Full Text Available of the concrete materials to be used on a particular project and this chapter gives guidance to the design and construction teams on how to make these decisions. The designer should also give consideration to passive design factors, as the most significant...

  12. Concrete. Connecting Creative Technologists

    NARCIS (Netherlands)

    Bakker, T.P.; Huijboom, N.M.; Koops, R.; Kotterink, B.; Nieuwenhuis, O.A.; Seiffert, L.; Siem, R.; Zee, F.A. van der

    2015-01-01

    Kruisbestuiving tussen de creatieve en high-tech sector biedt enorme kansen, bijvoorbeeld op het gebied van Smart Industry. Desondanks blijven deze kansen in de praktijk vaak onderbenut. In het project 'CONCRETE' heeft TNO op basis van een aantal case studies onderzocht welke succesfactoren tot een

  13. Properties of high-workability concrete with recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Safiuddin

    2011-01-01

    Full Text Available This study presents the effects of recycled concrete aggregate (RCA on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results revealed that RCA significantly decreased the workability of concrete. RCA also affected the compressive strength, modulus of elasticity, and permeable voids of concrete. At the age of 28 days, the concrete with 100% RCA provided 12.2% lower compressive strength and 17.7% lesser modulus of elasticity than the control concrete. Also, 100% RCA increased the permeable voids of 28-day old concrete by 8.2%. However, no significant negative impact of RCA was observed on the flexural and splitting tensile strengths of concrete.

  14. Pre-wetted lightweight coarse aggregate reduces long-term deformations of high-performance lightweight concrete[ACI SP-234-41

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M. [Chile Catholic Pontifica Univ. (Chile). School of Civil Engineering]|[Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Kurtis, K.E.; Kahn, L.F. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2006-07-01

    High performance lightweight concrete (HPLC) refers to concretes that have the characteristics of both high performance concrete and structural lightweight concrete. HPLC has advantages from the synergy between its two predecessors. The advantages include improvement in elastic compatibility between aggregate and cementitious matrix which leads to reduced microcracking in the interface zone; improvement in cement hydration due to internal curing; and reduction in autogenous shrinkage of the cement matrix. Although extensive studies on HPLC durability, compressive strength and shrinkage have been carried out, the creep of HPLC and the influence of internal curing on creep of HPLC remain unknown. For that reason, this study focused on creep and shrinkage results and analysis. The use of HPLC in prestressed bridge girders can extend the length of the bridge girders by 15 to 20 per cent. Long-term creep and shrinkage deformations are of particular interest in understanding the implications of using lightweight aggregate on prestressing losses. In this study, creep was measured on 45 specimens stored at 50 per cent relative humidity and 23 degrees C for a period of 120 days. Fifteen cylindrical specimens were cast from each of 3 mixtures under study. In addition, 30 specimens were used as companion shrinkage specimens. The study compared creep and shrinkage behaviour of various specimens, as well as creep and shrinkage behaviour with loading and drying starting at the age of 24 hours and at 28 days. The total time dependent deformations with loading and drying starting at the age of 24 hours and at 28 days were also examined. Preliminary results on the reported concrete mixtures indicate lower long-term deformation for HPLC compared to high performance concrete. The results confirm observations in literature that the water initially stored in the aggregate is released over time and reduces the long-term duration of the HPLC. It was noted that the creep and shrinkage of

  15. Flexural Strength Of Prestressed Concrete Beams With Openings And Strengthened With CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Dr. Mustafa B. Dawood

    2015-06-01

    Full Text Available Abstract This paper presents an experimental investigation of flexural strength of pretensioned prestressed concrete beams with openings and strengthened with CFRP sheets tested as simply supported span subjected under two-point loading. The experimental work includes testing of nine prestressed concrete beams specimens with dimensions effective length 1800mm depth 300mm width 130mm two of which were without openings as a control beams one without and the other with strengthening by CFRP three were with openings and the remaining four with openings and strengthened with CFRP sheets. The opening was made at square shape 100100 mm in flexure zone at mid span of beam. Several design parameters were varied such as opening width opening depth and strengthening of openings of beams by CFRP sheets at compression and tension zone. Experimental results showed that the presence of square opening with ratio hH 0.333 and rectangular opening with ratio hH from 0.333-0.5 at mid span of beams decreased the ultimate load about 5.5 and 5.5-33.1 respectively when compared with beam without openings control beam. The externally strengthened prestressed concrete beams with bonded CFRP sheets showed a significant increase at the ultimate load this increase was about 10.9-28.8 for flexure beams when compared with the unstrengthened beams. Moreover the load-deflection curves for flexure beams strengthened with CFRP sheets were stiffer than the unstrengthened beams. Therefore this results gave a good indication about using CFRP sheets in improvement of deflection.

  16. Early Property Development in Concrete

    DEFF Research Database (Denmark)

    Normann, Gitte; Munch-Petersen, Christian

    The Freiesleben Maturity function is widely used for planning of execution. We tested if for concrete with and without fly ash. The test showed surprisingly that the maturity function in general is not valid. We found that curing at high temperature gave a significant decrease in strength. Fly ash...... appears to reduce this decrease somewhat. We also examined the resistance against chloride penetration for the different concrete types. The resistance was reduced at high temperatures for concrete without fly ash. For concrete with fly ash, it was the opposite; concrete with fly ash obtained higher...

  17. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  18. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  19. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    Science.gov (United States)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  20. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    International Nuclear Information System (INIS)

    Abdel-Jaber, H; Glisic, B

    2015-01-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper. (paper)

  1. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  2. An historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.

    1986-03-01

    The requirement that concrete in nuclear waste repositories be stable physically and chemically for hundreds, if not thousands, of years has initiated studies of ancient and old concretes. The history of cement and concrete is described. The oldest know concrete, from Yugoslavia, is ca. 7,500 years old. Concrete was used in many ancient civilisations, including those of Egypt, Greece and Rome. Ancient concretes were usually based upon lime, but sometimes gypsum was used. Pure lime concretes hardened by atomospheric carbonation but the Ancients, in particular the Romans, also employed hydraulic limes and discovered pozzolanas to make superior concretes which, upon hardening, contained complex cementitious hydrates including calcium-silicate-hydrate (CSH), the principal binding element in Portland cement concrete. Portland cement was not invented until 1824 or later and consists principally of calcium silicates formed by clinkerisation of a mixture of limestone and clay in carefully measured proportions. The cement sets hydraulically to form, principally, calcium hydroxide and CSH, the latter being an amorphous or semi-amorphous substance of variable composition. The published literature relating to the analysis of old and ancient cements and concretes is reviewed. A suite of samples spanning the history of concrete has been obtained. A variety of physical and chemical techniques have been employed to characterise these samples. (author)

  3. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Since analytical methods are very time consuming different analytical models have been developed. Three methods for plain concrete are presented, where one of the methods is developed by the author. The method is based on three different fracture models. Also two models applicable for lightly reinforced...... with a description of the different types of size effects. Three examples which discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. Finally some brittleness numbers are defined. Chapter 3 In chapter 3 the most well-known numerical methods which use the fictitious crack...... to describe fracture in concrete are presented. Two of the methods are combined into a power method which is stable for all brittleness numbers and which is able of calculating the entire load-displacement curve even for very ductile beams. This method is used extensively in the rest of the thesis. Chapter 4...

  4. Concrete lunar base investigation

    Science.gov (United States)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  5. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  6. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  7. Hypervelocity impact of concrete

    International Nuclear Information System (INIS)

    Watson, A.J.; Anderson, W.F.; Archer, B.

    1982-01-01

    Blocks of concrete and various other materials were impacted by high speed copper jets at the centre of one face, the resulting transient phenomena were measured using ultra high speed photography and various electrical signal transducers. Measurements were made of the jet velocity, penetration rate, crack velocity and initiation time, and strain pulse propagation. Post test measurements were made using electron microscopy, ultra sonics and stereoscopic photography. (orig.) [de

  8. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  9. Sodium-concrete reactions

    International Nuclear Information System (INIS)

    Gadd, P.G.

    1982-09-01

    Reaction products of all the major constituents of commercial concrete with liquid sodium have been identified using X-Ray Powder Diffraction. Eight different aggregate materials were chosen to represent the main rock classes available and Ordinary Portland Cement was used throughout. A Differential Thermal Analysis apparatus which enabled continuous stirring of the reactants was designed to improve contact between the powdered concrete components and the liquid sodium. Heats of reaction were calculated from peak areas, the apparatus having been calibrated using reactions of sodium with simple binary oxides whose heats of reaction were known. The heat evolution from aggregates was rationalised on the basis of their mineralogical composition, thus providing a means of choosing an optimum aggregate for use in the concrete of a LMFBR. The reaction of SiO 2 with liquid sodium was shown to depend on the oxygen concentration of the sodium. Reaction products are identified. The reaction of Al 2 O 3 with sodium has been shown also to depend on the oxygen concentration. Reaction products are identified. The evolution of hydrogen during a sodium-cement reaction has been studied using an electrochemical hydrogen meter and the penetration of the liquid metal into cement blocks was also investigated. (author)

  10. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, evaluation of a precast concrete bridge, Madison County bridge.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed ...

  11. Finite element model updating of multi-span steel-arch-steel-girder bridges based on ambient vibrations

    Science.gov (United States)

    Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min

    2017-04-01

    The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.

  12. Operational features of decorative concrete

    Science.gov (United States)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  13. Concrete workability and fibre content

    OpenAIRE

    Vikan, Hedda

    2007-01-01

    Research report Parameters influencing the workability of fibre concrete and maximum fibre content are given in this state of the art report along with the range of fibre types available on today’s market. The study reveales that new placing techniques and production methods are crucial in order to increase fibre content and concrete strength. Achieving the same mechanical properties as traditionally reinforced concrete will probably also demand changes of the matrix. Finally, reco...

  14. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  15. Structural assessment of concrete bridges

    OpenAIRE

    Plos, Mario; Gylltoft, Kent; Lundgren, Karin; Cervenka, Jan; Herwig, Andrin; Brühwiler, Eugen; Thelandersson, Sven; Elfgren, Lennart; Rosell, Ebbe

    2008-01-01

    The paper summarizes the work on concrete bridges performed in the EU project Sustainable Bridges. The work provides enhanced assessment methods that are able to provide higher load-carrying capacities and longer fatigue lives for exixixting concrete railway bridges. The work is also presented in a Guideleine available at http://www.sustainablebridges.net/ The paper summarizes the work on concrete bridges performed in the EU project Sustainable Bridges. The work provides enhanced assessmen...

  16. Flexible formwork for concrete structures

    OpenAIRE

    Orr, John

    2012-01-01

    Concrete, our most widely used construction material, is a fluid that offers the opportunity to economically create structures of almost any geometry. Yet this unique fluidity is seldom capitalised on, with concrete instead being cast into rigid prismatic moulds to create high material use structures with large carbon footprints. Our rate of concrete consumption means that cement manufacture alone is estimated to account for some 5% of global Carbon Dioxide emissions.This dissertation shows t...

  17. Properties of Low Strength Concrete made with Recycled Concrete ...

    African Journals Online (AJOL)

    Conventional concrete aggregate consists of sand and various sizes of stones. In recent years, there has been a growing interest in substituting conventional aggregates with recycled materials. The present investigation has been carried out to study the effect of fly ash on the mechanical properties of low strength concrete ...

  18. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  19. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  20. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  1. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  2. Estimation of Structure-Borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-Concrete Deck

    Science.gov (United States)

    Watanabe, Tsutomu; Sogabe, Masamichi; Asanuma, Kiyoshi; Wakui, Hajime

    A number of steel railway bridges have been constructed in Japan. Thin steel members used for the bridges easily tend to vibrate and generate structure-borne noise. Accordingly, the number of constructions of steel railway bridges tends to decrease in the urban areas from a viewpoint of environmental preservation. Then, as a countermeasure against structure-borne noise generated from steel railway bridges, we have developed a new type of the steel railway bridge equipped with a floating-ladder track and a floating reinforced-concrete (RC) deck. As a result of train-running experiment, it became apparent that the new steel railway bridge installed by double floating system has reduced a vibration velocity level by 10.5 dB(A) at main girder web as compared with a steel railway bridge installed by directly fastened track. This reduction effect was achieved by the ladder track and RC deck supported by resilient materials.

  3. The concrete canister program

    International Nuclear Information System (INIS)

    Ohta, M.M.

    1978-02-01

    In the spring of 1974, WNRE began development and demonstration of a dry storage concept, called the concrete canister, as a possible alternative to storage of irradiated CANDU fuel in water pools. The canister is a thick-walled concrete monolith containing baskets of fuel in the dry state. The decay heat from the fuel is dissipated to the environment by natural heat transfer. Four canisters were designed and constructed. Two canisters containing electric heaters have been subjected to heat loads of 2.5 times the design, ramp heat-load cycling, and simulated weathering tests. The other two canisters were loaded with irradiated fuel, one containing fuel bundles of uniform decay heat and the other containing bundles of non-uniform decay heat in a non-symmetrical radial and axial array. The collected data were used to verify the analytical tools for prediction of effectiveness of heat transfer and radiation shielding and to verify the design of the basket and canisters. The demonstration canisters have shown that this concept is a viable alternative to water pools for the storage of irradiated CANDU fuel. (author)

  4. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.

    1995-01-01

    The US Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. The primary objective was to demonstrate the feasibility of this approach as a means to achieve ''release levels'' which could be consistent with unrestricted use of a decontaminated building. The secondary objectives were: To establish process parameters; to quantify the economics; to ascertain the ALARA considerations; and to evaluate wasteform and waste volume. The work carried out to this point has achieved promising results to the extent that ISOTRON reg-sign has been authorized to expand the planned activity to include the fabrication of a prototype version of a commercial device

  5. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  6. The Concrete and Pavement Challenge

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  7. Urban Experiments and Concrete Utopias

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2009-01-01

    The paper explores how concrete urban experiments can challenge the pecuniary version of the experience city and stimulate a locally rooted and democratic version of an experience based city using heterotopias and concrete utopias as the link between top down planning and bottom up experiments...

  8. Radiographic testing in concrete structures

    International Nuclear Information System (INIS)

    Oliveira, D. de

    1987-01-01

    The radiographic testing done in concrete structures is used to analyse the homogeneity, position and corrosion of armatures and to detect discontinuity in the concrete such as: gaps, cracks and segregations. This work develops a Image quality Indicator (IQI) with an adequated sensibility to detect discontinuites based on BS4408 norm. (E.G.) [pt

  9. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  10. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  11. The steel–concrete interface

    DEFF Research Database (Denmark)

    Angst, Ueli M.; Geiker, Mette Rica; Michel, Alexander

    2017-01-01

    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics...

  12. Fatigue of Concrete Armour Units

    DEFF Research Database (Denmark)

    Sørensen, N. B.; Burcharth, H. F.; Liu, Z.

    1995-01-01

    In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed.......In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed....

  13. Urban heritage, building maintenance : Concrete

    NARCIS (Netherlands)

    Verhoef, L.G.W.

    1999-01-01

    Concrete as a conglomerate of sand, stone and a binder, is a very old material indeed. In the Roman period earth from Puozzoli, together with lime and water could bind the sand and the stones to form a conglomerate that has an affmity to our modem concrete. Later, in the more northem areas of

  14. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  15. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  16. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats.

    Science.gov (United States)

    Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S

    2016-08-01

    The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifying the intracellular brain ions homeostasis, cholinergic dysfunction and oxidative damage. The presence of Ginkgo biloba and/orTrifolium pretense with sodium arsenite minimized its neurological damages. It was pronounced that using Ginkgo biloba and Trifolium pretense in combination was more effective as protective agents compared to use eachone of them alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  18. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  19. Properties of concretes produced with waste concrete aggregate

    International Nuclear Information System (INIS)

    Topcu, Ilker Bekir; Sengel, Selim

    2004-01-01

    An environmentally friendly approach to the disposal of waste materials, a difficult issue to cope with in today's world, would only be possible through a useful recycling process. For this reason, we suggest that clearing the debris from destroyed buildings in such a way as to obtain waste concrete aggregates (WCA) to be reused in concrete production could well be a partial solution to environmental pollution. For this study, the physical and mechanical properties along with their freeze-thaw durability of concrete produced with WCAs were investigated and test results presented. While experimenting with fresh and hardened concrete, mixtures containing recycled concrete aggregates in amounts of 30%, 50%, 70%, and 100% were prepared. Afterward, these mixtures underwent freeze-thaw cycles. As a result, we found out that C16-quality concrete could be produced using less then 30% C14-quality WCA. Moreover, it was observed that the unit weight, workability, and durability of the concretes produced through WCA decreased in inverse proportion to their endurance for freeze-thaw cycle

  20. From concrete repair to concrete conservation: how to preserve the heritage values of historic concrete

    NARCIS (Netherlands)

    Nijland, T.G.; Hees, R.P.J. van; Heinemann, H.A.; Zijlstra, H.

    2011-01-01

    ABSTRACT: The conservation of historic concrete is an increasing task, challenging both concrete repair specialists and conservation specialists. In practice, too often repair strategies are followed where conserva-tion strategies would have been necessary. The application of repair techniques poses

  1. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2007-06-01

    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  2. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  3. Simulating the Effects of Surface Roughness on Reinforced Concrete T Beam Bridge under Single and Multiple Vehicles

    Directory of Open Access Journals (Sweden)

    Rahul Kalyankar

    2016-01-01

    Full Text Available This research focuses on the application of the spatial system of finite element modeling for the vehicle-bridge interaction on reinforced concrete US Girder Bridge in order to obtain the effect of surface roughness. Single vehicle and multiple vehicles on reinforced concrete T beam bridge were studied with variable surface roughness profiles. The effects of six different surface roughness profiles (very good, good, measured, average, poor, and very poor were investigated for vehicle-bridge interaction. The values of the Dynamic Amplification Factor (DAF were obtained for single and multiple vehicles on T Beam Bridge for different surface roughness profiles, along with the distances between the axles of heavy vehicle. It was observed that when the bridge has very good, good, measured, and average surface roughness, the DAF values for the single vehicle over the bridge were observed to be within acceptable limits specified by AASHTO. However, for the bridge with multiple vehicles only very good and measured surface roughness profiles showed a DAF and vehicle axle distances within the acceptable limits. From the current studies, it was observed that the spatial system showed reliable responses for predicting the behavior of the bridge under variable road surface roughness conditions and was reliable in vehicle axle detection, and therefore, it has a potential to be use for realistic simulations.

  4. Monitoring device for reinforced concrete

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Saito, Koichi; Furukawa, Hideyasu.

    1994-01-01

    A reactor container made of reinforced concretes is monitored for the temperature at each of portions upon placing concretes under construction of a plant, upon pressure-proof test and during plant operation. That is, optical fibers are uniformly laid spirally throughout the inside of the concretes. Pulses are injected from one end of the optical fibers, and the temperature at a reflection point can be measured by measuring specific rays (Raman scattering rays) among lights reflected after a predetermined period of time. According to the present invention, measurement for an optional position within a range where one fiber cable is laid can be conducted. Accordingly, it is possible to conduct temperature control upon concrete placing and apply temperature compensation for the measurement for stresses of the concretes and the reinforcing steels upon container pressure-proof. Further, during plant operation, if the temperature of the concretes rises due to thermal conduction of the temperature in the container, integrity of the concretes can be ensured by a countermeasures such as air conditioning. (I.S.)

  5. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  6. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (convention...... of external curing and novel methods of internal curing are described. It is stressed that proper curing is a key factor to achieve durable concrete.......It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...

  7. Long-life concrete : how long will my concrete last?

    Science.gov (United States)

    2013-10-01

    There is an ongoing discussion about moving toward performance-based specifications for concrete pavements. This document seeks to : move the discussion forward by outlining the needs and the challenges, and proposing some immediate actions. However,...

  8. Porosity of Concrete - Morphological Study of Model Concrete

    NARCIS (Netherlands)

    Hu, J.

    2004-01-01

    This study has developed a comprehensive methodological framework for characterizing geometrical and morphological aspects of pore space in cementitious materials and explored its application to actual cement pastes and model concretes for the purpose of predicting mechanical and transport

  9. Mechanical Properties of Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Raman Bedi

    2013-01-01

    Full Text Available Polymer concrete was introduced in the late 1950s and became well known in the 1970s for its use in repair, thin overlays and floors, and precast components. Because of its properties like high compressive strength, fast curing, high specific strength, and resistance to chemical attacks polymer concrete has found application in very specialized domains. Simultaneously these materials have been used in machine construction also where the vibration damping property of polymer concrete has been exploited. This review deals with the efforts of various researchers in selection of ingredients, processing parameters, curing conditions, and their effects on the mechanical properties of the resulting material.

  10. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  11. Characteristics of Concrete with Admixtures

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available In recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have centered on improving the properties of concrete with minimal investments by ready-mix suppliers and contractors in the way of specialized equipment or special skills and education of their labor forces. This approach has resulted in construction cost reductions and universally accepted ready-made remedies for unexpected problems during construction. The behavior of concrete improved with superplasticizers additives is studied.

  12. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  13. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  14. Deliberate deformation of concrete after casting

    NARCIS (Netherlands)

    Grunewald, S.; Janssen, B.; Schipper, H.R.; Vollers, K.J.; Walraven, J.C.

    2012-01-01

    This paper discusses the effect of intentional deformation of a flexible formwork after casting of the concrete and the influence of the characteristics of concrete in the fresh state on the quality of a concrete element. This deformation is intended to bring the concrete element in its desired

  15. Review of concrete properties for prestressed concrete pressure vesssels

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.

    1976-10-01

    The desire for increasing power output along with safety requirements has resulted in consideration of the prestressed concrete pressure vessel (PCPV) for most current nuclear reactor systems, as well as for the very-high-temperature reactor for process heat and as primary pressure vessels for coal conversion systems. Results are presented of a literature review to ascertain current knowledge regarding plain concrete properties under conditions imposed by a mass concrete structure such as PCRV. The effects of high temperature on such properties as strength, elasticity, and creep are discussed, as well as changes in thermal properties, multiaxial behavior, and the mechanisms thought to be responsible for the observed behavior. In addition, the effects of radiation and moisture migration are discussed. It is concluded that testing results found in the technical literature show much disagreement as to the effects of temperature on concrete properties. The variations in concrete mixtures, curing and testing procedures, age at loading, and moisture conditions during exposure and testing are some of the reasons for such disagreement. Test results must be limited, in most cases, to the materials and conditions of a given test rather than applied to such a general class of materials such as concrete. It is also concluded that sustained exposure of normal concretes to current PCRV operating conditions will not result in any significant loss of properties. However, lack of knowledge regarding effects of temperatures exceeding 100/sup 0/C (212/sup 0/F), moisture migration, and multiaxial behavior precludes a statement advocating operation beyond current design limits. The report includes recommendations for future research on concrete for PCPVs.

  16. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  17. Concrete density estimation by rebound hammer method

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Mohamad Pauzi bin, E-mail: pauzi@nm.gov.my; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri [NDT Group, Nuclear Malaysia, Bangi, Kajang, Selangor (Malaysia); Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin [Material Technology Program, Faculty of Applied Sciences, UiTM, Shah Alam, Selangor (Malaysia); Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin [Pusat Penyelidikan Mineral, Jabatan Mineral dan Geosains, Ipoh, Perak (Malaysia)

    2016-01-22

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  18. CFRP-Strengthening and Long-Term Performance of Fatigue Critical Welds of a Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Roland E. Koller

    2014-02-01

    Full Text Available Empa’s research efforts in the 1990s provided evidence that a considerable increase of the fatigue strength of welded aluminum beams can be achieved by externally bonding pultruded carbon fiber reinforced polymer (CFRP laminates using rubber-toughened epoxies over the fatigue-weak welding zone on their tensile flange. The reinforcing effect obtained is determined by the stiffness of the unidirectional CFRP laminate which has twice the elastic modulus of aluminum. One can therefore easily follow that an unstressed CFRP laminate reinforcement of welded beams made of steel will not lead to a substantial increase in fatigue strength of the steel structure. This consideration led to the idea of prestressing an external reinforcement of the welded zone. The present investigation describes experimental studies to identify the adhesive system suitable for achieving high creep and fatigue strength of the prestressed CFRP patch. Experimental results (Wöhler-fields of shear-lap-specimens and welded steel beams reinforced with prestressed CFRP laminates are presented. The paper concludes by presenting a field application, the reinforcement of a steel pendulum by adhesively bonded prestressed CFRP laminates to the tensile flanges of the welded box girder. Inspections carried out periodically on this structure revealed neither prestress losses nor crack initiation after nine years of service.

  19. Premature asphalt concrete pavement cracking.

    Science.gov (United States)

    2015-06-01

    Recently, the Oregon Department of Transportation (ODOT) has identified hot mix asphalt concrete : (HMAC) pavements that have displayed top-down cracking within three years of construction. The objective of : the study was to evaluate the top-down cr...

  20. Corrosion inhibitors for concrete bridges.

    Science.gov (United States)

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  1. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... of geometric forms in concrete. The former was referred to as mould tectonics, the latter concrete tectonics. A study of the concepts of ‘New Production Philosophy’, ‘Mass-customization’, and Digital Tectonics is presented as a basis for investigating their use in concrete casting. Digital modelling...... plastic in which precision is maintained. The ability to reuse the PETG moulds makes the technique a zero waste production. In general it was concluded that problems with existing techniques relate to production time, surface quality and precision and are caused by the use of mould fabrication technique...

  2. Tests on standard concrete samples

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Compression and tensile tests on standard concrete samples. The use of centrifugal force in tensile testing has been developed by the SB Division and the instruments were built in the Central workshops.

  3. Sustainable concretes for transportation infrastructure.

    Science.gov (United States)

    2010-07-01

    performance in concrete for structural and transportation applications. Based on the challenges associated with coal ash (including SDA) and the economic costs linked to cement production, this research seeks to develop an environmentally friendly an...

  4. Effect of nano materials in geopolymer concrete

    OpenAIRE

    Naskar, Sudipta; Chakraborty, Arun Kumar

    2016-01-01

    In general, cement based concrete can be replaced by low calcium fly-ash based geopolymer concrete regarding the adverse effect of the manufacture of ordinary Portland cement on environment. Nowadays, nano technology has an important role in the field of construction industries. It has been seen that several properties of cement based concrete are affected by different nano materials. As low calcium fly-ash based geopolymer concrete is an alternate option for cement based concrete, nano mater...

  5. Copper slag concrete admixed with polypropylene fibres

    OpenAIRE

    Chakrawarthi, Vijayaprabha; Darmar, Brindha; Elangovan, Ashokkumar

    2016-01-01

    A sustainable concrete design has become an imperative requirement for the present-day concrete industry. A part of an extensive research project aimed at studying possibilities for using copper slag (CS) and polypropylene (PP) fibres in concrete is presented and analysed. Measurements were conducted to investigate the workability, density, compressive strength, tensile strength, and micro-structural properties of concrete, as well as the ultimate load carrying capacity of reinforced-concrete...

  6. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  7. Concrete waste reduction of 50%

    International Nuclear Information System (INIS)

    Vos, R.M. de; Van der Wagt, K.M.; Van der Kruk, E.; Meeussen, H.W.

    2016-01-01

    During decommissioning quite a volume of concrete waste is produced. The degree of activation of the waste can range from clearly activated material to slightly activated or contaminated concrete. The degree of activation influences the applicable waste management processes that can be applied. The subsequent waste management processes can be identified for concrete waste are; disposal, segregation, re-use, conditional release and release. With each of these steps, the footprint of radioactive decommissioning waste is reduced. Future developments for concrete waste reduction can be achieved by applying smart materials in new build facilities (i.e. fast decaying materials). NRG (Nuclear Research and consultancy Group) has investigated distinctive waste management processes to reduce the foot-print of concrete waste streams resulting from decommissioning. We have investigated which processes can be applied in the Netherlands, both under current legislation and with small changes in legislation. We have also investigated the separation process in more detail. Pilot tests with a newly patented process have been started in 2015. We expect that our separation methods will reduce the footprint reduction of concrete waste by approximately 50% due to release or re-use in the nuclear sector or in the conventional industry. (authors)

  8. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nonlinear ultrasonic guided waves for stress monitoring in prestressing tendons for post-tensioned concrete structures

    Science.gov (United States)

    Bartoli, Ivan; Nucera, Claudio; Srivastava, Ankit; Salamone, Salvatore; Phillips, Robert; Lanza di Scalea, Francesco; Coccia, Stefano; Sikorsky, Charles S.

    2009-03-01

    Many bridges, including 90% of the California inventory, are post-tensioned box-girders concrete structures. Prestressing tendons are the main load-carrying components of these and other post-tensioned structures. Despite their criticality, much research is needed to develop and deploy techniques able to provide real-time information on the level of prestress in order to detect dangerous stress losses. In collaboration with Caltrans, UCSD is investigating the combination of ultrasonic guided waves and embedded sensors to provide both prestress level monitoring and defect detection capabilities in concrete-embedded PS tendons. This paper presents a technique based on nonlinear ultrasonic guided waves in the 100 kHz - 2 MHz range for monitoring prestress levels in 7-wire PS tendons. The technique relies on the fact that an axial stress on the tendon generates a proportional radial stress between adjacent wires (interwire stress). In turn, the interwire stress modulates nonlinear effects in ultrasonic wave propagation through both the presence of finite strains and the interwire contact. The nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Experimental results will be presented to identify (a) ranges of fundamental excitations at (ω) producing maximum nonlinear response, and (b) optimum lay-out of the transmitting and the receiving transducers within the test tendons. Compared to alternative methods based on linear ultrasonic features, the proposed nonlinear ultrasonic technique appears more sensitive to prestress levels and more robust against changing excitation power at the transmitting transducer or changing transducer/tendon bond conditions.

  10. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers

    OpenAIRE

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jim?nez, Jos? Ram?n; Ledesma, Enrique F.

    2016-01-01

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All...

  11. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    Science.gov (United States)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  12. Drying of concrete. Part II: The drying time of concrete structures

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Christensen, Søren Lolk

    1998-01-01

    . In the paper the effects of the air content and the silica fume content on the drying time are investigated on two concrete mixes having different water/cement ratios. One concrete represents a normal concrete and the other represents a selfdesiccation concrete.......The composition of a concrete mix has a significant influence on the drying time to reach a given relative humidity in the concrete pores. Knowledge of the influence on the drying of a specific component in the concrete makes it possible to design a concrete mix having a predetermined drying time...

  13. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  14. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  15. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    .synligbeton.dk and spæncom’s aesthetic relief effects by the designer Line Kramhøft (www.spaencom.com). It is my hope that the research-development project “Lasting large scale glazed concrete formwork,” I am working on at DTU, department of Architectural Engineering will be able to complement these. It is a project where I...... in the crinkly façade of DR-Byen (the domicile of the Danish Broadcasting Company) by architect Jean Nouvel and Zaha Hadid’s Ordrupgård’s black curved smooth concrete surfaces. Furthermore, one can point to initiatives such as “Synlig beton” (visible concrete) that can be seen on the website www...... try to develop new aesthetic potentials for the concrete, in large scales that has not been seen before in the ceramic area. It is expected to result in new types of large scale and very thin, glazed concrete façades in building. If such are introduced in an architectural context as exposed surfaces...

  16. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  17. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break with the indu......Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...... an increased customisation of casting moulds. The hypothesis of this research is that the techniques used in this research do not fully address the tectonic potentials of concrete which gives rise to the primary research question: Is it possible to enhance existing or develop new concrete casting techniques...

  18. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    . However, a single concrete casting material, given the use of the right technique that is able to address all these problems, has not been identified, neither in state-of-the-art nor in the case studies. It follows that due to today’s demands for resource optimization and competitiveness it is unlikely......Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...

  19. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold is rea......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure.......A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...

  20. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  1. Forensic testing of a double tee bridge.

    Science.gov (United States)

    2014-12-01

    This report describes an investigation to quantify the behavior of precast, prestressed concrete double-tee bridge : girders made with lightweight concrete. As part of the investigation, three bridge girders were salvaged from a : decommissioned brid...

  2. Value engineering and cost effectiveness of various fiber reinforced polymer (FRP) repair systems.

    Science.gov (United States)

    2006-06-01

    Seventeen 40 year old C-Channel type prestressed concrete bridge girders and one impact damaged AASHTO : Type II prestressed concrete girder were tested under static and fatigue loading to determine the cost-effectiveness : and value engineering aspe...

  3. Concretes reinforced with acrylic fibres

    Directory of Open Access Journals (Sweden)

    Amat, T.

    1997-12-01

    Full Text Available This article is based on works, carried out at the IETcc, aimed to evaluate the behaviour of concretes reinforced with acrylic polyacrylonitrile fibres, and to study the influence they have on concrete physical and mechanical properties.

    El presente artículo está basado en trabajos realizados en el Instituto de Ciencias de la Construcción Eduardo Torroja, teniendo por objetivo evaluar el comportamiento de los hormigones reforzados con fibras acrílicas de poliacrilonitrilo, estudiando la influencia que tiene sobre sus propiedades físicas y mecánicas.

  4. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  5. Reliability Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Middleton, C. R.

    This paper is partly based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: concrete bridges". It contains the details of a methodology which can be used to generate Whole Life (WL) reliability...... profiles. These WL reliability profiles may be used to establish revised rules for concrete bridges. This paper is to some extend based on Thoft-Christensen et. al. [1996], Thoft-Christensen [1996] et. al. and Thoft-Christensen [1996]....

  6. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  7. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  8. A Failure Criterion for Concrete

    DEFF Research Database (Denmark)

    Ottosen, N. S.

    1977-01-01

    A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace in the devi......A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace...

  9. Modeling damage in concrete pavements and bridges.

    Science.gov (United States)

    2010-09-01

    This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...

  10. Long-life slab replacement concrete.

    Science.gov (United States)

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  11. Concrete pavement construction basics : tech notes.

    Science.gov (United States)

    2006-08-01

    This tech note has been produced for developers, consultants, and engineers planning concrete pavement construction projects, superintendents and supervisors who want a basic training aid and reference, and crew members new to the concrete paving ind...

  12. Concrete performance using low-degradation aggregates.

    Science.gov (United States)

    2012-06-01

    The durability of Portland cement concrete (PCC) has long been identified as a concern by transportation communities around the United States. In this study, the long-term performance of two batches of concrete incorporating either low-degradation (L...

  13. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  14. International concrete crosstie and fastening system survey.

    Science.gov (United States)

    2013-02-01

    The International Concrete Crosstie and : Fastening System Survey assesses the : international railway industrys state of practice : regarding concrete crossties and fastening : system design, performance, and research : needs. The Rail Transporta...

  15. Evaluation of concrete inlay for continuously reinforced concrete pavement rehabilitation.

    Science.gov (United States)

    2010-06-01

    In 1996, WisDOT constructed a concrete inlay test section on I43 in Manitowoc County. The existing pavement was CRCP constructed in 1978 and was badly deteriorated with punchouts. In the area of the 2777foot test section, the existing paveme...

  16. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  17. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  18. ConcreteWorks v3 training/user manual (P1) : ConcreteWorks software (P2).

    Science.gov (United States)

    2017-04-01

    ConcreteWorks is designed to be a user-friendly software package that can help concrete : professionals optimize concrete mixture proportioning, perform a concrete thermal analysis, and : increase the chloride diffusion service life. The software pac...

  19. Clogging in permeable concrete: a review

    OpenAIRE

    Kia, A; Wong, HS; Cheeseman, CR

    2017-01-01

    Permeable concrete (or ??? pervious concrete ??? in North America) is used to reduce local flooding in urban areas and is an important sustainable urba n drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing part...

  20. Restraint Effects in Early Age Concrete Structures

    OpenAIRE

    Al-Gburi, Majid

    2015-01-01

    One of the widespread issues in concrete structures is cracks occurring at early age. Cracks that appear in the young concrete may cause early start of corrosion of rebars or early penetration of harmful liquids or gases into the concrete body. These situations could result in reduced service life and in significantly increased maintenance cost of structures. Therefore it is important for construction companies to avoid these cracks.Volumetric deformations in early age concrete are caused by ...