Sample records for presumed inhibitory synapses

  1. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota


    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  2. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz


    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  3. Dynamic mobility of functional GABAA receptors at inhibitory synapses. (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G


    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  4. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu


    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  5. Sleep: The hebbian reinforcement of the local inhibitory synapses. (United States)

    Touzet, Claude


    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rescue of inhibitory synapse strength following developmental hearing loss.

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    Full Text Available Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABA(A receptor a1 subunit specific agonist (zolpidem, or a selective GABA reuptake inhibitor (SGRI, rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABA(B receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABA(A receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.

  7. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy (United States)

    Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Lau, Pak-Ming


    As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows

  8. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.


    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  9. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  10. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon


    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  11. Diversity in Long-Term Synaptic Plasticity at Inhibitory Synapses of Striatal Spiny Neurons (United States)

    Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose


    Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…

  12. NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses

    Directory of Open Access Journals (Sweden)

    Abigail Kalmbach


    Full Text Available Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB to the lateral superior olive (LSO is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit postsynaptic currents that are predominantly mediated by NMDA receptors (NMDARs. To gain a better understanding of how glutamate contributes to synaptic signaling at developing MNTB-LSO inhibitory synapse, we investigated to what degree and under what conditions NMDARs contribute to postsynaptic calcium responses. Our results demonstrate that MNTB-LSO synapses can elicit compartmentalized calcium responses along aspiny LSO dendrites. These responses are significantly attenuated by the NMDARs antagonist APV. APV, however, has no effect on somatically recorded electrical postsynaptic responses, indicating little, if any, contribution of NMDARs to spike generation. Small NMDAR-mediated calcium responses were also observed under physiological levels of extracellular magnesium concentrations indicating that MNTB-LSO synapses activate magnesium sensitive NMDAR on immature LSO dendrites. In Fura-2 AM loaded neurons, blocking GABAA and glycine receptors decreased NMDAR contribution to somatic calcium responses suggesting that GABA and glycine, perhaps by shunting backpropagating action potentials, decrease the level of NMDAR activation under strong stimulus conditions.

  13. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa


    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  14. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli


    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  15. Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse

    Directory of Open Access Journals (Sweden)

    Chong Chen


    Full Text Available GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC to Purkinje cell (PC synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2, whereas synaptotagmin 1 (Syt1 was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits.

  16. GABAA Receptor Activity Shapes the Formation of Inhibitory Synapses between Developing Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Jessica eArama


    Full Text Available Basal ganglia play an essential role in motor coordination and cognitive functions. The GABAergic medium spiny neurons (MSNs account for ~95 % of all the neurons in this brain region. Central to the normal functioning of MSNs is integration of synaptic activity arriving from the glutamatergic corticostriatal and thalamostriatal afferents, with synaptic inhibition mediated by local interneurons and MSN axon collaterals. In this study we have investigated how the specific types of GABAergic synapses between the MSNs develop over time, and how the activity of GABAA receptors (GABAARs influences this development. Isolated embryonic (E17 MSNs form a homogenous population in vitro and display spontaneous synaptic activity and functional properties similar to their in vivo counterparts. In dual whole-cell recordings of synaptically connected pairs of MSNs, action potential-activated synaptic events were detected between 7 and 14 days in vitro (DIV, which coincided with the shift in GABAAR operation from depolarization to hyperpolarization, as detected indirectly by intracellular calcium imaging. In parallel, the predominant subtypes of inhibitory synapses, which innervate dendrites of MSNs and contain GABAAR α1 or α2 subunits, underwent distinct changes in the size of postsynaptic clusters, with α1 becoming smaller and α2 larger over time, while both the percentage and the size of mixed α1/α2-postsynaptic clusters were increased. When activity of GABAARs was under chronic blockade between 4-7 DIV, the structural properties of these synapses remained unchanged. In contrast, chronic inhibition of GABAARs between7-14 DIV led to reduction in size of α1- and α1/α2-postsynaptic clusters and a concomitant increase in number and size of α2-postsynaptic clusters. Thus, the main subtypes of GABAergic synapses formed by MSNs are regulated by GABAAR activity, but in opposite directions, and thus appear to be driven by different molecular mechanisms.

  17. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  18. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock. (United States)

    Shapiro-Reznik, Mika; Jilg, Anje; Lerner, Hadas; Earnest, David J; Zisapel, Nava


    The neurexin genes (NRXN1/2/3) encode two families (α and β) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively) were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic scaffolding proteins

  19. Visualization by high resolution immunoelectron microscopy of the transient receptor potential vanilloid-1 at inhibitory synapses of the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Miren-Josune Canduela

    Full Text Available We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1, a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML. In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (∼60% of total immunoparticles at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.

  20. Painful Cervical Facet Joint Injury Is Accompanied by Changes in the Number of Excitatory and Inhibitory Synapses in the Superficial Dorsal Horn That Differentially Relate to Local Tissue Injury Severity. (United States)

    Ita, Meagan E; Crosby, Nathan D; Bulka, Ben A; Winkelstein, Beth A


    Immunohistochemistry labeled pre- and postsynaptic structural markers to quantify excitatory and inhibitory synapses in the spinal superficial dorsal horn at 14 days after painful facet joint injury in the rat. The objective of this study was to investigate the relationship between pain and synapse density in the spinal cord after facet injury. Neck pain is a major contributor to disability and often becomes chronic. The cervical facet joints are susceptible to loading-induced painful injury, initiating spinal central sensitization responses. Although excitatory synapse plasticity has been reported in the superficial dorsal horn early after painful facet injury, whether excitatory and/or inhibitory synapse density is altered at a time when pain is maintained is unknown. Rats underwent either a painful C6/C7 facet joint distraction or sham surgery. Mechanical hyperalgesia was measured and immunohistochemistry techniques for synapse quantification were used to quantify excitatory and inhibitory synapse densities in the superficial dorsal horn at day 14. Logarithmic correlation analyses evaluated whether the severity of facet injury correlated with either behavioral or synaptic outcomes. Facet joint injury induces pain that is sustained until day 14 (P Injury severity is significantly correlated with pain at days 1 (P = 0.0011) and 14 (P = 0.0002), but only with inhibitory, not excitatory, synapse density (P = 0.0025) at day 14. This study demonstrates a role for structural plasticity in both excitatory and inhibitory synapses in the maintenance of facet-mediated joint pain, and that altered inhibitory, but not excitatory, synapse density correlates to the severity of painful joint injury. Understanding the functional consequences of this spinal structural plasticity is critical to elucidate mechanisms of chronic joint pain. N /A.

  1. Synapse Pathology in Psychiatric and Neurologic Disease

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); C.C. Hoogenraad (Casper)


    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical

  2. CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses (United States)

    Younts, Thomas J.; Chevaleyre, Vivien


    Endocannabinoids (eCBs) are retrograde lipid messengers that, by targeting presynaptic type 1 cannabinoid receptors (CB1Rs), mediate short- and long-term synaptic depression of neurotransmitter release throughout the brain. Short-term depression is typically triggered by postsynaptic, depolarization-induced calcium rises, whereas long-term depression is induced by synaptic activation of Gq/11 protein-coupled receptors. Here we report that a physiologically relevant pattern of postsynaptic activity, in the form of theta-burst firing (TBF) of hippocampal CA1 pyramidal neurons, can trigger long-term depression of inhibitory transmission (iLTD) in rat hippocampal slices. Paired recordings between CA1 interneurons and pyramidal cells, followed by post hoc morphological reconstructions of the interneurons' axon, revealed that somatic and dendritic inhibitory synaptic inputs equally expressed TBF-induced iLTD. Simultaneous recordings from neighboring pyramidal cells demonstrated that eCB signaling triggered by TBF was highly restricted to only a single, active cell. Furthermore, pairing submaximal endogenous activation of metabotropic glutamate or muscarinic acetylcholine receptors with submaximal TBF unmasked associative iLTD. Although CB1Rs are also expressed at Schaffer-collateral excitatory terminals, long-term plasticity under various recording conditions was spared at these synapses. Consistent with this observation, TBF also shifted the balance of excitation and inhibition in favor of excitatory throughput, thereby altering information flow through the CA1 circuit. Given the near ubiquity of burst-firing activity patterns and CB1R expression in the brain, the properties described here may be a general means by which neurons fine tune the strength of their inputs in a cell-wide and cell-specific manner. PMID:23966696

  3. What is presumed when we presume consent?

    Directory of Open Access Journals (Sweden)

    Pierscionek Barbara K


    Full Text Available Abstract Background The organ donor shortfall in the UK has prompted calls to introduce legislation to allow for presumed consent: if there is no explicit objection to donation of an organ, consent should be presumed. The current debate has not taken in account accepted meanings of presumption in law and science and the consequences for rights of ownership that would arise should presumed consent become law. In addition, arguments revolve around the rights of the competent autonomous adult but do not always consider the more serious implications for children or the disabled. Discussion Any action or decision made on a presumption is accepted in law and science as one based on judgement of a provisional situation. It should therefore allow the possibility of reversing the action or decision. Presumed consent to organ donation will not permit such reversal. Placing prime importance on the functionality of body organs and their capacity to sustain life rather than on explicit consent of the individual will lead to further debate about rights of ownership and potentially to questions about financial incentives and to whom benefits should accrue. Factors that influence donor rates are not fully understood and attitudes of the public to presumed consent require further investigation. Presuming consent will also necessitate considering how such a measure would be applied in situations involving children and mentally incompetent adults. Summary The presumption of consent to organ donation cannot be understood in the same way as is presumption when applied to science or law. Consideration should be given to the consequences of presuming consent and to the questions of ownership and organ monetary value as these questions are likely to arise should presumed consent be permitted. In addition, the implications of presumed consent on children and adults who are unable to object to organ donation, requires serious contemplation if these most vulnerable

  4. Diverse Short-Term Dynamics of Inhibitory Synapses Converging on Striatal Projection Neurons: Differential Changes in a Rodent Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Janet Barroso-Flores


    Full Text Available Most neurons in the striatum are projection neurons (SPNs which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP between fast-spiking (FS interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing, in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA rodent model of Parkinson’s disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings.

  5. Organization of central synapses by adhesion molecules. (United States)

    Tallafuss, Alexandra; Constable, John R L; Washbourne, Philip


    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during the development of the nervous system, and the formation of appropriate synapses is crucial for the establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies have revealed a diverse and vast assortment of molecules that are present at the synapse. It is now important to untangle this large array of proteins and determine how it assembles into a functioning unit. Here we focus on recent reports describing how synaptic cell adhesion molecules interact with and organize the presynaptic and postsynaptic specializations of both excitatory and inhibitory central synapses. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Defects of the Glycinergic Synapse in Zebrafish


    Ogino, Kazutoyo; Hirata, Hiromi


    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nocicepti...

  7. Invaginating Structures in Mammalian Synapses (United States)

    Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.


    Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling.

  8. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex (United States)

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel


    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  9. Plasticity of cortical excitatory-inhibitory balance. (United States)

    Froemke, Robert C


    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  10. The immunological synapse

    DEFF Research Database (Denmark)

    Klemmensen, Thomas; Pedersen, Lars Ostergaard; Geisler, Carsten


    . A distinct 3-dimensional supramolecular structure at the T cell/APC interface has been suggested to be involved in the information transfer. Due to its functional analogy to the neuronal synapse, the structure has been termed the "immunological synapse" (IS). Here, we review molecular aspects concerning...

  11. Conjunctivitis presumably due to Acanthamoeba


    Ruthes, Ana Cristina de Carvalho; Wahab, Sâmia; Wahab, Najua; Moreira, Hamilton; Moreira, Luciane


    OBJETIVO: Abordar quatro casos de conjuntivite presumível por Acanthamoeba, descrevendo o diagnóstico, considerando sinais e sintomas e o tratamento instituído. MÉTODOS: Foram estudados casos de conjuntivite presumível por Acanthamoeba diagnosticados no Hospital de Olhos do Paraná (HOP), no período de setembro/1998 a janeiro/2002. Todos os olhos estudados foram submetidos a um protocolo de investigação que incluía exame oftalmológico completo, microbiologia e cultura de secreções conjuntivais...

  12. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores


    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  13. Complications of presumed ocular tuberculosis. (United States)

    Hamade, Issam H; Tabbara, Khalid F


    To determine the effect of steroid treatment on visual outcome and ocular complications in patients with presumed ocular tuberculosis. Retrospective review of patients with presumptive ocular tuberculosis. The clinical diagnosis was made based on ocular findings, positive purified protein derivative (PPD) testing of more than 15 mm induration, exclusion of other causes of uveitis and positive ocular response to anti-tuberculous therapy (ATT) within 4 weeks. Group 1 included patients who had received oral prednisone or subtenon injection of triamcinolone acetonide prior to ATT. Group 2 included patients who did not receive corticosteroid therapy prior to administration of ATT.   Among 500 consecutive new cases of uveitis encountered in 1997-2007 there were 49 (10%) patients with presumed ocular tuberculosis. These comprised 28 (57%) male and 21 (43%) female patients with a mean age of 45 years (range 12-76 years). Four (20%) patients in group 1 had initial visual acuity of 20/40 or better, in comparison to eight (28%) patients in group 2. At 1-year follow-up, six (30%) patients in group 1 had a visual acuity of 20/40 or better compared with 20 (69%) patients in group 2 (p = 0.007). Of 20 eyes (26%) in group 1 that had visual acuity of < 20/50 at 1-year follow up, 14 (70%) eyes developed severe chorioretinal lesion (p = 0.019). Early administration of corticosteroids without anti-tuberculous therapy in presumed ocular tuberculosis may lead to poor visual outcome compared with patients who did not receive corticosteroids prior to presentation. Furthermore, the severity of chorioretinitis lesion in the group of patients given corticosteroid prior to ATT may account for the poor visual outcome. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  14. A bionics chemical synapse. (United States)

    Thanapitak, Surachoke; Toumazou, Christofer


    Implementation of the current mode CMOS circuit for chemical synapses (AMPA and NMDA receptors) with dynamic change of glutamate as the neurotransmitter input is presented in this paper. Additionally, circuit realisation for receptor GABA(A) and GABA(B) with an electrical signal which symbolises γ-Aminobutyric Acid (GABA) perturbation is introduced. The chemical sensor for glutamate sensing is the modified ISFET with enzyme (glutamate oxidase) immobilisation. The measured results from these biomimetics chemical synapse circuits closely match with the simulation result from the mathematical model. The total power consumption of the whole chip (four chemical synapse circuits and all auxiliary circuits) is 168.3 μW. The total chip area is 3 mm(2) in 0.35-μm AMS CMOS technology.

  15. Defects of the Glycinergic Synapse in Zebrafish (United States)

    Ogino, Kazutoyo; Hirata, Hiromi


    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  16. The sticky synapse

    DEFF Research Database (Denmark)

    Owczarek, Sylwia Elzbieta; Kristiansen, Lars Villiam; Hortsch, Michael

    NCAM-type proteins modulate multiple neuronal functions, including the outgrowth and guidance of neurites, the formation, maturation, and plasticity of synapses, and the induction of both long-term potentiation and long-term depression. The ectodomains of NCAM proteins have a basic structure...... signal transduction. A central feature of the synaptic function of NCAM proteins is the regulation of their extracellular interactions by adhesion-modulating glycoepitopes, their removal from the cell surface by endocytosis, and the elimination of their adhesion-mediating interactions by the proteolytic...

  17. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad


    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  18. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination. (United States)

    Personius, Kirkwood E; Slusher, Barbara S; Udin, Susan B


    At birth, each mammalian skeletal muscle fiber is innervated by multiple motor neurons, but in a few weeks, all but one of those axons retracts (Redfern, 1970) and differential activity between inputs controls this phenomenon (Personius and Balice-Gordon, 2001; Sanes and Lichtman, 2001; Personius et al., 2007; Favero et al., 2012). Acetylcholine, the primary neuromuscular transmitter, has long been presumed to mediate this activity-dependent process (O'Brien et al., 1978), but glutamatergic transmission also occurs at the neuromuscular junction (Berger et al., 1995; Grozdanovic and Gossrau, 1998; Mays et al., 2009). To test the role of neuromuscular NMDA receptors, we assessed their contribution to muscle calcium fluxes in mice and tested whether they influence removal of excess innervation at the end plate. Developmental synapse pruning was slowed by reduction of NMDA receptor activation or expression and by reduction of glutamate production. Conversely, pruning is accelerated by application of exogenous NMDA. We also found that NMDA induced increased muscle calcium only during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play previously unsuspected roles in neuromuscular activity and synaptic pruning during development. In normal adult muscle, each muscle fiber is innervated by a single axon, but at birth, fibers are multiply innervated. Elimination of excess connections requires neural activity; because the neuromuscular junction (NMJ) is a cholinergic synapse, acetylcholine has been assumed to be the critical mediator of activity. However, glutamate receptors are also expressed at the NMJ. We found that axon removal in mice is slowed by pharmacological and molecular manipulations that decrease signaling through neuromuscular NMDA receptors, whereas application of exogenous NMDA at the NMJ accelerates synapse elimination and increases muscle calcium levels during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play

  19. Alzheimer's disease: synapses gone cold

    Directory of Open Access Journals (Sweden)

    Hyman Bradley T


    Full Text Available Abstract Alzheimer's disease (AD is a progressive neurodegenerative disease characterized by insidious cognitive decline and memory dysfunction. Synapse loss is the best pathological correlate of cognitive decline in AD and mounting evidence suggests that AD is primarily a disease of synaptic dysfunction. Soluble oligomeric forms of amyloid beta (Aβ, the peptide that aggregates to form senile plaques in the brain of AD patients, have been shown to be toxic to neuronal synapses both in vitro and in vivo. Aβ oligomers inhibit long-term potentiation (LTP and facilitate long-term depression (LTD, electrophysiological correlates of memory formation. Furthermore, oligomeric Aβ has also been shown to induce synapse loss and cognitive impairment in animals. The molecular underpinnings of these observations are now being elucidated, and may provide clear therapeutic targets for effectively treating the disease. Here, we review recent findings concerning AD pathogenesis with a particular focus on how Aβ impacts synapses.

  20. Diversity of Spine Synapses in Animals (United States)

    Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.


    Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved. PMID:27230661

  1. Conjuntivite presumível por Acanthamoeba


    Ruthes,Ana Cristina de Carvalho; Wahab,Sâmia; Wahab,Najua; Moreira,Hamilton; Moreira,Luciane


    OBJETIVO: Abordar quatro casos de conjuntivite presumível por Acanthamoeba, descrevendo o diagnóstico, considerando sinais e sintomas e o tratamento instituído. MÉTODOS: Foram estudados casos de conjuntivite presumível por Acanthamoeba diagnosticados no Hospital de Olhos do Paraná (HOP), no período de setembro/1998 a janeiro/2002. Todos os olhos estudados foram submetidos a um protocolo de investigação que incluía exame oftalmológico completo, microbiologia e cultura de secreções conjuntivais...

  2. The space where aging acts: focus on the GABAergic synapse. (United States)

    Rozycka, Aleksandra; Liguz-Lecznar, Monika


    As it was established that aging is not associated with massive neuronal loss, as was believed in the mid-20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging-related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging-related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging-induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Presumed hereditary retinal degenerations: Ibadan experience ...

    African Journals Online (AJOL)

    This study describes the clinical presentation of RP, the prevalence of associated treatable disorders and the characteristics of patients with severe visual impairment and blindness. Method: A retrospective review of 52 cases presumed and diagnosed to have RP was performed on patients who presented at the Eye Clinic, ...

  4. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Chong Chen


    Full Text Available Synaptotagmin 7 (Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC-Purkinje cell (PC synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.

  5. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus. (United States)

    Kiyokage, Emi; Kobayashi, Kazuto; Toida, Kazunori


    Olfactory sensory axons converge in specific glomeruli where they form excitatory synapses onto dendrites of mitral/tufted (M/T) and juxtaglomerular (JG) cells, including periglomerular (PG), external tufted (ET), and superficial-short axon cells. JG cells consist of heterogeneous subpopulations with different neurochemical, physiological, and morphological properties. Among JG cells, previous electron microscopic (EM) studies have shown that the majority of synaptic inputs to tyrosine hydroxylase (TH)-immunoreactive neurons were asymmetrical synapses from olfactory nerve (ON) terminals. However, recent physiological results revealed that 70% of dopaminergic/γ-aminobutyric acid (GABA)ergic neurons received polysynaptic inputs via ET cells, whereas the remaining 30% received monosynaptic ON inputs. To understand the discrepancies between EM and physiological data, we used serial EM analysis combined with confocal laser scanning microscope images to examine the spatial distribution of synapses on dendrites using mice expressing enhanced green fluorescent protein under the control of the TH promoter. The majority of synaptic inputs to TH-expressing JG cells were from ON terminals, and they preferentially targeted distal dendrites from the soma. On the other hand, the numbers of non-ON inputs were fewer and targeted proximal dendrites. Furthermore, individual TH-expressing JG cells formed serial synapses, such as M/T→TH→another presumed M/T or ON→TH→presumed M/T, but not reciprocal synapses. Serotonergic fibers also associated with somatic regions of TH neurons, displaying non-ON profiles. Thus, fewer proximal non-ON synapses provide more effective inputs than large numbers of distal ON synapses and may occur on the physiologically characterized population of dopaminergic-GABAergic neurons (70%) that receive their most effective inputs indirectly via an ON→ET→TH circuit. J. Comp. Neurol. 525:1059-1074, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  6. Remodeling of inhibitory synaptic connections in developing ferret visual cortex

    Directory of Open Access Journals (Sweden)

    Dalva Matthew B


    Full Text Available Abstract Background In the visual cortex, as in many other regions of the developing brain, excitatory synaptic connections undergo substantial remodeling during development. While evidence suggests that local inhibitory synapses may behave similarly, the extent and mechanisms that mediate remodeling of inhibitory connections are not well understood. Results Using scanning laser photostimulation in slices of developing ferret visual cortex, we assessed the overall patterns of developing inhibitory and excitatory synaptic connections converging onto individual neurons. Inhibitory synaptic inputs onto pyramidal neurons in cortical layers 2 and 3 were already present as early as postnatal day 20, well before eye opening, and originated from regions close to the recorded neurons. During the ensuing 2 weeks, the numbers of synaptic inputs increased, with the numbers of inhibitory (and excitatory synaptic inputs peaking near the time of eye opening. The pattern of inhibitory inputs refined rapidly prior to the refinement of excitatory inputs. By uncaging the neurotransmtter GABA in brain slices from animals of different ages, we find that this rapid refinement correlated with a loss of excitatory activity by GABA. Conclusion Inhibitory synapses, like excitatory synapses, undergo significant postnatal remodeling. The time course of the remodeling of inhibitory connections correlates with the emergence of orientation tuning in the visual cortex, implicating these rearrangements in the genesis of adult cortical response properties.

  7. Synapse-specific astrocyte gating of amygdala-related behavior. (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso


    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  8. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe


    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  9. Organization of central synapses by adhesion molecules


    Tallafuss, Alexandra; Constable, John R.L.; Washbourne, Philip


    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during development of the nervous system, and formation of appropriate synapses is crucial for establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies ...

  10. Presumed oculoglandular syndrome from Bartonella quintana. (United States)

    Borboli, Sheila; Afshari, Natalie A; Watkins, Lynnette; Foster, C Stephen


    To describe a case of clinically diagnosed oculoglandular syndrome in a 17-year-old patient that was presumed to be due to Bartonella quintana, as suggested by a positive serologic titer. The patient presented to the Massachusetts Eye and Ear Infirmary emergency room with signs and symptoms suggestive of oculoglandular syndrome. He had a follicular conjunctivitis with a conjunctival granuloma of the right eye and an ipsilateral large, tender submandibular lymph node. He had recently acquired a kitten and a clinical diagnosis of cat-scratch disease was made. A laboratory workup was initiated to determine the cause of this clinical presentation and empirical treatment with antibiotics was started. All laboratory results were negative or normal except for the IgM titer to Bartonella quintana, which was elevated. The patient responded well to treatment and his symptoms resolved within a few weeks. Bartonella quintana infection, a pathogen prevalent in HIV-infected, homeless, or alcoholic patients, is a possible etiologic agent of cat-scratch disease and the associated condition of oculoglandular syndrome.

  11. Face classification using electronic synapses (United States)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He


    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  12. Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images (United States)

    Morales, Juan; Alonso-Nanclares, Lidia; Rodríguez, José-Rodrigo; DeFelipe, Javier; Rodríguez, Ángel; Merchán-Pérez, Ángel


    The synapses in the cerebral cortex can be classified into two main types, Gray's type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes. PMID:21633491

  13. ESPINA: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images

    Directory of Open Access Journals (Sweden)

    Juan eMorales


    Full Text Available The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory and symmetric (inhibitory GABAergic synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze three-dimensional samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using FIB/SEM microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed and quantified from large three-dimensional tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.

  14. Layer Specific Development of Neocortical Pyramidal to Fast Spiking Cells Synapses.

    Directory of Open Access Journals (Sweden)

    Olga eVoinova


    Full Text Available All cortical neurons are engaged in inhibitory feedback loops which ensure excitation-inhibition balance and are key elements for the development of coherent network activity. The resulting network patterns are strongly dependent on the strength and dynamic properties of these excitatory-inhibitory loops which show pronounced regional and developmental diversity. We therefore compared the properties and postnatal maturation of two different synapses between rat neocortical pyramidal cells (layer 2/3 and layer 5, respectively and fast spiking (FS interneurons in the corresponding layer. At P14, both synapses showed synaptic depression upon repetitive activation. Synaptic release properties between layer 2/3 pyramidal cells and FS cells were stable from P14 to P28. In contrast, layer 5 pyramidal to FS cell connections showed a significant increase in paired pulse ratio by P28. Presynaptic calcium dynamics did also change at these synapses, including the sensitivity to exogenously loaded calcium buffers and expression of presynaptic calcium channels subtypes. These results underline the large variety of properties at different, yet similar, synapses in the neocortex. They also suggest that postnatal maturation of the brain goes along with increasing differences between synaptically driven network activity in layer 5 and layer 2/3.

  15. Synchronization of the small-world neuronal network with unreliable synapses

    International Nuclear Information System (INIS)

    Li, Chunguang; Zheng, Qunxian


    As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive

  16. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  17. Conjuntivite presumível por Acanthamoeba Conjunctivitis presumably due to Acanthamoeba

    Directory of Open Access Journals (Sweden)

    Ana Cristina de Carvalho Ruthes


    Full Text Available OBJETIVO: Abordar quatro casos de conjuntivite presumível por Acanthamoeba, descrevendo o diagnóstico, considerando sinais e sintomas e o tratamento instituído. MÉTODOS: Foram estudados casos de conjuntivite presumível por Acanthamoeba diagnosticados no Hospital de Olhos do Paraná (HOP, no período de setembro/1998 a janeiro/2002. Todos os olhos estudados foram submetidos a um protocolo de investigação que incluía exame oftalmológico completo, microbiologia e cultura de secreções conjuntivais. RESULTADOS: Os exames laboratoriais de microscopia e cultura do material colhido estes pacientes revelaram o diagnóstico de Acanthamoeba. A maioria dos pacientes referia olhos vermelhos e irritação ocular de longa data. Os autores encontraram correlação entre a cultura e o exame direto, em que se evidenciou a presença de cistos e trofozoítas do protozoário. CONCLUSÃO: Este é o primeiro relato de conjuntivite provavelmente por Acanthamoeba de acordo com a literatura revisada. Pacientes selecionados e refratários ao tratamento habitual de infecção ocular externa devem ser considerados para estudo laboratorial adequado à procura etiológica da doença.PURPOSE: To describe four cases of conjunctivitis presumably due to Acanthamoeba considering diagnosis, signs, symptoms and treatment. METHODS: We reviewed the medical records of all patients who presented a clinical diagnosis of Acanthamoeba conjunctivitis between September/1998 to January/2001 at the "Hospital de Olhos do Paraná (HOP". All eyes were submitted to a protocol of investigation that included ophthalmologic examination, microscopic examination and culture exams of conjunctival smears for adequate treatment. RESULTS: The laboratorial results of conjunctival smears revealed contamination with Acanthamoeba by direct examination and thereafter, confirmed by culture. The authors observed cysts and trophozoites of Acanthamoeba. CONCLUSION: This is the first report of

  18. A new measure for the strength of electrical synapses

    Directory of Open Access Journals (Sweden)

    Julie S Haas


    Full Text Available Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the considerable strength of electrical synapses. For electrical synapses measured in rodent slices of the thalamic reticular nucleus, spike timing is modulated by tens of ms by activity in a coupled neighbor.

  19. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.


    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  20. Synapse proteomics: current status and quantitative applications

    NARCIS (Netherlands)

    Li, K.W.; Jimenez, C.R.


    Chemical synapses are key organelles for neurotransmission. The coordinated actions of protein networks in diverse synaptic subdomains drive the sequential molecular events of transmitter release from the presynaptic bouton, activation of transmitter receptors located in the postsynaptic density and

  1. Comparative anatomy of phagocytic and immunological synapses

    Directory of Open Access Journals (Sweden)

    Florence eNiedergang


    Full Text Available The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of phagocytic synapse. Here we discuss both types of structures, their organization and the mechanisms by which they are generated and regulated.

  2. Prevention of Noise Damage to Cochlear Synapses (United States)


    neurotrophic factor CNTF in promoting synapse regeneration. KEYWORDS Anandamide Auditory Brainstem Response Calcium Ion Calcium-Permeable AMPA Receptors...excitotoxic trauma (kainic acid) in vitro? f) Does CNTF promote synapse regeneration in vitro as does NT-3? W81XWH-14-1-0494 Annual Progress Report 29... CNTF ) is expressed in the organ of Corti at high levels, comparable to NT-3. We have also found that CNTF is approximately as effective as NT-3 in

  3. Spiking Neural P Systems With Scheduled Synapses. (United States)

    Cabarle, Francis George C; Adorna, Henry N; Jiang, Min; Zeng, Xiangxiang


    Spiking neural P systems (SN P systems) are models of computation inspired by biological spiking neurons. SN P systems have neurons as spike processors, which are placed on the nodes of a directed and static graph (the edges in the graph are the synapses). In this paper, we introduce a variant called SN P systems with scheduled synapses (SSN P systems). SSN P systems are inspired and motivated by the structural dynamism of biological synapses, while incorporating ideas from nonstatic (i.e., dynamic) graphs and networks. In particular, synapses in SSN P systems are available only at specific durations according to their schedules. The SSN P systems model is a response to the problem of introducing durations to synapses of SN P systems. Since SN P systems are in essence static graphs, it is natural to consider them for dynamic graphs also. We introduce local and global schedule types, also taking inspiration from the above-mentioned sources. We prove that SSN P systems are computationally universal as number generators and acceptors for both schedule types, under a normal form (i.e., a simplifying set of restrictions). The introduction of synapse schedules for either schedule type proves useful in programming the system, despite restrictions in the normal form.

  4. Inter-Synaptic Lateral Diffusion of GABAA Receptors Shapes Inhibitory Synaptic Currents. (United States)

    de Luca, Emanuela; Ravasenga, Tiziana; Petrini, Enrica Maria; Polenghi, Alice; Nieus, Thierry; Guazzi, Stefania; Barberis, Andrea


    The lateral mobility of neurotransmitter receptors has been shown to tune synaptic signals. Here we report that GABAA receptors (GABAARs) can diffuse between adjacent dendritic GABAergic synapses in long-living desensitized states, thus laterally spreading "activation memories" between inhibitory synapses. Glutamatergic activity limits this inter-synaptic diffusion by trapping GABAARs at excitatory synapses. This novel form of activity-dependent hetero-synaptic interplay is likely to modulate dendritic synaptic signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses

    DEFF Research Database (Denmark)

    Soricelli, A; Postiglione, A; Grivet-Fojaja, M R


    indiscriminately to affect all cortical neurons, albeit more so in some areas than in others. In this pilot study we measured Vd in six patients with probable AD and in five age-matched controls using a brain-dedicated single-photon emission tomography scanner allowing all cortical levels to be sampled......Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABAA receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (Vd) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends...

  6. Multiassociative Memory: Recurrent Synapses Increase Storage Capacity. (United States)

    Gauy, Marcelo Matheus; Meier, Florian; Steger, Angelika


    The connection density of nearby neurons in the cortex has been observed to be around 0.1, whereas the longer-range connections are present with much sparser density (Kalisman, Silberberg, & Markram, 2005 ). We propose a memory association model that qualitatively explains these empirical observations. The model we consider is a multiassociative, sparse, Willshaw-like model consisting of binary threshold neurons and binary synapses. It uses recurrent synapses for iterative retrieval of stored memories. We quantify the usefulness of recurrent synapses by simulating the model for small network sizes and by doing a precise mathematical analysis for large network sizes. Given the network parameters, we can determine the precise values of recurrent and afferent synapse densities that optimize the storage capacity of the network. If the network size is like that of a cortical column, then the predicted optimal recurrent density lies in a range that is compatible with biological measurements. Furthermore, we show that our model is able to surpass the standard Willshaw model in the multiassociative case if the information capacity is normalized per strong synapse or per bits required to store the model, as considered in Knoblauch, Palm, and Sommer ( 2010 ).

  7. Glutamate synapses in human cognitive disorders. (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L


    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  8. Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Haowen Liu


    Full Text Available The locomotion of C. elegans is balanced by excitatory and inhibitory neurotransmitter release at neuromuscular junctions. However, the molecular mechanisms that maintain the balance of synaptic transmission remain enigmatic. Here, we investigated the function of voltage-gated Ca2+ channels in triggering spontaneous release at cholinergic and GABAergic synapses. Recordings of the miniature excitatory/inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively showed that UNC-2/CaV2 and EGL-19/CaV1 channels are the two major triggers for spontaneous release. Notably, however, Ca2+-independent spontaneous release was observed at GABAergic but not cholinergic synapses. Functional screening led to the identification of hypomorphic unc-64/Syntaxin-1A and snb-1/VAMP2 mutants in which mEPSCs are severely impaired, whereas mIPSCs remain unaltered, indicating differential regulation of these currents at cholinergic and GABAergic synapses. Moreover, Ca2+-independent spontaneous GABA release was nearly abolished in the hypomorphic unc-64 and snb-1 mutants, suggesting distinct mechanisms for Ca2+-dependent and Ca2+-independent spontaneous release.

  9. Cell Biology of Astrocyte-Synapse Interactions. (United States)

    Allen, Nicola J; Eroglu, Cagla


    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation. (United States)

    Pennacchietti, Francesca; Vascon, Sebastiano; Nieus, Thierry; Rosillo, Christian; Das, Sabyasachi; Tyagarajan, Shiva K; Diaspro, Alberto; Del Bue, Alessio; Petrini, Enrica Maria; Barberis, Andrea; Cella Zanacchi, Francesca


    Gephyrin is a key scaffold protein mediating the anchoring of GABAA receptors at inhibitory synapses. Here, we exploited superresolution techniques combined with proximity-based clustering analysis and model simulations to investigate the single-molecule gephyrin reorganization during plasticity of inhibitory synapses in mouse hippocampal cultured neurons. This approach revealed that, during the expression of inhibitory LTP, the increase of gephyrin density at postsynaptic sites is associated with the promoted formation of gephyrin nanodomains. We demonstrate that the gephyrin rearrangement in nanodomains stabilizes the amplitude of postsynaptic currents, indicating that, in addition to the number of synaptic GABAA receptors, the nanoscale distribution of GABAA receptors in the postsynaptic area is a crucial determinant for the expression of inhibitory synaptic plasticity. In addition, the methodology implemented here clears the way to the application of the graph-based theory to single-molecule data for the description and quantification of the spatial organization of the synapse at the single-molecule level. SIGNIFICANCE STATEMENT The mechanisms of inhibitory synaptic plasticity are poorly understood, mainly because the size of the synapse is below the diffraction limit, thus reducing the effectiveness of conventional optical and imaging techniques. Here, we exploited superresolution approaches combined with clustering analysis to study at unprecedented resolution the distribution of the inhibitory scaffold protein gephyrin in response to protocols inducing LTP of inhibitory synaptic responses (iLTP). We found that, during the expression of iLTP, the increase of synaptic gephyrin is associated with the fragmentation of gephyrin in subsynaptic nanodomains. We demonstrate that such synaptic gephyrin nanodomains stabilize the amplitude of inhibitory postsynaptic responses, thus identifying the nanoscale gephyrin rearrangement as a key determinant for inhibitory

  11. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses. (United States)

    Grünewald, Nora; Jan, Audric; Salvatico, Charlotte; Kress, Vanessa; Renner, Marianne; Triller, Antoine; Specht, Christian G; Schwarz, Guenter


    The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 3 10 -helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.

  12. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. (United States)

    Rancillac, Armelle; Crépel, Francis


    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  13. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  14. Otanps synapse linear relation multiplier circuit

    International Nuclear Information System (INIS)

    Chible, H.


    In this paper, a four quadrant VLSI analog multiplier will be proposed, in order to be used in the implementation of the neurons and synapses modules of the artificial neural networks. The main characteristics of this multiplier are the small silicon area and the low power consumption and the high value of the weight input voltage. (author)

  15. Intercellular protein-protein interactions at synapses. (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen


    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  16. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses. (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile


    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  17. Prevention of Noise Damage to Cochlear Synapses (United States)


    difference We therefore conclude that it is more likely that female hormones are protecting against susceptibility as opposed to male hormones...of synapse counts among all experimental conditions, those in A as well as saline/vehicle and systemic 4 mg/Kg IEM-1460 (IEMs4mg). There is no... animals at the approximate level of the animals ’ ears. The variation of the noise level across the animals ’ ears and across time is ə dB

  18. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment. (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A


    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. CNS Neurons Deposit Laminin α5 to Stabilize Synapses

    Directory of Open Access Journals (Sweden)

    Mitchell H. Omar


    Full Text Available Summary: Synapses in the developing brain are structurally dynamic but become stable by early adulthood. We demonstrate here that an α5-subunit-containing laminin stabilizes synapses during this developmental transition. Hippocampal neurons deposit laminin α5 at synapses during adolescence as connections stabilize. Disruption of laminin α5 in neurons causes dramatic fluctuations in dendritic spine head size that can be rescued by exogenous α5-containing laminin. Conditional deletion of laminin α5 in vivo increases dendritic spine size and leads to an age-dependent loss of synapses accompanied by behavioral defects. Remaining synapses have larger postsynaptic densities and enhanced neurotransmission. Finally, we provide evidence that laminin α5 acts through an integrin α3β1-Abl2 kinase-p190RhoGAP signaling cascade and partners with laminin β2 to regulate dendritic spine density and behavior. Together, our results identify laminin α5 as a stabilizer of dendritic spines and synapses in the brain and elucidate key cellular and molecular mechanisms by which it acts. : In the developing brain, synaptic structure transitions from dynamic to stable by early adulthood. Omar et al. identify a laminin molecule deposited at synapses in the brain that is essential for dendritic spine structural regulation and synapse stability between early postnatal development and adulthood. Keywords: extracellular matrix, ECM, synapse maturation, adhesion, Lama5, Lamb2, synapse loss, stability, structural plasticity, motility

  20. Leptospirosis in a dog with uveitis and presumed cholecystitis. (United States)

    Gallagher, Alexander


    A 7 yr old castrated male Australian shepherd dog was examined for acute change in iris color, lethargy, and anorexia. Uveitis, acute renal failure, and presumed cholecystitis were diagnosed. Based on clinical findings, leptosporosis was suspected, and the dog was treated with antibiotics and supportive care. The dog made a complete recovery, and leptospirosis was confirmed on convalescent titers. Due to the zoonotic potential, leptospirosis should be considered in cases of uveitis, as well as possible cholecystitis.

  1. Presumed Group B Streptococcal Meningitis After Epidural Blood Patch. (United States)

    Beilin, Yaakov; Spitzer, Yelena


    Bacterial meningitis after epidural catheter placement is rare. We describe a case in which a parturient received labor epidural analgesia for vaginal delivery complicated by dural puncture. The patient developed postdural puncture headache and underwent 2 separate epidural blood patch procedures. She subsequently developed a headache with fever and focal neurologic deficits. She was treated with broad spectrum antibiotics for presumed meningitis, and she made a full recovery. Blood cultures subsequently grew group B streptococcus.

  2. Inference of topology and the nature of synapses, and the flow of information in neuronal networks (United States)

    Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.


    The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

  3. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns. (United States)

    Jia, Yan; Parker, David


    The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca(2+) levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca(2+) (and compensatory adjustments in Mg(2+) in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These

  4. Microglia-Synapse Pathways: Promising Therapeutic Strategy for Alzheimer's Disease (United States)

    Xie, Jingdun; Wang, Haitao


    The main hallmarks of Alzheimer's disease (AD) are extracellular deposits of amyloid plaques and intracellular accumulation of hyperphosphorylated neurofibrillary tangles (tau). However, the mechanisms underlying these neuropathological changes remain largely unclear. To date, plenty of studies have shown that microglia-mediated neuroinflammation contributes to the pathogenesis of AD, and the microglia-synapse pathways have been repeatedly identified as the crucial factor in the disease process. In this review, evidences from microglia and synapse studies are presented, and the role of microglia in the pathogenesis of AD, the contributing factors to synapse dysfunction, and the role and mechanisms of microglia-synapse pathways will be discussed. PMID:28473983

  5. How synapses can enhance sensibility of a neural network (United States)

    Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.


    In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.

  6. Amyloid Beta Peptides Block New Synapse Assembly by Nogo Receptor-Mediated Inhibition of T-Type Calcium Channels. (United States)

    Zhao, Yanjun; Sivaji, Sivaprakash; Chiang, Michael C; Ali, Haadi; Zukowski, Monica; Ali, Sareen; Kennedy, Bryan; Sklyar, Alex; Cheng, Alice; Guo, Zihan; Reed, Alexander K; Kodali, Ravindra; Borowski, Jennifer; Frost, Georgia; Beukema, Patrick; Wills, Zachary P


    Compelling evidence links amyloid beta (Aβ) peptide accumulation in the brains of Alzheimer's disease (AD) patients with the emergence of learning and memory deficits, yet a clear understanding of the events that drive this synaptic pathology are lacking. We present evidence that neurons exposed to Aβ are unable to form new synapses, resulting in learning deficits in vivo. We demonstrate the Nogo receptor family (NgR1-3) acts as Aβ receptors mediating an inhibition of synapse assembly, plasticity, and learning. Live imaging studies reveal Aβ activates NgRs on the dendritic shaft of neurons, triggering an inhibition of calcium signaling. We define T-type calcium channels as a target of Aβ-NgR signaling, mediating Aβ's inhibitory effects on calcium, synapse assembly, plasticity, and learning. These studies highlight deficits in new synapse assembly as a potential initiator of cognitive pathology in AD, and pinpoint calcium dysregulation mediated by NgRs and T-type channels as key components. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Triheteromeric NMDA Receptors at Hippocampal Synapses (United States)

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.


    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  8. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria


    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  9. Dichotomous Dynamics in E-I Networks with Strongly and Weakly Intra-connected Inhibitory Neurons

    Directory of Open Access Journals (Sweden)

    Scott Rich


    Full Text Available The interconnectivity between excitatory and inhibitory neural networks informs mechanisms by which rhythmic bursts of excitatory activity can be produced in the brain. One such mechanism, Pyramidal Interneuron Network Gamma (PING, relies primarily upon reciprocal connectivity between the excitatory and inhibitory networks, while also including intra-connectivity of inhibitory cells. The causal relationship between excitatory activity and the subsequent burst of inhibitory activity is of paramount importance to the mechanism and has been well studied. However, the role of the intra-connectivity of the inhibitory network, while important for PING, has not been studied in detail, as most analyses of PING simply assume that inhibitory intra-connectivity is strong enough to suppress subsequent firing following the initial inhibitory burst. In this paper we investigate the role that the strength of inhibitory intra-connectivity plays in determining the dynamics of PING-style networks. We show that networks with weak inhibitory intra-connectivity exhibit variations in burst dynamics of both the excitatory and inhibitory cells that are not obtained with strong inhibitory intra-connectivity. Networks with weak inhibitory intra-connectivity exhibit excitatory rhythmic bursts with weak excitatory-to-inhibitory synapses for which classical PING networks would show no rhythmic activity. Additionally, variations in dynamics of these networks as the excitatory-to-inhibitory synaptic weight increases illustrates the important role that consistent pattern formation in the inhibitory cells serves in maintaining organized and periodic excitatory bursts. Finally, motivated by these results and the known diversity of interneurons, we show that a PING-style network with two inhibitory subnetworks, one strongly intra-connected and one weakly intra-connected, exhibits organized and periodic excitatory activity over a larger parameter regime than networks with a

  10. Cell adhesion and matricellular support by astrocytes of the tripartite synapse

    NARCIS (Netherlands)

    Hillen, Anne E J; Burbach, J Peter H; Hol, Elly M


    Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses

  11. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  12. Presumed consent for organ donation: is Romania prepared for it? (United States)

    Grigoras, I; Condac, C; Cartes, C; Blaj, M; Florin, G


    In November 2007, a legislative initiative regarding the presumed consent for organ donation was proposed for parliamentary debate in Romania and was followed by public debate. The study aimed to asses public opinions expressed in the Romanian media. An Internet search was made. The pro and con reasons, the affiliation of parts involved in the debate and suggested future direction of action were identified. The Internet search had 8572 results. The parts involved in the pro and con debate consisted of governmental structures, physicians, ethicists, politicians, media, religious authorities, nongovernmental associations, and lay persons. The main pros were the low rate of organ donation and the long waiting lists, enhancement of organ procurement, avoidance of wasting valuable organs, avoiding responsibility, and the stress imposed to the family in giving the donation consent, humanitarian purposes (saving lives), going along with the scientific progress, and less bureaucracy. The main cons were an unethical issue, violation of human rights, denial of brain death, unethical advantage of public ignorance, unethical use of underprivileged people, little results in terms of organ procurement, but huge negative effects on public opinion, public mistrust in transplant programs and impossibility of refusal identification due to particularities of the Romanian medical system. The con opinions prevailed. For the moment, Romania seems to be unprepared to accept presumed consent. A future change in public perception regarding organ transplantation may modify the terms of a public debate.

  13. Giant neurons and associated synapses in the peripheral nervous system of whip spiders. (United States)

    Foelix, R F; Troyer, D


    Whip spiders (Amblypygi) are arachnids with a specialized first pair of legs. These legs are unusually long (20-25 cm) and are not used for walking. Instead their lengthy tarsi (7-8 cm) are covered with thousands of sensory hairs (mechano- and chemoreceptors). The legs thus resemble antennae of insects. Each sensory hair is associated with 4-40 neurons whose axons are grouped together to form two large tarsal nerves. The nerves contain about 23 000 sensory axons. Whereas most of the axons measure only 0.1-0.2 microns in diameter, a few are exceptionally large (3-20 microns). These are giant fibres. Their large somata are located in specific segments of the tarsi. The branched dendrites of the giant neurons receive hundreds of chemical synapses, presumably from the sensory axons of the hair sensilla. Since stimulation of the tarsal tip elicits fast withdrawal reaction (greater than or equal to 80 ms), it is likely that the giant fibres provide the pathway for the rapid conduction of nerve impulses to the motor centres of the C.N.S. The system is comparable to the giant fibre system of certain insects. In contrast, however, the giant interneurons and associated synapses of whip spiders are not located in the C.N.S., but lie some 20 cm removed in the periphery. Thus, some primary sensory information already becomes processed in the peripheral nervous system, before it reaches the C.N.S.

  14. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn


    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  15. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses (United States)

    Turecek, Josef; Jackman, Skyler L.; Regehr, Wade G.


    At most synapses in the brain, short-term plasticity dynamically modulates synaptic strength. Rapid frequency-dependent changes in synaptic strength have key roles in sensory adaptation, gain control and many other neural computations. However, some auditory, vestibular and cerebellar synapses maintain constant strength over a wide range of firing frequencies, and as a result efficiently encode firing rates. Despite its apparent simplicity, frequency-invariant transmission is difficult to achieve because of inherent synaptic nonlinearities. Here we study frequency-invariant transmission at synapses from Purkinje cells to deep cerebellar nuclei and at vestibular synapses in mice. Prolonged activation of these synapses leads to initial depression, which is followed by steady-state responses that are frequency invariant for their physiological activity range. We find that synaptotagmin 7 (Syt7), a calcium sensor for short-term facilitation, is present at both synapses. It was unclear why a sensor for facilitation would be present at these and other depressing synapses. We find that at Purkinje cell and vestibular synapses, Syt7 supports facilitation that is normally masked by depression, which can be revealed in wild-type mice but is absent in Syt7 knockout mice. In wild-type mice, facilitation increases with firing frequency and counteracts depression to produce frequency-invariant transmission. In Syt7-knockout mice, Purkinje cell and vestibular synapses exhibit conventional use-dependent depression, weakening to a greater extent as the firing frequency is increased. Presynaptic rescue of Syt7 expression restores both facilitation and frequency-invariant transmission. Our results identify a function for Syt7 at synapses that exhibit overall depression, and demonstrate that facilitation has an unexpected and important function in producing frequency-invariant transmission.

  16. Nonlinear Synapses for Large-Scale Models: An Efficient Representation Enables Complex Synapse Dynamics Modeling in Large-Scale Simulations

    Directory of Open Access Journals (Sweden)

    Eric eHu


    Full Text Available Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  17. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses. (United States)

    Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W


    The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca 2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Presumed symbolic use of diurnal raptors by Neanderthals.

    Directory of Open Access Journals (Sweden)

    Eugène Morin

    Full Text Available In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH assemblages conservatively dated to ≈ 100-60 kilo-years (ka ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS 5b (≈ 90 ka and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60-40 ka. The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions.

  19. Reactivation of presumed adenoviral keratitis after laser in situ keratomileusis. (United States)

    Safak, Nilgün; Bilgihan, Kamil; Gürelik, Gökhan; Ozdek, Sengül; Hasanreisoğlu, Berati


    We report a patient with reactivation of presumed adenoviral keratoconjunctivitis after laser in situ keratomileusis (LASIK) to correct high myopia. The preoperative refraction was -13.00 diopters (D) in the right eye and -14.00 D in the left eye, and the best corrected visual acuity was 20/20 in both eyes. On the first postoperative day, mild conjunctival hyperemia and multiple subepithelial infiltrations localized in the flap zone consistent with adenoviral keratoconjunctivitis were seen. After prompt treatment, the lesions resolved. As a consequence, LASIK successfully corrected the high myopia. Adenoviral keratoconjunctivitis can be reactivated after LASIK, unlike after photorefractive keratectomy, despite the absence of symptomatic and clinical findings before the procedure.

  20. Presumed pseudobacteremia outbreak resulting from contamination of proportional disinfectant dispenser. (United States)

    Siebor, E; Llanes, C; Lafon, I; Ogier-Desserrey, A; Duez, J M; Pechinot, A; Caillot, D; Grandjean, M; Sixt, N; Neuwirth, C


    Reported here are the microbiological and epidemiological details of a presumed outbreak of aerobic gram-negative bacilli infections affecting 19 hematological patients, which was traced to contaminated disinfectant. Over a 5-month period, the following organisms were isolated from the blood cultures of 19 neutropenic patients: Pseudomonas fluorescens (n = 13), Achromobacter xylosoxidans (n = 12), Comamonas testosteroni (n = 2) or Stenotrophomonas maltophilia (n = 1). The affected patients were all treated with an expensive regimen of broad-spectrum antibiotic therapy. The same bacteria were recovered from environmental samples as well as from the water pipes of an apparatus for dispensing disinfectant (didecyldimethylammonium chloride). Genotyping results indicated that many of the clinical strains were identical to strains isolated from the apparatus. It was eventually discovered that the night staff was in the habit of disinfecting the blood-culture bottles before use, thereby contaminating the bottles with bacteria contained in the disinfectant. Contamination of the apparatus resulted from faulty maintenance.

  1. The spectrum of presumed tubercular uveitis in Tunisia, North Africa. (United States)

    Khochtali, Sana; Gargouri, Salma; Abroug, Nesrine; Ksiaa, Imen; Attia, Sonia; Sellami, Dorra; Feki, Jamel; Khairallah, Moncef


    The purpose of this study was to analyze the spectrum of presumed tubercular uveitis in Tunisia, North Africa. We retrospectively reviewed the clinical records of 38 patients (65 eyes) diagnosed with presumed tubercular uveitis at two referral centers in Tunisia, between January 2009 and December 2011. Mean age at presentation was 42.7 years. Twenty-four patients were women (63.2%) and 14 (36.8%) were men. Twenty-three eyes (35.4%) had posterior uveitis, 21 eyes (32.3%) had intermediate uveitis, 13 eyes (20%) had panuveitis, and 8 eyes (12.3%) had anterior uveitis. Ocular findings included vitritis in 67.7% of eyes, posterior synechiae in 47.7%, multifocal non-serpiginoid choroiditis in 23.1%, multifocal serpiginoid choroiditis in 21.5%, periphlebitis in 21.5%, and mutton-fat keratic precipitates in 20%. Anti-tubercular treatment was prescribed in 33 patients (86.8%) and was associated with systemic corticosteroids in 20 patients (52.6%) and periocular injections of corticosteroids in four patients (10.5%). After a mean follow-up of 14.2 months (range, 10-58), inflammation was controlled, with a significant improvement in visual acuity (VA) (p = 0.028). However, recurrences developed in two patients (5.3%). Final VA was better than 20/40 in 27 eyes (41.5%) and less than 20/200 in five eyes (7.7%). In Tunisia, all anatomic types are possible in tuberculosis-associated uveitis, but posterior and intermediate uveitis are more frequent. Vitritis, posterior synechiae, multifocal serpiginoid or non-serpiginoid choroiditis, and periphlebitis are the most common manifestations.

  2. Recruitment of dynein to the Jurkat immunological synapse (United States)

    Combs, Jeffrey; Kim, Soo Jin; Tan, Sarah; Ligon, Lee A.; Holzbaur, Erika L. F.; Kuhn, Jeffrey; Poenie, Martin


    Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immunological synapse. The microtubule motor protein cytoplasmic dynein clusters into a ring at the synapse, colocalizing with the ADAP ring. ADAP coprecipitates with dynein from activated Jurkat cells, and loss of ADAP prevents MTOC translocation and the specific recruitment of dynein to the synapse. These results suggest a mechanism that links signaling through the T cell receptor to translocation of the MTOC, in which the minus end-directed motor cytoplasmic dynein, localized at the synapse through an interaction with ADAP, reels in the MTOC, allowing for directed secretion along the polarized microtubule cytoskeleton. microtubules | T cell polarization | -catenin | PLAC-24

  3. A shared synapse architecture for efficient FPGA implementation of autoencoders. (United States)

    Suzuki, Akihiro; Morie, Takashi; Tamukoh, Hakaru


    This paper proposes a shared synapse architecture for autoencoders (AEs), and implements an AE with the proposed architecture as a digital circuit on a field-programmable gate array (FPGA). In the proposed architecture, the values of the synapse weights are shared between the synapses of an input and a hidden layer, and between the synapses of a hidden and an output layer. This architecture utilizes less of the limited resources of an FPGA than an architecture which does not share the synapse weights, and reduces the amount of synapse modules used by half. For the proposed circuit to be implemented into various types of AEs, it utilizes three kinds of parameters; one to change the number of layers' units, one to change the bit width of an internal value, and a learning rate. By altering a network configuration using these parameters, the proposed architecture can be used to construct a stacked AE. The proposed circuits are logically synthesized, and the number of their resources is determined. Our experimental results show that single and stacked AE circuits utilizing the proposed shared synapse architecture operate as regular AEs and as regular stacked AEs. The scalability of the proposed circuit and the relationship between the bit widths and the learning results are also determined. The clock cycles of the proposed circuits are formulated, and this formula is used to estimate the theoretical performance of the circuit when the circuit is used to construct arbitrary networks.

  4. Gephyrin, the enigmatic organizer at GABAergic synapses

    DEFF Research Database (Denmark)

    Tretter, Verena; Mukherjee, Jayanta; Maric, Hans-Michael


    GABA(A) receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors...

  5. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian


    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  6. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina (United States)

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.


    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  7. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Directory of Open Access Journals (Sweden)

    Iryna Yavorska


    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  8. Loss of Ca(2+)-permeable AMPA receptors in synapses of tonic firing substantia gelatinosa neurons in the chronic constriction injury model of neuropathic pain. (United States)

    Chen, Yishen; Derkach, Victor A; Smith, Peter A


    Synapses transmitting nociceptive information in the spinal dorsal horn undergo enduring changes following peripheral nerve injury. Indeed, such injury alters the expression of the GluA2 subunit of glutamatergic AMPA receptors (AMPARs) in the substantia gelatinosa and this predicts altered channel conductance and calcium permeability, leading to an altered function of excitatory synapses. We therefore investigated the functional properties of synaptic AMPA receptors in rat substantia gelatinosa neurons following 10-20d chronic constriction injury (CCI) of the sciatic nerve; a model of neuropathic pain. We measured their single-channel conductance and sensitivity to a blocker of calcium permeable AMPA receptors (CP-AMPARs), IEM1460 (50μM). In putative inhibitory, tonic firing neurons, CCI reduced the average single-channel conductance of synaptic AMPAR from 14.4±3.5pS (n=12) to 9.2±1.0pS (n=10, pinjury acting at synapses of inhibitory neurons to reduce their drive and therefore inhibitory tone in the spinal cord, therefore contributing to the central sensitization associated with neuropathic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Bifurcation Analysis on Phase-Amplitude Cross-Frequency Coupling in Neural Networks with Dynamic Synapses (United States)

    Sase, Takumi; Katori, Yuichi; Komuro, Motomasa; Aihara, Kazuyuki


    We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex. PMID:28424606

  10. Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice.

    Directory of Open Access Journals (Sweden)

    M Teresa Jurado-Parras

    Full Text Available GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the question as to whether behavioral stimuli are strong enough to activate GABAB receptors. Here we show that GABAB1a-/- mice, which constitutively lack presynaptic GABAB receptors at glutamatergic synapses, are impaired in their ability to acquire an operant learning task. In vivo recordings during the operant conditioning reveal a deficit in learning-dependent increases in synaptic strength at CA3-CA1 synapses. Moreover, GABAB1a-/- mice fail to synchronize neuronal activity in the CA1 area during the acquisition process. Our results support that activation of presynaptic hippocampal GABAB receptors is important for acquisition of a learning task and for learning-associated synaptic changes and network dynamics.

  11. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper


    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  12. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. (United States)

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J


    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Infectious endotheliitis: a rare case of presumed mycotic origin (United States)

    Zapata, Luis Fernando; Paulo, José David; Restrepo, Carlos A; Velásquez, Luis Fernando; Montoya, Andrés E Toro; Zapata, Melissa A


    Purpose To report an interesting case of infectious endotheliitis of presumed mycotic origin. Methods A case report of a 56-year-old male farmer who sought medical attention after a month-long evolution of irritative symptoms in his right eye, accompanied by visual acuity (VA) impairment. The patient received topical and oral broad-spectrum antibiotic treatment with no improvement before being referred to a cornea specialist, where he was found to have VA of 20/150 and was noted on biomicroscopy to have endothelial feathery coalescent lesions. The patient was admitted to the hospital for an aqueous humor sample and intravenous voriconazole. Results The microbiological studies did not isolate any micro-organisms. However, clinical evidence of improvement was confirmed after 5 days of antimycotic intravenous therapy. Complete clinical resolution was achieved at 1 month after treatment completion with oral voriconazole, as evidenced by VA of 20/20 and disappearance of endothelial lesions. Conclusion Endothelial involvement by fungi is a rare condition. In this case, no microbes were isolated, but the characteristic morphology of the lesions, the history of onychomycosis, and the spectacular response to voriconazole turn this case into a valid presumptive diagnosis. PMID:23901253

  14. Outbreak of keratitis presumed to be caused by Acanthamoeba. (United States)

    Mathers, W D; Sutphin, J E; Folberg, R; Meier, P A; Wenzel, R P; Elgin, R G


    A sharp increase of Acanthamoeba keratitis from two cases per year to 30 cases per year at our institution prompted this study to determine whether there was a change in the clinical characteristics, basic epidemiology, and outcome of this disease. We reviewed all cases of Acanthamoeba keratitis diagnosed at the University of Iowa Hospitals and Clinics from mid-1993 through 1994. We screened 217 patients with keratitis by tandem scanning confocal microscopy and suspected Acanthamoeba in 51 patients. Diagnosis was confirmed by cytology in 43 patients (48 eyes). There were no positive cultures. Patients examined within four weeks of onset of symptoms were younger (mean age, 32.6 +/- 15.4 years) and wore contact lenses (11 of 18 patients), and infrequently herpes simplex keratitis (four of 18 patients) was diagnosed. Patients examined after four weeks were older (mean age, 54.0 +/- 19.5 years), infrequently wore contact lenses (six of 25 patients), and often had herpes simplex keratitis (12 of 25 patients). Corneal examination with tandem scanning confocal microscopy was associated with a marked increase in the detection of Acanthamoeba, strongly suggesting that the disease is more prevalent than suspected. Acanthamoeba may account for many cases of clinically presumed herpes simplex keratitis, the leading cause of corneal blindness in the United States. Acanthamoeba should be considered in the differential diagnosis of any unexplained keratitis, even those of short duration.

  15. Role of neuron-glia interactions in developmental synapse elimination. (United States)

    Terni, Beatrice; López-Murcia, Francisco José; Llobet, Artur


    During the embryonic development of the nervous system there is a massive formation of synapses. However, the exuberant connectivity present after birth must be pruned during postnatal growth to optimize the function of neuronal circuits. Whilst glial cells play a fundamental role in the formation of early synaptic contacts, their contribution to developmental modifications of established synapses is not well understood. The present review aims to highlight the various roles of glia in the developmental refinement of embryonic synaptic connectivity. We summarize recent evidences linking secretory abilities of glial cells to the disassembly of synaptic contacts that are complementary of a well-established phagocytic role. Considering a theoretical framework, it is discussed how release of glial molecules could be relevant to the developmental refinement of synaptic connectivity. Finally, we propose a three-stage model of synapse elimination in which neurons and glia are functionally associated to timely eliminate synapses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Silent Synapse-Based Circuitry Remodeling in Drug Addiction. (United States)

    Dong, Yan


    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  17. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers


    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  18. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto


    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  19. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors. (United States)

    Fiumara, F; Leitinger, G; Milanese, C; Montarolo, P G; Ghirardi, M


    Short-term activity-dependent synaptic plasticity has a fundamental role in short-term memory and information processing in the nervous system. Although the neuronal circuitry controlling different behaviors of land snails of the genus Helix has been characterized in some detail, little is known about the activity-dependent plasticity of synapses between identified neurons regulating specific behavioral acts. In order to study homosynaptic activity-dependent plasticity of behaviorally relevant Helix synapses independently of heterosynaptic influences, we sought to reconstruct them in cell culture. To this aim, we first investigated in culture the factors regulating synapse formation between Helix neurons, and then we studied the short-term plasticity of in vitro-reconstructed monosynaptic connections involved in the neural control of salivary secretion and whole-body withdrawal. We found that independently of extrinsic factors, cell-cell interactions are seemingly sufficient to trigger the formation of electrical and chemical synapses, although mostly inappropriate--in their type or association--with respect to the in vivo synaptic connectivity. The presence of ganglia-derived factors in the culture medium was required for the in vitro reestablishment of the appropriate in vivo-like connectivity, by reducing the occurrence of electrical connections and promoting the formation of chemical excitatory synapses, while apparently not influencing the formation of inhibitory connections. These heat-labile factors modulated electrical and chemical synaptogenesis through distinct protein tyrosine kinase signal transduction pathways. Taking advantage of in vitro-reconstructed synapses, we have found that feeding interneuron-efferent neuron synapses and mechanosensory neuron-withdrawal interneuron synapses display multiple forms of short-term enhancement-like facilitation, augmentation and posttetanic potentiation as well as homosynaptic depression. These forms of plasticity

  20. Differential regulation of spontaneous and evoked inhibitory synaptic transmission in somatosensory cortex by retinoic acid. (United States)

    Yee, Ada X; Chen, Lu


    Retinoic acid (RA), a developmental morphogen, has emerged in recent studies as a novel synaptic signaling molecule that acts in mature hippocampal neurons to modulate excitatory and inhibitory synaptic transmission in the context of homeostatic synaptic plasticity. However, it is unclear whether RA is capable of modulating neural circuits outside of the hippocampus, and if so, whether the mode of RA's action at synapses is similar to that within the hippocampal network. Here we explore for the first time RA's synaptic function outside the hippocampus and uncover a novel function of all-trans retinoic acid at inhibitory synapses. Acute RA treatment increases spontaneous inhibitory synaptic transmission in L2/3 pyramidal neurons of the somatosensory cortex, and this effect requires expression of RA's receptor RARα both pre- and post-synaptically. Intriguingly, RA does not seem to affect evoked inhibitory transmission assayed with either extracellular stimulation or direct activation of action potentials in presynaptic interneurons at connected pairs of interneurons and pyramidal neurons. Taken together, these results suggest that RA's action at synapses is not monotonous, but is diverse depending on the type of synaptic connection (excitatory versus inhibitory) and circuit (hippocampal versus cortical). Thus, synaptic signaling of RA may mediate multi-faceted regulation of synaptic plasticity. In addition to its classic roles in brain development, retinoic acid (RA) has recently been shown to regulate excitatory and inhibitory transmission in the adult brain. Here, the authors show that in layer 2/3 (L2/3) of the somatosensory cortex (S1), acute RA induces increases in spontaneous but not action-potential evoked transmission, and that this requires retinoic acid receptor (RARα) both in presynaptic PV-positive interneurons and postsynaptic pyramidal (PN) neurons. © 2016 Wiley Periodicals, Inc.

  1. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  2. Infectious endotheliitis: a rare case of presumed mycotic origin

    Directory of Open Access Journals (Sweden)

    Zapata LF


    Full Text Available Luis Fernando Zapata,1 José David Paulo,1 Carlos A Restrepo,1 Luis Fernando Velásquez,2 Andrés E Toro Montoya,2 Melissa A Zapata21Department of Ophthalmology Hospital Pablo Tobón Uribe; 2School of Medicine, Universidad Pontificia Bolivariana, Medellín, ColombiaPurpose: To report an interesting case of infectious endotheliitis of presumed mycotic origin.Methods: A case report of a 56-year-old male farmer who sought medical attention after a month-long evolution of irritative symptoms in his right eye, accompanied by visual acuity (VA impairment. The patient received topical and oral broad-spectrum antibiotic treatment with no improvement before being referred to a cornea specialist, where he was found to have VA of 20/150 and was noted on biomicroscopy to have endothelial feathery coalescent lesions. The patient was admitted to the hospital for an aqueous humor sample and intravenous voriconazole.Results: The microbiological studies did not isolate any micro-organisms. However, clinical evidence of improvement was confirmed after 5 days of antimycotic intravenous therapy. Complete clinical resolution was achieved at 1 month after treatment completion with oral voriconazole, as evidenced by VA of 20/20 and disappearance of endothelial lesions.Conclusion: Endothelial involvement by fungi is a rare condition. In this case, no microbes were isolated, but the characteristic morphology of the lesions, the history of onychomycosis, and the spectacular response to voriconazole turn this case into a valid presumptive diagnosis.Keywords: endotheliitis, mycotic, keratitis, voriconazole

  3. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons (United States)

    Gu, Huaguang; Zhao, Zhiguo


    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  4. Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. (United States)

    Wang, Zemin; Jackson, Rosemary J; Hong, Wei; Taylor, Walter M; Corbett, Grant T; Moreno, Arturo; Liu, Wen; Li, Shaomin; Frosch, Matthew P; Slutsky, Inna; Young-Pearse, Tracy L; Spires-Jones, Tara L; Walsh, Dominic M


    Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD. SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid β-protein (Aβ) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aβ-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aβ localizing to synapses and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation. Copyright © 2017 the authors 0270-6474/17/3711947-20$15.00/0.

  5. Gastric inhibitory polypeptide analogues

    DEFF Research Database (Denmark)

    Holst, Jens Juul


    Gastric inhibitory polypeptide (GIP, also called glucose-dependent insulinotropic polypeptide) and glucagon-like peptide-1 (GLP-1) are peptide hormones from the gut that enhance nutrient-stimulated insulin secretion (the 'incretin' effect). Judging from experiments in mice with targeted deletions...

  6. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity. (United States)

    Srinivasa, Narayan; Cho, Youngkwan


    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  7. On the resemblance of synapse formation and CNS myelination. (United States)

    Almeida, R G; Lyons, D A


    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses (United States)

    Huijbers, Maartje G.; Remedio, Leonor


    The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance. PMID:29415504

  9. The presynaptic machinery at the synapse of C. elegans. (United States)

    Calahorro, Fernando; Izquierdo, Patricia G


    Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.

  10. Spatially restricted actin-regulatory signaling contributes to synapse morphology (United States)

    Nicholson, Daniel A.; Cahill, Michael E.; Tulisiak, Christopher T.; Geinisman, Yuri; Penzes, Peter


    The actin cytoskeleton in dendritic spines is organized into microdomains, but how signaling molecules that regulate actin are spatially governed is incompletely understood. Here we examine how the localization of the RacGEF kalirin-7, a well-characterized regulator of actin in spines, varies as a function of postsynaptic density (PSD) area and spine volume. Using serial section electron microscopy (EM), we find that extrasynaptic, but not synaptic, expression of kalirin-7 varies directly with synapse size and spine volume. Moreover, we find that overall expression levels of kalirin-7 differ in spines bearing perforated and non-perforated synapses, due primarily to extrasynaptic pools of kalirin-7 expression in the former. Overall, our findings indicate that kalirin-7 is differentially compartmentalized in spines as a function of both synapse morphology and spine size. PMID:22458534

  11. Learning through ferroelectric domain dynamics in solid-state synapses (United States)

    Boyn, Sören; Grollier, Julie; Lecerf, Gwendal; Xu, Bin; Locatelli, Nicolas; Fusil, Stéphane; Girod, Stéphanie; Carrétéro, Cécile; Garcia, Karin; Xavier, Stéphane; Tomas, Jean; Bellaiche, Laurent; Bibes, Manuel; Barthélémy, Agnès; Saïghi, Sylvain; Garcia, Vincent


    In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.

  12. Neuromorphic function learning with carbon nanotube based synapses

    International Nuclear Information System (INIS)

    Gacem, Karim; Filoramo, Arianna; Derycke, Vincent; Retrouvey, Jean-Marie; Chabi, Djaafar; Zhao, Weisheng; Klein, Jacques-Olivier


    The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build ground-breaking circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of the neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We show here that carbon-nanotube-based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm. The same ensemble of eight devices can notably be trained multiple times to code successively any three-input linearly separable Boolean logic function despite device-to-device variability. This work thus represents one of the very few demonstrations of actual function learning with synapses based on nanoscale building blocks. The potential of such an approach for the parallel learning of multiple and more complex functions is also evaluated. (paper)

  13. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay


    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  14. Peripheral synapses and giant neurons in whip spiders. (United States)

    Foelix, Rainer; Troyer, David; Igelmund, Peter


    Among invertebrates the synapses between neurons are generally restricted to ganglia, i.e., to the central nervous system (CNS). As an exception, synapses occur in the sensory nerves of arachnid legs, indicating that some nervous integration is already taking place far out in the periphery. In the antenniform legs of whip spiders (Amblypygi), a very special synaptic circuit is present. These highly modified legs contain several large interneurons (giant neurons) that receive mechanosensory input from 700-1,500 tarsal bristles. Some of the sensory cell axons contact a giant neuron at its short, branched dendrite, a few at the soma, but most synapse onto the long giant axon. The fine structure of these synapses resembles that of typical chemical synapses in other arthropods. Although thousands of sensory fibers converge on a single giant neuron, there is no reduction in the actual number of sensory fibers, because these afferent fibers continue their course to the CNS after having made several en passant synapses onto the giant neuron. Touching a single tarsal bristle is sufficient to elicit action potentials in a giant neuron. Owing to the large diameter of the giant axon (10-20 microm), the action potentials reach the CNS within 55 ms, at conduction velocities of up to 7 m/s. However, mechanical stimulation of the tarsal bristles does not elicit a fast escape response, in contrast to giant fiber systems in earthworms, certain insects, and crayfishes. A quick escape is observed in whip spiders, but only after stimulation of the filiform hairs (trichobothria) on the regular walking legs. Although the giant fiber system in the antenniform legs undoubtedly provides a fast sensory pathway, its biological significance is not clearly understood at the moment. Copyright 2002 Wiley-Liss, Inc.

  15. Neuroglial plasticity at striatal glutamatergic synapses in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Rosa M Villalba


    Full Text Available Striatal dopamine denervation is the pathological hallmark of Parkinson’s disease (PD. Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba et al., 2011. The concept of tripartite synapses (TS was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a. Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia-neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD

  16. Exposure to cocaine regulates inhibitory synaptic transmission from the ventral tegmental area to the nucleus accumbens. (United States)

    Ishikawa, Masago; Otaka, Mami; Neumann, Peter A; Wang, Zhijian; Cook, James M; Schlüter, Oliver M; Dong, Yan; Huang, Yanhua H


    Synaptic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) make up the backbone of the brain reward pathway, a neural circuit that mediates behavioural responses elicited by natural rewards as well as by cocaine and other drugs of abuse. In addition to the well-known modulatory dopaminergic projection, the VTA also provides fast excitatory and inhibitory synaptic input to the NAc, directly regulating NAc medium spiny neurons (MSNs). However, the cellular nature of VTA-to-NAc fast synaptic transmission and its roles in drug-induced adaptations are not well understood. Using viral-mediated in vivo expression of channelrhodopsin 2, the present study dissected fast excitatory and inhibitory synaptic transmission from the VTA to NAc MSNs in rats. Our results suggest that, following repeated exposure to cocaine (15 mg kg(-1) day(-1) × 5 days, i.p., 1 or 21 day withdrawal), a presynaptic enhancement of excitatory transmission and suppression of inhibitory transmission occurred at different withdrawal time points at VTA-to-NAc core synapses. In contrast, no postsynaptic alterations were detected at either type of synapse. These results suggest that changes in VTA-to-NAc fast excitatory and inhibitory synaptic transmissions may contribute to cocaine-induced alteration of the brain reward circuitry.

  17. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy. (United States)

    Krasowska, Elżbieta; Zabłocki, Krzysztof; Górecki, Dariusz C; Swinny, Jerome D


    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT) mice, immunoreactivity of neuroligin2 (NL2), an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT), a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  18. Cell Adhesion, the Backbone of the Synapse: “Vertebrate” and “Invertebrate” Perspectives


    Giagtzoglou, Nikolaos; Ly, Cindy V.; Bellen, Hugo J.


    Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neu...

  19. Remodeling of Hippocampal Synapses After Hippocampus-Dependent Associative Learning

    NARCIS (Netherlands)

    Geinisman, Yuri; Disterhoft, John F.; Gundersen, Hans Jørgen G.; McEchron, Matthew D.; Persina, Inna S.; Power, John M.; Zee, Eddy A. van der; West, Mark J.


    The aim of this study was to determine whether hippocampus-dependent associative learning involves changes in the number and/or structure of hippocampal synapses. A behavioral paradigm of trace eyeblink conditioning was used. Young adult rabbits were given daily 80 trial sessions to a criterion of

  20. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions (United States)

    Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.


    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787

  1. A recipe for ridding synapses of the ubiquitous AMPA receptor. (United States)

    Turrigiano, Gina G


    Getting AMPA receptors into and out of synapses represents an important mechanism for changing synaptic strength, but the signals that target AMPA receptors for removal from the synaptic membrane are incompletely understood. A recent study in Ceanorhabditis elegans suggests that ubiquitination of AMPA receptors is one important signal that targets these receptors for endocytosis.

  2. Distribution and structure of efferent synapses in the chicken retina (United States)

    Lindstrom, SH; Nacsa, N; Blankenship, T; Fitzgerald, PG; Weller, C; Vaney, DI; Wilson, M


    The visual system of birds includes an efferent projection from a visual area, the isthmooptic nucleus in the midbrain, back to the retina. Using a combination of anterograde labeling of efferent fibers, reconstruction of dye-filled neurons, NADPH-diaphorase staining, and transmission electron microscopy we have examined the distribution of efferent fibers and their synaptic structures in the chicken retina. We show that efferent fibers terminate strictly within the ventral retina. In 2 completely mapped retinas, only 2 fibers from a total of 15,359 terminated in the dorsal retina. The major synapse made by each efferent fiber is with a single Efferent Target Amacrine Cell (TC). This synapse consists of 5-25 boutons of 2μm diameter, each with multiple active zones, pressed into the TC soma or synapsing with a basketwork of rudimentary TC dendrites in the inner nuclear layer (INL). This basketwork, which is sheathed by Muller cells processes, defines a private neuropil in the INL within which TCs were also seen to receive input from retinal neurons. In addition to the major synapse, efferent fibers typically produce several very thin processes that terminate nearby in single small boutons and for which the soma of a local amacrine cell is one of the likely postsynaptic partners. A minority of efferent fibers also give rise to a thicker process terminating in a strongly diaphorase positive ball about 5μm in diameter. PMID:19439107


    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.


    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  4. Aetiological study of the presumed ocular histoplasmosis syndrome in the Netherlands

    NARCIS (Netherlands)

    Ongkosuwito, J.V.; Kortbeek, L.M.; Lelij, van der A.; Molicka, E.; Kijlstra, A.; Smet, de M.D.; Suttrop-Schulten, M.S.A.


    Aim. To investigate whether presumed ocular histoplasmosis syndrome in the Netherlands is caused by Histoplasma capsulatum and whether other risk factors might play a role in the pathogenesis of this syndrome. Methods. 23 patients were clinically diagnosed as having presumed ocular histoplasmosis

  5. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina


    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%. PMID:27826226

  6. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E


    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution......-enriched terminals, whereas the dorsal horn was dominated by medium-sized and small zinc-enriched terminals.The presence of boutons with flat synaptic vesicles with zinc ions and symmetric synaptic contacts suggests the presence of inhibitory zinc-enriched terminals in the mammalian spinal cord....... The densest populations of zinc-enriched terminals were seen in dorsal horn laminae I, III and IV, whereas the deeper laminae V and VI contained fewer terminals. At ultrastructural levels, zinc-enriched terminals primarily formed symmetrical synapses on perikarya and dendrites. Only relatively few...

  7. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse

    Directory of Open Access Journals (Sweden)

    Tanvi Butola


    Full Text Available Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs, but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus—the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo (“Piccolino” present at the upstream ribbon synapses of cochlear inner hair cells (IHC, is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC, while eEPSC kinetics as well as miniature EPSCs (mEPSCs remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP of synaptic vesicles (SV, as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability

  8. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten


    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...... the matrix is stored on-chip as differential voltages on capacitors. In principal any ANN configuration can be made using these chips. A neuron array of 4 neurons and a 4 × 4 matrix-vector multiplier has been fabricated in a standard 2.4 ¿m CMOS process for test purposes. The propagation time through...... the synapse and neuron chips is less than 4 ¿s and the weight matrix has a 10 bit resolution....

  9. Autaptic effects on synchrony of neurons coupled by electrical synapses (United States)

    Kim, Youngtae


    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  10. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology? (United States)

    Charron, Giselle; Doudnikoff, Evelyne; Canron, Marie-Helene; Li, Qin; Véga, Céline; Marais, Sebastien; Baufreton, Jérôme; Vital, Anne; Oliet, Stéphane H R; Bezard, Erwan


    The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e., the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson's disease (PD) remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified "tripartite" synapses in the basal ganglia in general and the striatum in particular, we therefore characterized anatomically the PD-related modifications in astrocytic morphology, the changes in astrocytic network connections and the consequences on the spatial relationship between astrocytic processes and asymmetric synapses in normal and PD-like conditions in experimental and human PD. Our results unravel a dramatic regulation of striatal astrocytosis supporting the hypothesis of a key role in (dys) regulating corticostriatal transmission. Astrocytes and their various properties might thus represent a therapeutic target in PD.

  11. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?

    Directory of Open Access Journals (Sweden)

    Giselle eCharron


    Full Text Available The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e. the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson’s disease (PD remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified tripartite synapses in the basal ganglia in general and the striatum in particular, we therefore characterized anatomically the PD-related modifications in astrocytic morphology, the changes in astrocytic network connections and the consequences on the spatial relationship between astrocytic processes and asymmetric synapses in normal and PD-like conditions in experimental and human PD. Our results unravel a dramatic regulation of striatal astrocytosis supporting the hypothesis of a key role in (dysregulating corticostriatal transmission. Astrocytes and their various properties might thus represent a therapeutic target in PD.

  12. Microorganism and Fungi Drive Evolution of Plant Synapses

    Directory of Open Access Journals (Sweden)

    Frantisek eBaluska


    Full Text Available In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  13. Microorganism and filamentous fungi drive evolution of plant synapses. (United States)

    Baluška, František; Mancuso, Stefano


    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  14. Presumed consent in organ donation: the devil is in the detail


    Hutchinson, Odette


    This article follows the recent publication of the Organs for Donation Task Force report, "Organs for Transplants", and considers the debate surrounding a change in the law in favour of presumed consent in organ donation.

  15. Process for forming synapses in neural networks and resistor therefor (United States)

    Fu, Chi Y.


    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  16. Temporal coding at the immature depolarizing GABAergic synapse

    Directory of Open Access Journals (Sweden)

    Guzel Valeeva


    Full Text Available In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven Giant Depolarizing Potentials (GDPs. Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6 rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs evoked by synaptic activation of GABA(A receptors are long (mean, 65 ms and variable (within a time window of 10-200 ms. During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (EGABA with low concentrations of bumetanide, or potentiation of GABA(A receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike-timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus.

  17. Studying the Dynamics of TCR Internalization at the Immune Synapse. (United States)

    Calleja, Enrique; Alarcón, Balbino; Oeste, Clara L


    Establishing a stable interaction between a T cell and an antigen presenting cell (APC) involves the formation of an immune synapse (IS). It is through this structure that the T cell can integrate all the signals provided by the APC. The IS also serves as a mechanism for TCR downregulation through internalization. Here, we describe methods for visualizing MHC-engaged T cell receptor (TCR) internalization from the IS in human cell lines and mouse primary T cells by confocal fluorescence microscopy techniques.

  18. Storage capacity of attractor neural networks with depressing synapses

    International Nuclear Information System (INIS)

    Torres, Joaquin J.; Pantic, Lovorka; Kappen, Hilbert J.


    We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard mean-field approach. We find that at T=0 the critical storage capacity decreases with the degree of the depression. We confirm the validity of our main mean-field results with numerical simulations

  19. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?


    Charron, Giselle; Doudnikoff, Evelyne; Canron, Marie-Helene; Li, Qin; Véga, Céline; Marais, Sebastien; Baufreton, Jérôme; Vital, Anne; Oliet, Stéphane H. R.; Bezard, Erwan


    International audience; The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e., the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson's disease (PD) remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified " tripartite " synapses in the basal ganglia in general and the striatum ...

  20. The State of Synapses in Fragile X Syndrome


    Pfeiffer, Brad E.; Huber, Kimberly M.


    Fragile X Syndrome is the most common inherited form of mental retardation and a leading genetic cause of autism. There is increasing evidence in both FXS and other forms of autism that alterations in synapse number, structure and function are associated and contribute to these prevalent diseases. FXS is caused by loss of function of the Fmr1 gene which encodes the RNA binding protein, FMRP. Therefore, FXS is a tractable model to understand synaptic dysfunction in cognitive disorders. FMRP is...

  1. Microglia actively regulate the number of functional synapses.

    Directory of Open Access Journals (Sweden)

    Kyungmin Ji

    Full Text Available Microglia are the immunocompetent cells of the central nervous system. In the physiological setting, their highly motile processes continually survey the local brain parenchyma and transiently contact synaptic elements. Although recent work has shown that the interaction of microglia with synapses contributes to synaptic remodeling during development, the role of microglia in synaptic physiology is just starting to get explored. To assess this question, we employed an electrophysiological approach using two methods to manipulate microglia in culture: organotypic hippocampal brain slices in which microglia were depleted using clodronate liposomes, and cultured hippocampal neurons to which microglia were added. We show here that the frequency of excitatory postsynaptic current increases in microglia-depleted brain slices, consistent with a higher synaptic density, and that this enhancement ensures from the loss of microglia since it is reversed when the microglia are replenished. Conversely, the addition of microglia to neuronal cultures decreases synaptic activity and reduces the density of synapses, spine numbers, surface expression of AMPA receptor (GluA1, and levels of synaptic adhesion molecules. Taken together, our findings demonstrate that non-activated microglia acutely modulate synaptic activity by regulating the number of functional synapses in the central nervous system.

  2. TFH-derived dopamine accelerates productive synapses in germinal centres. (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G


    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  3. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  4. Remote tactile sensing system integrated with magnetic synapse. (United States)

    Oh, Sunjong; Jung, Youngdo; Kim, Seonggi; Kim, SungJoon; Hu, Xinghao; Lim, Hyuneui; Kim, CheolGi


    Mechanoreceptors in a fingertip convert external tactile stimulations into electrical signals, which are transmitted by the nervous system through synaptic transmitters and then perceived by the brain with high accuracy and reliability. Inspired by the human synapse system, this paper reports a robust tactile sensing system consisting of a remote touch tip and a magnetic synapse. External pressure on the remote touch tip is transferred in the form of air pressure to the magnetic synapse, where its variation is converted into electrical signals. The developed system has high sensitivity and a wide dynamic range. The remote sensing system demonstrated tactile capabilities over wide pressure range with a minimum detectable pressure of 6 Pa. In addition, it could measure tactile stimulation up to 1,000 Hz without distortion and hysteresis, owing to the separation of the touching and sensing parts. The excellent performance of the system in terms of surface texture discrimination, heartbeat measurement from the human wrist, and satisfactory detection quality in water indicates that it has considerable potential for various mechanosensory applications in different environments.

  5. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee


    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  6. Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses

    International Nuclear Information System (INIS)

    Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan


    Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit

  7. The artificial synapse chip: From proteins to prostheses (United States)

    Peterman, Mark Charles

    Most retinal prostheses use an electric field to stimulate retinal circuitry, yet information transfer in the retina is primarily through neurotransmitters. To address this difference, this thesis describes a proof of concept retinal interface based on localized chemical delivery. This system, the Artificial Synapse Chip, is based on a 5 mum aperture in a silicon nitride membrane overlying a microfluidic channel. The effectiveness of this interface is demonstrated by ejecting bradykinin on cultured excitable cells. Even with manual fluidic control, the relationship between the extent of stimulation and concentration is linear, providing enough control to limit stimulation to individual cells. A neurotransmitter-based prosthesis will require advanced fluidic control. This thesis reports the use of electroosmosis to eject or withdraw fluid from an aperture in a channel wall. This effect is demonstrated experimentally, and numerically, using a finite-element method. Our primary device is a prototype interface with four individually addressable apertures in a 2 x 2 array. Using this array, we demonstrate stimulation of both PC12 and retinal ganglion cells. This demonstration of localized chemical stimulation of excitable cells illustrates the potential of this technology for retinal prostheses. As a final application of the Artificial Synapse Chip, we applied the concept to lipid bilayer membranes and membrane-bound proteins. Not only are membrane-bound proteins crucial to the function of biological synapses, but also are important from a technological point of view. In this thesis, we use a Langmuir-Blodgett technique to producing lipid bilayers across apertures in a modified version of the Artificial Synapse Chip. These bilayers display many of the same properties as bilayers across apertures in Teflon films. In addition, these bilayers remain unbroken at transmembrane potentials over +/-400 mV, higher than Teflon-supported bilayers. We also demonstrate single

  8. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. (United States)

    Nonaka, Mio; Fujii, Hajime; Kim, Ryang; Kawashima, Takashi; Okuno, Hiroyuki; Bito, Haruhiko


    During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.

  9. Noradrenergic actions in the basolateral complex of the amygdala modulate Arc expression in hippocampal synapses and consolidation of aversive and non-aversive memory (United States)

    McReynolds, Jayme R.; Anderson, Kelly M.; Donowho, Kyle M.; McIntyre, Christa K.


    The basolateral complex of the amygdala (BLA) plays a role in the modulation of emotional memory consolidation through its interactions with other brain regions. In rats, memory enhancing infusions of the β-adrenergic receptor agonist clenbuterol into the BLA immediately after training enhances expression of the protein product of the immediate early gene Arc in the dorsal hippocampus and memory-impairing intra-BLA treatments reduce hippocampal Arc expression. We have proposed that the BLA may modulate memory consolidation through an influence on the local translation of synaptic plasticity proteins, like Arc, in recently active synapses in efferent brain regions. To date, all work related to this hypothesis is based on aversive memory tasks such as inhibitory avoidance (IA). To determine whether BLA modulation of hippocampal Arc protein expression is specific to plasticity associated with inhibitory avoidance memory, or a common mechanism for multiple types of memory, we tested the effect of intra-BLA infusions of clenbuterol on memory and hippocampal synaptic Arc expression following IA or object recognition training. Results indicate that intra-BLA infusions of clenbuterol enhance memory for both tasks; however, Arc expression in hippocampal synaptoneurosomes was significantly elevated only in rats trained on the aversive IA task. These findings suggest that regulation of Arc expression in hippocampal synapses may depend on co-activation of arousal systems. To test this hypothesis, a “high arousal” version of the OR task was used where rats were not habituated to the testing conditions. Posttraining intra-BLA infusions of clenbuterol enhanced consolidation of the high-arousing version of the task and significantly increased Arc protein levels in dorsal hippocampus synaptic fractions. These findings suggest that the BLA modulates multiple forms of memory and affects the synaptic plasticity-associated protein Arc in synapses of the dorsal hippocampus when

  10. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors (United States)

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita


    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  11. Effects of curcumin on synapses in APPswe/PS1dE9 mice. (United States)

    He, Yingkun; Wang, Pengwen; Wei, Peng; Feng, Huili; Ren, Ying; Yang, Jinduo; Rao, Yingxue; Shi, Jing; Tian, Jinzhou


    Significant losses of synapses have been demonstrated in studies of Alzheimer's disease (AD), but structural and functional changes in synapses that depend on alterations of the postsynaptic density (PSD) area occur prior to synaptic loss and play a crucial role in the pathology of AD. Evidence suggests that curcumin can ameliorate the learning and memory deficits of AD. To investigate the effects of curcumin on synapses, APPswe/PS1dE9 double transgenic mice (an AD model) were used, and the ultra-structures of synapses and synapse-associated proteins were observed. Six months after administration, few abnormal synapses were observed upon electron microscopy in the hippocampal CA1 areas of the APPswe/PS1dE9 double transgenic mice. The treatment of the mice with curcumin resulted in improvements in the quantity and structure of the synapses. Immunohistochemistry and western blot analyses revealed that the expressions of PSD95 and Shank1 were reduced in the hippocampal CA1 areas of the APPswe/PS1dE9 double transgenic mice, but curcumin treatment increased the expressions of these proteins. Our findings suggest that curcumin improved the structure and function of the synapses by regulating the synapse-related proteins PSD95 and Shank1. © The Author(s) 2016.

  12. 41 CFR 301-72.1 - Why is common carrier presumed to be the most advantageous method of transportation? (United States)


    ... presumed to be the most advantageous method of transportation? 301-72.1 Section 301-72.1 Public Contracts... Transportation § 301-72.1 Why is common carrier presumed to be the most advantageous method of transportation? Travel by common carrier is presumed to be the most advantageous method of transportation because it...

  13. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu


    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  14. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill


    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  15. Power-law forgetting in synapses with metaplasticity

    International Nuclear Information System (INIS)

    Mehta, A; Luck, J M


    The idea of using metaplastic synapses to incorporate the separate storage of long- and short-term memories via an array of hidden states was put forward in the cascade model of Fusi et al. In this paper, we devise and investigate two models of a metaplastic synapse based on these general principles. The main difference between the two models lies in their available mechanisms of decay, when a contrarian event occurs after the build-up of a long-term memory. In one case, this leads to the conversion of the long-term memory to a short-term memory of the opposite kind, while in the other, a long-term memory of the opposite kind may be generated as a result. Appropriately enough, the response of both models to short-term events is not affected by this difference in architecture. On the contrary, the transient response of both models, after long-term memories have been created by the passage of sustained signals, is rather different. The asymptotic behaviour of both models is, however, characterised by power-law forgetting with the same universal exponent

  16. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy


    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  17. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva


    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  18. Secondary prevention after cerebral ischaemia of presumed arterial origin: is aspirin still the touchstone?

    NARCIS (Netherlands)

    A. Algra (Ale); P.J. Koudstaal (Peter Jan); J. van Gijn (Jan)


    textabstractPatients who have had a transient ischaemic attack or nondisabling ischaemic stroke of presumed arterial origin have an annual risk of death from all vascular causes, non-fatal stroke, or non-fatal myocardial infarction that ranges between 4% and 11% without treatment. In the

  19. A randomized trial of anticoagulants versus aspirin after cerebral ischemia of presumed arterial origin

    NARCIS (Netherlands)

    Franke, CL; Koehler, PJJ; Gorter, JW; Kappelle, LJ; Rinkel, GJE; Tjeerdsma, HC; van Gijn, J; Dammers, JWHH; Straatman, HJS; ten Houten, R; Veering, MM; Bakker, SLM; Dippel, D; Koudstaal, PJ; van Gemert, HMA; van Swieten, JC; Horn, J; Kwa, IH; Limburg, M; Stam, J; Boon, AM; Lieuwens, WHG; Visscher, F; Bouwsma, C; Rutgers, AWF; Snoek, JW; Brouwers, PJAM; Nihom, J; Solleveld, H; Carbaat, PAT; Hertzberger, LI; Kleijweg, RP; Nanninga-van den Neste, VMH; van Diepen, AJH; Linssen, WHJP; Vanneste, JAL; Vos, J; Weinstein, HC; Schipper, JP; Berntsen, PJIM; de Vries-Leenders, EM; Geervliet, JP; Tans, RJJ; Feikema, WJ; Lohmann, HJHM; van Kasteel, [No Value; Jongebloed, FA; Leyten, QH; van Wensen, PJM; Jansen, C; Driesen, JJM; van Oudenaarden, WF; Verhey, JCB; Bottger, HRF; Driessen-Kletter, MF; Zwols, F; van der Gaast, JB; Wittebol, MC; van Oostenbrugge, RJ; Beintema, KD; Hilbers, J; van der Weil, HL; van Lieshout, HBM; Weststrate, W; Bernsen, PLJA; Frenken, CWGM; Poels, EFJ; Lindeboom, SF; van der Steen, A; Glimmerveen, WF; Martens, EIF; Bulens, C; de Vries-Bos, LHP; Venables, GS; Koster, JG; Sinnige, LGF; Klaver, MM; Koetsveld-Baart, JC; Mauser, HW; van Geusau, RBA; Dijkman, MH; Hoppenbrouwers, WJJF; Banford, WJJF; Briet, PE; Eekhof, JLA; Witjes, R; Hamburger, HL; van der Sande, JJ; Bath, P; Hankey, GJ; Koning, E; Ricci, S; Berendes, JN; Hooff, LJMA; van Spreeken, ACGA; Kuhler, AR; Mallo, GN; van Walbeek, HK; Gauw, JC; Vermeij, AJ; Verheij, JCB; Swen, JWA; Canhao, P; Keyser, A; Holscher, RS; de Jong, GJ; Kraaier, [No Value; Algra, A; Briet, E; deVries-Goldschemdingi, J; Eikelboom, BC; Greebe, P; Hauer, RNW; Hermsen, MG; Loeliger, EA; Pop, GAM; Rosendaal, FR; Schobben, AFAM; Sixma, FF; Slabbers, DCV; Tijssen, JCP; van Creval, H; van Es, GA; Verheugt, FWA; Vermeulin, M; Wulfsen, EKM; van der Meer, W.K.; Wever, Eric F. D.; Don, J


    Aspirin is only modestly effective in the secondary prevention after cerebral ischemia Studies in other vascular disorders suggest that anticoagulant drugs in patients with cerebral ischemia of presumed arterial (noncardiac) origin might be more effective. The aim of the Stroke Prevention in

  20. Presumed Perinatal Stroke in a Child with Down Syndrome and Moyamoya Disease (United States)

    Pysden, Karen; Fallon, Penny; Moorthy, Bhagavatheswaran; Ganesan, Vijeya


    Moyamoya disease describes a cerebral arteriopathy characterized by stenosis or occlusion of the terminal internal carotid and/or the proximal middle cerebral arteries. We report a female child with trisomy 21 and bilateral moyamoya disease who presented, unusually, with a presumed perinatal cerebral infarct. The clinical, radiological, and…

  1. 28 CFR 104.44 - Determination of presumed noneconomic losses for decedents. (United States)


    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Determination of presumed noneconomic losses for decedents. 104.44 Section 104.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 Amount of Compensation for Eligible Claimants. § 104.44...

  2. 28 CFR 104.46 - Determination of presumed noneconomic losses for claimants who suffered physical harm. (United States)


    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Determination of presumed noneconomic losses for claimants who suffered physical harm. 104.46 Section 104.46 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) SEPTEMBER 11TH VICTIM COMPENSATION FUND OF 2001 Amount of Compensation for...

  3. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling. (United States)

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G; Bezprozvanny, Ilya; Huber, Kimberly M; Wu, Jiang I


    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. (United States)

    Wu, Chaoxing; Kim, Tae Whan; Choi, Hwan Young; Strukov, Dmitri B; Yang, J Joshua


    If a three-dimensional physical electronic system emulating synapse networks could be built, that would be a significant step toward neuromorphic computing. However, the fabrication complexity of complementary metal-oxide-semiconductor architectures impedes the achievement of three-dimensional interconnectivity, high-device density, or flexibility. Here we report flexible three-dimensional artificial chemical synapse networks, in which two-terminal memristive devices, namely, electronic synapses (e-synapses), are connected by vertically stacking crossbar electrodes. The e-synapses resemble the key features of biological synapses: unilateral connection, long-term potentiation/depression, a spike-timing-dependent plasticity learning rule, paired-pulse facilitation, and ultralow-power consumption. The three-dimensional artificial synapse networks enable a direct emulation of correlated learning and trainable memory capability with strong tolerances to input faults and variations, which shows the feasibility of using them in futuristic electronic devices and can provide a physical platform for the realization of smart memories and machine learning and for operation of the complex algorithms involving hierarchical neural networks.High-density information storage calls for the development of modern electronics with multiple stacking architectures that increase the complexity of three-dimensional interconnectivity. Here, Wu et al. build a stacked yet flexible artificial synapse network using layer-by-layer solution processing.

  5. The debate on the kiss-and-run fusion at synapses. (United States)

    He, Liming; Wu, Ling-Gang


    It has long been proposed that following vesicle fusion, a small pore might open and close rapidly without full dilation. Such 'kiss-and-run' vesicle fusion can in principle result in rapid vesicle recycling and influence the size and the kinetics of the resulting synaptic current. However, the existence of kiss-and-run remains highly controversial, as revealed by recent imaging and electrophysiological studies at several synapses, including hippocampal synapses, neuromuscular junctions and retinal bipolar synapses. Only a minor fraction of fusion events has been shown to be kiss-and-run, as determined using cell-attached capacitance recordings in endocrine cells, pituitary nerve terminals and calyx-type synapses. Further work is needed to determine whether kiss-and-run is a major mode of fusion and has a major role in controlling synaptic strength at synapses.

  6. Silent Synapses Speak Up: Updates of the Neural Rejuvenation Hypothesis of Drug Addiction. (United States)

    Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan


    A transient but prominent increase in the level of "silent synapses"--a signature of immature glutamatergic synapses that contain only NMDA receptors without stably expressed AMPA receptors--has been identified in the nucleus accumbens (NAc) following exposure to cocaine. As the NAc is a critical forebrain region implicated in forming addiction-associated behaviors, the initial discoveries have raised speculations about whether and how these drug-induced synapses mature and potentially contribute to addiction-related behaviors. Here, we summarize recent progress in recognizing the pathway-specific regulations of silent synapse maturation, and its diverse impacts on behavior. We provide an update of the guiding hypothesis--the "neural rejuvenation hypothesis"--with recently emerged evidence of silent synapses in cocaine craving and relapse. © The Author(s) 2015.

  7. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek


    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  8. Neurochemical properties of the synapses in the pathways of orofacial nociceptive reflexes.

    Directory of Open Access Journals (Sweden)

    Yu-lin Dong

    Full Text Available The brainstem premotor neurons of the facial nucleus (VII and hypoglossal (XII nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc and coordinate orofacial nociceptive reflex (ONR responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt, dorsal medullary reticular formation (MdD, and supratrigeminal nucleus (Vsup. We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2 like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR.

  9. Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System (United States)

    Brooks, Justin M.; Carrillo, Gabriela L.; Su, Jianmin; Lindsay, David S.; Blader, Ira J.


    ABSTRACT During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling. PMID:26507232

  10. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    Directory of Open Access Journals (Sweden)

    Laura eAnton-Sanchez


    Full Text Available The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority and so-called gap junctions (a substrate of one class of electrical synapse. Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM, we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500 μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.

  11. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko


    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  12. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation. (United States)

    Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun; Dickman, Dion K


    Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic Homeostatic Plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. © 2018, Li et al.

  13. Simple PC-based system for morphometric analysis of synapses. (United States)

    Buravkov, S V


    The computer system designed for synaptic morphometry of aksosomatic and aksospine synapses of brain is described in the present paper. It is based on an AT-comparable personal computer equipped with low-cost frame grabber. This hardware configuration allows to input images from any TV source such as TV camera, videorecorder for further processing. The appropriate software was written in Microsoft Quick Basic to measure the main morphometric parameters of axon ending, dendritic spines, total contact, active zone and mitochondria. Number of synaptic vesicles (total and active) were also counted using a mouse as a pointing device. The derivative parameters (vesicle density, mitochondrial density) are then calculated. All measured data are stored in ASCII format, allowing ease in editing and export into other application programs. Statistical evaluation and calculation of histograms is performed by associated program also written in Quick Basic. The advantages and disadvantages of this approach are discussed.

  14. Tripartite synapses: astrocytes process and control synaptic information. (United States)

    Perea, Gertrudis; Navarrete, Marta; Araque, Alfonso


    The term 'tripartite synapse' refers to a concept in synaptic physiology based on the demonstration of the existence of bidirectional communication between astrocytes and neurons. Consistent with this concept, in addition to the classic 'bipartite' information flow between the pre- and postsynaptic neurons, astrocytes exchange information with the synaptic neuronal elements, responding to synaptic activity and, in turn, regulating synaptic transmission. Because recent evidence has demonstrated that astrocytes integrate and process synaptic information and control synaptic transmission and plasticity, astrocytes, being active partners in synaptic function, are cellular elements involved in the processing, transfer and storage of information by the nervous system. Consequently, in contrast to the classically accepted paradigm that brain function results exclusively from neuronal activity, there is an emerging view, which we review herein, in which brain function actually arises from the coordinated activity of a network comprising both neurons and glia.

  15. Coordinated Feeding Behavior in Trichoplax, an Animal without Synapses.

    Directory of Open Access Journals (Sweden)

    Carolyn L Smith

    Full Text Available Trichoplax is a small disk-shaped marine metazoan that adheres to substrates and locomotes by ciliary gliding. Despite having only six cell types and lacking synapses Trichoplax coordinates a complex sequence of behaviors culminating in external digestion of algae. We combine live cell imaging with electron microscopy to show how this is accomplished. When Trichoplax glides over a patch of algae, its cilia stop beating so it ceases moving. A subset of one of the cell types, lipophils, simultaneously secretes granules whose content rapidly lyses algae. This secretion is accurately targeted, as only lipophils located near algae release granules. The animal pauses while the algal content is ingested, and then resumes gliding. Global control of gliding is coordinated with precise local control of lipophil secretion suggesting the presence of mechanisms for cellular communication and integration.

  16. Optical coherence tomography of macular atrophy associated with microcephaly and presumed intrauterine Zika virus infection

    Directory of Open Access Journals (Sweden)

    Adriana Gondim de Moura Campos

    Full Text Available ABSTRACT This case report describes the retinal optical coherence tomography (OCT findings in a microcephalic infant with macular atrophy presumably caused by intrauterine Zika virus infection. OCT demonstrated atrophy of the outer retinal layers and choriocapillaris, including the outer nuclear layer and ellipsoid zone, associated with retinal pigment epithelium hyper-reflectivity and increased OCT penetration into deeper layers of the choroid and sclera. A major concern associated with this infection is the apparent increased incidence of microcephaly in fetuses born to mothers infected with the Zika virus. It is becoming increasingly difficult to ignore the upsurge in congenital microcephaly observed in Brazil. Recently, ocular findings in infants with microcephaly associated with intrauterine Zika virus infection have been described. This is the first report of OCT imaging of macular atrophy in a child with presumed Zika virus infection-associated microcephaly.

  17. Independent origins of neurons and synapses: insights from ctenophores. (United States)

    Moroz, Leonid L; Kohn, Andrea B


    There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses

  18. Inhibitory control in childhood stuttering

    NARCIS (Netherlands)

    Eggers, K.; de Nil, L.; Van den Bergh, B.R.H.


    Purpose The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method Participants were 30 children who

  19. Presumed Cases of Mumps in Pregnancy: Clinical and Infection Control Implications

    Directory of Open Access Journals (Sweden)

    Svjetlana Lozo


    Full Text Available Recently, a mumps outbreak in New York and New Jersey was reported by the Centers for Disease Control and Prevention (CDC. Subsequently, the dissemination of the disease was rapid, and, from June 28th 2009 through January 29th 2010, a total of 1,521 cases of mumps were reported in New York and New Jersey. Seven presumed cases occurred in pregnant women cared for at our institution. Mumps diagnosis as per the NYC Department of Health and Mental Hygiene was based on clinical manifestations, particularly parotitis. Prior immunizations with mumps vaccine and negative IgM were not adequate to rule out mumps infections. All of our seven patients had exposure to mumps in either their household or their community, and some of the them had symptoms of mumps. Due to the difficulties in interpreting serologies of these patients, their cases led to a presumed diagnosis of mumps. The diagnosis of mumps lead to the isolation of patients and health care personnel that were in contact with them. In this paper, we detail the presenting findings, diagnostic dilemmas and infection control challenges associated with presumed cases of mumps in pregnancy.

  20. Treatment of CNV secondary to presumed ocular histoplasmosis with intravitreal aflibercept 2.0 mg injection. (United States)

    Walia, Harpreet S; Shah, Gaurav K; Blinder, Kevin J


    To assess the efficacy and safety of intravitreal aflibercept injection in the treatment of CNV secondary to presumed ocular histoplasmosis syndrome (POHS). To assess safety of intravitreal aflibercept for the treatment of CNV secondary to presumed ocular histoplasmosis syndrome. Masked, open-label, prospective study. Five subjects will receive 2.0 mg aflibercept injection every 8 weeks with 3 initial monthly doses over a 12 month period. No adverse systemic or ocular were reported. At month six, the mean visual acuity improved by 7.8 ETDRS letters, mean central subfoveal thickness decreased by 38.8 microns and mean OCT volume decreased by 0.076 mm3 . At month twelve, the mean visual acuity improved by 12.4 ETDRS letters, mean central subfoveal thickness decreased by 34.6 microns and mean OCT volume decreased by 0.576 mm3. The use of intravitreal 2.0 mg aflibercept injection for the treatment of CNV secondary to presumed ocular histoplasmosis syndrome yielded no systemic or ocular adverse events and produced improvement in visual acuity and reduction of OCT thickness and volume. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  1. Weighted Synapses Without Carry Operations for RRAM-Based Neuromorphic Systems (United States)

    Liao, Yan; Deng, Ning; Wu, Huaqiang; Gao, Bin; Zhang, Qingtian; Qian, He


    The parallel updating scheme of RRAM-based analog neuromorphic systems based on sign stochastic gradient descent (SGD) can dramatically accelerate the training of neural networks. However, sign SGD can decrease accuracy. Also, some non-ideal factors of RRAM devices, such as intrinsic variations and the quantity of intermediate states, may significantly damage their convergence. In this paper, we analyzed the effects of these issues on the parallel updating scheme and found that it performed poorly on the task of MNIST recognition when the number of intermediate states was limited or the variation was too large. Thus, we propose a weighted synapse method to optimize the parallel updating scheme. Weighted synapses consist of major and minor synapses with different gain factors. Such a method can be widely used in RRAM-based analog neuromorphic systems to increase the number of equivalent intermediate states exponentially. The proposed method also generates a more suitable ΔW, diminishing the distortion caused by sign SGD. Unlike when several RRAM cells are combined to achieve higher resolution, there are no carry operations for weighted synapses, even if a saturation on the minor synapses occurs. The proposed method also simplifies the circuit overhead, rendering it highly suitable to the parallel updating scheme. With the aid of weighted synapses, convergence is highly optimized, and the error rate decreases significantly. Weighted synapses are also robust against the intrinsic variations of RRAM devices.

  2. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc


    for the first time that excitatory and inhibitory inputs onto CCK basket cells in the dentate gyrus of the hippocampus are modulated by NPY through activation of NPY Y2 receptors. The frequency of spontaneous and miniature EPSCs, as well as the amplitudes of stimulation-evoked EPSCs were decreased. Similarly...

  3. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos Ernesto; Ryge, Jesper


    Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery > 60 years ago, it has been...

  4. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. (United States)

    Greer, Paul L; Greenberg, Michael E


    One of the unique characteristics of higher organisms is their ability to learn and adapt to changes in their environment. This plasticity is largely a result of the brain's ability to convert transient stimuli into long-lasting alterations in neuronal structure and function. This process is complex and involves changes in receptor trafficking, local mRNA translation, protein turnover, and new gene synthesis. Here, we review how neuronal activity triggers calcium-dependent gene expression to regulate synapse development, maturation, and refinement. Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.

  5. Death and rebirth of neural activity in sparse inhibitory networks (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro


    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  6. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon


    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  7. Role of mental retardation-associated dystrophin-gene product Dp71 in excitatory synapse organization, synaptic plasticity and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Fatma Daoud

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD is caused by deficient expression of the cytoskeletal protein, dystrophin. One third of DMD patients also have mental retardation (MR, likely due to mutations preventing expression of dystrophin and other brain products of the DMD gene expressed from distinct internal promoters. Loss of Dp71, the major DMD-gene product in brain, is thought to contribute to the severity of MR; however, the specific function of Dp71 is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Complementary approaches were used to explore the role of Dp71 in neuronal function and identify mechanisms by which Dp71 loss may impair neuronal and cognitive functions. Besides the normal expression of Dp71 in a subpopulation of astrocytes, we found that a pool of Dp71 colocalizes with synaptic proteins in cultured neurons and is expressed in synaptic subcellular fractions in adult brains. We report that Dp71-associated protein complexes interact with specialized modular scaffolds of proteins that cluster glutamate receptors and organize signaling in postsynaptic densities. We then undertook the first functional examination of the brain and cognitive alterations in the Dp71-null mice. We found that these mice display abnormal synapse organization and maturation in vitro, altered synapse density in the adult brain, enhanced glutamatergic transmission and reduced synaptic plasticity in CA1 hippocampus. Dp71-null mice show selective behavioral disturbances characterized by reduced exploratory and novelty-seeking behavior, mild retention deficits in inhibitory avoidance, and impairments in spatial learning and memory. CONCLUSIONS/SIGNIFICANCE: Results suggest that Dp71 expression in neurons play a regulatory role in glutamatergic synapse organization and function, which provides a new mechanism by which inactivation of Dp71 in association with that of other DMD-gene products may lead to increased severity of MR.

  8. Fungal inhibitory lactic acid bacteria


    Ström, Katrin


    Lactic acid bacteria (LAB) are microorganisms that have been used for centuries to prepare and improve storage of food and for ensiling of different crops for animal feed. This thesis explores the possibility of using LAB to inhibit growth of spoilage fungi in food and feed products. LAB isolates, collected from plant material or dairy products, were screened for antifungal activity in a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity wa...

  9. Mutations in btk in patients with presumed X-linked agammaglobulinemia. (United States)

    Conley, M E; Mathias, D; Treadaway, J; Minegishi, Y; Rohrer, J


    In 1993, two groups showed that X-linked agammaglobulinemia (XLA) was due to mutations in a tyrosine kinase now called Btk. Most laboratories have been able to detect mutations in Btk in 80%-90% of males with presumed XLA. The remaining patients may have mutations in Btk that are difficult to identify, or they may have defects that are phenotypically similar to XLA but genotypically different. We analyzed 101 families in which affected males were diagnosed as having XLA. Mutations in Btk were identified in 38 of 40 families with more than one affected family member and in 56 of 61 families with sporadic disease. Excluding the patients in whom the marked decrease in B cell numbers characteristic of XLA could not be confirmed by immunofluorescence studies, mutations in Btk were identified in 43 of 46 patients with presumed sporadic XLA. Two of the three remaining patients had defects in other genes required for normal B cell development, and the third patient was unlikely to have XLA, on the basis of results of extensive Btk analysis. Our techniques were unable to identify a mutation in Btk in one male with both a family history and laboratory findings suggestive of XLA. DNA samples from 41 of 49 of the mothers of males with sporadic disease and proven mutations in Btk were positive for the mutation found in their son. In the other 8 families, the mutation appeared to arise in the maternal germ line. In 20 families, haplotype analysis showed that the new mutation originated in the maternal grandfather or great-grandfather. These studies indicate that 90%-95% of males with presumed XLA have mutations in Btk. The other patients are likely to have defects in other genes. PMID:9545398

  10. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela


    Familial hemiplegic migraine type 1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. In FHM1 knockin mice, excitatory neurotransmission at cortical pyramidal cell synapses is enhanced, but inhibitory neurotransmission at connected pairs of fast-spiking (FS) interneurons and pyramidal cells is unaltered, despite being initiated by CaV2.1 channels. The mechanism underlying the unaltered GABA release at cortical FS interneuron synapses remains unknown. Here, we show that the FHM1 R192Q mutation does not affect inhibitory transmission at autapses of cortical FS and other types of multipolar interneurons in microculture from R192Q knockin mice, and investigate the underlying mechanism. Lowering the extracellular [Ca2+] did not reveal gain-of-function of evoked transmission neither in control nor after prolongation of the action potential (AP) with tetraethylammonium, indicating unaltered AP-evoked presynaptic calcium influx at inhibitory autapses in FHM1 KI mice. Neither saturation of the presynaptic calcium sensor nor short duration of the AP can explain the unaltered inhibitory transmission in the mutant mice. Recordings of the P/Q-type calcium current in multipolar interneurons in microculture revealed that the current density and the gating properties of the CaV2.1 channels expressed in these interneurons are barely affected by the FHM1 mutation, in contrast with the enhanced current density and left-shifted activation gating of mutant CaV2.1 channels in cortical pyramidal cells. Our findings suggest that expression of specific CaV2.1 channels differentially sensitive to modulation by FHM1 mutations in inhibitory and excitatory cortical neurons underlies the gain-of-function of excitatory but unaltered inhibitory synaptic transmission and the likely consequent dysregulation of the cortical excitatory–inhibitory balance in FHM1. PMID:24907493

  11. Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex. (United States)

    Medalla, Maria; Gilman, Joshua P; Wang, Jing-Yi; Luebke, Jennifer I


    The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) of the primate play distinctive roles in the mediation of complex cognitive tasks. Compared with the LPFC, integration of information by the ACC can span longer timescales and requires stronger engagement of inhibitory processes. Here, we reveal the synaptic mechanism likely to underlie these differences using in vitro patch-clamp recordings of synaptic events and multiscale imaging of synaptic markers in rhesus monkeys. Although excitatory synaptic signaling does not differ, the level of synaptic inhibition is much higher in ACC than LPFC layer 3 pyramidal neurons, with a significantly higher frequency (∼6×) and longer duration of inhibitory synaptic currents. The number of inhibitory synapses and the ratio of cholecystokinin to parvalbumin-positive inhibitory inputs are also significantly higher in ACC compared with LPFC neurons. Therefore, inhibition is functionally and structurally more robust and diverse in ACC than in LPFC, resulting in a lower excitatory: inhibitory ratio and a greater dynamic range for signal integration and network oscillation by the ACC. These differences in inhibitory circuitry likely underlie the distinctive network dynamics in ACC and LPC during normal and pathological brain states. SIGNIFICANCE STATEMENT The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) play temporally distinct roles during the execution of cognitive tasks (rapid working memory during ongoing tasks and long-term memory to guide future action, respectively). Compared with LPFC-mediated tasks, ACC-mediated tasks can span longer timescales and require stronger engagement of inhibition. This study shows that inhibitory signaling is much more robust and diverse in the ACC than in the LPFC. Therefore, there is a lower excitatory: inhibitory synaptic ratio and a greater dynamic range for signal integration and oscillatory behavior in the ACC. These significant differences in

  12. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. (United States)

    Hübner, Wolfgang; McNerney, Gregory P; Chen, Ping; Dale, Benjamin M; Gordon, Ronald E; Chuang, Frank Y S; Li, Xiao-Dong; Asmuth, David M; Huser, Thomas; Chen, Benjamin K


    The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized "buttons" containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.

  13. Learning-guided automatic three dimensional synapse quantification for drosophila neurons. (United States)

    Sanders, Jonathan; Singh, Anil; Sterne, Gabriella; Ye, Bing; Zhou, Jie


    The subcellular distribution of synapses is fundamentally important for the assembly, function, and plasticity of the nervous system. Automated and effective quantification tools are a prerequisite to large-scale studies of the molecular mechanisms of subcellular synapse distribution. Common practices for synapse quantification in neuroscience labs remain largely manual or semi-manual. This is mainly due to computational challenges in automatic quantification of synapses, including large volume, high dimensions and staining artifacts. In the case of confocal imaging, optical limit and xy-z resolution disparity also require special considerations to achieve the necessary robustness. A novel algorithm is presented in the paper for learning-guided automatic recognition and quantification of synaptic markers in 3D confocal images. The method developed a discriminative model based on 3D feature descriptors that detected the centers of synaptic markers. It made use of adaptive thresholding and multi-channel co-localization to improve the robustness. The detected markers then guided the splitting of synapse clumps, which further improved the precision and recall of the detected synapses. Algorithms were tested on lobula plate tangential cells (LPTCs) in the brain of Drosophila melanogaster, for GABAergic synaptic markers on axon terminals as well as dendrites. The presented method was able to overcome the staining artifacts and the fuzzy boundaries of synapse clumps in 3D confocal image, and automatically quantify synaptic markers in a complex neuron such as LPTC. Comparison with some existing tools used in automatic 3D synapse quantification also proved the effectiveness of the proposed method.

  14. Poisson-Like Spiking in Circuits with Probabilistic Synapses (United States)

    Moreno-Bote, Rubén


    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  15. Calcium signaling in synapse-to-nucleus communication. (United States)

    Hagenston, Anna M; Bading, Hilmar


    Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.

  16. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors. (United States)

    Mota, Sandra I; Ferreira, Ildete L; Rego, A Cristina


    Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Validity of chronic drug exposure presumed from repeated patient interviews varied according to drug class. (United States)

    Noize, Pernelle; Bazin, Fabienne; Pariente, Antoine; Dufouil, Carole; Ancelin, Marie-Laure; Helmer, Catherine; Moore, Nicholas; Fourrier-Réglat, Annie


    To evaluate the validity of chronic drug exposure presumed from cross-sectional interviews taking reimbursement data as reference. The study concerned 2,985 elderly persons of the French Three-City cohort (1) who were interviewed on current drug use 2 and 4 years after inclusion and (2) whose reimbursement data were obtained from the main health care insurance system. Validity (sensitivity, Se; specificity, Sp; positive predictive value, PPV; negative predictive value, NPV) of chronic exposure presumed from follow-up interviews was investigated taking two exposure definitions from reimbursements as reference for the period between interviews: at least 80% coverage with and without a maximal time between reimbursements of 60 days. Using 80% coverage as reference, validity of interview data was substantial for cardiovascular and antithrombotic drugs (Se, 85.3-95.4%; Sp, 67.1-97.6%; PPV, 65.9-86.6%; NPV, 93.3-99.3%). For benzodiazepines, nonsteroidal anti-inflammatory drugs, or analgesics, validity was low especially owing to PPVs (15.8-51.4%). Using reported use at cross-sectional interviews as a proxy for chronic exposure between interviews was valid for drugs used regularly but not so for drugs used more irregularly. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Echocardiographic findings in infants with presumed congenital Zika syndrome: Retrospective case series study.

    Directory of Open Access Journals (Sweden)

    Danielle Di Cavalcanti

    Full Text Available To report the echocardiographic evaluation of 103 infants with presumed congenital Zika syndrome.An observational retrospective study was performed at Instituto de Medicina Integral Prof. Fernando Figueira (IMIP, Recife, Brazil. 103 infants with presumed congenital Zika syndrome. All infants had microcephaly and head computed tomography findings compatible with congenital Zika syndrome. Zika IgM antibody was detected in cerebrospinal fluid samples of 23 infants. In 80 infants, the test was not performed because it was not available at that time. All infants had negative serology for HIV, syphilis, rubella, cytomegalovirus and toxoplasmosis. A complete transthoracic two-dimensional, M-mode, continuous wave and pulsed wave Doppler and color Doppler echocardiographic (PHILIPS HD11XE or HD15 examination was performed on all infants.14/103 (13.5% echocardiograms were compatible with congenital heart disease: 5 with an ostium secundum atrial septal defect, 8 had a hemodynamically insignificant small apical muscular ventricular septal defect and one infant with dyspnea had a large membranous ventricular septal defect. The echocardiograms considered normal included 45 infants with a persistent foramen ovale and 16 with a minimum patent ductus arteriosus.Preliminarily this study suggests that congenital Zika syndrome may be associated with an increase prevalence of congenital heart disease. However the types of defects noted were septal defects, a proportion of which would not be hemodynamically significant.

  19. A Case of Presumed Tuberculosis Uveitis with Occlusive Vasculitis from an Endemic Region

    Directory of Open Access Journals (Sweden)

    Berna Başarır


    Full Text Available In this report, we present a case with presumed unilateral tuberculosis uveitis from an endemic region. A 23-year-old male presented with decreased vision in his left eye for 15 days. Visual acuities were 1.0 in his right eye and 0.3 in his left eye. Ophthalmologic examination was normal for the right eye. Slit-lamp examination revealed 2+ cells in the vitreous without anterior chamber reaction in his left eye. Fundus examination revealed occlusive vasculitis and granuloma. His history revealed that he had a respiratory infection with fever 3 months ago while visiting his native country, Rwanda, and was treated with non-specific antibiotic therapy. His visual symptom started 2 weeks after his systemic symptoms resolved. Laboratory findings included 15 mm induration in purified protein derivative tuberculin skin test, HIV negativity, and parenchymal lesions in chest X-ray. Bronchoalveolar lavage was negative for acid-fast bacillus. A pulmonary disease consultant reported presumed tuberculosis because of the patient’s history. Anti-tuberculosis treatment was initiated. The patient’s visual acuity improved rapidly and his signs regressed. A careful history should be taken from patients with uveitis. Travel to tuberculosis-endemic areas may be important for diagnosis and should be asked about directly.

  20. Presumed late recurrence of Acanthamoeba keratitis exacerbated by exposure to topical corticosteroids

    Directory of Open Access Journals (Sweden)

    Dipika V Patel


    Full Text Available A 28-year-old female with a history of contact lens wear presented with a 1 week history of pain and photophobia in her left eye. In vivo confocal microscopy (IVCM and corneal scrape confirmed the diagnosis of Acanthamoeba keratitis (AK which was treated with intensive topical propamidine isethionate (0.1% and chlorhexidine (0.02% with tapering dosage over 11 months. Five years after complete resolution of AK and cessation of all contact lens wear, the subject presented to her optometrist with a history of ocular discomfort and mild photophobia. Without further investigation she was prescribed topical corticosteroids. Three weeks later she presented with pain and reduced vision in the left eye. Slit-lamp examination revealed focal, inferior corneal stromal edema. IVCM confirmed widespread Acanthamoeba cysts. Treatment with topical polyhexamethylene biguanide (PHMB 0.02% and propamidine isethionate 0.1% resulted in resolution of the AK. Despite an initially mild AK, this subject presumably retained viable Acanthamoeba cysts in her cornea 5 years after the initial episode. This report highlights the importance of caution when using corticosteroids in patients with a previous history of AK, even in the relatively distant past. Patients with AK should be warned regarding the risks of recurrence following presumed resolution.

  1. A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila

    Directory of Open Access Journals (Sweden)

    Kazumichi Shimizu


    Full Text Available In the insect olfactory system, odor information is transferred from the antennal lobe (AL to higher brain areas by projection neurons (PNs in multiple AL tracts (ALTs. In several species, one of the ALTs, the mediolateral ALT (mlALT, contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs are GABAergic and project through this tract to the lateral horn (LH. Most excitatory PNs (ePNs, project through the medial ALT (mALT to the mushroom body (MB and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH. However, little is known about the properties and functions of vPNs at their dendritic branches in the AL. Here, we used optogenetic and patch clamp techniques to investigate the functional roles of vPNs in the AL. Surprisingly, our results show that specific activation of vPNs reliably elicits strong excitatory postsynaptic potentials (EPSPs in ePNs. Moreover, the connections between vPNs and ePNs are mediated by direct chemical synapses. Neither pulses of GABA, nor pharmagological, or genetic blockade of GABAergic transmission gave results consistent with the involvement of GABA in vPN-ePN excitatory transmission. These unexpected results suggest new roles for the vPN population in olfactory information processing.

  2. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  3. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok


    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  4. Reliability of signal transfer at a tonically transmitting, graded potential synapse of the locust ocellar pathway. (United States)

    Simmons, Peter J; de Ruyter van Steveninck, Rob


    We assessed the performance of a synapse that transmits small, sustained, graded potentials between two classes of second-order ocellar "L-neurons" of the locust. We characterized the transmission of both fixed levels of membrane potential and fluctuating signals by recording postsynaptic responses to changes in presynaptic potential. To ensure repeatability between stimuli, we controlled presynaptic signals with a voltage clamp. We found that the synapse introduces noise above the level of background activity in the postsynaptic neuron. By driving the presynaptic neuron with slow-ramp changes in potential, we found that the number of discrete signal levels the synapse transmits is approximately 20. It can also transmit approximately 20 discrete levels when the presynaptic signal is a graded rebound spike. Synaptic noise level is constant over the operating range of the synapse, which would not be expected if presynaptic potential set the probability for the release of individual quanta of neurotransmitter according to Poisson statistics. Responses to individual quanta of neurotransmission could not be resolved, which is consistent with a synapse that operates with large numbers of vesicles evoking small responses. When challenged with white noise stimuli, the synapse can transmit information at rates up to 450 bits/s, a performance that is sufficient to transmit natural signals about changes in illumination.

  5. The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation. (United States)

    Benvenuti, Federica


    T-cell activation within immunological synapses is a complex process whereby different types of signals are transmitted from antigen-presenting cells to T cells. The molecular strategies developed by T cells to interpret and integrate these signals have been systematically dissected in recent years and are now in large part understood. On the other side of the immune synapse, dendritic cells (DCs) participate actively in synapse formation and maintenance by remodeling of membrane receptors and intracellular content. However, the details of such changes have been only partially characterized. The DCs actin cytoskeleton has been one of the first systems to be identified as playing an important role in T-cell priming and some of the underlying mechanisms have been elucidated. Similarly, the DCs microtubule cytoskeleton undergoes major spatial changes during synapse formation that favor polarization of the DCs subcellular space toward the interacting T cell. Recently, we have begun to investigate the trafficking machinery that controls polarized delivery of endosomal vesicles at the DC-T immune synapse with the aim of understanding the functional relevance of polarized secretion of soluble factors during T-cell priming. Here, we will review the current knowledge of events occurring in DCs during synapse formation and discuss the open questions that still remain unanswered.

  6. N-cadherin relocalizes from the periphery to the center of the synapse after transient synaptic stimulation in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Patricia T Yam

    Full Text Available N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.

  7. Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/− patients and in foxg1+/− mice (United States)

    Patriarchi, Tommaso; Amabile, Sonia; Frullanti, Elisa; Landucci, Elisa; Lo Rizzo, Caterina; Ariani, Francesca; Costa, Mario; Olimpico, Francesco; W Hell, Johannes; M Vaccarino, Flora; Renieri, Alessandra; Meloni, Ilaria


    Rett syndrome (RTT) is a severe neurodevelopmental disorder associated with mutations in either MECP2, CDKL5 or FOXG1. The precise molecular mechanisms that lead to the pathogenesis of RTT have yet to be elucidated. We recently reported that expression of GluD1 (orphan glutamate receptor δ-1 subunit) is increased in iPSC-derived neurons obtained from patients with mutations in either MECP2 or CDKL5. GluD1 controls synaptic differentiation and shifts the balance between excitatory and inhibitory synapses toward the latter. Thus, an increase in GluD1 might be a critical factor in the etiology of RTT by affecting the excitatory/inhibitory balance in the developing brain. To test this hypothesis, we generated iPSC-derived neurons from FOXG1+/− patients. We analyzed mRNA and protein levels of GluD1 together with key markers of excitatory and inhibitory synapses in these iPSC-derived neurons and in Foxg1+/− mouse fetal (E11.5) and adult (P70) brains. We found strong correlation between iPSC-derived neurons and fetal mouse brains, where GluD1 and inhibitory synaptic markers (GAD67 and GABA AR-α1) were increased, whereas the levels of a number of excitatory synaptic markers (VGLUT1, GluA1, GluN1 and PSD-95) were decreased. In adult mice, GluD1 was decreased along with all GABAergic and glutamatergic markers. Our findings further the understanding of the etiology of RTT by introducing a new pathological event occurring in the brain of FOXG1+/− patients during embryonic development and its time-dependent shift toward a general decrease in brain synapses. PMID:26443267

  8. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat. (United States)

    Bannister, K; Lockwood, S; Goncalves, L; Patel, R; Dickenson, A H


    Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain. © 2016 European Pain Federation - EFIC®.

  9. Presumed appendiceal abscess discovered to be ruptured Meckel diverticulum following percutaneous drainage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jeannie C.; Ostlie, Daniel J. [Children' s Mercy Hospital, Department of Surgery, Kansas City, MO (United States); Rivard, Douglas C.; Morello, Frank P. [Children' s Mercy Hospital, Department of Radiology, Kansas City, MO (United States)


    A Meckel diverticulum is an embryonic remnant of the omphalomesenteric duct that occurs in approximately 2% of the population. Most are asymptomatic; however, they are vulnerable to inflammation with subsequent consequences including diverticulitis and perforation. We report an 11-year-old boy who underwent laparoscopic appendectomy for perforated appendicitis at an outside institution. During his convalescence he underwent percutaneous drainage of a presumed postoperative abscess. A follow-up drain study demonstrated an enteric fistula. The drain was slowly removed from the abdomen over a period of 1 week. Three weeks following drain removal the patient reported recurrent nausea and abdominal pain. A CT scan demonstrated a 3.7-cm rim-enhancing air-fluid level with dependent contrast consistent with persistent enteric fistula and abscess. Exploratory laparoscopy was performed, at which time a Meckel diverticulum was identified and resected. This case highlights the diagnostic challenge and limitations of conventional radiology in complicated Meckel diverticulum. (orig.)

  10. Can "presumed consent" justify the duty to treat infectious diseases? An analysis

    Directory of Open Access Journals (Sweden)

    Arda Berna


    Full Text Available Abstract Background AIDS, SARS, and the recent epidemics of the avian-flu have all served to remind us the debate over the limits of the moral duty to care. It is important to first consider the question of whether or not the "duty to treat" might be subject to contextual constraints. The purpose of this study was to investigate the opinions and beliefs held by both physicians and dentists regarding the occupational risks of infectious diseases, and to analyze the argument that the notion of "presumed consent" on the part of professionals may be grounds for supporting the duty to treat. Methods For this cross-sectional survey, the study population was selected from among physicians and dentists in Ankara. All of the 373 participants were given a self-administered questionnaire. Results In total, 79.6% of the participants said that they either had some degree of knowledge about the risks when they chose their profession or that they learned of the risks later during their education and training. Of the participants, 5.2% said that they would not have chosen this profession if they had been informed of the risks. It was found that 57% of the participants believed that there is a standard level of risk, and 52% of the participants stated that certain diseases would exceed the level of acceptable risk unless specific protective measures were implemented. Conclusion If we use the presumed consent argument to establish the duty of the HCW to provide care, we are confronted with problems ranging over the difficulty of choosing a profession autonomously, the constant level of uncertainty present in the medical profession, the near-impossibility of being able to evaluate retrospectively whether every individual was informed, and the seemingly inescapable problem that this practice would legitimize, and perhaps even foster, discrimination against patients with certain diseases. Our findings suggest that another problem can be added to the list: one

  11. Therapeutic High-Density Barium Enema in a Case of Presumed Diverticular Hemorrhage

    Directory of Open Access Journals (Sweden)

    Nonthalee Pausawasdi


    Full Text Available Many patients with lower gastrointestinal bleeding do not have an identifiable source of bleeding at colonoscopy. A significant percentage of these patients will have recurrent bleeding. In many patients, the presence of multiple diverticula leads to a diagnosis of presumed diverticular bleeding. Current treatment options include therapeutic endoscopy, angiography, or surgical resection, all of which depend on the identification of the diverticular source of bleeding. This report describes a case of recurrent bleeding in an elderly patient with diverticula but no identifiable source treated successfully with barium impaction therapy. This therapeutic modality does not depend on the identification of the bleeding diverticular lesion and was well tolerated by our 86-year-old patient.

  12. Recurrent presumed herpes simplex keratitis and episcleritis in keratosis follicularis (Darier's disease). (United States)

    Radia, Meera; Gilhooley, Michael James; Panos, Chris; Claoué, Charles


    Keratosis follicularis (Darier's disease) is an autosomal dominant dermatological disorder characterised by abnormal epidermal differentiation and loss of normal cell-to-cell adhesion. Cardinal features include diffuse hyperkeratotic warty papules with scaly plaques in seborrhoeic regions with associated mucous membrane changes. Darier's disease is rare (prevalence 2.7 in 100,000), with few ocular sequelae reported: commonly dry eye with or without Sjögren's syndrome. This is the first report, to the best of our knowledge, to describe a case of recurrent herpes simplex virus (HSV) keratitis and episcleritis in a 47-year-old man suffering from Darier's disease. The patient's condition predisposed him towards developing ocular complications due to several factors: impaired desmosome function leading to poor cell-to-cell adhesion in the corneal epithelium, dry eye and HSV invasion of inflamed periocular skin presumably combining to allow viral colonisation of a poorly protected cornea. 2015 BMJ Publishing Group Ltd.

  13. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  14. Presynaptic [Ca2+] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses

    Directory of Open Access Journals (Sweden)

    Frank eSchmitz


    Full Text Available Changes in intracellular calcium ions [Ca2+] play important roles in photoreceptor signalling. Consequently, intracellular [Ca2+] levels need to be tightly controlled. In the light-sensitive outer segments (OS of photoreceptors, Ca2+ regulates the activity of retinal guanylate cyclases (ret-GCs thus playing a central role in phototransduction and light-adaptation by restoring light-induced decreases in cGMP. In the synaptic terminals, changes of intracellular Ca2+ trigger various aspects of neurotransmission. Photoreceptors employ tonically active ribbon synapses that encode light-induced, graded changes of membrane potential into different rates of synaptic vesicle exocytosis. The active zones of ribbon synapses contain large electron-dense structures, synaptic ribbons, that are associated with large numbers of synaptic vesicles. Synaptic coding at ribbon synapses differs from synaptic coding at conventional (phasic synapses. Recent studies revealed new insights how synaptic ribbons are involved in this process. This review focuses on the regulation of [Ca2+] in presynaptic photoreceptor terminals and on the function of a particular Ca2+-regulated protein, the neuronal calcium sensor protein GCAP2 (guanylate cyclase-activating protein-2 in the photoreceptor ribbon synapse. GCAP2, an EF hand-containing protein plays multiple roles in the OS and in the photoreceptor synapse. In the OS, GCAP2 works as a Ca2+-sensor within a Ca2+-regulated feedback loop that adjusts cGMP levels. In the photoreceptor synapse, GCAP2 binds to RIBEYE, a component of synaptic ribbons, and mediates Ca2+-dependent plasticity at that site. Possible mechanisms are discussed.

  15. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins

    Directory of Open Access Journals (Sweden)

    Rosemarie eGrantyn


    Full Text Available Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: 1 Synaptic transmission starts with GABA, 2 Nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release, 3 Immature synaptic terminals release vesicles with higher probability than mature synapses, 4 Immature GABAergic synapses are prone to paired pulse and tetanic depression, 5 Synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, 6 In immature neurons GABA acts as a depolarizing transmitter, 7 Synapse maturation implies IPSC shortening due to an increase in alpha1 subunit expression, 8 Extrasynaptic (tonic conductances can inhibit the development of synaptic (phasic GABA actions.

  16. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua


    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  17. Prevalence of autoimmune pancreatitis and other benign disorders in pancreatoduodenectomy for presumed malignancy of the pancreatic head

    NARCIS (Netherlands)

    M. van Heerde (Marc); K. Biermann (Katharina); P.E. Zondervan (Pieter); G. Kazemier (Geert); C.H.J. van Eijck (Casper); C.J. Pek (Chulja); E.J. Kuipers (Ernst); H.R. van Buuren (Henk)


    textabstractBackground: Occasionally patients undergoing resection for presumed malignancy of the pancreatic head are diagnosed postoperatively with benign disease. Autoimmune pancreatitis (AIP) is a rare disease that mimics pancreatic cancer. We aimed to determine the prevalence of benign disease

  18. A Study Regarding Attitudes Ofyoung Slum Dwelling Females Towards Their Husband/Sex Partner Presuming Them Hiv Infected


    Monica Shukla; J P Srivastava; V K Srivastava; S C Saxena; Seema Nigam


    Research Question : What is the attitude of young females towards their husband or sex partners presuming them infected with HIV?Objectives : Attitude of young slum dwelling females towards husband or sex partner presuming them HIV infectedaccording to age of respondentsaccording to marital status of respondentsaccording to occupation of respondentsaccording to literacy status of respondents Study Design : Cross sectional studyStudy Area : 10% of the Slums of Kanpur City having population les...

  19. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.


    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  20. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz


    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  1. Monetary rewards modulate inhibitory control

    Directory of Open Access Journals (Sweden)

    Paula Marcela Herrera


    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  2. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez


    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  3. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera


    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  4. Molecular switches at the synapse emerge from receptor and kinase traffic.

    Directory of Open Access Journals (Sweden)


    Full Text Available Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

  5. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang


    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  6. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory. (United States)

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang


    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons.

  7. Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons

    Directory of Open Access Journals (Sweden)

    Simone Hagmeyer


    Full Text Available Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD. Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic synapses of hippocampal neurons. We analyzed whether an imbalance of any one metal ion alters cell health and synapse numbers. Moreover, we evaluated whether a biometal profile characteristic for ASD patients influences synapse formation, maturation, and composition regarding NMDA receptor subunits and Shank proteins. Our results show that an ASD like biometal profile leads to a reduction of NMDAR (NR/Grin/GluN subunit 1 and 2a, as well as Shank gene expression along with a reduction of synapse density. Additionally, synaptic protein levels of GluN2a and Shanks are reduced. Although Zn supplementation is able to rescue the aforementioned alterations, Zn deficiency is not solely responsible as causative factor. Thus, we conclude that balancing Zn levels in ASD might be a prime target to normalize synaptic alterations caused by biometal dyshomeostasis.

  8. 3D reconstruction of synapses with deep learning based on EM Images (United States)

    Xiao, Chi; Rao, Qiang; Zhang, Dandan; Chen, Xi; Han, Hua; Xie, Qiwei


    Recently, due to the rapid development of electron microscope (EM) with its high resolution, stacks delivered by EM can be used to analyze a variety of components that are critical to understand brain function. Since synaptic study is essential in neurobiology and can be analyzed by EM stacks, the automated routines for reconstruction of synapses based on EM Images can become a very useful tool for analyzing large volumes of brain tissue and providing the ability to understand the mechanism of brain. In this article, we propose a novel automated method to realize 3D reconstruction of synapses for Automated Tapecollecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) with deep learning. Being different from other reconstruction algorithms, which employ classifier to segment synaptic clefts directly. We utilize deep learning method and segmentation algorithm to obtain synaptic clefts as well as promote the accuracy of reconstruction. The proposed method contains five parts: (1) using modified Moving Least Square (MLS) deformation algorithm and Scale Invariant Feature Transform (SIFT) features to register adjacent sections, (2) adopting Faster Region Convolutional Neural Networks (Faster R-CNN) algorithm to detect synapses, (3) utilizing screening method which takes context cues of synapses into consideration to reduce the false positive rate, (4) combining a practical morphology algorithm with a suitable fitting function to segment synaptic clefts and optimize the shape of them, (5) applying the plugin in FIJI to show the final 3D visualization of synapses. Experimental results on ATUM-SEM images demonstrate the effectiveness of our proposed method.

  9. The need to connect: on the cell biology of synapses, behaviors, and networks in science. (United States)

    Colón-Ramos, Daniel A


    My laboratory is interested in the cell biology of the synapse. Synapses, which are points of cellular communication between neurons, were first described by Santiago Ramón y Cajal as "protoplasmic kisses that appear to constitute the final ecstasy of an epic love story." Who would not want to work on that?! My lab examines the biological mechanisms neurons use to find and connect to each other. How are synapses formed during development, maintained during growth, and modified during learning? In this essay, I reflect about my scientific journey to the synapse, the cell biological one, but also a metaphorical synapse-my role as a point of contact between the production of knowledge and its dissemination. In particular, I discuss how the architecture of scientific networks propels knowledge production but can also exclude certain groups in science. © 2016 Colón-Ramos This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

  10. Feline dry eye syndrome of presumed neurogenic origin: a case report. (United States)

    Sebbag, Lionel; Pesavento, Patricia A; Carrasco, Sebastian E; Reilly, Christopher M; Maggs, David J


    A 14-year-old female spayed Abyssinian cat, which about 1 year previously underwent thoracic limb amputation, radiotherapy and chemotherapy for an incompletely excised vaccine-related fibrosarcoma, was presented for evaluation of corneal opacity in the left eye (OS). The ocular surface of both eyes (OU) had a lackluster appearance and there was a stromal corneal ulcer OS. Results of corneal aesthesiometry, Schirmer tear test-1 (STT-1) and tear film breakup time revealed corneal hypoesthesia, and quantitative and qualitative tear film deficiency OU. Noxious olfactory stimulation caused increased lacrimation relative to standard STT-1 values suggesting an intact nasolacrimal reflex. Various lacrimostimulants were administered in succession; namely, 1% pilocarpine administered topically (15 days) or orally (19 days), and topically applied 0.03% tacrolimus (47 days). Pilocarpine, especially when given orally, was associated with notable increases in STT-1 values, but corneal ulceration remained/recurred regardless of administration route, and oral pilocarpine resulted in gastrointestinal upset. Tacrolimus was not effective. After 93 days, the cat became weak and lame and a low thyroxine concentration was detected in serum. The cat was euthanized and a necropsy performed. Both lacrimal glands were histologically normal, but chronic neutrophilic keratitis and reduced conjunctival goblet cell density were noted OU. The final diagnosis was dry eye syndrome (DES) of presumed neurogenic origin, associated with corneal hypoesthesia. This report reinforces the importance of conducting tearfilm testing in cats with ocular surface disease, as clinical signs of DES were different from those described in dogs.

  11. Presumed congenital infection by Zika virus: findings on psychomotor development - a case report

    Directory of Open Access Journals (Sweden)

    Ana Carla Gomes Botelho

    Full Text Available Abstract Introduction: the identification of Zika virus (ZikV in the amniotic fluid, in the placenta and in newborns' brains suggests a neurotropism of this agent in the brain development, resulting in neuro-psycho-motor alterations. Thus, this present study reports the assessment of children diagnosed by a congenital infection, presumably by ZikV, followed-up at the Rehabilitation Center Prof. Ruy Neves Baptist at the Instituto de Medicina Integral Prof. Fernando Figueira (IMIP. Description: as proposed by the Ministry of Health, the following instruments were used to evaluate the neuro-motor functions of four children with microcephaly aged between three and four months: The Test of Infant Motor Performance (TIMP; the functional vision assessment; the manual function scale development; and the clinical evaluation protocol on pediatric dysphagia (PAD-PED. Discussion: the children evaluated presented atypical motor performance, muscle tone and spontaneous motricity which encompass the symmetry and the motion range of the upper and lower limbs proven to be altered. The functional vision showed alterations which can cause limitations in the performance of functional activities and the learning process. Regarding to the speech articulator's functions observed that the maturation and coordination of sucking, swallowing and breathing did not yet encounter the appropriate age maturity level.

  12. The syndrome of presumed ocular histoplasmosis in Mexico: a preliminary study. (United States)

    Pedroza-Seres, M; Quiroz-Mercado, H; Granados, J; Taylor, M L


    A study to screen for the syndrome of presumed ocular histoplasmosis (SPOH) among native populations from three Mexican states was performed. Two of these states, Guerrero and Querétaro, were selected as histoplasmosis is endemic there, whereas Tlaxcala was considered a control, due to the absence of reported cases. A total of 253 individuals were submitted to ocular fundus examination to obtain evidence of SPOH. A high percentage of positive reactors to histoplasmin skin test (ST) was observed in Guerrero (83%) and Querétaro (53%), whereas in Tlaxcala positive ST were almost absent (2.04%). Only five individuals had retinal lesions, although these lesions were not characteristic of the syndrome. Stimulation of these individual's cells showed different patterns in the histoplasmin-induced lymphocyte transformation response, and two out of five individuals with retinal lesions presented a stimulated response, as well as three controls without lesions. Histocompatibility antigens (HLA) were determined in a sample of each population and no particular allele, including HLA-B7, was found to be related to SPOH as reported in the USA; however, HLA-B22 was found in three individuals who developed pulmonary histoplasmosis. Results do not provide clinical evidence or data on specific HLA risk factors, for the presence of SPOH in the population studied.

  13. Clinical Course of a Presumed Metastatic Uveal Melanoma to the Contralateral Choroid. (United States)

    Caminal Mitjana, Josep M; Vilà Grané, Natàlia; Adán Civera, Alfredo; Sabater, Noelia; Arias Barquet, Lluis; Rubio Caso, Marcos J


    We present the ultrasound and optic coherence tomography follow-up of a presumed choroidal metastasis from a contralateral melanoma. A 53-year-old male was diagnosed with uveal melanoma with extraescleral extension in his left eye. A year later, the fundus examination revealed a flat, gray-green, pigmented choroidal lesion in the right eye. The ultrasonography showed a mass, almost flat, and all these findings were compatible with a choroidal melanocytic lesion with risk factors for growth. One month later, melanocytic skin lesions appeared on the scalp, as well as small tumors. Three months later, an ultrasonography on B scan showed a growth of the tumor size. The patient developed a progressive deterioration and died. Three possibilities can explain the occurrence of a choroidal pigmented tumor in the contralateral eye: first, bilateral primary choroidal melanomas; second, both choroidal tumors are metastatic in origin from an unknown primary melanoma; and third, the contralateral tumor is a metastatic tumor from the primary choroidal melanoma.

  14. Presumable incipient hybrid speciation of door snails in previously glaciated areas in the Caucasus. (United States)

    Koch, Eva L; Neiber, Marco T; Walther, Frank; Hausdorf, Bernhard


    Homoploid hybrid speciation, speciation by hybridization without a change in chromosome number, may be the result of an encounter of closely related species in a habitat that is different from that usually occupied by these species. In the northwestern Caucasus the land snail species Micropontica caucasica and M. circassica form two distinct entities with little admixture at low and intermediate altitudes. However, at higher altitudes in the Lagonaki plateau, which were repeatedly glaciated, Micropontica populations with intermediate characters occur. Admixture analyses based on AFLP data demonstrated that the populations from the Lagonaki plateau are homoploid hybrids that now form a cluster separate from the parental species. The Lagonaki populations are characterized by a mtDNA haplotype clade that has been found in the parental species only once. The fixation of this haplotype clade in most hybrid populations suggests that these haplotypes are better adapted to the cooler conditions in high altitude habitats and have replaced the haplotypes of the parental species in a selective sweep. The fixation of a presumably adaptive mitochondrial haplotype clade in the Lagonaki populations is an important step towards speciation under the differential fitness species concept. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    Directory of Open Access Journals (Sweden)

    Liang-Mao Li


    Full Text Available This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%. The mean ablation depth was 114.39±45.51 μm and diameter of ablation was 4.06±1.07 mm. The mean time for healing of the epithelial defect was 8.8±5.6 days. Thirty-four eyes (82.9% showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8% still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully.

  16. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.


    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  17. Nanogranular SiO{sub 2} proton gated silicon layer transistor mimicking biological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. J.; Huang, G. S., E-mail:, E-mail:; Guo, Q. L.; Tian, Z. A.; Li, G. J.; Mei, Y. F. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Feng, P., E-mail:, E-mail:; Shao, F.; Wan, Q. [School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)


    Silicon on insulator (SOI)-based transistors gated by nanogranular SiO{sub 2} proton conducting electrolytes were fabricated to mimic synapse behaviors. This SOI-based device has both top proton gate and bottom buried oxide gate. Electrical transfer properties of top proton gate show hysteresis curves different from those of bottom gate, and therefore, excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked. Moreover, we noticed that PPF index can be effectively tuned by the spike interval applied on the top proton gate. Synaptic behaviors and functions, like short-term memory, and its properties are also experimentally demonstrated in our device. Such SOI-based electronic synapses are promising for building neuromorphic systems.

  18. Nanogranular SiO2 proton gated silicon layer transistor mimicking biological synapses

    International Nuclear Information System (INIS)

    Liu, M. J.; Huang, G. S.; Guo, Q. L.; Tian, Z. A.; Li, G. J.; Mei, Y. F.; Feng, P.; Shao, F.; Wan, Q.


    Silicon on insulator (SOI)-based transistors gated by nanogranular SiO 2 proton conducting electrolytes were fabricated to mimic synapse behaviors. This SOI-based device has both top proton gate and bottom buried oxide gate. Electrical transfer properties of top proton gate show hysteresis curves different from those of bottom gate, and therefore, excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked. Moreover, we noticed that PPF index can be effectively tuned by the spike interval applied on the top proton gate. Synaptic behaviors and functions, like short-term memory, and its properties are also experimentally demonstrated in our device. Such SOI-based electronic synapses are promising for building neuromorphic systems.

  19. Long-term potentiation expands information content of hippocampal dentate gyrus synapses. (United States)

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M


    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  20. Eph receptors and ephrins in neuron-astrocyte communication at synapses. (United States)

    Murai, Keith K; Pasquale, Elena B


    Neuron-glia communication is essential for regulating the properties of synaptic connections in the brain. Astrocytes, in particular, play a critical and complex role in synapse development, maintenance, and plasticity. Likewise, neurons reciprocally influence astrocyte physiology. However, the molecular signaling events that enable astrocytes and neurons to effectively communicate with each other are only partially defined. Recent findings have revealed that Eph receptor tyrosine kinases and ephrins play an important role in contact-dependent neuron-glia communication at synapses. Upon binding, these two families of cell surface-associated proteins trigger bidirectional signaling events that regulate the structural and physiological properties of both neurons and astrocytes. This review will focus on the emerging role of Eph receptors and ephrins in neuron-astrocyte interaction at synapses and discuss implications for synaptic plasticity, behavior, and disease. Copyright © 2011 Wiley-Liss, Inc.

  1. Visualizing the distribution of synapses from individual neurons in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Ling Li


    Full Text Available Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons.In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs. In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs.The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.

  2. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  3. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. (United States)

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z


    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.

  4. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress (United States)

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z


    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress. PMID:24589888

  5. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons. (United States)

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo


    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  6. D-serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability

    Directory of Open Access Journals (Sweden)

    Hong eLin


    Full Text Available D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs, synthesized by serine racemase (SR through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking alpha7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1, in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5 and 7-chlorokynurenic acid (7-CK, a specific antagonist at the glycine site of NMDARs

  7. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha


    Full Text Available The parallel fiber-Purkinje cell synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fibers activity generates fast postsynaptic currents via AMPA receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression and long-term potentiation have been widely described for the parallel fiber-Purkinje cell synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The parallel fiber-Purkinje cell synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline, and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the parallel fiber-Purkinje cell synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, parallel fiber-Purkinje cell synapse dysfunctions have been identified in several murine models of spinocerebellar ataxia (SCA types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27, while in others the mGlu1 pathway is affected (SCA1, 3, 5. Interestingly, the parallel fiber-Purkinje cell synapse has been shown to be hyper-functional in a mutant mouse model of autism

  8. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model. (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara


    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  9. Cerebellin 4, a synaptic protein, enhances inhibitory activity and resistance of neurons to amyloid-β toxicity. (United States)

    Chacón, Pedro J; del Marco, Ángel; Arévalo, Ángeles; Domínguez-Giménez, Paloma; García-Segura, Luis Miguel; Rodríguez-Tébar, Alfredo


    Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-β (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor (NGF) by dampening the γ-aminobutyric acid (GABA)ergic connectivity of cultured hippocampal neurons. Neuronal plasticity is partly controlled by the NGF-promoted expression of the homologue of enhancer-of-split 1 (Hes1), a transcription factor that regulates the formation of GABAergic synapses. We now show that Hes1 controls the expression of cerebellin 4 (Cbln4), a member of a small family of secreted synaptic proteins, and we present the evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections. Cbln4 immunoreactivity was found in the hippocampus, mostly in the dendrites and somata of pyramidal neurons. In the CA1, the hippocampal region where the first neurons degenerate in AD, Cbln4 immunoreactivity was associated with GABAergic synapses (detected by vesicular inhibitory amino acid transporter [VGAT] immunostaining), which appear to surround and embrace the somata of CA1 pyramidal neurons (basket cells). Moreover, significant decreases of Hes1, Cbln4, and VGAT immunoreactivities and messenger RNA expression were found in the hippocampus of a mouse model of AD. We also found that either the overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities, rescuing neurons from Aß-induced death. In contrast, knockdown of Cbln4 gene in cultured neurons was followed by a large reduction of GABAergic connections. Such an effect was reverted by exogenously added Cbln4. These findings suggest a therapeutic potential for Cbln4 in the treatment of AD. Copyright

  10. Clinical Features and Risk Factors of Patients with Presumed Ocular Toxoplasmosis (United States)

    Fuh, Ukamaka Celestina; Omoti, Afekhide E.; Enock, Malachi E.


    Purpose: To determine the clinical features and risk factors of presumed ocular toxoplasmosis (POT) in patients affected with the condition at Irrua, Nigeria. Methods: The study included 69 patients with POT, and 69 age and sex matched subjects who served as the control group. Data was obtained using interviewer administered questionnaires. Examination included measurement of visual acuity (VA), intraocular pressure (IOP), slit lamp examination, gonioscopy and dilated fundus examination. Results: Mean age of cases and control subjects was 57.16 ± 18.69 and 56.09 ± 16.01 years respectively. The peak age group in patients with POT was 60 years and above. The most common presenting complaint was blurred vision occurring in 100% of cases. Drinking unfiltered water in 58 (84.1%) patients was the most common risk factor. Other risk factors included post cataract surgery status in 32 (46.4%) subjects, ingestion of poorly cooked meat in 30 (43.5%) cases and exposure to cats in 9 (13.0%) patients. All risk factors were more common in POT patients (P < 0.05). Out of 69 patients, 62 (89.9%) had unilateral while 7 (10.1%) had bilateral involvement. Out of 76 eyes with uveitis, 53 (69.7%) were blind. Active disease was significantly more common with increasing age (P < 0.05). Conclusion: Patients with POT were rather old and some risk factors were modifiable, therefore health education for preventing the transmission of toxoplasmosis and provision of sanitary water may help reduce the incidence of ocular toxoplasmosis. PMID:27195085

  11. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions (United States)

    Peacock, Sheila; Douglas, Alan; Bowers, David


    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  12. Neuropathological and biochemical criteria to identify acquired Creutzfeldt-Jakob disease among presumed sporadic cases. (United States)

    Kobayashi, Atsushi; Parchi, Piero; Yamada, Masahito; Mohri, Shirou; Kitamoto, Tetsuyuki


    As an experimental model of acquired Creutzfeldt-Jakob disease (CJD), we performed transmission studies of sporadic CJD using knock-in mice expressing human prion protein (PrP). In this model, the inoculation of the sporadic CJD strain V2 into animals homozygous for methionine at polymorphic codon 129 (129 M/M) of the PRNP gene produced quite distinctive neuropathological and biochemical features, that is, widespread kuru plaques and intermediate type abnormal PrP (PrP(Sc) ). Interestingly, this distinctive combination of molecular and pathological features has been, to date, observed in acquired CJD but not in sporadic CJD. Assuming that these distinctive phenotypic traits are specific for acquired CJD, we revisited the literature and found two cases showing widespread kuru plaques despite the 129 M/M genotype, in a neurosurgeon and in a patient with a medical history of neurosurgery without dura mater grafting. By Western blot analysis of brain homogenates, we revealed the intermediate type of PrP(Sc) in both cases. Furthermore, transmission properties of brain extracts from these two cases were indistinguishable from those of a subgroup of dura mater graft-associated iatrogenic CJD caused by infection with the sporadic CJD strain V2. These data strongly suggest that the two atypical CJD cases, previously thought to represent sporadic CJD, very likely acquired the disease through exposure to prion-contaminated brain tissues. Thus, we propose that the distinctive combination of 129 M/M genotype, kuru plaques, and intermediate type PrP(Sc) , represents a reliable criterion for the identification of acquired CJD cases among presumed sporadic cases. © 2015 Japanese Society of Neuropathology.

  13. Feline dry eye syndrome of presumed neurogenic origin: a case report

    Directory of Open Access Journals (Sweden)

    Lionel Sebbag


    Full Text Available Case summary A 14-year-old female spayed Abyssinian cat, which about 1 year previously underwent thoracic limb amputation, radiotherapy and chemotherapy for an incompletely excised vaccine-related fibrosarcoma, was presented for evaluation of corneal opacity in the left eye (OS. The ocular surface of both eyes (OU had a lackluster appearance and there was a stromal corneal ulcer OS. Results of corneal aesthesiometry, Schirmer tear test-1 (STT-1 and tear film breakup time revealed corneal hypoesthesia, and quantitative and qualitative tear film deficiency OU. Noxious olfactory stimulation caused increased lacrimation relative to standard STT-1 values suggesting an intact nasolacrimal reflex. Various lacrimostimulants were administered in succession; namely, 1% pilocarpine administered topically (15 days or orally (19 days, and topically applied 0.03% tacrolimus (47 days. Pilocarpine, especially when given orally, was associated with notable increases in STT-1 values, but corneal ulceration remained/recurred regardless of administration route, and oral pilocarpine resulted in gastrointestinal upset. Tacrolimus was not effective. After 93 days, the cat became weak and lame and a low thyroxine concentration was detected in serum. The cat was euthanized and a necropsy performed. Both lacrimal glands were histologically normal, but chronic neutrophilic keratitis and reduced conjunctival goblet cell density were noted OU. Relevance and novel information The final diagnosis was dry eye syndrome (DES of presumed neurogenic origin, associated with corneal hypoesthesia. This report reinforces the importance of conducting tearfilm testing in cats with ocular surface disease, as clinical signs of DES were different from those described in dogs.

  14. [Childhood vaccinations anno 2004. II. The real and presumed side effects of vaccination]. (United States)

    Rümke, H C; Visser, H K


    Vaccinations protect to a high degree against infectious diseases, but may cause side effects. In the Netherlands since 1962 the adverse events following immunizations are registered and analysed by the National Institute of Health and Environment (RIVM). Since 1983 a permanent Committee of the Dutch Health Council reviews adverse events reported to the RIVM. With the so-called killed vaccines the side effects are mainly local (redness, swelling, pain) or general (fever, listlessness, irritability, sleep and eating problems). They are seen mainly after DPT-IPV vaccination against diphtheria, pertussis, tetanus and poliomyelitis. Some side effects occur rarely (collapse reactions, discoloured legs, persistent screaming and convulsions) and very rarely serious neurological events are reported. After MMR vaccination against measles, mumps and rubella, cases of arthritis, thrombocytopenia and ataxia are reported sporadically. Usually, they have a spontaneous recovery. During recent years a scala of diseases or symptoms have been associated with vaccination (presumed side effects). Careful and extensive investigations have shown that such hypotheses could not be supported. Examples are allergic diseases as asthma, diabetes mellitus, multiple sclerosis (after hepatitis B vaccination), autism and inflammatory bowel disease (after MMR vaccination) and sudden infant death syndrome. The total number of cases where at least a possible relation between side effects and vaccination is observed--apart from local reactions and moderate general symptoms--is very rare (about 0.25 per 1000 vaccinations) and does not balance the benefits from vaccination. There appears increasing doubt about the use and safety of vaccinations. More research is needed about the motives of people to choose for and against vaccination. The education about vaccination for parents and professionals who are involved with vaccination has to be improved. Internet can play an important role.

  15. Chorioretinal Lesions Presumed Secondary to Zika Virus Infection in an Immunocompromised Adult. (United States)

    Henry, Christopher R; Al-Attar, Luma; Cruz-Chacón, Alexis M; Davis, Janet L


    Zika virus has spread rapidly throughout the Americas since 2015. The public health implications of Zika virus infection lend special importance to identifying the virus in unsuspected hosts. To describe relevant imaging studies and clinical features of chorioretinal lesions that are presumably associated with Zika virus and that share analogous features with chorioretinal lesions reported in cases of Dengue fever and West Nile virus. This is a case report from an academic referral center in Miami, Florida, of a woman in her 60s from Guaynabo, Puerto Rico, who presented with reduced visual acuity and bilateral diffuse, subretinal, confluent, placoid, and multifocal chorioretinal lesions. The patient was observed over a 5-month period. Visual acuity, clinical course, and multimodal imaging study results. Fluorescein angiography revealed early hypofluorescence and late staining of the chorioretinal lesions. Optical coherence tomography demonstrated outer retinal disruption in the placoid macular lesions. Zika RNA was detected in a plasma sample by real-time reverse transcription polymerase chain reaction testing and was suspected to be the cause of chorioretinal lesions after other viral and infectious causes were ruled out. Three weeks after the onset of symptoms, the patient's visual acuity had improved to 20/60 OD and 20/25 OS, with intraocular pressures of 18 mm Hg OD and 19 mm Hg OS. In 6 weeks, the chorioretinal lesions had healed and visual acuity had improved to 20/25 OD and 20/20 OS. Follow-up optical coherence tomography demonstrated interval recovery of the outer retina and photoreceptors. Acute-onset, self-resolving, placoid, or multifocal nonnecrotizing chorioretinal lesions may be a feature of active Zika virus chorioretinitis, as reported in other Flavivirus infections in adults. Similar findings in potentially exposed adults suggest that clinicians should consider IgM antibody or polymerase chain reaction testing for Zika virus as well as diagnostic

  16. Paroxysmal atrial fibrillation in seven dogs with presumed neurally-mediated syncope. (United States)

    Porteiro Vázquez, D M; Perego, M; Santos, L; Gerou-Ferriani, M; Martin, M W S; Santilli, R A


    To document the electrocardiographic findings of vagally-induced paroxysmal atrial fibrillation following a presumed reflex syncopal episode in the dog. Seven dogs with a syncopal episode followed by a paroxysm of atrial fibrillation recorded on a 24-hour Holter. Twenty-four hour Holter monitors were retrospectively reviewed, analysing the cardiac rhythm associated with syncopal events. Each recording was analysed from 10 min before the syncopal episode to until 10 min after a normal sinus rhythm had returned. Nine episodes were recorded in seven dogs, with one patient experiencing three events during one Holter recording. Five of the seven dogs presented with underlying structural heart disease. In two the syncopal episodes occurred following exercise, two associated with coughing and three were during a period of rest. All dogs had documented on the Holter recording a rhythm abnormality during syncope. The most common finding leading up to the syncopal event was development of a progressive sinus bradycardia, followed by sinus arrest interrupted by a ventricular escape rhythm and then ventricular arrest. This was then followed by an atrial fibrillation. The atrial fibrillation was paroxysmal in seven recordings and persistent in two. In two dogs, the atrial fibrillation reorganised into self-limiting runs of atypical atrial flutter. This combination of electrocardiographic arrhythmias are probably caused by an inappropriate parasympathetic stimulation initiating a reflex or neurally-mediated syncope, with abnormal automaticity of the sinus node and of the subsidiary pacemaker cells and changes in the electrophysiological properties of the atrial muscle, which promoted the paroxysmal atrial fibrillation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Performance of thirteen clinical rules to distinguish bacterial and presumed viral meningitis in Vietnamese children.

    Directory of Open Access Journals (Sweden)

    Nguyen Tien Huy

    Full Text Available BACKGROUND AND PURPOSE: Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. METHODS: A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC using the method of DeLong and McNemar test for specificity comparison. RESULTS: Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85-90%. CONCLUSIONS: No clinical decision rules provided an acceptable specificity (>50% with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule.

  18. Type 7 adenylyl cyclase is involved in the ethanol and CRF sensitivity of GABAergic synapses in mouse central amygdala

    Directory of Open Access Journals (Sweden)

    Maureen T. Cruz


    Full Text Available AbstractThe GABAergic system in the central amygdala (CeA plays a major role in ethanol dependence and in the anxiogenic response to ethanol withdrawal. Previously, we found that both ethanol and corticotropin releasing factor (CRF increase GABAergic transmission in mouse and rat CeA neurons, in part by enhancing the release of GABA via activation of presynaptic CRF1 receptors. CRF1 receptors are coupled to the enzyme adenylyl cyclase (AC, which produces the second messenger cyclic AMP. There are nine isoforms of AC, but we recently found that CRF1 receptors in the pituitary were coupled to the Type 7 AC (AC7. Therefore, using an in vitro electrophysiological approach in brain slices, here we have investigated a possible role of the AC7 signaling pathway in ethanol and CRF effects on CeA GABAergic synapses of genetically modified mice with diminished brain Adcy7 activity (HET compared to their littermate male wild type (WT mice. We found no significant differences in basal membrane properties, mean baseline amplitude of evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs, or paired-pulse facilitation (PPF of GABAA-IPSPs between HET and WT mice. In CeA neurons of WT mice, ethanol superfusion significantly augmented (by 39% GABAA-IPSPs and decreased PPF (by 25%, suggesting increased presynaptic GABA release. However, these effects were absent in HET mice. CRF superfusion also significantly augmented IPSPs (by 38% and decreased PPF (by 23% in WT CeA neurons, and still elicited a significant but smaller (by 13% increase of IPSP amplitude, but no effect on PPF, in HET mice. These electrophysiological data suggest that AC7 plays an important role in ethanol and CRF modulation of presynaptic GABA release in CeA and thus may underlie ethanol-related behaviors such as anxiety and dependence.

  19. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control. (United States)

    Grossberg, Stephen


    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory

  20. Propriétés de la synapse cortico-sous-thalamique : étude optogénétique chez le rongeur


    Froux, Lionel


    Basal ganglia (BG) are a group of subcortical nuclei involved in action selection and in cognitive and motivational aspects of motor behavior. Dopamine is essential for proper functioning of BG. The cortico-subthalamic (cortico-STN) synapse is a glutamatergic (excitatory) synapse involved in signal transmission from cortex to subthalamic nucleus (STN). The cortico-STN synapse is the first synapse in the hyperdirect pathway, one of the three pathways of BG. Even if the cortico-STN pathway is i...

  1. Learning and Stabilization of Winner-Take-All DynamicsThrough Interacting Excitatory and Inhibitory Plasticity

    Directory of Open Access Journals (Sweden)

    Jonathan eBinas


    Full Text Available Winner-Take-All (WTA networks are recurrently connected populations of excitatory and inhibitory neurons that represent promising candidate microcircuits for implementing cortical computation. WTAs can perform powerful computations, ranging from signal-restoration to state-dependent processing. However, such networks require fine-tuned connectivity parameters to keep the network dynamics within stable operating regimes. In this article, we show how such stability can emerge autonomously through an interaction of biologically plausible plasticity mechanisms that operate simultaneously on all excitatory and inhibitory synapses of the network. A weight-dependent plasticity rule is derived from the triplet spike-timing dependent plasticity model, and its stabilization properties in the mean-field case are analyzed using contraction theory. Our main result provides simple constraints on the plasticity rule parameters, rather than on the weights themselves, which guarantee stable WTA behavior. The plastic network we present is able to adapt to changing input conditions, and to dynamically adjust its gain, therefore exhibiting self-stabilization mechanisms that are crucial for maintaining stable operation in large networks of interconnected subunits. We show how distributed neural assemblies can adjust their parameters for stable WTA function autonomously while respecting anatomical constraints on neural wiring.

  2. Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. (United States)

    Pinaud, Raphael; Terleph, Thomas A; Tremere, Liisa A; Phan, Mimi L; Dagostin, André A; Leão, Ricardo M; Mello, Claudio V; Vicario, David S


    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA A-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA A-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA A receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA A-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.

  3. Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism (United States)

    Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel


    Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that

  4. Memory and pattern storage in neural networks with activity dependent synapses (United States)

    Mejias, J. F.; Torres, J. J.


    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  5. Astrocyte lipid metabolism is critical for synapse development and function in vivo

    NARCIS (Netherlands)

    van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F|info:eu-repo/dai/nl/173812694; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G

    The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this

  6. Human synapses show a wide temporal window for spike-timing-dependent plasticity

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Goriounova, N.A.; Loebel, A.; Hjorth, J.; Baayen, J.C.; de Kock, C.P.J.; Mansvelder, H.D.


    Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic

  7. Steps in the formation of neurites and synapses studied in cultured leech neurons

    Directory of Open Access Journals (Sweden)

    De-Miguel F.F.


    Full Text Available Leech neurons in culture have provided novel insights into the steps in the formation of neurite outgrowth patterns, target recognition and synapse formation. Identified adult neurons from the central nervous system of the leech can be removed individually and plated in culture under well-controlled conditions, where they retain their characteristic physiological properties, grow neurites and form specific chemical or electrical synapses. Different identified neurons develop distinctive outgrowth patterns that depend on their identities and on the molecular composition of the substrate. On native substrates, the patterns displayed by these neurons reproduce characteristics from the adult or the developing neurons. In addition, the substrate may induce selective directed growth between pairs of neurons that normally make contact in the ganglion. Upon contact, pairs of cultured leech neurons form chemical or electrical synapses, or both types depending on the neuronal identities. Anterograde and retrograde signals during membrane contact and synapse formation modify the distribution of synaptic terminals, calcium currents, and responses to 5-hydroxytryptamine.

  8. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler


    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  9. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue (United States)

    Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.


    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270

  10. The cAMP cascade modulates the neuroinformative impact of quantal release at cholinergic synapse

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, František; Bukcharaeva, E.; Samigullin, D. V.; Nikolsky, E. E.


    Roč. 2, č. 2 (2001), s. 317-323 ISSN 1539-2791 R&D Projects: GA AV ČR IAA7011902 Grant - others:EU(XX) Nesting; RFBR(RU) 99-04-48286 Institutional research plan: CEZ:AV0Z5011922 Keywords : frog neuromuscular synapse * noradrenaline Subject RIV: ED - Physiology

  11. Autophagy Attenuates the Adaptive Immune Response by Destabilizing the Immunologic Synapse

    NARCIS (Netherlands)

    Wildenberg, Manon E.; Vos, Anne Christine W.; Wolfkamp, Simone C. S.; Duijvestein, Marjolijn; Verhaar, Auke P.; te Velde, Anje A.; van den Brink, Gijs R.; Hommes, Daniel W.


    BACKGROUND & AIMS: Variants in the genes ATG16L1 and IRGM affect autophagy and are associated with the development of Crohn's disease. It is not clear how autophagy is linked to loss of immune tolerance in the intestine. We investigated the involvement of the immunologic synapse-the site of contact

  12. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses (United States)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu


    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  13. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses (United States)

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.


    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  14. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.


    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  15. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.


    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  16. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. (United States)

    Krueger, Dilja D; Tuffy, Liam P; Papadopoulos, Theofilos; Brose, Nils


    Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Bruun, Erik; Dietrich, Casper


    In this work we present a hardware efficient matrix-vector multiplier architecture for artificial neural networks with digitally stored synapse strengths. We present a novel technique for manipulating bipolar inputs based on an analog two's complements method and an accurate current rectifier...

  18. NeuroD2 regulates the development of hippocampal mossy fiber synapses

    Directory of Open Access Journals (Sweden)

    Wilke Scott A


    Full Text Available Abstract Background The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF synapse. Results Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice. Conclusion These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.

  19. "Presumed fair: Ironic effects of organizational diversity structures": Correction to Kaiser et al. (2013). (United States)


    Reports an error in "Presumed fair: Ironic effects of organizational diversity structures" by Cheryl R. Kaiser, Brenda Major, Ines Jurcevic, Tessa L. Dover, Laura M. Brady and Jenessa R. Shapiro (Journal of Personality and Social Psychology, 2013[Mar], Vol 104[3], 504-519). In the article, a raw data merging error in one racial discrimination claim condition from Experiment 6 inadvertently resulted in data analyses on an inaccurate data set. When the error was discovered by the authors and corrected, all analyses reported in Experiment 6 for claim validity, seriousness of the claim, and support for the claimant were inaccurate and none were statistically significant. The conclusions should be altered to indicate that participants with management experience who reflected on their own workplace diversity policies did not show the predicted effects. The literature review, remaining five studies, and remaining conclusions in the article are unaffected by this error. Experiment 6 should also report that 26.4% (not 26.4.7%) of participants had a graduate degree and eight participants (not 8%) did not provide educational data. Experiment 5 should have referred to the claim validity measure as a six-item measure ( .92) rather than a five-item measure; analyses on claim validity are accurate in text. Table 2's note should have said standard errors, not standard deviations. (The following abstract of the original article appeared in record 2012-31077-001.) This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high

  20. Back-propagation operation for analog neural network hardware with synapse components having hysteresis characteristics. (United States)

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi


    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware.

  1. Back-propagation operation for analog neural network hardware with synapse components having hysteresis characteristics.

    Directory of Open Access Journals (Sweden)

    Michihito Ueda

    Full Text Available To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware.

  2. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses (United States)

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria


    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  3. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. (United States)

    Witcher, Mark R; Park, Yong D; Lee, Mark R; Sharma, Suash; Harris, Kristen M; Kirov, Sergei A


    Perisynaptic astroglia are critical for normal synaptic development and function. Little is known, however, about perisynaptic astroglia in the human hippocampus. When mesial temporal lobe epilepsy (MTLE) is refractory to medication, surgical removal is required for seizure quiescence. To investigate perisynaptic astroglia in human hippocampus, we recovered slices for several hours in vitro from three surgical specimens and then quickly fixed them to achieve high-quality ultrastructure. Histological samples from each case were found to have mesial temporal sclerosis with Blumcke Type 1a (mild, moderate) or 1b (severe) pathology. Quantitative analysis through serial section transmission electron microscopy in CA1 stratum radiatum revealed more synapses in the mild (10/10 microm(3)) than the moderate (5/10 microm(3)) or severe (1/10 microm(3)) cases. Normal spines occurred in mild and moderate cases, but a few multisynaptic spines were all that remained in the severe case. Like adult rat hippocampus, perisynaptic astroglial processes were preferentially associated with larger synapses in the mild and moderate cases, but rarely penetrated the cluster of axonal boutons surrounding multisynaptic spines. Synapse perimeters were only partially surrounded by astroglial processes such that all synapses had some access to substances in the extracellular space, similar to adult rat hippocampus. Junctions between astroglial processes were observed more frequently in moderate than mild case, but were obscured by densely packed intermediate filaments in astroglial processes of the severe case. These findings suggest that perisynaptic astroglial processes associate with synapses in human hippocampus in a manner similar to model systems and are disrupted by severe MTLE pathology.

  4. A machine learning method for the prediction of receptor activation in the simulation of synapses.

    Directory of Open Access Journals (Sweden)

    Jesus Montes

    Full Text Available Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of

  5. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity. (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea


    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  6. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta


    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  7. Inhibitory effects of Ledebouria ovaltifolia (hyacithaceae) aqueous ...

    African Journals Online (AJOL)

    Inhibitory effects of Ledebouria ovaltifolia (hyacithaceae) aqueous root extract on contractile responses of Rat Vas deferens to K and adrenaline, pendular movement of isolated rabbit jejunum and acetic acid induced pain in Mice.

  8. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    African Journals Online (AJOL)

    Phytochemical screening and in vitro acetylcholinesterase inhibitory activity of seven plant extracts. Titilayo Johnson, Oduje A. Akinsanmi, Enoch J. Banbilbwa, Tijani A. Yahaya, Karima Abdulaziz, Kolade Omole ...

  9. Sphingomyelinase inhibitory and free radical scavenging potential ...

    African Journals Online (AJOL)

    Sphingomyelinase inhibitory and free radical scavenging potential of selected Nigerian medicinal plant extracts. FM Awah, PN Uzoegwu, P Ifeonu, JO Oyugi, J Rutherford, X Yao, F Fehrmann, KR Fowke, MO Eze ...


    Directory of Open Access Journals (Sweden)

    K. Yu. Мukhin


    Full Text Available The article is devoted to rare and unique type of epileptic seizures – inhibitory motor seizures, characterized by the inability to execute a voluntary movement with preserved consciousness. The exact prevalence of this type of seizures is not known, but many cases are unrecognized or non-correctly diagnosed as Todd's paralysis. Therefore practical doctors should know the clinical and electroencephalographic characteristics of this type of seizures andtake them into account in the differential diagnoses . The authors presented a detailed review of the literature, including the historical data, etiology, pathogenesis and proposed mechanisms of formation of inhibitory motor seizures, clinical and EEG characteristics, therapeutic approaches. Antiepileptic drugs of choice used in the treatment of inhibitory motor seizures are valproic acid (preferably depakine chronosphere – original prolonged form of valproate. The authors also presented their observations of patients with inhibitory motor seizures.

  11. Exploiting Inhibitory Siglecs to Combat Food Allergies (United States)


    CONTRACT NUMBER: W81XWH-16-1-0303 TITLE: Exploiting Inhibitory Siglecs to Combat Food Allergies PARTNERING INVESTIGATOR: Matthew Macauley, Ph.D...SUBTITLE Exploiting Inhibitory Siglecs to Combat Food Allergies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Michael...Furthermore, two novel transgenic mouse models were generated, one expresses human CD22 on B cells and the other expresses human CD33 on mast cells

  12. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Directory of Open Access Journals (Sweden)

    Jennifer L Gardell

    Full Text Available Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  13. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells. (United States)

    Gardell, Jennifer L; Parker, David C


    Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L) is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  14. Quantitative 3D Ultrastructure of Thalamocortical Synapses from the "Lemniscal" Ventral Posteromedial Nucleus in Mouse Barrel Cortex. (United States)

    Rodriguez-Moreno, Javier; Rollenhagen, Astrid; Arlandis, Jaime; Santuy, Andrea; Merchan-Pérez, Angel; DeFelipe, Javier; Lübke, Joachim H R; Clasca, Francisco


    Thalamocortical synapses from "lemniscal" neurons of the dorsomedial portion of the rodent ventral posteromedial nucleus (VPMdm) are able to induce with remarkable efficacy, despite their relative low numbers, the firing of primary somatosensory cortex (S1) layer 4 (L4) neurons. To which extent this high efficacy depends on structural synaptic features remains unclear. Using both serial transmission (TEM) and focused ion beam milling scanning electron microscopy (FIB/SEM), we 3D-reconstructed and quantitatively analyzed anterogradely labeled VPMdm axons in L4 of adult mouse S1. All VPMdm synapses are asymmetric. Virtually all are established by axonal boutons, 53% of which contact multiple (2-4) elements (overall synapse/bouton ratio = 1.6). Most boutons are large (mean 0.47 μm3), and contain 1-3 mitochondria. Vesicle pools and postsynaptic density (PSD) surface areas are large compared to others in rodent cortex. Most PSDs are complex. Most synapses (83%) are established on dendritic spine heads. Furthermore, 15% of the postsynaptic spines receive a second, symmetric synapse. In addition, 13% of the spine heads have a large protrusion inserted into a membrane pouch of the VPMdm bouton. The unusual combination of structural features in VPMdm synapses is likely to contribute significantly to the high efficacy, strength, and plasticity of these thalamocortical synapses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  15. Surgery for stress urinary incontinence due to presumed sphincter deficiency after prostate surgery. (United States)

    Silva, Laercio A; Andriolo, Régis B; Atallah, Álvaro N; da Silva, Edina M K


    Incontinence after prostatectomy for benign or malignant disease is a well-known and often a feared outcome. Although small degrees of incidental incontinence may go virtually unnoticed, larger degrees of incontinence can have a major impact on a man's quality of life.Conceptually, post-prostatectomy incontinence may be caused by sphincter malfunction or bladder dysfunction, or both. Most men with post-prostatectomy incontinence (60% to 100%) have stress urinary incontinence, which is involuntary urinary leakage on effort or exertion, or on sneezing or coughing. This may be due to intrinsic sphincter deficiency and may be treated with surgery for optimal management of incontinence. Detrusor dysfunction is more common after surgery for benign prostatic disease. To determine the effects of surgical treatment for urinary incontinence related to presumed sphincter deficiency after prostate surgery for:- men with lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) - transurethral resection of prostate (TURP), photo vaporisation of the prostate, laser enucleation of the prostate or open prostatectomy - and- men with prostate cancer - radical prostatectomy (retropubic, perineal, laparoscopic, or robotic). We searched the Cochrane Incontinence Group Specialised Register, which contains trials identified from Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE in process,, and handsearching of journals and conference proceedings (searched 31 March 2014); MEDLINE (January 1966 to April 2014); EMBASE (January 1988 to April 2014); and LILACS (January 1982 to April 2014). We handsearched the reference lists of relevant articles and conference proceedings. We contacted investigators to locate studies. Randomised or quasi-randomised trials that include surgical treatments of urinary incontinence after prostate surgery. Two authors independently screened the trials identified, appraised quality of papers

  16. Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

    Directory of Open Access Journals (Sweden)

    S. Salucci


    Full Text Available An increased intake of the antioxidant α-Tocopherol (vitamin E is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Glia-synapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses was increased. These findings indicate that gestational and neonatal exposure to supranutritional tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant glia-synapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.

  17. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression. (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár


    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 10 9 asymmetric synapses, 1.06 × 10 8 symmetric synapses and 1.00 × 10 8 myelinated axons. The density of asymmetric synapses was 5.5/μm 3 and the density of symmetric synapses was 0.5/μm 3 . Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is

  18. Molecular mechanisms underlying activity-dependent GABAergic synapse development and plasticity and its implications for neurodevelopmental disorders. (United States)

    Chattopadhyaya, Bidisha


    GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mechanisms of GABAergic synapse formation, in particular basket cell perisomatic synapses, this paper draws attention to the links between critical period plasticity, GABAergic synapse maturation, and the consequences of its dysfunction on the development of the nervous system.

  19. Molecular Mechanisms Underlying Activity-Dependent GABAergic Synapse Development and Plasticity and Its Implications for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Bidisha Chattopadhyaya


    Full Text Available GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mechanisms of GABAergic synapse formation, in particular basket cell perisomatic synapses, this paper draws attention to the links between critical period plasticity, GABAergic synapse maturation, and the consequences of its dysfunction on the development of the nervous system.

  20. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár


    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  1. Examining how presumed media influence affects social norms and adolescents' attitudes and drinking behavior intentions in rural Thailand. (United States)

    Ho, Shirley S; Poorisat, Thanomwong; Neo, Rachel L; Detenber, Benjamin H


    This study uses the influence of presumed media influence model as the theoretical framework to examine how perceived social norms (i.e., descriptive, subjective, and injunctive norms) will mediate the influence of pro- and antidrinking media messages on adolescents' intention to consume alcohol in rural Thailand. Data collected from 1,028 high school students indicate that different mechanisms underlie drinking intentions between nondrinkers and those who have consumed alcohol or currently drink. Among nondrinkers, perceived peer attention to prodrinking messages indirectly influenced adolescents' prodrinking attitudes and intentions to consume alcohol through all three types of perceived social norms. Among drinkers, perceived peer attention to pro- and antidrinking messages indirectly influenced adolescents' prodrinking attitudes and intentions to drink alcohol through perceived subjective norm. The findings provide support for the extended influence of presumed media influence model and have practical implications for how antidrinking campaigns targeted at teenagers in Thailand might be designed.

  2. Presuming the influence of the media: teenagers′ constructions of gender identity through sexual/romantic relationships and alcohol consumption


    Hartley, Jane E K; Wight, Daniel; Hunt, Kate


    Using empirical data from group discussions and in-depth interviews with 13 to 15-year olds in Scotland, this study explores how teenagers’ alcohol drinking and sexual/romantic relationships were shaped by their quest for appropriate gendered identities. In this, they acknowledged the influence of the media, but primarily in relation to others, not to themselves, thereby supporting Milkie's ‘presumed media influence’ theory. Media portrayals of romantic/sexual relationships appeared to influe...

  3. Isolated third, fourth, and sixth cranial nerve palsies from presumed microvascular versus other causes: a prospective study. (United States)

    Tamhankar, Madhura A; Biousse, Valerie; Ying, Gui-Shuang; Prasad, Sashank; Subramanian, Prem S; Lee, Michael S; Eggenberger, Eric; Moss, Heather E; Pineles, Stacy; Bennett, Jeffrey; Osborne, Benjamin; Volpe, Nicholas J; Liu, Grant T; Bruce, Beau B; Newman, Nancy J; Galetta, Steven L; Balcer, Laura J


    To estimate the proportion of patients presenting with isolated third, fourth, or sixth cranial nerve palsy of presumed microvascular origin versus other causes. Prospective, multicenter, observational case series. A total of 109 patients aged 50 years or older with acute isolated ocular motor nerve palsy. Magnetic resonance imaging (MRI) of the brain. Causes of acute isolated ocular motor nerve palsy (presumed microvascular or other) as determined with early MRI and clinical assessment. Among 109 patients enrolled in the study, 22 had cranial nerve III palsy, 25 had cranial nerve IV palsy, and 62 had cranial nerve VI palsy. A cause other than presumed microvascular ischemia was identified in 18 patients (16.5%; 95% confidence interval, 10.7-24.6). The presence of 1 or more vasculopathic risk factors (diabetes, hypertension, hypercholesterolemia, coronary artery disease, myocardial infarction, stroke, and smoking) was significantly associated with a presumed microvascular cause (P = 0.003, Fisher exact test). Vasculopathic risk factors were also present in 61% of patients (11/18) with other causes. In the group of patients who had vasculopathic risk factors only, with no other significant medical condition, 10% of patients (8/80) were found to have other causes, including midbrain infarction, neoplasms, inflammation, pituitary apoplexy, and giant cell arteritis (GCA). By excluding patients with third cranial nerve palsies and those with GCA, the incidence of other causes for isolated fourth and sixth cranial nerve palsies was 4.7% (3/64). In our series of patients with acute isolated ocular motor nerve palsies, a substantial proportion of patients had other causes, including neoplasm, GCA, and brain stem infarction. Brain MRI and laboratory workup have a role in the initial evaluation of older patients with isolated acute ocular motor nerve palsies regardless of whether vascular risk factors are present. Copyright © 2013 American Academy of Ophthalmology

  4. Clinical pitfalls in misoprostol-based medical management of first-trimester induced and presumed spontaneous abortion. (United States)

    Wax, Joseph R; Conroy, Kelley; Pinette, Michael G; Litton, Christian; Cartin, Angelina


    When administered inappropriately, first-trimester misoprostol management of induced or spontaneous abortion can result in loss or damage of a continuing pregnancy. Despite these serious consequences, such misoprostol exposures continue to occur. Unfortunately, contributing factors and preventive measures receive little attention. We describe the cases of 4 women in whom misoprostol was inappropriately administered during management of induced and presumed spontaneous abortion. In each case, careful adherence to published clinical guidance could have avoided the exposures. © 2017 Wiley Periodicals, Inc.

  5. Synapses of the rat end brain in response to flight effects

    International Nuclear Information System (INIS)

    Antipov, V.V.; Tikhonchuk, V.S.; Ushakov, I.B.; Fedorov, V.P.


    Using electron microscopy, synapses of different structures of the rat end brain related to cognitive and motor acts (sensorimotor cortex, caudate nucleus) as well as memory and behavior (hippocampus) were examined. Rats were exposed to ionizing radiation, superhigh frequency, hypoxia, hyperoxia, vibration and acceleration (applied separately or in combination) which have been traditionally in the focus of space and aviation medicine. Brain internuronal junctions were found to be very sensitive to the above effects, particularly ionizing radiation and hypoxia. Conversely, synapses were shown to be highly resistant to short-term hyperoxia and electromagnetic radiation. When combined effects were used, response of interneuronal junctions depended on the irradiation dose and order of application of radiation and other flight factors

  6. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. (United States)

    Ferro, Mattia; Lamanna, Jacopo; Ripamonti, Maddalena; Racchetti, Gabriella; Arena, Alessandro; Spadini, Sara; Montesano, Giovanni; Cortese, Riccardo; Zimarino, Vincenzo; Malgaroli, Antonio


    Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals.

  7. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats. (United States)

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F


    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  8. Application of Synapses Dilution Method for Pattern Recognition Optimation Using Hopfield Model Neural Network

    International Nuclear Information System (INIS)

    Wicaksana, D.S.


    Human's neural network consist of thousands of neurons, each of which has only one input, and more than one output. these neurons are linked together through junctions called synapses, which have different strength from one to another, to configure specific information pattern. Using their functions and capabilities, we are able to improve the performance of neuman-type computers in the future. This is because of the capabilities to parallely process information, especially for voice and image pattern recognitions, instead of serial process as in Neuman-type computers. This paper explains how to simplify hopfield model neural network by using synapse dilution without reducing the capability of its pattern recognition. the dilution is done by using two ways: sequence, and random. Both ways are followed by either intact or distorted pattern recognitions

  9. Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. (United States)

    Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L


    Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.

  10. Astrocytic Gliotransmitter: Diffusion Dynamics and Induction of Information Processing on Tripartite Synapses (United States)

    Li, Jia-Jia; Du, Meng-Meng; Wang, Rong; Lei, Jin-Zhi; Wu, Ying

    Astrocytes have important functions in the central nervous system (CNS) and are significant in our understanding of the neuronal network. Astrocytes modulate neuronal firings at both single cell level of tripartite synapses and the neuron-glial network level. Astrocytes release adenosine triphosphate (ATP) and glutamate into the neuron-glial network. These gliotransmitters diffuse over the network to form long distance signals to regulate neuron firings. In this paper, we study a neuron-glial network model that includes a diffusion of astrocytic ATP and glutamate to investigate how long distance diffusion of the gliotransmitters affects the information processing in a neuronal network. We find that gliotransmitters diffusion can compensate for the failure of information processing of interneuron network firings induced by defectively coupled synapses. Moreover, we find that calcium waves in astrocyte network and firings in interneuron network are both sensitive to the glutamate diffusion rate and feedback intensities of astrocytes on interneurons.

  11. Navigating barriers: the challenge of directed secretion at the natural killer cell lytic immunological synapse. (United States)

    Sanborn, Keri B; Orange, Jordan S


    Natural killer (NK) cells have an inherent ability to recognize and destroy a wide array of cells rendered abnormal by stress or disease. NK cells can kill a targeted cell by forming a tight interface-the lytic immunological synapse. This represents a dynamic molecular arrangement that over time progresses through a series of steps to ultimately deliver the contents of specialized organelles known as lytic granules. In order to mediate cytotoxicity, the NK cell faces the challenge of mobilizing the lytic granules, polarizing them to the targeted cell, facilitating their approximation to the NK cell membrane, and releasing their contents. This review is focused upon the final steps in accessing function through the lytic immunological synapse.

  12. Comparison of the dynamics of neural interactions in integrate-and-fire networks with current-based and conductance-based synapses

    Directory of Open Access Journals (Sweden)

    Stefano eCavallari


    Full Text Available Models of networks of Leaky Integrate-and-Fire neurons (LIF are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single-neuron and neural population dynamics of conductance-based networks (COBN and current-based networks (CUBN of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity. However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-sensitive in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, COBN showed stronger neuronal population synchronization in the gamma band, and their spectral information about the network input was higher and spread over a broader range of frequencies. These results suggest that second order properties of network dynamics depend strongly on the choice of synaptic model.

  13. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear. (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna


    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons


    Hagmeyer, Simone; Mangus, Katharina; Boeckers, Tobias M.; Grabrucker, Andreas M.


    Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD). Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic syn...

  15. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit


    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  16. Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox. (United States)

    Breit, Markus; Stepniewski, Martin; Grein, Stephan; Gottmann, Pascal; Reinhardt, Lukas; Queisser, Gillian


    The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic, or reconstruction) to the simulation platform UG 4 (which harbors a neuroscientific portfolio) and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g., new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  17. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication. (United States)

    Rozanski, Gabriela M; Li, Qi; Stanley, Elise F


    The dorsal root ganglion (DRG) contains a subset of closely-apposed neuronal somata (NS) separated solely by a thin satellite glial cell (SGC) membrane septum to form an NS-glial cell-NS trimer. We recently reported that stimulation of one NS with an impulse train triggers a delayed, noisy and long-lasting response in its NS pair via a transglial signaling pathway that we term a 'sandwich synapse' (SS). Transmission could be unidirectional or bidirectional and facilitated in response to a second stimulus train. We have shown that in chick or rat SS the NS-to-SGC leg of the two-synapse pathway is purinergic via P2Y2 receptors but the second SGC-to-NS synapse mechanism remained unknown. A noisy evoked current in the target neuron, a reversal potential close to 0 mV, and insensitivity to calcium scavengers or G protein block favored an ionotropic postsynaptic receptor. Selective block by D-2-amino-5-phosphonopentanoate (AP5) implicated glutamatergic transmission via N-methyl-d-aspartate receptors. This agent also blocked NS responses evoked by puff of UTP, a P2Y2 agonist, directly onto the SGC cell, confirming its action at the second synapse of the SS transmission pathway. The N-methyl-d-aspartate receptor NR2B subunit was implicated by block of transmission with ifenprodil and by its immunocytochemical localization to the NS membrane, abutting the glial septum P2Y2 receptor. Isolated DRG cell clusters exhibited daisy-chain and branching NS-glial cell-NS contacts, suggestive of a network organization within the ganglion. The identification of the glial-to-neuron transmitter and receptor combination provides further support for transglial transmission and completes the DRG SS molecular transmission pathway. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Long-term depression at distinct glutamatergic synapses in the basal ganglia. (United States)

    Dupuis, Julien P; Bioulac, Bernard H; Baufreton, Jérôme


    Long-term adaptations of synaptic transmission are believed to be the cellular basis of information storage in the brain. In particular, long-term depression of excitatory neurotransmission has been under intense investigation since convergent lines of evidence support a crucial role for this process in learning and memory. Within the basal ganglia, a network of subcortical nuclei forming a key part of the extrapyramidal motor system, plasticity at excitatory synapses is essential to the regulation of motor, cognitive, and reward functions. The striatum, the main gateway of the basal ganglia, receives convergent excitatory inputs from cortical areas and transmits information to the network output structures and is a major site of activity-dependent plasticity. Indeed, long-term depression at cortico-striatal synapses modulates the transfer of information to basal ganglia output structures and affects voluntary movement execution. Cortico-striatal plasticity is thus considered as a cellular substrate for adaptive motor control. Downstream in this network, the subthalamic nucleus and substantia nigra nuclei also receive glutamatergic innervation from the cortex and the subthalamic nucleus, respectively. Although these connections have been less investigated, recent studies have started to unravel the molecular mechanisms that contribute to adjustments in the strength of cortico-subthalamic and subthalamo-nigral transmissions, revealing that adaptations at these synapses governing the output of the network could also contribute to motor planning and execution. Here, we review our current understanding of long-term depression mechanisms at basal ganglia glutamatergic synapses and emphasize the common and unique plastic features observed at successive levels of the network in healthy and pathological conditions.

  19. Rate dynamics of leaky integrate-and-fire neurons with strong synapses

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie


    Full Text Available Firing-rate models provide a practical tool for studying the dynamics of trial- or population-averaged neuronal signals. A wealth of theoretical and experimental studies has been dedicated to the derivation or extraction of such models by investigating the firing-rate response characteristics of ensembles of neurons. The majority of these studies assumes that neurons receive input spikes at a high rate through weak synapses (diffusion approximation. For many biological neural systems, however, this assumption cannot be justified. So far, it is unclear how time-varying presynaptic firing rates are transmitted by a population of neurons if the diffusion assumption is dropped. Here, we numerically investigate the stationary and non-stationary firing-rate response properties of leaky integrate-and-fire (LIF neurons receiving input spikes through excitatory synapses with alpha-function shaped postsynaptic currents for strong synaptic weights. Input spike trains are modelled by inhomogeneous Poisson point-processes with sinusoidal rate. Average rates, modulation amplitudes and phases of the period-averaged spike responses are measured for a broad range of stimulus, synapse and neuron parameters. Across wide parameter regions, the resulting transfer functions can be approximated by a linear 1st-order low-pass filter. Below a critical synaptic weight, the cutoff frequencies are approximately constant and determined by the synaptic time constants. Only for synapses with unrealistically strong weights are the cutoff frequencies significantly increased. To account for stimuli with larger modulation depths, we combine the measured linear transfer function with the nonlinear response characteristics obtained for stationary inputs. The resulting linear-nonlinear model accurately predicts the population response for a variety of non-sinusoidal stimuli.

  20. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E. [Advanced Technology Research Laboratories, Panasonic Corporation, Seika, Kyoto 619-0237 (Japan); Morie, T. [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu 808-0196 (Japan)


    Spike-timing-dependent synaptic plasticity (STDP) is demonstrated in a synapse device based on a ferroelectric-gate field-effect transistor (FeFET). STDP is a key of the learning functions observed in human brains, where the synaptic weight changes only depending on the spike timing of the pre- and post-neurons. The FeFET is composed of the stacked oxide materials with ZnO/Pr(Zr,Ti)O{sub 3} (PZT)/SrRuO{sub 3}. In the FeFET, the channel conductance can be altered depending on the density of electrons induced by the polarization of PZT film, which can be controlled by applying the gate voltage in a non-volatile manner. Applying a pulse gate voltage enables the multi-valued modulation of the conductance, which is expected to be caused by a change in PZT polarization. This variation depends on the height and the duration of the pulse gate voltage. Utilizing these characteristics, symmetric and asymmetric STDP learning functions are successfully implemented in the FeFET-based synapse device by applying the non-linear pulse gate voltage generated from a set of two pulses in a sampling circuit, in which the two pulses correspond to the spikes from the pre- and post-neurons. The three-terminal structure of the synapse device enables the concurrent learning, in which the weight update can be performed without canceling signal transmission among neurons, while the neural networks using the previously reported two-terminal synapse devices need to stop signal transmission for learning.

  1. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. (United States)

    Qian, Chuan; Sun, Jia; Kong, Ling-An; Gou, Guangyang; Yang, Junliang; He, Jun; Gao, Yongli; Wan, Qing


    Realization of biological synapses using electronic devices is regarded as the basic building blocks for neuromorphic engineering and artificial neural network. With the advantages of biocompatibility, low cost, flexibility, and compatible with printing and roll-to-roll processes, the artificial synapse based on organic transistor is of great interest. In this paper, the artificial synapse simulation by ion-gel gated organic field-effect transistors (FETs) with poly(3-hexylthiophene) (P3HT) active channel is demonstrated. Key features of the synaptic behaviors, such as paired-pulse facilitation (PPF), short-term plasticity (STP), self-tuning, the spike logic operation, spatiotemporal dentritic integration, and modulation are successfully mimicked. Furthermore, the interface doping processes of electrolyte ions between the active P3HT layer and ion gels is comprehensively studied for confirming the operating processes underlying the conductivity and excitatory postsynaptic current (EPSC) variations in the organic synaptic devices. This study represents an important step toward building future artificial neuromorphic systems with newly emerged ion gel gated organic synaptic devices.

  2. Emerging phenomena in neural networks with dynamic synapses and their computational implications

    Directory of Open Access Journals (Sweden)

    Joaquin J. eTorres


    Full Text Available In this paper we review our research on the effect and computational role of dynamical synapses on feed-forward and recurrent neural networks. Among others, we report on the appearance of a new class of dynamical memories which result from the destabilisation of learned memory attractors. This has important consequences for dynamic information processing allowing the system to sequentially access the information stored in the memories under changing stimuli. Although storage capacity of stable memories also decreases, our study demonstrated the positive effect of synaptic facilitation to recover maximum storage capacity and to enlarge the capacity of the system for memory recall in noisy conditions. Possibly, the new dynamical behaviour can be associated with the voltage transitions between up and down states observed in cortical areas in the brain. We investigated the conditions for which the permanence times in the up state are power-law distributed, which is a sign for criticality, and concluded that the experimentally observed large variability of permanence times could be explained as the result of noisy dynamic synapses with large recovery times. Finally, we report how short-term synaptic processes can transmit weak signals throughout more than one frequency range in noisy neural networks, displaying a kind of stochastic multi-resonance. This effect is due to competition between activity-dependent synaptic fluctuations (due to dynamic synapses and the existence of neuron firing threshold which adapts to the incoming mean synaptic input.

  3. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems. (United States)

    Wang, Zhongqiang; Ambrogio, Stefano; Balatti, Simone; Ielmini, Daniele


    Resistive (or memristive) switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses) with low operation power. This work presents a new artificial synapse scheme, consisting of a memristive switch connected to 2 transistors responsible for gating the communication and learning operations. Spike timing dependent plasticity (STDP) is achieved through appropriate shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural variability of set/reset processes in the nanoscale switch, and (ii) the different response of the switch to a given stimulus depending on the initial state. Experimental results are confirmed by model-based simulations of the memristive switching. Finally, system-level simulations of a 2-layer neural network and a simplified STDP model show random learning and recognition of patterns.

  4. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses (United States)

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo


    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities. PMID:25972778

  5. Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue. (United States)

    Jensen, Thomas P; Zheng, Kaiyu; Tyurikova, Olga; Reynolds, James P; Rusakov, Dmitri A


    Brain function relies in large part on Ca 2+ -dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca 2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca 2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca 2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca 2+ dynamics and transmitter release in an intact brain at the level of individual synapses. Copyright © 2017. Published by Elsevier Ltd.

  6. Automated detection of synapses in serial section transmission electron microscopy image stacks.

    Directory of Open Access Journals (Sweden)

    Anna Kreshuk

    Full Text Available We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (

  7. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Directory of Open Access Journals (Sweden)

    Rickmann Michael


    Full Text Available Abstract Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.

  8. The demise of the synapse as the locus of memory: A looming paradigm shift?

    Directory of Open Access Journals (Sweden)

    Patrick C. Trettenbrein


    Full Text Available Synaptic plasticity is widely considered to be the neurobiological basis of learning and memory by neuroscientists and researchers in adjacent fields, though diverging opinions are increasingly being recognised. From the perspective of what we might call classical cognitive science it has always been understood that the mind/brain is to be considered a computational-representational system. Proponents of the information-processing approach to cognitive science have long been critical of connectionist or network approaches to (neuro-cognitive architecture, pointing to the shortcomings of the associative psychology that underlies Hebbian learning as well as to the fact that synapses are practically unfit to implement symbols. Recent work on memory has been adding fuel to the fire and current findings in neuroscience now provide first tentative neurobiological evidence for the cognitive scientists’ doubts about the synapse as the (sole locus of memory in the brain. This paper briefly considers the history and appeal of synaptic plasticity as a memory mechanism, followed by a summary of the cognitive scientists’ objections regarding these assertions. Next, a variety of tentative neuroscientific evidence that appears to substantiate questioning the idea of the synapse as the locus of memory is presented. On this basis, a novel way of thinking about the role of synaptic plasticity in learning and memory is proposed.

  9. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. (United States)

    Gawlak, M; Górkiewicz, T; Gorlewicz, A; Konopacki, F A; Kaczmarek, L; Wilczynski, G M


    Synaptic plasticity involves remodeling of extracellular matrix. This is mediated, in part, by enzymes of the matrix metalloproteinase (MMP) family, in particular by gelatinase MMP-9. Accordingly, there is a need of developing methods to visualize gelatinolytic activity at the level of individual synapses, especially in the context of neurotransmitters receptors. Here we present a high-resolution fluorescent in situ zymography (ISZ), performed in thin sections of the alcohol-fixed and polyester wax-embedded brain tissue of the rat (Rattus norvegicus), which is superior to the current ISZ protocols. The method allows visualization of structural details up to the resolution-limit of light microscopy, in conjunction with immunofluorescent labeling. We used this technique to visualize and quantify gelatinolytic activity at the synapses in control and seizure-affected rat brain. In particular, we demonstrated, for the first time, frequent colocalization of gelatinase(s) with synaptic N-methyl-D-aspartic acid (NMDA)- and AMPA-type glutamate receptors. We believe that our method represents a valuable tool to study extracellular proteolytic processes at the synapses, it could be used, as well, to investigate proteinase involvement in a range of physiological and pathological phenomena in the nervous system.

  10. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. (United States)

    Carroll-Portillo, Amanda; Cannon, Judy L; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra; Lidke, Diane S


    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell-cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell-cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC-DC synapse suggest a new role for intercellular crosstalk in defining the immune response. © 2015 Carroll-Portillo et al.

  11. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. (United States)

    Rudy, Carolyn C; Hunsberger, Holly C; Weitzner, Daniel S; Reed, Miranda N


    Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity.

  12. Acyl Ghrelin Improves Synapse Recovery in an In Vitro Model of Postanoxic Encephalopathy. (United States)

    Stoyanova, Irina I; Hofmeijer, Jeannette; van Putten, Michel J A M; le Feber, Joost


    Comatose patients after cardiac arrest have a poor prognosis. Approximately half never awakes as a result of severe diffuse postanoxic encephalopathy. Several neuroprotective agents have been tested, however without significant effect. In the present study, we used cultured neuronal networks as a model system to study the general synaptic damage caused by temporary severe hypoxia and the possibility to restrict it by ghrelin treatment. Briefly, we applied hypoxia (pO 2 lowered from 150 to 20 mmHg) during 6 h in 55 cultures. Three hours after restoration of normoxia, half of the cultures were treated with ghrelin for 24 h, while the other, non-supplemented, were used as a control. All cultures were processed immunocytochemically for detection of the synaptic marker synaptophysin. We observed that hypoxia led to drastic decline of the number of synapses, followed by some recovery after return to normoxia, but still below the prehypoxic level. Additionally, synaptic vulnerability was selective: large- and small-sized neurons were more susceptible to synaptic damage than the medium-sized ones. Ghrelin treatment significantly increased the synapse density, as compared with the non-treated controls or with the prehypoxic period. The effect was detected in all neuronal subtypes. In conclusion, exogenous ghrelin has a robust impact on the recovery of cortical synapses after hypoxia. It raises the possibility that ghrelin or its analogs may have a therapeutic potential for treatment of postanoxic encephalopathy.

  13. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles


    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  14. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika


    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  15. Effects of dynamic synapses on noise-delayed response latency of a single neuron (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.


    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  16. Bilingual Contexts Modulate the Inhibitory Control Network

    Directory of Open Access Journals (Sweden)

    Jing Yang


    Full Text Available The present functional magnetic resonance imaging (fMRI study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1 and Mandarin (L2, and moderately proficient in English (L3, performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3. After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.

  17. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Naina Kurup


    Full Text Available Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.

  18. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West


    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  19. The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin

    DEFF Research Database (Denmark)

    Mukherjee, Jayanta; Kretschmannova, Karla; Gouzer, Geraldine


    The majority of fast synaptic inhibition in the brain is mediated by benzodiazepine-sensitive α1-subunit-containing GABA type A receptors (GABA(A)Rs); however, our knowledge of the mechanisms neurons use to regulate their synaptic accumulation is rudimentary. Using immunoprecipitation, we demonst...

  20. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss. (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A


    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  1. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems

    Directory of Open Access Journals (Sweden)

    Arico Maurizo


    Full Text Available Abstract Background Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs, this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK and invariant NKT (iNKT cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. Results NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked' with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. Conclusions These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system direct secretory lysosomes to

  2. Correlation between enzymes inhibitory effects and antioxidant ...

    African Journals Online (AJOL)

    ... and phytochemical content of fractions was investigated. The n-butanol fraction showed significant α-glucosidase and α-amylase inhibitory effects (IC50 values 15.1 and 39.42 μg/ml, respectively) along with the remarkable antioxidant activity when compared to the other fractions. High performance liquid chromatography ...

  3. Macrophage Migration Inhibitory Factor in Protozoan Infections

    Directory of Open Access Journals (Sweden)

    Marcelo T. Bozza


    Full Text Available Macrophage migration inhibitory factor (MIF is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.

  4. Novel peptides with tyrosinase inhibitory activity

    NARCIS (Netherlands)

    Schurink, M.; Berkel, van W.J.H.; Wichers, H.J.; Boeriu, C.G.


    Tyrosinase inhibition by peptides may find its application in food, cosmetics or medicine. In order to identify novel tyrosinase inhibitory peptides, protein-based peptide libraries made by SPOT synthesis were used to screen for peptides that show direct interaction with tyrosinase. One of the

  5. Phytochemistry and Inhibitory Activity of Chrozophora senegalensis ...

    African Journals Online (AJOL)

    Dried leaves of Chrozophora senegalensis were extracted with acetone and hexane respectively using percolation method. The crude leaf extracts were subjected to phytochemical screening for the presence of secondary metabolites using standard procedures. The inhibitory activities of the extracts were tested against ...

  6. Phenotypic characterisation and assessment of the inhibitory ...

    African Journals Online (AJOL)


    Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human infant. Their inhibitory action was tested against some spoilage and pathogenic bacteria. Lactobacillus acidophilus isolated from milk was found to display a higher antagonistic effect with ...

  7. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  8. Serpins of oat (Avena sativa) grain with distinct reactive centres and inhibitory specificity

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Hauge, S.


    Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct...... inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N...... by chymotrypsin at the putative reactive centre bond P-1 -P-1 ' Tyrdown arrowSer, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins...

  9. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani


    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  10. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. (United States)

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O


    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  11. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis

    Directory of Open Access Journals (Sweden)

    Linde Hans-Jörg


    Full Text Available Abstract Background Timely identification of pathogens is crucial to minimize mortality in patients with severe infections. Detection of bacterial and fungal pathogens in blood by nucleic acid amplification promises to yield results faster than blood cultures (BC. We analyzed the clinical impact of a commercially available multiplex PCR system in patients with suspected sepsis. Methods Blood samples from patients with presumed sepsis were cultured with the Bactec 9240™ system (Becton Dickinson, Heidelberg, Germany and aliquots subjected to analysis with the LightCycler® SeptiFast® (SF Test (Roche Diagnostics, Mannheim, Germany at a tertiary care centre. For samples with PCR-detected pathogens, the actual impact on clinical management was determined by chart review. Furthermore a comparison between the time to a positive blood culture result and the SF result, based on a fictive assumption that it was done either on a once or twice daily basis, was made. Results Of 101 blood samples from 77 patients, 63 (62% yielded concordant negative results, 14 (13% concordant positive and 9 (9% were BC positive only. In 14 (13% samples pathogens were detected by SF only, resulting in adjustment of antibiotic therapy in 5 patients (7,7% of patients. In 3 samples a treatment adjustment would have been made earlier resulting in a total of 8 adjustments in all 101 samples (8%. Conclusion The addition of multiplex PCR to conventional blood cultures had a relevant impact on clinical management for a subset of patients with presumed sepsis.

  12. A Study Regarding Attitudes Ofyoung Slum Dwelling Females Towards Their Husband/Sex Partner Presuming Them Hiv Infected

    Directory of Open Access Journals (Sweden)

    Monica Shukla


    Full Text Available Research Question : What is the attitude of young females towards their husband or sex partners presuming them infected with HIV?Objectives : Attitude of young slum dwelling females towards husband or sex partner presuming them HIV infectedaccording to age of respondentsaccording to marital status of respondentsaccording to occupation of respondentsaccording to literacy status of respondents Study Design : Cross sectional studyStudy Area : 10% of the Slums of Kanpur City having population less than 3000.Participants : 13 to 25 years aged females of selected slums.Study variables : Age, marital status, occur' ,:on, literacy status.Statistical Analysis : PercentageResults : 12.3% expressed about non disclosure of disease. 25.7% were indecisive, 65.2% to pursue for treatment, 32.7% to continue sex relationship and 31.2% to continue social relationship. Respondents employed as teachers showed greater degree of concern for more care (45.5% and also for continuation of social and sexual relationship. Continuation on social & sexual relationship along with pursuation for treatment and more care of victim (husband/sex partner was observed among highest percentage in graduate and above level with gradual decrease in the prevalence with decrease in the level of education.

  13. Presuming the influence of the media: teenagers′ constructions of gender identity through sexual/romantic relationships and alcohol consumption (United States)

    Hartley, Jane E K; Wight, Daniel; Hunt, Kate


    Using empirical data from group discussions and in-depth interviews with 13 to 15-year olds in Scotland, this study explores how teenagers’ alcohol drinking and sexual/romantic relationships were shaped by their quest for appropriate gendered identities. In this, they acknowledged the influence of the media, but primarily in relation to others, not to themselves, thereby supporting Milkie's ‘presumed media influence’ theory. Media portrayals of romantic/sexual relationships appeared to influence teenagers’ constructions of gender-appropriate sexual behaviour more than did media portrayals of drinking behaviour, perhaps because the teenagers had more firsthand experience of observing drinking than of observing sexual relationships. Presumed media influence may be less influential if one has experience of the behaviour portrayed. Drinking and sexual behaviour were highly interrelated: sexual negotiation and activities were reportedly often accompanied by drinking. For teenagers, being drunk or, importantly, pretending to be drunk, may be a useful way to try out what they perceived to be gender-appropriate identities. In sum, teenagers’ drinking and sexual/romantic relationships are primary ways in which they do gender and the media's influence on their perceptions of appropriate gendered behaviour is mediated through peer relationships. PMID:24443822

  14. Do we need to change the legislation to a system of presumed consent to address organ shortage? (United States)

    Simillis, Constantinos


    Organ transplantation significantly improves the health, quality of life and life-expectancy of people whose organs have failed. Most patients in the UK cannot enjoy the benefits of a transplant because of an extreme shortage of organs. This paper demonstrates the magnitude of the problem of organ shortage and identifies possible causes. The current UK legislation regarding consent to organ transplantation is analysed and compared with other jurisdictions. The hypothesis of changing the legislation to a system of presumed consent in order to address the organ shortage is explored. The main issues surrounding a change in the legislation are considered, and the effects on society and the individual are discussed. This paper argues that there is not enough convincing evidence to support a change in the legislation to a system of presumed consent at this time. Instead, an increase in organ donations could be achieved by improving the effectiveness of the current system of organ donation, and by improving the public's awareness and understanding of organ transplantation issues.

  15. Presuming the influence of the media: teenagers' constructions of gender identity through sexual/romantic relationships and alcohol consumption. (United States)

    Hartley, Jane E K; Wight, Daniel; Hunt, Kate


    Using empirical data from group discussions and in-depth interviews with 13 to 15-year olds in Scotland, this study explores how teenagers' alcohol drinking and sexual/romantic relationships were shaped by their quest for appropriate gendered identities. In this, they acknowledged the influence of the media, but primarily in relation to others, not to themselves, thereby supporting Milkie's 'presumed media influence' theory. Media portrayals of romantic/sexual relationships appeared to influence teenagers' constructions of gender-appropriate sexual behaviour more than did media portrayals of drinking behaviour, perhaps because the teenagers had more firsthand experience of observing drinking than of observing sexual relationships. Presumed media influence may be less influential if one has experience of the behaviour portrayed. Drinking and sexual behaviour were highly interrelated: sexual negotiation and activities were reportedly often accompanied by drinking. For teenagers, being drunk or, importantly, pretending to be drunk, may be a useful way to try out what they perceived to be gender-appropriate identities. In sum, teenagers' drinking and sexual/romantic relationships are primary ways in which they do gender and the media's influence on their perceptions of appropriate gendered behaviour is mediated through peer relationships. © 2014 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL (SHIL).

  16. Presumed idiopathic outer lamellar defects of the fovea and chronic solar retinopathy: an OCT and fundus autofluorescence study. (United States)

    dell'Omo, R; Konstantopoulou, K; Wong, R; Pavesio, C


    To examine fundus autofluorescence (FAF) findings in eyes with presumed idiopathic outer lamellar defects (OLD) at the fovea and to discuss their pathogenesis. Prospective observational case series of five eyes of four patients presenting with OLD at the fovea defined as discrete lesions of 50-100 mum in size located at the level of the outer retina on biomicroscopy and imaged on optical coherence tomography (OCT) as cylindrical, well-demarcated interruption of hyper-reflective bands corresponding to the inner/outer segments junction of photoreceptors and to the complex retinal pigment epithelium-choriocapillaris; none of the enrolled patients had any positive history for direct sungazing, welding-arc or sunbed exposure, whiplash injury, ocular trauma, macular oedema/detachment or evidence of vitreomacular traction. The corresponding FAF images were evaluated. In eyes with OLD, the neuroretina in the foveal region appeared to be thinner than in fellow, unaffected eyes. FAF revealed well-demarcated, hypoautofluorescent areas (corresponding in location to the OLD observed clinically and on OCT), surrounded by an irregular halo of relatively increased autofluorescence in the context of the greater hypoautofluorescent macular region. Biomicroscopy, OCT and FAF findings of presumed idiopathic OLD of the fovea strongly resemble those observed in association with chronic solar retinopathy. In association with OCT, FAF might represent a useful technique with which to detect subtle solar-induced injuries of the retina.

  17. Evidence of acute rickettsioses among patients presumed to have chikungunya fever during the chikungunya outbreak in Sri Lanka. (United States)

    Premaratna, R; Halambarachchige, L P; Nanayakkara, D M; Chandrasena, T G A N; Rajapakse, R P V J; Bandara, N K B K R G W; de Silva, H J


    Chikungunya fever (CGF) and rickettsioses are known to cause acute onset febrile illnesses associated with severe arthritis. Rickettsial arthritis is curable with the use of appropriate anti-rickettsial antibiotics, however the arthritis of CGF tends to have a prolonged course leading to protracted disability. The aim of this study was to investigate the contribution of CGF and rickettsioses to cases of fever and arthritis during a presumed CGF outbreak in Sri Lanka. Fifty-eight consecutive patients with presumed CGF were further investigated to determine the occurrence of rickettsioses among them, and to identify differences in clinical, hematological, and biochemical parameters between the two diseases. Nearly a third of the patients had serological evidence of rickettsioses accounting for their illness. The presence of a late onset major joint arthropathy sparing the small joints of the hands and feet, and the occurrence of a late onset discrete maculopapular rash over the trunk and extremities, suggested rickettsioses over CGF. White blood cell count, erythrocyte sedimentation rate, C-reactive protein, and liver function tests were not helpful in differentiating rickettsioses from CGF. Patients with rickettsioses and arthritis who received an empirical course of doxycycline recovered faster than those who did not receive specific treatment. The establishment of rapid diagnostic methods able to differentiate the etiological agents of fever and arthritis, such as CGF and rickettsioses, would be beneficial in endemic settings. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  19. Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. (United States)

    Henson, Maile A; Tucker, Charles J; Zhao, Meilan; Dudek, Serena M


    Activity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process. Published by Elsevier Inc.

  20. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica


    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  1. Ectopic release of glutamate contributes to spillover at parallel fibre synapses in the cerebellum. (United States)

    Balakrishnan, Saju; Dobson, Katharine L; Jackson, Claire; Bellamy, Tomas C


    In the rat cerebellar molecular layer, spillover of glutamate between parallel fibre synapses can lead to activation of perisynaptic receptors that mediate short- and long-term plasticity. This effect is greatest when clusters of fibres are stimulated at high frequencies, suggesting that glutamate clearance mechanisms must be overwhelmed before spillover can occur. However, parallel fibres can also release transmitter directly into the extracellular space, from 'ectopic' release sites. Ectopic transmission activates AMPA receptors on the Bergmann glial cell processes that envelop parallel fibre synapses, but the possible contribution of this extrasynaptic release to intersynaptic communication has not been explored. We exploited long-term depression of ectopic transmission, and selective pharmacology, to investigate the impact of these release sites on the time course of Purkinje neuron excitatory postsynaptic currents (EPSCs). Depletion of ectopic release pools by activity-dependent long-term depression decreased EPSC decay time, revealing a 'late' current that is present when fibres are stimulated at low frequencies. This effect was enhanced when glutamate transporters were inhibited, and reduced when extracellular diffusion was impeded. Blockade of N-type Ca(2+) channels inhibited ectopic transmission to Bergmann glia and decreased EPSC decay time. Similarly, perfusion of the Ca(2+) chelator EGTA-AM into the slice progressively eliminated ectopic transmission to glia and decreased EPSC decay time with closely similar time courses. Collectively, this evidence suggests that ectopically released glutamate contributes to spillover transmission, and that ectopic release therefore degrades the spatial precision of synapses that fire infrequently, and may make them more prone to exhibit plasticity.

  2. Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    Tiantian Wang


    Full Text Available The neurodevelopmental disorder Angelman syndrome (AS is characterized by intellectual disability, motor dysfunction, distinct behavioral aspects, and epilepsy. AS is caused by a loss of the maternally expressed UBE3A gene, and many of the symptoms are recapitulated in a Ube3a mouse model of this syndrome. At the cellular level, changes in the axon initial segment (AIS have been reported, and changes in vesicle cycling have indicated the presence of presynaptic deficits. Here we studied the role of UBE3A in the auditory system by recording synaptic transmission at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB through in vivo whole cell and juxtacellular recordings. We show that MNTB principal neurons in Ube3a mice exhibit a hyperpolarized resting membrane potential, an increased action potential (AP amplitude and a decreased AP half width. Moreover, both the pre- and postsynaptic AP in the calyx of Held synapse of Ube3a mice showed significantly faster recovery from spike depression. An increase in AIS length was observed in the principal MNTB neurons of Ube3a mice, providing a possible substrate for these gain-of-function changes. Apart from the effect on APs, we also observed that EPSPs showed decreased short-term synaptic depression (STD during long sound stimulations in AS mice, and faster recovery from STD following these tones, which is suggestive of a presynaptic gain-of-function. Our findings thus provide in vivo evidence that UBE3A plays a critical role in controlling synaptic transmission and excitability at excitatory synapses.

  3. SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function

    Directory of Open Access Journals (Sweden)

    Lucas Matt


    Full Text Available Altering AMPA receptor (AMPAR content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1 encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1 modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP, while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity.

  4. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    Directory of Open Access Journals (Sweden)

    James M. Halstead


    Full Text Available Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation.

  5. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia (United States)

    Lee, Sue-Hyun; Kwak, Chuljung; Shim, Jaehoon; Kim, Jung-Eun; Choi, Sun-Lim; Kim, Hyoung F.; Jang, Deok-Jin; Lee, Jin-A; Lee, Kyungmin; Lee, Chi-Hoon; Lee, Young-Don; Miniaci, Maria Concetta; Bailey, Craig H.; Kandel, Eric R.; Kaang, Bong-Kiun


    The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval. PMID:22893682

  6. Boltzmann energy-based image analysis demonstrates that extracellular domain size differences explain protein segregation at immune synapses.

    Directory of Open Access Journals (Sweden)

    Nigel J Burroughs


    Full Text Available Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell or KIR (NK cell. However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell:cell communication and cell signalling, governing protein interactions and protein aggregation.

  7. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    KAUST Repository

    Virtanen, Mari A.


    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  8. Interactions between Autophagy and Inhibitory Cytokines. (United States)

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming


    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  9. In Vivo Ribbon Mobility and Turnover of Ribeye at Zebrafish Hair Cell Synapses. (United States)

    Graydon, Cole W; Manor, Uri; Kindt, Katie S


    Ribbons are presynaptic structures that mediate synaptic vesicle release in some sensory cells of the auditory and visual systems. Although composed predominately of the protein Ribeye, very little is known about the structural dynamics of ribbons. Here we describe the in vivo mobility and turnover of Ribeye at hair cell ribbon synapses by monitoring fluorescence recovery after photobleaching (FRAP) in transgenic zebrafish with GFP-tagged Ribeye. We show that Ribeye can exchange between halves of a ribbon within ~1 minute in a manner that is consistent with a simple diffusion mechanism. In contrast, exchange of Ribeye between other ribbons via the cell's cytoplasm takes several hours.

  10. A directionally-selective neuromorphic circuit based on reciprocal synapses in Starburst Amacrine Cells. (United States)

    Tseng, Ko-Chung; Parker, Alice C; Joshi, Jonathan


    Starburst Amacrine Cells (SACs) play a major role in the detection of directional motion in the biological retina. The starburst amacrine cell has intrinsic electrical mechanisms for producing directional selectivity (DS). GABA transmitter-receptor interactions between two overlapping SACs make DS more robust. We present a compartmentalized CMOS neuromorphic circuit that models a portion of two biological starburst amacrine cells in the retina and includes a simplified model of reciprocal interaction between the dendritic branches of SACs. We demonstrate that a neuromorphic circuit incorporating the reciprocal synapses enhances the responses in the neuromorphic dendritic tip and generates robust directional selectivity.

  11. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors (United States)

    Pankratov, Yuriy


    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  12. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Directory of Open Access Journals (Sweden)

    Eric Boué-Grabot


    Full Text Available Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.

  13. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    DEFF Research Database (Denmark)

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.


    optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse....... This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament...... as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions....

  14. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine


    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  15. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.


    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  16. Inhibitory mechanisms of glabridin on tyrosinase (United States)

    Chen, Jianmin; Yu, Xiaojing; Huang, Yufeng


    Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin could lead to a variety of skin disorders. Glabridin, an isoflavan, isolated from the root of Glycyrrhiza glabra Linn, has exhibited several pharmacological activities, including excellent inhibitory effects on tyrosinase. In this paper, the inhibitory kinetics of glabridin on tyrosinase and their binding mechanisms were determined using spectroscopic, zebrafish model and molecular docking techniques. The results indicate that glabridin reversibly inhibits tyrosinase in a noncompetitive manner through a multiphase kinetic process with the IC50 of 0.43 μmol/L. It has been shown that glabridin had a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting a stable glabridin-tyrosinase complex may be generated. The results of molecular docking suggest that glabridin did not directly bind to the active site of tyrosinase. Moreover, according to the results of zebrafish model system, glabridin shows no effects on melanin synthesis in zebrafish but presents toxicity to zebrafish embryo. The possible inhibitory mechanisms, which will help to design and search for tyrosinase inhibitors especially for glabridin analogues, were proposed.

  17. Next-Generation Sequencing Confirms Presumed Nosocomial Transmission of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in the Netherlands. (United States)

    Bosch, Thijs; Witteveen, Sandra; Haenen, Anja; Landman, Fabian; Schouls, Leo M


    Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) was detected in 2003 and rapidly became the predominant MRSA clade in the Netherlands. Studies have shown that transmissions are difficult to identify, since this MRSA variant represents a genetically homogenous clade when current typing techniques are used. Here, next-generation sequencing was performed on 206 LA-MRSA isolates to assess the capability of LA-MRSA to be transmitted between humans. The usefulness of single nucleotide variants (SNVs), the composition of the SCCmec region, and the presence of plasmids to identify transmission of LA-MRSA were assessed. In total, 30 presumed putative nosocomial transmission events and 2 LA-MRSA outbreaks were studied; in most cases, SNV analysis revealed that the isolates of the index patient and the contact(s) clustered closely together. In three presumed events, the isolates did not cluster together, indicating that transmission was unlikely. The composition of the SCCmec region corroborated these findings. However, plasmid identification did not support our SNV analysis, since different plasmids were present in several cases where SNV and SCCmec analysis suggested that transmission was likely. Next-generation sequencing shows that transmission of LA-MRSA does occur in Dutch health care settings. Transmission was identified based on SNV analysis combined with epidemiological data and in the context of epidemiologically related and unrelated isolates. Analysis of the SCCmec region provided limited, albeit useful, information to corroborate conclusions on transmissions, but plasmid identification did not. In 2003, a variant of methicillin-resistant Staphylococcus aureus (MRSA) isolated from pigs was also found in pig farmers in France and the Netherlands. Soon thereafter, this livestock-associated MRSA (LA-MRSA) was identified in many other countries. Transmission of LA-MRSA between humans, particularly in the health care setting, is regarded to

  18. presumed choloroquine retinopathy

    African Journals Online (AJOL)

    A follow up national survey would be desirable to determine the actual magnitude of the problem. Key words: blindness chloroquine, retinopathy, irreversible ... the treatment of lupus erythematosus and rheumatoid arthritis. The effective doses commonly used exceed that used in treating malaria, as the drug is administered.

  19. Inhibitory effects of triterpenes and flavonoids on the enzymatic activity of hyaluronic acid-splitting enzymes. (United States)

    Hertel, Waltraud; Peschel, Gundela; Ozegowski, Jörg-Hermann; Müller, Peter-Jürgen


    The effect of triterpenes and flavonoids on the activity of several hyaluronic acid-splitting enzymes was investigated. Studies showed that the inhibitory effect of the triterpenes glycyrrhizin and glycyrrhetinic acid is dependent on the source of hyaluronate lyase. Hyaluronate lyase from Streptococcus agalactiae (Hyal B) and recombinant hyaluronate lyase from Streptococcus agalactiae (rHyal B) demonstrated strongest inhibition. In contrast, hyaluronate lyases from Streptomyces hyalurolyticus (Hyal S), Streptococcus equisimilis (Hyal C) and hyaluronidase from bovine testis (Dase) showed only reduced inhibition action. A non-competitive dead end inhibition with Ki=3.1+/-1.8x10(-6) mol/mL and Kii=6.7+/-2.4x10(-6) mol/mL was found for glycyrrhizin on recombinant hyaluronate lyase from Streptococcus agalactiae. The inhibitory effect of flavonoids on Hyal B, rHyal B and Dase was determined depending on the number of hydroxyl groups and side chain substituents in the molecule. Flavonoids with many hydroxyl groups inhibited hyaluronate lyase stronger than those with only a few. Native hyaluronate lyase (Hyal B) showed a more extensive inhibition than the recombinant protein (rHyal B). Accordingly, the inhibition by triterpenes and flavonoids is presumably specific for each hyaluronic acid (HA)-splitting enzyme.

  20. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. (United States)

    Horner, Stacy M; Liu, Helene Minyi; Park, Hae Soo; Briley, Jessica; Gale, Michael


    RIG-I is a cytosolic pathogen recognition receptor that engages viral RNA in infected cells to trigger innate immune defenses through its adaptor protein MAVS. MAVS resides on mitochondria and peroxisomes, but how its signaling is coordinated among these organelles has not been defined. Here we show that a major site of MAVS signaling is the mitochondrial-associated membrane (MAM), a distinct membrane compartment that links the endoplasmic reticulum to mitochondria. During RNA virus infection, RIG-I is recruited to the MAM to bind MAVS. Dynamic MAM tethering to mitochondria and peroxisomes then coordinates MAVS localization to form a signaling synapse between membranes. Importantly, the hepatitis C virus NS3/4A protease, which cleaves MAVS to support persistent infection, targets this synapse for MAVS proteolysis from the MAM, but not from mitochondria, to ablate RIG-I signaling of immune defenses. Thus, the MAM mediates an intracellular immune synapse that directs antiviral innate immunity.

  1. Reduced synapse and axon numbers in the prefrontal cortex of rats subjected to a chronic stress model for depression

    DEFF Research Database (Denmark)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár


    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss...... have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected...... to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem...

  2. Clinical characteristics and outcomes of patients admitted with presumed microbial keratitis to a tertiary medical center in Israel

    Directory of Open Access Journals (Sweden)

    Fabio Lavinsky


    Full Text Available PURPOSES: Microbial keratitis is commonly diagnosed worldwide, and continues to cause significant ocular morbidity, requiring prompt and appropriate treatment. The objective of this study is to describe the clinical characteristics and outcomes of patients with presumed microbial keratitis admitted to The Goldschleger Eye Institute, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel. METHODS: A cross-sectional study was conducted, in which the medical records of patients with presumed microbial keratitis admitted during a period of 3 years were reviewed. RESULTS: Keratitis was diagnosed in 276 patients (51% males and 48.9% females. The mean age was 39.29 ± 22.30 years. The hospital length of stay ranged from 1 to 65 days (mean 5.69 ± 5.508. Fortified antibiotics were still used at discharge in 72% of the cases. Overall visual acuity improved significantly from the time of admission to the 1st-week follow up visit showing a p0.05. The degree of hypopyon and cells in the anterior chamber was significantly related to the hospital length of stay (r Spearman=0.31; p<0.001 and r Spearman=0.21; p<.001, respectively as well as to a worse visual outcome (r Spearman=0.32; p<0.01 and r Spearman=0.18; p=0.01, respectively. Of all patients, 2.3% required an urgent therapeutic penetrating keratoplasty, and 1% underwent evisceration. There was no enucleation. CONCLUSION: Treating keratitis aggressively and assuring patient compliance is imperative for a good final visual outcome. Inpatient treatment may have a positive impact on this outcome.

  3. Transverse comparisons between ultrasound and radionuclide parameters in children with presumed antenatally detected pelvi-ureteric junction obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Hong Phuoc; Janssen, Francoise; Hall, Michelle; Ismaili, Khalid [Universite Libre de Bruxelles (ULB), Department of Pediatric Nephrology, Hopital Universitaire des Enfants Reine Fabiola, Brussels (Belgium); Piepsz, Amy [Hopital Universitaire Saint-Pierre, Department of Radioisotopes, Ghent (Belgium); Khelif, Karim; Collier, Frank [Universite Libre de Bruxelles (ULB), Department of Pediatric Urology, Hopital Universitaire des Enfants Reine Fabiola, Brussel (Belgium); Man, Kathia de [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium); Damry, Nash [Universite Libre de Bruxelles (ULB), Department of Pediatric Radiology, Hopital Universitaire des Enfants Reine Fabiola, Brussel (Belgium)


    The main criteria used for deciding on surgery in children with presumed antenatally detected pelviureteric junction obstruction (PPUJO) are the level of hydronephrosis (ultrasonography), the level of differential renal function (DRF) and the quality of renal drainage after a furosemide challenge (renography), the importance of each factor being far from generally agreed. Can we predict, on the basis of ultrasound parameters, the patient in whom radionuclide renography can be avoided? We retrospectively analysed the medical charts of 81 consecutive children with presumed unilateral PPUJO detected antenatally. Ultrasound and renographic studies performed at the same time were compared. Anteroposterior pelvic diameter (APD) and calyceal size were both divided into three levels of dilatation. Parenchymal thickness was considered either normal or significantly decreased. Acquisition of renograms under furosemide stimulation provided quantification of DRF, quality of renal drainage and cortical transit. The percentages of patients with low DRF and poor drainage were significantly higher among those with major hydronephrosis, severe calyceal dilatation or parenchymal thinning. Moreover, impaired cortical transit, which is a major risk factor for functional decline, was seen more frequently among those with very severe calyceal dilatation. However, none of the structural parameters obtained by ultrasound examination was able to predict whether the level of renal function or the quality of drainage was normal or abnormal. Alternatively, an APD <30 mm, a calyceal dilatation of <10 mm and a normal parenchymal thickness were associated with a low probability of decreased renal function or poor renal drainage. In the management strategy of patients with prenatally detected PPUJO, nuclear medicine examinations may be postponed in those with an APD <30 mm, a calyceal dilatation of <10 mm and a normal parenchymal thickness. On the contrary, precise estimation of DRF and renal


    Bouyssou, Sarah; Specchi, Swan; Desquilbet, Loïc; Pey, Pascaline


    Noncardiogenic pulmonary edema is an important cause of respiratory disease in dogs and cats but few reports describe its radiographic appearance. The purpose of this retrospective case series study was to describe radiographic findings in a large cohort of dogs and cats with presumed noncardiogenic pulmonary edema and to test associations among radiographic findings versus cause of edema. Medical records were retrieved for dogs and cats with presumed noncardiogenic edema based on history, radiographic findings, and outcome. Radiographs were reviewed to assess lung pattern and distribution of the edema. Correlation with the cause of noncardiogenic pulmonary edema was evaluated with a Fisher's exact test. A total of 49 dogs and 11 cats were included. Causes for the noncardiogenic edema were airway obstruction (n = 23), direct pulmonary injury (n = 13), severe neurologic stimulation (n = 12), systemic disease (n = 6), near-drowning (n = 3), anaphylaxis (n = 2) and blood transfusion (n = 1). Mixed, symmetric, peripheral, multifocal, bilateral, and dorsal lung patterns were observed in 44 (73.3%), 46 (76.7%), 55 (91.7%), 46 (76.7%), 46 (76.7%), and 34 (57.6%) of 60 animals, respectively. When the distribution was unilateral, pulmonary infiltration involved mainly the right lung lobes (12 of 14, 85.7%). Increased pulmonary opacity was more often asymmetric, unilateral, and dorsal for postobstructive pulmonary edema compared to other types of noncardiogenic pulmonary edema, but no other significant correlations could be identified. In conclusion, noncardiogenic pulmonary edema may present with a quite variable radiographic appearance in dogs and cats. © 2016 American College of Veterinary Radiology.

  5. A Novel Chaotic Neural Network Using Memristive Synapse with Applications in Associative Memory

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu


    Full Text Available Chaotic Neural Network, also denoted by the acronym CNN, has rich dynamical behaviors that can be harnessed in promising engineering applications. However, due to its complex synapse learning rules and network structure, it is difficult to update its synaptic weights quickly and implement its large scale physical circuit. This paper addresses an implementation scheme of a novel CNN with memristive neural synapses that may provide a feasible solution for further development of CNN. Memristor, widely known as the fourth fundamental circuit element, was theoretically predicted by Chua in 1971 and has been developed in 2008 by the researchers in Hewlett-Packard Laboratory. Memristor based hybrid nanoscale CMOS technology is expected to revolutionize the digital and neuromorphic computation. The proposed memristive CNN has four significant features: (1 nanoscale memristors can simplify the synaptic circuit greatly and enable the synaptic weights update easily; (2 it can separate stored patterns from superimposed input; (3 it can deal with one-to-many associative memory; (4 it can deal with many-to-many associative memory. Simulation results are provided to illustrate the effectiveness of the proposed scheme.

  6. Fasudil, a Clinically Used ROCK Inhibitor, Stabilizes Rod Photoreceptor Synapses after Retinal Detachment. (United States)

    Townes-Anderson, Ellen; Wang, Jianfeng; Halász, Éva; Sugino, Ilene; Pitler, Amy; Whitehead, Ian; Zarbin, Marco


    Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments ( n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P ROCK, was decreased with 30 μM fasudil ( n = 8-10 explants, P ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.

  7. Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development

    Directory of Open Access Journals (Sweden)

    Daniel G. McHail


    Full Text Available Metaplasticity refers to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Numerous forms of developmental metaplasticity are observed at Schaffer collateral synapses in the rat hippocampus at the end of the third postnatal week. Emergence of spatial learning and memory at this developmental stage suggests possible involvement of metaplasticity in the final maturation of the hippocampus. Three distinct metaplastic phenomena are apparent. (1 As transmitter release probability increases with increasing age, presynaptic potentiation is reduced. (2 Alterations in the composition and channel conductance properties of AMPARs facilitate the induction of postsynaptic potentiation with increasing age. (3 Low frequency stimulation inhibits subsequent induction of potentiation in animals older but not younger than 3 weeks of age. Thus, many forms of plasticity expressed at SC-CA1 synapses are different in rats younger and older than 3 weeks of age, illustrating the complex orchestration of physiological modifications that underlie the maturation of hippocampal excitatory synaptic transmission. This review paper describes three late postnatal modifications to synaptic plasticity induction in the hippocampus and attempts to relate these metaplastic changes to developmental alterations in hippocampal network activity and the maturation of contextual learning.

  8. Artificial neuron synapse transistor based on silicon nanomembrane on plastic substrate (United States)

    Liu, Minjie; Huang, Gaoshan; Feng, Ping; Guo, Qinglei; Shao, Feng; Tian, Ziao; Li, Gongjin; Wan, Qing; Mei, Yongfeng


    Silicon nanomembrane (SiNM) transistors gated by chitosan membrane were fabricated on plastic substrate to mimic synapse behaviors. The device has both a bottom proton gate (BG) and multiple side gates (SG). Electrical transfer properties of BG show hysteresis curves different from those of typical SiO2 gate dielectric. Synaptic behaviors and functions by linear accumulation and release of protons have been mimicked on this device: excitatory post-synaptic current (EPSC) and paired pulse facilitation behavior of biological synapses were mimicked and the paired-pulse facilitation index could be effectively tuned by the spike interval applied on the BG. Synaptic behaviors and functions, including short-term memory and long-term memory, were also experimentally demonstrated in BG mode. Meanwhile, spiking logic operation and logic modulation were realized in SG mode. Project supported by the National Natural Science Foundation of China (No. 51322201), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120071110025), and Science and Technology Commission of Shanghai Municipality (No. 14JC1400200).

  9. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. (United States)

    Ch'ng, Toh Hean; Uzgil, Besim; Lin, Peter; Avliyakulov, Nuraly K; O'Dell, Thomas J; Martin, Kelsey C


    Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Correlations induced by depressing synapses in critically self-organized networks with quenched dynamics. (United States)

    Campos, João Guilherme Ferreira; Costa, Ariadne de Andrade; Copelli, Mauro; Kinouchi, Osame


    In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in networks of excitable cellular automata where randomly chosen synapses in the network were depressed after each spike (the so-called annealed dynamics). Calculations agree with simulations of the annealed version, showing that the nominal branching ratio σ converges to unity in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to the biological case where only the synapses of firing neurons are depressed (the so-called quenched dynamics). We show that simulations of the quenched model yield significant deviations from σ=1 due to spatial correlations. However, the model is shown to be critical, as the largest eigenvalue of the synaptic matrix approaches unity in the thermodynamic limit, that is, λ_{c}=1. We also study the finite size effects near the critical state as a function of the parameters of the synaptic dynamics.

  11. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C


    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.

  12. Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease. (United States)

    Purpura, D P; Suzuki, K


    Golgi and electron microscope studies of cortical neurons in several lysosomal storage diseases were carried out to elucidate structural features of the large neural processes (meganeurites) that develop as storage sites for accumulated undigestible substrates. Meganeurites occur preferentially in pyramidal neurons wherein they develop between the base of the perikaryon and the initial portion of the axon. They frequently give rise to secondary neurites which bear filopodium-like processes. Meganeurites may possess spines some of which are contacted by presynaptic processes containing synaptic vesicles. The extent of meganeurite development is related to the onset, severity and clinical course of neuronal storage disease. Extensive development of bizarre and pleomorphic meganeurites occurs in classical Tay-Sachs disease (infantile GM2-gangliosidosis, B variant), whereas a smaller proportion of neurons exhibits meganeurites in juvenile GM2-hangliosidosis and Hurler's disease. Meganeurites with spines and spine synapses were prominent in GM2-gangliosidosis, AB variant. It is proposed that meganeurites and meganeurite synapses contribute to the onset and progression of neuronal dysfunction in storage diseases by altering electrical properties of the neuron and modifying integrative operations of somadendritic synaptic inputs.

  13. Persistent long-term facilitation at an identified synapse becomes labile with activation of short-term heterosynaptic plasticity. (United States)

    Hu, Jiang-Yuan; Schacher, Samuel


    Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.

  14. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen


    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  15. Inhibitory synaptic transmission in isolated patches of membrane from cultured rat spinal cord and medullary neurons. (United States)

    Lewis, C A; Faber, D S


    1. To quantify the variability in the characteristics of inhibitory glycinergic and GABAergic currents at single synaptic connections between cultured rat embryonic spinal cord or medullary neurons, we have used patch-clamp techniques to record miniature inhibitory postsynaptic currents (mIPSCs) in cell-attached patches. Experiments were performed with the patch pipette containing either a low-calcium internal saline to allow comparison with subsequent whole cell recordings or external saline with tetrodotoxin, DL-2-amino-5-phosphonovaleric acid, and 6-cyano-7-nitroquinoxaline-2,3-dione, a solution that is more appropriate for bathing a nerve terminal. 2. The mIPSCs recorded from the synapses restricted to the cell-attached patches were characterized by their times to peak, amplitudes, and time constants of decay. The degree of variability in these characteristics was quantified with the use of the following model-independent parameters: the coefficient of variation, skewness, and kurtosis. The distribution of time to peak values has a mean value of 5.6 +/- 0.5 (SE) ms, has the lowest coefficient of variation (0.33 +/- 0.01), is fairly symmetrical, and has a Gaussian shape with respect to peakedness. On the other hand, both the amplitude and decay time constant distributions are highly skewed and more peaked than Gaussian distributions. The mean amplitude is -6.6 +/- 0.6 pA with a coefficient of variation of 0.60 +/- 0.05, whereas the mean decay time constant is 22.8 +/- 1.0 ms with a coefficient of variation of 0.81 +/- 0.03. 3. The amplitude distributions for spontaneous inhibitory currents recorded from cell-attached patches are best fitted by the sum of multiple Gaussians. The coefficient of variation for the first Gaussian peak fitted to the amplitude distributions is 0.290 +/- 0.028. 4. Decay time distributions were consistently best fitted by the sum of four Gaussians with decay constants as follows: D1 = 5.7 +/- 0.2 ms (n = 12), D2 = 11.2 +/- 0.7 ms (n = 11

  16. Polyribosomes at the base of dendritic spines of central nervous system neurons - their possible role in synapse construction and modification

    International Nuclear Information System (INIS)

    Steward, O.


    The selective localization of polyribosomes at the base of dendritic spines in granule cells of the dentate gyrus was studied. These polyribosomes seem optimally situated to produce proteins for the postsynaptic membrane specialization or the spine and to have their synthetic activity regulated by functional activity over the synapse. The present work will summarize observations on the polyribosome clusters that were found to be ubiquitous in spines throughout the vertebrate CNS. Evidence will be presented that suggests a role for the polyribosomes in synapse construction and modification. 42 refs., 8 figs., 2 tabs

  17. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Leukel, Christian; Nielsen, Jens Bo


    Low-frequency rTMS applied to the primary motor cortex (M1) may produce depression of motor-evoked potentials (MEPs). This depression is commonly assumed to reflect changes in cortical circuits. However, little is known about rTMS-induced effects on subcortical circuits. Therefore, the present st......-either at M1 and/or the CM synapse. As the early facilitation reflects activation of direct CM projections, the most likely site of action is the synapse of the CM neurons onto spinal motoneurons....

  18. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders (United States)

    Fine, Rebecca; Zhang, Jie; Stevens, Hanna E.


    Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the brain is directly and persistently affected by prenatal stress. This review synthesizes research that elucidates how this early, developmental risk factor impacts inhibitory neurons and how these findings intersect with research on risk factors and inhibitory neuron pathophysiology in schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on inhibitory neurons, particularly developmental mechanisms, may elucidate further the pathophysiology of these disorders. PMID:24751963

  19. Inhibitory neurotransmission and olfactory memory in honeybees. (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine


    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  20. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette


    , equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  1. Magma-plumbing System of Asama Volcano after 2004 Eruption, Estimated from Vertical Deformation above the Presumed Pressure Sources (United States)

    Kimata, F.


    Asama volcano is one of the active volcanoes in Japan, and it erupted on September 1, 2004. A shallow dike intrusion is estimated in the Takamine, 4 - 5 km west of the Asama crater from the ground deformation detected by GPS measurements (Aoki et al., 2005). Ground deformation observation close to the pressure source should clarify the depth and volume change of pressure sources. We establish the precise leveling routes ranging to Mt. Takamine above the presumed pressure source from Oiwake, at the southern foot of Asama volcano in May 2005.The precise levelings have practiced seven times for five years since May 2005 to June 2011. We calculated the vertical deformation for six-months or two-years between leveling epochs. Generally, deformations detected by the precise leveling are small of 10 mm. Deformations detected in the periods of May 2005 - Nov.2005. - May 2006 - May 2009 - June 2010 - June 2011, are grouping two patterns. One is definite subsidence, and another is slight uplift. Murakami (2005) discusses the line length changes between two GPS sites of Tsumagoi and Tobu, and he shows that the extension of line length just before the eruption in 2004 and 2009 and contraction between the eruption. Slight uplifts in the periods of May 2005 - May 2006 are corresponding to the period observed the extension, and subsidence in the periods of May 2006 - May 2007, May 2009 - June 2010, and June 2010 - June 2011. Two pressures sources are estimated from the ground deformation detected by precise leveling. One is a deeper spherical deflation source in the 6 km BSL depth beneath the mountainside, and another is the shallow dike intrusion beneath Mt. Takamine. A pressure source model was previously estimated from the leveling data for last 100 years (Murase et al., 2007), and it is suggestive a dominant source of the Asama volcano. They suggest a slight inflation after 1960, however our results show the deflation of -6.6 km3/6yr in the deeper sources for five years after

  2. Comparison of Heuristics for Inhibitory Rule Optimization

    KAUST Repository

    Alsolami, Fawaz


    Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  3. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna


    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction. (United States)

    Nguyen, Margaret U; Kwong, Jereen; Chang, Julia; Gillet, Victoria G; Lee, Rachel M; Johnson, Karl Gregory


    The heparan sulfate proteoglycan (HSPG) Syndecan (Sdc) is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS) sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ). To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.

  5. The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Margaret U Nguyen

    Full Text Available The heparan sulfate proteoglycan (HSPG Syndecan (Sdc is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ. To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.

  6. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea

    Directory of Open Access Journals (Sweden)

    Lijuan eShi


    Full Text Available Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs and type I afferent auditory nerve fibers (ANFs may occur in the absence of permanent threshold shift (PTS, and that synapses connecting IHCs with low spontaneous rate (SR ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., hidden hearing loss. However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.

  7. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease (United States)

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert


    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  8. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss. (United States)

    Grande, Giovanbattista; Negandhi, Jaina; Harrison, Robert V; Wang, Lu-Yang


    Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity

  9. The transplantable organ shortage in Singapore: has implementation of presumed consent to organ donation made a difference? (United States)

    Kwek, Tong Kiat; Lew, Thomas W K; Tan, Hui Ling; Kong, Sally


    The success of solid organ transplantation in the treatment of end-stage organ failure has fuelled a growing demand for transplantable organs worldwide that has far outstripped the supply from brain dead heart-beating donors. In Singapore, this has resulted in long waiting lists of patients for transplantable organs, especially kidneys. The Human Organ Transplant Act, introduced in 1987, is an opt-out scheme that presumes consent to removal of certain organs for transplantation upon death. Despite this legislation, the number of deceased organ donors in Singapore, at 7 to 9 per million population per year, remains low compared to many other developed countries. In this paper, we reviewed the clinical challenges and ethical dilemmas encountered in managing and identifying potential donors in the neurological intensive care unit (ICU) of a major general hospital in Singapore. The large variance in donor actualisation rates among local restructured hospitals, at 0% to 56.6% (median 8.8%), suggests that considerable room still exists for improvement. To address this, local hospitals need to review their processes and adopt changes and best practices that will ensure earlier identification of potential donors, avoid undue delays in diagnosing brain death, and provide optimal care of multi-organ donors to reduce donor loss from medical failures.

  10. Presumed prevalence analysis on suspected and highly suspected breast cancer lesions in São Paulo using BIRADS criteria. (United States)

    Milani, Vivian; Goldman, Suzan Menasce; Finguerman, Flora; Pinotti, Marianne; Ribeiro, Celso Scazufka; Abdalla, Nitamar; Szejnfeld, Jacob


    Breast cancer screening programs are critical for early detection of breast cancer. Early detection is essential for diagnosing, treating and possibly curing breast cancer. Since there are no data on the incidence of breast cancer, nationally or regionally in Brazil, our aim was to assess women by means of mammography, to determine the prevalence of this disease. The study protocol was designed in collaboration between the Department of Diagnostic Imaging (DDI), Institute of Diagnostic Imaging (IDI) and São Paulo Municipal Health Program. A total of 139,945 Brazilian women were assessed by means of mammography between April 2002 and September 2004. Using the American College of Radiology (ACR) criteria (Breast Imaging Reporting and Data System, BIRADS), the prevalence of suspected and highly suspected breast lesions were determined. The prevalence of suspected (BIRADS 4) and highly suspected (BIRADS 5) lesions increased with age, especially after the fourth decade. Accordingly, BIRADS 4 and BIRADS 5 lesions were more prevalent in the fourth, fifth, sixth and seventh decades. The presumed prevalence of suspected and highly suspected breast cancer lesions in the population of São Paulo was 0.6% and it is similar to the prevalence of breast cancer observed in other populations.

  11. Presumed prevalence analysis on suspected and highly suspected breast cancer lesions in São Paulo using BIRADS® criteria

    Directory of Open Access Journals (Sweden)

    Vivian Milani

    Full Text Available CONTEXT AND OBJECTIVE: Breast cancer screening programs are critical for early detection of breast cancer. Early detection is essential for diagnosing, treating and possibly curing breast cancer. Since there are no data on the incidence of breast cancer, nationally or regionally in Brazil, our aim was to assess women by means of mammography, to determine the prevalence of this disease. DESIGN AND SETTING: The study protocol was designed in collaboration between the Department of Diagnostic Imaging (DDI, Institute of Diagnostic Imaging (IDI and São Paulo Municipal Health Program. METHODS: A total of 139,945 Brazilian women were assessed by means of mammography between April 2002 and September 2004. Using the American College of Radiology (ACR criteria (Breast Imaging Reporting and Data System, BIRADS®, the prevalence of suspected and highly suspected breast lesions were determined. RESULTS: The prevalence of suspected (BIRADS® 4 and highly suspected (BIRADS® 5 lesions increased with age, especially after the fourth decade. Accordingly, BIRADS® 4 and BIRADS® 5 lesions were more prevalent in the fourth, fifth, sixth and seventh decades. CONCLUSION: The presumed prevalence of suspected and highly suspected breast cancer lesions in the population of São Paulo was 0.6% and it is similar to the prevalence of breast cancer observed in other populations.

  12. Evolution of Choroidal Neovascularization due to Presumed Ocular Histoplasmosis Syndrome on Multimodal Imaging including Optical Coherence Tomography Angiography

    Directory of Open Access Journals (Sweden)

    T. Y. Alvin Liu


    Full Text Available A 37-year-old Caucasian woman presented with acute decrease in central vision in her right eye and was found to have subfoveal choroidal neovascularization (CNV due to presumed ocular histoplasmosis syndrome (POHS. Her visual acuity improved from 20/70 to 20/20 at her 6-month follow-up, after 3 consecutive monthly intravitreal bevacizumab injections were initiated at her first visit. Although no CNV activity was seen on fluorescein angiography (FA or spectral-domain optical coherence tomography (SD-OCT at her 2-month, 4-month, and 6-month follow-up visits, persistent flow in the CNV lesion was detected on optical coherence tomography angiography (OCTA. OCTA shows persistent vascular flow as well as changes in vascular flow in CNV lesions associated with POHS, indicating the continued presence of patent vessels and changes in these CNV lesions, even when traditional imaging of the lesion with OCT and FA indicates stability of the lesion with no disease activity. Additional cases with longitudinal follow-up are needed to assess how OCTA should be incorporated into clinical practice.

  13. White matter hyperintensities of presumed vascular origin: a population-based study in rural Ecuador (The Atahualpa Project). (United States)

    Del Brutto, Oscar H; Mera, Robertino M; Del Brutto, Victor J; Zambrano, Mauricio; Lama, Julio


    Cerebral small vessel disease is probably one of the most common pathogenetic mechanisms underlying stroke in Latin America. However, the importance of silent markers of small vessel disease, including white matter hyperintensities of presumed vascular origin, has not been assessed so far. The study aims to evaluate prevalence and correlates of white matter hyperintensities in community-dwelling elders living in Atahualpa (rural Ecuador). Atahualpa residents aged ≥ 60 years were identified during a door-to-door survey and invited to undergo brain magnetic resonance imaging for identification and grading white matter hyperintensities and other markers of small vessel disease. Using multivariate logistic regression models, we evaluated whether white matter hyperintensities is associated with demographics, cardiovascular health status, stroke, cerebral microbleeds, and cortical atrophy, after adjusting for the other variables. Out of 258 enrolled persons (mean age, 70 ± 8 years; 59% women), 172 (67%) had white matter hyperintensities, which were moderate to severe in 63. Analyses showed significant associations of white matter hyperintensities presence and severity with age and cardiovascular health status, as well as with overt and silent strokes, and a trend for association with cerebral microbleeds and cortical atrophy. Prevalence and correlates of white matter hyperintensities in elders living in rural Ecuador is almost comparable with that reported from industrialized nations, reinforcing the concept that the burden of small vessel disease is on the rise in underserved Latin American populations. © 2014 World Stroke Organization.

  14. Crossing the strategic synapse: aligning hospital strategy with shared system priorities in ontario, Canada. (United States)

    Brown, Adalsteinn D; Alikhan, L Miin; Seeman, Neil L


    The dominant system-level strategic priorities facing Ontario hospitals were elicited and validated. Researchers employed a multi-stage survey and focus group process to solicit the opinions of senior hospital managers and other healthcare stakeholders. Four shared, system-level priorities emerged: (i) improved clinical and staff recruitment; (ii) stronger inter-hospital partnership and vertical integration along the continuum of care; (iii) improved patient safety; and (iv) the implementation of decision support systems. A subsequent CEO validation survey showed strong endorsement of these system priorities. The authors conclude that a survey, focus group, and validation process can reveal shared system priorities and can highlight emergent organizational strategies designed to resolve them. This process, in which a hospital learns of the priorities facing other hospitals in a system, is a potentially useful managerial tool to promote "strategic synapse"-whereby management can adjust internal organizational strategy and local scorecards to align with shared system priorities.

  15. REM sleep selectively prunes and maintains new synapses in development and learning. (United States)

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao


    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.

  16. Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. (United States)

    Sytnyk, Vladimir; Leshchyns'ka, Iryna; Schachner, Melitta


    Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Pathophysiology of Fragile X (and What It Teaches Us about Synapses) (United States)

    Bhakar, Asha L.; Dölen, Gül; Bear, Mark F.


    Fragile X is the most common known inherited cause of intellectual disability and autism, and it typically results from transcriptional silencing of FMR1 and loss of the encoded protein, FMRP (fragile X mental retardation protein). FMRP is an mRNA-binding protein that functions at many synapses to inhibit local translation stimulated by metabotropic glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology of FMRP and the signaling pathways downstream of mGluR1/5 have yielded deeper insight into how synaptic protein synthesis and plasticity are regulated by experience. This new knowledge has also suggested ways that altered signaling and synaptic function can be corrected in fragile X, and human clinical trials based on this information are under way. PMID:22483044

  18. Angelman syndrome at the synapse: meeting report of the Angelman Syndrome Foundation's 2009 scientific symposium. (United States)

    Williams, Charles; Franco, Lisa


    Angelman syndrome is caused by disruption of the ubiquitin-protein ligase E3A gene (UBE3A). The gene encodes an ubiquitinating protein that is widely expressed in the body but has tissue-specific expression in brain neurons, resulting in transcription from only the maternal allele. The normal function of this protein is beginning to be delineated, but its protein targets and role in various cellular pathways remain elusive. Angelman syndrome mouse models lacking the protein in the brain provide insight into neuronal cell dysfunction, particularly in hippocampal neurons where dendritic structure and synaptic function become disturbed. The Angelman Syndrome Foundation's 2009 symposium theme was thus ''Angelman Syndrome at the Synapse,'' and the event enabled neuroscientists and other researchers and clinicians to present their current research on the syndrome.

  19. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, NM); Oliver, Janet M. (University of New Mexico, Albuquerque, NM); Carroll-Portillo, Amanda (University of New Mexico, Albuquerque, NM); Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto


    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  20. Sensory experience shapes the development of the visual system's first synapse. (United States)

    Dunn, Felice A; Della Santina, Luca; Parker, Edward D; Wong, Rachel O L


    Specific connectivity patterns among neurons create the basic architecture underlying parallel processing in our nervous system. Here we focus on the visual system's first synapse to examine the structural and functional consequences of sensory deprivation on the establishment of parallel circuits. Dark rearing reduces synaptic strength between cones and cone bipolar cells, a previously unappreciated effect of sensory deprivation. In contrast, rod bipolar cells, which utilize the same glutamate receptor to contact rods, are unaffected by dark rearing. Underlying the physiological changes, we find the localization of metabotropic glutamate receptors within cone bipolar, but not rod bipolar, cell dendrites is a light-dependent process. Furthermore, although cone bipolar cells share common cone partners, each bipolar cell type that we examined depends differentially on sensory input to achieve mature connectivity. Thus, visual experience differentially affects maturation of rod versus cone pathways and of cell types within the cone pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Changes in the numbers of ribbon synapses and expression of RIBEYE in salicylate-induced tinnitus. (United States)

    Zhang, Feng-Ying; Xue, Yi-Xue; Liu, Wen-Jing; Yao, Yi-Long; Ma, Jun; Chen, Lin; Shang, Xiu-Li


    This study was performed to explore the mechanism underlying tinnitus by investigating the changes in the synaptic ribbons and RIBEYE expression in cochlear inner hair cells in salicylate-induced tinnitus. C57BL/6J mice were injected with salicylate (350 mg/kg) for 10 days and grouped. Behavioral procedures were performed to assess whether the animals experienced tinnitus. The specific presynaptic RIBEYE protein and non-specific postsynaptic glutamate receptor 2&3 protein in basilar membrane samples were examined by immunofluorescent labeling. RT-PCR and Western blot assays were used to examine RIBEYE expression. Serial sections were used to build three-dimensional models using 3ds MAX software to evaluate the changes in the synaptic ribbons. The administration of salicylate increased false positives in the behavioral procedure from 3 d to 10 d. The membrane profiles of inner hair cells in all mice were intact. The number of synaptic ribbons in the salicylate group increased on the 7(th) d and decreased on the 9(th) and 10(th) d. mRNA and protein expression of RIBEYE were initially up-regulated and later down-regulated by injecting salicylate for 10 consecutive days. This change in the ribbon synapses of cochlear inner hair cells in salicylate-induced mice might serve as a compensatory mechanism in the early stages of ototoxicity and contribute to tinnitus later. The alteration of RIBEYE expression could be responsible for the changes in the morphology of ribbon synapses and for salicylate-induced tinnitus. © 2014 S. Karger AG, Basel.

  2. Retinohypothalamic Tract Synapses in the Rat Suprachiasmatic Nucleus Demonstrate Short-Term Synaptic Plasticity (United States)

    Moldavan, Mykhaylo G.


    The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity–dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT–SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca2+ channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation. PMID:20220078

  3. GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temperoammonic Inputs. (United States)

    Izumi, Yukitoshi; Zorumski, Charles F


    Long-term potentiation (LTP) of Schaffer collateral (SC) synapses in the hippocampus is thought to play a key role in episodic memory formation. Because the hippocampus is a shorter-term, limited capacity storage system, repeated bouts of learning and synaptic plasticity require that SC synapses reset to baseline at some point following LTP. We previously showed that repeated low frequency activation of temperoammonic (TA) inputs to the CA1 region depotentiates SC LTP without persistently altering basal transmission. This heterosynaptic depotentiation involves adenosine A1 receptors but not N-methyl-D-aspartate receptors, metabotropic glutamate receptors or L-type calcium channels. In the present study, we used rat hippocampal slices to explore other messengers contributing to TA-induced SC depotentiation, and provide evidence for the involvement of cannabinoid-1 and γ-aminobutyric acid (GABA) type-A receptors as more proximal signaling events leading to synaptic resetting, with A1 receptor activation serving as a downstream event. Surprisingly, we found that TA-induced SC depotentiation is independent of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. We also examined the involvement of mitogen-activated protein kinases (MAPKs), and found a role for extracellular-signal related kinase 1/2 and p38 MAPK, but not c-Jun-N-terminal kinase. These results indicate that low frequency stimulation of TA inputs to CA1 activates a complex signaling network that instructs SC synaptic resetting. The involvement of GABA and endocannabinoids suggest mechanisms that could contribute to cognitive dysfunction associated with substance abuse and neuropsychiatric disorders.

  4. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. (United States)

    Rozanski, Gabriela M; Nath, Arup R; Adams, Michael E; Stanley, Elise F


    A subpopulation of dorsal root ganglion (DRG) neurons are intimately attached in pairs and separated solely by thin satellite glial cell membrane septa. Stimulation of one neuron leads to transglial activation of its pair by a bi-, purinergic/glutamatergic synaptic pathway, a transmission mechanism that we term sandwich synapse (SS) transmission. Release of ATP from the stimulated neuron can be attributed to a classical mechanism involving Ca(2+) entry via voltage-gated calcium channels (CaV) but via an unknown channel type. Specific blockers and toxins ruled out CaV1, 2.1 and 2.2. Transmission was, however, blocked by a moderate depolarization (-50 mV) or low-concentration Ni(2+) (0.1 mM). Transmission persisted using a voltage pulse to -40 mV from a holding potential of -80 mV, confirming the involvement of a low voltage-activated channel type and limiting the candidate channel type to either CaV3.2 or a subpopulation of inactivation- and Ni(2+)-sensitive CaV2.3 channels. Resistance of the neuron calcium current and SS transmission to SNX482 argue against the latter. Hence, we conclude that inter-somatic transmission at the DRG SS is gated by CaV3.2 type calcium channels. The use of CaV3 family channels to gate transmission has important implications for the biological function of the DRG SS as information transfer would be predicted to occur not only in response to action potentials but also to sub-threshold membrane voltage oscillations. Thus, the SS synapse may serve as a homeostatic signalling mechanism between select neurons in the DRG and could play a role in abnormal sensation such as neuropathic pain.

  5. Heterogeneous Association of Alzheimer's Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses. (United States)

    Willén, Katarina; Sroka, Agnieszka; Takahashi, Reisuke H; Gouras, Gunnar K


    Alzheimer's disease (AD) is increasingly viewed as a disease of synapses. Loss of synapses correlates better with cognitive decline than amyloid plaques and neurofibrillary tangles, the hallmark neuropathological lesions of AD. Soluble forms of amyloid-β (Aβ) have emerged as mediators of synapse dysfunction. Aβ binds to, accumulates, and aggregates in synapses. However, the anatomical and neurotransmitter specificity of Aβ and the amyloid-β protein precursor (AβPP) in AD remain poorly understood. In addition, the relative roles of Aβ and AβPP in the development of AD, at pre- versus post-synaptic compartments and axons versus dendrites, respectively, remain unclear. Here we use immunogold electron microscopy and confocal microscopy to provide evidence for heterogeneity in the localization of Aβ/AβPP. We demonstrate that Aβ binds to a subset of synapses in cultured neurons, with preferential binding to glutamatergic compared to GABAergic neurons. We also highlight the challenge of defining pre- versus post-synaptic localization of this binding by confocal microscopy. Further, endogenous Aβ42 accumulates in both glutamatergic and GABAergic AβPP/PS1 transgenic primary neurons, but at varying levels. Moreover, upon knock-out of presenilin 1 or inhibition of γ-secretase AβPP C-terminal fragments accumulate both pre- and post-synaptically; however earlier pre-synaptically, consistent with a higher rate of AβPP processing in axons. A better understanding of the synaptic and anatomical selectivity of Aβ/AβPP in AD can be important for the development of more effective new therapies for this major disease of aging.

  6. Heterogeneous Association of Alzheimer’s Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses (United States)

    Willén, Katarina; Sroka, Agnieszka; Takahashi, Reisuke H.; Gouras, Gunnar K.


    Alzheimer’s disease (AD) is increasingly viewed as a disease of synapses. Loss of synapses correlates better with cognitive decline than amyloid plaques and neurofibrillary tangles, the hallmark neuropathological lesions of AD. Soluble forms of amyloid-β (Aβ) have emerged as mediators of synapse dysfunction. Aβ binds to, accumulates, and aggregates in synapses. However, the anatomical and neurotransmitter specificity of Aβ and the amyloid-β protein precursor (AβPP) in AD remain poorly understood. In addition, the relative roles of Aβ and AβPP in the development of AD, at pre- versus post-synaptic compartments and axons versus dendrites, respectively, remain unclear. Here we use immunogold electron microscopy and confocal microscopy to provide evidence for heterogeneity in the localization of Aβ/AβPP. We demonstrate that Aβ binds to a subset of synapses in cultured neurons, with preferential binding to glutamatergic compared to GABAergic neurons. We also highlight the challenge of defining pre- versus post-synaptic localization of this binding by confocal microscopy. Further, endogenous Aβ42 accumulates in both glutamatergic and GABAergic AβPP/PS1 transgenic primary neurons, but at varying levels. Moreover, upon knock-out of presenilin 1 or inhibition of γ-secretase AβPP C-terminal fragments accumulate both pre- and post-synaptically; however earlier pre-synaptically, consistent with a higher rate of AβPP processing in axons. A better understanding of the synaptic and anatomical selectivity of Aβ/AβPP in AD can be important for the development of more effective new therapies for this major disease of aging. PMID:28869466

  7. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus. (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori


    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  8. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske


    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  9. Do Children with Better Inhibitory Control Donate More? Differentiating between Early and Middle Childhood and Cool and Hot Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Jian Hao


    Full Text Available Inhibitory control may play an important part in prosocial behavior, such as donating behavior. However, it is not clear at what developmental stage inhibitory control becomes associated with donating behavior and which aspects of inhibitory control are related to donating behavior during development in early to middle childhood. The present study aimed to clarify these issues with two experiments. In Experiment 1, 103 3- to 5-year-old preschoolers completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results indicated that there were no relationships between cool or hot inhibitory control and donating behavior in the whole group and each age group of the preschoolers. In Experiment 2, 140 elementary school children in Grades 2, 4, and 6 completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results showed that inhibitory control was positively associated with donating behavior in the whole group. Cool and hot inhibitory control respectively predicted donating behavior in the second and sixth graders. Therefore, the present study reveals that donating behavior increasingly relies on specific inhibitory control, i.e., hot inhibitory control as children grow in middle childhood.

  10. Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus. (United States)

    Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G


    Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.

  11. Proactive and reactive inhibitory control in eating disorders


    Bartholdy, Savani; Rennalls, Samantha J.; Jacques, Claire; Danby, Hollie; Campbell, Iain C.; Schmidt, Ulrike; O?Daly, Owen G.


    Altered inhibitory control has been implicated in the development and maintenance of eating disorders (ED), however it is unclear how different types of inhibitory control are affected across the EDs. We explored whether individuals with bulimia nervosa (BN), binge eating disorder (BED) and anorexia nervosa (AN) differed from healthy individuals (HC) on two types of motor inhibitory control: proactive inhibition (related to the preparation/initiation of a response) and reactive inhibition (wi...

  12. Serum trypsin inhibitory capacity in hemodialysis patients

    International Nuclear Information System (INIS)

    Hashemi, Mohammad; Mehrabifar, Hamid; Homayooni, Fatemeh; Naderi, Mohammad; Montazerifar, Farzaneh; Ghavami, Saeid


    It has been established that overproduction of reactive oxygen species (ROS) occurs during hemodialysis causing oxidation of proteins. Alpha-1-antitrypsin is the major circulating anti-protease which contains methionine in the active site. The aim of the present study was to measure the level of serum trypsin inhibitory capacity (sTIC) in hemodialysis patients. This case-control study was performed in 52 hemodialysis patients and 49 healthy controls. sTIC was measured by enzymatic assay. The sTIC was significantly (P< 0.001) lower in hemodialysis patients (1.87 + - 0.67 micron mol/min/mL) than healthy controls (2.83 + - 0.44 micron mol/min/L). Reduction of sTIC may be due to the oxidation of methionine residue in the reactive site of alpha-1 antitrypsin. (author)

  13. Impaired inhibitory control in recreational cocaine users.

    Directory of Open Access Journals (Sweden)

    Lorenza S Colzato

    Full Text Available Chronic use of cocaine is associated with impairment in response inhibition but it is an open question whether and to which degree findings from chronic users generalize to the upcoming type of recreational users. This study compared the ability to inhibit and execute behavioral responses in adult recreational users and in a cocaine-free-matched sample controlled for age, race, gender distribution, level of intelligence, and alcohol consumption. Response inhibition and response execution were measured by a stop-signal paradigm. Results show that users and non users are comparable in terms of response execution but users need significantly more time to inhibit responses to stop-signals than non users. Interestingly, the magnitude of the inhibitory deficit was positively correlated with the individuals lifetime cocaine exposure suggesting that the magnitude of the impairment is proportional to the degree of cocaine consumed.

  14. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. (United States)

    Gao, Bin; Bi, Yingjie; Chen, Hong-Yu; Liu, Rui; Huang, Peng; Chen, Bing; Liu, Lifeng; Liu, Xiaoyan; Yu, Shimeng; Wong, H-S Philip; Kang, Jinfeng


    Neuromorphic computing is an attractive computation paradigm that complements the von Neumann architecture. The salient features of neuromorphic computing are massive parallelism, adaptivity to the complex input information, and tolerance to errors. As one of the most crucial components in a neuromorphic system, the electronic synapse requires high device integration density and low-energy consumption. Oxide-based resistive switching devices have been shown to be a promising candidate to realize the functions of the synapse. However, the intrinsic variation increases significantly with the reduced spike energy due to the reduced number of oxygen vacancies in the conductive filament region. The large resistance variation may degrade the accuracy of neuromorphic computation. In this work, we develop an oxide-based electronic synapse to suppress the degradation caused by the intrinsic resistance variation. The synapse utilizes a three-dimensional vertical structure including several parallel oxide-based resistive switching devices on the same nanopillar. The fabricated three-dimensional electronic synapse exhibits the potential for low fabrication cost, high integration density, and excellent performances, such as low training energy per spike, gradual resistance transition under identical pulse training scheme, and good repeatability. A pattern recognition computation is simulated based on a well-known neuromorphic visual system to quantify the feasibility of the three-dimensional vertical structured synapse for the application of neuromorphic computation systems. The simulation results show significantly improved recognition accuracy from 65 to 90% after introducing the three-dimensional synapses.

  15. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse. (United States)

    Diagne, Cheikh Tidiane; Salhi, Maya; Crozat, Estelle; Salomé, Laurence; Cornet, Francois; Rousseau, Philippe; Tardin, Catherine


    Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.

  16. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)


    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the

  17. Fatal presumed tiger snake (Notechis scutatus) envenomation in a cat with measurement of venom and antivenom concentration. (United States)

    Padula, Andrew M; Winkel, Kenneth D


    A fatal outcome of a presumed tiger snake (Notechis scutatus) envenomation in a cat is described. Detectable venom components and antivenom concentrations in serum from clotted and centrifuged whole blood and urine were measured using a sensitive and specific ELISA. The cat presented in a paralysed state with a markedly elevated serum CK but with normal clotting times. The cat was treated with intravenous fluids and received two vials of equine whole IgG bivalent (tiger and brown snake) antivenom. Despite treatment the cat's condition did not improve and it died 36 h post-presentation. Serum concentration of detectable tiger snake venom components at initial presentation was 311 ng/mL and urine 832 ng/mL, this declined to non-detectable levels in serum 15-min after intravenous antivenom. Urine concentration of detectable tiger snake venom components declined to 22 ng/mL at post-mortem. Measurement of equine anti-tiger snake venom specific antibody demonstrated a concentration of 7.2 Units/mL in serum at post-mortem which had declined from an initial high of 13 Units/mL at 15-min post-antivenom. The ELISA data demonstrated the complete clearance of detectable venom components from serum with no recurrence in the post-mortem samples. Antivenom concentrations in serum at initial presentation were at least 100-fold higher than theoretically required to neutralise the circulating concentrations of venom. Despite the fatal outcome in this case it was concluded that this was unlikely that is was due to insufficient antivenom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Treatment for presumed BK polyomavirus nephropathy and risk of urinary tract cancers among kidney transplant recipients in the United States. (United States)

    Gupta, Gaurav; Kuppachi, Sarat; Kalil, Roberto S; Buck, Christopher B; Lynch, Charles F; Engels, Eric A


    Recent case series describe detection of BK polyomavirus (BKV) in urinary tract cancers in kidney transplant recipients, suggesting that BKV could contribute to the development of these cancers. We assessed risk for urinary tract cancers in kidney recipients with or without treatment for presumed BKV nephropathy (tBKVN) using data from the United States Transplant Cancer Match Study (2003-2013). Among 55 697 included recipients, 2015 (3.6%) were reported with tBKVN. Relative to the general population, incidence was similarly elevated (approximately 4.5-fold) for kidney cancer in recipients with or without tBKVN, and incidence was not increased in either group for prostate cancer. In contrast, for invasive bladder cancer, incidence was more strongly elevated in recipients with versus without tBKVN (standardized incidence ratios 4.5 vs. 1.7; N = 48 cases), corresponding to an incidence rate ratio (IRR) of 2.9 (95% confidence interval [CI] 1.0-8.2), adjusted for sex, age, transplant year, and use of polyclonal antibody induction. As a result, recipients with tBKVN had borderline increased incidence for all urothelial cancers combined (renal pelvis, ureter, and bladder cancers: adjusted IRR 2.2, 95% CI 0.9-5.4; N = 89 cases). Together with reports describing BKV detection in tumor tissues, these results support an association between BKV and urothelial carcinogenesis among kidney transplant recipients. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism

    Directory of Open Access Journals (Sweden)

    Basilis eZikopoulos


    Full Text Available Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathways at low resolution show changes in fractional anisotropy or diffusivity of the white matter in autism. Findings in post-mortem brains of adults with autism provide evidence of changes in the fine structure of axons below prefrontal cortices, which communicate over short- or long-range pathways with other cortices and subcortical structures. Here we focus on evidence of cellular and axon features that likely underlie the changes in short- and long-range communication in autism. We review recent findings of changes in the shape, thickness, and volume of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural and neurochemical features of individual axons in the white matter, where pathology is evident even in gross images. We relate cellular and molecular features to imaging and genetic studies that highlight a variety of polymorphisms and epigenetic factors that primarily affect neurite growth and synapse formation and function in autism. We report preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons in prefrontal cortex, known to shape network dynamics and the balance of excitation and inhibition. Finally we present a model that synthesizes diverse findings by relating them to developmental events, with a goal to identify common processes that perturb development in autism and affect neural communication, reflected in altered patterns of attention, social interactions, and language.

  20. Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. (United States)

    Dolleman-Van der Weel, M J; Lopes da Silva, F H; Witter, M P


    The nucleus reuniens thalami (RE) originates dense projections to CA1, forming asymmetrical synapses on spines (50%) and dendrites (50%). The hypothesis that RE input modulates transmission in CA1 through excitation of both pyramidal cells and interneurons was tested using electrophysiological methods in the anesthetized rat. The RE-CA1 afferents were selectively stimulated at their origin; evoked field potentials and unit activity were recorded in CA1. RE-evoked depth profiles showed a prominent negative deflection in the stratum lacunosum-moleculare and a positive one in the stratum radiatum. The lacunosum-moleculare sink-radiatum source configuration is compatible with RE-elicited depolarization of apical dendrites of pyramidal cells. Despite a consistent and robust paired pulse facilitation of RE-evoked field potentials, population spikes in the stratum pyramidale were not detected at any tested condition. This indicates the inability of RE-CA1 input to discharge pyramidal cells. However, stimulation of RE-elicited spiking of extracellularly recorded units in strata oriens/alveus and distal radiatum, indicative of the activation of local interneurons. Thus, RE seems to modulate transmission in CA1 through a (subthreshold) depolarization of pyramidal cells and a suprathreshold excitation of putative inhibitory oriens/alveus and radiatum interneurons. RE-evoked monosynaptic or disynaptic field potentials were associated with stimulation of rostral or caudal RE, respectively. Anatomically, a projection from caudal to rostral RE was demonstrated that can account for the disynaptic RE-CA1 input. Because caudal RE receives input from the hippocampus via the subiculum, we propose the existence of a closed RE-hippocampal circuit that allows RE to modulate the activity in CA1, depending on hippocampal output.

  1. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman


    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  2. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum (United States)

    Konop, Christopher J.; Knickelbine, Jennifer J.; Sygulla, Molly S.; Wruck, Colin D.; Vestling, Martha M.; Stretton, Antony O. W.


    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript ( As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10-9 M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level.

  3. Adolescents' inhibitory control: keep it cool or lose control. (United States)

    Aïte, Ania; Cassotti, Mathieu; Linzarini, Adriano; Osmont, Anaïs; Houdé, Olivier; Borst, Grégoire


    Inhibitory control (i.e., the ability to resist automatisms, temptations, distractions, or interference and to adapt to conflicting situations) is a determinant of cognitive and socio-emotional development. In light of the discrepancies of previous findings on the development of inhibitory control in affectively charged contexts, two important issues need to be addressed. We need to determine (a) whether cool inhibitory control (in affectively neutral contexts) and hot inhibitory control (in affectively charged contexts) follow the same developmental pattern and (b) the degree of specificity of these two types of inhibitory control at different ages. Thus, in the present study, we investigated the developmental patterns of cool and hot inhibitory control and the degree of specificity of these abilities in children, adolescents and adults. Typically developing children, adolescents, and adults performed two Stroop-like tasks: an affectively neutral one (Cool Stroop task) and an affectively charged one (Hot Stroop task). In the Cool Stroop task, the participants were asked to identify the ink color of the words independent of color that the words named; in the Hot Stroop task, the participants were asked to identify the emotional expression of a face independent of the emotion named by a simultaneously displayed written word. We found that cool inhibitory control abilities develop linearly with age, whereas hot inhibitory control abilities follow a quadratic developmental pattern, with adolescents displaying worse hot inhibitory control abilities than children and adults. In addition, cool and hot inhibitory control abilities were correlated in children but not in adolescents and adults. The present study suggests (a) that cool and hot inhibitory control abilities develop differently from childhood to adulthood - i.e., that cool inhibition follows a linear developmental pattern and hot inhibition follows an adolescent-specific pattern - and (b) that they become

  4. Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors. (United States)

    Ha, Seungmin; Lee, Dongwon; Cho, Yi Sul; Chung, Changuk; Yoo, Ye-Eun; Kim, Jihye; Lee, Jiseok; Kim, Woohyun; Kim, Hyosang; Bae, Yong Chul; Tanaka-Yamamoto, Keiko; Kim, Eunjoon


    Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2 -/- mice, remains unexplored. Here we show that Shank2 -/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2 fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2 fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2 -/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2 fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2 -/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum

  5. Morphological changes associated with the genesis and development of an excitatory glutemergic synapse: An integrated framework model

    Directory of Open Access Journals (Sweden)

    Venkateswaran Nagarajan


    Full Text Available The genesis of an excitatory synapse has its inception when a dendritic filopodium makes a tactile contact with a presynaptic specialisation (bouton. The subsequent maturation of the synapse takes place via a series of interrelated biochemical and biophysical signalling pathways which controls the actin polymerisation in the presynaptic and the postsynaptic sites. Although individual models of many of these signalling transductions have been proposed, a holistic model integrating the various signalling pathways to the morphological plasticity associated with the genesis and development of synapses has not. In this poster an attempt has been made towards establishing a framework for an integrated model such as the one aforementioned, encompassing several signalling pathways which control the morphology and the efficacy of the synapse. Predominant pathways include those triggered by NMDA and AMPA receptors, Trkb-BDNF, Integrin and Epherin. Also, steps towards a model that elucidates the change in shape of the synapse carried out by zonal actin polymerisation (ZAP governed by the "wastage" of neurotransmitters during exo cum endocytosis processes and the assimilation of the postsynaptic density (PSD and cell adhesion molecules with emphasis on Neurexin-Neuriligin, have been explored. The cannabinoid receptors in the PAZ have extracellular lipophilic domains. Endocannabinoid receptors are triggered by the retrograde signalling cues which negatively affect the cAMP dependent mechanisms. Apart from this, autoreceptors also pilot a feedback mechanism via secondary messengers with Ca 2+ ion concentration and neurotransmitter concentration in the synaptic cleft as its stakeholders. Feedback signals of autoreceptors which functions in accordance to “Lock and Key Mechanism” plays a vital role in fine-tuning the plasticity of the synapse and in controlling the presynaptic release probability by invoking PKA dependent pathways. In a future continuation

  6. Brain RNA synthesis, long-term potentiation and depression at the perforant path-granule cell synapse in the guinea pig. (United States)

    Sadile, A G; Neugebauer, A; Gessi, T; Marchionni, S; Giuditta, A


    The effects of long-term changes in synaptic efficacy at the perforant path-granule cell synapse on the de-novo synthesis of ribonucleic acid (RNA) were investigated in hippocampal and cortical areas in anaesthetized Guinea pig preparations. Two experiments were run with stimulating and recording microelectrodes aimed at the perforant bundle and dentate gyrus hilus on both sides. In Experiment 1, a low-frequency (LFS; 0.02 Hz, 3 h) or high-frequency stimulation (HFS; 400 Hz, 250 ms) was delivered to the left perforant bundle with the contralateral side as control. In Experiment 2, animals received LFS or HFS trains with implanted nonstimulated animals used as controls. The latency and amplitude of the field postsynaptic potentials (FPSP) and population spike (POPS) were monitored under baseline conditions and following stimulation over a 3 h period. In addition, two HFS groups were tested with few (HFS-F: every 15 min) or several test stimuli (HFS-S: every 3 min). In both experiments RNA synthesis was determined by measuring the amount of 3H-5,6-uridine incorporated into the RNA 3 h after bilateral intraventricular injection. In Exp. 1 the LFS group showed a higher synthesis of RNA than both HFS groups. The rate of RNA synthesis did not differ between the stimulated and nonstimulated side. In Exp. 2 the HFS groups showed a decreased RNA synthesis. In the HFS-F group, it pertained to the dorsal dentate area, CA1, subiculum, cingulate and dorsal cortices bilaterally, and to the ventral dentate area and CA3 on the nonstimulated side. In contrast, the HFS-S group showed decreased RNA synthesis at the dorsal dentate area and dorsal cortex on the stimulated side, and at CA1, subiculum, and cingulate cortex bilaterally. The decrease was stronger in the HFS-F than in the HFS-S group. Moreover, the subgroup with a low (0-60%) and that with a high (61-240%) level of long-term potentiation of FPSP revealed lower and higher RNA synthesis, respectively, both in homosynaptic

  7. Hyaluronidase and collagenase inhibitory activities of the herbal ...

    Indian Academy of Sciences (India)


    Green tea polyphenols (Demeule et al 2000) show gelatinase inhibitory activity. Some of the prescribed anti-arthritic drugs have hyaluronidase or gelatinase inhibitory activity. Thus, the anti-inflammatory drugs indomethacin and dexamethasone. (0.1–0.2 mM) are moderate inhibitors of hyaluronidase. (Girish and Kemparaju ...

  8. The Inhibitory Effects of Neem Oil against the Development of ...

    African Journals Online (AJOL)

    Although neem oil extract is widely used in Africa and Asia for the treatment and prevention of malaria, its inhibitory effect on the growth of malaria parasites in vivo has not been fully tested. In the present study, the inhibitory effects of neem oil extract against the growth of rodent malaria parasite in the mice were investigated ...

  9. In vitro evaluation of inhibitory effect of Phoenix dactylifera bark ...

    African Journals Online (AJOL)

    dactylifera bark extract on rat lipid peroxidation and blood hemolysis ... investigate its in vitro inhibitory effects on lipid peroxidation in the brain, liver, and kidney tissues of rat, as well as on blood ... dactylifera L. were 50.7 mg tannic acid, 10.38 mg rutin, and 5.45 mg cyanidin, respectively, while half- maximal inhibitory ...

  10. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    AR inhibitory activity and inhibition of AGEs formation was done by using ultraviolet-visible (UV-Vis) and fluorescence spectroscopy with aminoguanidine as a standard. In vivo AR inhibitory activity, which involves determination of rat lens galactitol levels in galactosemic condition by using reverse phase high pressure liquid ...

  11. Comparative phytochemical and growth inhibitory studies on the leaf ...

    African Journals Online (AJOL)

    Comparative phytochemical and growth inhibitory studies on the leaf and root bark extracts of securinega Virosa (roxb ex. Willd) baill ... The growth inhibitory tests were carried out between 1-30 mg/ in a period of 24-96 h while the phytochemical screening was carried out on the plant parts using standard methods. At 24 h ...

  12. Evaluation of α-glucosidase inhibitory activity of dichloromethane ...

    African Journals Online (AJOL)

    Purpose: To evaluate the α-glucosidase inhibitory activity of Croton bonplandianum Baill as a probable remedy for the management of diabetes. Methods: Dichloromethane and methanol extracts were prepared and screened for their α-glucosidae inhibitory activity using standard in vitro α-glucosidae inhibition assay.

  13. Xanthine oxidase inhibitory activity of some Leguminosae plants


    Leomel E. Argulla; Christine L. Chichioco-Hernandez


    Objective: To evaluate the xanthine oxidase inhibitory activity of the methanol leaf extracts of following Cassia javanica, Cynometra ramiflora, Cassia fistula, Senna siamea, Tamarindus indicus, Intsia bijuga, Cassia spectabilis, Saraca thaipingensis (S. thaipingensis), Caesalpinia pulcherrima (C. pulcherrima) and Bauhinia purpurea. Method: The xanthine oxidase inhibitory activity was tested spectrophotometically under aerobic conditions. Absorption increments was monitored eve...

  14. In vitro growth-inhibitory activity of Calophyllum inophyllum ethanol ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro growth-inhibitory effect of Calophyllum inophyllum, a medicinal plant traditionally used to cure gastrointestinal disorders caused by diarrhoea-causing bacteria. Methods: The minimum inhibitory concentration (MIC) of C. inophyllum ethanol leaf extract was determined against six ...

  15. Intravenous Thrombolysis for Stroke and Presumed Stroke in Human Immunodeficiency Virus-Infected Adults: A Retrospective, Multicenter US Study. (United States)

    AbdelRazek, Mahmoud A; Gutierrez, Jose; Mampre, David; Cervantes-Arslanian, Anna; Ormseth, Cora; Haussen, Diogo; Thakur, Kiran T; Lyons, Jennifer L; Smith, Bryan R; O'Connor, Owen; Willey, Joshua Z; Mateen, Farrah J


    Human immunodeficiency virus (HIV) infection has been shown to increase both ischemic and hemorrhagic stroke risks, but there are limited data on the safety and outcomes of intravenous thrombolysis with tPA (tissue-type plasminogen activator) for acute ischemic stroke in HIV-infected patients. A retrospective chart review of intravenous tPA-treated HIV patients who presented with acute stroke symptoms was performed in 7 large inner-city US academic centers (various search years between 2000 and 2017). We collected data on HIV, National Institutes of Health Stroke Scale score, ischemic stroke risk factors, opportunistic infections, intravenous drug abuse, neuroimaging findings, and modified Rankin Scale score at last follow-up. We identified 33 HIV-infected patients treated with intravenous tPA (mean age, 51 years; 24 men), 10 of whom were stroke mimics. Sixteen of 33 (48%) patients had an HIV viral load less than the limit of detection while 10 of 33 (30%) had a CD4 count Stroke Scale score at presentation was 9, and mean time from symptom onset to tPA was 144 minutes (median, 159). The median modified Rankin Scale score for the 33-patient cohort was 1 and for the 23-patient actual stroke cohort was 2, measured at a median of 90 days poststroke symptom onset. Two patients had nonfatal hemorrhagic transformation (6%; 95% confidence interval, 1%-20%), both in the actual stroke group. Two patients had varicella zoster virus vasculitis of the central nervous system, 1 had meningovascular syphilis, and 7 other patients were actively using intravenous drugs (3 cocaine, 1 heroin, and 3 unspecified), none of whom had hemorrhagic transformation. Most HIV-infected patients treated with intravenous tPA for presumed and actual acute ischemic stroke had no complications, and we observed no fatalities. Stroke mimics were common, and thrombolysis seems safe in this group. We found no data to suggest an increased risk of intravenous tPA-related complications because of concomitant

  16. Minimal inhibitory concentrations of modern topical antimicrobials

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova


    Full Text Available Aim. To measure minimal inhibitory concentration (MIC values for modern topical antimicrobials against common ocular pathogens.Methods.Antimicrobials most commonly used in ophthalmology (fluoroquinolones and aminoglycosides are dose-dependent drugs, i.e., the rate of microbial death increases in direct proportion to their concentrations. To determine MICs, we applied Hi Comb MIC Test (E-test. 105 patients aged 2 months through 7 years which were diagnosed with various inflammatory disorders of anterior segment were  xamined. MIC values for most commonly used antimicrobials, i.e., ciprofloxacin / Cipromed (Sentiss Pharma, Gurgaon, India, ofloxacin / Floxal (Baush & Lomb, Rochester, New-York, levofloxacin / Signicef (Sentiss Pharma, Gurgaon, India, moxifloxacin / Vigamox (Alcon, Fort Worth, Texas, gatifloxacin / Zymar (Allergan, Irvine, California, and tobramycin / Tobrex (Alcon, Fort Worth, Texas, were measured.Results. The analysis revealed that the most effective antibacterial drug against microbial isolates in children (i.e., Staphylococci spp. was levofloxacin. MIC for this agent against Streptococci spp. and Gram-negative microbes was low as well. Moxifloxacin is preferred for the treatment of ocular inflammation provoked by Streptococci spp. as MIC of this antimicrobial against Streptococci spp. was the lowest. MIC of ciprofloxacin against Gram-negative flora was the lowest. These data demonstrate generally recognized high efficacy of this drug. MIC value for tobramycin against all bacterial isolates was the highest.

  17. Minimal inhibitory concentrations of modern topical antimicrobials

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova


    Full Text Available Aim. To measure minimal inhibitory concentration (MIC values for modern topical antimicrobials against common ocular pathogens.Methods.Antimicrobials most commonly used in ophthalmology (fluoroquinolones and aminoglycosides are dose-dependent drugs, i.e., the rate of microbial death increases in direct proportion to their concentrations. To determine MICs, we applied Hi Comb MIC Test (E-test. 105 patients aged 2 months through 7 years which were diagnosed with various inflammatory disorders of anterior segment were  xamined. MIC values for most commonly used antimicrobials, i.e., ciprofloxacin / Cipromed (Sentiss Pharma, Gurgaon, India, ofloxacin / Floxal (Baush & Lomb, Rochester, New-York, levofloxacin / Signicef (Sentiss Pharma, Gurgaon, India, moxifloxacin / Vigamox (Alcon, Fort Worth, Texas, gatifloxacin / Zymar (Allergan, Irvine, California, and tobramycin / Tobrex (Alcon, Fort Worth, Texas, were measured.Results. The analysis revealed that the most effective antibacterial drug against microbial isolates in children (i.e., Staphylococci spp. was levofloxacin. MIC for this agent against Streptococci spp. and Gram-negative microbes was low as well. Moxifloxacin is preferred for the treatment of ocular inflammation provoked by Streptococci spp. as MIC of this antimicrobial against Streptococci spp. was the lowest. MIC of ciprofloxacin against Gram-negative flora was the lowest. These data demonstrate generally recognized high efficacy of this drug. MIC value for tobramycin against all bacterial isolates was the highest.

  18. Molecular inhibitory mechanism of tricin on tyrosinase (United States)

    Mu, Yan; Li, Lin; Hu, Song-Qing


    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  19. Inhibitory effect of 5-iodotubercidin on pigmentation. (United States)

    Kim, Kyung-Il; Jeong, Hae Bong; Ro, Hyunju; Lee, Jeung-Hoon; Kim, Chang Deok; Yoon, Tae-Jin


    Melanin pigments are the primary contributors for the skin color. They are produced in melanocytes and then transferred to keratinocytes, eventually giving various colors on skin surface. Although many depigmenting and/or skin-lightening agents have been developed, there is still a growing demand on materials for reducing pigmentation. We attempted to find materials for depigmentation and/or skin-lightening using the small molecule compounds commercially available, and found that 5-iodotubercidin had inhibitory potential on pigmentation. When HM3KO melanoma cells were treated with 5-iodotubercidin, pigmentation was dramatically reduced. The 5-iodotubercidin decreased the protein level for pigmentation-related molecules such as MITF, tyrosinase, and TRP1. In addition, 5-iodotubercidin decreased the phosphorylation of CREB, while increased the phosphorylation of AKT and ERK. These data suggest that 5-iodotubercidin inhibits melanogenesis via the regulation of intracellular signaling related with pigmentation. Finally, 5-iodotubercidin markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. Together, these data suggest that 5-iodotubercidin can be developed as a depigmenting and/or skin-lightening agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Monoamine oxidase inhibitory activities of heterocyclic chalcones. (United States)

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U


    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Angiotensin II disrupts inhibitory avoidance memory retrieval. (United States)

    Bonini, Juliana S; Bevilaqua, Lia R; Zinn, Carolina G; Kerr, Daniel S; Medina, Jorge H; Izquierdo, Iván; Cammarota, Martín


    The brain renin-angiotensin system (RAS) is involved in learning and memory, but the actual role of angiotensin II (A(II)) and its metabolites in this process has been difficult to comprehend. This has been so mainly due to procedural issues, especially the use of multi-trial learning paradigms and the utilization of pre-training intracerebroventricular infusion of RAS-acting compounds. Here, we specifically analyzed the action of A(II) in aversive memory retrieval using a hippocampal-dependent, one-trial, step-down inhibitory avoidance task (IA) in combination with stereotaxically localized intrahippocampal infusion of drugs. Rats bilaterally implanted with infusion cannulae aimed to the CA1 region of the dorsal hippocampus were trained in IA and tested for memory retention 24 h later. We found that when given into CA1 15 min before IA memory retention test, A(II), but not angiotensin IV or angiotensin(1-7) induced a dose-dependent and reversible amnesia without altering locomotor activity, exploratory behavior or anxiety state. The effect of A(II) was blocked in a dose-dependent manner by the A(II)-type 2 receptor (AT(2)) antagonist PD123319 but not by the A(II)-type 1 receptor (AT(1)) antagonist losartan. By themselves, neither PD123319 nor losartan had any effect on memory expression. Our data indicate that intra-CA1 A(II) hinders retrieval of avoidance memory through a process that involves activation of AT(2) receptors.

  2. Angiogenesis is inhibitory for mammalian digit regeneration (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong


    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  3. Even Lesbian Youths or Those Presumed to Be Lesbians Are Protected by the Constitution of Uganda--But to a Limited Extent: Rules the High Court (United States)

    Mujuzi, Jamil Ddamulira


    The Ugandan Penal Code criminalizes same-sex relationships. The author analyzes the Ugandan High Court decision where the judge relied on the Constitution and international human rights instruments to hold that law enforcement officers must respect the rights to privacy and human dignity even of those people presumed to be in same-sex…

  4. Shorter Leukocyte Telomere Length in Relation to Presumed Nonalcoholic Fatty Liver Disease in Mexican-American Men in NHANES 1999–2002

    Directory of Open Access Journals (Sweden)

    Janet M. Wojcicki


    Full Text Available Leukocyte telomere length is shorter in response to chronic disease processes associated with inflammation such as diabetes mellitus and coronary artery disease. Data from the National Health and Nutrition Examination Survey (NHANES from 1999 to 2002 was used to explore the relationship between leukocyte telomere length and presumed NAFLD, as indicated by elevated serum alanine aminotransferase (ALT levels, obesity, or abdominal obesity. Logistic regression models were used to evaluate the relationship between telomere length and presumed markers of NAFLD adjusting for possible confounders. There was no relationship between elevated ALT levels, abdominal obesity, or obesity and telomere length in adjusted models in NHANES (OR 1.13, 95% CI 0.48–2.65; OR 1.17, 95% CI 0.52–2.62, resp.. Mexican-American men had shorter telomere length in relation to presumed NAFLD (OR 0.07, 95% CI 0.006–0.79 and using different indicators of NAFLD (OR 0.012, 95% CI 0.0006–0.24. Mexican origin with presumed NAFLD had shorter telomere length than men in other population groups. Longitudinal studies are necessary to evaluate the role of telomere length as a potential predictor to assess pathogenesis of NALFD in Mexicans.

  5. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI

    NARCIS (Netherlands)

    Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J.; Mendrik, AM; Biessels, Geert Jan; Pluim, Josien P.W.; Išgum, Ivana


    Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a

  6. RAE-1, a novel PHR binding protein, is required for axon termination and synapse formation in Caenorhabditis elegans. (United States)

    Grill, Brock; Chen, Lizhen; Tulgren, Erik D; Baker, Scott T; Bienvenut, Willy; Anderson, Matthew; Quadroni, Manfredo; Jin, Yishi; Garner, Craig C


    Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1