WorldWideScience

Sample records for presumed inhibitory synapses

  1. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  2. Organizers of inhibitory synapses come of age.

    Science.gov (United States)

    Krueger-Burg, Dilja; Papadopoulos, Theofilos; Brose, Nils

    2017-08-01

    While the postsynaptic density of excitatory synapses is known to encompass a highly complex molecular machinery, the equivalent organizational structure of inhibitory synapses has long remained largely undefined. In recent years, however, substantial progress has been made towards identifying the full complement of organizational proteins present at inhibitory synapses, including submembranous scaffolds, intracellular signaling proteins, transsynaptic adhesion proteins, and secreted factors. Here, we summarize these findings and discuss future challenges in assigning synapse-specific functions to the newly discovered catalog of proteins, an endeavor that will depend heavily on newly developed technologies such as proximity biotinylation. Further advances are made all the more essential by growing evidence that links inhibitory synapses to psychiatric and neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The biochemical anatomy of cortical inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Heller

    Full Text Available Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain.

  4. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  5. When is an Inhibitory Synapse Effective?

    Science.gov (United States)

    Qian, Ning; Sejnowski, Terrence J.

    1990-10-01

    Interactions between excitatory and inhibitory synaptic inputs on dendrites determine the level of activity in neurons. Models based on the cable equation predict that silent shunting inhibition can strongly veto the effect of an excitatory input. The cable model assumes that ionic concentrations do not change during the electrical activity, which may not be a valid assumption, especially for small structures such as dendritic spines. We present here an analysis and computer simulations to show that for large Cl^- conductance changes, the more general Nernst-Planck electrodiffusion model predicts that shunting inhibition on spines should be much less effective than that predicted by the cable model. This is a consequence of the large changes in the intracellular ionic concentration of Cl^- that can occur in small structures, which would alter the reversal potential and reduce the driving force for Cl^-. Shunting inhibition should therefore not be effective on spines, but it could be significantly more effective on the dendritic shaft at the base of the spine. In contrast to shunting inhibition, hyperpolarizing synaptic inhibition mediated by K^+ currents can be very effective in reducing the excitatory synaptic potentials on the same spine if the excitatory conductance change is less than 10 nS. We predict that if the inhibitory synapses found on cortical spines are to be effective, then they should be mediated by K^+ through GABA_B receptors.

  6. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  7. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  8. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Science.gov (United States)

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.

    Science.gov (United States)

    Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T

    2015-04-08

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.

  10. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  11. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  13. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  14. Diversity in Long-Term Synaptic Plasticity at Inhibitory Synapses of Striatal Spiny Neurons

    Science.gov (United States)

    Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose

    2009-01-01

    Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…

  15. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization.

    Science.gov (United States)

    Bou-Flores, C; Berger, A J

    2001-04-01

    Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neonatal mouse medullary slice and en bloc brain stem-spinal cord preparations where rhythmic inspiratory motor activity can readily be recorded from both hypoglossal and phrenic nerve roots. The rhythmic inspiratory activity observed had two temporal characteristics: the basic respiratory frequency occurring on a long time scale and the synchronous neuronal discharge within the inspiratory burst occurring on a short time scale. In both preparations, we observed that bath application of gap-junction blockers, including 18 alpha-glycyrrhetinic acid, 18 beta-glycyrrhetinic acid, and carbenoxolone, all caused a reduction in respiratory frequency. In contrast, peak integrated phrenic and hypoglossal inspiratory activity was not significantly changed by gap-junction blockade. On a short-time-scale, gap-junction blockade increased the degree of synchronization within an inspiratory burst observed in both nerves. In contrast, opposite results were observed with blockade of GABA(A) and glycine receptors. We found that respiratory frequency increased with receptor blockade, and simultaneous blockade of both receptors consistently resulted in a reduction in short-time-scale synchronized activity observed in phrenic and hypoglossal inspiratory bursts. These results support the concept that the central respiratory system has two components: a rhythm generator responsible for the production of respiratory cycle timing and an inspiratory pattern generator that is involved in short-time-scale synchronization. In the neonatal rodent, properties of both components can be regulated by interneuronal

  16. NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses

    Directory of Open Access Journals (Sweden)

    Abigail Kalmbach

    2010-07-01

    Full Text Available Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB to the lateral superior olive (LSO is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit postsynaptic currents that are predominantly mediated by NMDA receptors (NMDARs. To gain a better understanding of how glutamate contributes to synaptic signaling at developing MNTB-LSO inhibitory synapse, we investigated to what degree and under what conditions NMDARs contribute to postsynaptic calcium responses. Our results demonstrate that MNTB-LSO synapses can elicit compartmentalized calcium responses along aspiny LSO dendrites. These responses are significantly attenuated by the NMDARs antagonist APV. APV, however, has no effect on somatically recorded electrical postsynaptic responses, indicating little, if any, contribution of NMDARs to spike generation. Small NMDAR-mediated calcium responses were also observed under physiological levels of extracellular magnesium concentrations indicating that MNTB-LSO synapses activate magnesium sensitive NMDAR on immature LSO dendrites. In Fura-2 AM loaded neurons, blocking GABAA and glycine receptors decreased NMDAR contribution to somatic calcium responses suggesting that GABA and glycine, perhaps by shunting backpropagating action potentials, decrease the level of NMDAR activation under strong stimulus conditions.

  17. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  18. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  19. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Dai Mitsushima

    2015-01-01

    Full Text Available Although the hippocampus is processing temporal and spatial information in particular context, the encoding rule creating memory is completely unknown. To examine the mechanism, we trained rats on an inhibitory avoidance (IA task, a hippocampus-dependent rapid one-trial contextual learning paradigm. By combining Herpes virus-mediated in vivo gene delivery with in vitro patch-clamp recordings, I reported contextual learning drives GluR1-containing AMPA receptors into CA3-CA1 synapses. The molecular event is required for contextual memory, since bilateral expression of delivery blocker in CA1 successfully blocked IA learning. Moreover, I found a logarithmic correlation between the number of delivery blocking cells and learning performance. Considering that one all-or-none device can process 1-bit of data per clock (Nobert Wiener 1961, the logarithmic correlation may provides evidence that CA1 neurons transmit essential data of contextual information. Further, I recently reported critical role of acetylcholine as an intrinsic trigger of learning-dependent synaptic plasticity. IA training induced ACh release in CA1 that strengthened not only AMPA receptor-mediated excitatory synapses, but also GABAA receptor-mediated inhibitory synapses on each CA1 neuron. More importantly, IA-trained rats showed individually different excitatory and inhibitory synaptic inputs with wide variation on each CA1 neuron. Here I propose a new hypothesis that the diversity of synaptic inputs on CA1 neurons may depict cell-specific outputs processing experienced episodes after training.

  20. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  1. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells.

    Science.gov (United States)

    Huse, Morgan; Catherine Milanoski, S; Abeyweera, Thushara P

    2013-01-01

    Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  2. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  3. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  4. Visualization by high resolution immunoelectron microscopy of the transient receptor potential vanilloid-1 at inhibitory synapses of the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Miren-Josune Canduela

    Full Text Available We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1, a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML. In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (∼60% of total immunoparticles at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.

  5. The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin

    DEFF Research Database (Denmark)

    Mukherjee, Jayanta; Kretschmannova, Karla; Gouzer, Geraldine

    2011-01-01

    The majority of fast synaptic inhibition in the brain is mediated by benzodiazepine-sensitive α1-subunit-containing GABA type A receptors (GABA(A)Rs); however, our knowledge of the mechanisms neurons use to regulate their synaptic accumulation is rudimentary. Using immunoprecipitation, we....... Mutating residues 360-375 decreases both the accumulation of α1-containing GABA(A)Rs at gephyrin-positive inhibitory synapses in hippocampal neurons and the amplitude of mIPSCs. We also demonstrate that the affinity of gephyrin for the α1 subunit is modulated by Thr375, a putative phosphorylation site....... Mutation of Thr375 to a phosphomimetic, negatively charged amino acid decreases both the affinity of the α1 subunit for gephyrin, and therefore receptor accumulation at synapses, and the amplitude of mIPSCs. Finally, single-particle tracking reveals that gephyrin reduces the diffusion of α1-subunit...

  6. The balancing act of GABAergic synapse organizers.

    Science.gov (United States)

    Ko, Jaewon; Choii, Gayoung; Um, Ji Won

    2015-04-01

    GABA (γ-aminobutyric acid) is the main neurotransmitter at inhibitory synapses in the mammalian brain. It is essential for maintaining the excitation and inhibition (E/I) ratio, whose imbalance underlies various brain diseases. Emerging information about inhibitory synapse organizers provides a novel molecular framework for understanding E/I balance at the synapse, circuit, and systems levels. This review highlights recent advances in deciphering these components of the inhibitory synapse and their roles in the development, transmission, and circuit properties of inhibitory synapses. We also discuss how their dysfunction may lead to a variety of brain disorders, suggesting new therapeutic strategies based on balancing the E/I ratio.

  7. Synapse Pathology in Psychiatric and Neurologic Disease

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical

  8. CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses

    Science.gov (United States)

    Younts, Thomas J.; Chevaleyre, Vivien

    2013-01-01

    Endocannabinoids (eCBs) are retrograde lipid messengers that, by targeting presynaptic type 1 cannabinoid receptors (CB1Rs), mediate short- and long-term synaptic depression of neurotransmitter release throughout the brain. Short-term depression is typically triggered by postsynaptic, depolarization-induced calcium rises, whereas long-term depression is induced by synaptic activation of Gq/11 protein-coupled receptors. Here we report that a physiologically relevant pattern of postsynaptic activity, in the form of theta-burst firing (TBF) of hippocampal CA1 pyramidal neurons, can trigger long-term depression of inhibitory transmission (iLTD) in rat hippocampal slices. Paired recordings between CA1 interneurons and pyramidal cells, followed by post hoc morphological reconstructions of the interneurons' axon, revealed that somatic and dendritic inhibitory synaptic inputs equally expressed TBF-induced iLTD. Simultaneous recordings from neighboring pyramidal cells demonstrated that eCB signaling triggered by TBF was highly restricted to only a single, active cell. Furthermore, pairing submaximal endogenous activation of metabotropic glutamate or muscarinic acetylcholine receptors with submaximal TBF unmasked associative iLTD. Although CB1Rs are also expressed at Schaffer-collateral excitatory terminals, long-term plasticity under various recording conditions was spared at these synapses. Consistent with this observation, TBF also shifted the balance of excitation and inhibition in favor of excitatory throughput, thereby altering information flow through the CA1 circuit. Given the near ubiquity of burst-firing activity patterns and CB1R expression in the brain, the properties described here may be a general means by which neurons fine tune the strength of their inputs in a cell-wide and cell-specific manner. PMID:23966696

  9. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala.

    Science.gov (United States)

    Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G

    2009-12-01

    Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.

  10. What is presumed when we presume consent?

    Directory of Open Access Journals (Sweden)

    Pierscionek Barbara K

    2008-04-01

    Full Text Available Abstract Background The organ donor shortfall in the UK has prompted calls to introduce legislation to allow for presumed consent: if there is no explicit objection to donation of an organ, consent should be presumed. The current debate has not taken in account accepted meanings of presumption in law and science and the consequences for rights of ownership that would arise should presumed consent become law. In addition, arguments revolve around the rights of the competent autonomous adult but do not always consider the more serious implications for children or the disabled. Discussion Any action or decision made on a presumption is accepted in law and science as one based on judgement of a provisional situation. It should therefore allow the possibility of reversing the action or decision. Presumed consent to organ donation will not permit such reversal. Placing prime importance on the functionality of body organs and their capacity to sustain life rather than on explicit consent of the individual will lead to further debate about rights of ownership and potentially to questions about financial incentives and to whom benefits should accrue. Factors that influence donor rates are not fully understood and attitudes of the public to presumed consent require further investigation. Presuming consent will also necessitate considering how such a measure would be applied in situations involving children and mentally incompetent adults. Summary The presumption of consent to organ donation cannot be understood in the same way as is presumption when applied to science or law. Consideration should be given to the consequences of presuming consent and to the questions of ownership and organ monetary value as these questions are likely to arise should presumed consent be permitted. In addition, the implications of presumed consent on children and adults who are unable to object to organ donation, requires serious contemplation if these most vulnerable

  11. Organization of central synapses by adhesion molecules.

    Science.gov (United States)

    Tallafuss, Alexandra; Constable, John R L; Washbourne, Philip

    2010-07-01

    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during the development of the nervous system, and the formation of appropriate synapses is crucial for the establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies have revealed a diverse and vast assortment of molecules that are present at the synapse. It is now important to untangle this large array of proteins and determine how it assembles into a functioning unit. Here we focus on recent reports describing how synaptic cell adhesion molecules interact with and organize the presynaptic and postsynaptic specializations of both excitatory and inhibitory central synapses. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Defects of the Glycinergic Synapse in Zebrafish

    OpenAIRE

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nocicepti...

  13. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  14. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  15. The immunological synapse

    DEFF Research Database (Denmark)

    Klemmensen, Thomas; Pedersen, Lars Ostergaard; Geisler, Carsten

    2003-01-01

    . A distinct 3-dimensional supramolecular structure at the T cell/APC interface has been suggested to be involved in the information transfer. Due to its functional analogy to the neuronal synapse, the structure has been termed the "immunological synapse" (IS). Here, we review molecular aspects concerning...

  16. Organ procurement: let's presume consent

    OpenAIRE

    Moustarah, F

    1998-01-01

    IN WINNING FIRST PRIZE in the Logie Medical Ethics Essay Contest in 1997, Dr. Fady Moustarah made a strong and compelling argument in favour of presumed consent in the procurement of donor organs. He stressed that a major education campaign will be needed when such a policy is adopted lest some people begin to regard physicians as "organ vultures."

  17. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  18. Natural killer cell signal integration balances synapse symmetry and migration.

    Directory of Open Access Journals (Sweden)

    Fiona J Culley

    2009-07-01

    Full Text Available Natural killer (NK cells discern the health of other cells by recognising the balance of activating and inhibitory ligands expressed by each target cell. However, how the integration of activating and inhibitory signals relates to formation of the NK cell immune synapse remains a central question in our understanding of NK cell recognition. Here we report that ligation of LFA-1 on NK cells induced asymmetrical cell spreading and migration. In contrast, ligation of the activating receptor NKG2D induced symmetrical spreading of ruffled lamellipodia encompassing a dynamic ring of f-actin, concurrent with polarization towards a target cell and a "stop" signal. Ligation of both LFA-1 and NKG2D together resulted in symmetrical spreading but co-ligation of inhibitory receptors reverted NK cells to an asymmetrical migratory configuration leading to inhibitory synapses being smaller and more rapidly disassembled. Using micropatterned activating and inhibitory ligands, signals were found to be continuously and locally integrated during spreading. Together, these data demonstrate that NK cells spread to form large, stable, symmetrical synapses if activating signals dominate, whereas asymmetrical migratory "kinapses" are favoured if inhibitory signals dominate. This clarifies how the integration of activating and inhibitory receptor signals is translated to an appropriate NK cell response.

  19. Complications of presumed ocular tuberculosis.

    Science.gov (United States)

    Hamade, Issam H; Tabbara, Khalid F

    2010-12-01

    To determine the effect of steroid treatment on visual outcome and ocular complications in patients with presumed ocular tuberculosis. Retrospective review of patients with presumptive ocular tuberculosis. The clinical diagnosis was made based on ocular findings, positive purified protein derivative (PPD) testing of more than 15 mm induration, exclusion of other causes of uveitis and positive ocular response to anti-tuberculous therapy (ATT) within 4 weeks. Group 1 included patients who had received oral prednisone or subtenon injection of triamcinolone acetonide prior to ATT. Group 2 included patients who did not receive corticosteroid therapy prior to administration of ATT.   Among 500 consecutive new cases of uveitis encountered in 1997-2007 there were 49 (10%) patients with presumed ocular tuberculosis. These comprised 28 (57%) male and 21 (43%) female patients with a mean age of 45 years (range 12-76 years). Four (20%) patients in group 1 had initial visual acuity of 20/40 or better, in comparison to eight (28%) patients in group 2. At 1-year follow-up, six (30%) patients in group 1 had a visual acuity of 20/40 or better compared with 20 (69%) patients in group 2 (p = 0.007). Of 20 eyes (26%) in group 1 that had visual acuity of < 20/50 at 1-year follow up, 14 (70%) eyes developed severe chorioretinal lesion (p = 0.019). Early administration of corticosteroids without anti-tuberculous therapy in presumed ocular tuberculosis may lead to poor visual outcome compared with patients who did not receive corticosteroids prior to presentation. Furthermore, the severity of chorioretinitis lesion in the group of patients given corticosteroid prior to ATT may account for the poor visual outcome. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  20. Defects of the Glycinergic Synapse in Zebrafish

    Science.gov (United States)

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  1. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  2. On-chip photonic synapse.

    Science.gov (United States)

    Cheng, Zengguang; Ríos, Carlos; Pernice, Wolfram H P; Wright, C David; Bhaskaran, Harish

    2017-09-01

    The search for new "neuromorphic computing" architectures that mimic the brain's approach to simultaneous processing and storage of information is intense. Because, in real brains, neuronal synapses outnumber neurons by many orders of magnitude, the realization of hardware devices mimicking the functionality of a synapse is a first and essential step in such a search. We report the development of such a hardware synapse, implemented entirely in the optical domain via a photonic integrated-circuit approach. Using purely optical means brings the benefits of ultrafast operation speed, virtually unlimited bandwidth, and no electrical interconnect power losses. Our synapse uses phase-change materials combined with integrated silicon nitride waveguides. Crucially, we can randomly set the synaptic weight simply by varying the number of optical pulses sent down the waveguide, delivering an incredibly simple yet powerful approach that heralds systems with a continuously variable synaptic plasticity resembling the true analog nature of biological synapses.

  3. Short-term ionic plasticity at GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-10-01

    Full Text Available Fast synaptic inhibition in the brain is mediated by the pre-synaptic release of the neurotransmitter γ-Aminobutyric acid (GABA and the post-synaptic activation of GABA-sensitive ionotropic receptors. As with excitatory synapses, it is being increasinly appreciated that a variety of plastic processes occur at inhibitory synapses, which operate over a range of timescales. Here we examine a form of activity-dependent plasticity that is somewhat unique to GABAergic transmission. This involves short-lasting changes to the ionic driving force for the postsynaptic receptors, a process referred to as short-term ionic plasticity. These changes are directly related to the history of activity at inhibitory synapses and are influenced by a variety of factors including the location of the synapse and the post-synaptic cell’s ion regulation mechanisms. We explore the processes underlying this form of plasticity, when and where it can occur, and how it is likely to impact network activity.

  4. The sticky synapse

    DEFF Research Database (Denmark)

    Owczarek, Sylwia Elzbieta; Kristiansen, Lars Villiam; Hortsch, Michael

    NCAM-type proteins modulate multiple neuronal functions, including the outgrowth and guidance of neurites, the formation, maturation, and plasticity of synapses, and the induction of both long-term potentiation and long-term depression. The ectodomains of NCAM proteins have a basic structure...... mediate cell-cell adhesion through homophilic interactions and bind to growth factors, growth factor receptors, glutamate receptors, other CAMs, and components of the extracellular matrix. Intracellularly, NCAM-type proteins interact with various cytoskeletal proteins and regulators of intracellular...... signal transduction. A central feature of the synaptic function of NCAM proteins is the regulation of their extracellular interactions by adhesion-modulating glycoepitopes, their removal from the cell surface by endocytosis, and the elimination of their adhesion-mediating interactions by the proteolytic...

  5. Cadmium action in synapses in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Akira; Takeda, Atsushi; Nishibaba, Daisuke; Tekefuta, Sachiyo; Oku, Naoto [Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka (Japan)

    2001-05-01

    Chronic exposure to cadmium causes central nervous system disorders, e.g., olfactory dysfunction. To clarify cadmium toxicity in synaptic neurotransmission in the brain, the movement and action of cadmium in the synapses was examined using in vivo microdialysis. One and 24 h after injection of {sup 109}CdCl{sub 2} into the amygdala of rats, {sup 109}Cd release into the extracellular space was facilitated by stimulation with high K{sup +}, suggesting that cadmium taken up in amygdalar neurons is released into the synaptic clefts in a calcium- and impulse-dependent manner. To examine the action of cadmium in the synapses, the amygdala was perfused with artificial cerebrospinal fluid containing 10-30 {mu}M CdCl{sub 2}. The release of excitatory neurotransmitters, i.e., glutamate and aspartate, into the extracellular space was decreased during perfusion with cadmium, while the release of inhibitory neurotransmitters, i.e., glycine and {gamma}-amino butyric acid (GABA), into the extracellular space was increased during the period. These results suggest that cadmium released from the amygdalar neuron terminals affects the degree and balance of excitation-inhibition in synaptic neurotransmission. (author)

  6. Cadmium action in synapses in the brain

    International Nuclear Information System (INIS)

    Minami, Akira; Takeda, Atsushi; Nishibaba, Daisuke; Tekefuta, Sachiyo; Oku, Naoto

    2001-01-01

    Chronic exposure to cadmium causes central nervous system disorders, e.g., olfactory dysfunction. To clarify cadmium toxicity in synaptic neurotransmission in the brain, the movement and action of cadmium in the synapses was examined using in vivo microdialysis. One and 24 h after injection of 109 CdCl 2 into the amygdala of rats, 109 Cd release into the extracellular space was facilitated by stimulation with high K + , suggesting that cadmium taken up in amygdalar neurons is released into the synaptic clefts in a calcium- and impulse-dependent manner. To examine the action of cadmium in the synapses, the amygdala was perfused with artificial cerebrospinal fluid containing 10-30 μM CdCl 2 . The release of excitatory neurotransmitters, i.e., glutamate and aspartate, into the extracellular space was decreased during perfusion with cadmium, while the release of inhibitory neurotransmitters, i.e., glycine and γ-amino butyric acid (GABA), into the extracellular space was increased during the period. These results suggest that cadmium released from the amygdalar neuron terminals affects the degree and balance of excitation-inhibition in synaptic neurotransmission. (author)

  7. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  8. Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

    Science.gov (United States)

    Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si

    2018-01-01

    Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural

  9. GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction.

    Science.gov (United States)

    Saha, Rinki; Knapp, Stephanie; Chakraborty, Darpan; Horovitz, Omer; Albrecht, Anne; Kriebel, Martin; Kaphzan, Hanoch; Ehrlich, Ingrid; Volkmer, Hansjürgen; Richter-Levin, Gal

    2017-01-01

    Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.

  10. The space where aging acts: focus on the GABAergic synapse.

    Science.gov (United States)

    Rozycka, Aleksandra; Liguz-Lecznar, Monika

    2017-08-01

    As it was established that aging is not associated with massive neuronal loss, as was believed in the mid-20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging-related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging-related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging-induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Prevention of Noise Damage to Cochlear Synapses

    Science.gov (United States)

    2017-10-01

    Assessment of synapse regeneration : Twelve week old CBA/CaJ mice are exposed to a moderate noise that destroys synapses on inner hair cells (IHCs) but spares...result of excitotoxic trauma to cochlear synapses due to glutamate released from the hair cells . Excitotoxic trauma damages the postsynaptic cell by...components ............................................. 12 d) Quantitative analysis of effects of neurotrophic factors on synapse regeneration in vitro

  12. Presumed hereditary retinal degenerations: Ibadan experience ...

    African Journals Online (AJOL)

    This study describes the clinical presentation of RP, the prevalence of associated treatable disorders and the characteristics of patients with severe visual impairment and blindness. Method: A retrospective review of 52 cases presumed and diagnosed to have RP was performed on patients who presented at the Eye Clinic, ...

  13. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses

    DEFF Research Database (Denmark)

    Soricelli, A; Postiglione, A; Grivet-Fojaja, M R

    1996-01-01

    Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABAA receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (Vd) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends indiscriminat...... simultaneously. Reduced values were found in all regions except in the occipital (visual) cortex. In particular, temporal and parietal cortex Vd was significantly (P...

  14. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  15. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  16. Organization of central synapses by adhesion molecules

    OpenAIRE

    Tallafuss, Alexandra; Constable, John R.L.; Washbourne, Philip

    2010-01-01

    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during development of the nervous system, and formation of appropriate synapses is crucial for establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies ...

  17. Face classification using electronic synapses

    Science.gov (United States)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He

    2017-05-01

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  18. Pursuit of Neurotransmitter Functions: Being Attracted with Fascination of the Synapse.

    Science.gov (United States)

    Konishi, Shiro

    2017-01-01

    In the beginning of the 1970s, only two chemical substances, acetylcholine and γ-aminobutyric acid (GABA), had been definitely established as neurotransmitters. Under such circumstances, I started my scientific career in Professor Masanori Otsuka's lab searching for the transmitter of primary sensory neurons. Until 1976, lines of evidence had accumulated indicating that the undecapeptide substance P could be released as a transmitter from primary afferent fibers into spinal synapses, although the substance P-mediated synaptic response had yet to be identified. Peripheral synapses could serve as a good model and thus, it was demonstrated in the prevertebral sympathetic ganglia by1985 that substance P released from axon collaterals of primary sensory neurons acts as the transmitter mediating non-cholinergic slow excitatory postsynaptic potential (EPSP). At that time, we also found that autonomic synapses were useful to uncover the transmitter role of the opioid peptide enkephalins, whose functions had been unknown since their discovery in 1975. Accordingly, enkephalins were found to serve a transmitter role in mediating presynaptic inhibition of cholinergic fast and non-cholinergic slow transmission in the prevertebral sympathetic ganglia. In 1990s, we attempted to devise a combined technique of brain slices and patch-clamp recordings. We applied it to study the regulatory mechanisms that operate around cerebellar GABAergic inhibitory synapses, because most of the studies then had centered on excitatory synapses and because inhibitory synapses are crucially involved in brain functions and disorders. Consequently, we discovered novel forms of heterosynaptic interactions, dual actions of a single transmitter, and receptor crosstalk, the details of which are described in this review.

  19. Presynaptic proteoglycans: sweet organizers of synapse development.

    Science.gov (United States)

    Song, Yoo Sung; Kim, Eunjoon

    2013-08-21

    Synaptic adhesion molecules control neuronal synapse development. In this issue of Neuron, Siddiqui et al. (2013) and de Wit et al. (2013) demonstrate that LRRTM4, a postsynaptic adhesion molecule, trans-synaptically interacts with presynaptic heparan sulfate proteoglycans (HSPGs) to promote synapse development. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information.

    Science.gov (United States)

    Baptista, M S; Moukam Kakmeni, F M; Grebogi, C

    2010-09-01

    In this work we studied the combined action of chemical and electrical synapses in small networks of Hindmarsh-Rose (HR) neurons on the synchronous behavior and on the rate of information produced (per time unit) by the networks. We show that if the chemical synapse is excitatory, the larger the chemical synapse strength used the smaller the electrical synapse strength needed to achieve complete synchronization, and for moderate synaptic strengths one should expect to find desynchronous behavior. Otherwise, if the chemical synapse is inhibitory, the larger the chemical synapse strength used the larger the electrical synapse strength needed to achieve complete synchronization, and for moderate synaptic strengths one should expect to find synchronous behaviors. Finally, we show how to calculate semianalytically an upper bound for the rate of information produced per time unit (Kolmogorov-Sinai entropy) in larger networks. As an application, we show that this upper bound is linearly proportional to the number of neurons in a network whose neurons are highly connected.

  1. Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images

    Science.gov (United States)

    Morales, Juan; Alonso-Nanclares, Lidia; Rodríguez, José-Rodrigo; DeFelipe, Javier; Rodríguez, Ángel; Merchán-Pérez, Ángel

    2011-01-01

    The synapses in the cerebral cortex can be classified into two main types, Gray's type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes. PMID:21633491

  2. ESPINA: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images

    Directory of Open Access Journals (Sweden)

    Juan eMorales

    2011-03-01

    Full Text Available The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory and symmetric (inhibitory GABAergic synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze three-dimensional samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using FIB/SEM microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed and quantified from large three-dimensional tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.

  3. Presumed choroidal metastasis of Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Small, K.W.; Rosenwasser, G.O.; Alexander, E. III; Rossitch, G.; Dutton, J.J.

    1990-01-01

    Merkel cell carcinoma is a rare skin tumor of neural crest origin and is part of the amine precursor uptake and decarboxylase system. It typically occurs on the face of elderly people. Distant metastasis is almost uniformly fatal. Choroidal metastasis, to our knowledge, has not been described. We report a patient with Merkel cell carcinoma who had a synchronous solid choroidal tumor and a biopsy-proven brain metastasis. Our 56-year-old patient presented with a rapidly growing, violaceous preauricular skin tumor. Computed tomography of the head disclosed incidental brain and choroidal tumors. Light and electron microscopy of biopsy specimens of both the skin and the brain lesions showed Merkel cell carcinoma. Ophthalmoscopy, fluorescein angiography, and A and B echography revealed a solid choroidal mass. The brain and skin tumors responded well to irradiation. A radioactive episcleral plaque was applied subsequently to the choroidal tumor. All tumors regressed, and the patient was doing well 28 months later. To our knowledge this is the first case of presumed choroidal metastasis of Merkel cell carcinoma

  4. Synchronization of the small-world neuronal network with unreliable synapses

    International Nuclear Information System (INIS)

    Li, Chunguang; Zheng, Qunxian

    2010-01-01

    As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive

  5. Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks

    International Nuclear Information System (INIS)

    Yilmaz, Ergin

    2014-01-01

    Highlights: • We investigate the NDD phenomenon in a hybrid scale-free network. • Electrical synapses are more impressive on the emergence of NDD. • Electrical synapses are more efficient in suppressing of the NDD. • Average degree has two opposite effects on the appearance time of the first spike. - Abstract: We study the phenomenon of noise-delayed decay in a scale-free neural network consisting of excitable FitzHugh–Nagumo neurons. In contrast to earlier works, where only electrical synapses are considered among neurons, we primarily examine the effects of hybrid synapses on the noise-delayed decay in this study. We show that the electrical synaptic coupling is more impressive than the chemical coupling in determining the appearance time of the first-spike and more efficient on the mitigation of the delay time in the detection of a suprathreshold input signal. We obtain that hybrid networks including inhibitory chemical synapses have higher signal detection capabilities than those of including excitatory ones. We also find that average degree exhibits two different effects, which are strengthening and weakening the noise-delayed decay effect depending on the noise intensity

  6. Loss of Synapse Repressor MDGA1 Enhances Perisomatic Inhibition, Confers Resistance to Network Excitation, and Impairs Cognitive Function

    Directory of Open Access Journals (Sweden)

    Steven A. Connor

    2017-12-01

    Full Text Available Synaptopathies contributing to neurodevelopmental disorders are linked to mutations in synaptic organizing molecules, including postsynaptic neuroligins, presynaptic neurexins, and MDGAs, which regulate their interaction. The role of MDGA1 in suppressing inhibitory versus excitatory synapses is controversial based on in vitro studies. We show that genetic deletion of MDGA1 in vivo elevates hippocampal CA1 inhibitory, but not excitatory, synapse density and transmission. Furthermore, MDGA1 is selectively expressed by pyramidal neurons and regulates perisomatic, but not distal dendritic, inhibitory synapses. Mdga1−/− hippocampal networks demonstrate muted responses to neural excitation, and Mdga1−/− mice are resistant to induced seizures. Mdga1−/− mice further demonstrate compromised hippocampal long-term potentiation, consistent with observed deficits in spatial and context-dependent learning and memory. These results suggest that mutations in MDGA1 may contribute to cognitive deficits through altered synaptic transmission and plasticity by loss of suppression of inhibitory synapse development in a subcellular domain- and cell-type-selective manner.

  7. 20 CFR 219.24 - Evidence of presumed death.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Evidence of presumed death. 219.24 Section... EVIDENCE REQUIRED FOR PAYMENT Evidence of Age and Death § 219.24 Evidence of presumed death. When a person cannot be proven dead but evidence of death is needed, the Board may presume he or she died at a certain...

  8. Laparoscopic power morcellation of presumed fibroids.

    Science.gov (United States)

    Brolmann, Hans A; Sizzi, Ornella; Hehenkamp, Wouter J; Rossetti, Alfonso

    2016-06-01

    Uterine leiomyoma is a highly prevalent benign gynecologic neoplasm that affects women of reproductive age. Surgical procedures commonly employed to treat symptomatic uterine fibroids include myomectomy or total or sub-total hysterectomy. These procedures, when performed using minimally invasive techniques, reduce the risks of intraoperative and postoperative morbidity and mortality; however, in order to remove bulky lesions from the abdominal cavity through laparoscopic ports, a laparoscopic power morcellator must be used, a device with rapidly spinning blades to cut the uterine tissue into fragments so that it can be removed through a small incision. Although the minimal invasive approach in gynecological surgery has been firmly established now in terms of recovery and quality of life, morcellation is associated with rare but sometimes serious adverse events. Parts of the morcellated specimen may be spread into the abdominal cavity and enable implantation of cells on the peritoneum. In case of unexpected sarcoma the dissemination may upstage disease and affect survival. Myoma cells may give rise to 'parasitic' fibroids, but also implantation of adenomyotic cells and endometriosis has been reported. Finally the morcellation device may cause inadvertent injury to internal structures, such as bowel and vessels, with its rotating circular knife. In this article it is described how to estimate the risk of sarcoma in a presumed fibroid based on epidemiologic, imaging and laboratory data. Furthermore the first literature results of the in-bag morcellation are reviewed. With this procedure the specimen is contained in an insufflated sterile bag while being morcellated, potentially preventing spillage of tissue but also making direct morcellation injuries unlikely to happen.

  9. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  10. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  11. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

    Science.gov (United States)

    Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-15

    Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. © 2015. Published by The Company of Biologists Ltd.

  12. Unsupervised learning in neural networks with short range synapses

    Science.gov (United States)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  13. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    Science.gov (United States)

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  14. Conjuntivite presumível por Acanthamoeba Conjunctivitis presumably due to Acanthamoeba

    Directory of Open Access Journals (Sweden)

    Ana Cristina de Carvalho Ruthes

    2004-12-01

    Full Text Available OBJETIVO: Abordar quatro casos de conjuntivite presumível por Acanthamoeba, descrevendo o diagnóstico, considerando sinais e sintomas e o tratamento instituído. MÉTODOS: Foram estudados casos de conjuntivite presumível por Acanthamoeba diagnosticados no Hospital de Olhos do Paraná (HOP, no período de setembro/1998 a janeiro/2002. Todos os olhos estudados foram submetidos a um protocolo de investigação que incluía exame oftalmológico completo, microbiologia e cultura de secreções conjuntivais. RESULTADOS: Os exames laboratoriais de microscopia e cultura do material colhido estes pacientes revelaram o diagnóstico de Acanthamoeba. A maioria dos pacientes referia olhos vermelhos e irritação ocular de longa data. Os autores encontraram correlação entre a cultura e o exame direto, em que se evidenciou a presença de cistos e trofozoítas do protozoário. CONCLUSÃO: Este é o primeiro relato de conjuntivite provavelmente por Acanthamoeba de acordo com a literatura revisada. Pacientes selecionados e refratários ao tratamento habitual de infecção ocular externa devem ser considerados para estudo laboratorial adequado à procura etiológica da doença.PURPOSE: To describe four cases of conjunctivitis presumably due to Acanthamoeba considering diagnosis, signs, symptoms and treatment. METHODS: We reviewed the medical records of all patients who presented a clinical diagnosis of Acanthamoeba conjunctivitis between September/1998 to January/2001 at the "Hospital de Olhos do Paraná (HOP". All eyes were submitted to a protocol of investigation that included ophthalmologic examination, microscopic examination and culture exams of conjunctival smears for adequate treatment. RESULTS: The laboratorial results of conjunctival smears revealed contamination with Acanthamoeba by direct examination and thereafter, confirmed by culture. The authors observed cysts and trophozoites of Acanthamoeba. CONCLUSION: This is the first report of

  15. A new measure for the strength of electrical synapses

    Directory of Open Access Journals (Sweden)

    Julie S Haas

    2015-09-01

    Full Text Available Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the considerable strength of electrical synapses. For electrical synapses measured in rodent slices of the thalamic reticular nucleus, spike timing is modulated by tens of ms by activity in a coupled neighbor.

  16. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  17. Comparative anatomy of phagocytic and immunological synapses

    Directory of Open Access Journals (Sweden)

    Florence eNiedergang

    2016-01-01

    Full Text Available The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of phagocytic synapse. Here we discuss both types of structures, their organization and the mechanisms by which they are generated and regulated.

  18. Memory Synapses Are Defined by Distinct Molecular Complexes: A Proposal.

    Science.gov (United States)

    Sossin, Wayne S

    2018-01-01

    Synapses are diverse in form and function. While there are strong evidential and theoretical reasons for believing that memories are stored at synapses, the concept of a specialized "memory synapse" is rarely discussed. Here, we review the evidence that memories are stored at the synapse and consider the opposing possibilities. We argue that if memories are stored in an active fashion at synapses, then these memory synapses must have distinct molecular complexes that distinguish them from other synapses. In particular, examples from Aplysia sensory-motor neuron synapses and synapses on defined engram neurons in rodent models are discussed. Specific hypotheses for molecular complexes that define memory synapses are presented, including persistently active kinases, transmitter receptor complexes and trans-synaptic adhesion proteins.

  19. Communication, the centrosome and the immunological synapse.

    Science.gov (United States)

    Stinchcombe, Jane C; Griffiths, Gillian M

    2014-09-05

    Recent findings on the behaviour of the centrosome at the immunological synapse suggest a critical role for centrosome polarization in controlling the communication between immune cells required to generate an effective immune response. The features observed at the immunological synapse show parallels to centrosome (basal body) polarization seen in cilia and flagella, and the cellular communication that is now known to occur at all of these sites.

  20. Diversity in immunological synapse structure

    Science.gov (United States)

    Thauland, Timothy J; Parker, David C

    2010-01-01

    Immunological synapses (ISs) are formed at the T cell–antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)–peptide major histocompatibility complex (pMHC) interactions. Although the structure of these ‘classical’ ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR–pMHC, and motile ‘immunological kinapses’ have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function. PMID:21039474

  1. Retributivist Arguments against Presuming Innocence : Answering to Duff

    NARCIS (Netherlands)

    van Dijk, A.A.

    2013-01-01

    Factors justifying not presuming innocence are generally incorporated into the Presumption of Innocence (PoI). A confusing discourse has resulted: numerous guilt-presuming acts are deemed consistent with the PoI. I argue for an unusually broad PoI: any act that might convey to a reasonable actor

  2. 10 CFR 436.13 - Presuming cost-effectiveness results.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Presuming cost-effectiveness results. 436.13 Section 436... Methodology and Procedures for Life Cycle Cost Analyses § 436.13 Presuming cost-effectiveness results. (a) If the investment and other costs for an energy or water conservation measure considered for retrofit to...

  3. 27 CFR 70.52 - Signature presumed authentic.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Signature presumed authentic. 70.52 Section 70.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Collection of Excise and Special (Occupational) Tax Collection-General Provisions § 70.52 Signature presumed...

  4. 26 CFR 301.6064-1 - Signature presumed authentic.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Signature presumed authentic. 301.6064-1 Section 301.6064-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED....6064-1 Signature presumed authentic. An individual's name signed to a return, statement, or other...

  5. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  6. Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Haowen Liu

    2018-02-01

    Full Text Available The locomotion of C. elegans is balanced by excitatory and inhibitory neurotransmitter release at neuromuscular junctions. However, the molecular mechanisms that maintain the balance of synaptic transmission remain enigmatic. Here, we investigated the function of voltage-gated Ca2+ channels in triggering spontaneous release at cholinergic and GABAergic synapses. Recordings of the miniature excitatory/inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively showed that UNC-2/CaV2 and EGL-19/CaV1 channels are the two major triggers for spontaneous release. Notably, however, Ca2+-independent spontaneous release was observed at GABAergic but not cholinergic synapses. Functional screening led to the identification of hypomorphic unc-64/Syntaxin-1A and snb-1/VAMP2 mutants in which mEPSCs are severely impaired, whereas mIPSCs remain unaltered, indicating differential regulation of these currents at cholinergic and GABAergic synapses. Moreover, Ca2+-independent spontaneous GABA release was nearly abolished in the hypomorphic unc-64 and snb-1 mutants, suggesting distinct mechanisms for Ca2+-dependent and Ca2+-independent spontaneous release.

  7. Shaping Synapses by the Neural Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Maura Ferrer-Ferrer

    2018-05-01

    Full Text Available Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs, neuronal pentraxins (NPs and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.

  8. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    Science.gov (United States)

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-28

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS 2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS 2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  10. Wireless synapses in bio-inspired neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  11. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.

    Science.gov (United States)

    Rancillac, Armelle; Crépel, Francis

    2004-02-01

    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  12. Otanps synapse linear relation multiplier circuit

    International Nuclear Information System (INIS)

    Chible, H.

    2008-01-01

    In this paper, a four quadrant VLSI analog multiplier will be proposed, in order to be used in the implementation of the neurons and synapses modules of the artificial neural networks. The main characteristics of this multiplier are the small silicon area and the low power consumption and the high value of the weight input voltage. (author)

  13. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  14. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  15. Silent synapses in neuromuscular junction development.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Lanuza, Maria A; García, Neus; Besalduch, Nuria; Tomàs, Marta

    2011-01-01

    In the last few years, evidence has been found to suggest that some synaptic contacts become silent but can be functionally recruited before they completely retract during postnatal synapse elimination in muscle. The physiological mechanism of developmental synapse elimination may be better understood by studying this synapse recruitment. This Mini-Review collects previously published data and new results to propose a molecular mechanism for axonal disconnection. The mechanism is based on protein kinase C (PKC)-dependent inhibition of acetylcholine (ACh) release. PKC activity may be stimulated by a methoctramine-sensitive M2-type muscarinic receptor and by calcium inflow though P/Q- and L-type voltage-dependent calcium channels. In addition, tropomyosin-related tyrosine kinase B (trkB) receptor-mediated brain-derived neurotrophic factor (BDNF) activity may oppose the PKC-mediated ACh release depression. Thus, a balance between trkB and muscarinic pathways may contribute to the final functional suppression of some neuromuscular synapses during development. © 2010 Wiley-Liss, Inc.

  16. Neural Activity During The Formation Of A Giant Auditory Synapse

    NARCIS (Netherlands)

    M.C. Sierksma (Martijn)

    2018-01-01

    markdownabstractThe formation of synapses is a critical step in the development of the brain. During this developmental stage neural activity propagates across the brain from synapse to synapse. This activity is thought to instruct the precise, topological connectivity found in the sensory central

  17. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  18. Mitochondria and Neurotransmission: Evacuating the Synapse

    OpenAIRE

    Hollenbeck, Peter J.

    2005-01-01

    An abundance of mitochondria has been the hallmark of synapses since their first ultrastructural description 50 years ago. Mitochondria have been shown to be essential for synaptic form and function in many systems, but until recently it has not been clear exactly what role(s) they play in neurotransmission. Now, evidence from the nervous system of Drosophila identifies the specific subcellular events that are most dependent upon nearby mitochondria.

  19. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Ca(2+) influx and neurotransmitter release at ribbon synapses.

    Science.gov (United States)

    Cho, Soyoun; von Gersdorff, Henrique

    2012-01-01

    Ca(2+) influx through voltage-gated Ca(2+) channels triggers the release of neurotransmitters at presynaptic terminals. Some sensory receptor cells in the peripheral auditory and visual systems have specialized synapses that express an electron-dense organelle called a synaptic ribbon. Like conventional synapses, ribbon synapses exhibit SNARE-mediated exocytosis, clathrin-mediated endocytosis, and short-term plasticity. However, unlike non-ribbon synapses, voltage-gated L-type Ca(2+) channel opening at ribbon synapses triggers a form of multiquantal release that can be highly synchronous. Furthermore, ribbon synapses appear to be specialized for fast and high throughput exocytosis controlled by graded membrane potential changes. Here we will discuss some of the basic aspects of synaptic transmission at different types of ribbon synapses, and we will emphasize recent evidence that auditory and retinal ribbon synapses have marked differences. This will lead us to suggest that ribbon synapses are specialized for particular operating ranges and frequencies of stimulation. We propose that different types of ribbon synapses transfer diverse rates of sensory information by expressing a particular repertoire of critical components, and by placing them at precise and strategic locations, so that a continuous supply of primed vesicles and Ca(2+) influx leads to fast, accurate, and ongoing exocytosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Presumed Optic Disc Melanocytoma in a Young Nigerian: A ...

    African Journals Online (AJOL)

    homogenous soft tissue mass with broad base arising from the choroid in the optic nerve area and projecting into the vitreous cavity. No retinal detachment or sub-retinal fluid was seen. An assessment of right presumed ODM was made. She was refracted with visual acuity improvement to 6/5 in either eye and spectacles ...

  2. Compensatory cerebral motor control following presumed perinatal ischemic stroke

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R E; Brouwer, Oebele F; de Jong, Bauke M

    Case: A fifteen year-old left-handed girl presented with right-sided focal motor seizures. Neuroimaging showed a large left hemisphere lesion compatible with a middle cerebral artery stroke of presumed perinatal origin. She was not previously diagnosed with a motor deficit, although neurological

  3. Inference of topology and the nature of synapses, and the flow of information in neuronal networks

    Science.gov (United States)

    Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.

    2018-02-01

    The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

  4. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    Science.gov (United States)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  5. Energy-efficient neuron, synapse and STDP integrated circuits.

    Science.gov (United States)

    Cruz-Albrecht, Jose M; Yung, Michael W; Srinivasa, Narayan

    2012-06-01

    Ultra-low energy biologically-inspired neuron and synapse integrated circuits are presented. The synapse includes a spike timing dependent plasticity (STDP) learning rule circuit. These circuits have been designed, fabricated and tested using a 90 nm CMOS process. Experimental measurements demonstrate proper operation. The neuron and the synapse with STDP circuits have an energy consumption of around 0.4 pJ per spike and synaptic operation respectively.

  6. Communication Breakdown: The Impact of Ageing on Synapse Structure

    Science.gov (United States)

    Petralia, Ronald S.; Mattson, Mark P.; Yao, Pamela J.

    2014-01-01

    Impaired synaptic plasticity is implicated in the functional decline of the nervous system associated with ageing. Understanding the structure of ageing synapses is essential to understanding the functions of these synapses and their role in the ageing nervous system. In this review, we summarize studies on ageing synapses in vertebrates and invertebrates, focusing on changes in morphology and ultrastructure. We cover different parts of the nervous system, including the brain, the retina, the cochlea, and the neuromuscular junction. The morphological characteristics of aged synapses could shed light on the underlying molecular changes and their functional consequences. PMID:24495392

  7. How synapses can enhance sensibility of a neural network

    Science.gov (United States)

    Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.

    2018-02-01

    In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.

  8. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  9. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  10. Cell adhesion and matricellular support by astrocytes of the tripartite synapse

    NARCIS (Netherlands)

    Hillen, Anne E J; Burbach, J Peter H; Hol, Elly M

    2018-01-01

    Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses

  11. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    DEFF Research Database (Denmark)

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jørn Dybkjær

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches...... of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence......, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude...

  12. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  13. Sucessfull management of bilateral presumed Candida endogenous endophtalmitis following pancreatitis

    Directory of Open Access Journals (Sweden)

    Ricardo Evangelista Marrocos de Aragão

    2016-06-01

    Full Text Available ABSTRACT Endogenous endophthalmitis is a rare, and frequently devastating, ophthalmic disease. It occurs mostly in immunocompromised patients, or those with diabetes mellitus, cancer or intravenous drugs users. Candida infection is the most common cause of endogenous endophthalmitis. Ocular candidiasis develops within days to weeks of fungemia. The association of treatment for pancreatitis with endophthalmitis is unusual. Treatment with broad-spectrum antibiotics and total parenteral nutrition may explain endogenous endophthalmitis. We report the case of a patient with pancreatitis treated with broad-spectrum antibiotics and total parenteral nutrition who developed bilateral presumed Candida endogenous endophthalmitis that was successfully treated with vitrectomy and intravitreal amphotericin B.

  14. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  15. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  16. Detection of periprosthetic joint infections in presumed aseptic patients

    DEFF Research Database (Denmark)

    Xu, Yijuan; Lorenzen, Jan; Thomsen, Trine Rolighed

    2016-01-01

    Title: Detection of periprosthetic joint infections in presumed aseptic patients Yijuan Xu1, Jan Lorenzen1, Trine Rolighed Thomsen1,2, Kathrin Kluba3, Kathrin Chamaon3, Christoph Lohmann3 1. Danish Technological Institute, Aarhus, Denmark 2. Center for Microbial Communities, Department of Biotech......Title: Detection of periprosthetic joint infections in presumed aseptic patients Yijuan Xu1, Jan Lorenzen1, Trine Rolighed Thomsen1,2, Kathrin Kluba3, Kathrin Chamaon3, Christoph Lohmann3 1. Danish Technological Institute, Aarhus, Denmark 2. Center for Microbial Communities, Department...... of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark 3. Department of Orthopaedics, Otto-von-Guericke University of Magdeburg, Germany Aim: ”The HypOrth project (New approaches in the development of Hypoallergenic implant material in Orthopaedics: Steps to personalised medicine......) aims to investigate adverse immune reactions to implant materials. For this project, it is of utmost importance to exclude patients with periprosthetic joint infections (PJIs). The aim of this study was to rule out PJIs in included patients using prolonged culture and next generation sequencing (NGS...

  17. Gephyrin, the enigmatic organizer at GABAergic synapses

    DEFF Research Database (Denmark)

    Tretter, Verena; Mukherjee, Jayanta; Maric, Hans-Michael

    2012-01-01

    GABA(A) receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors...

  18. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Directory of Open Access Journals (Sweden)

    Iryna Yavorska

    2016-09-01

    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  19. A shared synapse architecture for efficient FPGA implementation of autoencoders.

    Science.gov (United States)

    Suzuki, Akihiro; Morie, Takashi; Tamukoh, Hakaru

    2018-01-01

    This paper proposes a shared synapse architecture for autoencoders (AEs), and implements an AE with the proposed architecture as a digital circuit on a field-programmable gate array (FPGA). In the proposed architecture, the values of the synapse weights are shared between the synapses of an input and a hidden layer, and between the synapses of a hidden and an output layer. This architecture utilizes less of the limited resources of an FPGA than an architecture which does not share the synapse weights, and reduces the amount of synapse modules used by half. For the proposed circuit to be implemented into various types of AEs, it utilizes three kinds of parameters; one to change the number of layers' units, one to change the bit width of an internal value, and a learning rate. By altering a network configuration using these parameters, the proposed architecture can be used to construct a stacked AE. The proposed circuits are logically synthesized, and the number of their resources is determined. Our experimental results show that single and stacked AE circuits utilizing the proposed shared synapse architecture operate as regular AEs and as regular stacked AEs. The scalability of the proposed circuit and the relationship between the bit widths and the learning results are also determined. The clock cycles of the proposed circuits are formulated, and this formula is used to estimate the theoretical performance of the circuit when the circuit is used to construct arbitrary networks.

  20. Reactivation of presumed adenoviral keratitis after laser in situ keratomileusis.

    Science.gov (United States)

    Safak, Nilgün; Bilgihan, Kamil; Gürelik, Gökhan; Ozdek, Sengül; Hasanreisoğlu, Berati

    2002-04-01

    We report a patient with reactivation of presumed adenoviral keratoconjunctivitis after laser in situ keratomileusis (LASIK) to correct high myopia. The preoperative refraction was -13.00 diopters (D) in the right eye and -14.00 D in the left eye, and the best corrected visual acuity was 20/20 in both eyes. On the first postoperative day, mild conjunctival hyperemia and multiple subepithelial infiltrations localized in the flap zone consistent with adenoviral keratoconjunctivitis were seen. After prompt treatment, the lesions resolved. As a consequence, LASIK successfully corrected the high myopia. Adenoviral keratoconjunctivitis can be reactivated after LASIK, unlike after photorefractive keratectomy, despite the absence of symptomatic and clinical findings before the procedure.

  1. Presumed symbolic use of diurnal raptors by Neanderthals.

    Directory of Open Access Journals (Sweden)

    Eugène Morin

    Full Text Available In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH assemblages conservatively dated to ≈ 100-60 kilo-years (ka ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS 5b (≈ 90 ka and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60-40 ka. The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions.

  2. Presumed symbolic use of diurnal raptors by Neanderthals.

    Science.gov (United States)

    Morin, Eugène; Laroulandie, Véronique

    2012-01-01

    In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH) assemblages conservatively dated to ≈ 100-60 kilo-years (ka) ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS) 5b (≈ 90 ka) and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60-40 ka). The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions.

  3. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina

    Science.gov (United States)

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.

    2012-01-01

    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  4. The organization of plasticity in the cerebellar cortex: from synapses to control.

    Science.gov (United States)

    D'Angelo, Egidio

    2014-01-01

    The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.

  5. Evidence for presynaptically silent synapses in the immature hippocampus

    International Nuclear Information System (INIS)

    Yoon, Jae Young; Choi, Sukwoo

    2017-01-01

    Silent synapses show NMDA receptor (NMDAR)-mediated synaptic responses, but not AMPAR-mediated synaptic responses. A prevailing hypothesis states that silent synapses contain NMDARs, but not AMPARs. However, alternative presynaptic hypotheses, according to which AMPARs are present at silent synapses, have been proposed; silent synapses show slow glutamate release via a fusion pore, and glutamate spillover from the neighboring synaptic terminals. Consistent with these presynaptic hypotheses, the peak glutamate concentrations at silent synapses have been estimated to be ≪170 μM, much lower than those seen at functional synapses. Glutamate transients predicted based on the two presynaptic mechanisms have been shown to activate only high-affinity NMDARs, but not low-affinity AMPARs. Interestingly, a previous study has developed a new approach to distinguish between the two presynaptic mechanisms using dextran, an inert macromolecule that reduces the diffusivity of released glutamate: postsynaptic responses through the fusion pore mechanism, but not through the spillover mechanism, are potentiated by reduced glutamate diffusivity. Therefore, we reasoned that if the fusion pore mechanism underlies silent synapses, dextran application would reveal AMPAR-mediated synaptic responses at silent synapses. In the present study, we recorded AMPAR-mediated synaptic responses at the CA3-CA1 synapses in neonatal rats in the presence of blockers for NMDARs and GABAARs. Bath application of dextran revealed synaptic responses at silent synapses. GYKI53655, a selective AMPAR-antagonist, completely inhibited the unsilenced synaptic responses, indicating that the unsilenced synaptic responses are mediated by AMPARs. The dextran-mediated reduction in glutamate diffusivity would also lead to the activation of metabotropic glutamate receptors (mGluRs), which might induce unsilencing via the activation of unknown intracellular signaling. Hence, we determined whether mGluR-blockers alter

  6. The immunological synapse: a focal point for endocytosis and exocytosis.

    Science.gov (United States)

    Griffiths, Gillian M; Tsun, Andy; Stinchcombe, Jane C

    2010-05-03

    There are many different cells in the immune system. To mount an effective immune response, they need to communicate with each other. One way in which this is done is by the formation of immunological synapses between cells. Recent developments show that the immune synapse serves as a focal point for exocytosis and endocytosis, directed by centrosomal docking at the plasma membrane. In this respect, formation of the immunological synapse bears striking similarities to cilia formation and cytokinesis. These intriguing observations suggest that the centrosome may play a conserved role in designating a specialized area of membrane for localized endocytosis and exocytosis.

  7. The cytotoxic T lymphocyte immune synapse at a glance.

    Science.gov (United States)

    Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M

    2016-08-01

    The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers. © 2016. Published by The Company of Biologists Ltd.

  8. Spikes matter for phase-locked bursting in inhibitory neurons

    Science.gov (United States)

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  9. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.

    Science.gov (United States)

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J

    2017-01-01

    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  11. Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36

    Science.gov (United States)

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.

    2014-08-01

    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single-channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i.

  12. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2010-06-01

    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  13. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.

    Science.gov (United States)

    Augustinaite, Sigita; Heggelund, Paul

    2018-05-24

    Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Advances in synapse formation: forging connections in the worm.

    Science.gov (United States)

    Cherra, Salvatore J; Jin, Yishi

    2015-01-01

    Synapse formation is the quintessential process by which neurons form specific connections with their targets to enable the development of functional circuits. Over the past few decades, intense research efforts have identified thousands of proteins that localize to the pre- and postsynaptic compartments. Genetic dissection has provided important insights into the nexus of the molecular and cellular network, and has greatly advanced our knowledge about how synapses form and function physiologically. Moreover, recent studies have highlighted the complex regulation of synapse formation with the identification of novel mechanisms involving cell interactions from non-neuronal sources. In this review, we cover the conserved pathways required for synaptogenesis and place specific focus on new themes of synapse modulation arising from studies in Caenorhabditis elegans. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 Wiley Periodicals, Inc.

  15. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    Science.gov (United States)

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  16. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  17. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses

    International Nuclear Information System (INIS)

    Soricelli, A.; Postiglione, A.; Grivet-Fojaja, M.R.; Mainenti, P.P.; Discepolo, A.; Varrone, A.; Salvatore, M.; Lassen, N.A.

    1996-01-01

    Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABA A receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (V d ) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends indiscriminately to affect all cortical neurons, albeit more so in some areas than in others. In this pilot study we measured V d in six patients with probable AD and in five age-matched controls using a brain-dedicated single-photon emission tomography scanner allowing all cortical levels to be sampled simultaneously. Reduced values were found in all regions except in the occipital (visual) cortex. In particular, temporal and parietal cortex V d was significantly (P d averaged 69 ml/ml in normals and 51 ml/ml in AD, and parietal V d averaged 71 ml/ml in normals and 48 ml/ml in AD. These results accord well with emission tomographic studies of blood flow or labelled glucose. This supports the idea that while only measuring a subpopulation of synapses, the IMZ method reflects synaptic loss and hence functional loss in AD. The method constitutes an in vivo version of synaptic quantitation that in histopathological studies has been shown to correlated closely with the mental deterioration in AD. (orig.)

  18. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  19. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Science.gov (United States)

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  20. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1.

    Science.gov (United States)

    Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn

    2016-08-15

    Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  2. The role of methotrexate in resolving ocular inflammation after specific therapy for presumed latent syphilitic uveitis and presumed tuberculosis-related uveitis.

    Science.gov (United States)

    Sahin, Ozlem; Ziaei, Alireza

    2014-07-01

    This study was designed to investigate whether the antiinflammatory and antiproliferative activity of oral and intravitreal methotrexate (MTX) suppresses intraocular inflammation in patients with presumed latent syphilitic uveitis and presumed tuberculosis-related uveitis. Interventional prospective study including three cases with presumed latent syphilitic uveitis treated with intravenous penicillin and oral MTX, and two cases with presumed tuberculosis-related uveitis treated with standard antituberculosis therapy and intravitreal MTX injections. Treatment efficacy of all cases was assessed by best-corrected visual acuity, fundus fluorescein angiography, and optical coherence tomography. Four eyes of 3 patients with presumed latent syphilitic uveitis had improved best-corrected visual acuity, suppression of intraocular inflammation, and resolution of cystoid macular edema in 6 months with oral MTX therapy. No recurrence of intraocular inflammation was observed in 6 months to 18 months of follow-up period after cessation of MTX. Two eyes of two patients with presumed tuberculosis-related uveitis showed improved best-corrected visual acuity, suppression of intraocular inflammation, and resolution of cystoid macular edema after intravitreal injections of MTX. No recurrence of intraocular inflammation was observed in 6 months to 8 months of follow-up period after cessation of antituberculous therapy. For the first time in the treatment of presumed latent syphilitic uveitis and presumed tuberculosis-related uveitis, we believe that MTX might have an adjunctive role to suppress intraocular inflammation, reduce uveitic macular edema, and prevent the recurrences of the diseases.

  3. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  4. VGLUT3 does not synergize GABA/glycine release during functional refinement of an inhibitory auditory circuit

    Directory of Open Access Journals (Sweden)

    Daniel T Case

    2014-11-01

    Full Text Available The vesicular glutamate transporter VGLUT3 is expressed at several locations not normally associated with glutamate release. Although the function of this protein remains generally elusive, when expressed in non-glutamatergic synaptic terminals, VGLUT3 can not only allow glutamate co-transmission but also synergize the action of non-glutamate vesicular transporters. Interestingly, in the immature glycinergic projection between the medial nucleus of the trapezoid body (MNTB and the lateral superior olive (LSO of auditory brainstem, the transient early expression of VGLUT3 is required for normal developmental refinement. It has however been unknown whether the primary function of VGLUT3 in development of these inhibitory synapses is to enable glutamate release or to promote loading of inhibitory neurotransmitter through vesicular synergy. Using tissue from young mice in which Vglut3 had been genetically deleted, we evaluated inhibitory neurotransmission in the MNTB-LSO pathway. Our results show, in contrast to what has been seen at adult synapses, that VGLUT3 expression has little or no effect on vesicular synergy at the immature glycinergic synapse of brainstem. This finding supports the model that the primary function of increased VGLUT3 expression in the immature auditory brainstem is to enable glutamate release in a developing inhibitory circuit.

  5. Stabilization of memory States by stochastic facilitating synapses.

    Science.gov (United States)

    Miller, Paul

    2013-12-06

    Bistability within a small neural circuit can arise through an appropriate strength of excitatory recurrent feedback. The stability of a state of neural activity, measured by the mean dwelling time before a noise-induced transition to another state, depends on the neural firing-rate curves, the net strength of excitatory feedback, the statistics of spike times, and increases exponentially with the number of equivalent neurons in the circuit. Here, we show that such stability is greatly enhanced by synaptic facilitation and reduced by synaptic depression. We take into account the alteration in times of synaptic vesicle release, by calculating distributions of inter-release intervals of a synapse, which differ from the distribution of its incoming interspike intervals when the synapse is dynamic. In particular, release intervals produced by a Poisson spike train have a coefficient of variation greater than one when synapses are probabilistic and facilitating, whereas the coefficient of variation is less than one when synapses are depressing. However, in spite of the increased variability in postsynaptic input produced by facilitating synapses, their dominant effect is reduced synaptic efficacy at low input rates compared to high rates, which increases the curvature of neural input-output functions, leading to wider regions of bistability in parameter space and enhanced lifetimes of memory states. Our results are based on analytic methods with approximate formulae and bolstered by simulations of both Poisson processes and of circuits of noisy spiking model neurons.

  6. Spatially restricted actin-regulatory signaling contributes to synapse morphology

    Science.gov (United States)

    Nicholson, Daniel A.; Cahill, Michael E.; Tulisiak, Christopher T.; Geinisman, Yuri; Penzes, Peter

    2012-01-01

    The actin cytoskeleton in dendritic spines is organized into microdomains, but how signaling molecules that regulate actin are spatially governed is incompletely understood. Here we examine how the localization of the RacGEF kalirin-7, a well-characterized regulator of actin in spines, varies as a function of postsynaptic density (PSD) area and spine volume. Using serial section electron microscopy (EM), we find that extrasynaptic, but not synaptic, expression of kalirin-7 varies directly with synapse size and spine volume. Moreover, we find that overall expression levels of kalirin-7 differ in spines bearing perforated and non-perforated synapses, due primarily to extrasynaptic pools of kalirin-7 expression in the former. Overall, our findings indicate that kalirin-7 is differentially compartmentalized in spines as a function of both synapse morphology and spine size. PMID:22458534

  7. Neuromorphic function learning with carbon nanotube based synapses

    International Nuclear Information System (INIS)

    Gacem, Karim; Filoramo, Arianna; Derycke, Vincent; Retrouvey, Jean-Marie; Chabi, Djaafar; Zhao, Weisheng; Klein, Jacques-Olivier

    2013-01-01

    The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build ground-breaking circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of the neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We show here that carbon-nanotube-based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm. The same ensemble of eight devices can notably be trained multiple times to code successively any three-input linearly separable Boolean logic function despite device-to-device variability. This work thus represents one of the very few demonstrations of actual function learning with synapses based on nanoscale building blocks. The potential of such an approach for the parallel learning of multiple and more complex functions is also evaluated. (paper)

  8. Neuroglial plasticity at striatal glutamatergic synapses in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Rosa M Villalba

    2011-08-01

    Full Text Available Striatal dopamine denervation is the pathological hallmark of Parkinson’s disease (PD. Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba et al., 2011. The concept of tripartite synapses (TS was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a. Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia-neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD

  9. Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses.

    Science.gov (United States)

    Cabezas, Carolina; Buño, Washington

    2006-05-01

    Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these differences. We have investigated the transmitter release properties of functional and silent Schaffer collateral synapses and show that on the average functional synapses displayed a lower percentage of failures and higher excitatory postsynaptic current (EPSC) amplitudes than silent synapses at +60 mV. Moreover, functional but not silent synapses show paired-pulse facilitation (PPF) at +60 mV and thus presynaptic short-term plasticity will be distinct in the two types of synapse. We examined whether intraterminal endoplasmic reticulum Ca2+ stores influenced the release properties of these synapses. Ryanodine (100 microM) and thapsigargin (1 microM) increased the percentage of failures and decreased both the EPSC amplitude and PPF in functional synapses. Caffeine (10 mM) had the opposite effects. In contrast, silent synapses were insensitive to both ryanodine and caffeine. Hence we have identified differences in the release properties of functional and silent synapses, suggesting that synaptic terminals of functional synapses express regulatory molecular mechanisms that are absent in silent synapses.

  10. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Elżbieta Krasowska

    Full Text Available Duchenne muscular dystrophy (DMD is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT mice, immunoreactivity of neuroligin2 (NL2, an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT, a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  11. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

    Science.gov (United States)

    Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.

    2018-01-01

    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787

  12. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...

  13. Cell Adhesion, the Backbone of the Synapse: “Vertebrate” and “Invertebrate” Perspectives

    OpenAIRE

    Giagtzoglou, Nikolaos; Ly, Cindy V.; Bellen, Hugo J.

    2009-01-01

    Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neu...

  14. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  15. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.

    Science.gov (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina

    2016-01-01

    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO 2 -based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%.

  16. Aetiological study of the presumed ocular histoplasmosis syndrome in the Netherlands

    NARCIS (Netherlands)

    Ongkosuwito, J.V.; Kortbeek, L.M.; Lelij, van der A.; Molicka, E.; Kijlstra, A.; Smet, de M.D.; Suttrop-Schulten, M.S.A.

    1999-01-01

    Aim. To investigate whether presumed ocular histoplasmosis syndrome in the Netherlands is caused by Histoplasma capsulatum and whether other risk factors might play a role in the pathogenesis of this syndrome. Methods. 23 patients were clinically diagnosed as having presumed ocular histoplasmosis

  17. Molecular Mechanisms of Synaptic Specificity: Spotlight on Hippocampal and Cerebellar Synapse Organizers.

    Science.gov (United States)

    Park, Dongseok; Bae, Sungwon; Yoon, Taek Han; Ko, Jaewon

    2018-04-18

    Synapses and neural circuits form with exquisite specificity during brain development to allow the precise and appropriate flow of neural information. Although this property of synapses and neural circuits has been extensively investigated for more than a century, molecular mechanisms underlying this property are only recently being unveiled. Recent studies highlight several classes of cell-surface proteins as organizing hubs in building structural and functional architectures of specific synapses and neural circuits. In the present minireview, we discuss recent findings on various synapse organizers that confer the distinct properties of specific synapse types and neural circuit architectures in mammalian brains, with a particular focus on the hippocampus and cerebellum.

  18. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Science.gov (United States)

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  19. Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life.

    Science.gov (United States)

    Aoki, Chiye; Sherpa, Ang D

    2017-01-01

    Mature excitatory synapses are composed of more than 1500 proteins postsynaptically and hundreds more that operate presynaptically. Among them, drebrin is an F-actin-binding protein that increases noticeably during juvenile synaptogenesis. Electron microscopic analysis reveals that drebrin is highly enriched specifically on the postsynaptic side of excitatory synapses. Since dendritic spines are structures specialized for excitatory synaptic transmission, the function of drebrin was probed by analyzing the ultrastructural characteristics of dendritic spines of animals with genetic deletion of drebrin A (DAKO), the adult isoform of drebrin. Electron microscopic analyses revealed that these brains are surprisingly intact, in that axo-spinous synaptic junctions are well-formed and not significantly altered in number. This normal ultrastructure may be because drebrin E, the alternate embryonic isoform, compensates for the genetic deletion of drebrin A. However, DAKO results in the loss of homeostatic plasticity of N-methyl-D-aspartate receptors (NMDARs). The NMDAR activation-dependent trafficking of the NR2A subunit-containing NMDARs from dendritic shafts into spine head cytoplasm is greatly diminished within brains of DAKO. Conversely, within brains of wild-type rodents, spines respond to NMDAR blockade with influx of F-actin, drebrin A, and NR2A subunits of NMDARs. These observations indicate that drebrin A facilitates the trafficking of NMDAR cargos in an F-actin-dependent manner to mediate homeostatic plasticity. Analysis of the brains of transgenic mice used as models of Alzheimer's disease (AD) reveals that the loss of drebrin from dendritic spines predates the emergence of synaptic dysfunction and cognitive impairment, suggesting that this form of homeostatic plasticity contributes toward cognition. Two studies suggest that the nature of drebrin's interaction with NMDARs is dependent on the receptor's subunit composition. Drebrin A can be found co

  20. Emergent Synapse Organizers: LAR-RPTPs and Their Companions.

    Science.gov (United States)

    Han, K A; Jeon, S; Um, J W; Ko, J

    2016-01-01

    Leukocyte common antigen-related receptor tyrosine phosphatases (LAR-RPTPs) have emerged as key players that organize various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. Recent research has highlighted the roles of LAR-RPTPs at neuronal synapses in mediating distinct synaptic adhesion pathways through interactions with a host of extracellular ligands and in governing a variety of intracellular signaling cascades through binding to various scaffolds and signaling proteins. In this chapter, we review and update current research progress on the extracellular ligands of LAR-RPTPs, regulation of their extracellular interactions by alternative splicing and heparan sulfates, and their intracellular signaling machineries. In particular, we review structural insights on complexes of LAR-RPTPs with their various ligands. These studies lend support to general molecular mechanisms underlying LAR-RPTP-mediated synaptic adhesion and signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  2. Neural circuit rewiring: insights from DD synapse remodeling.

    Science.gov (United States)

    Kurup, Naina; Jin, Yishi

    2016-01-01

    Nervous systems exhibit many forms of neuronal plasticity during growth, learning and memory consolidation, as well as in response to injury. Such plasticity can occur across entire nervous systems as with the case of insect metamorphosis, in individual classes of neurons, or even at the level of a single neuron. A striking example of neuronal plasticity in C. elegans is the synaptic rewiring of the GABAergic Dorsal D-type motor neurons during larval development, termed DD remodeling. DD remodeling entails multi-step coordination to concurrently eliminate pre-existing synapses and form new synapses on different neurites, without changing the overall morphology of the neuron. This mini-review focuses on recent advances in understanding the cellular and molecular mechanisms driving DD remodeling.

  3. Microorganism and filamentous fungi drive evolution of plant synapses.

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  4. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.

    Directory of Open Access Journals (Sweden)

    Itai Hayut

    2011-10-01

    Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.

  5. The State of Synapses in Fragile X Syndrome

    OpenAIRE

    Pfeiffer, Brad E.; Huber, Kimberly M.

    2009-01-01

    Fragile X Syndrome is the most common inherited form of mental retardation and a leading genetic cause of autism. There is increasing evidence in both FXS and other forms of autism that alterations in synapse number, structure and function are associated and contribute to these prevalent diseases. FXS is caused by loss of function of the Fmr1 gene which encodes the RNA binding protein, FMRP. Therefore, FXS is a tractable model to understand synaptic dysfunction in cognitive disorders. FMRP is...

  6. Storage capacity of attractor neural networks with depressing synapses

    International Nuclear Information System (INIS)

    Torres, Joaquin J.; Pantic, Lovorka; Kappen, Hilbert J.

    2002-01-01

    We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard mean-field approach. We find that at T=0 the critical storage capacity decreases with the degree of the depression. We confirm the validity of our main mean-field results with numerical simulations

  7. Process for forming synapses in neural networks and resistor therefor

    Science.gov (United States)

    Fu, Chi Y.

    1996-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  8. TFH-derived dopamine accelerates productive synapses in germinal centres.

    Science.gov (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G

    2017-07-20

    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  9. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  10. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic.

    Science.gov (United States)

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B; Perrat, Paola N; Waddell, Scott

    2016-03-16

    Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee

    2016-01-01

    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  12. The 'disector' a tool for quantitative assessment of synaptic plasticity an example on hippocampal synapses and synapse-perforations in ageing rats

    NARCIS (Netherlands)

    Groot, D.M.G. de; Bierman, E.P.B.; Bruijnzeel, P.L.B.; Woutersen, R.A.

    1995-01-01

    The 'disector' method was used to estimate number and size of simple non-perforated and complex 'perforated' synapses and their 'perforations' in the hippocampal CA3 area of 3, 12, 24 and 30 months old rats. A decrease with age from 3 to 24 months of age in the number of non-perforated synapses per

  13. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  14. Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses

    International Nuclear Information System (INIS)

    Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2014-01-01

    Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit

  15. Presumed consent in organ donation: the devil is in the detail

    OpenAIRE

    Hutchinson, Odette

    2008-01-01

    This article follows the recent publication of the Organs for Donation Task Force report, "Organs for Transplants", and considers the debate surrounding a change in the law in favour of presumed consent in organ donation.

  16. Evaluation of autopsy imaging (postmortem CT) to presume causes of death

    International Nuclear Information System (INIS)

    Nishihara, Keisuke; Sugihara, Shuji; Morioka, Nobuo; Sato, Shinya; Tsukamoto, Kazumichi; Ogawa, Toshihide

    2010-01-01

    A total of 123 patients arrived at the emergency room in a state of cardiopulmonary arrest were examined by CT after death. Forty one patients (33.3%) were presumed the causes of death by autopsy imaging (Ai). Only 30 patients (24.4%) could be presumed causes of death with postmortem inspection and clinical information. However, presumption rate of cause of death was improved up to 46.3% (22.0 points increase) by adding information provided in Ai. (author)

  17. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus

    Directory of Open Access Journals (Sweden)

    Miloslav eSedlacek

    2014-07-01

    Full Text Available Feedforward inhibition represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs, principal neurons of the dorsal cochlear nucleus (DCN that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and feed-forward inhibition in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven feed-forward inhibition (FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of feed-forward inhibition had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  18. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    Science.gov (United States)

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  19. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J

    2010-05-15

    We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.

  20. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    Science.gov (United States)

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  1. Alterations in the properties of neonatal thalamocortical synapses with time in in vitro slices.

    Directory of Open Access Journals (Sweden)

    Liliana L Luz

    Full Text Available New synapses are constantly being generated and lost in the living brain with only a subset of these being stabilized to form an enduring component of neuronal circuitry. The properties of synaptic transmission have primarily been established in a variety of in vitro neuronal preparations. It is not clear, however, if newly-formed and persistent synapses contribute to the results of these studies consistently throughout the lifespan of these preparations. In neonatal somatosensory, barrel, cortex we have previously hypothesized that a population of thalamocortical synapses displaying unusually slow kinetics represent newly-formed, default-transient synapses. This clear phenotype would provide an ideal tool to investigate if such newly formed synapses consistently contribute to synaptic transmission throughout a normal experimental protocol. We show that the proportion of synapses recorded in vitro displaying slow kinetics decreases with time after brain slice preparation. However, slow synapses persist in vitro in the presence of either minocycline, an inhibitor of microglia-mediated synapse elimination, or the TrkB agonist 7,8-dihydroxyflavone a promoter of synapse formation. These findings show that the observed properties of synaptic transmission may systematically change with time in vitro in a standard brain slice preparation.

  2. Lack of Cdkl5 disrupts the organization of excitatory and inhibitory synapses and parvalbumin interneurons in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Riccardo Pizzo

    2016-11-01

    Full Text Available CDKL5 (cyclin-dependent kinase-like 5 mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (CDKL5 disorder. CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1 of Cdkl5-/y mice. We found a severe reduction of c-fos expression in V1 of Cdkl5-/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5-/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period. The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the critical period of development.

  3. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex.

    Science.gov (United States)

    Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio

    2016-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5 -/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5 -/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5 -/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.

  4. Synapse:neural network for predict power consumption: users guide

    Energy Technology Data Exchange (ETDEWEB)

    Muller, C; Mangeas, M; Perrot, N

    1994-08-01

    SYNAPSE is forecasting tool designed to predict power consumption in metropolitan France on the half hour time scale. Some characteristics distinguish this forecasting model from those which already exist. In particular, it is composed of numerous neural networks. The idea for using many neural networks arises from past tests. These tests showed us that a single neural network is not able to solve the problem correctly. From this result, we decided to perform unsupervised classification of the 24 consumption curves. From this classification, six classes appeared, linked with the weekdays: Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays, holidays and bridge days. For each class and for each half hour, two multilayer perceptrons are built. The two of them forecast the power for one particular half hour, and for a day including one of the determined class. The input of these two network are different: the first one (short time forecasting) includes the powers for the most recent half hour and relative power of the previous day; the second (medium time forecasting) includes only the relative power of the previous day. A process connects the results of every networks and allows one to forecast more than one half-hour in advance. In this process, short time forecasting networks and medium time forecasting networks are used differently. The first kind of neural networks gives good results on the scale of one day. The second one gives good forecasts for the next predicted powers. In this note, the organization of the SYNAPSE program is detailed, and the user`s menu is described. This first version of synapse works and should allow the APC group to evaluate its utility. (authors). 6 refs., 2 appends.

  5. Comparative magnetic resonance imaging findings between gliomas and presumed cerebrovascular accidents in dogs.

    Science.gov (United States)

    Cervera, Vicente; Mai, Wilfried; Vite, Charles H; Johnson, Victoria; Dayrell-Hart, Betsy; Seiler, Gabriela S

    2011-01-01

    Cerebrovascular accidents, or strokes, and gliomas are common intraaxial brain lesions in dogs. An accurate differentiation of these two lesions is necessary for prognosis and treatment decisions. The magnetic resonance (MR) imaging characteristics of 21 dogs with a presumed cerebrovascular accident and 17 with a glioma were compared. MR imaging findings were reviewed retrospectively by three observers unaware of the final diagnosis. Statistically significant differences between the appearance of gliomas and cerebrovascular accidents were identified based on lesion location, size, mass effect, perilesional edema, and appearance of the apparent diffusion coefficient map. Gliomas were predominantly located in the cerebrum (76%) compared with presumed cerebrovascular accidents that were located mainly in the cerebellum, thalamus, caudate nucleus, midbrain, and brainstem (76%). Gliomas were significantly larger compared with presumed cerebrovascular accidents and more commonly associated with mass effect and perilesional edema. Wedge-shaped lesions were seen only in 19% of presumed cerebrovascular accidents. Between the three observers, 10-47% of the presumed cerebrovascular accidents were misdiagnosed as gliomas, and 0-12% of the gliomas were misdiagnosed as cerebrovascular accidents. Diffusion weighted imaging increased the accuracy of the diagnosis for both lesions. Agreement between observers was moderate (kappa = 0.48, P < 0.01).

  6. Neuron array with plastic synapses and programmable dendrites.

    Science.gov (United States)

    Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma

    2013-10-01

    We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.

  7. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  8. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction.

    Science.gov (United States)

    Tomàs, Josep M; Garcia, Neus; Lanuza, Maria A; Nadal, Laura; Tomàs, Marta; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M 1 , M 2 and M 4 ), adenosine receptors (AR; A 1 and A 2A ) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A 1 , M 1 and TrkB operate mainly by stimulating PKC whereas A 2A , M 2 and M 4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and

  9. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Josep M. Tomàs

    2017-08-01

    Full Text Available Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh receptors (subtypes mAChR; M1, M2 and M4, adenosine receptors (AR; A1 and A2A and the tropomyosin-related kinase B receptor (TrkB, among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC, to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ. This hypothesis is supported by: (i the tonic effect (shown by using selective inhibitors of several membrane receptors that accelerates axon loss between postnatal days P5–P9; (ii the synergistic, antagonic and modulatory effects (shown by paired inhibition of the receptors on axonal loss; (iii the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various

  10. 41 CFR 301-72.1 - Why is common carrier presumed to be the most advantageous method of transportation?

    Science.gov (United States)

    2010-07-01

    ... presumed to be the most advantageous method of transportation? 301-72.1 Section 301-72.1 Public Contracts... Transportation § 301-72.1 Why is common carrier presumed to be the most advantageous method of transportation? Travel by common carrier is presumed to be the most advantageous method of transportation because it...

  11. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  12. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.

    Science.gov (United States)

    Bill, Johannes; Legenstein, Robert

    2014-01-01

    Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network's spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic architectures.

  13. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    Science.gov (United States)

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  14. GLUT4 Mobilization Supports Energetic Demands of Active Synapses.

    Science.gov (United States)

    Ashrafi, Ghazaleh; Wu, Zhuhao; Farrell, Ryan J; Ryan, Timothy A

    2017-02-08

    The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Power-law forgetting in synapses with metaplasticity

    International Nuclear Information System (INIS)

    Mehta, A; Luck, J M

    2011-01-01

    The idea of using metaplastic synapses to incorporate the separate storage of long- and short-term memories via an array of hidden states was put forward in the cascade model of Fusi et al. In this paper, we devise and investigate two models of a metaplastic synapse based on these general principles. The main difference between the two models lies in their available mechanisms of decay, when a contrarian event occurs after the build-up of a long-term memory. In one case, this leads to the conversion of the long-term memory to a short-term memory of the opposite kind, while in the other, a long-term memory of the opposite kind may be generated as a result. Appropriately enough, the response of both models to short-term events is not affected by this difference in architecture. On the contrary, the transient response of both models, after long-term memories have been created by the passage of sustained signals, is rather different. The asymptotic behaviour of both models is, however, characterised by power-law forgetting with the same universal exponent

  16. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  17. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  18. Building blocks of temporal filters in retinal synapses.

    Directory of Open Access Journals (Sweden)

    Bongsoo Suh

    2014-10-01

    Full Text Available Sensory systems must be able to extract features of a stimulus to detect and represent properties of the world. Because sensory signals are constantly changing, a critical aspect of this transformation relates to the timing of signals and the ability to filter those signals to select dynamic properties, such as visual motion. At first assessment, one might think that the primary biophysical properties that construct a temporal filter would be dynamic mechanisms such as molecular concentration or membrane electrical properties. However, in the current issue of PLOS Biology, Baden et al. identify a mechanism of temporal filtering in the zebrafish and goldfish retina that is not dynamic but is in fact a structural building block-the physical size of a synapse itself. The authors observe that small, bipolar cell synaptic terminals are fast and highly adaptive, whereas large ones are slower and adapt less. Using a computational model, they conclude that the volume of the synaptic terminal influences the calcium concentration and the number of available vesicles. These results indicate that the size of the presynaptic terminal is an independent control for the dynamics of a synapse and may reveal aspects of synaptic function that can be inferred from anatomical structure.

  19. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling.

    Science.gov (United States)

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G; Bezprozvanny, Ilya; Huber, Kimberly M; Wu, Jiang I

    2016-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.

    Science.gov (United States)

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L; Szigeti-Buck, Klara; Sallam, Nermin L; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S

    2009-03-01

    Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.

  1. Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers.

    Science.gov (United States)

    Yuzaki, Michisuke

    2010-07-01

    Several C1q family members, especially the Cbln and C1q-like subfamilies, are highly and predominantly expressed in the central nervous system. Cbln1, a member of the Cbln subfamily, plays two unique roles at parallel fiber (PF)-Purkinje cell synapses in the cerebellum: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytotic pathway. The delta2 glutamate receptor (GluD2), which is predominantly expressed in Purkinje cells, plays similar critical roles in the cerebellum. In addition, viral expression of GluD2 or the application of recombinant Cbln1 induces PF-Purkinje cell synaptogenesis in vitro and in vivo. Antigen-unmasking methods were necessary to reveal the immunoreactivities for endogenous Cbln1 and GluD2 at the synaptic junction of PF synapses. We propose that Cbln1 and GluD2 are located at the synaptic cleft, where various proteins undergo intricate molecular interactions with each other, and serve as a bidirectional synaptic organizer. © The Author (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Presumed cultural similarity paradox : Expatriate adjustment and performance across the border or over the globe

    NARCIS (Netherlands)

    Vromans, P.; van Engen, M.L.; Mol, S.

    2013-01-01

    Purpose To introduce the presumed cultural similarity paradox as a possible explanation for the findings that adjusting to a culturally similar country is just as difficult as adjusting to a culturally dissimilar country. We provide a conceptual framework, enabling further understanding and research

  3. Presumed cultural similarity paradox: expatriate adjustment and performance across the border or over the globe

    NARCIS (Netherlands)

    Vromans, P.; van Engen, M.; Mol, S.

    2013-01-01

    Purpose - To introduce the presumed cultural similarity paradox as a possible explanation for the findings that adjusting to a culturally similar country is just as difficult as adjusting to a culturally dissimilar country. We provide a conceptual framework, enabling further understanding and

  4. Presumed atypical HDR syndrome associated with Band Keratopathy and pigmentary retinopathy.

    Science.gov (United States)

    Kim, Cinoo; Cheong, Hae Il; Kim, Jeong Hun; Yu, Young Suk; Kwon, Ji Won

    2011-01-01

    This report describes presumed atypical hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome associated with unexpected ocular findings. The patient had exotropia, bilateral band keratopathy, and pigmentary retinopathy, including attenuated retinal vessels and atrophy of the retinal pigment epithelium. Even though the calcific plaques were successfully removed, visual acuity in both eyes gradually decreased and electroretinography was extinguished. Copyright 2009, SLACK Incorporated.

  5. Secondary prevention after cerebral ischaemia of presumed arterial origin: is aspirin still the touchstone?

    NARCIS (Netherlands)

    A. Algra (Ale); P.J. Koudstaal (Peter Jan); J. van Gijn (Jan)

    1999-01-01

    textabstractPatients who have had a transient ischaemic attack or nondisabling ischaemic stroke of presumed arterial origin have an annual risk of death from all vascular causes, non-fatal stroke, or non-fatal myocardial infarction that ranges between 4% and 11% without treatment. In the

  6. Presumed PDF modeling of microjet assisted CH4–H2/air turbulent flames

    International Nuclear Information System (INIS)

    Chouaieb, Sirine; Kriaa, Wassim; Mhiri, Hatem; Bournot, Philippe

    2016-01-01

    Highlights: • Microjet assisted CH 4 –H 2 /air turbulent flames are numerically investigated. • Temperature, species and soot are well predicted by the Presumed PDF model. • An inner flame is identified due to the microjet presence. • The addition of hydrogen to the microjet assisted flames enhances mixing. • Soot emission is reduced by 36% for a 10% enriched microjet assisted flame. - Abstract: The characteristics of microjet assisted CH 4 –H 2 /air flames in a turbulent mode are numerically investigated. Simulations are performed using the Computational Fluid Dynamics code Fluent. The Presumed PDF and the Discrete Ordinates models are considered respectively for combustion and radiation modeling. The k–ε Realizable model is adopted as a turbulence closure model. The Tesner model is used to calculate soot particle quantities. In the first part of this paper, the Presumed PDF model is compared to the Eddy Dissipation model and to slow chemistry combustion models from literature. Results show that the Presumed PDF model predicts correctly thermal and species fields, as well as soot formation. The effect of hydrogen enrichment on CH 4 /air confined flames under the addition of an air microjet is investigated in the second part of this work. The found results show that an inner flame was identified due to the air microjet for the CH 4 –H 2 /air flames. Moreover, the increase of hydrogen percentage in the fuel mixture leads to mixing enhancement and consequently to considerable soot emission reduction.

  7. Presumed Perinatal Stroke in a Child with Down Syndrome and Moyamoya Disease

    Science.gov (United States)

    Pysden, Karen; Fallon, Penny; Moorthy, Bhagavatheswaran; Ganesan, Vijeya

    2010-01-01

    Moyamoya disease describes a cerebral arteriopathy characterized by stenosis or occlusion of the terminal internal carotid and/or the proximal middle cerebral arteries. We report a female child with trisomy 21 and bilateral moyamoya disease who presented, unusually, with a presumed perinatal cerebral infarct. The clinical, radiological, and…

  8. 28 CFR 104.44 - Determination of presumed noneconomic losses for decedents.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Determination of presumed noneconomic losses for decedents. 104.44 Section 104.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 Amount of Compensation for Eligible Claimants. § 104.44...

  9. 28 CFR 104.46 - Determination of presumed noneconomic losses for claimants who suffered physical harm.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Determination of presumed noneconomic losses for claimants who suffered physical harm. 104.46 Section 104.46 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 Amount of Compensation for...

  10. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek

    2010-06-01

    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  11. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses

    Directory of Open Access Journals (Sweden)

    Makoto Nishiyama

    2010-06-01

    Full Text Available GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and post-synaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and post-synaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD” at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA with LTP timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”. Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD” to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing and frequency dependences of long-term synaptic modifications in the hippocampus.

  12. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  13. INHIBITORY EFFECT OF SALVIA SCLAREA

    African Journals Online (AJOL)

    rakoe

    2011-11-02

    Nov 2, 2011 ... This study demonstrated anti-herpes simplex virus (HSV) activity of lavender, sage and ... Green monkey kidney cells were protected from HSV-2 infection by ... The highest inhibitory effect against HSV-2 was observed after treatment ..... some nuclear-replicating eukaryotic DNA viruses with large genomes.

  14. Inhibitory control in childhood stuttering

    NARCIS (Netherlands)

    Eggers, K.; de Nil, L.; Van den Bergh, B.R.H.

    2013-01-01

    Purpose The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method Participants were 30 children who

  15. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    Science.gov (United States)

    Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers. PMID:25206325

  16. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  17. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation

    Science.gov (United States)

    Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun

    2018-01-01

    Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. PMID:29620520

  18. Coordinated Feeding Behavior in Trichoplax, an Animal without Synapses.

    Directory of Open Access Journals (Sweden)

    Carolyn L Smith

    Full Text Available Trichoplax is a small disk-shaped marine metazoan that adheres to substrates and locomotes by ciliary gliding. Despite having only six cell types and lacking synapses Trichoplax coordinates a complex sequence of behaviors culminating in external digestion of algae. We combine live cell imaging with electron microscopy to show how this is accomplished. When Trichoplax glides over a patch of algae, its cilia stop beating so it ceases moving. A subset of one of the cell types, lipophils, simultaneously secretes granules whose content rapidly lyses algae. This secretion is accurately targeted, as only lipophils located near algae release granules. The animal pauses while the algal content is ingested, and then resumes gliding. Global control of gliding is coordinated with precise local control of lipophil secretion suggesting the presence of mechanisms for cellular communication and integration.

  19. Synchrony detection and amplification by silicon neurons with STDP synapses.

    Science.gov (United States)

    Bofill-i-petit, Adria; Murray, Alan F

    2004-09-01

    Spike-timing dependent synaptic plasticity (STDP) is a form of plasticity driven by precise spike-timing differences between presynaptic and postsynaptic spikes. Thus, the learning rules underlying STDP are suitable for learning neuronal temporal phenomena such as spike-timing synchrony. It is well known that weight-independent STDP creates unstable learning processes resulting in balanced bimodal weight distributions. In this paper, we present a neuromorphic analog very large scale integration (VLSI) circuit that contains a feedforward network of silicon neurons with STDP synapses. The learning rule implemented can be tuned to have a moderate level of weight dependence. This helps stabilise the learning process and still generates binary weight distributions. From on-chip learning experiments we show that the chip can detect and amplify hierarchical spike-timing synchrony structures embedded in noisy spike trains. The weight distributions of the network emerging from learning are bimodal.

  20. Spin switches for compact implementation of neuron and synapse

    International Nuclear Information System (INIS)

    Quang Diep, Vinh; Sutton, Brian; Datta, Supriyo; Behin-Aein, Behtash

    2014-01-01

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network

  1. Spin switches for compact implementation of neuron and synapse

    Energy Technology Data Exchange (ETDEWEB)

    Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Behin-Aein, Behtash [GLOBALFOUNDRIES, Inc., Sunnyvale, California 94085 (United States)

    2014-06-02

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.

  2. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.

    Science.gov (United States)

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-04

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow

  3. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  4. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos Ernesto; Ryge, Jesper

    2005-01-01

    Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery > 60 years ago, it has been...

  5. Presuming consent in the ethics of posthumous sperm procurement and conception.

    Science.gov (United States)

    Kroon, Frederick

    2015-12-01

    This paper compares standard conceptions of consent with the conception of consent defended by Kelton Tremellen and Julian Savulescu in their attempt to re-orient the ethical debate around posthumous sperm procurement and conception, as published in Reproductive BioMedicine Online in 2015. According to their radical proposal, the surviving partner's wishes are, in effect, the only condition that needs to be considered for there to be a legitimate moral case for these procedures: the default should be presumed consent to the procedures, whether or not the agent did consent or would have consented. The present paper argues that Tremellen and Savulescu's case for this position is flawed, but offers a reconstruction that articulates what may well be a hidden, and perhaps reasonable, assumption behind the argument. But while the new argument appears more promising, the reconstruction also suggests that the position of presumed consent is currently unlikely to be acceptable as policy.

  6. Presuming consent in the ethics of posthumous sperm procurement and conception

    Directory of Open Access Journals (Sweden)

    Frederick Kroon

    2015-12-01

    Full Text Available This paper compares standard conceptions of consent with the conception of consent defended by Kelton Tremellen and Julian Savulescu in their attempt to re-orient the ethical debate around posthumous sperm procurement and conception, as published in Reproductive BioMedicine Online in 2015. According to their radical proposal, the surviving partner’s wishes are, in effect, the only condition that needs to be considered for there to be a legitimate moral case for these procedures: the default should be presumed consent to the procedures, whether or not the agent did consent or would have consented. The present paper argues that Tremellen and Savulescu’s case for this position is flawed, but offers a reconstruction that articulates what may well be a hidden, and perhaps reasonable, assumption behind the argument. But while the new argument appears more promising, the reconstruction also suggests that the position of presumed consent is currently unlikely to be acceptable as policy.

  7. Impulsivity: A deficiency of inhibitory control?

    NARCIS (Netherlands)

    Lansbergen, M.M.

    2007-01-01

    Impulsivity has been defined as acting without thinking. Impulsivity can be quantified by impulsivity questionnaires, but also by behavioral paradigms which tax inhibitory control. Previous research has repeatedly demonstrated deficient inhibitory control in psychopathological samples characterized

  8. Safety of a Brief Emergency Department Observation Protocol for Patients With Presumed Fentanyl Overdose.

    Science.gov (United States)

    Scheuermeyer, Frank X; DeWitt, Christopher; Christenson, Jim; Grunau, Brian; Kestler, Andrew; Grafstein, Eric; Buxton, Jane; Barbic, David; Milanovic, Stefan; Torkjari, Reza; Sahota, Indy; Innes, Grant

    2018-03-09

    Fentanyl overdoses are increasing and few data guide emergency department (ED) management. We evaluate the safety of an ED protocol for patients with presumed fentanyl overdose. At an urban ED, we used administrative data and explicit chart review to identify and describe consecutive patients with uncomplicated presumed fentanyl overdose (no concurrent acute medical issues) from September to December 2016. We linked regional ED and provincial vital statistics databases to ascertain admissions, revisits, and mortality. Primary outcome was a composite of admission and death within 24 hours. Other outcomes included treatment with additional ED naloxone, development of a new medical issue while in the ED, and length of stay. A prespecified subgroup analysis assessed low-risk patients with normal triage vital signs. There were 1,009 uncomplicated presumed fentanyl overdose, mainly by injection. Median age was 34 years, 85% were men, and 82% received out-of-hospital naloxone. One patient was hospitalized and one discharged patient died within 24 hours (combined outcome 0.2%; 95% confidence interval [CI] 0.04% to 0.8%). Sixteen patients received additional ED naloxone (1.6%; 95% CI 1.0% to 2.6%), none developed a new medical issue (0%; 95% CI 0% to 0.5%), and median length of stay was 173 minutes (interquartile range 101 to 267). For 752 low-risk patients, no patients were admitted or developed a new issue, and one died postdischarge; 3 (0.4%; 95% CI 0.01% to 1.3%) received ED naloxone. In our cohort of ED patients with uncomplicated presumed fentanyl overdose-typically after injection-deterioration, admission, mortality, and postdischarge complications appear low; the majority can be discharged after brief observation. Patients with normal triage vital signs are unlikely to require ED naloxone. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  9. The presumed central nervous system effects of rocuronium in a neonate and its reversal with sugammadex.

    Science.gov (United States)

    Langley, Ross J; McFadzean, Jillian; McCormack, Jon

    2016-01-01

    We describe a 2-day-old male infant who received rocuronium as part of general anesthesia for a tracheal esophageal fistula repair. Postoperatively, he had prolonged central and peripheral neuromuscular blockade despite cessation of the rocuronium infusion several hours previously. This case discusses the presumed central nervous system effects of rocuronium in a neonate and its effective reversal with sugammadex. © 2015 John Wiley & Sons Ltd.

  10. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  11. Presumed Cases of Mumps in Pregnancy: Clinical and Infection Control Implications

    Directory of Open Access Journals (Sweden)

    Svjetlana Lozo

    2012-01-01

    Full Text Available Recently, a mumps outbreak in New York and New Jersey was reported by the Centers for Disease Control and Prevention (CDC. Subsequently, the dissemination of the disease was rapid, and, from June 28th 2009 through January 29th 2010, a total of 1,521 cases of mumps were reported in New York and New Jersey. Seven presumed cases occurred in pregnant women cared for at our institution. Mumps diagnosis as per the NYC Department of Health and Mental Hygiene was based on clinical manifestations, particularly parotitis. Prior immunizations with mumps vaccine and negative IgM were not adequate to rule out mumps infections. All of our seven patients had exposure to mumps in either their household or their community, and some of the them had symptoms of mumps. Due to the difficulties in interpreting serologies of these patients, their cases led to a presumed diagnosis of mumps. The diagnosis of mumps lead to the isolation of patients and health care personnel that were in contact with them. In this paper, we detail the presenting findings, diagnostic dilemmas and infection control challenges associated with presumed cases of mumps in pregnancy.

  12. Optical coherence tomography and fundus autofluorescence findings in presumed congenital simple retinal pigment epithelium hamartoma

    Directory of Open Access Journals (Sweden)

    Baskaran, Prabu

    2017-10-01

    Full Text Available Aim: Presumed congenital simple retinal pigment epithelium hamartoma is a rare benign lesion of the macula that mimics congenital hypertrophy of the retinal pigment epithelium (RPE and combined hamartoma of the retina and the RPE; newer imaging modalities can help in diagnosis. We report three patients with presumed congenital simple RPE hamartoma, and describe the enhanced-depth imaging optical coherence tomography (EDI-OCT and fundus autofluorescence (FAF findings. Methods: Two patients were asymptomatic; one had an intraocular foreign body in addition to the hamartoma. All had a similar jet black, elevated lesion in the macula, sparing the fovea. EDI-OCT showed a characteristic hyperreflective layer with complete optical shadowing of the deeper layers; FAF showed pronounced hypoautofluorescence of the lesion. Conclusion: Multimodal imaging with FAF and EDI-OCT can help to differentiate simple RPE hamartoma from similar RPE lesions, and may serve as a useful adjunct to clinical diagnosis of this rare tumor. We present the second largest series of presumed congenital simple RPE hamartoma, and – to the best of our knowledge – the first report of FAF findings of this tumor.

  13. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2014-01-01

    Familial hemiplegic migraine type 1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. In FHM1 knockin mice, excitatory neurotransmission at cortical pyramidal cell synapses is enhanced, but inhibitory neurotransmission at connected pairs of fast-spiking (FS) interneurons and pyramidal cells is unaltered, despite being initiated by CaV2.1 channels. The mechanism underlying the unaltered GABA release at cortical FS interneuron synapses remains unknown. Here, we show that the FHM1 R192Q mutation does not affect inhibitory transmission at autapses of cortical FS and other types of multipolar interneurons in microculture from R192Q knockin mice, and investigate the underlying mechanism. Lowering the extracellular [Ca2+] did not reveal gain-of-function of evoked transmission neither in control nor after prolongation of the action potential (AP) with tetraethylammonium, indicating unaltered AP-evoked presynaptic calcium influx at inhibitory autapses in FHM1 KI mice. Neither saturation of the presynaptic calcium sensor nor short duration of the AP can explain the unaltered inhibitory transmission in the mutant mice. Recordings of the P/Q-type calcium current in multipolar interneurons in microculture revealed that the current density and the gating properties of the CaV2.1 channels expressed in these interneurons are barely affected by the FHM1 mutation, in contrast with the enhanced current density and left-shifted activation gating of mutant CaV2.1 channels in cortical pyramidal cells. Our findings suggest that expression of specific CaV2.1 channels differentially sensitive to modulation by FHM1 mutations in inhibitory and excitatory cortical neurons underlies the gain-of-function of excitatory but unaltered inhibitory synaptic transmission and the likely consequent dysregulation of the cortical excitatory–inhibitory balance in FHM1. PMID:24907493

  14. A Feedforward Inhibitory Circuit Mediated by CB1-Expressing Fast-Spiking Interneurons in the Nucleus Accumbens.

    Science.gov (United States)

    Wright, William J; Schlüter, Oliver M; Dong, Yan

    2017-04-01

    The nucleus accumbens (NAc) gates motivated behaviors through the functional output of principle medium spiny neurons (MSNs), whereas dysfunctional output of NAc MSNs contributes to a variety of psychiatric disorders. Fast-spiking interneurons (FSIs) are sparsely distributed throughout the NAc, forming local feedforward inhibitory circuits. It remains elusive how FSI-based feedforward circuits regulate the output of NAc MSNs. Here, we investigated a distinct subpopulation of NAc FSIs that express the cannabinoid receptor type-1 (CB1). Using a combination of paired electrophysiological recordings and pharmacological approaches, we characterized and compared feedforward inhibition of NAc MSNs from CB1 + FSIs and lateral inhibition from recurrent MSN collaterals. We observed that CB1 + FSIs exerted robust inhibitory control over a large percentage of nearby MSNs in contrast to local MSN collaterals that provided only sparse and weak inhibitory input to their neighboring MSNs. Furthermore, CB1 + FSI-mediated feedforward inhibition was preferentially suppressed by endocannabinoid (eCB) signaling, whereas MSN-mediated lateral inhibition was unaffected. Finally, we demonstrated that CB1 + FSI synapses onto MSNs are capable of undergoing experience-dependent long-term depression in a voltage- and eCB-dependent manner. These findings demonstrated that CB1 + FSIs are a major source of local inhibitory control of MSNs and a critical component of the feedforward inhibitory circuits regulating the output of the NAc.

  15. On the Universality and Non-Universality of Spiking Neural P Systems With Rules on Synapses.

    Science.gov (United States)

    Song, Tao; Xu, Jinbang; Pan, Linqiang

    2015-12-01

    Spiking neural P systems with rules on synapses are a new variant of spiking neural P systems. In the systems, the neuron contains only spikes, while the spiking/forgetting rules are moved on the synapses. It was obtained that such system with 30 neurons (using extended spiking rules) or with 39 neurons (using standard spiking rules) is Turing universal. In this work, this number is improved to 6. Specifically, we construct a Turing universal spiking neural P system with rules on synapses having 6 neurons, which can generate any set of Turing computable natural numbers. As well, it is obtained that spiking neural P system with rules on synapses having less than two neurons are not Turing universal: i) such systems having one neuron can characterize the family of finite sets of natural numbers; ii) the family of sets of numbers generated by the systems having two neurons is included in the family of semi-linear sets of natural numbers.

  16. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso

    2008-01-01

    Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.

  17. Mechanisms of input and output synaptic specificity: finding partners, building synapses, and fine-tuning communication.

    Science.gov (United States)

    Rawson, Randi L; Martin, E Anne; Williams, Megan E

    2017-08-01

    For most neurons to function properly, they need to develop synaptic specificity. This requires finding specific partner neurons, building the correct types of synapses, and fine-tuning these synapses in response to neural activity. Synaptic specificity is common at both a neuron's input and output synapses, whereby unique synapses are built depending on the partnering neuron. Neuroscientists have long appreciated the remarkable specificity of neural circuits but identifying molecular mechanisms mediating synaptic specificity has only recently accelerated. Here, we focus on recent progress in understanding input and output synaptic specificity in the mammalian brain. We review newly identified circuit examples for both and the latest research identifying molecular mediators including Kirrel3, FGFs, and DGLα. Lastly, we expect the pace of research on input and output specificity to continue to accelerate with the advent of new technologies in genomics, microscopy, and proteomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alpha-Bungarotoxin labeling and acetylcholinesterase localization at the Mauthner fiber giant synapse in the hatchetfish

    International Nuclear Information System (INIS)

    Day, J.W.; Hall, D.H.; Hall, L.M.; Bennett, M.V.

    1983-01-01

    Autoradiographic and histochemical techniques have been used to characterize further the pharmacology of transmission at the Mauthner fiber giant synapse of the South American hatchetfish. [ 125 I]alpha-Bungarotoxin was applied to hatchetfish medullae and a standard autoradiographic procedure was carried out on 3- to 4-microns sections of glutaraldehyde-fixed tissue. All Mauthner fiber giant synapses, as identified by light microscopic criteria, had closely associated silver grains. Labeling was blocked by d-tubocurarine. Glutaraldehyde-fixed slices of hatchetfish medulla were stained histochemically for acetylcholinesterase; all giant synapses that could be identified in the light microscope showed heavy deposits of reaction product. Staining was blocked by diisopropyl-fluorophosphate, which inhibits both pseudocholinesterase and acetylcholinesterase, but was not blocked by tetraisopropylpyrophosphoramide, a specific pseudocholinesterase inhibitor. This evidence strongly supports the suggestion that the Mauthner fiber giant synapse is nicotinic cholinergic

  19. alpha-Bungarotoxin labeling and acetylcholinesterase localization at the Mauthner fiber giant synapse in the hatchetfish

    International Nuclear Information System (INIS)

    Day, J.W.; Hall, D.H.; Hall, L.M.; Bennett, M.V.

    1983-01-01

    Autoradiographic and histochemical techniques have been used to characterize further the pharmacology of transmission at the Mauthner fiber giant synapse of the South American hatchetfish. [ 125 I]alpha-Bungarotoxin was applied to hatchetfish medullae and a standard autoradiographic procedure was carried out on 3- to 4-microns sections of glutaraldehyde-fixed tissue. All Mauthner fiber giant synapses, as identified by light microscopic criteria, had closely associated silver grains. Labeling was blocked by d-tubocurarine. Glutaraldehyde-fixed slices of hatchetfish medulla were stained histochemically for acetylcholinesterase; all giant synapses that could be identified in the light microscope showed heavy deposits of reaction product. Staining was blocked by diisopropyl-fluorophosphate, which inhibits both pseudocholinesterase and acetylcholinesterase, but was not blocked by tetraisopropylpyrophosphoramide, a specific pseudocholinesterase inhibitor. This evidence strongly supports the suggestion that the Mauthner fiber giant synapse is nicotinic cholinergic

  20. Alpha-Bungarotoxin labeling and acetylcholinesterase localization at the Mauthner fiber giant synapse in the hatchetfish

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.W.; Hall, D.H.; Hall, L.M.; Bennett, M.V.

    1983-02-01

    Autoradiographic and histochemical techniques have been used to characterize further the pharmacology of transmission at the Mauthner fiber giant synapse of the South American hatchetfish. (/sup 125/I)alpha-Bungarotoxin was applied to hatchetfish medullae and a standard autoradiographic procedure was carried out on 3- to 4-microns sections of glutaraldehyde-fixed tissue. All Mauthner fiber giant synapses, as identified by light microscopic criteria, had closely associated silver grains. Labeling was blocked by d-tubocurarine. Glutaraldehyde-fixed slices of hatchetfish medulla were stained histochemically for acetylcholinesterase; all giant synapses that could be identified in the light microscope showed heavy deposits of reaction product. Staining was blocked by diisopropyl-fluorophosphate, which inhibits both pseudocholinesterase and acetylcholinesterase, but was not blocked by tetraisopropylpyrophosphoramide, a specific pseudocholinesterase inhibitor. This evidence strongly supports the suggestion that the Mauthner fiber giant synapse is nicotinic cholinergic.

  1. alpha-Bungarotoxin labeling and acetylcholinesterase localization at the Mauthner fiber giant synapse in the hatchetfish

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.W.; Hall, D.H.; Hall, L.M.; Bennett, M.V.

    1983-02-01

    Autoradiographic and histochemical techniques have been used to characterize further the pharmacology of transmission at the Mauthner fiber giant synapse of the South American hatchetfish. (/sup 125/I)alpha-Bungarotoxin was applied to hatchetfish medullae and a standard autoradiographic procedure was carried out on 3- to 4-microns sections of glutaraldehyde-fixed tissue. All Mauthner fiber giant synapses, as identified by light microscopic criteria, had closely associated silver grains. Labeling was blocked by d-tubocurarine. Glutaraldehyde-fixed slices of hatchetfish medulla were stained histochemically for acetylcholinesterase; all giant synapses that could be identified in the light microscope showed heavy deposits of reaction product. Staining was blocked by diisopropyl-fluorophosphate, which inhibits both pseudocholinesterase and acetylcholinesterase, but was not blocked by tetraisopropylpyrophosphoramide, a specific pseudocholinesterase inhibitor. This evidence strongly supports the suggestion that the Mauthner fiber giant synapse is nicotinic cholinergic.

  2. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    DEFF Research Database (Denmark)

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.

    2017-01-01

    optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse...

  3. Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Schmauss Claudia

    2007-01-01

    Full Text Available Abstract Background In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of

  4. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    Science.gov (United States)

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro

  5. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...... effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input...

  6. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  7. Resolution enhancement in neural networks with dynamical synapses

    Directory of Open Access Journals (Sweden)

    C. C. Alan Fung

    2013-06-01

    Full Text Available Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly known as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.

  8. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors.

    Science.gov (United States)

    Mota, Sandra I; Ferreira, Ildete L; Rego, A Cristina

    2014-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Science.gov (United States)

    Neftci, Emre O.; Pedroni, Bruno U.; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware. PMID:27445650

  10. A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila

    Directory of Open Access Journals (Sweden)

    Kazumichi Shimizu

    2017-05-01

    Full Text Available In the insect olfactory system, odor information is transferred from the antennal lobe (AL to higher brain areas by projection neurons (PNs in multiple AL tracts (ALTs. In several species, one of the ALTs, the mediolateral ALT (mlALT, contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs are GABAergic and project through this tract to the lateral horn (LH. Most excitatory PNs (ePNs, project through the medial ALT (mALT to the mushroom body (MB and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH. However, little is known about the properties and functions of vPNs at their dendritic branches in the AL. Here, we used optogenetic and patch clamp techniques to investigate the functional roles of vPNs in the AL. Surprisingly, our results show that specific activation of vPNs reliably elicits strong excitatory postsynaptic potentials (EPSPs in ePNs. Moreover, the connections between vPNs and ePNs are mediated by direct chemical synapses. Neither pulses of GABA, nor pharmagological, or genetic blockade of GABAergic transmission gave results consistent with the involvement of GABA in vPN-ePN excitatory transmission. These unexpected results suggest new roles for the vPN population in olfactory information processing.

  11. The Antibiotic Prescribing Pathway for Presumed Urinary Tract Infections in Nursing Home Residents.

    Science.gov (United States)

    Kistler, Christine E; Zimmerman, Sheryl; Scales, Kezia; Ward, Kimberly; Weber, David; Reed, David; McClester, Mallory; Sloane, Philip D

    2017-08-01

    Due to the high rates of inappropriate antibiotic prescribing for presumed urinary tract infections (UTIs) in nursing home (NH) residents, we sought to examine the antibiotic prescribing pathway and the extent to which it agrees with the Loeb criteria; findings can suggest strategies for antibiotic stewardship. Chart review of 260 randomly-selected cases from 247 NH residents treated with an antibiotic for a presumed UTI in 31 NHs in North Carolina. We examined the prescribing pathway from presenting illness, to the prescribing event, illness work-up and subsequent clinical events including emergency department use, hospitalization, and death. Analyses described the decision-making processes and outcomes and compared decisions made with Loeb criteria for initiation of antibiotics. Of 260 cases, 60% had documented signs/symptoms of the presenting illness and 15% met the Loeb criteria. Acute mental status change was the most commonly documented sign/symptom (24%). NH providers (81%) were the most common prescribers and ciprofloxacin (32%) was the most commonly prescribed antibiotic. Fourteen percent of presumed UTI cases included a white blood cell count, 71% included a urinalysis, and 72% had a urine culture. Seventy-five percent of cultures grew at least one organism with ≥100,000 colony-forming units/milliliter and 12% grew multi-drug resistant organisms; 28% of antibiotics were prescribed for more than 7 days, and 7% of cases had a subsequent death, emergency department visit, or hospitalization within 7 days. Non-specific signs/symptoms appeared to influence prescribing more often than urinary tract-specific signs/symptoms. Prescribers rarely stopped antibiotics, and a minority prescribed for overly long periods. Providers may need additional support to guide the decision-making process to reduce antibiotic overuse and antibiotic resistance. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  12. Epidemiology of ocular disorders presumed to be inherited in three large Italian dog breeds in Italy.

    Science.gov (United States)

    Guandalini, Adolfo; Di Girolamo, Nicola; Santillo, Daniele; Andreani, Valentina; Corvi, Roberta; Bandini, Marina; Peruccio, Claudio

    2017-09-01

    To describe the epidemiology and the types of eye disorders that are presumed to be inherited (PIED) in three large Italian dog breeds. Three large Italian dog breeds: Neapolitan Mastiff (FCI code: 197), Maremma Sheepdog (FCI code: 201), and Italian Corso dog (FCI code: 343). All dogs that underwent a complete ophthalmic examination between 1992 and 2012 were included in this prospective observational study. The prevalence of eye disorders with 95% confidence intervals was reported for presumed healthy dogs and for dogs referred to a veterinary center for an ophthalmic consultation. Univariate and multivariate logistic regression techniques were used to generate odds ratios. Of 605 dogs examined during the study period, 351 dogs were affected by at least one PIED (58%; 95% CI: 54-62%). The prevalence of PIED was significantly lower in dogs presented for ophthalmic examination (53.8%) as compared to presumed healthy dogs (62.2%)(OR: 1.4; 95% CI: 1.02-1.9; P = 0.037). Also after multivariate adjustment for the period of observation, the odds of Neapolitan Mastiff (92.1%; OR: 21.4; 95% CI: 11.1-41.4) and of Cane Corso (57.7%; OR: 2.5; 95% CI: 1.7-3.6) suffering a PIED were greater than the Maremma Sheepdog (35.4%). The most common PIED in each breed were entropion (24.3% of all the PIED) in the Neapolitan Mastiff, ectropion (36.6%) in the Corso dog, and cataract (27.9%) in the Maremma Sheepdog. Clinicians should be aware that three large Italian dog breeds frequently suffer PIED. Breed standards should be reconsidered, and breeding programs should be directed at limiting such disorders. © 2016 American College of Veterinary Ophthalmologists.

  13. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  14. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  15. Effects of Estradiol on Learned Helplessness and Associated Remodeling of Hippocampal Spine Synapses in Female Rats

    Science.gov (United States)

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; MacLusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2009-01-01

    Background Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in females is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant, desipramine. Considering the fact that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life may influence behavioral and synaptic responses to stress and depression. Methods Using electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n=70), under different conditions of estradiol exposure. Results Stress induced an acute and persistent loss of hippocampal spine synapses, while subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either prior to stress or prior to escape testing of nonstressed animals both increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. Conclusions These findings suggest that hippocampal spine synapse remodeling may be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression. PMID:19811775

  16. A systematic random sampling scheme optimized to detect the proportion of rare synapses in the neuropil.

    Science.gov (United States)

    da Costa, Nuno Maçarico; Hepp, Klaus; Martin, Kevan A C

    2009-05-30

    Synapses can only be morphologically identified by electron microscopy and this is often a very labor-intensive and time-consuming task. When quantitative estimates are required for pathways that contribute a small proportion of synapses to the neuropil, the problems of accurate sampling are particularly severe and the total time required may become prohibitive. Here we present a sampling method devised to count the percentage of rarely occurring synapses in the neuropil using a large sample (approximately 1000 sampling sites), with the strong constraint of doing it in reasonable time. The strategy, which uses the unbiased physical disector technique, resembles that used in particle physics to detect rare events. We validated our method in the primary visual cortex of the cat, where we used biotinylated dextran amine to label thalamic afferents and measured the density of their synapses using the physical disector method. Our results show that we could obtain accurate counts of the labeled synapses, even when they represented only 0.2% of all the synapses in the neuropil.

  17. A Reaction-Diffusion Model for Synapse Growth and Long-Term Memory

    Science.gov (United States)

    Liu, Kang; Lisman, John; Hagan, Michael

    Memory storage involves strengthening of synaptic transmission known as long-term potentiation (LTP). The late phase of LTP is associated with structural processes that enlarge the synapse. Yet, synapses must be stable, despite continual subunit turnover, over the lifetime of an encoded memory. These considerations suggest that synapses are variable-size stable structure (VSSS), meaning they can switch between multiple metastable structures with different sizes. The mechanisms underlying VSSS are poorly understood. While experiments and theory have suggested that the interplay between diffusion and receptor-scaffold interactions can lead to a preferred stable size for synaptic domains, such a mechanism cannot explain how synapses adopt widely different sizes. Here we develop a minimal reaction-diffusion model of VSSS for synapse growth, incorporating the recent observation from super-resolution microscopy that neural activity can build compositional heterogeneities within synaptic domains. We find that introducing such heterogeneities can change the stable domain size in a controlled manner. We discuss a potential connection between this model and experimental data on synapse sizes, and how it provides a possible mechanism to structurally encode graded long-term memory. We acknowledge the support from NSF INSPIRE Award number IOS-1526941 (KL, MFH, JL) and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR- 1420382 (MFH).

  18. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics

    Directory of Open Access Journals (Sweden)

    Cary Soares

    2017-10-01

    Full Text Available Summary: Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity. : Several forms of synaptic plasticity operating over distinct spatiotemporal scales have been described at hippocampal synapses. Whether these distinct plasticity mechanisms interact and influence one another remains incompletely understood. Here, Soares et al. show that homeostatic plasticity induced by network silencing influences short-term release dynamics and Hebbian plasticity rules at hippocampal synapses. Keywords: synapse, LTP, homeostatic plasticity, metaplasticity, iGluSNFR

  19. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL

    Science.gov (United States)

    Jenkins, Misty R; Stinchcombe, Jane C; Au-Yeung, Byron B; Asano, Yukako; Ritter, Alex T; Weiss, Arthur; Griffiths, Gillian M

    2014-01-01

    T cell receptor (TCR) activation leads to a dramatic reorganisation of both membranes and receptors as the immunological synapse forms. Using a genetic model to rapidly inhibit Zap70 catalytic activity we examined synapse formation between cytotoxic T lymphocytes and their targets. In the absence of Zap70 catalytic activity Vav-1 activation occurs and synapse formation is arrested at a stage with actin and integrin rich interdigitations forming the interface between the two cells. The membranes at the synapse are unable to flatten to provide extended contact, and Lck does not cluster to form the central supramolecular activation cluster (cSMAC). Centrosome polarisation is initiated but aborts before reaching the synapse and the granules do not polarise. Our findings reveal distinct roles for Zap70 as a structural protein regulating integrin-mediated control of actin vs its catalytic activity that regulates TCR-mediated control of actin and membrane remodelling during formation of the immunological synapse. DOI: http://dx.doi.org/10.7554/eLife.01310.001 PMID:24596147

  20. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat.

    Science.gov (United States)

    Bannister, K; Lockwood, S; Goncalves, L; Patel, R; Dickenson, A H

    2017-04-01

    Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain. © 2016 European Pain Federation - EFIC®.

  1. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  2. Echocardiographic findings in infants with presumed congenital Zika syndrome: Retrospective case series study

    Science.gov (United States)

    Santos, Cleusa C.; Feitosa, Fabiana G.; Ribeiro, Maria C.; Menge, Paulo; Lira, Izabelle M.

    2017-01-01

    Objective To report the echocardiographic evaluation of 103 infants with presumed congenital Zika syndrome. Methods An observational retrospective study was performed at Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil. 103 infants with presumed congenital Zika syndrome. All infants had microcephaly and head computed tomography findings compatible with congenital Zika syndrome. Zika IgM antibody was detected in cerebrospinal fluid samples of 23 infants. In 80 infants, the test was not performed because it was not available at that time. All infants had negative serology for HIV, syphilis, rubella, cytomegalovirus and toxoplasmosis. A complete transthoracic two-dimensional, M-mode, continuous wave and pulsed wave Doppler and color Doppler echocardiographic (PHILIPS HD11XE or HD15) examination was performed on all infants. Results 14/103 (13.5%) echocardiograms were compatible with congenital heart disease: 5 with an ostium secundum atrial septal defect, 8 had a hemodynamically insignificant small apical muscular ventricular septal defect and one infant with dyspnea had a large membranous ventricular septal defect. The echocardiograms considered normal included 45 infants with a persistent foramen ovale and 16 with a minimum patent ductus arteriosus. Conclusions Preliminarily this study suggests that congenital Zika syndrome may be associated with an increase prevalence of congenital heart disease. However the types of defects noted were septal defects, a proportion of which would not be hemodynamically significant. PMID:28426680

  3. Echocardiographic findings in infants with presumed congenital Zika syndrome: Retrospective case series study.

    Directory of Open Access Journals (Sweden)

    Danielle Di Cavalcanti

    Full Text Available To report the echocardiographic evaluation of 103 infants with presumed congenital Zika syndrome.An observational retrospective study was performed at Instituto de Medicina Integral Prof. Fernando Figueira (IMIP, Recife, Brazil. 103 infants with presumed congenital Zika syndrome. All infants had microcephaly and head computed tomography findings compatible with congenital Zika syndrome. Zika IgM antibody was detected in cerebrospinal fluid samples of 23 infants. In 80 infants, the test was not performed because it was not available at that time. All infants had negative serology for HIV, syphilis, rubella, cytomegalovirus and toxoplasmosis. A complete transthoracic two-dimensional, M-mode, continuous wave and pulsed wave Doppler and color Doppler echocardiographic (PHILIPS HD11XE or HD15 examination was performed on all infants.14/103 (13.5% echocardiograms were compatible with congenital heart disease: 5 with an ostium secundum atrial septal defect, 8 had a hemodynamically insignificant small apical muscular ventricular septal defect and one infant with dyspnea had a large membranous ventricular septal defect. The echocardiograms considered normal included 45 infants with a persistent foramen ovale and 16 with a minimum patent ductus arteriosus.Preliminarily this study suggests that congenital Zika syndrome may be associated with an increase prevalence of congenital heart disease. However the types of defects noted were septal defects, a proportion of which would not be hemodynamically significant.

  4. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective...... are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show...

  5. Ligand mobility modulates immunological synapse formation and T cell activation.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Hsu

    Full Text Available T cell receptor (TCR engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70 and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76. This molecular rearrangement results in formation of the immunological synapse (IS, a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca(2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses.

  6. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  7. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins

    Directory of Open Access Journals (Sweden)

    Rosemarie eGrantyn

    2011-07-01

    Full Text Available Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: 1 Synaptic transmission starts with GABA, 2 Nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release, 3 Immature synaptic terminals release vesicles with higher probability than mature synapses, 4 Immature GABAergic synapses are prone to paired pulse and tetanic depression, 5 Synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, 6 In immature neurons GABA acts as a depolarizing transmitter, 7 Synapse maturation implies IPSC shortening due to an increase in alpha1 subunit expression, 8 Extrasynaptic (tonic conductances can inhibit the development of synaptic (phasic GABA actions.

  8. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  9. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.

    Science.gov (United States)

    Racca, C; Stephenson, F A; Streit, P; Roberts, J D; Somogyi, P

    2000-04-01

    Glutamate receptors activated by NMDA (NMDARs) or AMPA (AMPARs) are clustered on dendritic spines of pyramidal cells. Both the AMPAR-mediated postsynaptic responses and the synaptic AMPAR immunoreactivity show a large intersynapse variability. Postsynaptic responses mediated by NMDARs show less variability. To assess the variability in NMDAR content and the extent of their coexistence with AMPARs in Schaffer collateral-commissural synapses of adult rat CA1 pyramidal cells, electron microscopic immunogold localization of receptors has been used. Immunoreactivity of NMDARs was detected in virtually all synapses on spines, but AMPARs were undetectable, on average, in 12% of synapses. A proportion of synapses had a very high AMPAR content relative to the mean content, resulting in a distribution more skewed toward larger values than that of NMDARs. The variability of synaptic NMDAR content [coefficient of variation (CV), 0.64-0.70] was much lower than that of the AMPAR content (CV, 1.17-1.45). Unlike the AMPAR content, the NMDAR content showed only a weak correlation with synapse size. As reported previously for AMPARs, the immunoreactivity of NMDARs was also associated with the spine apparatus within spines. The results demonstrate that the majority of the synapses made by CA3 pyramidal cells onto spines of CA1 pyramids express both NMDARs and AMPARs, but with variable ratios. A less-variable NMDAR content is accompanied by a wide variability of AMPAR content, indicating that the regulation of expression of the two receptors is not closely linked. These findings support reports that fast excitatory transmission at some of these synapses is mediated by activation mainly of NMDARs.

  10. Monetary rewards modulate inhibitory control

    Directory of Open Access Journals (Sweden)

    Paula Marcela Herrera

    2014-05-01

    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  11. UK National Data Centre archive of seismic recordings of (presumed) underground nuclear tests 1964-1996

    Science.gov (United States)

    Young, John; Peacock, Sheila

    2016-04-01

    The year 1996 has particular significance for forensic seismologists. This was the year when the Comprehensive Test Ban Treaty (CTBT) was signed in September at the United Nations, setting an international norm against nuclear testing. Blacknest, as a long time seismic centre for research into detecting and identifying underground explosions using seismology, provided significant technical advice during the CTBT negotiations. Since 1962 seismic recordings of both presumed nuclear explosions and earthquakes from the four seismometer arrays Eskdalemuir, Scotland (EKA), Yellowknife, Canada (YKA), Gauribidanur, India (GBA), and Warramunga, Australia (WRA) have been copied, digitised, and saved. There was a possibility this archive would be lost. It was decided to process the records and catalogue them for distribution to other groups and institutions. This work continues at Blacknest but the archive is no longer under threat. In addition much of the archive of analogue tape recordings has been re-digitised with modern equipment, allowing sampling rates of 100 rather than 20 Hz.

  12. Therapeutic High-Density Barium Enema in a Case of Presumed Diverticular Hemorrhage

    Directory of Open Access Journals (Sweden)

    Nonthalee Pausawasdi

    2011-02-01

    Full Text Available Many patients with lower gastrointestinal bleeding do not have an identifiable source of bleeding at colonoscopy. A significant percentage of these patients will have recurrent bleeding. In many patients, the presence of multiple diverticula leads to a diagnosis of presumed diverticular bleeding. Current treatment options include therapeutic endoscopy, angiography, or surgical resection, all of which depend on the identification of the diverticular source of bleeding. This report describes a case of recurrent bleeding in an elderly patient with diverticula but no identifiable source treated successfully with barium impaction therapy. This therapeutic modality does not depend on the identification of the bleeding diverticular lesion and was well tolerated by our 86-year-old patient.

  13. Predictors for the need for endoscopic therapy in patients with presumed acute upper gastrointestinal bleeding.

    Science.gov (United States)

    Kim, Su Sun; Kim, Kyung Up; Kim, Sung Jun; Seo, Seung In; Kim, Hyoung Su; Jang, Myoung Kuk; Kim, Hak Yang; Shin, Woon Geon

    2017-12-15

    Selecting patients with an urgent need for endoscopic hemostasis is difficult based only on simple parameters of presumed acute upper gastrointestinal bleeding. This study assessed easily applicable factors to predict cases in need of urgent endoscopic hemostasis due to acute upper gastrointestinal bleeding. The consecutively included patients were divided into the endoscopic hemostasis and nonendoscopic hemostasis groups. We reviewed the enrolled patients' medical records and analyzed various variables and parameters for acute upper gastrointestinal bleeding outcomes such as demographic factors, comorbidities, symptoms, signs, laboratory findings, rebleeding rate, and mortality to evaluate simple predictive factors for endoscopic treatment. A total of 613 patients were analyzed, including 329 patients in the endoscopic hemostasis and 284 patients in the non-endoscopic hemostasis groups. In the multivariate analysis, a bloody nasogastric lavage (adjusted odds ratio [AOR], 6.786; 95% confidence interval [CI], 3.990 to 11.543; p upper gastrointestinal bleeding.

  14. Presumed appendiceal abscess discovered to be ruptured Meckel diverticulum following percutaneous drainage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jeannie C.; Ostlie, Daniel J. [Children' s Mercy Hospital, Department of Surgery, Kansas City, MO (United States); Rivard, Douglas C.; Morello, Frank P. [Children' s Mercy Hospital, Department of Radiology, Kansas City, MO (United States)

    2008-08-15

    A Meckel diverticulum is an embryonic remnant of the omphalomesenteric duct that occurs in approximately 2% of the population. Most are asymptomatic; however, they are vulnerable to inflammation with subsequent consequences including diverticulitis and perforation. We report an 11-year-old boy who underwent laparoscopic appendectomy for perforated appendicitis at an outside institution. During his convalescence he underwent percutaneous drainage of a presumed postoperative abscess. A follow-up drain study demonstrated an enteric fistula. The drain was slowly removed from the abdomen over a period of 1 week. Three weeks following drain removal the patient reported recurrent nausea and abdominal pain. A CT scan demonstrated a 3.7-cm rim-enhancing air-fluid level with dependent contrast consistent with persistent enteric fistula and abscess. Exploratory laparoscopy was performed, at which time a Meckel diverticulum was identified and resected. This case highlights the diagnostic challenge and limitations of conventional radiology in complicated Meckel diverticulum. (orig.)

  15. Undiagnosed and comorbid disorders in patients with presumed chronic fatigue syndrome.

    Science.gov (United States)

    Mariman, An; Delesie, Liesbeth; Tobback, Els; Hanoulle, Ignace; Sermijn, Erica; Vermeir, Peter; Pevernagie, Dirk; Vogelaers, Dirk

    2013-11-01

    To assess undiagnosed and comorbid disorders in patients referred to a tertiary care center with a presumed diagnosis of chronic fatigue syndrome (CFS). Patients referred for chronic unexplained fatigue entered an integrated diagnostic pathway, including internal medicine assessment, psychodiagnostic screening, physiotherapeutic assessment and polysomnography+multiple sleep latency testing. Final diagnosis resulted from a multidisciplinary team discussion. Fukuda criteria were used for the diagnosis of CFS, DSM-IV-TR criteria for psychiatric disorders, ICSD-2 criteria for sleep disorders. Out of 377 patients referred, 279 (74.0%) were included in the study [84.9% female; mean age 38.8years (SD 10.3)]. A diagnosis of unequivocal CFS was made in 23.3%. In 21.1%, CFS was associated with a sleep disorder and/or psychiatric disorder, not invalidating the diagnosis of CFS. A predominant sleep disorder was found in 9.7%, 19.0% had a psychiatric disorder and 20.8% a combination of both. Only 2.2% was diagnosed with a classical internal disease. In the total sample, a sleep disorder was found in 49.8%, especially obstructive sleep apnea syndrome, followed by psychophysiologic insomnia and periodic limb movement disorder. A psychiatric disorder was diagnosed in 45.2%; mostly mood and anxiety disorder. A multidisciplinary approach to presumed CFS yields unequivocal CFS in only a minority of patients, and reveals a broad spectrum of exclusionary or comorbid conditions within the domains of sleep medicine and psychiatry. These findings favor a systematic diagnostic approach to CFS, suitable to identify a wide range of diagnostic categories that may be subject to dedicated care. © 2013. Published by Elsevier Inc. All rights reserved.

  16. Consenting options for posthumous organ donation: presumed consent and incentives are not favored

    Directory of Open Access Journals (Sweden)

    Hammami Muhammad M

    2012-11-01

    Full Text Available Abstract Background Posthumous organ procurement is hindered by the consenting process. Several consenting systems have been proposed. There is limited information on public relative attitudes towards various consenting systems, especially in Middle Eastern/Islamic countries. Methods We surveyed 698 Saudi Adults attending outpatient clinics at a tertiary care hospital. Preference and perception of norm regarding consenting options for posthumous organ donation were explored. Participants ranked (1, most agreeable the following, randomly-presented, options from 1 to 11: no-organ-donation, presumed consent, informed consent by donor-only, informed consent by donor-or-surrogate, and mandatory choice; the last three options ± medical or financial incentive. Results Mean(SD age was 32(9 year, 27% were males, 50% were patients’ companions, 60% had ≥ college education, and 20% and 32%, respectively, knew an organ donor or recipient. Mandated choice was among the top three choices for preference of 54% of respondents, with an overall median[25%,75%] ranking score of 3[2,6], and was preferred over donor-or-surrogate informed consent (4[2,7], p vs. 11[6,11], respectively, p = 0.002. Compared to females, males more perceived donor-or-surrogate informed consent as the norm (3[1,6] vs. 5[3,7], p vs. 8[4,9], p vs. 5[2,7], p  Conclusions We conclude that: 1 most respondents were in favor of posthumous organ donation, 2 mandated choice system was the most preferred and presumed consent system was the least preferred, 3 there was no difference between preference and perception of norm in consenting systems ranking, and 4 financial (especially in females and medical (especially in males incentives reduced preference.

  17. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  18. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory.

    Science.gov (United States)

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-05-19

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons.

  19. Simulations of centriole of polarized centrosome as a monopole antenna in immune and viral synapses.

    Science.gov (United States)

    Dvorak, Josef; Melichar, Bohuslav; Filipova, Alzbeta; Grimova, Jana; Grimova, Nela; Rozsypalova, Aneta; Buka, David; Voboril, Rene; Zapletal, Radek; Buchler, Tomas; Richter, Igor; Buka, David

    2018-01-01

    The immune synapse (IS) is a temporary interface between an antigen-presenting cell and an effector lymphocyte. Viral synapse is a molecularly organized cellular junction that is structurally similar to the IS. Primary cilium is considered as a functional homologue of the IS due to the morphological and functional similarities in architecture between both micotubule structures. It has been hypothesized that endogenous electromagnetic field in the cell is generated by a unique cooperating system between mitochondria and microtubules. We are extending this prior hypothesis of the endogenous electromagnetic field in the cell postulating that polarized centriole in immune and viral synapse could serve as a monopole antenna. This is an addition to our hypothesis that primary cilium could serve as a monopole antenna. We simulated the distribution of electric field of centriole of polarized centrosome as a monopole antenna in immune and viral synapse. Very weak electromagnetic field of polarized centriole of CD8+ T lymphocyte in IS can contribute to the transport of cytolytic granules into the attacked (cancer) cell. Analogically, very weak electromagnetic field of polarized centriole in viral synapse of infected CD4 cells can aid the transport of viruses (human immunodeficiency virus) to non-infected CD4 cells. We hypothesized that healthy organisms need these monopole antennas. If, during the neoplastic transformation, healthy cells lose monopole antennas in form of primary cilia, the IS aims to replace them by monopole antennas of polarized centrioles in IS to restore homeostasis.

  20. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  1. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  2. Molecular switches at the synapse emerge from receptor and kinase traffic.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

  3. Optimal recall from bounded metaplastic synapses: predicting functional adaptations in hippocampal area CA3.

    Directory of Open Access Journals (Sweden)

    Cristina Savin

    2014-02-01

    Full Text Available A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.

  4. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2

    Directory of Open Access Journals (Sweden)

    Elodie De Bruyckere

    2018-04-01

    Full Text Available Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs. Moreover, a dramatic decline of long-term potentiation (LTP of the dentate gyrus-CA3 (DG-CA3 projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.

  5. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  6. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Directory of Open Access Journals (Sweden)

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  7. Kalirin, a key player in synapse formation, is implicated in human diseases.

    Science.gov (United States)

    Mandela, Prashant; Ma, Xin-Ming

    2012-01-01

    Synapse formation is considered to be crucial for learning and memory. Understanding the underlying molecular mechanisms of synapse formation is a key to understanding learning and memory. Kalirin-7, a major isoform of Kalirin in adult rodent brain, is an essential component of mature excitatory synapses. Kalirin-7 interacts with multiple PDZ-domain-containing proteins including PSD95, spinophilin, and GluR1 through its PDZ-binding motif. In cultured hippocampal/cortical neurons, overexpression of Kalirin-7 increases spine density and spine size whereas reduction of endogenous Kalirin-7 expression decreases synapse number, and spine density. In Kalirin-7 knockout mice, spine length, synapse number, and postsynaptic density (PSD) size are decreased in hippocampal CA1 pyramidal neurons; these morphological alterations are accompanied by a deficiency in long-term potentiation (LTP) and a decreased spontaneous excitatory postsynaptic current (sEPSC) frequency. Human Kalirin-7, also known as Duo or Huntingtin-associated protein-interacting protein (HAPIP), is equivalent to rat Kalirin-7. Recent studies show that Kalirin is relevant to many human diseases such as Huntington's Disease, Alzheimer's Disease, ischemic stroke, schizophrenia, depression, and cocaine addiction. This paper summarizes our recent understanding of Kalirin function.

  8. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    Science.gov (United States)

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  9. Nanogranular SiO{sub 2} proton gated silicon layer transistor mimicking biological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. J.; Huang, G. S., E-mail: gshuang@fudan.edu.cn, E-mail: pfeng@nju.edu.cn; Guo, Q. L.; Tian, Z. A.; Li, G. J.; Mei, Y. F. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Feng, P., E-mail: gshuang@fudan.edu.cn, E-mail: pfeng@nju.edu.cn; Shao, F.; Wan, Q. [School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-06-20

    Silicon on insulator (SOI)-based transistors gated by nanogranular SiO{sub 2} proton conducting electrolytes were fabricated to mimic synapse behaviors. This SOI-based device has both top proton gate and bottom buried oxide gate. Electrical transfer properties of top proton gate show hysteresis curves different from those of bottom gate, and therefore, excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked. Moreover, we noticed that PPF index can be effectively tuned by the spike interval applied on the top proton gate. Synaptic behaviors and functions, like short-term memory, and its properties are also experimentally demonstrated in our device. Such SOI-based electronic synapses are promising for building neuromorphic systems.

  10. Long-term potentiation expands information content of hippocampal dentate gyrus synapses.

    Science.gov (United States)

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M

    2018-03-06

    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  11. Dynamic Observation of Brain-Like Learning in a Ferroelectric Synapse Device

    Science.gov (United States)

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito; Fujii, Eiji; Tsujimura, Ayumu

    2013-04-01

    A brain-like learning function was implemented in an electronic synapse device using a ferroelectric-gate field effect transistor (FeFET). The FeFET was a bottom-gate type FET with a ZnO channel and a ferroelectric Pb(Zr,Ti)O3 (PZT) gate insulator. The synaptic weight, which is represented by the channel conductance of the FeFET, is updated by applying a gate voltage through a change in the ferroelectric polarization in the PZT. A learning function based on the symmetric spike-timing dependent synaptic plasticity was implemented in the synapse device using the multilevel weight update by applying a pulse gate voltage. The dynamic weighting and learning behavior in the synapse device was observed as a change in the membrane potential in a spiking neuron circuit.

  12. Eph receptors and ephrins in neuron-astrocyte communication at synapses.

    Science.gov (United States)

    Murai, Keith K; Pasquale, Elena B

    2011-11-01

    Neuron-glia communication is essential for regulating the properties of synaptic connections in the brain. Astrocytes, in particular, play a critical and complex role in synapse development, maintenance, and plasticity. Likewise, neurons reciprocally influence astrocyte physiology. However, the molecular signaling events that enable astrocytes and neurons to effectively communicate with each other are only partially defined. Recent findings have revealed that Eph receptor tyrosine kinases and ephrins play an important role in contact-dependent neuron-glia communication at synapses. Upon binding, these two families of cell surface-associated proteins trigger bidirectional signaling events that regulate the structural and physiological properties of both neurons and astrocytes. This review will focus on the emerging role of Eph receptors and ephrins in neuron-astrocyte interaction at synapses and discuss implications for synaptic plasticity, behavior, and disease. Copyright © 2011 Wiley-Liss, Inc.

  13. Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM synapses

    Directory of Open Access Journals (Sweden)

    Stefano eAmbrogio

    2016-03-01

    Full Text Available We present a novel one-transistor/one-resistor (1T1R synapse for neuromorphic networks, based on phase change memory (PCM technology. The synapse is capable of spike-timing dependent plasticity (STDP, where gradual potentiation relies on set transition, namely crystallization, in the PCM, while depression is achieved via reset or amorphization of a chalcogenide active volume. STDP characteristics are demonstrated by experiments under variable initial conditions and number of pulses. Finally, we support the applicability of the 1T1R synapse for learning and recognition of visual patterns by simulations of fully connected neuromorphic networks with 2 or 3 layers with high recognition efficiency. The proposed scheme provides a feasible low-power solution for on-line unsupervised machine learning in smart reconfigurable sensors.

  14. Consenting options for posthumous organ donation: presumed consent and incentives are not favored

    Science.gov (United States)

    2012-01-01

    Background Posthumous organ procurement is hindered by the consenting process. Several consenting systems have been proposed. There is limited information on public relative attitudes towards various consenting systems, especially in Middle Eastern/Islamic countries. Methods We surveyed 698 Saudi Adults attending outpatient clinics at a tertiary care hospital. Preference and perception of norm regarding consenting options for posthumous organ donation were explored. Participants ranked (1, most agreeable) the following, randomly-presented, options from 1 to 11: no-organ-donation, presumed consent, informed consent by donor-only, informed consent by donor-or-surrogate, and mandatory choice; the last three options ± medical or financial incentive. Results Mean(SD) age was 32(9) year, 27% were males, 50% were patients’ companions, 60% had ≥ college education, and 20% and 32%, respectively, knew an organ donor or recipient. Mandated choice was among the top three choices for preference of 54% of respondents, with an overall median[25%,75%] ranking score of 3[2,6], and was preferred over donor-or-surrogate informed consent (4[2,7], p < 0.001), donor-only informed consent (5[3,7], p < 0.001), and presumed consent (7[3,10], p < 0.001). The addition of a financial or medical incentive, respectively, reduced ranking of mandated choice to 7[4,9], p < 0.001, and 5[3,8], p < 0.001; for donor-or-surrogate informed consent to 7[5,9], p < 0.001, and 5[3,7], p = 0.004; and for donor-only informed consent to 8[6,10], p < 0.001, and 5[3,7], p = 0.56. Distribution of ranking score of perception of norm and preference were similar except for no-organ donation (11[7,11] vs. 11[6,11], respectively, p = 0.002). Compared to females, males more perceived donor-or-surrogate informed consent as the norm (3[1,6] vs. 5[3,7], p < 0.001), more preferred mandated choice with financial incentive option (6[3,8] vs. 8[4,9], p < 0.001), and

  15. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress.

    Science.gov (United States)

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z

    2014-07-01

    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.

  16. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  17. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress

    Science.gov (United States)

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z

    2014-01-01

    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress. PMID:24589888

  18. Cost-Effectiveness of Laparoscopic Hysterectomy With Morcellation Compared With Abdominal Hysterectomy for Presumed Myomas.

    Science.gov (United States)

    Rutstein, Sarah E; Siedhoff, Matthew T; Geller, Elizabeth J; Doll, Kemi M; Wu, Jennifer M; Clarke-Pearson, Daniel L; Wheeler, Stephanie B

    2016-02-01

    Hysterectomy for presumed leiomyomata is 1 of the most common surgical procedures performed in nonpregnant women in the United States. Laparoscopic hysterectomy (LH) with morcellation is an appealing alternative to abdominal hysterectomy (AH) but may result in dissemination of malignant cells and worse outcomes in the setting of an occult leiomyosarcoma (LMS). We sought to evaluate the cost-effectiveness of LH versus AH. Decision-analytic model of 100 000 women in the United States assessing the incremental cost-effectiveness ratio (ICER) in dollars per quality-adjusted life-year (QALY) gained (Canadian Task Force classification III). U.S. hospitals. Adult premenopausal women undergoing LH or AH for presumed benign leiomyomata. We developed a decision-analytic model from a provider perspective across 5 years, comparing the cost-effectiveness of LH to AH in terms of dollar (2014 US dollars) per QALY gained. The model included average total direct medical costs and utilities associated with the procedures, complications, and clinical outcomes. Baseline estimates and ranges for cost and probability data were drawn from the existing literature. Estimated overall deaths were lower in LH versus AH (98 vs 103). Death due to LMS was more common in LH versus AH (86 vs 71). Base-case assumptions estimated that average per person costs were lower in LH versus AH, with a savings of $2193 ($24 181 vs $26 374). Over 5 years, women in the LH group experienced 4.99 QALY versus women in the AH group with 4.91 QALY (incremental gain of .085 QALYs). LH dominated AH in base-case estimates: LH was both less expensive and yielded greater QALY gains. The ICER was sensitive to operative costs for LH and AH. Varying operative costs of AH yielded an ICER of $87 651/QALY gained (minimum) to AH being dominated (maximum). Probabilistic sensitivity analyses, in which all input parameters and costs were varied simultaneously, demonstrated a relatively robust model. The AH approach was dominated

  19. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    Science.gov (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  20. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2016-11-01

    Full Text Available The parallel fiber-Purkinje cell synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fibers activity generates fast postsynaptic currents via AMPA receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression and long-term potentiation have been widely described for the parallel fiber-Purkinje cell synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The parallel fiber-Purkinje cell synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline, and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the parallel fiber-Purkinje cell synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, parallel fiber-Purkinje cell synapse dysfunctions have been identified in several murine models of spinocerebellar ataxia (SCA types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27, while in others the mGlu1 pathway is affected (SCA1, 3, 5. Interestingly, the parallel fiber-Purkinje cell synapse has been shown to be hyper-functional in a mutant mouse model of autism

  1. Label-free visualization of ultrastructural features of artificial synapses via cryo-EM.

    Science.gov (United States)

    Gopalakrishnan, Gopakumar; Yam, Patricia T; Madwar, Carolin; Bostina, Mihnea; Rouiller, Isabelle; Colman, David R; Lennox, R Bruce

    2011-12-21

    The ultrastructural details of presynapses formed between artificial substrates of submicrometer silica beads and hippocampal neurons are visualized via cryo-electron microscopy (cryo-EM). The silica beads are derivatized by poly-d-lysine or lipid bilayers. Molecular features known to exist at presynapses are clearly present at these artificial synapses, as visualized by cryo-EM. Key synaptic features such as the membrane contact area at synaptic junctions, the presynaptic bouton containing presynaptic vesicles, as well as microtubular structures can be identified. This is the first report of the direct, label-free observation of ultrastructural details of artificial synapses.

  2. Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.

    Science.gov (United States)

    Carta, Mario; Srikumar, Bettadapura N; Gorlewicz, Adam; Rebola, Nelson; Mulle, Christophe

    2018-02-15

    CA3 pyramidal cells display input-specific differences in the subunit composition of synaptic NMDA receptors (NMDARs). Although at low density, GluN2B contributes significantly to NMDAR-mediated EPSCs at mossy fibre synapses. Long-term potentiation (LTP) of NMDARs triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. GluN2B subunits are essential for the expression of LTP of NMDARs at mossy fibre synapses. Single neurons express NMDA receptors (NMDARs) with distinct subunit composition and biophysical properties that can be segregated in an input-specific manner. The dynamic control of the heterogeneous distribution of synaptic NMDARs is crucial to control input-dependent synaptic integration and plasticity. In hippocampal CA3 pyramidal cells from mice of both sexes, we found that mossy fibre (MF) synapses display a markedly lower proportion of GluN2B-containing NMDARs than associative/commissural synapses. The mechanism involved in such heterogeneous distribution of GluN2B subunits is not known. Here we show that long-term potentiation (LTP) of NMDARs, which is selectively expressed at MF-CA3 pyramidal cell synapses, triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. This activity-dependent recruitment of GluN2B at mature MF-CA3 pyramidal cell synapses contrasts with the removal of GluN2B subunits at other glutamatergic synapses during development and in response to activity. Furthermore, although expressed at low levels, GluN2B is necessary for the expression of LTP of NMDARs at MF-CA3 pyramidal cell synapses. Altogether, we reveal a previously unknown activity-dependent regulation and function of GluN2B subunits that may contribute to the heterogeneous plasticity induction rules in CA3 pyramidal cells. © 2017 Centre Nationnal de la Recherche Scientifique. The Journal of Physiology © 2017 The Physiological Society.

  3. The presumed reader in car advertisements published in Teresina's printed newspapers, from 1950 to 2002

    Directory of Open Access Journals (Sweden)

    Francisco Alves Filho

    2015-08-01

    Full Text Available This article aims to present how the image of the presumed reader has been built in the printed newspapers of the city of Teresina (Piaui State, Brazil, with them being the following: O Piauí, Folha da Manhã, O Dia, and Diário do Povo. In order to do so, we have researched the bibliography referent to the studies of authors such as Charles Bazerman (2011, Carolyn Miller (2009 [1984], and Amy Devitt (2004, representatives of Gender Rhetorical Studies. Besides these, we have consulted Bakhtin's assumptions for studying genre, mainly extracted from Marxism and the Philosophy of Language, and Aesthetics of Verbal Creation, as well as Brazilian authors related to the study of discursive genres, such as Fiorin (2008, Marcuschi (2008, and Faraco (2009. With the research, we could confirm that the advertisements actually build social-historic blocks capable of mirroring the values of a society, but also capable of contributing directly for determined values to be restored or forgotten.

  4. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  5. A discussion supporting presumed consent for posthumous sperm procurement and conception.

    Science.gov (United States)

    Tremellen, Kelton; Savulescu, Julian

    2015-01-01

    Conception of a child using cryopreserved sperm from a deceased man is generally considered ethically sound provided explicit consent for its use has been made, thereby protecting the man's autonomy. When death is sudden (trauma, unexpected illness), explicit consent is not possible, thereby preventing posthumous sperm procurement (PSP) and conception according to current European Society of Human Reproduction and Embryology and the American Society for Reproductive Medicine guidelines. Here, we argue that autonomy of a deceased person should not be considered the paramount ethical concern, but rather consideration of the welfare of the living (widow and prospective child) should be the primary focus. Posthumous conception can bring significant advantages to the widow and her resulting child, with most men supporting such practice. We suggest that a deceased man can benefit from posthumous conception (continuation of his 'bloodline', allowing his widow's wishes for a child to be satisfied), and has a moral duty to allow his widow access to his sperm, if she so wishes, unless he clearly indicated that he did not want children when alive. We outline the arguments favouring presumed consent over implied or proxy consent, plus practical considerations for recording men's wishes to opt-out of posthumous conception. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Evidence for presumable feline origin of sporadic G6P[9] rotaviruses in humans.

    Science.gov (United States)

    Pietsch, Corinna; Liebert, Uwe G

    2018-05-31

    Species A rotaviruses are highly diverse and impose a substantial burden to human and animal health. Interspecies transmission between livestock, domestic animals and humans is commonly observed, but spread of animal-like rotaviruses within the human population is limited. During the continued monitoring of rotavirus strains in Germany, an unusual G6P[9] rotavirus strain was detected in feces of a child. The complete rotavirus coding sequences revealed a unique G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E2-H3 genotype constellation. The virus was phylogenetically related to feline G3P[9] strains and other human G6P[9] rotaviruses of presumable zoonotic origin. Analysis of primer binding sites of G6 specific genotyping revealed further evidence of a G6P[9] feline reservoir. Moreover, substantial deficits of conventional semi-nested PCR genotyping approaches in detecting contemporary G6P[9] were revealed. Rotavirus strain GER29-14 most likely resulted from a direct or recent interspecies transmission from a cat to human. Further studies could assess nucleic acid sequences and genotype constellations of feline rotavirus to confirm the likely feline origin of sporadic human G6P[9] strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Feline dry eye syndrome of presumed neurogenic origin: a case report.

    Science.gov (United States)

    Sebbag, Lionel; Pesavento, Patricia A; Carrasco, Sebastian E; Reilly, Christopher M; Maggs, David J

    2018-01-01

    A 14-year-old female spayed Abyssinian cat, which about 1 year previously underwent thoracic limb amputation, radiotherapy and chemotherapy for an incompletely excised vaccine-related fibrosarcoma, was presented for evaluation of corneal opacity in the left eye (OS). The ocular surface of both eyes (OU) had a lackluster appearance and there was a stromal corneal ulcer OS. Results of corneal aesthesiometry, Schirmer tear test-1 (STT-1) and tear film breakup time revealed corneal hypoesthesia, and quantitative and qualitative tear film deficiency OU. Noxious olfactory stimulation caused increased lacrimation relative to standard STT-1 values suggesting an intact nasolacrimal reflex. Various lacrimostimulants were administered in succession; namely, 1% pilocarpine administered topically (15 days) or orally (19 days), and topically applied 0.03% tacrolimus (47 days). Pilocarpine, especially when given orally, was associated with notable increases in STT-1 values, but corneal ulceration remained/recurred regardless of administration route, and oral pilocarpine resulted in gastrointestinal upset. Tacrolimus was not effective. After 93 days, the cat became weak and lame and a low thyroxine concentration was detected in serum. The cat was euthanized and a necropsy performed. Both lacrimal glands were histologically normal, but chronic neutrophilic keratitis and reduced conjunctival goblet cell density were noted OU. The final diagnosis was dry eye syndrome (DES) of presumed neurogenic origin, associated with corneal hypoesthesia. This report reinforces the importance of conducting tearfilm testing in cats with ocular surface disease, as clinical signs of DES were different from those described in dogs.

  8. Presumed congenital infection by Zika virus: findings on psychomotor development - a case report

    Directory of Open Access Journals (Sweden)

    Ana Carla Gomes Botelho

    Full Text Available Abstract Introduction: the identification of Zika virus (ZikV in the amniotic fluid, in the placenta and in newborns' brains suggests a neurotropism of this agent in the brain development, resulting in neuro-psycho-motor alterations. Thus, this present study reports the assessment of children diagnosed by a congenital infection, presumably by ZikV, followed-up at the Rehabilitation Center Prof. Ruy Neves Baptist at the Instituto de Medicina Integral Prof. Fernando Figueira (IMIP. Description: as proposed by the Ministry of Health, the following instruments were used to evaluate the neuro-motor functions of four children with microcephaly aged between three and four months: The Test of Infant Motor Performance (TIMP; the functional vision assessment; the manual function scale development; and the clinical evaluation protocol on pediatric dysphagia (PAD-PED. Discussion: the children evaluated presented atypical motor performance, muscle tone and spontaneous motricity which encompass the symmetry and the motion range of the upper and lower limbs proven to be altered. The functional vision showed alterations which can cause limitations in the performance of functional activities and the learning process. Regarding to the speech articulator's functions observed that the maturation and coordination of sucking, swallowing and breathing did not yet encounter the appropriate age maturity level.

  9. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    Directory of Open Access Journals (Sweden)

    Liang-Mao Li

    2014-01-01

    Full Text Available This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%. The mean ablation depth was 114.39±45.51 μm and diameter of ablation was 4.06±1.07 mm. The mean time for healing of the epithelial defect was 8.8±5.6 days. Thirty-four eyes (82.9% showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8% still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully.

  10. The chemical component of the mixed GF-TTMn synapse in Drosophila melanogaster uses acetylcholine as its neurotransmitter.

    Science.gov (United States)

    Allen, Marcus J; Murphey, R K

    2007-07-01

    The largest central synapse in adult Drosophila is a mixed electro-chemical synapse whose gap junctions require the product of the shaking-B (shak-B) gene. Shak-B(2) mutant flies lack gap junctions at this synapse, which is between the giant fibre (GF) and the tergotrochanteral motor neuron (TTMn), but it still exhibits a long latency response upon GF stimulation. We have targeted the expression of the light chain of tetanus toxin to the GF, to block chemical transmission, in shak-B(2) flies. The long latency response in the tergotrochanteral muscle (TTM) was abolished indicating that the chemical component of the synapse mediates this response. Attenuation of GAL4-mediated labelling by a cha-GAL80 transgene, reveals the GF to be cholinergic. We have used a temperature-sensitive allele of the choline acetyltransferase gene (cha(ts2)) to block cholinergic synapses in adult flies and this also abolished the long latency response in shak-B(2) flies. Taken together the data provide evidence that both components of this mixed synapse are functional and that the chemical neurotransmitter between the GF and the TTMn is acetylcholine. Our findings show that the two components of this synapse can be separated to allow further studies into the mechanisms by which mixed synapses are built and function.

  11. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.

    Science.gov (United States)

    Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G

    2018-02-15

    A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.

  12. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    Science.gov (United States)

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory

  13. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse.

    Science.gov (United States)

    Huang, Yu; Chen, Zhiying; Jang, Joon Hee; Baig, Mirza S; Bertolet, Grant; Schroeder, Casey; Huang, Shengjian; Hu, Qian; Zhao, Yong; Lewis, Dorothy E; Qin, Lidong; Zhu, Michael Xi; Liu, Dongfang

    2018-04-18

    The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. We sought to determine the effect of PD-1 signaling on NK cells. PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Chorioretinal Lesions Presumed Secondary to Zika Virus Infection in an Immunocompromised Adult.

    Science.gov (United States)

    Henry, Christopher R; Al-Attar, Luma; Cruz-Chacón, Alexis M; Davis, Janet L

    2017-04-01

    Zika virus has spread rapidly throughout the Americas since 2015. The public health implications of Zika virus infection lend special importance to identifying the virus in unsuspected hosts. To describe relevant imaging studies and clinical features of chorioretinal lesions that are presumably associated with Zika virus and that share analogous features with chorioretinal lesions reported in cases of Dengue fever and West Nile virus. This is a case report from an academic referral center in Miami, Florida, of a woman in her 60s from Guaynabo, Puerto Rico, who presented with reduced visual acuity and bilateral diffuse, subretinal, confluent, placoid, and multifocal chorioretinal lesions. The patient was observed over a 5-month period. Visual acuity, clinical course, and multimodal imaging study results. Fluorescein angiography revealed early hypofluorescence and late staining of the chorioretinal lesions. Optical coherence tomography demonstrated outer retinal disruption in the placoid macular lesions. Zika RNA was detected in a plasma sample by real-time reverse transcription polymerase chain reaction testing and was suspected to be the cause of chorioretinal lesions after other viral and infectious causes were ruled out. Three weeks after the onset of symptoms, the patient's visual acuity had improved to 20/60 OD and 20/25 OS, with intraocular pressures of 18 mm Hg OD and 19 mm Hg OS. In 6 weeks, the chorioretinal lesions had healed and visual acuity had improved to 20/25 OD and 20/20 OS. Follow-up optical coherence tomography demonstrated interval recovery of the outer retina and photoreceptors. Acute-onset, self-resolving, placoid, or multifocal nonnecrotizing chorioretinal lesions may be a feature of active Zika virus chorioretinitis, as reported in other Flavivirus infections in adults. Similar findings in potentially exposed adults suggest that clinicians should consider IgM antibody or polymerase chain reaction testing for Zika virus as well as diagnostic

  15. Feline dry eye syndrome of presumed neurogenic origin: a case report

    Directory of Open Access Journals (Sweden)

    Lionel Sebbag

    2017-12-01

    Full Text Available Case summary A 14-year-old female spayed Abyssinian cat, which about 1 year previously underwent thoracic limb amputation, radiotherapy and chemotherapy for an incompletely excised vaccine-related fibrosarcoma, was presented for evaluation of corneal opacity in the left eye (OS. The ocular surface of both eyes (OU had a lackluster appearance and there was a stromal corneal ulcer OS. Results of corneal aesthesiometry, Schirmer tear test-1 (STT-1 and tear film breakup time revealed corneal hypoesthesia, and quantitative and qualitative tear film deficiency OU. Noxious olfactory stimulation caused increased lacrimation relative to standard STT-1 values suggesting an intact nasolacrimal reflex. Various lacrimostimulants were administered in succession; namely, 1% pilocarpine administered topically (15 days or orally (19 days, and topically applied 0.03% tacrolimus (47 days. Pilocarpine, especially when given orally, was associated with notable increases in STT-1 values, but corneal ulceration remained/recurred regardless of administration route, and oral pilocarpine resulted in gastrointestinal upset. Tacrolimus was not effective. After 93 days, the cat became weak and lame and a low thyroxine concentration was detected in serum. The cat was euthanized and a necropsy performed. Both lacrimal glands were histologically normal, but chronic neutrophilic keratitis and reduced conjunctival goblet cell density were noted OU. Relevance and novel information The final diagnosis was dry eye syndrome (DES of presumed neurogenic origin, associated with corneal hypoesthesia. This report reinforces the importance of conducting tearfilm testing in cats with ocular surface disease, as clinical signs of DES were different from those described in dogs.

  16. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions

    Science.gov (United States)

    Peacock, Sheila; Douglas, Alan; Bowers, David

    2017-08-01

    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  17. Neuropathological and biochemical criteria to identify acquired Creutzfeldt-Jakob disease among presumed sporadic cases.

    Science.gov (United States)

    Kobayashi, Atsushi; Parchi, Piero; Yamada, Masahito; Mohri, Shirou; Kitamoto, Tetsuyuki

    2016-06-01

    As an experimental model of acquired Creutzfeldt-Jakob disease (CJD), we performed transmission studies of sporadic CJD using knock-in mice expressing human prion protein (PrP). In this model, the inoculation of the sporadic CJD strain V2 into animals homozygous for methionine at polymorphic codon 129 (129 M/M) of the PRNP gene produced quite distinctive neuropathological and biochemical features, that is, widespread kuru plaques and intermediate type abnormal PrP (PrP(Sc) ). Interestingly, this distinctive combination of molecular and pathological features has been, to date, observed in acquired CJD but not in sporadic CJD. Assuming that these distinctive phenotypic traits are specific for acquired CJD, we revisited the literature and found two cases showing widespread kuru plaques despite the 129 M/M genotype, in a neurosurgeon and in a patient with a medical history of neurosurgery without dura mater grafting. By Western blot analysis of brain homogenates, we revealed the intermediate type of PrP(Sc) in both cases. Furthermore, transmission properties of brain extracts from these two cases were indistinguishable from those of a subgroup of dura mater graft-associated iatrogenic CJD caused by infection with the sporadic CJD strain V2. These data strongly suggest that the two atypical CJD cases, previously thought to represent sporadic CJD, very likely acquired the disease through exposure to prion-contaminated brain tissues. Thus, we propose that the distinctive combination of 129 M/M genotype, kuru plaques, and intermediate type PrP(Sc) , represents a reliable criterion for the identification of acquired CJD cases among presumed sporadic cases. © 2015 Japanese Society of Neuropathology.

  18. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica.

    Science.gov (United States)

    Jacquemyn, Hans; Waud, Michael; Lievens, Bart; Brys, Rein

    2016-07-01

    In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats. In this study, 454 amplicon pyrosequencing was used to investigate mycorrhizal communities associating with Epipactis helleborine in its typical forest habitat and with its presumed sister species E. neerlandica that almost exclusively occurs in coastal dune habitats. Samples of the phylogenetically more distant E. palustris, which co-occurred with E. neerlandica, were also included to investigate the role of habitat-specific conditions on mycorrhizal communities. A total of 105 operational taxonomic units (OTUs) of putative orchid mycorrhizal fungi were observed in the three studied species. The majority of these fungi were endophytic fungi of Helotiales and ectomycorrhizal fungi belonging to Thelephoraceae, Sebacinaceae and Inocybaceae. In addition, a large number of other ectomycorrhizal taxa were detected, including Cortinarius, Cenococcum, Tuber, Geopora, Wilcoxina, Meliniomyces, Hebeloma, Tricholoma, Russula and Peziza Mycorrhizal communities differed significantly between the three species, but differences were most pronounced between the forest species (E. helleborine) and the two dune slack species (E. neerlandica and E. palustris). The results clearly showed that recently diverged orchid species that occupy different habitats were characterized by significantly different mycorrhizal communities and call for more detailed experiments that aim at elucidating the contribution of habitat-specific adaptations in general and mycorrhizal divergence in particular to the process of speciation in orchids. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany

  19. Performance of thirteen clinical rules to distinguish bacterial and presumed viral meningitis in Vietnamese children.

    Directory of Open Access Journals (Sweden)

    Nguyen Tien Huy

    Full Text Available BACKGROUND AND PURPOSE: Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. METHODS: A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC using the method of DeLong and McNemar test for specificity comparison. RESULTS: Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85-90%. CONCLUSIONS: No clinical decision rules provided an acceptable specificity (>50% with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule.

  20. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    African Journals Online (AJOL)

    Phytochemical screening and in vitro acetylcholinesterase inhibitory activity of seven plant extracts. Titilayo Johnson, Oduje A. Akinsanmi, Enoch J. Banbilbwa, Tijani A. Yahaya, Karima Abdulaziz, Kolade Omole ...

  1. COMPARATIVE EVALUATION OF INHIBITORY ACTIVITY OF ...

    African Journals Online (AJOL)

    Osondu

    2013-02-26

    Feb 26, 2013 ... especially the four bacteria isolates used in this study are present in the epiphgram of both normal and ... Keyword: Albino snail, Archachatina marginata, Inhibitory activity, Epiphgram, Bacteria isolate. Introduction .... evolution.

  2. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-01-01

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  3. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  4. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  5. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses.

    Science.gov (United States)

    Krueger, Dilja D; Tuffy, Liam P; Papadopoulos, Theofilos; Brose, Nils

    2012-06-01

    Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Human synapses show a wide temporal window for spike-timing-dependent plasticity

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Goriounova, N.A.; Loebel, A.; Hjorth, J.; Baayen, J.C.; de Kock, C.P.J.; Mansvelder, H.D.

    2010-01-01

    Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic

  7. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    Science.gov (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  8. The cAMP cascade modulates the neuroinformative impact of quantal release at cholinergic synapse

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, František; Bukcharaeva, E.; Samigullin, D. V.; Nikolsky, E. E.

    2001-01-01

    Roč. 2, č. 2 (2001), s. 317-323 ISSN 1539-2791 R&D Projects: GA AV ČR IAA7011902 Grant - others:EU(XX) Nesting; RFBR(RU) 99-04-48286 Institutional research plan: CEZ:AV0Z5011922 Keywords : frog neuromuscular synapse * noradrenaline Subject RIV: ED - Physiology

  9. Synaptic heterogeneity and stimulus-induced modulation of depression in central synapses.

    Science.gov (United States)

    Hunter, J D; Milton, J G

    2001-08-01

    Short-term plasticity is a pervasive feature of synapses. Synapses exhibit many forms of plasticity operating over a range of time scales. We develop an optimization method that allows rapid characterization of synapses with multiple time scales of facilitation and depression. Investigation of paired neurons that are postsynaptic to the same identified interneuron in the buccal ganglion of Aplysia reveals that the responses of the two neurons differ in the magnitude of synaptic depression. Also, for single neurons, prolonged stimulation of the presynaptic neuron causes stimulus-induced increases in the early phase of synaptic depression. These observations can be described by a model that incorporates two availability factors, e.g., depletable vesicle pools or desensitizing receptor populations, with different time courses of recovery, and a single facilitation component. This model accurately predicts the responses to novel stimuli. The source of synaptic heterogeneity is identified with variations in the relative sizes of the two availability factors, and the stimulus-induced decrement in the early synaptic response is explained by a slowing of the recovery rate of one of the availability factors. The synaptic heterogeneity and stimulus-induced modifications in synaptic depression observed here emphasize that synaptic efficacy depends on both the individual properties of synapses and their past history.

  10. Memory and pattern storage in neural networks with activity dependent synapses

    Science.gov (United States)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  11. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses

    Science.gov (United States)

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.

    2015-01-01

    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  12. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  13. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    Science.gov (United States)

    Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

  14. Astrocyte lipid metabolism is critical for synapse development and function in vivo.

    Science.gov (United States)

    van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G

    2017-04-01

    The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682. © 2017 Wiley Periodicals, Inc.

  15. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses

    Science.gov (United States)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu

    2011-08-01

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  16. MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus.

    Science.gov (United States)

    Qiu, Shenfeng; Lu, Zhongming; Levitt, Pat

    2014-12-03

    The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation onto hippocampus CA1 neurons. Consistent with the morphological and biochemical changes, deletion of Met in mutant mice results in precocious maturation of excitatory synapse, as indicated by a reduction of the proportion of silent synapses, a faster GluN2A subunit switch, and an enhanced acquisition of AMPA receptors at synaptic sites. Thus, MET-mediated signaling appears to serve as a mechanism for controlling the timing of neuronal growth and functional maturation. These studies suggest that mistimed maturation of glutamatergic synapses leads to the aberrant neural circuits that may be associated with ASD risk. Copyright © 2014 the authors 0270-6474/14/3416166-14$15.00/0.

  17. Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit.

    Science.gov (United States)

    Chang, Chia-Ling; Trimbuch, Thorsten; Chao, Hsiao-Tuan; Jordan, Julia-Christine; Herman, Melissa A; Rosenmund, Christian

    2014-01-15

    Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits.

  18. NeuroD2 regulates the development of hippocampal mossy fiber synapses

    Directory of Open Access Journals (Sweden)

    Wilke Scott A

    2012-02-01

    Full Text Available Abstract Background The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF synapse. Results Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice. Conclusion These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.

  19. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  20. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2011-09-01

    High-resolution immunohistochemistry shows that the receptor protein p75(NTR) is present in the nerve terminal, muscle cell, and glial Schwann cell at the neuromuscular junction (NMJ) of postnatal rats (P4-P6) during the synapse elimination period. Blocking the receptor with the antibody anti-p75-192-IgG (1-5 μg/ml, 1 hr) results in reduced endplate potentials (EPPs) in mono- and polyinnervated synapses ex vivo, but the mean number of functional inputs per NMJ does not change for as long as 3 hr. Incubation with exogenous brain-derived neurotrophic factor (BDNF) for 1 hr (50 nM) resulted in a significant increase in the size of the EPPs in all nerve terminals, and preincubation with anti-p75-192-IgG prevented this potentiation. Long exposure (24 hr) in vivo of the NMJs to the antibody anti-p75-192-IgG (1-2 μg/ml) results in a delay of postnatal synapse elimination and even some regrowth of previously withdrawn axons, but also in some acceleration of the morphologic maturation of the postsynaptic nicotinic acetylcholine receptor (nAChR) clusters. The results indicate that p75(NTR) is involved in both ACh release and axonal retraction during postnatal axonal competition and synapse elimination. Copyright © 2011 Wiley-Liss, Inc.

  1. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2017-05-01

    Full Text Available During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR, adenosine autoreceptors (AR and trophic factor receptors (TFR, for neurotrophins and trophic cytokines during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  2. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  3. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    Science.gov (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Total regional and global number of synapses in the human brain neocortex

    NARCIS (Netherlands)

    Tang, Y.; Nyengaard, J.R.; Groot, D.M.G. de; Jorgen, H.; Gundersen, G.

    2001-01-01

    An estimator of the total number of synapses in neocortex of human autopsy brains based on unbiased stereological principles is described. Each randomly chosen cerebral hemisphere was stratified into the four major neocortical regions. Uniform sampling with a varying sampling fraction in each region

  5. Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Bruun, Erik; Dietrich, Casper

    1996-01-01

    In this work we present a hardware efficient matrix-vector multiplier architecture for artificial neural networks with digitally stored synapse strengths. We present a novel technique for manipulating bipolar inputs based on an analog two's complements method and an accurate current rectifier...

  6. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  7. Synapse-centric mapping of cortical models to the SpiNNaker neuromorphic architecture

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-09-01

    Full Text Available While the adult human brain has approximately 8.8x10^10 neurons, this number is dwarfed by its 1x10^15 synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously.

  8. P2X7 Receptors Drive Spine Synapse Plasticity in the Learned Helplessness Model of Depression.

    Science.gov (United States)

    Otrokocsi, Lilla; Kittel, Ágnes; Sperlágh, Beáta

    2017-10-01

    Major depressive disorder is characterized by structural and functional abnormalities of cortical and limbic brain areas, including a decrease in spine synapse number in the dentate gyrus of the hippocampus. Recent studies highlighted that both genetic and pharmacological invalidation of the purinergic P2X7 receptor (P2rx7) leads to antidepressant-like phenotype in animal experiments; however, the impact of P2rx7 on depression-related structural changes in the hippocampus is not clarified yet. Effects of genetic deletion of P2rx7s on depressive-like behavior and spine synapse density in the dentate gyrus were investigated using the learned helplessness mouse model of depression. We demonstrate that in wild-type animals, inescapable footshocks lead to learned helplessness behavior reflected in increased latency and number of escape failures to subsequent escapable footshocks. This behavior is accompanied with downregulation of mRNA encoding P2rx7 and decrease of spine synapse density in the dentate gyrus as determined by electron microscopic stereology. In addition, a decrease in synaptopodin but not in PSD95 and NR2B/GluN2B protein level was also observed under these conditions. Whereas the absence of P2rx7 was characterized by escape deficit, no learned helpless behavior is observed in these animals. Likewise, no decrease in spine synapse number and synaptopodin protein levels was detected in response to inescapable footshocks in P2rx7-deficient animals. Our findings suggest the endogenous activation of P2rx7s in the learned helplessness model of depression and decreased plasticity of spine synapses in P2rx7-deficient mice might explain the resistance of these animals to repeated stressful stimuli. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  9. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    Science.gov (United States)

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  10. A machine learning method for the prediction of receptor activation in the simulation of synapses.

    Directory of Open Access Journals (Sweden)

    Jesus Montes

    Full Text Available Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of

  11. "Presumed fair: Ironic effects of organizational diversity structures": Correction to Kaiser et al. (2013).

    Science.gov (United States)

    2016-06-01

    Reports an error in "Presumed fair: Ironic effects of organizational diversity structures" by Cheryl R. Kaiser, Brenda Major, Ines Jurcevic, Tessa L. Dover, Laura M. Brady and Jenessa R. Shapiro (Journal of Personality and Social Psychology, 2013[Mar], Vol 104[3], 504-519). In the article, a raw data merging error in one racial discrimination claim condition from Experiment 6 inadvertently resulted in data analyses on an inaccurate data set. When the error was discovered by the authors and corrected, all analyses reported in Experiment 6 for claim validity, seriousness of the claim, and support for the claimant were inaccurate and none were statistically significant. The conclusions should be altered to indicate that participants with management experience who reflected on their own workplace diversity policies did not show the predicted effects. The literature review, remaining five studies, and remaining conclusions in the article are unaffected by this error. Experiment 6 should also report that 26.4% (not 26.4.7%) of participants had a graduate degree and eight participants (not 8%) did not provide educational data. Experiment 5 should have referred to the claim validity measure as a six-item measure ( .92) rather than a five-item measure; analyses on claim validity are accurate in text. Table 2's note should have said standard errors, not standard deviations. (The following abstract of the original article appeared in record 2012-31077-001.) This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high

  12. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Science.gov (United States)

    Gardell, Jennifer L; Parker, David C

    2017-01-01

    Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L) is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  13. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    Science.gov (United States)

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  14. Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

    Directory of Open Access Journals (Sweden)

    S. Salucci

    2014-05-01

    Full Text Available An increased intake of the antioxidant α-Tocopherol (vitamin E is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Glia-synapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses was increased. These findings indicate that gestational and neonatal exposure to supranutritional tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant glia-synapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.

  15. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  16. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Directory of Open Access Journals (Sweden)

    Dávid Csabai

    2018-01-01

    Full Text Available Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I and symmetric (Type II synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network

  17. The frontal lobes and inhibitory function

    International Nuclear Information System (INIS)

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  18. Flexible brain network reconfiguration supporting inhibitory control.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties.

  19. Bilingual Contexts Modulate the Inhibitory Control Network

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-03-01

    Full Text Available The present functional magnetic resonance imaging (fMRI study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1 and Mandarin (L2, and moderately proficient in English (L3, performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3. After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.

  20. Comparison of the dynamics of neural interactions in integrate-and-fire networks with current-based and conductance-based synapses

    Directory of Open Access Journals (Sweden)

    Stefano eCavallari

    2014-03-01

    Full Text Available Models of networks of Leaky Integrate-and-Fire neurons (LIF are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single-neuron and neural population dynamics of conductance-based networks (COBN and current-based networks (CUBN of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity. However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-sensitive in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, COBN showed stronger neuronal population synchronization in the gamma band, and their spectral information about the network input was higher and spread over a broader range of frequencies. These results suggest that second order properties of network dynamics depend strongly on the choice of synaptic model.

  1. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment.

    Science.gov (United States)

    McDonough, Patrick M; Prigozhina, Natalie L; Basa, Ranor C B; Price, Jeffrey H

    2017-07-01

    Postchemotherapy cognitive impairment (PCCI) is commonly exhibited by cancer patients treated with a variety of chemotherapeutic agents, including the endocrine disruptor tamoxifen (TAM). The etiology of PCCI is poorly understood. Our goal was to develop high-throughput assay methods to test the effects of chemicals on neuronal function applicable to PCCI. Rat hippocampal neurons (RHNs) were plated in 96- or 384-well dishes and exposed to test compounds (forskolin [FSK], 17β-estradiol [ES]), TAM or fulvestrant [FUL], aka ICI 182,780) for 6-14 days. Kinetic Image Cytometry™ (KIC™) methods were developed to quantify spontaneously occurring intracellular calcium transients representing the activity of the neurons, and high-content analysis (HCA) methods were developed to quantify the expression, colocalization, and puncta formed by synaptic proteins (postsynaptic density protein-95 [PSD-95] and presynaptic protein Synapsin-1 [Syn-1]). As quantified by KIC, FSK increased the occurrence and synchronization of the calcium transients indicating stimulatory effects on RHN activity, whereas TAM had inhibitory effects. As quantified by HCA, FSK also increased PSD-95 puncta and PSD-95:Syn-1 colocalization, whereas ES increased the puncta of both PSD-95 and Syn-1 with little effect on colocalization. The estrogen receptor antagonist FUL also increased PSD-95 puncta. In contrast, TAM reduced Syn-1 and PSD-95:Syn-1 colocalization, consistent with its inhibitory effects on the calcium transients. Thus TAM reduced activity and synapse formation by the RHNs, which may relate to the ability of this agent to cause PCCI. The results illustrate that KIC and HCA can be used to quantify neurotoxic and neuroprotective effects of chemicals in RHNs to investigate mechanisms and potential therapeutics for PCCI.

  2. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats.

    Science.gov (United States)

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F

    1986-01-01

    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  3. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  4. The interplay between neurons and glia in synapse development and plasticity.

    Science.gov (United States)

    Stogsdill, Jeff A; Eroglu, Cagla

    2017-02-01

    In the brain, the formation of complex neuronal networks amenable to experience-dependent remodeling is complicated by the diversity of neurons and synapse types. The establishment of a functional brain depends not only on neurons, but also non-neuronal glial cells. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This article reviews important findings, which uncovered cellular and molecular aspects of the neuron-glia cross-talk that govern the formation and remodeling of synapses and circuits. In vivo evidence demonstrating the critical interplay between neurons and glia will be the major focus. Additional attention will be given to how aberrant communication between neurons and glia may contribute to neural pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. From synapse to nucleus and back again--communication over distance within neurons.

    Science.gov (United States)

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A; Kreutz, Michael R

    2011-11-09

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.

  6. Navigating barriers: the challenge of directed secretion at the natural killer cell lytic immunological synapse.

    Science.gov (United States)

    Sanborn, Keri B; Orange, Jordan S

    2010-05-01

    Natural killer (NK) cells have an inherent ability to recognize and destroy a wide array of cells rendered abnormal by stress or disease. NK cells can kill a targeted cell by forming a tight interface-the lytic immunological synapse. This represents a dynamic molecular arrangement that over time progresses through a series of steps to ultimately deliver the contents of specialized organelles known as lytic granules. In order to mediate cytotoxicity, the NK cell faces the challenge of mobilizing the lytic granules, polarizing them to the targeted cell, facilitating their approximation to the NK cell membrane, and releasing their contents. This review is focused upon the final steps in accessing function through the lytic immunological synapse.

  7. Synapses of the rat end brain in response to flight effects

    International Nuclear Information System (INIS)

    Antipov, V.V.; Tikhonchuk, V.S.; Ushakov, I.B.; Fedorov, V.P.

    1988-01-01

    Using electron microscopy, synapses of different structures of the rat end brain related to cognitive and motor acts (sensorimotor cortex, caudate nucleus) as well as memory and behavior (hippocampus) were examined. Rats were exposed to ionizing radiation, superhigh frequency, hypoxia, hyperoxia, vibration and acceleration (applied separately or in combination) which have been traditionally in the focus of space and aviation medicine. Brain internuronal junctions were found to be very sensitive to the above effects, particularly ionizing radiation and hypoxia. Conversely, synapses were shown to be highly resistant to short-term hyperoxia and electromagnetic radiation. When combined effects were used, response of interneuronal junctions depended on the irradiation dose and order of application of radiation and other flight factors

  8. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  9. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks

    International Nuclear Information System (INIS)

    Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E.; Morie, T.

    2012-01-01

    Spike-timing-dependent synaptic plasticity (STDP) is demonstrated in a synapse device based on a ferroelectric-gate field-effect transistor (FeFET). STDP is a key of the learning functions observed in human brains, where the synaptic weight changes only depending on the spike timing of the pre- and post-neurons. The FeFET is composed of the stacked oxide materials with ZnO/Pr(Zr,Ti)O 3 (PZT)/SrRuO 3 . In the FeFET, the channel conductance can be altered depending on the density of electrons induced by the polarization of PZT film, which can be controlled by applying the gate voltage in a non-volatile manner. Applying a pulse gate voltage enables the multi-valued modulation of the conductance, which is expected to be caused by a change in PZT polarization. This variation depends on the height and the duration of the pulse gate voltage. Utilizing these characteristics, symmetric and asymmetric STDP learning functions are successfully implemented in the FeFET-based synapse device by applying the non-linear pulse gate voltage generated from a set of two pulses in a sampling circuit, in which the two pulses correspond to the spikes from the pre- and post-neurons. The three-terminal structure of the synapse device enables the concurrent learning, in which the weight update can be performed without canceling signal transmission among neurons, while the neural networks using the previously reported two-terminal synapse devices need to stop signal transmission for learning.

  10. Emerging roles of the neurotrophin receptor TrkC in synapse organization.

    Science.gov (United States)

    Naito, Yusuke; Lee, Alfred Kihoon; Takahashi, Hideto

    2017-03-01

    Tropomyosin-receptor-kinase (Trk) receptors have been extensively studied for their roles in kinase-dependent signaling cascades in nervous system development. Synapse organization is coordinated by trans-synaptic interactions of various cell adhesion proteins, a representative example of which is the neurexin-neuroligin complex. Recently, a novel role for TrkC as a synapse organizing protein has been established. Post-synaptic TrkC binds to pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ). TrkC-PTPσ specifically induces excitatory synapses in a kinase domain-independent manner. TrkC has distinct extracellular domains for PTPσ- and NT-3-binding and thus may bind both ligands simultaneously. Indeed, NT-3 enhances the TrkC-PTPσ interaction, thus facilitating synapse induction at the pre-synaptic side and increasing pre-synaptic vesicle recycling in a kinase-independent fashion. A crystal structure study has revealed the detailed structure of the TrkC-PTPσ complex as well as competitive modulation of TrkC-mediated synaptogenesis by heparan sulfate proteoglycans (HSPGs), which bind the same domain of TrkC as PTPσ. Thus, there is strong evidence supporting a role for the TrkC-PTPσ complex in mechanisms underlying the fine turning of neural connectivity. Furthermore, disruption of the TrkC-PTPσ complex may be the underlying cause of certain psychiatric disorders caused by mutations in the gene encoding TrkC (NTRK3), supporting its role in cognitive functions. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  11. The interplay between neurons and glia in synapse development and plasticity

    OpenAIRE

    Stogsdill, Jeff A; Eroglu, Cagla

    2016-01-01

    In the brain, the formation of complex neuronal networks amenable to experience-dependent remodeling is complicated by the diversity of neurons and synapse types. The establishment of a functional brain depends not only on neurons, but also non-neuronal glial cells. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This article reviews important findings, which uncovered cellular and molecular aspects of the neuro...

  12. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Science.gov (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Energy-efficient STDP-based learning circuits with memristor synapses

    Science.gov (United States)

    Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.

    2014-05-01

    It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.

  14. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2005-01-01

    In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra

  15. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication.

    Science.gov (United States)

    Rozanski, Gabriela M; Li, Qi; Stanley, Elise F

    2013-04-01

    The dorsal root ganglion (DRG) contains a subset of closely-apposed neuronal somata (NS) separated solely by a thin satellite glial cell (SGC) membrane septum to form an NS-glial cell-NS trimer. We recently reported that stimulation of one NS with an impulse train triggers a delayed, noisy and long-lasting response in its NS pair via a transglial signaling pathway that we term a 'sandwich synapse' (SS). Transmission could be unidirectional or bidirectional and facilitated in response to a second stimulus train. We have shown that in chick or rat SS the NS-to-SGC leg of the two-synapse pathway is purinergic via P2Y2 receptors but the second SGC-to-NS synapse mechanism remained unknown. A noisy evoked current in the target neuron, a reversal potential close to 0 mV, and insensitivity to calcium scavengers or G protein block favored an ionotropic postsynaptic receptor. Selective block by D-2-amino-5-phosphonopentanoate (AP5) implicated glutamatergic transmission via N-methyl-d-aspartate receptors. This agent also blocked NS responses evoked by puff of UTP, a P2Y2 agonist, directly onto the SGC cell, confirming its action at the second synapse of the SS transmission pathway. The N-methyl-d-aspartate receptor NR2B subunit was implicated by block of transmission with ifenprodil and by its immunocytochemical localization to the NS membrane, abutting the glial septum P2Y2 receptor. Isolated DRG cell clusters exhibited daisy-chain and branching NS-glial cell-NS contacts, suggestive of a network organization within the ganglion. The identification of the glial-to-neuron transmitter and receptor combination provides further support for transglial transmission and completes the DRG SS molecular transmission pathway. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Accelerated Intoxication of GABAergic Synapses by Botulinum Neurotoxin A Disinhibits Stem Cell-Derived Neuron Networks Prior to Network Silencing

    Science.gov (United States)

    2015-04-23

    administered BoNT can lead to central nervous system intoxication is currently being debated. Recent findings in vitro and in vivo suggest that BoNT...Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits 5a...April 2015 Published: 23 April 2015 Citation: Beske PH, Scheeler SM, AdlerM and McNutt PM (2015) Accelerated intoxication of GABAergic synapses by

  17. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.

    Science.gov (United States)

    Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles

    2008-12-01

    Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.

  18. Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons.

    Science.gov (United States)

    Triana-Baltzer, Gallen B; Liu, Zhaoping; Gounko, Natalia V; Berg, Darwin K

    2008-09-01

    Neuroligin, SynCAM, and L1-CAM are cell adhesion molecules with synaptogenic roles in glutamatergic pathways. We show here that SynCAM is expressed in the chick ciliary ganglion, embedded in a nicotinic pathway, and, as shown previously for neuroligin and L1-CAM, acts transcellularly to promote synaptic maturation on the neurons in culture. Moreover, we show that electroporation of chick embryos with dominant negative constructs disrupting any of the three molecules in vivo reduces the total amount of presynaptic SV2 overlaying the neurons expressing the constructs. Only disruption of L1-CAM and neuroligin, however, reduces the number of SV2 puncta specifically overlaying nicotinic receptor clusters. Disrupting L1-CAM and neuroligin together produces no additional decrement, indicating that they act on the same subset of synapses. SynCAM may affect synaptic maturation rather than synapse formation. The results indicate that individual neurons can express multiple synaptogenic molecules with different effects on the same class of nicotinic synapses.

  19. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses.

    Science.gov (United States)

    Gawlak, M; Górkiewicz, T; Gorlewicz, A; Konopacki, F A; Kaczmarek, L; Wilczynski, G M

    2009-01-12

    Synaptic plasticity involves remodeling of extracellular matrix. This is mediated, in part, by enzymes of the matrix metalloproteinase (MMP) family, in particular by gelatinase MMP-9. Accordingly, there is a need of developing methods to visualize gelatinolytic activity at the level of individual synapses, especially in the context of neurotransmitters receptors. Here we present a high-resolution fluorescent in situ zymography (ISZ), performed in thin sections of the alcohol-fixed and polyester wax-embedded brain tissue of the rat (Rattus norvegicus), which is superior to the current ISZ protocols. The method allows visualization of structural details up to the resolution-limit of light microscopy, in conjunction with immunofluorescent labeling. We used this technique to visualize and quantify gelatinolytic activity at the synapses in control and seizure-affected rat brain. In particular, we demonstrated, for the first time, frequent colocalization of gelatinase(s) with synaptic N-methyl-D-aspartic acid (NMDA)- and AMPA-type glutamate receptors. We believe that our method represents a valuable tool to study extracellular proteolytic processes at the synapses, it could be used, as well, to investigate proteinase involvement in a range of physiological and pathological phenomena in the nervous system.

  20. The demise of the synapse as the locus of memory: A looming paradigm shift?

    Directory of Open Access Journals (Sweden)

    Patrick C. Trettenbrein

    2016-11-01

    Full Text Available Synaptic plasticity is widely considered to be the neurobiological basis of learning and memory by neuroscientists and researchers in adjacent fields, though diverging opinions are increasingly being recognised. From the perspective of what we might call classical cognitive science it has always been understood that the mind/brain is to be considered a computational-representational system. Proponents of the information-processing approach to cognitive science have long been critical of connectionist or network approaches to (neuro-cognitive architecture, pointing to the shortcomings of the associative psychology that underlies Hebbian learning as well as to the fact that synapses are practically unfit to implement symbols. Recent work on memory has been adding fuel to the fire and current findings in neuroscience now provide first tentative neurobiological evidence for the cognitive scientists’ doubts about the synapse as the (sole locus of memory in the brain. This paper briefly considers the history and appeal of synaptic plasticity as a memory mechanism, followed by a summary of the cognitive scientists’ objections regarding these assertions. Next, a variety of tentative neuroscientific evidence that appears to substantiate questioning the idea of the synapse as the locus of memory is presented. On this basis, a novel way of thinking about the role of synaptic plasticity in learning and memory is proposed.

  1. Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum.

    Science.gov (United States)

    Uesaka, Naofumi; Abe, Manabu; Konno, Kohtarou; Yamazaki, Maya; Sakoori, Kazuto; Watanabe, Takaki; Kao, Tzu-Huei; Mikuni, Takayasu; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu

    2018-02-21

    Elimination of redundant synapses formed early in development and strengthening of necessary connections are crucial for shaping functional neural circuits. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs) with similar strengths. A single CF is strengthened whereas the other CFs are eliminated in each PC during postnatal development. The underlying mechanisms, particularly for the strengthening of single CFs, are poorly understood. Here we report that progranulin, a multi-functional growth factor implicated in the pathogenesis of frontotemporal dementia, strengthens developing CF synaptic inputs and counteracts their elimination from postnatal day 11 to 16. Progranulin derived from PCs acts retrogradely onto its putative receptor Sort1 on CFs. This effect is independent of semaphorin 3A, another retrograde signaling molecule that counteracts CF synapse elimination. We propose that progranulin-Sort1 signaling strengthens and maintains developing CF inputs, and may contribute to selection of single "winner" CFs that survive synapse elimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity

    Directory of Open Access Journals (Sweden)

    Hongyu Sun

    2018-05-01

    Full Text Available Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP for tonotopic map plasticity in primary auditory cortex (A1. We show that this CP is characterized by a prevalence of “silent,” NMDA-receptor (NMDAR-only, glutamate receptor synapses in auditory cortex that become “unsilenced” due to activity-dependent AMPA receptor (AMPAR insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity.

  3. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.

    Science.gov (United States)

    Qian, Chuan; Sun, Jia; Kong, Ling-An; Gou, Guangyang; Yang, Junliang; He, Jun; Gao, Yongli; Wan, Qing

    2016-10-05

    Realization of biological synapses using electronic devices is regarded as the basic building blocks for neuromorphic engineering and artificial neural network. With the advantages of biocompatibility, low cost, flexibility, and compatible with printing and roll-to-roll processes, the artificial synapse based on organic transistor is of great interest. In this paper, the artificial synapse simulation by ion-gel gated organic field-effect transistors (FETs) with poly(3-hexylthiophene) (P3HT) active channel is demonstrated. Key features of the synaptic behaviors, such as paired-pulse facilitation (PPF), short-term plasticity (STP), self-tuning, the spike logic operation, spatiotemporal dentritic integration, and modulation are successfully mimicked. Furthermore, the interface doping processes of electrolyte ions between the active P3HT layer and ion gels is comprehensively studied for confirming the operating processes underlying the conductivity and excitatory postsynaptic current (EPSC) variations in the organic synaptic devices. This study represents an important step toward building future artificial neuromorphic systems with newly emerged ion gel gated organic synaptic devices.

  4. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

    Science.gov (United States)

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  5. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  6. Emerging phenomena in neural networks with dynamic synapses and their computational implications

    Directory of Open Access Journals (Sweden)

    Joaquin J. eTorres

    2013-04-01

    Full Text Available In this paper we review our research on the effect and computational role of dynamical synapses on feed-forward and recurrent neural networks. Among others, we report on the appearance of a new class of dynamical memories which result from the destabilisation of learned memory attractors. This has important consequences for dynamic information processing allowing the system to sequentially access the information stored in the memories under changing stimuli. Although storage capacity of stable memories also decreases, our study demonstrated the positive effect of synaptic facilitation to recover maximum storage capacity and to enlarge the capacity of the system for memory recall in noisy conditions. Possibly, the new dynamical behaviour can be associated with the voltage transitions between up and down states observed in cortical areas in the brain. We investigated the conditions for which the permanence times in the up state are power-law distributed, which is a sign for criticality, and concluded that the experimentally observed large variability of permanence times could be explained as the result of noisy dynamic synapses with large recovery times. Finally, we report how short-term synaptic processes can transmit weak signals throughout more than one frequency range in noisy neural networks, displaying a kind of stochastic multi-resonance. This effect is due to competition between activity-dependent synaptic fluctuations (due to dynamic synapses and the existence of neuron firing threshold which adapts to the incoming mean synaptic input.

  7. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems.

    Science.gov (United States)

    Wang, Zhongqiang; Ambrogio, Stefano; Balatti, Simone; Ielmini, Daniele

    2014-01-01

    Resistive (or memristive) switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses) with low operation power. This work presents a new artificial synapse scheme, consisting of a memristive switch connected to 2 transistors responsible for gating the communication and learning operations. Spike timing dependent plasticity (STDP) is achieved through appropriate shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural variability of set/reset processes in the nanoscale switch, and (ii) the different response of the switch to a given stimulus depending on the initial state. Experimental results are confirmed by model-based simulations of the memristive switching. Finally, system-level simulations of a 2-layer neural network and a simplified STDP model show random learning and recognition of patterns.

  8. Specific Disruption of Hippocampal Mossy Fiber Synapses in a Mouse Model of Familial Alzheimer's Disease

    Science.gov (United States)

    Wilke, Scott A.; Raam, Tara; Antonios, Joseph K.; Bushong, Eric A.; Koo, Edward H.; Ellisman, Mark H.; Ghosh, Anirvan

    2014-01-01

    The earliest stages of Alzheimer's disease (AD) are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF) synapse between dentate gyrus (DG) and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM) to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD). FAD mutant MF terminal complexes were severely disrupted compared to control – they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease. PMID:24454724

  9. Low-doses of cisplatin injure hippocampal synapses: a mechanism for 'chemo' brain?

    Science.gov (United States)

    Andres, Adrienne L; Gong, Xing; Di, Kaijun; Bota, Daniela A

    2014-05-01

    Chemotherapy-related cognitive deficits are a major neurological problem, but the underlying mechanisms are unclear. The death of neural stem/precursor cell (NSC) by cisplatin has been reported as a potential cause, but this requires high doses of chemotherapeutic agents. Cisplatin is frequently used in modern oncology, and it achieves high concentrations in the patient's brain. Here we report that exposure to low concentrations of cisplatin (0.1μM) causes the loss of dendritic spines and synapses within 30min. Longer exposures injured dendritic branches and reduced dendritic complexity. At this low concentration, cisplatin did not affect NSC viability nor provoke apoptosis. However, higher cisplatin levels (1μM) led to the rapid loss of synapses and dendritic disintegration, and neuronal-but not NSC-apoptosis. In-vivo treatment with cisplatin at clinically relevant doses also caused a reduction of dendritic branches and decreased spine density in CA1 and CA3 hippocampal neurons. An acute increase in cell death was measured in the CA1 and CA3 neurons, as well as in the NSC population located in the subgranular zone of the dentate gyrus in the cisplatin treated animals. The density of dendritic spines is related to the degree of neuronal connectivity and function, and pathological changes in spine number or structure have significant consequences for brain function. Therefore, this synapse and dendritic damage might contribute to the cognitive impairment observed after cisplatin treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles

    2014-01-01

    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  11. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  12. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  13. Examining how presumed media influence affects social norms and adolescents' attitudes and drinking behavior intentions in rural Thailand.

    Science.gov (United States)

    Ho, Shirley S; Poorisat, Thanomwong; Neo, Rachel L; Detenber, Benjamin H

    2014-01-01

    This study uses the influence of presumed media influence model as the theoretical framework to examine how perceived social norms (i.e., descriptive, subjective, and injunctive norms) will mediate the influence of pro- and antidrinking media messages on adolescents' intention to consume alcohol in rural Thailand. Data collected from 1,028 high school students indicate that different mechanisms underlie drinking intentions between nondrinkers and those who have consumed alcohol or currently drink. Among nondrinkers, perceived peer attention to prodrinking messages indirectly influenced adolescents' prodrinking attitudes and intentions to consume alcohol through all three types of perceived social norms. Among drinkers, perceived peer attention to pro- and antidrinking messages indirectly influenced adolescents' prodrinking attitudes and intentions to drink alcohol through perceived subjective norm. The findings provide support for the extended influence of presumed media influence model and have practical implications for how antidrinking campaigns targeted at teenagers in Thailand might be designed.

  14. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  15. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Naina Kurup

    2017-06-01

    Full Text Available Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.

  16. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions.

    Science.gov (United States)

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai

    2013-06-12

    During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.

  17. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  18. Treatment outcome in patients with presumed tubercular uveitis at a tertiary referral eye care centre in Singapore.

    Science.gov (United States)

    Ang, Leslie; Kee, Aera; Yeo, Tun Hang; Dinesh, V G; Ho, Su Ling; Teoh, Stephen C; Agrawal, Rupesh

    2018-02-01

    To report the clinical features and outcome of patients with presumed tubercular uveitis (TBU). Retrospective analysis of patients with presumed TBU at a tertiary referral eye care centre in Singapore between 2007 and 2012 was done. Main outcome measures were failure of complete resolution of uveitis or recurrence of inflammation. Fifty three patients with mean age of 44.18 ± 15.26 years with 54.72% being males were included. 19 (35.85%) had bilateral involvement, with panuveitis and anterior uveitis being the most common presentations. 36 (67.92%) patients received antitubercular therapy (ATT), and 28 received concurrent systemic steroids. 15 (28.30%) eyes of 11 (30.55%) patients in the ATT group and 4 (21.05%) eyes of 3 (17.64%) patients in the non-ATT group had treatment failure (p value = 0.51). The use of ATT, with or without concurrent corticosteroid, may not have a statistically significant impact in improving treatment success in patients with presumed TBU.

  19. On the shapes of the presumed probability density function for the modeling of turbulence-radiation interactions

    International Nuclear Information System (INIS)

    Liu, L.H.; Xu, X.; Chen, Y.L.

    2004-01-01

    The laminar flamelet equations in combination with the joint probability density function (PDF) transport equation of mixture fraction and turbulence frequency have been used to simulate turbulent jet diffusion flames. To check the suitability of the presumed shapes of the PDF for the modeling of turbulence-radiation interactions (TRI), two types of presumed joint PDFs are constructed by using the second-order moments of temperature and the species concentrations, which are derived by the laminar flamelet model. The time-averaged radiative source terms and the time-averaged absorption coefficients are calculated by the presumed joint PDF approaches, and compared with those obtained by the laminar flamelet model. By comparison, it is shown that there are obvious differences between the results of the independent PDF approach and the laminar flamelet model. Generally, the results of the dependent PDF approach agree better with those of the flamelet model. For the modeling of TRI, the dependent PDF approach is superior to the independent PDF approach

  20. Evaluation of Presumed Probability-Density-Function Models in Non-Premixed Flames by using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Cao Hong-Jun; Zhang Hui-Qiang; Lin Wen-Yi

    2012-01-01

    Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones. (fundamental areas of phenomenology(including applications))

  1. Correlation between enzymes inhibitory effects and antioxidant ...

    African Journals Online (AJOL)

    ... and phytochemical content of fractions was investigated. The n-butanol fraction showed significant α-glucosidase and α-amylase inhibitory effects (IC50 values 15.1 and 39.42 μg/ml, respectively) along with the remarkable antioxidant activity when compared to the other fractions. High performance liquid chromatography ...

  2. Phenotypic characterisation and assessment of the inhibitory ...

    African Journals Online (AJOL)

    Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human infant. Their inhibitory action was tested against some spoilage and pathogenic bacteria. Lactobacillus acidophilus isolated from milk was found to display a higher antagonistic effect with ...

  3. Phenotypic characterisation and assessment of the inhibitory ...

    African Journals Online (AJOL)

    Fred

    inhibitory potential of Lactobacillus isolates from different sources. Oyetayo, V.O.. Department of ... Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human ... the growth of some pathogens by Lactobacillus reuteri BSA 13, obtained from pig faeces.

  4. Inhibitory ability of children with developmental dyscalculia.

    Science.gov (United States)

    Zhang, Huaiying; Wu, Hanrong

    2011-02-01

    Inhibitory ability of children with developmental dyscalculia (DD) was investigated to explore the cognitive mechanism underlying DD. According to the definition of developmental dyscalculia, 19 children with DD-only and 10 children with DD&RD (DD combined with reading disability) were selected step by step, children in two control groups were matched with children in case groups by gender and age, and the match ratio was 1:1. Psychological testing software named DMDX was used to measure inhibitory ability of the subjects. The differences of reaction time in number Stroop tasks and differences of accuracy in incongruent condition of color-word Stroop tasks and object inhibition tasks between DD-only children and their controls reached significant levels (P<0.05), and the differences of reaction time in number Stroop tasks between dyscalculic and normal children did not disappear after controlling the non-executive components. The difference of accuracy in color-word incongruent tasks between children with DD&RD and normal children reached significant levels (P<0.05). Children with DD-only confronted with general inhibitory deficits, while children with DD&RD confronted with word inhibitory deficits only.

  5. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  6. Bidirectional Signaling of Neuregulin-2 Mediates Formation of GABAergic Synapses and Maturation of Glutamatergic Synapses in Newborn Granule Cells of Postnatal Hippocampus.

    Science.gov (United States)

    Lee, Kyu-Hee; Lee, Hyunsu; Yang, Che Ho; Ko, Jeong-Soon; Park, Chang-Hwan; Woo, Ran-Sook; Kim, Joo Yeon; Sun, Woong; Kim, Joung-Hun; Ho, Won-Kyung; Lee, Suk-Ho

    2015-12-16

    Expression of neuregulin-2 (NRG2) is intense in a few regions of the adult brain where neurogenesis persists; however, little is understood about its role in developments of newborn neurons. To study the role of NRG2 in synaptogenesis at different developmental stages, newborn granule cells in rat hippocampal slice cultures were labeled with retrovirus encoding tetracycline-inducible microRNA targeting NRG2 and treated with doxycycline (Dox) at the fourth or seventh postinfection day (dpi). The developmental increase of GABAergic postsynaptic currents (GPSCs) was suppressed by the early Dox treatment (4 dpi), but not by late treatment (7 dpi). The late Dox treatment was used to study the effect of NRG2 depletion specific to excitatory synaptogenesis. The Dox effect on EPSCs emerged 4 d after the impairment in dendritic outgrowth became evident (10 dpi). Notably, Dox treatment abolished the developmental increases of AMPA-receptor mediated EPSCs and the AMPA/NMDA ratio, indicating impaired maturation of glutamatergic synapses. In contrast to GPSCs, Dox effects on EPSCs and dendritic growth were independent of ErbB4 and rescued by concurrent overexpression of NRG2 intracellular domain. These results suggest that forward signaling of NRG2 mediates GABAergic synaptogenesis and its reverse signaling contributes to dendritic outgrowth and maturation of glutamatergic synapses. The hippocampal dentate gyrus is one of special brain regions where neurogenesis persists throughout adulthood. Synaptogenesis is a critical step for newborn neurons to be integrated into preexisting neural network. Because neuregulin-2 (NRG2), a growth factor, is intensely expressed in these regions, we investigated whether it plays a role in synaptogenesis and dendritic growth. We found that NRG2 has dual roles in the development of newborn neurons. For GABAergic synaptogenesis, the extracellular domain of NRG2 acts as a ligand for a receptor on GABAergic neurons. In contrast, its intracellular

  7. Serpins of oat (Avena sativa) grain with distinct reactive centres and inhibitory specificity

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Hauge, S.

    2002-01-01

    Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct...... inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N...... by chymotrypsin at the putative reactive centre bond P-1 -P-1 ' Tyrdown arrowSer, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins...

  8. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems

    Directory of Open Access Journals (Sweden)

    Arico Maurizo

    2011-06-01

    Full Text Available Abstract Background Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs, this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK and invariant NKT (iNKT cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. Results NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked' with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. Conclusions These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system direct secretory lysosomes to

  9. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems.

    Science.gov (United States)

    Stinchcombe, Jane C; Salio, Mariolina; Cerundolo, Vincenzo; Pende, Daniela; Arico, Maurizo; Griffiths, Gillian M

    2011-06-28

    Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs), this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK) and invariant NKT (iNKT) cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked') with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system) direct secretory lysosomes to the immunological synapse. Morphologically, the

  10. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    Science.gov (United States)

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  11. Preschool Inhibitory Control Predicts ADHD Group Status and Inhibitory Weakness in School.

    Science.gov (United States)

    Jacobson, Lisa A; Schneider, Heather; Mahone, E Mark

    2017-12-26

    Discriminative utility of performance measures of inhibitory control was examined in preschool children with and without ADHD to determine whether performance measures added to diagnostic prediction and to prediction of informant-rated day-to-day executive function. Children ages 4-5 years (N = 105, 61% boys; 54 ADHD, medication-naïve) were assessed using performance measures (Auditory Continuous Performance Test for Preschoolers-Commission errors, Conflicting Motor Response Test, NEPSY Statue) and caregiver (parent, teacher) ratings of inhibition (Behavior Rating Inventory of Executive Function-Preschool version). Performance measures and parent and teacher reports of inhibitory control significantly and uniquely predicted ADHD group status; however, performance measures did not add to prediction of group status beyond parent reports. Performance measures did significantly predict classroom inhibitory control (teacher ratings), over and above parent reports of inhibitory control. Performance measures of inhibitory control may be adequate predictors of ADHD status and good predictors of young children's classroom inhibitory control, demonstrating utility as components of clinical assessments. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  13. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  14. Exploiting Inhibitory Siglecs to Combat Food Allergies

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0302 TITLE: Exploiting Inhibitory Siglecs to Combat Food Allergies PRINCIPAL INVESTIGATOR: Michael Kulis, Ph.D...CONTRACTING ORGANIZATION: University of North Carolina at Chapel Hill Chapel Hill, NC 27599 REPORT DATES: October 2017 TYPE OF REPORT: Annual PREPARED FOR...Department of Defense, Washington Headquarters Services , Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite

  15. Inhibitory Interneurons, Oxidative Stress, and Schizophrenia

    OpenAIRE

    Sullivan, Elyse M.; O’Donnell, Patricio

    2012-01-01

    Translational studies are becoming more common in schizophrenia research. The past couple of decades witnessed the emergence of novel ideas regarding schizophrenia pathophysiology that originated from both human and animal studies. The findings that glutamate and gamma-aminobutyric acid transmission are affected in the disease led to the hypothesis of altered inhibitory neurotransmission as critical for cognitive deficits and to an exploration of novel therapeutic approaches aimed at restorin...

  16. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  17. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  18. Increased Incidence of Benign Pancreatic Pathology following Pancreaticoduodenectomy for Presumed Malignancy over 10 Years despite Increased Use of Endoscopic Ultrasound

    Directory of Open Access Journals (Sweden)

    Shadi S. Yarandi

    2014-01-01

    Full Text Available Despite using imaging studies, tissue sampling, and serologic tests about 5–10% of surgeries done for presumed pancreatic malignancies will have benign findings on final pathology. Endoscopic ultrasound (EUS is used with increasing frequency to study pancreatic masses. The aim of this study is to examine the effect of EUS on prevalence of benign diseases undergoing Whipple over the last decade. Patients who underwent Whipple procedure for presumed malignancy at Emory University Hospital from 1998 to 2011 were selected. Demographic data, history of smoking and drinking, history of diabetes and pancreatitis, imaging data, pathology reports, and tumor markers were extracted. 878 patients were found. 95 (10.82% patients had benign disease. Prevalence of benign finding had increased over the recent years despite using more EUS. Logistic regression models showed that abdominal pain (OR: 5.829, 95% CI 2.681–12.674, P ≤ 0.001 and alcohol abuse (OR: 3.221, CI 95%: 1.362–7.261, P: 0.002 were predictors of benign diseases. Jaundice (OR: 0.221, 95% CI: 0.084–0.58, P: 0.002, mass (OR: 0.145, 95% CI: 0.043–0.485, P: 0.008, and ductal dilation (OR: 0.297, 95% CI 0.134–0.657, P: 0.003 were associated with malignancy. Use of imaging studies, ERCP, and EUS has not decreased the percentage of benign findings after surgery for presumed pancreatic malignancy.

  19. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    KAUST Repository

    Virtanen, Mari A.; Lacoh, Claudia Marvine; Fiumelli, Hubert; Kosel, Markus; Tyagarajan, Shiva; de Roo, Mathias; Vutskits, Laszlo

    2018-01-01

    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  20. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    KAUST Repository

    Virtanen, Mari A.

    2018-01-10

    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  1. How to determine decisional capacity in critically ill patients. Presume the patient can make decisions unless proven otherwise.

    Science.gov (United States)

    Fleming, C; Momin, Z A; Brensilver, J M; Brandstetter, R D

    1995-03-01

    Decisional capacity includes ability to comprehend information, to make an informed choice, and to communicate that choice; it is specific to the decision at hand. Presume a patient has decisional capacity; an evaluation of incapacity must be justified. Administer a standardized mental status test to help assess alertness, attention, memory, and reasoning ability. A patient scoring below 10 on the Folstein Mini-Mental State Examination (maximum score, 30) probably does not have decisional capacity; one scoring from 10 to 15 probably can designate a proxy but not make complex health care decisions. Obtain psychiatric consultations for a patient who exhibits psychological barriers to decision making.

  2. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease.

    Science.gov (United States)

    Jackson, Rosemary J; Rudinskiy, Nikita; Herrmann, Abigail G; Croft, Shaun; Kim, JeeSoo Monica; Petrova, Veselina; Ramos-Rodriguez, Juan Jose; Pitstick, Rose; Wegmann, Susanne; Garcia-Alloza, Monica; Carlson, George A; Hyman, Bradley T; Spires-Jones, Tara L

    2016-12-01

    Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aβ-plaques and synapse loss, with rTg21221 mice, which overexpress wild-type human tau. When compared to the APP/PS1 mice without human tau, the cross-sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque-associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aβ at synapses. Together, these results indicate that adding human wild-type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque-associated synapse loss. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4

    Science.gov (United States)

    Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F.

    2000-01-01

    Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin. PMID:10966406

  4. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  5. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica

    2014-05-01

    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  6. Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals.

    Science.gov (United States)

    Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; DeBerry, Jennifer J; Gu, Jianguo G

    2016-09-13

    The evolution of sensory systems has let mammals develop complicated tactile end organs to enable sophisticated sensory tasks, including social interaction, environmental exploration, and tactile discrimination. The Merkel disc, a main type of tactile end organ consisting of Merkel cells (MCs) and Aβ-afferent endings, are highly abundant in fingertips, touch domes, and whisker hair follicles of mammals. The Merkel disc has high tactile acuity for an object's physical features, such as texture, shape, and edges. Mechanisms underlying the tactile function of Merkel discs are obscured as to how MCs transmit tactile signals to Aβ-afferent endings leading to tactile sensations. Using mouse whisker hair follicles, we show herein that tactile stimuli are transduced by MCs into excitatory signals that trigger vesicular serotonin release from MCs. We identify that both ionotropic and metabotropic 5-hydroxytryptamine (5-HT) receptors are expressed on whisker Aβ-afferent endings and that their activation by serotonin released from MCs initiates Aβ-afferent impulses. Moreover, we demonstrate that these ionotropic and metabotropic 5-HT receptors have a synergistic effect that is critical to both electrophysiological and behavioral tactile responses. These findings elucidate that the Merkel disc is a unique serotonergic synapse located in the epidermis and plays a key role in tactile transmission. The epidermal serotonergic synapse may have important clinical implications in sensory dysfunctions, such as the loss of tactile sensitivity and tactile allodynia seen in patients who have diabetes, inflammatory diseases, and undergo chemotherapy. It may also have implications in the exaggerated tactile sensations induced by recreational drugs that act on serotoninergic synapses.

  7. Role of the mouse retinal photoreceptor ribbon synapse in visual motion processing for optokinetic responses.

    Science.gov (United States)

    Sugita, Yuko; Araki, Fumiyuki; Chaya, Taro; Kawano, Kenji; Furukawa, Takahisa; Miura, Kenichiro

    2015-01-01

    The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.

  8. Role of the mouse retinal photoreceptor ribbon synapse in visual motion processing for optokinetic responses.

    Directory of Open Access Journals (Sweden)

    Yuko Sugita

    Full Text Available The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs. The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz. The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz. These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.

  9. Hypoxia-Induced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons

    Science.gov (United States)

    Zhou, Chengwen; Bell, Jocelyn J. Lippman; Sun, Hongyu; Jensen, Frances E.

    2012-01-01

    Neonatal seizures can lead to epilepsy and long-term cognitive deficits in adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and “silent” N-methyl-D-aspartate receptor (NMDAR)-only synapses in hippocampal CA1. At 48-72 hours (hrs) post-HS, electrophysiology and immunofluorescent confocal microscopy revealed a significant decrease in the incidence of silent synapses, and an increase in amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at the synapses. Coincident with this decrease in silent synapses, there was an attenuation of LTP elicited by either tetanic stimulation of Schaffer collaterals or a pairing protocol, and persistent attenuation of LTP in slices removed in later adulthood after P10 HS. Furthermore, post-seizure treatment in vivo with the AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) protected against the HS-induced depletion of silent synapses and preserved LTP. Thus, this study demonstrates a novel mechanism by which early-life seizures could impair synaptic plasticity, suggesting a potential target for therapeutic strategies to prevent long-term cognitive deficits. PMID:22171027

  10. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia.

    Science.gov (United States)

    Lee, Sue-Hyun; Kwak, Chuljung; Shim, Jaehoon; Kim, Jung-Eun; Choi, Sun-Lim; Kim, Hyoung F; Jang, Deok-Jin; Lee, Jin-A; Lee, Kyungmin; Lee, Chi-Hoon; Lee, Young-Don; Miniaci, Maria Concetta; Bailey, Craig H; Kandel, Eric R; Kaang, Bong-Kiun

    2012-08-28

    The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval.

  11. SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function

    Directory of Open Access Journals (Sweden)

    Lucas Matt

    2018-02-01

    Full Text Available Altering AMPA receptor (AMPAR content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1 encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1 modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP, while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity.

  12. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Science.gov (United States)

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  13. The networks scale and coupling parameter in synchronization of neural networks with diluted synapses

    International Nuclear Information System (INIS)

    Li Yanlong; Ma Jun; Chen Yuhong; Xu Wenke; Wang Yinghai

    2008-01-01

    In this paper the influence of the networks scale on the coupling parameter in the synchronization of neural networks with diluted synapses is investigated. Using numerical simulations, an exponential decay form is observed in the extreme case of global coupling among networks and full connection in each network; the larger linked degree becomes, the larger critical coupling intensity becomes; and the oscillation phenomena in the relationship of critical coupling intensity and the number of neural networks layers in the case of small-scale networks are found

  14. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors

    Directory of Open Access Journals (Sweden)

    Noa Beatriz Martín-Cófreces

    2018-05-01

    Full Text Available The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.

  15. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Directory of Open Access Journals (Sweden)

    Eric Boué-Grabot

    2017-01-01

    Full Text Available Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.

  16. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  17. Presuming the influence of the media: teenagers' constructions of gender identity through sexual/romantic relationships and alcohol consumption.

    Science.gov (United States)

    Hartley, Jane E K; Wight, Daniel; Hunt, Kate

    2014-06-01

    Using empirical data from group discussions and in-depth interviews with 13 to 15-year olds in Scotland, this study explores how teenagers' alcohol drinking and sexual/romantic relationships were shaped by their quest for appropriate gendered identities. In this, they acknowledged the influence of the media, but primarily in relation to others, not to themselves, thereby supporting Milkie's 'presumed media influence' theory. Media portrayals of romantic/sexual relationships appeared to influence teenagers' constructions of gender-appropriate sexual behaviour more than did media portrayals of drinking behaviour, perhaps because the teenagers had more firsthand experience of observing drinking than of observing sexual relationships. Presumed media influence may be less influential if one has experience of the behaviour portrayed. Drinking and sexual behaviour were highly interrelated: sexual negotiation and activities were reportedly often accompanied by drinking. For teenagers, being drunk or, importantly, pretending to be drunk, may be a useful way to try out what they perceived to be gender-appropriate identities. In sum, teenagers' drinking and sexual/romantic relationships are primary ways in which they do gender and the media's influence on their perceptions of appropriate gendered behaviour is mediated through peer relationships. © 2014 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL (SHIL).

  18. Presuming the influence of the media: teenagers′ constructions of gender identity through sexual/romantic relationships and alcohol consumption

    Science.gov (United States)

    Hartley, Jane E K; Wight, Daniel; Hunt, Kate

    2014-01-01

    Using empirical data from group discussions and in-depth interviews with 13 to 15-year olds in Scotland, this study explores how teenagers’ alcohol drinking and sexual/romantic relationships were shaped by their quest for appropriate gendered identities. In this, they acknowledged the influence of the media, but primarily in relation to others, not to themselves, thereby supporting Milkie's ‘presumed media influence’ theory. Media portrayals of romantic/sexual relationships appeared to influence teenagers’ constructions of gender-appropriate sexual behaviour more than did media portrayals of drinking behaviour, perhaps because the teenagers had more firsthand experience of observing drinking than of observing sexual relationships. Presumed media influence may be less influential if one has experience of the behaviour portrayed. Drinking and sexual behaviour were highly interrelated: sexual negotiation and activities were reportedly often accompanied by drinking. For teenagers, being drunk or, importantly, pretending to be drunk, may be a useful way to try out what they perceived to be gender-appropriate identities. In sum, teenagers’ drinking and sexual/romantic relationships are primary ways in which they do gender and the media's influence on their perceptions of appropriate gendered behaviour is mediated through peer relationships. PMID:24443822

  19. Medicinal plants with cholinesterase inhibitory activity: A Review

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... Clinical treatment of this disease is palliative and relies mostly on enhancing cholinergic function by ... nerve endings when the nerve terminal is depolarized, thereby entering the synapse and binding to the ... the caring for patients with this disease (Akhondzadeh and Noroozian, 2002). In fact, in advanced ...

  20. Deficits in synaptic function occur at medial perforant path-dentate granule cell synapses prior to Schaffer collateral-CA1 pyramidal cell synapses in the novel TgF344-Alzheimer's Disease Rat Model.

    Science.gov (United States)

    Smith, Lindsey A; McMahon, Lori L

    2018-02-01

    Alzheimer's disease (AD) pathology begins decades prior to onset of clinical symptoms, and the entorhinal cortex and hippocampus are among the first and most extensively impacted brain regions. The TgF344-AD rat model, which more fully recapitulates human AD pathology in an age-dependent manner, is a next generation preclinical rodent model for understanding pathophysiological processes underlying the earliest stages of AD (Cohen et al., 2013). Whether synaptic alterations occur in hippocampus prior to reported learning and memory deficit is not known. Furthermore, it is not known if specific hippocampal synapses are differentially affected by progressing AD pathology, or if synaptic deficits begin to appear at the same age in males and females in this preclinical model. Here, we investigated the time-course of synaptic changes in basal transmission, paired-pulse ratio, as an indirect measure of presynaptic release probability, long-term potentiation (LTP), and dendritic spine density at two hippocampal synapses in male and ovariectomized female TgF344-AD rats and wildtype littermates, prior to reported behavioral deficits. Decreased basal synaptic transmission begins at medial perforant path-dentate granule cell (MPP-DGC) synapses prior to Schaffer-collateral-CA1 (CA3-CA1) synapses, in the absence of a change in paired-pulse ratio (PPR) or dendritic spine density. N-methyl-d-aspartate receptor (NMDAR)-dependent LTP magnitude is unaffected at CA3-CA1 synapses at 6, 9, and 12months of age, but is significantly increased at MPP-DGC synapses in TgF344-AD rats at 6months only. Sex differences were only observed at CA3-CA1 synapses where the decrease in basal transmission occurs at a younger age in males versus females. These are the first studies to define presymptomatic alterations in hippocampal synaptic transmission in the TgF344-AD rat model. The time course of altered synaptic transmission mimics the spread of pathology through hippocampus in human AD and provides

  1. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted...... into ruffles at the periphery, but not in the center of a mature cytolytic NK cell IS. Time-lapse imaging showed that the membrane ruffles formed at the initial point of contact between NK cells and target cells and then spread radialy across the intercellular contact as the size of the IS increased, becoming...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....

  2. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    Science.gov (United States)

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  3. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  4. Visualizing presynaptic calcium dynamics and vesicle fusion with a single genetically encoded reporter at individual synapses

    Directory of Open Access Journals (Sweden)

    Rachel E Jackson

    2016-07-01

    Full Text Available Synaptic transmission depends on the influx of calcium into the presynaptic compartment, which drives neurotransmitter release. Genetically encoded reporters are widely used tools to understand these processes, particularly pHluorin-based reporters that report vesicle exocytosis and endocytosis through pH dependent changes in fluorescence, and genetically encoded calcium indicators (GECIs that exhibit changes in fluorescence upon binding to calcium. The recent expansion of the color palette of available indicators has made it possible to image multiple probes simultaneously within a cell. We have constructed a single molecule reporter capable of concurrent imaging of both presynaptic calcium influx and exocytosis, by fusion of sypHy, the vesicle associated protein synaptophysin containing a GFP-based pHluorin sensor, with the red-shifted GECI R-GECO1. Due to the fixed stoichiometry of the two probes, the ratio of the two responses can also be measured, providing an all optical correlate of the calcium dependence of release. Here, we have characterized stimulus-evoked sypHy-RGECO responses of hippocampal synapses in vitro, exploring the effects of different stimulus strengths and frequencies as well as variations in external calcium concentrations. By combining live sypHy-RGECO imaging with post-hoc fixation and immunofluorescence, we have also investigated correlations between structural and functional properties of synapses.

  5. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    Science.gov (United States)

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  6. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    Science.gov (United States)

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Fasudil, a Clinically Used ROCK Inhibitor, Stabilizes Rod Photoreceptor Synapses after Retinal Detachment.

    Science.gov (United States)

    Townes-Anderson, Ellen; Wang, Jianfeng; Halász, Éva; Sugino, Ilene; Pitler, Amy; Whitehead, Ian; Zarbin, Marco

    2017-06-01

    Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments ( n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P ROCK, was decreased with 30 μM fasudil ( n = 8-10 explants, P ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.

  8. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.

    Science.gov (United States)

    Werner, Thilo; Vianello, Elisa; Bichler, Olivier; Garbin, Daniele; Cattaert, Daniel; Yvert, Blaise; De Salvo, Barbara; Perniola, Luca

    2016-01-01

    In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications. Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural network (nW range) may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM) as easy to program and low energy (Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  9. Improving Spiking Dynamical Networks: Accurate Delays, Higher-Order Synapses, and Time Cells.

    Science.gov (United States)

    Voelker, Aaron R; Eliasmith, Chris

    2018-03-01

    Researchers building spiking neural networks face the challenge of improving the biological plausibility of their model networks while maintaining the ability to quantitatively characterize network behavior. In this work, we extend the theory behind the neural engineering framework (NEF), a method of building spiking dynamical networks, to permit the use of a broad class of synapse models while maintaining prescribed dynamics up to a given order. This theory improves our understanding of how low-level synaptic properties alter the accuracy of high-level computations in spiking dynamical networks. For completeness, we provide characterizations for both continuous-time (i.e., analog) and discrete-time (i.e., digital) simulations. We demonstrate the utility of these extensions by mapping an optimal delay line onto various spiking dynamical networks using higher-order models of the synapse. We show that these networks nonlinearly encode rolling windows of input history, using a scale invariant representation, with accuracy depending on the frequency content of the input signal. Finally, we reveal that these methods provide a novel explanation of time cell responses during a delay task, which have been observed throughout hippocampus, striatum, and cortex.

  10. Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Freddy Jeanneteau

    2016-01-01

    Full Text Available The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR. GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.

  11. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-08-02

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.

  12. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  13. Persistent long-term facilitation at an identified synapse becomes labile with activation of short-term heterosynaptic plasticity.

    Science.gov (United States)

    Hu, Jiang-Yuan; Schacher, Samuel

    2014-04-02

    Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.

  14. Polyribosomes at the base of dendritic spines of central nervous system neurons - their possible role in synapse construction and modification

    International Nuclear Information System (INIS)

    Steward, O.

    1983-01-01

    The selective localization of polyribosomes at the base of dendritic spines in granule cells of the dentate gyrus was studied. These polyribosomes seem optimally situated to produce proteins for the postsynaptic membrane specialization or the spine and to have their synthetic activity regulated by functional activity over the synapse. The present work will summarize observations on the polyribosome clusters that were found to be ubiquitous in spines throughout the vertebrate CNS. Evidence will be presented that suggests a role for the polyribosomes in synapse construction and modification. 42 refs., 8 figs., 2 tabs

  15. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Leukel, Christian; Nielsen, Jens Bo

    2015-01-01

    Low-frequency rTMS applied to the primary motor cortex (M1) may produce depression of motor-evoked potentials (MEPs). This depression is commonly assumed to reflect changes in cortical circuits. However, little is known about rTMS-induced effects on subcortical circuits. Therefore, the present st......-either at M1 and/or the CM synapse. As the early facilitation reflects activation of direct CM projections, the most likely site of action is the synapse of the CM neurons onto spinal motoneurons....

  16. For Fit's Sake: A Norms-Based Approach to Healthy Behaviors Through Influence of Presumed Media Influence.

    Science.gov (United States)

    Ho, Shirley S; Lee, Edmund W J; Ng, Kaijie; Leong, Grace S H; Tham, Tiffany H M

    2016-09-01

    Based on the influence of presumed media influence (IPMI) model as the theoretical framework, this study examines how injunctive norms and personal norms mediate the influence of healthy lifestyle media messages on public intentions to engage in two types of healthy lifestyle behaviors-physical activity and healthy diet. Nationally representative data collected from 1,055 adults in Singapore demonstrate partial support for the key hypotheses that make up the extended IPMI model, highlighting the importance of a norms-based approach in health communication. Our results indicate that perceived media influence on others indirectly shaped public intentions to engage in healthy lifestyle behaviors through personal norms and attitude, providing partial theoretical support for the extended IPMI model. Practical implications for health communicators in designing health campaigns media messages to motivate the public to engage in healthy lifestyle are discussed.

  17. Amyloid arthropathy of the hip joint: MR demonstration of presumed amyloid lesions in 152 patients with long-term hemodialysis

    International Nuclear Information System (INIS)

    Otake, S.; Yamana, D.; Tsuruta, Y.; Mizutani, H.; Ohba, S.

    1998-01-01

    The aim of this study was to determine the spectrum of MR findings of presumed amyloid arthropathy of the hip joints in patients on long-term hemodialysis. We prospectively performed T1- and T2-weighted spin-echo imaging on 152 consecutive patients on hemodialysis. The duration of hemodialysis ranged from 5 months to 24 years, 2 months (mean: 8 years, 8 months). The frequency, location, and signal intensity of bone lesions were assessed. In 12 cases with contrast-enhanced MR examination, enhancement pattern of bone lesions, synovial lesions, and intra-articular lesions were characterized. Bone lesions presumed to be amyloid deposits were identified in 60 patients (39 %). Magnetic resonance imaging revealed that amyloid lesions were more extensive than anticipated by plain radiographs. All bone lesions showed decreased signal intensity on T1-weighted images. On T2-weighted images, bone lesions showed increased signal intensity in 32 patients (54 %), decreased signal intensity in 11 patients (18 %), and both increased and decreased signal intensity in 17 patients (28 %). Following intravenous injection of gadolinium-based contrast, all bone lesions showed moderate enhancement. Synovial thickening could not be identified on T1- and T2-weighted images. However, contrast-enhanced images showed thickened synovial membrane, which could be differentiated from joint fluid. Intra-articular nodules showed decreased or intermediate signal intensity on T1-weighted images and decreased signal intensity on T2-weighted images; the intra-articular nodules were contiguous with subchondral bone lesions. Magnetic resonance imaging is useful for evaluating the distribution and extent of amyloidosis of the hip joints in patients undergoing long-term hemodialysis. (orig.) (orig.)

  18. Transverse comparisons between ultrasound and radionuclide parameters in children with presumed antenatally detected pelvi-ureteric junction obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Hong Phuoc; Janssen, Francoise; Hall, Michelle; Ismaili, Khalid [Universite Libre de Bruxelles (ULB), Department of Pediatric Nephrology, Hopital Universitaire des Enfants Reine Fabiola, Brussels (Belgium); Piepsz, Amy [Hopital Universitaire Saint-Pierre, Department of Radioisotopes, Ghent (Belgium); Khelif, Karim; Collier, Frank [Universite Libre de Bruxelles (ULB), Department of Pediatric Urology, Hopital Universitaire des Enfants Reine Fabiola, Brussel (Belgium); Man, Kathia de [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium); Damry, Nash [Universite Libre de Bruxelles (ULB), Department of Pediatric Radiology, Hopital Universitaire des Enfants Reine Fabiola, Brussel (Belgium)

    2015-05-01

    The main criteria used for deciding on surgery in children with presumed antenatally detected pelviureteric junction obstruction (PPUJO) are the level of hydronephrosis (ultrasonography), the level of differential renal function (DRF) and the quality of renal drainage after a furosemide challenge (renography), the importance of each factor being far from generally agreed. Can we predict, on the basis of ultrasound parameters, the patient in whom radionuclide renography can be avoided? We retrospectively analysed the medical charts of 81 consecutive children with presumed unilateral PPUJO detected antenatally. Ultrasound and renographic studies performed at the same time were compared. Anteroposterior pelvic diameter (APD) and calyceal size were both divided into three levels of dilatation. Parenchymal thickness was considered either normal or significantly decreased. Acquisition of renograms under furosemide stimulation provided quantification of DRF, quality of renal drainage and cortical transit. The percentages of patients with low DRF and poor drainage were significantly higher among those with major hydronephrosis, severe calyceal dilatation or parenchymal thinning. Moreover, impaired cortical transit, which is a major risk factor for functional decline, was seen more frequently among those with very severe calyceal dilatation. However, none of the structural parameters obtained by ultrasound examination was able to predict whether the level of renal function or the quality of drainage was normal or abnormal. Alternatively, an APD <30 mm, a calyceal dilatation of <10 mm and a normal parenchymal thickness were associated with a low probability of decreased renal function or poor renal drainage. In the management strategy of patients with prenatally detected PPUJO, nuclear medicine examinations may be postponed in those with an APD <30 mm, a calyceal dilatation of <10 mm and a normal parenchymal thickness. On the contrary, precise estimation of DRF and renal

  19. RADIOGRAPHIC APPEARANCE OF PRESUMED NONCARDIOGENIC PULMONARY EDEMA AND CORRELATION WITH THE UNDERLYING CAUSE IN DOGS AND CATS.

    Science.gov (United States)

    Bouyssou, Sarah; Specchi, Swan; Desquilbet, Loïc; Pey, Pascaline

    2017-05-01

    Noncardiogenic pulmonary edema is an important cause of respiratory disease in dogs and cats but few reports describe its radiographic appearance. The purpose of this retrospective case series study was to describe radiographic findings in a large cohort of dogs and cats with presumed noncardiogenic pulmonary edema and to test associations among radiographic findings versus cause of edema. Medical records were retrieved for dogs and cats with presumed noncardiogenic edema based on history, radiographic findings, and outcome. Radiographs were reviewed to assess lung pattern and distribution of the edema. Correlation with the cause of noncardiogenic pulmonary edema was evaluated with a Fisher's exact test. A total of 49 dogs and 11 cats were included. Causes for the noncardiogenic edema were airway obstruction (n = 23), direct pulmonary injury (n = 13), severe neurologic stimulation (n = 12), systemic disease (n = 6), near-drowning (n = 3), anaphylaxis (n = 2) and blood transfusion (n = 1). Mixed, symmetric, peripheral, multifocal, bilateral, and dorsal lung patterns were observed in 44 (73.3%), 46 (76.7%), 55 (91.7%), 46 (76.7%), 46 (76.7%), and 34 (57.6%) of 60 animals, respectively. When the distribution was unilateral, pulmonary infiltration involved mainly the right lung lobes (12 of 14, 85.7%). Increased pulmonary opacity was more often asymmetric, unilateral, and dorsal for postobstructive pulmonary edema compared to other types of noncardiogenic pulmonary edema, but no other significant correlations could be identified. In conclusion, noncardiogenic pulmonary edema may present with a quite variable radiographic appearance in dogs and cats. © 2016 American College of Veterinary Radiology.

  20. Conditional Moment Closure Modelling of a Lifted H2/N2 Turbulent Jet Flame Using the Presumed Mapping Function Approach

    Directory of Open Access Journals (Sweden)

    Ahmad El Sayed

    2015-01-01

    Full Text Available A lifted hydrogen/nitrogen turbulent jet flame issuing into a vitiated coflow is investigated using the conditional moment closure (CMC supplemented by the presumed mapping function (PMF approach for the modelling of conditional mixing and velocity statistics. Using a prescribed reference field, the PMF approach yields a presumed probability density function (PDF for the mixture fraction, which is then used in closing the conditional scalar dissipation rate (CSDR and conditional velocity in a fully consistent manner. These closures are applied to a lifted flame and the findings are compared to previous results obtained using β-PDF-based closures over a range of coflow temperatures (Tc. The PMF results are in line with those of the β-PDF and compare well to measurements. The transport budgets in mixture fraction and physical spaces and the radical history ahead of the stabilisation height indicate that the stabilisation mechanism is susceptible to Tc. As in the previous β-PDF calculations, autoignition around the “most reactive” mixture fraction remains the controlling mechanism for sufficiently high Tc. Departure from the β-PDF predictions is observed when Tc is decreased as PMF predicts stabilisation by means of premixed flame propagation. This conclusion is based on the observation that lean mixtures are heated by downstream burning mixtures in a preheat zone developing ahead of the stabilization height. The spurious sources, which stem from inconsistent CSDR modelling, are further investigated. The findings reveal that their effect is small but nonnegligible, most notably within the flame zone.

  1. Aldose reductase inhibitory compounds from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Ha Na; Lee, Min Young; Kim, Jin-Kyu; Suh, Hong-Won; Lim, Soon Sung

    2013-09-01

    As part of our ongoing search for natural sources of therapeutic and preventive agents for diabetic complications, we evaluated the inhibitory effects of components of the fruit of Xanthium strumarium (X. strumarium) on aldose reductase (AR) and galactitol formation in rat lenses with high levels of glucose. To identify the bioactive components of X. strumarium, 7 caffeoylquinic acids and 3 phenolic compounds were isolated and their chemical structures were elucidated on the basis of spectroscopic evidence and comparison with published data. The abilities of 10 X. strumarium-derived components to counteract diabetic complications were investigated by means of inhibitory assays with rat lens AR (rAR) and recombinant human AR (rhAR). From the 10 isolated compounds, methyl-3,5-di-O-caffeoylquinate showed the most potent inhibition, with IC₅₀ values of 0.30 and 0.67 μM for rAR and rhAR, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate, methyl-3,5-di-O-caffeoylquinate showed competitive inhibition of rhAR. Furthermore, methyl-3,5-di-O-caffeoylquinate inhibited galactitol formation in the rat lens and in erythrocytes incubated with a high concentration of glucose, indicating that this compound may be effective in preventing diabetic complications.

  2. Rational decision-making in inhibitory control.

    Science.gov (United States)

    Shenoy, Pradeep; Yu, Angela J

    2011-01-01

    An important aspect of cognitive flexibility is inhibitory control, the ability to dynamically modify or cancel planned actions in response to changes in the sensory environment or task demands. We formulate a probabilistic, rational decision-making framework for inhibitory control in the stop signal paradigm. Our model posits that subjects maintain a Bayes-optimal, continually updated representation of sensory inputs, and repeatedly assess the relative value of stopping and going on a fine temporal scale, in order to make an optimal decision on when and whether to go on each trial. We further posit that they implement this continual evaluation with respect to a global objective function capturing the various reward and penalties associated with different behavioral outcomes, such as speed and accuracy, or the relative costs of stop errors and go errors. We demonstrate that our rational decision-making model naturally gives rise to basic behavioral characteristics consistently observed for this paradigm, as well as more subtle effects due to contextual factors such as reward contingencies or motivational factors. Furthermore, we show that the classical race model can be seen as a computationally simpler, perhaps neurally plausible, approximation to optimal decision-making. This conceptual link allows us to predict how the parameters of the race model, such as the stopping latency, should change with task parameters and individual experiences/ability.

  3. Rational Decision-Making in Inhibitory Control

    Science.gov (United States)

    Shenoy, Pradeep; Yu, Angela J.

    2011-01-01

    An important aspect of cognitive flexibility is inhibitory control, the ability to dynamically modify or cancel planned actions in response to changes in the sensory environment or task demands. We formulate a probabilistic, rational decision-making framework for inhibitory control in the stop signal paradigm. Our model posits that subjects maintain a Bayes-optimal, continually updated representation of sensory inputs, and repeatedly assess the relative value of stopping and going on a fine temporal scale, in order to make an optimal decision on when and whether to go on each trial. We further posit that they implement this continual evaluation with respect to a global objective function capturing the various reward and penalties associated with different behavioral outcomes, such as speed and accuracy, or the relative costs of stop errors and go errors. We demonstrate that our rational decision-making model naturally gives rise to basic behavioral characteristics consistently observed for this paradigm, as well as more subtle effects due to contextual factors such as reward contingencies or motivational factors. Furthermore, we show that the classical race model can be seen as a computationally simpler, perhaps neurally plausible, approximation to optimal decision-making. This conceptual link allows us to predict how the parameters of the race model, such as the stopping latency, should change with task parameters and individual experiences/ability. PMID:21647306

  4. Comparison of Heuristics for Inhibitory Rule Optimization

    KAUST Repository

    Alsolami, Fawaz

    2014-09-13

    Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  5. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    Science.gov (United States)

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is

  6. Neurotrophin-3 Regulates Synapse Development by Modulating TrkC-PTPσ Synaptic Adhesion and Intracellular Signaling Pathways.

    Science.gov (United States)

    Han, Kyung Ah; Woo, Doyeon; Kim, Seungjoon; Choii, Gayoung; Jeon, Sangmin; Won, Seoung Youn; Kim, Ho Min; Heo, Won Do; Um, Ji Won; Ko, Jaewon

    2016-04-27

    Neurotrophin-3 (NT-3) is a secreted neurotrophic factor that binds neurotrophin receptor tyrosine kinase C (TrkC), which in turn binds to presynaptic protein tyrosine phosphatase σ (PTPσ) to govern excitatory synapse development. However, whether and how NT-3 cooperates with the TrkC-PTPσ synaptic adhesion pathway and TrkC-mediated intracellular signaling pathways in rat cultured neurons has remained unclear. Here, we report that NT-3 enhances TrkC binding affinity for PTPσ. Strikingly, NT-3 treatment bidirectionally regulates the synaptogenic activity of TrkC: at concentrations of 10-25 ng/ml, NT-3 further enhanced the increase in synapse density induced by TrkC overexpression, whereas at higher concentrations, NT-3 abrogated TrkC-induced increases in synapse density. Semiquantitative immunoblotting and optogenetics-based imaging showed that 25 ng/ml NT-3 or light stimulation at a power that produced a comparable level of NT-3 (6.25 μW) activated only extracellular signal-regulated kinase (ERK) and Akt, whereas 100 ng/ml NT-3 (light intensity, 25 μW) further triggered the activation of phospholipase C-γ1 and CREB independently of PTPσ. Notably, disruption of TrkC intracellular signaling pathways, extracellular ligand binding, or kinase activity by point mutations compromised TrkC-induced increases in synapse density. Furthermore, only sparse, but not global, TrkC knock-down in cultured rat neurons significantly decreased synapse density, suggesting that intercellular differences in TrkC expression level are critical for its synapse-promoting action. Together, our data demonstrate that NT-3 is a key factor in excitatory synapse development that may direct higher-order assembly of the TrkC/PTPσ complex and activate distinct intracellular signaling cascades in a concentration-dependent manner to promote competition-based synapse development processes. In this study, we present several lines of experimental evidences to support the conclusion that

  7. Macrophage migration inhibitory factor as an incriminating agent in vitiligo.

    Science.gov (United States)

    Farag, Azza Gaber Antar; Hammam, Mostafa Ahmed; Habib, Mona SalahEldeen; Elnaidany, Nada Farag; Kamh, Mona Eaid

    2018-03-01

    Vitiligo is an autoimmune skin disorder in which the loss of melanocytes is mainly attributed to defective autoimmune mechanisms and, lately, there has been more emphasis on autoinflammatory mediators. Among these is the macrophage migration inhibitory factor, which is involved in many autoimmune skin diseases. However, little is known about the contribution of this factor to vitiligo vulgaris. To determine the hypothesized role of migration inhibitory factor in vitiligo via estimation of serum migration inhibitory factor levels and migration inhibitory factor mRNA concentrations in patients with vitiligo compared with healthy controls. We also aimed to assess whether there is a relationship between the values of serum migration inhibitory factor and/or migration inhibitory factor mRNA with disease duration, clinical type and severity in vitiligo patients. Evaluation of migration inhibitory factor serum level and migration inhibitory factor mRNA expression by ELISA and real-time PCR, respectively, were performed for 50 patients with different degrees of vitiligo severity and compared to 15 age- and gender-matched healthy volunteers as controls. There was a highly significant increase in serum migration inhibitory factor and migration inhibitory factor mRNA levels in vitiligo cases when compared to controls (pvitiligo patients, and each of them with duration and severity of vitiligo. In addition, patients with generalized vitiligo have significantly elevated serum migration inhibitory factor and mRNA levels than control subjects. Small number of investigated subjects. Migration inhibitory factor may have an active role in the development of vitiligo, and it may also be a useful index of disease severity. Consequently, migration inhibitory factor may be a new treatment target for vitiligo patients.

  8. Huntingtin-Interacting Protein 1-Related Protein Plays a Critical Role in Dendritic Development and Excitatory Synapse Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lin Peng

    2017-06-01

    Full Text Available Huntingtin-interacting protein 1-related (HIP1R protein is considered to be an endocytic adaptor protein like the other two members of the Sla2 family, Sla2p and HIP1. They all contain homology domains responsible for the binding of clathrin, inositol lipids and F-actin. Previous studies have revealed that HIP1R is highly expressed in different regions of the mouse brain and localizes at synaptic structures. However, the function of HIP1R in the nervous system remains unknown. In this study, we investigated HIP1R function in cultured rat hippocampal neurons using an shRNA knockdown approach. We found that, after HIP1R knockdown, the dynamics and density of dendritic filopodia, and dendritic branching and complexity were significantly reduced in developing neurons, as well as the densities of dendritic spines and PSD95 clusters in mature neurons. Moreover, HIP1R deficiency led to significantly reduced expression of the ionotropic glutamate receptor GluA1, GluN2A and GluN2B subunits, but not the GABAA receptor α1 subunit. Similarly, HIP1R knockdown reduced the amplitude and frequency of the miniature excitatory postsynaptic current, but not of the miniature inhibitory postsynaptic current. In addition, the C-terminal proline-rich region of HIP1R responsible for cortactin binding was found to confer a dominant-negative effect on dendritic branching in cultured developing neurons, implying a critical role of cortactin binding in HIP1R function. Taken together, the results of our study suggest that HIP1R plays important roles in dendritic development and excitatory synapse formation and function.

  9. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  10. [Consideration of algorithms to presume the lesion location by using X-ray images of the stomach--geometric analysis of four direction radiography for the U region].

    Science.gov (United States)

    Henmi, Shuichi

    2013-01-01

    The author considered algorithms to presume the lesion location from a series of X-ray images obtained by four direction radiography without blind area for the U region of the stomach. The objects of analysis were six cases that protruding lesions were noticed in the U region. Firstly, from the length of short axis and measure of the lateral width of U region projected on the film, we presumed the length of longitudinal axis and angle between short axis and the film. Secondly, we calculated the rate of length to stomach walls from right side and left side of every image to the lateral width at the height passing through the center of the lesion. Using the lesion location calculated from these values, we presumed that the values that almost agreed between two images to be the lesion location. As the result of analysis, there were some cases that the lesion location could be presumed certainly or un-certainly, on the other hand, there were some cases that the lesion location could not be presumed. Since the form of the U region can be distorted by a change of position, or the angle between longitudinal axis and sagittal plane was changed, the error might have been made in calculation, and so it was considered that the lesion location could not be presumed.

  11. Anergic CD4+ T cells form mature immunological synapses with enhanced accumulation of c-Cbl and Cbl-b1

    Science.gov (United States)

    Doherty, Melissa; Osborne, Douglas G.; Browning, Diana L.; Parker, David C.; Wetzel, Scott A.

    2010-01-01

    CD4+ T cell recognition of MHC:peptide complexes in the context of a costimulatory signal results in the large-scale redistribution of molecules at the T-APC interface to form the immunological synapse. The immunological synapse is the location of sustained TCR signaling and delivery of a subset of effector functions. T cells activated in the absence of costimulation are rendered anergic and are hyporesponsive when presented with antigen in the presence of optimal costimulation. Several previous studies have looked at aspects of immunological synapses formed by anergic T cells, but it remains unclear whether there are differences in the formation or composition of anergic immunological synapses. In this study we anergized primary murine CD4+ T cells by incubation of costimulation-deficient, transfected fibroblast APC. Using a combination of TCR, MHC:peptide, and ICAM-1 staining, we found that anergic T cells make mature immunological synapses with characteristic cSMAC and pSMAC domains that were indistinguishable from control synapses. There were small increases in total phosphotyrosine at the anergic synapse along with significant decreases in phosphorylated ERK 1/2 accumulation. Most striking, there was specific accumulation of c-Cbl and Cbl-b to the anergic synapses. Cbl-b, previously shown to be essential in anergy induction, was found in both the pSMAC and the cSMAC of the anergic synapse. This Cbl-b (and c-Cbl) accumulation at the anergic synapse may play an important role in anergy maintenance and/or induction. PMID:20207996

  12. Do Children with Better Inhibitory Control Donate More? Differentiating between Early and Middle Childhood and Cool and Hot Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-12-01

    Full Text Available Inhibitory control may play an important part in prosocial behavior, such as donating behavior. However, it is not clear at what developmental stage inhibitory control becomes associated with donating behavior and which aspects of inhibitory control are related to donating behavior during development in early to middle childhood. The present study aimed to clarify these issues with two experiments. In Experiment 1, 103 3- to 5-year-old preschoolers completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results indicated that there were no relationships between cool or hot inhibitory control and donating behavior in the whole group and each age group of the preschoolers. In Experiment 2, 140 elementary school children in Grades 2, 4, and 6 completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results showed that inhibitory control was positively associated with donating behavior in the whole group. Cool and hot inhibitory control respectively predicted donating behavior in the second and sixth graders. Therefore, the present study reveals that donating behavior increasingly relies on specific inhibitory control, i.e., hot inhibitory control as children grow in middle childhood.

  13. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex

    Science.gov (United States)

    Cubelos, Beatriz; Sebastián-Serrano, Alvaro; Beccari, Leonardo; Calcagnotto, Maria Elisa; Cisneros, Elsa; Kim, Seonhee; Dopazo, Ana; Alvarez-Dolado, Manuel; Redondo, Juan Miguel; Bovolenta, Paola; Walsh, Christopher A.; Nieto, Marta

    2010-01-01

    Summary Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular and electrophysiological analysis we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development and synapse formation in layer II–III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2−/− mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight novel subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits. PMID:20510857

  14. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers.

    Directory of Open Access Journals (Sweden)

    Yuriy Mishchenko

    Full Text Available We propose a new method for mapping neural connectivity optically, by utilizing Cre/Lox system Brainbow to tag synapses of different neurons with random mixtures of different fluorophores, such as GFP, YFP, etc., and then detecting patterns of fluorophores at different synapses using light microscopy (LM. Such patterns will immediately report the pre- and post-synaptic cells at each synaptic connection, without tracing neural projections from individual synapses to corresponding cell bodies. We simulate fluorescence from a population of densely labeled synapses in a block of hippocampal neuropil, completely reconstructed from electron microscopy data, and show that high-end LM is able to detect such patterns with over 95% accuracy. We conclude, therefore, that with the described approach neural connectivity in macroscopically large neural circuits can be mapped with great accuracy, in scalable manner, using fast optical tools, and straightforward image processing. Relying on an electron microscopy dataset, we also derive and explicitly enumerate the conditions that should be met to allow synaptic connectivity studies with high-resolution optical tools.

  16. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea

    Directory of Open Access Journals (Sweden)

    Lijuan eShi

    2016-05-01

    Full Text Available Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs and type I afferent auditory nerve fibers (ANFs may occur in the absence of permanent threshold shift (PTS, and that synapses connecting IHCs with low spontaneous rate (SR ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., hidden hearing loss. However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.

  17. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert

    2010-01-01

    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  18. Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity

    Directory of Open Access Journals (Sweden)

    Akiko Ueno

    2018-03-01

    Full Text Available Summary: In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. : Ueno et al. finds that Lrit1 plays an important role in regulating the synaptic connection between cone photoreceptors and cone ON-bipolar cells. The Frmpd2-Lrit1-mGluR6 axis is crucial for selective synapse formation in cone photoreceptors and for development of normal visual function. Keywords: retina, circuit, synapse formation, cone photoreceptor cell, ON-bipolar cell, visual acuity

  19. Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus.

    Science.gov (United States)

    Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G

    2015-01-01

    Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.

  20. Timing control by redundant inhibitory neuronal circuits

    Energy Technology Data Exchange (ETDEWEB)

    Tristan, I., E-mail: itristan@ucsd.edu; Rulkov, N. F.; Huerta, R.; Rabinovich, M. [BioCircuits Institute, University of California, San Diego, La Jolla, California 92093-0402 (United States)

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  1. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs to the sub......A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  2. Comparison of Heuristics for Inhibitory Rule Optimization

    KAUST Repository

    Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail

    2014-01-01

    Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  3. Impaired inhibitory control in recreational cocaine users.

    Directory of Open Access Journals (Sweden)

    Lorenza S Colzato

    Full Text Available Chronic use of cocaine is associated with impairment in response inhibition but it is an open question whether and to which degree findings from chronic users generalize to the upcoming type of recreational users. This study compared the ability to inhibit and execute behavioral responses in adult recreational users and in a cocaine-free-matched sample controlled for age, race, gender distribution, level of intelligence, and alcohol consumption. Response inhibition and response execution were measured by a stop-signal paradigm. Results show that users and non users are comparable in terms of response execution but users need significantly more time to inhibit responses to stop-signals than non users. Interestingly, the magnitude of the inhibitory deficit was positively correlated with the individuals lifetime cocaine exposure suggesting that the magnitude of the impairment is proportional to the degree of cocaine consumed.

  4. Serum trypsin inhibitory capacity in hemodialysis patients

    International Nuclear Information System (INIS)

    Hashemi, Mohammad; Mehrabifar, Hamid; Homayooni, Fatemeh; Naderi, Mohammad; Montazerifar, Farzaneh; Ghavami, Saeid

    2009-01-01

    It has been established that overproduction of reactive oxygen species (ROS) occurs during hemodialysis causing oxidation of proteins. Alpha-1-antitrypsin is the major circulating anti-protease which contains methionine in the active site. The aim of the present study was to measure the level of serum trypsin inhibitory capacity (sTIC) in hemodialysis patients. This case-control study was performed in 52 hemodialysis patients and 49 healthy controls. sTIC was measured by enzymatic assay. The sTIC was significantly (P< 0.001) lower in hemodialysis patients (1.87 + - 0.67 micron mol/min/mL) than healthy controls (2.83 + - 0.44 micron mol/min/L). Reduction of sTIC may be due to the oxidation of methionine residue in the reactive site of alpha-1 antitrypsin. (author)

  5. Timing control by redundant inhibitory neuronal circuits

    International Nuclear Information System (INIS)

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-01-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model

  6. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss.

    Science.gov (United States)

    Grande, Giovanbattista; Negandhi, Jaina; Harrison, Robert V; Wang, Lu-Yang

    2014-04-01

    Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity

  7. REM sleep selectively prunes and maintains new synapses in development and learning.

    Science.gov (United States)

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao

    2017-03-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.

  8. Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses.

    Science.gov (United States)

    Batista, C A S; Viana, R L; Ferrari, F A S; Lopes, S R; Batista, A M; Coninck, J C P

    2013-04-01

    Thermally sensitive neurons present bursting activity for certain temperature ranges, characterized by fast repetitive spiking of action potential followed by a short quiescent period. Synchronization of bursting activity is possible in networks of coupled neurons, and it is sometimes an undesirable feature. Control procedures can suppress totally or partially this collective behavior, with potential applications in deep-brain stimulation techniques. We investigate the control of bursting synchronization in small-world networks of Hodgkin-Huxley-type thermally sensitive neurons with chemical synapses through two different strategies. One is the application of an external time-periodic electrical signal and another consists of a time-delayed feedback signal. We consider the effectiveness of both strategies in terms of protocols of applications suitable to be applied by pacemakers.

  9. Role of the MAGUK protein family in synapse formation and function.

    Science.gov (United States)

    Oliva, Carlos; Escobedo, Pía; Astorga, César; Molina, Claudia; Sierralta, Jimena

    2012-01-01

    Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  10. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, N