WorldWideScience

Sample records for pressure-overload-induced cardiac hypertrophy

  1. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Gabriele G. Schiattarella

    2018-05-01

    Full Text Available Left ventricular hypertrophy (LVH is a major contributor to the development of heart failure (HF. Alterations in cyclic adenosine monophosphate (cAMP-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA anchor proteins (AKAPs, tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-, Akap1 heterozygous (Akap1+/-, and their wild-type (wt littermates underwent transverse aortic constriction (TAC or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2 knockout mice (Siah2-/-. Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  3. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia

    2018-01-01

    Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  4. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-01-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  5. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  6. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  7. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Science.gov (United States)

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  8. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.

    Science.gov (United States)

    Moreira-Gonçalves, Daniel; Henriques-Coelho, Tiago; Fonseca, Hélder; Ferreira, Rita; Padrão, Ana Isabel; Santa, Cátia; Vieira, Sara; Silva, Ana Filipa; Amado, Francisco; Leite-Moreira, Adelino; Duarte, José Alberto

    2015-09-01

    The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and

  10. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  11. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  13. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  14. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    Science.gov (United States)

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  15. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  16. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  17. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  18. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  19. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus.

    Science.gov (United States)

    Gonçalves, N; Gomes-Ferreira, C; Moura, C; Roncon-Albuquerque, R; Leite-Moreira, A F; Falcão-Pires, I

    2016-08-15

    Diabetic cardiomyopathy is characterized by cardiac structural and functional abnormalities. Additionally, chronic pressure overload conditions are highly prevalent amongst diabetic population and this association leads to a more severe myocardial impairment. The differences in myocardial pathophysiology between type 1 and type 2 diabetes mellitus (DM) still remain to be clarified. Thus, we aimed to investigate biventricular structural and functional changes promoted by the two types of DM and the impact of concomitant chronic pressure overload. Wistar rats were injected with streptozotocin (Type 1 DM, T1DM) or fed with a hypercaloric diet (Type 2 DM, T2DM). Pressure overload was imposed in DM animals by aortic constriction and after 5weeks of DM the cardiac function and structure were evaluated. Both types of DM promoted hypertrophy, increased fibrosis and advanced glycation end-products deposition, in the two ventricles. Interestingly, the induced myocardial alterations were distinct. While T1DM stimulated a pronounced hypertrophy and extracellular matrix remodeling, T2DM induced functional impairment. The negative impact of the association of DM with aortic constriction was more pronounced in T2DM, promoting impaired function and increased stiffness, particularly in the right ventricle. Our study demonstrated that the two types of diabetes induce distinct cardiac alterations per se or when combined with chronic pressure overload. T1DM promoted a more extensive remodeling in cardiac structure while T2DM significantly impaired ventricular function. The impact of pressure overload was more notorious in T2DM as observed by worse myocardial remodeling, suggesting a higher susceptibility to the deleterious effects of chronic pressure overload, namely hypertension, among this diabetic population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage.

    Science.gov (United States)

    Sato, Teruki; Sato, Chitose; Kadowaki, Ayumi; Watanabe, Hiroyuki; Ho, Lena; Ishida, Junji; Yamaguchi, Tomokazu; Kimura, Akinori; Fukamizu, Akiyoshi; Penninger, Josef M; Reversade, Bruno; Ito, Hiroshi; Imai, Yumiko; Kuba, Keiji

    2017-06-01

    Elabela/Toddler/Apela (ELA) has been identified as a novel endogenous peptide ligand for APJ/Apelin receptor/Aplnr. ELA plays a crucial role in early cardiac development of zebrafish as well as in maintenance of self-renewal of human embryonic stem cells. Apelin was the first identified APJ ligand, and exerts positive inotropic heart effects and regulates the renin-angiotensin system. The aim of this study was to investigate the biological effects of ELA in the cardiovascular system. Continuous infusion of ELA peptide significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and impaired contractility in mice. ELA treatment reduced mRNA expression levels of genes associated with heart failure and fibrosis. The cardioprotective effects of ELA were diminished in APJ knockout mice, indicating that APJ is the key receptor for ELA in the adult heart. Mechanistically, ELA downregulated angiotensin-converting enzyme (ACE) expression in the stressed hearts, whereas it showed little effects on angiotensin-converting enzyme 2 (ACE2) expression, which are distinct from the effects of Apelin. FoxM1 transcription factor, which induces ACE expression in the stressed hearts, was downregulated by ELA but not by Apelin. ELA antagonized angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis in mice. The ELA-APJ axis protects from pressure overload-induced heart failure possibly via suppression of ACE expression and pathogenic angiotensin II signalling. The different effects of ELA and Apelin on the expression of ACE and ACE2 implicate fine-tuned mechanisms for a ligand-induced APJ activation and downstream signalling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  1. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice.

    Science.gov (United States)

    Ikeda, Shohei; Satoh, Kimio; Kikuchi, Nobuhiro; Miyata, Satoshi; Suzuki, Kota; Omura, Junichi; Shimizu, Toru; Kobayashi, Kenta; Kobayashi, Kazuto; Fukumoto, Yoshihiro; Sakata, Yasuhiko; Shimokawa, Hiroaki

    2014-06-01

    Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans. © 2014 American Heart Association, Inc.

  2. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  3. LRRC10 is required to maintain cardiac function in response to pressure overload.

    Science.gov (United States)

    Brody, Matthew J; Feng, Li; Grimes, Adrian C; Hacker, Timothy A; Olson, Timothy M; Kamp, Timothy J; Balijepalli, Ravi C; Lee, Youngsook

    2016-01-15

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. Copyright © 2016 the American Physiological Society.

  4. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    Science.gov (United States)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  5. Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload

    NARCIS (Netherlands)

    Wang, Jiong-Wei; Fontes, Magda S. C.; Wang, Xiaoyuan; Chong, Suet Yen; Kessler, Elise L.; Zhang, Ya-Nan; de Haan, Judith J.; Arslan, Fatih; de Jager, Saskia C. A.; Timmers, Leo; van Veen, Toon A. B.; Lam, Carolyn S. P.; de Kleijn, Dominique P. V.

    2017-01-01

    An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure

  6. In vivo cardiac role of migfilin during experimental pressure overload.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard

    2015-06-01

    Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  8. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    International Nuclear Information System (INIS)

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-01-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32 P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  9. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  10. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  11. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  12. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2015-01-01

    Full Text Available Mutations in the giant sarcomeric protein titin (TTN are a major cause for inherited forms of dilated cardiomyopathy (DCM. We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC in heterozygous (Het Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p<0.05, while wild-type (WT TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.

  13. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p coconut oil mice than in standard chow mice. Myocardial capillary density ( p coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  14. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  15. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.

    Science.gov (United States)

    Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin Ja; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan; Radak, Zsolt

    2017-06-01

    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  16. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  17. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Science.gov (United States)

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.

  18. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-01-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L- 14 C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 μM carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 μM carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart

  19. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  20. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression

    International Nuclear Information System (INIS)

    Li, Rujun; Lu, Kuiying; Wang, Yao; Chen, Mingxing; Zhang, Fengyu; Shen, Hui; Yao, Deshan; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Triptolide is the predominant active component of the Chinese herb Tripterygium wilfordii Hook F (TwHF) that has been widely used to treat several chronic inflammatory diseases due to its immunosuppressive, anti-inflammatory, and anti-proliferative properties. In the present study, we elucidated the cardioprotective effects of triptolide against cardiac dysfunction and myocardial remodeling in chronic pressure-overloaded hearts. Furthermore, the potential mechanisms of triptolide were investigated. For this purpose, C57/BL6 mice were anesthetized and subjected to transverse aortic constriction (TAC) or sham operation. Six weeks after the operation, all mice were randomly divided into 4 groups: sham-operated with vehicle group, TAC with vehicle group, and TAC with triptolide (20 or 100 μg/kg/day intraperitoneal injection) groups. Our data showed that the levels of NLRP3 inflammasome were significantly increased in the TAC group and were associated with increased inflammatory mediators and profibrotic factor production, resulting in myocardial fibrosis, cardiomyocyte hypertrophy, and impaired cardiac function. Triptolide treatment attenuated TAC-induced myocardial remodeling, improved cardiac diastolic and systolic function, inhibited the NLRP3 inflammasome and downstream inflammatory mediators (IL-1β, IL-18, MCP-1, VCAM-1), activated the profibrotic TGF-β1 pathway, and suppressed macrophage infiltration in a dose-dependent manner. Our study demonstrated that the protective effect of triptolide against pressure overload in the heart may act by inhibiting the NLRP3 inflammasome-induced inflammatory response and activating the profibrotic pathway. - Highlights: • Chronic pressure overload increases expression of NLRP3 inflammasome in the heart. • Triptolide attenuates chronic pressure overload-induced myocardial remodeling. • The mechanism appears to involve inhibition of NLRP3 inflammasome expression. • Triptolide is a therapeutic candidate for

  1. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    Directory of Open Access Journals (Sweden)

    Ilayaraja Muthuramu

    2017-07-01

    Full Text Available Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05 in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64 during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01 higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001 was decreased, interstitial fibrosis was 1.88-fold (p < 0.001 higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001 higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05 in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  2. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    Science.gov (United States)

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  3. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  4. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway.

    Science.gov (United States)

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  5. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  6. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

    Science.gov (United States)

    Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR

  7. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.

    Science.gov (United States)

    Wang, Bin; Xu, Ming; Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230

  8. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  9. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    Science.gov (United States)

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  10. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    Science.gov (United States)

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  11. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  12. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  13. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    Science.gov (United States)

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  14. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  15. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  16. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Abdelhamid, Ghada [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan (Egypt); El-Kadi, Ayman O.S., E-mail: aelkadi@ualberta.ca [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-15

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations in cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help to

  17. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  18. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.

  19. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading

    Science.gov (United States)

    Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th

    1998-01-01

    Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.

  20. Restoration of Circulating MFGE8 (Milk Fat Globule-EGF Factor 8) Attenuates Cardiac Hypertrophy Through Inhibition of Akt Pathway.

    Science.gov (United States)

    Deng, Ke-Qiong; Li, Jing; She, Zhi-Gang; Gong, Jun; Cheng, Wen-Lin; Gong, Fu-Han; Zhu, Xue-Yong; Zhang, Yan; Wang, Zhihua; Li, Hongliang

    2017-10-01

    Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy. Correlation analyses revealed that circulating MFGE8 levels were negatively correlated with the severity of cardiac dysfunction and remodeling in affected patients. Deleting Mfge8 in mice maintained normal heart function at basal level but substantially exacerbated the hypertrophic enlargement of cardiomyocytes, reprogramming of pathological genes, contractile dysfunction, and myocardial fibrosis after aortic banding surgery. In contrast, cardiac-specific Mfge8 overexpression in transgenic mice significantly blunted aortic banding-induced cardiac hypertrophy. Whereas MAPK (mitogen-activated protein kinase) pathways were unaffected in either Mfge8 -knockout or Mfge8 -overexpressing mice, the activated Akt/PKB (protein kinase B)-Gsk-3β (glycogen synthase kinase-3β)/mTOR (mammalian target of rapamycin) pathway after aortic banding was significantly potentiated by Mfge8 deficiency but suppressed by Mfge8 overexpression. Inhibition of Akt with MK-2206 blocked the prohypertrophic effects of Mfge8 deficiency in angiotensin II-treated neonatal rat cardiomyocytes. Finally, administering a recombinant human MFGE8 in mice in vivo alleviated cardiac hypertrophy induced by aortic banding. Our findings indicate that Mfge8 is an endogenous negative regulator of pathological cardiac hypertrophy and may, thus, have potential both as a novel biomarker and as a therapeutic target for treatment of cardiac hypertrophy. © 2017 American Heart Association, Inc.

  1. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    2008-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0·1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0·12 ± 0·03 and 0·15 ± 0·03 μg/h per liter, 126 ± 5 and 130 ± 5 ng/l respectively) (means ± s.e.m.). Despite stabilization of the circulating renin–angiotensin system, thyroid hormone induced cardiac hypertrophy (5·0 ± 0·5 vs 3·5 ± 0·1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74 ± 2 vs 48 ± 2%, 6·5 ± 0·8 vs 3·8 ± 0·4 ng/h per g, 231 ± 30 vs 149 ± 2 pg/g respectively). These results indicate that the local renin–angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy. PMID:9854175

  2. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload

    NARCIS (Netherlands)

    Koitabashi, Norimichi; Danner, Thomas; Zaiman, Ari L.; Pinto, Yigal M.; Rowell, Janelle; Mankowski, Joseph; Zhang, Dou; Nakamura, Taishi; Takimoto, Eiki; Kass, David A.

    2011-01-01

    The cardiac pathological response to sustained pressure overload involves myocyte hypertrophy and dysfunction along with interstitial changes such as fibrosis and reduced capillary density. These changes are orchestrated by mechanical forces and factors secreted between cells. One such secreted

  3. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    OpenAIRE

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, ...

  4. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  5. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  6. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui

    2014-01-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  7. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  8. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  9. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  10. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  11. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Science.gov (United States)

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  12. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  13. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    Science.gov (United States)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; hide

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  14. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  15. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  16. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    Science.gov (United States)

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  17. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  18. Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse.

    Science.gov (United States)

    Cupesi, Mihaela; Yoshioka, Jun; Gannon, Joseph; Kudinova, Anastacia; Stewart, Colin L; Lammerding, Jan

    2010-06-01

    Inherited mutations cause approximately 30% of all dilated cardiomyopathy cases, with autosomal dominant mutations in the LMNA gene accounting for more than one third of these. The LMNA gene encodes the nuclear envelope proteins lamins A and C, which provide structural support to the nucleus and also play critical roles in transcriptional regulation. Functional deletion of a single allele is sufficient to trigger dilated cardiomyopathy in humans and mice. However, whereas Lmna(-/-) mice develop severe muscular dystrophy and dilated cardiomyopathy and die by 8 weeks of age, heterozygous Lmna(+/-) mice have a much milder phenotype, with changes in ventricular function and morphology only becoming apparent at 1 year of age. Here, we studied 8- to 20-week-old Lmna(+/-) mice and wild-type littermates in a pressure overload model to examine whether increased mechanical load can accelerate or exacerbate myocardial dysfunction in the heterozygotes. While overall survival was similar between genotypes, Lmna(+/-) animals had a significantly attenuated hypertrophic response to pressure overload as evidenced by reduced ventricular mass and myocyte size. Analysis of pressure overload-induced transcriptional changes suggested that the reduced hypertrophy in the Lmna(+/-) mice was accompanied by impaired activation of the mechanosensitive gene Egr-1. In conclusion, our findings provide further support for a critical role of lamins A and C in regulating the cellular response to mechanical stress in cardiomyocytes and demonstrate that haploinsufficiency of lamins A and C alone is sufficient to alter hypertrophic responses and cardiac function in the face of pressure overload in the heart. (c) 2009 Elsevier Ltd. All rights reserved.

  19. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  20. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  1. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  2. Protection of MICU1 against myocardial hypertrophy induced by angiotensin Ⅱ

    Directory of Open Access Journals (Sweden)

    Yi YANG

    2017-12-01

    Full Text Available Objective To investigate the role of mitochondrial calcium uptake 1 (MICU1 in myocardial hypertrophy of mice and underlying mechanism. Methods The model of myocardial hypertrophy was established via incubation of mouse cardiac myocytes (MCM with 300nmol/L angiotensin Ⅱ (Ang Ⅱ for 48 hours in vitro. After that, MICU1 specific small interfering RNA (siRNA was delivered to knockdown MICU1 levels in MCM. On the other hand, adenovirus-mediated over-expression of MICU1 was transfected into MCM. Accordingly, the expressions of ANP and BNP in myocardial cells were measured by qRT- PCR. Mitochondrial membrane potential and ATP contents were detected by JC-1 assay kit and ATP assay kit, respectively. Then, Western blotting and qRT-PCR were used to detect the levels of MICU1 in myocardial cells. The mitochondrial Ca2+ contents were measured via atomic absorption flame spectroscopy. The size of myocardial cells was determined by α-actinin staining. Results Mitochondrial membrane potential and ATP contents in hypertrophic cardiomyocytes induced by AngⅡ were both decreased. Meanwhile, myocardial hypertrophy significantly increased mitochondrial Ca2+ contents but decreased MICU1 levels. With the method of genetic intervention, we found that MICU1 deficiency exacerbated mitochondrial Ca2+ overload, increased cell surface and elevated the expression of BNP. Conversely, the overexpression of MICU1 obviously decreased mitochondrial Ca2+ overload, cell surface of MCM and expressions of ANP and BNP. Conclusion MICU1 alleviates AngⅡ-induced myocardial hypertrophy via inhibiting mitochondrial Ca2+ overload. DOI: 10.11855/j.issn.0577-7402.2017.12.05

  3. Protein quality control in protection against systolic overload cardiomyopathy: the long term role of small heat shock proteins.

    Science.gov (United States)

    Kumarapeli, Asangi R K; Horak, Kathleen; Wang, Xuejun

    2010-07-21

    Molecular chaperones represent the first line of defense of intracellular protein quality control. As a major constituent of molecular chaperones, heat shock proteins (HSP) are known to confer cardiomyocyte short-term protection against various insults and injuries. Previously, we reported that the small HSP alphaB-crystallin (CryAB) attenuates cardiac hypertrophic response in mice subjected to 2 weeks of severe pressure overload. However, the long-term role of small HSPs in cardiac hypertrophy and failure has rarely been studied. The present study investigates the cardiac responses to chronic severe pressure overload in CryAB/HSPB2 germ line ablated (KO) and cardiac-specific CryAB overexpressingtransgenic (TG) mice. Pressure overload was induced by transverse aortic constriction in KO, TG, and non-transgenic wild type (NTG) control mice and 10 weeks later molecular, cellular, and whole organ level hypertrophic responses were analyzed. As we previously described, CryAB/HSPB2 KO mice showed abnormal baseline cardiac physiology that worsened into a restrictive cardiomyopathic phenotype with aging. Severe pressure overload in these mice led to rapid deterioration of heart function and development of congestive cardiac failure. Contrary to their short term protective phenotype, CryAB TG mice showed no significant effects on cardiac hypertrophic responses and very modest improvement of hemodynamics during chronic systolic overload. These findings indicate that small HSPs CryAB and/or HSPB2 are essential to maintain cardiac structure and function but overex-pression of CryAB is not sufficient to confer a sustained protection against chronic systolic overload.

  4. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    Science.gov (United States)

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  5. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  6. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  7. Gastrodin Inhibits Store-Operated Ca2+ Entry and Alleviates Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Yao

    2017-04-01

    Full Text Available Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.

  8. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Hao Su; Marco Pistolozzi; Xingjuan Shi; Xiaoou Sun; Wen Tan

    2017-01-01

    The development of cardiac hypertrophy is a complicated process,which undergoes a transition from compensatory hypertrophy to heart failure,and the identification of new biomarkers and targets for this disease is greatly needed.Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model.After the induction of hypertrophy with ISO treatment in H9c2 cells,cell surface area,cell viability,cellular reactive oxygen species (ROS),and nitric oxide (NO) levels were tested.Our data showed that the cell viability,mitochondrial membrane potential,and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells.It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells.These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells,and our findings may have important implications for the management of this disease.

  9. Black Tea High-Molecular-Weight Polyphenol-Rich Fraction Promotes Hypertrophy during Functional Overload in Mice

    Directory of Open Access Journals (Sweden)

    Yuki Aoki

    2017-03-01

    Full Text Available Mitochondria activation factor (MAF is a high-molecular-weight polyphenol extracted from black tea that stimulates training-induced 5′ adenosine monophosphate-activated protein kinase (AMPK activation and improves endurance capacity. Originally, MAF was purified from black tea using butanol and acetone, making it unsuitable for food preparation. Hence, we extracted a MAF-rich sample “E80” from black tea, using ethanol and water only. Here, we examined the effects of E80 on resistance training. Eight-week old C57BL/6 mice were fed with a normal diet or a diet containing 0.5% E80 for 4, 7 and 14 days under conditions of functional overload. It was found that E80 administration promoted overload-induced hypertrophy and induced phosphorylation of the Akt/mammalian target of rapamycin (mTOR pathway proteins, such as Akt, P70 ribosomal protein S6 kinase (p70S6K, and S6 in the plantaris muscle. Therefore, functional overload and E80 administration accelerated mTOR signaling and increased protein synthesis in the muscle, thereby inducing hypertrophy.

  10. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    Science.gov (United States)

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload

    NARCIS (Netherlands)

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R.; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J. B.; Walsh, Kenneth

    2011-01-01

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial

  12. Bone marrow support of the heart in pressure overload is lost with aging.

    Science.gov (United States)

    Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S

    2010-12-21

    Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.

  13. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    International Nuclear Information System (INIS)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin

    2005-01-01

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, β-myosin heavy chain, and α-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway

  14. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  15. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  16. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  17. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload

    Directory of Open Access Journals (Sweden)

    Bindiya Patel, PhD

    2018-04-01

    Full Text Available Summary: Although chronic inflammation is a central feature of heart failure (HF, the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF. Key Words: cardiac remodeling, heart failure, inflammation, macrophages, T cells

  18. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-01-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  19. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  20. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy.

    Science.gov (United States)

    Harrington, Josephine; Fillmore, Natasha; Gao, Shouguo; Yang, Yanqin; Zhang, Xue; Liu, Poching; Stoehr, Andrea; Chen, Ye; Springer, Danielle; Zhu, Jun; Wang, Xujing; Murphy, Elizabeth

    2017-08-19

    Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Chronic activation of the low affinity site of β1-adrenoceptors stimulates haemodynamics but exacerbates pressure-overload cardiac remodelling

    Science.gov (United States)

    Kiriazis, Helen; Tugiono, Niquita; Xu, Qi; Gao, Xiao-Ming; Jennings, Nicole L; Ming, Ziqui; Su, Yidan; Klenowski, Paul; Summers, Roger J; Kaumann, Alberto; Molenaar, Peter; Du, Xiao-Jun

    2013-01-01

    BACKGROUND AND PURPOSE The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. EXPERIMENTAL APPROACH C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. KEY RESULTS (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. CONCLUSIONS AND IMPLICATIONS β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. PMID:23750586

  2. The Impact of a Non-Functional Thyroid Receptor Beta upon Triiodotironine-Induced Cardiac Hypertrophy in Mice

    Directory of Open Access Journals (Sweden)

    Güínever Eustáquio do Império

    2015-08-01

    Full Text Available Background/Aims: Thyroid hormone (TH signalling is critical for heart function. The heart expresses thyroid hormone receptors (THRs; THRα1 and THRβ1. We aimed to investigate the regulation mechanisms of the THRβ isoform, its association with gene expression changes and implications for cardiac function. Methods: The experiments were performed using adult male mice expressing TRβΔ337T, which contains the Δ337T mutation of the human THRB gene and impairs ligand binding. Cardiac function and RNA expression were studied after hypo-or hyperthyroidism inductions. T3-induced cardiac hypertrophy was not observed in TRβΔ337T mice, showing the fundamental role of THRβ in cardiac hypertrophy. Results: We identified a group of independently regulated THRβ genes, which includes Adrb2, Myh7 and Hcn2 that were normally regulated by T3 in the TRβΔ337T group. However, Adrb1, Myh6 and Atp2a2 were regulated via THRβ. The TRβΔ337T mice exhibited a contractile deficit, decreased ejection fraction and stroke volume, as assessed by echocardiography. In our model, miR-208a and miR-199a may contribute to THRβ-mediated cardiac hypertrophy, as indicated by the absence of T3-regulated ventricular expression in TRβΔ337T mice. Conclusion: THRβ has important role in the regulation of specific mRNA and miRNA in T3-induced cardiac hypertrophic growth and in the alteration of heart functions.

  3. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  4. Exercise-induced arterial hypertension - an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes?

    Science.gov (United States)

    Leischik, Roman; Spelsberg, Norman; Niggemann, Hiltrud; Dworrak, Birgit; Tiroch, Klaus

    2014-01-01

    Background : Exercise-induced arterial hypertension (EIAH) leads to myocardial hypertrophy and is associated with a poor prognosis. EIAH might be related to the "cardiac fatigue" caused by endurance training. The goal of this study was to examine whether there is any relationship between EIAH and left ventricular hypertrophy in Ironman-triathletes. We used echocardiography and spiroergometry to determine the left ventricular mass (LVM), the aerobic/anaerobic thresholds and the steady-state blood pressure of 51 healthy male triathletes. The main inclusion criterion was the participation in at least one middle or long distance triathlon. When comparing triathletes with LVM 220g there was a significant difference between blood pressure values (BP) at the anaerobic threshold (185.2± 21.5 mmHg vs. 198.8 ±22.3 mmHg, p=0.037). The spiroergometric results were: maximum oxygen uptake (relative VO 2max) 57.3 ±7.5ml/min/kg vs. 59.8±9.5ml/min/kg (p=ns). Cut-point analysis for the relationship of BP >170 mmHg at the aerobic threshold and the probability of LVM >220g showed a sensitivity of 95.8%, a specificity of 33.3%, with a positive predictive value of 56.8 %, a good negative predictive value of 90%. The probability of LVM >220g increased with higher BP during exercise (OR: 1.027, 95% CI 1.002-1.052, p= 0.034) or with higher training volume (OR: 1.23, 95% CI 1.04 -1.47, p = 0.019). Echocardiography showed predominantly concentric remodelling, followed by concentric hypertrophy. Significant left ventricular hypertrophy with LVM >220g is associated with higher arterial blood pressure at the aerobic or anaerobic threshold. The endurance athletes with EIAH may require a therapeutic intervention to at least prevent extensive stiffening of the heart muscle and exercise-induced cardiac fatigue.

  5. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    Science.gov (United States)

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  6. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  7. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  8. Molecular and cellular characterization of cardiac overload-induced hypertrophy and failure

    NARCIS (Netherlands)

    Umar, Soban

    2009-01-01

    In neonatal rat ventricular cardiomyocytes (NRVCs), we activated integrins by RGD to test whether integrin stimulation produced hypertrophy. Effect of RGD was compared with pro-hypertrophic effects of phenylephrine (chapter 2). Ventricular failure is associated with disturbed collagen turnover.

  9. Association of myocardial cell necrosis with experimental cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N W; Cameron, A J.V.

    1979-01-01

    Cardiac hypertrophy was induced in rabbits by injecting thyroxime or isoprenaline, or by surgically constricting the abdominal aorta. An increase in heart weight was associated with a change in the ratios of bound to free forms of five lysosomal enzymes, a change in serum creatine phosphokinase and lactate dehydrogenase, and a change in the morphology of the myocardial cells. Isoprenaline treatment for 5 days induced a maximal change in heart weight, in the ratio of lysosomal enzymes, and in the serum enzymes. Thyroxine treatment was required for 15 days before maximal changes in heart weight, ratio, and serum enzymes were observed. In contrast, coarctation of the aorta caused a progressive change in heart weight, in the ratio of lysosomal enzymes, and in serum enzymes. These results suggest that necrosis of the myocardial cells does indeed accompany cardiac hypertrophy. It was further observed that autophagosomes, degenerating mitochondria in the myocardial cells during the induction of cardiac hypertrophy, and myofibril lysis were found, all of which confirms the suggestion of myocardial cell necrosis in the experimentally enlarged heart.

  10. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    Science.gov (United States)

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  11. TNF-α as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload

    International Nuclear Information System (INIS)

    Zhang Ming; Xu Yanjun; Saini, Harjot K.; Turan, Belma; Liu, Peter P.; Dhalla, Naranjan S.

    2005-01-01

    TNF-α has been shown to be involved in cardiac dysfunction during ischemia/reperfusion injury; however, no information regarding the status of TNF-α production in myocardial injury due to intracellular Ca 2+ -overload is available in the literature. The intracellular Ca 2+ -overload was induced in the isolated rat hearts subjected to 5 min Ca 2+ -depletion and 30 min Ca 2+ -repletion (Ca 2+ -paradox). The Ca 2+ -paradox hearts exhibited a dramatic depression in left ventricular developed pressure, a marked elevation in left ventricular end diastolic pressure, and more than a 4-fold increase in TNF-α content. The ratio of cytosolic to homogenate nuclear factor-κB (NFκB) was decreased whereas the ratio of phospho-NFκB to total NFκB was increased in the Ca 2+ -paradox hearts. All these changes due to Ca 2+ -paradox were significantly attenuated upon treating the hearts with 100 μM pentoxifylline. These results suggest that activation of NFκB and increased production of TNF-α may play an important role in cardiac injury due to intracellular Ca 2+ -overload

  12. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Science.gov (United States)

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  14. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  15. Possible role of rivaroxaban in attenuating pressure-overload-induced atrial fibrosis and fibrillation.

    Science.gov (United States)

    Kondo, Hidekazu; Abe, Ichitaro; Fukui, Akira; Saito, Shotaro; Miyoshi, Miho; Aoki, Kohei; Shinohara, Tetsuji; Teshima, Yasushi; Yufu, Kunio; Takahashi, Naohiko

    2018-03-01

    Coagulation factor Xa (FXa) promotes thrombus formation and exacerbates inflammation via activation of protease-activated receptor (PAR)-2. We tested the hypothesis of whether administration of direct oral anticoagulant, rivaroxaban, would attenuate transverse aortic constriction (TAC)-induced atrial inflammatory fibrosis and vulnerability to atrial fibrillation (AF) in mice. Ten-week-old male CL57/B6 mice were divided into a sham-operation (CNT) group and TAC-surgery group. These two groups were then subdivided into vehicle (VEH) and rivaroxaban (RVX) treatment (30μg/g/day) groups. We assessed PAR-2 expression in response to TAC-related stimulation using rat cultured cells. TAC-induced left atrial thrombus formation was not observed in the TAC-RVX group. Cardiac PAR-2 upregulation was observed in both TAC groups. In the quantitative analysis of mRNA levels, cardiac PAR-2 upregulation was attenuated in the TAC-RVX group compared to TAC-VEH group. In histological evaluation, the TAC-VEH group showed cardiac inhomogeneous interstitial fibrosis and abundant infiltration of macrophages, which were attenuated by RVX administration. Electrophysiological examination revealed that AF duration in the TAC group was shortened by RVX administration. TAC-induced protein overexpression of monocyte chemoattractant protein-1, and mRNA overexpression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the left atrium was suppressed by RVX treatment. In cardiac fibroblasts, persistent intermittent stretch upregulated PAR-2, which was suppressed by RVX pre-incubation. These observations demonstrate that coagulation FXa inhibitor probably has a cardioprotective effect against pressure-overload-induced atrial remodeling. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  16. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H......-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H...

  17. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    Science.gov (United States)

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling.

    Science.gov (United States)

    Hu, L W; Benvenuti, L A; Liberti, E A; Carneiro-Ramos, M S; Barreto-Chaves, M L M

    2003-12-01

    The present study assessed the possible involvement of the renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) in thyroxine (T4)-induced cardiac hypertrophy. Hemodynamic parameters, heart weight (HW), ratio of HW to body weight (HW/BW), and myocyte width were evaluated in absence of thyroid hormone (hypothyroidism) and after T4 administration. Male Wistar rats were used. Some were subjected to thyroidectomies, whereas hyperthyroidism was induced in others via daily intraperitoneal injection of T4 (25 or 100 microg x 100 g BW(-1) x day(-1)) for 7 days. In some cases, T4 administration was combined with the angiotensin I-converting enzyme inhibitor enalapril (Ena), with the angiotensin type 1 (AT1) receptor blocker losartan (Los) or with the beta-adrenergic blocker propanolol (Prop). Hemodynamics and morphology were then evaluated. Systolic blood pressure (SBP) was not altered by administration of either T4 alone or T4 in combination with the specific inhibitors. However, SBP decreased significantly in hypothyroid rats. An increased heart rate was seen after administration of either T4 alone or T4 in combination with either Los or Ena. Although the higher dose of T4 significantly increased HW, HW/BW increased in both T4-treated groups. Ena and Prop inhibited the increase in HW or HW/BW in hyperthyroid rats. Morphologically, both T4 dose levels significantly increased myocyte width, an occurrence prevented by RAS or SNS blockers. There was a good correlation between changes in HW/BW and myocyte width. These results indicate that T4-induced cardiac hypertrophy is associated with both the SNS and the RAS.

  19. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  20. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Science.gov (United States)

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  1. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  2. Correlation between Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Satoshi Nakada

    Full Text Available External loads applied to skeletal muscle cause increases in the protein translation rate, which leads to muscle hypertrophy. Although some studies have demonstrated that increases in the capacity and efficiency of translation are involved in this process, it remains unclear how these two factors are related to the magnitude of muscle hypertrophy. The present study aimed to clarify the roles played by the capacity and efficiency of translation in muscle hypertrophy. We used an improved synergist ablation in which the magnitude of compensatory hypertrophy could be controlled by partial removal of synergist muscles. Male rats were assigned to four groups in which the plantaris muscle was unilaterally subjected to weak (WK, moderate (MO, middle (MI, and strong (ST overloading by four types of synergist ablation. Fourteen days after surgery, the weight of the plantaris muscle per body weight increased by 8%, 22%, 32% and 45%, in the WK, MO, MI and ST groups, respectively. Five days after surgery, 18+28S rRNA content (an indicator of translational capacity increased with increasing overload, with increases of 1.8-fold (MO, 2.2-fold (MI, and 2.5-fold (ST, respectively, relative to non-overloaded muscle (NL in the WK group. rRNA content showed a strong correlation with relative muscle weight measured 14 days after surgery (r = 0.98. The phosphorylated form of p70S6K (a positive regulator of translational efficiency showed a marked increase in the MO group, but no further increase was observed with further increase in overload (increases of 22.6-fold (MO, 17.4-fold (MI, and 18.2-fold (ST, respectively, relative to NL in the WK group. These results indicate that increases in ribosome biogenesis at the early phase of overloading are strongly dependent on the amount of overloading, and may play an important role in increasing the translational capacity for further gain of muscular size.

  3. Correlation between Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal Muscle.

    Science.gov (United States)

    Nakada, Satoshi; Ogasawara, Riki; Kawada, Shigeo; Maekawa, Takahiro; Ishii, Naokata

    2016-01-01

    External loads applied to skeletal muscle cause increases in the protein translation rate, which leads to muscle hypertrophy. Although some studies have demonstrated that increases in the capacity and efficiency of translation are involved in this process, it remains unclear how these two factors are related to the magnitude of muscle hypertrophy. The present study aimed to clarify the roles played by the capacity and efficiency of translation in muscle hypertrophy. We used an improved synergist ablation in which the magnitude of compensatory hypertrophy could be controlled by partial removal of synergist muscles. Male rats were assigned to four groups in which the plantaris muscle was unilaterally subjected to weak (WK), moderate (MO), middle (MI), and strong (ST) overloading by four types of synergist ablation. Fourteen days after surgery, the weight of the plantaris muscle per body weight increased by 8%, 22%, 32% and 45%, in the WK, MO, MI and ST groups, respectively. Five days after surgery, 18+28S rRNA content (an indicator of translational capacity) increased with increasing overload, with increases of 1.8-fold (MO), 2.2-fold (MI), and 2.5-fold (ST), respectively, relative to non-overloaded muscle (NL) in the WK group. rRNA content showed a strong correlation with relative muscle weight measured 14 days after surgery (r = 0.98). The phosphorylated form of p70S6K (a positive regulator of translational efficiency) showed a marked increase in the MO group, but no further increase was observed with further increase in overload (increases of 22.6-fold (MO), 17.4-fold (MI), and 18.2-fold (ST), respectively, relative to NL in the WK group). These results indicate that increases in ribosome biogenesis at the early phase of overloading are strongly dependent on the amount of overloading, and may play an important role in increasing the translational capacity for further gain of muscular size.

  4. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  5. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism

    OpenAIRE

    KOBORI, HIROYUKI; ICHIHARA, ATSUHIRO; SUZUKI, HIROMICHI; TAKENAKA, TSUNEO; MIYASHITA, YUTAKA; HAYASHI, MATSUHIKO; SARUTA, TAKAO

    1997-01-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was onl...

  6. Obesity-associated cardiac pathogenesis in broiler breeder hens: Pathological adaption of cardiac hypertrophy.

    Science.gov (United States)

    Chen, C Y; Lin, H Y; Chen, Y W; Ko, Y J; Liu, Y J; Chen, Y H; Walzem, R L; Chen, S E

    2017-07-01

    Broiler hens consuming feed to appetite (ad libitum; AL) show increased mortality. Feed restriction (R) typically improves reproductive performance and livability of hens. Rapidly growing broilers can exhibit increased mortality due to cardiac insufficiency but it is unknown whether the increased mortality of non-R broiler hens is also due to cardiac compromise. To assess cardiac growth and physiology in fully mature birds, 45-week-old hens were either continued on R rations or assigned to AL feeding for 7 or 21 days. AL hens exhibited increased bodyweight, adiposity, absolute and relative heart weight, ventricular hypertrophy, and cardiac protein/DNA ratio by d 21 (P hens (P Hens allowed AL feeding for 70 d exhibited a higher incidence of mortality (40% vs. 10%) in association with ascites, pericardial effusion, and ventricle dilation. A higher incidence of irregular ECG patterns and rhythmicity consistent with persistently elevated systolic blood pressure and ventricle fibrosis were observed in AL hens (P feeding in broiler hens results in maladaptive cardiac hypertrophy that progresses to overt pathogenesis in contractility and thereby increases mortality. Feed restriction provides clear physiological benefit to heart function of adult broiler hens. © 2017 Poultry Science Association Inc.

  7. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  8. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  9. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Xiang-Rong Zuo

    Full Text Available BACKGROUND: Most of the deaths among patients with severe pulmonary arterial hypertension (PAH are caused by progressive right ventricular (RV pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT. RV systolic pressure (RVSP was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD reversed these beneficial effects of nicorandil in MCT-injected rats. CONCLUSIONS/SIGNIFICANCE: Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K(+ (mitoK(ATP channels. The use of a mitoK(ATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV

  10. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).

    Science.gov (United States)

    Slay, Christopher E; Enok, Sanne; Hicks, James W; Wang, Tobias

    2014-05-15

    Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python bivittatus). Recent data suggest postprandial cardiac hypertrophy in P. bivittatus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here, we hypothesized that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than those of fasted controls, which, coupled with a 71% increase in mean arterial pressure, suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than those of fasted controls and 28% larger than in fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The 'low O2 signal' stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics. © 2014. Published by The Company of Biologists Ltd.

  11. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Huang, Zhan-Peng; Liu, Jianming; Chen, Jinghai; Ding, Jian; Fonseca, Renata Inzinna; Barreto-Chaves, Maria Luiza; Donato, Jose; Hu, Xiaoyun; Wang, Da-Zhi

    2017-12-15

    Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure.

    Directory of Open Access Journals (Sweden)

    Fernanda P Prado

    Full Text Available Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF. Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps. Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH and 30% hypertrophic+dilated hearts (HD. Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible

  13. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression.

    Science.gov (United States)

    Khatua, Tarak N; Borkar, Roshan M; Mohammed, Soheb A; Dinda, Amit K; Srinivas, R; Banerjee, Sanjay K

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg -1 day -1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na + /K + -ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na + /K + -ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na + /K + -ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na + /K + -ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na + /K + -ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.

  14. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    Science.gov (United States)

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  15. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Marc van Bilsen

    Full Text Available BACKGROUND: Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. METHODS: Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII for 4 wks to induce mild hypertension (n = 9-10 per group. Left ventricular (LV function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immunohistochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. RESULTS: Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01 and cardiomyocyte size (+53% and +31%, p<0.001. This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK, while accumulation of Advanced Glycation End products (AGEs and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. CONCLUSIONS: Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.

  16. Changes in right ventricular function assessed by echocardiography in dog models of mild RV pressure overload.

    Science.gov (United States)

    Morita, Tomoya; Nakamura, Kensuke; Osuga, Tatsuyuki; Yokoyama, Nozomu; Morishita, Keitaro; Sasaki, Noboru; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2017-07-01

    The assessment of hemodynamic change by echocardiography is clinically useful in patients with pulmonary hypertension. Recently, mild elevation of the mean pulmonary arterial pressure (PAP) has been shown to be associated with increased mortality. However, changes in the echocardiographic indices of right ventricular (RV) function are still unknown. The objective of this study was to validate the relationship between echocardiographic indices of RV function and right heart catheterization variables under a mild RV pressure overload condition. Echocardiography and right heart catheterization were performed in dog models of mild RV pressure overload induced by thromboxane A 2 analog (U46619) (n=7). The mean PAP was mildly increased (19.3±1.1 mm Hg), and the cardiac index was decreased. Most echocardiographic indices of RV function were significantly impaired even under a mild RV pressure overload condition. Multivariate analysis revealed that the RV free wall longitudinal strain (RVLS), standard deviation of the time-to-peak longitudinal strain of RV six segments (RV-SD) by speckle-tracking echocardiography, and Tei index were independent echocardiographic predictors of the mean PAP (free wall RVLS, β=-0.60, P<.001; RV-SD, β=0.40, P=.011), pulmonary vascular resistance (free wall RVLS, β=-0.39, P=.020; RV-SD, β=0.47, P=.0086; Tei index, β=0.34, P=.047), and cardiac index (Tei index, β=-0.65, P<.001). Free wall RVLS, RV-SD, and Tei index are useful for assessing the hemodynamic change under a mild RV pressure overload condition. © 2017, Wiley Periodicals, Inc.

  17. Effects of induced Na+/Ca2+ exchanger overexpression on the spatial distribution of L-type Ca2+ channels and junctophilin-2 in pressure-overloaded hearts.

    Science.gov (United States)

    Ujihara, Yoshihiro; Mohri, Satoshi; Katanosaka, Yuki

    2016-11-25

    The Na + /Ca 2+ exchanger 1 (NCX1) is an essential Ca 2+ efflux system in cardiomyocytes. Although NCX1 is distributed throughout the sarcolemma, a subpopulation of NCX1 is localized to transverse (T)-tubules. There is growing evidence that T-tubule disorganization is a causal event that shifts the transition from hypertrophy to heart failure (HF). However, the detailed molecular mechanisms have not been clarified. Previously, we showed that induced NCX1 expression in pressure-overloaded hearts attenuates defective excitation-contraction coupling and HF progression. Here, we examined the effects of induced NCX1 overexpression on the spatial distribution of L-type Ca 2+ channels (LTCCs) and junctophilin-2 (JP2), a structural protein that connects the T-tubule and sarcoplasmic reticulum membrane, in pressure-overloaded hearts. Quantitative analysis showed that the regularity of NCX1 localization was significantly decreased at 8 weeks after transverse aortic constriction (TAC)-surgery; however, T-tubule organization and the regularities of LTCC and JP2 immunofluorescent signals were maintained at this time point. These observations demonstrated that release of NCX1 from the T-tubule area occurred before the onset of T-tubule disorganization and LTCC and JP2 mislocalization. Moreover, induced NCX1 overexpression at 8 weeks post-TAC not only recovered NCX1 regularity but also prevented the decrease in LTCC and JP2 regularities at 16 weeks post-TAC. These results suggested that NCX1 may play an important role in the proper spatial distribution of LTCC and JP2 in T-tubules in the context of pressure-overloading. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Wu

    Full Text Available Aortocaval fistula (AV in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX rats.Adult male Sprague-Dawley (SD rats were divided into Sham (n = 10, UNX (right kidney remove, n = 10, AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18 and UNX+AV (AV at one week after UNX, n = 22, respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.

  19. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    OpenAIRE

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats...

  20. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  1. Role of atrial endothelial cells in the development of atrial fibrosis and fibrillation in response to pressure overload.

    Science.gov (United States)

    Kume, Osamu; Teshima, Yasushi; Abe, Ichitaro; Ikebe, Yuki; Oniki, Takahiro; Kondo, Hidekazu; Saito, Shotaro; Fukui, Akira; Yufu, Kunio; Miura, Masahiro; Shimada, Tatsuo; Takahashi, Naohiko

    Monocyte chemoattractant protein-1 (MCP-1)-mediated inflammatory mechanisms have been shown to play a crucial role in atrial fibrosis induced by pressure overload. In the present study, we investigated whether left atrial endothelial cells would quickly respond structurally and functionally to pressure overload to trigger atrial fibrosis and fibrillation. Six-week-old male Sprague-Dawley rats underwent suprarenal abdominal aortic constriction (AAC) or a sham operation. By day 3 after surgery, macrophages were observed to infiltrate into the endocardium. The expression of MCP-1 and E-selectin in atrial endothelium and the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and ED1 in left atrial tissue were enhanced. Atrial endothelial cells were irregularly hypertrophied with the disarrangement of lines of cells by scanning electron microscopy. Various-sized gap formations appeared along the border in atrial endothelial cells, and several macrophages were located just in the endothelial gap. Along with the development of heterogeneous interstitial fibrosis, interatrial conduction time was prolonged and the inducibility of atrial fibrillation by programmed extrastimuli was increased in the AAC rats compared to the sham-operated rats. Atrial endothelium responds rapidly to pressure overload by expressing adhesion molecules and MCP-1, which induce macrophage infiltration into the atrial tissues. These processes could be an initial step in the development of atrial remodeling for atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    mmHg, p<0.05 and ejection fraction (82%±3% vs 60%±5%, p<0.05. Treatment with telmisartan provided a comparable level of protection as compared with edaravone in all the parameters measured. Taken together, edaravone treatment ameliorates cardiac fibrosis and improves left ventricular function in the pressure overload rat model, potentially via suppressing the AT1 receptor-mediated signaling pathways. These data indicate that edaravone might be selected in combination with other existing drugs in preventing progression of cardiac dysfunction in heart failure. Keywords: angiotensin II receptor, cardiac fibrosis, cardiac function, edaravone, heart failure

  3. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S.; Krause, T.; van Geel, P. P.; Willenbrock, R.; Pagel, I.; Pinto, Y. M.; Buikema, H.; van Gilst, W. H.; Lindschau, C.; Paul, M.; Inagami, T.; Ganten, D.; Urata, H.

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT1 receptors. However, the role of myocardial AT1 receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  4. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S; van Geel, PP; Willenbrock, R; Pagel, [No Value; Pinto, YM; Buikema, H; van Gilst, WH; Lindschau, C; Paul, M; Inagami, T; Ganten, D; Urata, H

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT(1) receptors. However, the role of myocardial AT(1) receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  5. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, Kristian; Okin, Peter M; Olsen, Michael H

    2007-01-01

    BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction in Hypertens......BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction...... risk of SCD independently of treatment modality, blood pressure reduction, prevalent coronary heart disease, and other cardiovascular risk factors in hypertensive patients with LV hypertrophy. Udgivelsesdato: 2007-Aug-14...

  6. Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner

    Science.gov (United States)

    Stauffer, Brian L.; Dockstader, Karen; Russell, Gloria; Hijmans, Jamie; Walker, Lisa; Cecil, Mackenzie; Demos-Davies, Kimberly; Medway, Allen; McKinsey, Timothy A.; Sucharov, Carmen C.

    2015-01-01

    YY1 can activate or repress transcription of various genes. In cardiac myocytes in culture YY1 has been shown to regulate expression of several genes involved in myocyte pathology. YY1 can also acutely protect the heart against detrimental changes in gene expression. In this study we show that cardiac over-expression of YY1 induces pathologic cardiac hypertrophy in male mice, measured by changes in gene expression and lower ejection fraction/fractional shortening. In contrast, female animals are protected against pathologic gene expression changes and cardiac dysfunction. Furthermore, we show that YY1 regulates, in a sex-specific manner, the expression of mammalian enable (Mena), a factor that regulates cytoskeletal actin dynamics and whose expression is increased in several models of cardiac pathology, and that Mena expression in humans with heart failure is sex-dependent. Finally, we show that sex differences in YY1 expression are also observed in human heart failure. In summary, this is the first work to show that YY1 has a sex-specific effect in the regulation of cardiac pathology. PMID:25935483

  7. Lack of chemokine signaling through CXCR5 causes increased mortality, ventricular dilatation and deranged matrix during cardiac pressure overload.

    Directory of Open Access Journals (Sweden)

    Anne Waehre

    Full Text Available RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF, but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/- displayed increased mortality during a follow-up of 80 days after aortic banding (AB. Following three weeks of AB, CXCR5(-/- developed significant left ventricular (LV dilatation compared to wild type (WT mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs were significantly reduced in AB CXCR5(-/- compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/- mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.

  8. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs.

    Directory of Open Access Journals (Sweden)

    Jihan Xia

    Full Text Available A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01, insulin level (4.60-fold, P<0.01, heart weight (1.82-fold, P<0.05 and heart volume (1.60-fold, P<0.05 compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change, including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.

  9. Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2007-02-01

    Full Text Available Pressure overload-induced hypertrophy is a key step leading to heart failure. The Ca(2+-induced Ca(2+ release (CICR process that governs cardiac contractility is defective in hypertrophy/heart failure, but the molecular mechanisms remain elusive. To examine the intermolecular aspects of CICR during hypertrophy, we utilized loose-patch confocal imaging to visualize the signaling between a single L-type Ca(2+ channel (LCC and ryanodine receptors (RyRs in aortic stenosis rat models of compensated (CHT and decompensated (DHT hypertrophy. We found that the LCC-RyR intermolecular coupling showed a 49% prolongation in coupling latency, a 47% decrease in chance of hit, and a 72% increase in chance of miss in DHT, demonstrating a state of "intermolecular failure." Unexpectedly, these modifications also occurred robustly in CHT due at least partially to decreased expression of junctophilin, indicating that intermolecular failure occurs prior to cellular manifestations. As a result, cell-wide Ca(2+ release, visualized as "Ca(2+ spikes," became desynchronized, which contrasted sharply with unaltered spike integrals and whole-cell Ca(2+ transients in CHT. These data suggested that, within a certain limit, termed the "stability margin," mild intermolecular failure does not damage the cellular integrity of excitation-contraction coupling. Only when the modification steps beyond the stability margin does global failure occur. The discovery of "hidden" intermolecular failure in CHT has important clinical implications.

  10. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  11. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  12. Amlodipine decreases fibrosis and cardiac hypertrophy in spontaneously hypertensive rats: persistent effects after withdrawal.

    Science.gov (United States)

    Sevilla, María A; Voces, Felipe; Carrón, Rosalía; Guerrero, Estela I; Ardanaz, Noelia; San Román, Luis; Arévalo, Miguel A; Montero, María J

    2004-07-02

    Our objective was to examine the effect of chronic treatment with amlodipine on blood pressure, left ventricular hypertrophy, and fibrosis in spontaneously hypertensive rats and the persistence of such an effect after drug withdrawal. We investigated the effects of treatment with 2, 8 and 20 mg/kg/day of amlodipine given orally for six months and at three months after drug withdrawal. Systolic blood pressure was measured using the tail-cuff method. At the end of the study period, the heart was excised, the left ventricle was isolated, and the left ventricle weight/body weight ratio was calculated as a left ventricular hypertrophy index. Fibrosis, expressed as collagen volume fraction, was evaluated using an automated image-analysis system on sections stained with Sirius red. Age-matched untreated Wistar-Kyoto and SHR were used as normotensive and hypertensive controls, respectively. Systolic blood pressure was reduced in the treated SHR in a dose-dependent way and after amlodipine withdrawal it increased progressively, without reaching the values of the hypertensive controls. Cardiac hypertrophy was reduced by 8 and 20 mg/kg/day amlodipine, but when treatment was withdrawn only the group treated with 8 mg/kg/day maintained significant differences versus the hypertensive controls. All three doses of amlodipine reduced cardiac fibrosis and this regression persisted with the two highest doses after three months without treatment. We concluded that antihypertensive treatment with amlodipine is accompanied by a reduction in left ventricular hypertrophy and regression in collagen deposition. Treatment was more effective in preventing fibrosis than in preventing ventricular hypertrophy after drug withdrawal. Copyright 2004 Elsevier Inc.

  13. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  14. Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

    OpenAIRE

    Kohli, Shrey; Ahuja, Suchit; Rani, Vibha

    2011-01-01

    Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. Thi...

  15. The role of adenosine in preconditioning by brief pressure overload in rats.

    Science.gov (United States)

    Huang, Cheng-Hsiung; Tsai, Shen-Kou; Chiang, Shu-Chiung; Lai, Chang-Chi; Weng, Zen-Chung

    2015-08-01

    Brief pressure overload of the left ventricle reduced myocardial infarct (MI) size in rabbits has been previously reported. Its effects in other species are not known. This study investigates effects of pressure overload and the role of adenosine in rats in this study. MI was induced by 40-minute occlusion of the left anterior descending coronary artery followed by 3-hour reperfusion. MI size was determined by triphenyl tetrazolium chloride staining. Brief pressure overload was induced by two 10-minute episodes of partial snaring of the ascending aorta. Systolic left ventricular pressure was raised 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions. The MI size (mean ± standard deviation), expressed as percentage of area at risk, was significantly reduced in the pressure overload group as well as in the ischemic preconditioning group (17.4 ± 3.0% and 18.2 ± 1.5% vs. 26.6 ± 2.4% in the control group, p overload and ischemic preconditioning (18.3 ± 1.5% and 18.2 ± 2.0%, respectively, p overload of the left ventricle preconditioned rat myocardium against infarction. Because SPT did not significantly alter MI size reduction, our results did not support a role of adenosine in preconditioning by pressure overload in rats. Copyright © 2013. Published by Elsevier B.V.

  16. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  17. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  18. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  19. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Farah

    Full Text Available The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group: Sedentary control (SC, Trained control (TC, Sedentary Fructose (SF and Trained Fructose (TF. Training was performed on a treadmill (8 weeks, 40-60% of maximum exercise test. Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT weight, in myocardial performance index (MPI (SF:0.42±0.04 vs. SC:0.24±0.05 and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox. The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04, arterial pressure (118±2mmHg, sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training.

  20. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats

    Science.gov (United States)

    Farah, Daniela; Nunes, Jonas; Sartori, Michelle; Dias, Danielle da Silva; Sirvente, Raquel; Silva, Maikon B.; Fiorino, Patrícia; Morris, Mariana; Llesuy, Susana; Farah, Vera; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2016-01-01

    The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group): Sedentary control (SC), Trained control (TC), Sedentary Fructose (SF) and Trained Fructose (TF). Training was performed on a treadmill (8 weeks, 40–60% of maximum exercise test). Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV) were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT) weight, in myocardial performance index (MPI) (SF:0.42±0.04 vs. SC:0.24±0.05) and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg) associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP)- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox). The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04), arterial pressure (118±2mmHg), sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training. PMID:27930685

  1. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    International Nuclear Information System (INIS)

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K.

    2006-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET A receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET A receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and β-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET A receptor as primary determinants of hypertension and cardiac pathology in AhR null mice

  2. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Abhro Jyoti; Stanely Mainzen Prince, P

    2013-10-01

    The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy ...

    African Journals Online (AJOL)

    Purpose: This study was carried out to investigate the role of hypoxia-inducible factor (HIF) in diabetic cardiomyopathy in vitro. Methods: Hypoxia was induced chemically in H9C2 cells (cardiac hypertrophy model), and the cells were treated with phenylephrine (PE), deferoxamine (DFO), PE + DFO, and HIF-1α siRNA under ...

  4. Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats

    Directory of Open Access Journals (Sweden)

    Aline Cristina Piratello

    2010-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated showed an increase on mean blood pressure compared with normotensive ones (controls and denervated. Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.

  5. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    Science.gov (United States)

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction

    Science.gov (United States)

    Thuy, Tran Duong; Phan, Nam Nhut; Wang, Chih-Yang; Yu, Han-Gang; Wang, Shu-Yin; Huang, Pung-Ling; Do, Yi-Yin; Lin, Yen-Chang

    2017-01-01

    Diabetes is a risk factor that increases the occurrence and severity of cardiovascular events. Cardiovascular complications are the leading cause of mortality of 75% of patients with diabetes >40 years old. Sesamin, the bioactive compound extracted from Sesamum indicum, is a natural compound that has diverse beneficial effects on hypoglycemia and reducing cholesterol. The aim of this study is to investigate sesamin effects to diabetes-inducing cardiac hypertrophy. In the present study bioinformatics analysis demonstrated cardiac hypertrophy signaling may be the most important pathway for upregulating genes in sesamin-treated groups. To verify the bioinformatics prediction, sesamin was used as the main bioactive compound to attenuate the impact of diabetes induced by streptozotocin (STZ) on cardiac function in a rat model. The results revealed that oral administration of sesamin for 4 weeks (100 and 200 mg/kg body weight) marginally improved blood glucose levels, body weight and significantly ameliorated the effects on heart rate and blood pressure in rats with type 1 diabetes relative to control rats. The QT interval of sesamin was also reduced relative to the control group. The findings indicated that sesamin has potential cardioprotective effects in the STZ-induced diabetes model. This suggested that this can be used as a novel treatment for patients with diabetes with cardiac dysfunction complication. PMID:28358428

  7. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-07-01

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress. Georg Thieme Verlag KG Stuttgart · New York.

  8. Experimental and clinical study of cardiac hypertrophy by thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Torii, Yukio

    1983-01-01

    I studied experimentally the myocardial uptake of 201 Tl in cardiac hypertrophy in rat, and clinically evaluated cardiac shape and dimension in the patients with various types of cardiac hypertrophy. Experimentally, both myocardial blood flow (MBF) and Tl uptake were increased with cardiac weight. There were negative correlations between the extraction fraction and MBF. Tl uptake in Hypertrophy is not always dependent on MBF and affected by the altered metabolism of hypertrophied myocardium. Clinical study was performed in 29 normal subjects and in 90 patients with heart disease. The measurements of left ventricular (LV) size by Tl scintigraphy were well correlated with them by echocardiography. Aortic stenosis and hypertensive heart disease showed thick wall and spherical shape. Both mitral (MR) and aortic (AR) regurgitation showed ventricular dilatation, spherical shape (in chronic MR) and ellipsoid shape (in acute MR and in AR). Decreased ventricular size but normal shape was observed in mitral stenosis and cor pulmonale. Hypertrophic cardiomyopathy showed thick wall with asymmetric septal hypertrophy, while congestive cardiomyopathy showed thin wall with marked ventricular dilatation and spherical shape. I conclude that heart disease has characteristic figures in dimension and shape which may be reflecting cardiac performance or compensating for the load to the heart, and that 201 Tl scintigraphy is useful evaluating cardiac morphology as well as in diagnosing myocardial ischemia. (J.P.N.)

  9. Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Walker LeeAnn

    2002-01-01

    Full Text Available Abstract Background Iron deficiency (ID results in ventricular hypertrophy, believed to involve sympathetic stimulation. We hypothesized that with ID 1 intravenous norepinephrine would alter heart rate (HR and contractility, 2 abdominal aorta would be larger and more distensible, and 3 the beta-blocker propanolol would reduce hypertrophy. Methods 1 30 CD rats were fed an ID or replete diet for 1 week or 1 month. Norepinephrine was infused via jugular vein; pressure was monitored at carotid artery. Saline infusions were used as a control. The pressure trace was analyzed for HR, contractility, systolic and diastolic pressures. 2 Abdominal aorta catheters inflated the aorta, while digital microscopic images were recorded at stepwise pressures to measure arterial diameter and distensibility. 3 An additional 10 rats (5 ID, 5 control were given a daily injection of propanolol or saline. After 1 month, the hearts were excised and weighed. Results Enhanced contractility, but not HR, was associated with ID hypertrophic hearts. Systolic and diastolic blood pressures were consistent with an increase in arterial diameter associated with ID. Aortic diameter at 100 mmHg and distensibility were increased with ID. Propanolol was associated with an increase in heart to body mass ratio. Conclusions ID cardiac hypertrophy results in an increased inotropic, but not chronotropic response to the sympathetic neurotransmitter, norepinephrine. Increased aortic diameter is consistent with a flow-dependent vascular remodeling; increased distensibility may reflect decreased vascular collagen content. The failure of propanolol to prevent hypertrophy suggests that ID hypertrophy is not mediated via beta-adrenergic neurotransmission.

  10. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  11. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.

  12. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes.

    Science.gov (United States)

    Karagiannis, Tom C; Lin, Ann J E; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-10-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer.

  13. Splenectomy exacerbates atrial inflammatory fibrosis and vulnerability to atrial fibrillation induced by pressure overload in rats: Possible role of spleen-derived interleukin-10.

    Science.gov (United States)

    Kondo, Hidekazu; Takahashi, Naohiko; Gotoh, Koro; Fukui, Akira; Saito, Shotaro; Aoki, Kohei; Kume, Osamu; Shinohara, Tetsuji; Teshima, Yasushi; Saikawa, Tetsunori

    2016-01-01

    The spleen is important for cardiac remodeling induced by myocardial infarction. However, the role of the spleen in inflammatory atrial fibrosis induced by pressure overload is unknown. The purpose of this study was to investigate whether splenectomy (SPX) attenuates or exacerbates pressure overload-induced atrial inflammatory fibrosis and vulnerability to atrial fibrillation (AF) in rats. Male Sprague-Dawley rats (6 weeks old) were divided into Sham+Sham, Sham+SPX, abdominal aortic constriction (AAC)+Sham, and AAC+SPX groups, and were evaluated for inflammation, fibrosis, and AF on days 2, 4, 14, and 28. On day 4, an AAC-induced rise in interleukin-10 (IL-10) level was observed in the spleen, serum, and left atrium (LA), with SPX showing inhibitory effects in the latter 2 instances. In addition, AAC-induced M2 macrophage recruitment into the LA was decreased by SPX, as determined by immunofluorescence labeling (P <.05). On day 28, AAC-induced heterogeneous interstitial fibrosis of the LA was enhanced by SPX (P <.05). Electrophysiologic recordings revealed that the duration of AF and prolongation of interatrial conduction time induced by AAC were increased by SPX (P < .01 and P <.05, respectively). Furthermore, in the AAC+SPX group, the number of macrophages infiltrating into the LA on day 2 was marginal, but increased on day 28 relative to the AAC+Sham group. IL-10 administration attenuated the AAC-induced atrial remodeling that was aggravated by SPX. The study results suggest that SPX exacerbates AAC-induced inflammatory atrial fibrosis and increases vulnerability to AF after 4 weeks, likely because of depletion of spleen-derived IL-10. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Transient upregulation of protein kinase C in pressure-overloaded neonatal rat myocardium

    Czech Academy of Sciences Publication Activity Database

    Hamplová, B.; Novák, F.; Kolář, František; Nováková, O.

    2010-01-01

    Roč. 59, č. 1 (2010), s. 25-33 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : protein kinase C * cardiac development * pressure overload Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  15. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  16. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  17. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts

    Directory of Open Access Journals (Sweden)

    Alexandre Lewalle

    2018-02-01

    Full Text Available The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks. Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%, rather than on anatomical features (average decrease ~60%, to achieve compensation of pump function in the early phase of heart failure.

  18. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ogata

    Full Text Available Chronic left ventricular (LV pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts.Chronic LV pressure overload was induced with transverse aortic constriction (TAC in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22. Animals in the control groups received the sham treatment without LIPUS (n = 23. At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05. Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05 and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05. No adverse effect related to the LIPUS therapy was noted.These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  19. Myocardial uptake of thallium-201 in rat with cardiac hypertrophy

    International Nuclear Information System (INIS)

    Torii, Yukio; Adachi, Haruhiko; Kizu, Akira; Nakagawa, Masao; Ijichi, Hamao

    1985-01-01

    The thallium-201 (TL) has been used in order to diagnose myocardial infarction and ischemia. Although it is well known that TL distributes in the myocardium in proportion to the distribution of coronary blood flow, the biological property of TL in the loaded myocardium remains unclear. We studied the myocardial uptake of TL in rat with cardiac hypertrophy. Experiments were performed in 30 anesthetized rats devided into 3 groups; control group (C,N=14), hypertrophy group (H,N=6) and diltiazem group (D, 0.3 mg/kg/min. IV. N=10). Cardiac hypertrophy was produced with the banding of the ascending aorta. Myocardial blood flow (MBF) was measured by microspheres labeled with Strontium-85. Cardiac weight was increased in H, and both MBF and TL uptake were proportionally increased. MBF was negatively correlated with the extraction fraction in C (r=-0.71), in H (r=-0.66) and in D (r=-0.85), and this relationship in H was significantly different from it in C (p<0.05), but not in D. From these results, we concluded that TL uptake in H is not always dependant on MBF and affected by the altered metabolism of hypertrophied myocardium. (author)

  20. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

    Energy Technology Data Exchange (ETDEWEB)

    Guenancia, Charles [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Li, Na [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Hachet, Olivier [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Rigal, Eve [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cottin, Yves [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Dutartre, Patrick; Rochette, Luc [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Vergely, Catherine, E-mail: cvergely@u-bourgogne.fr [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France)

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran–iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran–iron (15 mg/kg) for 3 weeks (D0–D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6 mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran–iron (125–1000 μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+ 22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. - Highlights: • The effects of iron on cardiomyocytes were opposite to those on cancer cell lines. • In our model, iron overload did not potentiate anthracycline cardiotoxicity. • Chronic oxidative stress induced by iron could mitigate doxorubicin cardiotoxicity. • The role of iron in

  1. Exercise-induced arterial hypertension - an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes? [v1; ref status: indexed, http://f1000r.es/3b4

    Directory of Open Access Journals (Sweden)

    Roman Leischik

    2014-05-01

    Full Text Available Background: Exercise-induced arterial hypertension (EIAH leads to myocardial hypertrophy and is associated with a poor prognosis. EIAH might be related to the “cardiac fatigue” caused by endurance training. The goal of this study was to examine whether there is any relationship between EIAH and left ventricular hypertrophy in Ironman-triathletes. Methods: We used echocardiography and spiroergometry to determine the left ventricular mass (LVM, the aerobic/anaerobic thresholds and the steady-state blood pressure of 51 healthy male triathletes. The main inclusion criterion was the participation in at least one middle or long distance triathlon. Results: When comparing triathletes with LVM 220g there was a significant difference between blood pressure values (BP at the anaerobic threshold (185.2± 21.5 mmHg vs. 198.8 ±22.3 mmHg, p=0.037. The spiroergometric results were: maximum oxygen uptake (relative VO2max 57.3 ±7.5ml/min/kg vs. 59.8±9.5ml/min/kg (p=ns. Cut-point analysis for the relationship of BP >170 mmHg at the aerobic threshold and the probability of LVM >220g showed a sensitivity of 95.8%, a specificity of 33.3%, with a positive predictive value of 56.8 %, a good negative predictive value of 90%. The probability of LVM >220g increased with higher BP during exercise (OR: 1.027, 95% CI 1.002-1.052, p= 0.034 or with higher training volume (OR: 1.23, 95% CI 1.04 -1.47, p = 0.019. Echocardiography showed predominantly concentric remodelling, followed by concentric hypertrophy. Conclusion: Significant left ventricular hypertrophy with LVM >220g is associated with higher arterial blood pressure at the aerobic or anaerobic threshold. The endurance athletes with EIAH may require a therapeutic intervention to at least prevent extensive stiffening of the heart muscle and exercise-induced cardiac fatigue.

  2. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats

    Science.gov (United States)

    2014-01-01

    Background Heart failure with left ventricular (LV) hypertrophy is often associated with insulin resistance and inflammation. Recent studies have shown that dipeptidyl peptidase 4 (DPP4) inhibitors improve glucose metabolism and inflammatory status. We therefore evaluated whether vildagliptin, a DPP4 inhibitor, prevents LV hypertrophy and improves diastolic function in isoproterenol-treated rats. Methods Male Wistar rats received vehicle (n = 20), subcutaneous isoproterenol (2.4 mg/kg/day, n = 20) (ISO), subcutaneous isoproterenol (2.4 mg/kg/day + oral vildagliptin (30 mg/kg/day, n = 20) (ISO-VL), or vehicle + oral vildagliptin (30 mg/kg/day, n = 20) (vehicle-VL) for 7 days. Results Blood pressure was similar among the four groups, whereas LV hypertrophy was significantly decreased in the ISO-VL group compared with the ISO group (heart weight/body weight, vehicle: 3.2 ± 0.40, ISO: 4.43 ± 0.39, ISO-VL: 4.14 ± 0.29, vehicle-VL: 3.16 ± 0.16, p vildagliptin lowered the elevated LV end-diastolic pressure observed in the ISO group, but other parameters regarding LV diastolic function such as the decreased minimum dp/dt were not ameliorated in the ISO-VL group. Histological analysis showed that vildagliptin attenuated the increased cardiomyocyte hypertrophy and perivascular fibrosis, but it did not affect angiogenesis in cardiac tissue. In the ISO-VL group, quantitative PCR showed attenuation of increased mRNA expression of tumor necrosis factor-α, interleukin-6, insulin-like growth factor-l, and restoration of decreased mRNA expression of glucose transporter type 4. Conclusions Vildagliptin may prevent LV hypertrophy caused by continuous exposure to isoproterenol in rats. PMID:24521405

  3. [Role of melatonin in calcium overload-induced heart injury].

    Science.gov (United States)

    Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli

    2017-06-28

    To investigate the role of melatonin in calcium overload-induced heart injury.
 Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining.
 Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (Poverload-induced heart injury.

  4. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  5. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Grabner, Alexander; Hermann, Laura; Richter, Beatrice; Schmitz, Karin; Fischer, Dagmar-Christiane; Yanucil, Christopher; Faul, Christian; Haffner, Dieter

    2017-09-01

    Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  6. Role of myocardial hypertrophy on acute and chronic right ventricular performance in relation to chronic volume overload in a porcine model: relevance for the surgical management of tetralogy of Fallot.

    Science.gov (United States)

    Bove, Thierry; Vandekerckhove, Kristof; Bouchez, Stefaan; Wouters, Patrick; Somers, Pamela; Van Nooten, Guido

    2014-06-01

    The age for correction of tetralogy of Fallot has progressively declined to the postnatal period, often despite an increased rate of transannular patch repair. However, the long-term effect of premature exposure to chronic pulmonary insufficiency on the right ventricle remains unknown. On the basis of the relationship between the duration of pressure overload and age, the role of previous pressure load-related hypertrophy on right ventricular (RV) performance after chronic volume overload was investigated in a porcine model. RV hypertrophy (RVH), induced by pulmonary artery banding, was studied in pigs with (RVH plus pulmonary insufficiency [PI]) and without (RVH) subsequent PI. The effect of volume overload was compared between these 2 groups and pigs without RVH but with PI and controls (sham). Both acute and chronic effects on RV function were studied using conductance technology and validated using echocardiography. After chronic volume overload, the end-systolic and end-diastolic volumes were smaller in the RVH+PI group than in the PI group, including a lower pulmonary regurgitation fraction (25% ± 5% vs 35% ± 5%; P = .002). RVH resulted in better preserved systolic function, confirmed by an increased preload recruitable stroke work slope (14.7 ± 1.8 vs 9.3 ± 1.3 Mw.s/mL; P = .025) and higher RV ejection fraction (51% ± 3% vs 45% ± 4%; P = .05). Myocardial stiffness was impaired in the RVH+PI group versus the PI group (β, 0.19 ± 0.03 vs 0.12 ± 0.02 mL(-1); P = .001), presenting restrictive physiology only in the condition associating RVH and PI. The results of the present study have demonstrated that RVH attenuates the RV remodeling process related to chronic PI. It enables better preservation of contractility but at the cost of sustained diastolic impairment. These findings might help to determine the timing and strategy for repair of tetralogy of Fallot when RV outflow tract morphology indicates a definite need for transannular reconstruction

  7. Pharmacological targeting of CDK9 in cardiac hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, J.

    2010-01-01

    Roč. 30, č. 4 (2010), s. 646-666 ISSN 0198-6325 R&D Projects: GA ČR GA204/08/0511; GA ČR GA301/09/1832; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : P-TEFb * cardiac myocyte * cardiac hypertrophy Subject RIV: CE - Biochemistry Impact factor: 10.228, year: 2010

  8. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.

    Science.gov (United States)

    Kusaka, Hiroaki; Koibuchi, Nobutaka; Hasegawa, Yu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2016-11-11

    The potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes. SHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system. Empagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis. Our present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.

  9. Periodontitis and myocardial hypertrophy.

    Science.gov (United States)

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  10. Novel protective role of endogenous cardiac myocyte P2X4 receptors in heart failure.

    Science.gov (United States)

    Yang, Tiehong; Shen, Jian-bing; Yang, Ronghua; Redden, John; Dodge-Kafka, Kimberly; Grady, James; Jacobson, Kenneth A; Liang, Bruce T

    2014-05-01

    Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation-induced postinfarct or transverse aorta constriction-induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N(5)-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection. © 2014 American Heart Association, Inc.

  11. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    Science.gov (United States)

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  12. [Effect of down-regulation of IKs repolarization-reserve on ventricular arrhythmogenesis in a guinea pig model of cardiac hypertrophy].

    Science.gov (United States)

    Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng

    2018-04-28

    To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH).
 Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers.
 Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (Pguinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals.
 Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation 
of IKs.

  13. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish.

    Science.gov (United States)

    Huang, Lixing; Gao, Dongxu; Zhang, Youyu; Wang, Chonggang; Zuo, Zhenghong

    2014-07-15

    Growing evidence indicates that polycyclic aromatic hydrocarbons (PAHs) can lead to cardiac hypertrophy and recent research indicates that exposure to low dose crude oil during early embryonic development may lead to impacts on heart health at later life stages. The aim of this study was to evaluate whether exposure during early life stages to low dose benzo[a]pyrene (BaP), as a high-ring PAH, would lead to cardiac hypertrophy at later life stages. Zebrafish were exposed to low dose BaP until 96 hpf, then transferred to clean water and maintained for a year before histological and molecular biological analysis. Our results showed that exposure to low level BaP during early life stages increased heart weight to body weight ratios and deposited collagen in the heart of adult zebrafish. ANP, BNP and c-Myc were also induced in the heart of adult zebrafish by BaP. These results proved that low level BaP exposure during early life stages caused symptoms similar to cardiac hypertrophy in adult zebrafish. Our results displayed an elevated expression of CdC42, RhoA, p-ERK1, 2 and Rac1. Therefore, the mechanism of the cardiac hypertrophy caused by BaP exposure during early life stages may be through inducing the expression of CdC42, RhoA and Rac1, together with activating ERK1, 2. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cardiac hypertrophy and IGF-1 response to testosterone propionate treatment in trained male rats

    Directory of Open Access Journals (Sweden)

    Żebrowska Aleksandra

    2017-04-01

    Full Text Available Several studies have suggested that testosterone exerts a growth-promoting effect in the heart. Limited data are available regarding interactions between possible endocrine/paracrine effects in response to exercise training. Therefore, we examined supraphysiological testosterone-induced heart hypertrophy and cardiac insulin-like growth factor (IGF-1 content in sedentary and exercise-trained rats.

  15. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets.

    Science.gov (United States)

    Tham, Yow Keat; Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; McMullen, Julie R

    2015-09-01

    The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails. In this review, we discuss the key features of pathological cardiac hypertrophy and the numerous mediators that have been found to be involved in the pathogenesis of cardiac hypertrophy affecting gene transcription, calcium handling, protein synthesis, metabolism, autophagy, oxidative stress and inflammation. We also discuss new mediators including signaling proteins, microRNAs, long noncoding RNAs and new findings related to the role of calcineurin and calcium-/calmodulin-dependent protein kinases. We also highlight mediators and processes which contribute to the transition from adaptive cardiac remodeling to maladaptive remodeling and heart failure. Treatment strategies for heart failure commonly include diuretics, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β-blockers; however, mortality rates remain high. Here, we discuss new therapeutic approaches (e.g., RNA-based therapies, dietary supplementation, small molecules) either entering clinical trials or in preclinical development. Finally, we address the challenges that remain in translating these discoveries to new and approved therapies for heart failure.

  16. The importance of capillary density-stroke work mismatch for right ventricular adaptation to chronic pressure overload.

    Science.gov (United States)

    Noly, Pierre-Emmanuel; Haddad, François; Arthur-Ataam, Jennifer; Langer, Nathaniel; Dorfmüller, Peter; Loisel, Fanny; Guihaire, Julien; Decante, Benoit; Lamrani, Lilia; Fadel, Elie; Mercier, Olaf

    2017-12-01

    Mechanisms of right ventricular (RV) adaptation to chronic pressure overload are not well understood. We hypothesized that a lower capillary density (CD) to stroke work ratio would be associated with more fibrosis and RV maladaptive remodeling. We induced RV chronic pressure overload over a 20-week period in 2 piglet models of pulmonary hypertension; that is, a shunt model (n = 5) and a chronic thromboembolic pulmonary hypertension model (n = 5). We assessed hemodynamic parameters and RV remodeling as well as RV CD, fibrosis, and angiogenic factors expression. Although RV was similarly hypertrophied in both models, maladapted RV remodeling with impaired systolic function was only seen in chronic thromboembolic pulmonary hypertension group members who had lower CD (484 ± 99 vs 1213 ± 74 cap/mm 2 ; P work ratio (0.29 ± 0.07 vs 0.82 ± 0.16; P = .02), higher myocardial fibrosis (15.4% ± 3.8% vs 8.0% ± 2.5%; P work ratio) was associated with greater degree of myocardial fibrosis and RV dysfunction and could be a promising index of RV maladaptation. Further studies are needed to understand the underlying mechanisms. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Changes in cardiac output and incidence of volume overload in cirrhotics receiving 20% albumin infusion.

    Science.gov (United States)

    Shasthry, Saggere M; Kumar, Manoj; Khumuckham, Jelen S; Sarin, Shiv Kumar

    2017-08-01

    Patients with cirrhosis are prone to develop volume over load, have increased capillary permeability and latent or overt cardiomyopathy. Whether albumin infusion causes volume overload in cirrhotics has not been adequately studied. Ninety nine consecutive cirrhotic patients receiving 1gm per kg albumin infusion were evaluated for development of volume overload. Clinical, echocardiographic and haemodynamic changes were closely monitored during and after albumin infusion. Thirty (30.30%) patients developed volume overload. Patients with higher BMI (P=.003), lower CTP (P=.01) and MELD (P=.034) were more often associated with the development of volume overload. Though baseline diastolic dysfunction was present in 82.8% of the patients, it did not influence the development of volume overload or changes in the cardiac output. The cardiac output increased significantly after albumin infusion (4.9±1.554 L/min to 5.86±1.85 L/min, Palbumin infusion develop volume overload, specially, those with higher BMI and lower severity of liver disease. Cardiac output increases after albumin infusion, and, baseline diastolic dysfunction has little effect on the development of volume overload or changes in cardiac output. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Science.gov (United States)

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  19. The benefits of soluble non-bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin-converting enzyme activity.

    Science.gov (United States)

    Brasil, Girlandia Alexandre; Silva-Cutini, Mirian de Almeida; Moraes, Flávia de Souza Andrade; Pereira, Thiago de Melo Costa; Vasquez, Elisardo Corral; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Lima, Ewelyne Miranda; Biancardi, Vinícia Campana; Maia, June Ferreira; de Andrade, Tadeu Uggere

    We aimed to evaluate whether long-term treatment with the soluble non-bacterial fraction of kefir affects mean arterial pressure (MAP) and cardiac hypertrophy through the modulation of baroreflex sensitivity, ACE activity, and the inflammatory-to-anti-inflammatory cytokine ratio in spontaneously hypertensive rats (SHRs). SHRs were treated with the soluble non-bacterial kefir fraction (SHR-kefir) or with kefir vehicle (SHR-soluble fraction of milk). Normotensive control Wistar Kyoto animals received the soluble fraction of milk. All treatments were administered by gavage (0.3 mL/100g/body weight), once daily for eight weeks. At the end, after basal MAP and Heart Rate (HT) measurement, barorreflex sensitivity was evaluated through in bolus administrations of sodium nitroprusside and phenylephrine (AP 50 [arterial pressure 50%], the lower plateau, and HR range were measured). ACE activity and cytokines (TNF-α and IL-10) were evaluated by ELISA. Cardiac hypertrophy was analysed morphometrically. Compared to SHR control, SHR-kefir exhibited a significant decrease in both MAP (SHR: 184 ± 5; SHR-Kefir: 142 ± 8 mmHg), and HR (SHR: 360 ± 10; SHR-kefir: 310 ± 14 bpm). The non-bacterial fraction of kefir also reduced cardiac hypertrophy, TNF-α-to-IL10 ratio, and ACE activity in SHRs. SHR-kefir baroreflex sensitivity, resulted in a partial but significant recovery of baroreflex gain, as demonstrated by improvements in AP 50 , the lower plateau, and HR range. In summary, our results indicate that long-term administration of the non-bacterial fraction of kefir promotes a significant decrease in both MAP and HR, by improving baroreflex, and reduces cardiac hypertrophy in SHRs, likely via ACE inhibition, and reduction of the TNF-α-to-IL10 ratio. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  1. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.J.; Ouyang, W.; Liu, J.H.; Sun, Y.G.; Hu, R.; Huang, L.H.; Xian, J.L. [Southern Medical University, Department of Nuclear Medicine, Zhujiang Hospital, Guangzhou, China, Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Jing, C.F.; Zhou, M.J. [Sun Yat-Sen University, South China Sea Marine Biotechnology, National Engineering Research Center, Guangzhou, China, National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou (China)

    2014-04-11

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.

  2. Myocardial hypertrophy in the recipient with twin-to-twin transfusion syndrome

    DEFF Research Database (Denmark)

    Jeppesen, D.L.; Jorgensen, F.S.; Pryds, O.A.

    2008-01-01

    pressure measurements revealed persistent systemic hypertension. Biventricular hypertrophy was demonstrated by echocardiography. Blood pressure normalised after treatment with Nifedipine and the cardiac hypertrophy subsided over the following weeks. A potential contributing mechanism is intrauterine...

  3. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  4. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  5. Macrophage microRNA-155 promotes cardiac hypertrophy and failure

    NARCIS (Netherlands)

    Heymans, Stephane; Corsten, Maarten F.; Verhesen, Wouter; Carai, Paolo; van Leeuwen, Rick E. W.; Custers, Kevin; Peters, Tim; Hazebroek, Mark; Stöger, Lauran; Wijnands, Erwin; Janssen, Ben J.; Creemers, Esther E.; Pinto, Yigal M.; Grimm, Dirk; Schürmann, Nina; Vigorito, Elena; Thum, Thomas; Stassen, Frank; Yin, Xiaoke; Mayr, Manuel; de Windt, Leon J.; Lutgens, Esther; Wouters, Kristiaan; de Winther, Menno P. J.; Zacchigna, Serena; Giacca, Mauro; van Bilsen, Marc; Papageorgiou, Anna-Pia; Schroen, Blanche

    2013-01-01

    Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this

  6. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  7. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    Directory of Open Access Journals (Sweden)

    Yunen Liu

    Full Text Available We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE on cyclophosphamide (CTX-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.

  8. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis.

    Science.gov (United States)

    Khangura, Jaspreet; Culleton, Bruce F; Manns, Braden J; Zhang, Jianguo; Barnieh, Lianne; Walsh, Michael; Klarenbach, Scott W; Tonelli, Marcello; Sarna, Magdalena; Hemmelgarn, Brenda R

    2010-06-24

    Left ventricular (LV) hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP) and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month). Agreement was assessed using Lin's concordance correlation coefficient (CCC) and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC). Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80) predictive power for LV hypertrophy. A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  9. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  10. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Walsh Michael

    2010-06-01

    Full Text Available Abstract Background Left ventricular (LV hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. Methods This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month. Agreement was assessed using Lin's concordance correlation coefficient (CCC and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC. Results Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80 predictive power for LV hypertrophy. Conclusions A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  11. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  12. Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling

    Directory of Open Access Journals (Sweden)

    Shukuan Ling

    2018-01-01

    Full Text Available Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1 is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG and wild type mice were hindlimb-suspended (HU to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.

  13. Over-expression of angiotensin converting enzyme-1 augments cardiac hypertrophy in transgenic rats

    NARCIS (Netherlands)

    Tian, Xiao-Li; Pinto, Yigal Martin; Costerousse, Olivier; Franz, Wolfgang M.; Lippoldt, Andrea; Hoffmann, Sigrid; Unger, Thomas; Paul, Martin

    2004-01-01

    Increased cardiac angiotensin converting enzyme-1 (ACE1) is found in individuals who carry a deletion in intron 16 of ACE1 gene or in individuals who suffer from cardiac disorders, such as hypertrophy. However, whether a single increase in ACE1 expression leads to spontaneous cardiac defects remains

  14. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  15. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction.

    Science.gov (United States)

    Freitas, Felipe; Estato, Vanessa; Carvalho, Vinícius Frias; Torres, Rafael Carvalho; Lessa, Marcos Adriano; Tibiriçá, Eduardo

    2013-10-01

    The pathophysiology underlying hyperthyroidism-induced left ventricle (LV) dysfunction and hypertrophy directly involves the heart and indirectly involves the neuroendocrine systems. The effects of hyperthyroidism on the microcirculation are still controversial in experimental models. We investigated the effects of hyperthyroidism on the cardiac function and microcirculation of an experimental rat model. Male Wistar rats (170-250 g) were divided into two groups: the euthyroid group (n = 10), which was treated with 0.9% saline solution, and the hyperthyroid group (n = 10), which was treated with l-thyroxine (600 μg/kg/day, i.p.) during 14 days. An echocardiographic study was performed to evaluate the alterations in cardiac function, structure and geometry. The structural capillary density and the expression of angiotensin II AT1 receptor in the LV were analyzed using histochemistry and immunohistochemistry, respectively. Hyperthyroidism was found to induce profound cardiovascular alterations, such as systolic hypertension, tachycardia, LV dysfunction, cardiac hypertrophy, and myocardial fibrosis. This study demonstrates the existence of structural capillary rarefaction and the down-regulation of the cardiac angiotensin II AT1 receptor in the myocardium of hyperthyroid rats in comparison with euthyroid rats. Microvascular rarefaction may be involved in the pathophysiology of hyperthyroidism-induced cardiovascular alterations. © 2013 John Wiley & Sons Ltd.

  16. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    Science.gov (United States)

    Fortes, Marco A. S.; Scervino, Maria V. M.; Marzuca-Nassr, Gabriel N.; Vitzel, Kaio F.; da Justa Pinheiro, Carlos H.; Curi, Rui

    2017-01-01

    Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group. PMID:29123487

  17. Estrogen deprivation aggravates cardiac hypertrophy in nonobese Type 2 diabetic Goto-Kakizaki (GK) rats.

    Science.gov (United States)

    Apaijai, Nattayaporn; Charoenphandhu, Narattaphol; Ittichaichareon, Jitjiroj; Suntornsaratoon, Panan; Krishnamra, Nateetip; Aeimlapa, Ratchaneevan; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-10-31

    Both Type 2 diabetes mellitus (T2DM) and estrogen deprivation have been shown to be associated with the development of cardiovascular disease and adverse cardiac remodeling. However, the role of estrogen deprivation on adverse cardiac remodeling in nonobese T2DM rats has not been clearly elucidated. We hypothesized that estrogen-deprivation aggravates adverse cardiac remodeling in Goto-Kakizaki (GK) rats. Wild-type (WT) and GK rats at the age of 9 months old were divided into two subgroups to have either a sham operation (WTS, GKS) or a bilateral ovariectomy (WTO, GKO) ( n = 6/subgroup). Four months after the operation, the rats were killed, and the heart was excised rapidly. Metabolic parameters, cardiomyocytes hypertrophy, cardiac fibrosis, and biochemical parameters were determined. GK rats had hyperglycemia with hypoinsulinemia, and estrogen deprivation did not increase the severity of T2DM. Cardiac hypertrophy, cardiac oxidative stress, and phosphor-antinuclear factor κB were higher in WTO and GKS rats than WTS rats, and they markedly increased in GKO rats compared with GKS rats. Furthermore, cardiac fibrosis, transforming growth factor-β, Bax, phosphor-p38, and peroxisome proliferator- activated receptor γ coactivator-1α expression were increased in GKS and GKO rats compared with the lean rats. However, mitochondrial dynamics proteins including dynamin-related protein 1 and mitofusin-2 were not altered by T2DM and estrogen deprivation. Although estrogen deprivation did not aggravate T2DM in GK rats, it increased the severity of cardiac hypertrophy by provoking cardiac inflammation and oxidative stress in nonobese GK rats. © 2017 The Author(s).

  18. MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ

    International Nuclear Information System (INIS)

    Cha, Min-Ji; Jang, Jin-Kyung; Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon; Lee, Chang Yeon; Park, Jun-Hee; Lee, Jiyun; Seo, Hyang-Hee; Choi, Eunhyun; Jeon, Woo-min; Hwang, Hye Jin; Shin, Hyun-Taek

    2013-01-01

    Highlights: •CaMKIIδ mediates H 2 O 2 -induced Ca 2+ overload in cardiomyocytes. •miR-145 can inhibit Ca 2+ overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca 2+ ) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca 2+ signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca 2+ -mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H 2 O 2 -mediated Ca 2+ overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca 2+ overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca 2+ -related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca 2+ overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses

  19. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  20. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Moreno, Camila Rodrigues; Senger, Nathalia; Barreto-Chaves, Maria Luiza Morais

    2017-12-01

    It is well-known that increased thyroid hormone (TH) levels induce cardiomyocyte growth. MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with increased risk of heart failure. In this study, we evaluated the miR-1 expression in TH-induced cardiac hypertrophy, as well as the potential involvement of miR-1 in cardiomyocyte hypertrophy elicited by TH in vitro. The possible role of type 1 angiotensin II receptor (AT1R) in the effect promoted by TH in miR-1 expression was also evaluated. Neonatal rat cardiac myocytes (NRCMs) were treated with T 3 for 24 hr and Wistar rats were subjected to hyperthyroidism for 14 days combined or not with AT1R blocker. Real Time RT-PCR analysis indicated that miR-1 expression was decreased in cardiac hypertrophy in response to TH in vitro and in vivo, and this effect was unchanged by AT1R blocker. In addition, HDAC4, which is target of miR-1, was increased in NRCMs after T 3 treatment. A gain-of-function study revealed that overexpression of miR-1 prevented T 3 -induced cardiomyocyte hypertrophy and reduced HADC4 mRNA levels in NRCMs. In vivo experiments confirmed the downregulation of miR-1 in cardiac tissue from hyperthyroid animals, which was accompanied by increased HDAC4 mRNA levels. In addition, HDAC inhibitor prevented T 3 -induced cardiomyocyte hypertrophy. Our data reveal a new mechanistic insight into cardiomyocyte growth in response to TH, suggesting that miR-1 plays a role in cardiomyocyte hypertrophy induced by TH potentially via targeting HADC4. © 2017 Wiley Periodicals, Inc.

  1. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure.

    Science.gov (United States)

    Marques, Francine Z; Prestes, Priscilla R; Byars, Sean G; Ritchie, Scott C; Würtz, Peter; Patel, Sheila K; Booth, Scott A; Rana, Indrajeetsinh; Minoda, Yosuke; Berzins, Stuart P; Curl, Claire L; Bell, James R; Wai, Bryan; Srivastava, Piyush M; Kangas, Antti J; Soininen, Pasi; Ruohonen, Saku; Kähönen, Mika; Lehtimäki, Terho; Raitoharju, Emma; Havulinna, Aki; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Ala-Korpela, Mika; Kettunen, Johannes; McGlynn, Maree; Kelly, Jason; Wlodek, Mary E; Lewandowski, Paul A; Delbridge, Lea M; Burrell, Louise M; Inouye, Michael; Harrap, Stephen B; Charchar, Fadi J

    2017-06-14

    Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2 -knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2 -knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis -eQTL for LCN2 expression. Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Assessment of cardiac function and hemodynamics in children and adults with right ventricular pressure overload: role of cardiac magnetic resonance imaging

    NARCIS (Netherlands)

    Romeih, Soha

    2014-01-01

    Accumulating evidence suggests that pressure overload on the right ventricle (RV) leads to RV dysfunction, with considerable morbidity and mortality. Therefore, appropriate RV evaluation is essential because timely intervention may preserve RV function and prevent irreversible RV damage. Currently,

  3. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Marco A. S. Fortes

    2017-10-01

    Full Text Available Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus or glycolytic (EDL muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK, Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1, mechano-growth factor (MGF and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.

  4. Evaluation of cardiac and hepatic iron overload in thalassemia major patients with T2* magnetic resonance imaging.

    Science.gov (United States)

    Wahidiyat, Pustika Amalia; Liauw, Felix; Sekarsari, Damayanti; Putriasih, Siti Ayu; Berdoukas, Vasili; Pennell, Dudley J

    2017-09-01

    Recent advancements have promoted the use of T2* magnetic resonance imaging (MRI) in the non-invasive detection of iron overload in various organs for thalassemia major patients. This study aims to determine the iron load in the heart and liver of patients with thalassemia major using T2* MRI and to evaluate its correlation with serum ferritin level and iron chelation therapy. This cross-sectional study included 162 subjects diagnosed with thalassemia major, who were classified into acceptable, mild, moderate, or severe cardiac and hepatic iron overload following their T2* MRI results, respectively, and these were correlated to their serum ferritin levels and iron chelation therapy. The study found that 85.2% of the subjects had normal cardiac iron stores. In contrast, 70.4% of the subjects had severe liver iron overload. A significant but weak correlation (r = -0.28) was found between cardiac T2* MRI and serum ferritin, and a slightly more significant correlation (r = 0.37) was found between liver iron concentration (LIC) and serum ferritin. The findings of this study are consistent with several other studies, which show that patients generally manifest with liver iron overload prior to cardiac iron overload. Moreover, iron accumulation demonstrated by T2* MRI results also show a significant correlation to serum ferritin levels. This is the first study of its kind conducted in Indonesia, which supports the fact that T2* MRI is undoubtedly valuable in the early detection of cardiac and hepatic iron overload in thalassemia major patients.

  5. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  6. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome.

    Science.gov (United States)

    Passariello, Catherine L; Martinez, Eliana C; Thakur, Hrishikesh; Cesareo, Maria; Li, Jinliang; Kapiloff, Michael S

    2016-04-01

    Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    Science.gov (United States)

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  8. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  9. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy

    Science.gov (United States)

    Ding, Yuan-Yuan; Li, Jing-Mei; Guo, Feng-Jie; Liu, Ya; Tong, Yang-Fei; Pan, Xi-Chun; Lu, Xiao-Lan; Ye, Wen; Chen, Xiao-Hong; Zhang, Hai-Gang

    2016-01-01

    The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson’s trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes. PMID:27965581

  10. Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice

    Science.gov (United States)

    Azibani, Feriel; Devaux, Yvan; Coutance, Guillaume; Schlossarek, Saskia; Polidano, Evelyne; Fazal, Loubina; Merval, Regine; Carrier, Lucie; Solal, Alain Cohen; Chatziantoniou, Christos; Launay, Jean-Marie; Samuel, Jane-Lise; Delcayre, Claude

    2012-01-01

    Background Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of “fetal” gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. Methodology/Principal Findings RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (−75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. Conclusions/Significance Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of

  11. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice.

    Directory of Open Access Journals (Sweden)

    Feriel Azibani

    Full Text Available BACKGROUND: Arterial hypertension (AH induces cardiac hypertrophy and reactivation of "fetal" gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren with cardiac hyperaldosteronism (AS mice and systemic hypertension (Ren. AS-Ren mice had increased (x2 angiotensin II in plasma and increased (x2 aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70% versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41% in AS-Ren mice (P<0.05 vs Ren. The increase of ANP (x 2.5; P<0.01 mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (-75%, p<0.001 in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05, an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. CONCLUSIONS/SIGNIFICANCE: Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction

  12. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  13. Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Sun, Hong; Meng, Xiang-bao; Hu, Jin; Zhang, Qiang; Liu, Bo; Wang, Min; Xu, Hui-bo; Sun, Xiao-bo

    2014-01-01

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na + channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca 2+ in aconitine poisoning. In this study, we explored the importance of pathological Ca 2+ signaling in aconitine poisoning in vitro and in vivo. We found that Ca 2+ overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca 2+ handling proteins demonstrated that aconitine promoted Ca 2+ overload through the expression regulation of Ca 2+ handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca 2+ overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca 2+ overload causes arrhythmia in rats

  14. Functional and geometrical interference and interdependency between the right and left ventricle in cor pulmonale: an experimental study on simultaneous measurement of biventricular geometry of acute right ventricular pressure overload.

    Science.gov (United States)

    Yamashita, H; Onodera, S; Imamoto, T; Obara, A; Tanazawa, S; Takashio, T; Morimoto, H; Inoue, H

    1989-10-01

    To clarify the effects of right ventricular (RV) pressure overload on functional and geometrical interference and interdependency between the right and left ventricle, both ventricular internal diameters were measured by the microcrystal technique during lycopodium induced pulmonary embolization in the dog. By repeated embolization, RV systolic pressure was increased progressively until it reached a peak value of about 60-70 mmHg, then it began to fall. At the same time, the hemodynamics deteriorated progressively resulting in death. During the experiment, gradual leftward displacement of the interventricular septum (IVS) without any change in left ventricular (LV) free wall geometry was observed. In pulmonary embolic shock, which showed a fall in LV pressure to about 60 mmHg and cardiac output to about 40% of control, the leftward displacement of IVS became marked, and the cooperative movement of IVS to LV contraction disappeared. The IVS position during acute RV pressure overload was able to account for the transseptal pressure gradient. The importance of IVS position and motion in cardiac function during acute RV pressure overload was stressed. Furthermore, to establish the theoretical treatment in acute cardiopulmonary resuscitation, ligation of the descending aorta (AoL) or norepinephrine ("N") or isoproterenol ("I") administration were examined in a canine pulmonary embolic shock model. AoL or "N" improved the deteriorated hemodynamics with restoration of biventricular geometry. However, "I" did not restore the biventricular geometry despite the transiently improved hemodynamics, and the experimental animals were unable to survive. These results suggest the importance of the maintainance of systemic pressure for the restoration of failed RV function. Further integrated studies are required to understand biventricular interference and interdependency.

  15. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    Science.gov (United States)

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  16. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  17. Aconitine-induced Ca{sup 2+} overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Hong; Meng, Xiang-bao [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Hu, Jin; Zhang, Qiang; Liu, Bo [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo, E-mail: xhb_6505@163.com [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Sun, Xiao-bo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2014-08-15

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na{sup +} channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca{sup 2+} in aconitine poisoning. In this study, we explored the importance of pathological Ca{sup 2+} signaling in aconitine poisoning in vitro and in vivo. We found that Ca{sup 2+} overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca{sup 2+} handling proteins demonstrated that aconitine promoted Ca{sup 2+} overload through the expression regulation of Ca{sup 2+} handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca{sup 2+} overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca

  18. Brief pressure overload of the left ventricle reduces myocardial infarct size via activation of protein kinase C.

    Science.gov (United States)

    Tang, Chia-Yu; Lai, Chang-Chi; Chiang, Shu-Chiung; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2015-09-01

    We have previously reported that brief pressure overload of the left ventricle reduced myocardial infarct (MI) size. However, the role of protein kinase C (PKC) remains uncertain. In this study, we investigated whether pressure overload reduces MI size by activating PKC. MI was induced by a 40-minute occlusion of the left anterior descending coronary artery and a 3-hour reperfusion in anesthetized Sprague-Dawley rats. MI size was determined using triphenyl tetrazolium chloride staining. Brief pressure overload was achieved by two 10-minute partial snarings of the ascending aorta, raising the systolic left ventricular pressure 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions and 10-minute reperfusions. Dimethyl sulfoxide (vehicle) or calphostin C (0.1 mg/kg, a specific inhibitor of PKC) was administered intravenously as pretreatment. The MI size, expressed as the percentage of the area at risk, was significantly reduced in the pressure overload group and the ischemic preconditioning group (19.0 ± 2.9% and 18.7 ± 3.0% vs. 26.1 ± 2.6% in the control group, where p overload and ischemic preconditioning (25.2 ± 2.4% and 25.0 ± 2.3%, where p overload of the left ventricle reduced MI size. Since calphostin C significantly limited the decrease of MI size, our results suggested that brief pressure overload reduces MI size via activation of PKC. Copyright © 2015. Published by Elsevier Taiwan.

  19. MicroRNA-145 suppresses ROS-induced Ca{sup 2+} overload of cardiomyocytes by targeting CaMKIIδ

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min-Ji [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jang, Jin-Kyung [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Lee, Chang Yeon; Park, Jun-Hee [Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul 120-759 (Korea, Republic of); Lee, Jiyun; Seo, Hyang-Hee [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Choi, Eunhyun [Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jeon, Woo-min [Department of Animal Resource, Sahmyook University, Seoul 139-742 (Korea, Republic of); Hwang, Hye Jin [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Shin, Hyun-Taek [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); and others

    2013-06-14

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.

  20. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  1. Uridine Adenosine Tetraphosphate-Induced Coronary Relaxation Is Blunted in Swine With Pressure Overload: A Role for Vasoconstrictor Prostanoids.

    Science.gov (United States)

    Zhou, Zhichao; Lankhuizen, Inge M; van Beusekom, Heleen M; Cheng, Caroline; Duncker, Dirk J; Merkus, Daphne

    2018-01-01

    Plasma levels of the vasoactive substance uridine adenosine tetraphosphate (Up 4 A) are elevated in hypertensive patients and Up 4 A-induced vascular contraction is exacerbated in various arteries isolated from hypertensive animals, suggesting a potential role of Up 4 A in development of hypertension. We previously demonstrated that Up 4 A produced potent and partially endothelium-dependent relaxation in the porcine coronary microvasculature. Since pressure-overload is accompanied by structural abnormalities in the coronary microvasculature as well as by endothelial dysfunction, we hypothesized that pressure-overload blunts the coronary vasodilator response to Up 4 A, and that the involvement of purinergic receptors and endothelium-derived factors is altered. The effects of Up 4 A were investigated using wire-myography in isolated coronary small arteries from Sham-operated swine and swine with prolonged (8 weeks) pressure overload of the left ventricle induced by aortic banding (AoB). Expression of purinergic receptors and endothelium-derived factors was assessed in isolated coronary small arteries using real-time PCR. Up 4 A (10 -9 to 10 -5 M) failed to produce contraction in isolated coronary small arteries from either Sham or AoB swine, but produced relaxation in preconstricted arteries, which was significantly blunted in AoB compared to Sham. Blockade of purinergic P1, and P2 receptors attenuated Up 4 A-induced coronary relaxation more, while the effect of P2X 1 -blockade was similar and the effects of A 2A - and P2Y 1 -blockade were reduced in AoB as compared to Sham. mRNA expression of neither A1, A2, A3, nor P2X 1 , P2X 7 , P2Y 1 , P2Y 2 , nor P2Y 6 -receptors was altered in AoB as compared to Sham, while P2Y 12 expression was higher in AoB. eNOS inhibition attenuated Up 4 A-induced coronary relaxation in both Sham and AoB. Additional blockade of cyclooxygenase enhanced Up 4 A-induced coronary relaxation in AoB but not Sham swine, suggesting the involvement

  2. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome.

    Directory of Open Access Journals (Sweden)

    Mariane de Montalembert

    Full Text Available The risk and clinical significance of cardiac iron overload due to chronic transfusion varies with the underlying disease. Cardiac iron overload shortens the life expectancy of patients with thalassemia, whereas its effect is unclear in those with myelodysplastic syndromes (MDS. In patients with sickle cell anemia (SCA, iron does not seem to deposit quickly in the heart. Our primary objective was to assess through a multicentric study the prevalence of cardiac iron overload, defined as a cardiovascular magnetic resonance T2*8 ECs in the past year, and age older than 6 years. We included from 9 centers 20 patients with thalassemia, 41 with SCA, and 25 with MDS in 2012-2014. Erythrocytapharesis did not consistently prevent iron overload in patients with SCA. Cardiac iron overload was found in 3 (15% patients with thalassemia, none with SCA, and 4 (16% with MDS. The liver iron content (LIC ranged from 10.4 to 15.2 mg/g dry weight, with no significant differences across groups (P = 0.29. Abnormal T2* was not significantly associated with any of the measures of transfusion or chelation. Ferritin levels showed a strong association with LIC. Non-transferrin-bound iron was high in the thalassemia and MDS groups but low in the SCA group (P<0.001. Hepcidin was low in thalassemia, normal in SCA, and markedly elevated in MDS (P<0.001. Two mechanisms may explain that iron deposition largely spares the heart in SCA: the high level of erythropoiesis recycles the iron and the chronic inflammation retains iron within the macrophages. Thalassemia, in contrast, is characterized by inefficient erythropoiesis, unable to handle free iron. Iron accumulation varies widely in MDS syndromes due to the competing influences of abnormal erythropoiesis, excess iron supply, and inflammation.

  4. Serum uric acid is associated with left ventricular hypertrophy independent of serum parathyroid hormone in male cardiac patients.

    Directory of Open Access Journals (Sweden)

    Shu-ichi Fujita

    Full Text Available BACKGROUND: Several studies have shown that serum uric acid (UA is associated with left ventricular (LV hypertrophy. Serum levels of parathyroid hormone (PTH, which has bbe shown to be correlated with UA, is also known to be associated with cardiac hypertrophy; however, whether the association between UA and cardiac hypertrophy is independent of PTH remains unknown. PURPOSE: We investigated whether the relationship between serum uric acid (UA and LV hypertrophy is independent of intact PTH and other calcium-phosphate metabolism-related factors in cardiac patients. METHODS AND RESULTS: In a retrospective study, the association between UA and left ventricular mass index was assessed among 116 male cardiac patients (mean age 65 ± 12 years who were not taking UA lowering drugs. The median UA value was 5.9 mg/dL. Neither age nor body mass index differed significantly among the UA quartile groups. Patients with higher UA levels were more likely to be taking loop diuretics. UA showed a significant correlation with intact PTH (R = 0.34, P<0.001 but not with other calcium-phosphate metabolism-related factors. Linear regression analysis showed that log-transformed UA showed a significant association with left ventricular mass index, and this relationship was found to be significant exclusively in patients who were not taking loop and/or thiazide diuretics. Multivariate logistic regression analysis showed that log-transformed UA was independently associated with LV hypertrophy with an odds ratio of 2.79 (95% confidence interval 1.48-5.28, P = 0.002 per one standard deviation increase. CONCLUSIONS: Among cardiac patients, serum UA was associated with LV hypertrophy, and this relationship was, at least in part, independent of intact PTH levels, which showed a significant correlation with UA in the same population.

  5. The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2016-03-01

    Results and conclusion: The results indicate the presence of PAR-2 on MCs and that tryptase inhibition and nedocromil prevented TAC-induced fibrosis and increases in MC density, activation, and chymase release. Tryptase also significantly increased chymase concentration in ventricular slice culture media, which was prevented by the tryptase inhibitor. Hydroxyproline concentration in culture media was significantly increased with tryptase incubation as compared to the control group and the tryptase group incubated with nafamostat mesilate or chymostatin. We conclude that tryptase contributes to TAC-induced cardiac fibrosis primarily via activation of MCs and the amplified release of chymase.

  6. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dyrk1A-ASF-CaMKIIδ Signaling Is Involved in Valsartan Inhibition of Cardiac Hypertrophy in Renovascular Hypertensive Rats.

    Science.gov (United States)

    Yao, Jian; Qin, Xiaotong; Zhu, Jianhua; Sheng, Hongzhuan

    2016-01-01

    It is known that the expression, activity and alternative splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) are dysregulated in the cardiac remodeling process. Recently, we found a further signaling pathway, by which dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) regulates the alternative splicing of CaMKIIδ via the alternative splicing factor (ASF), i.e., Dyrk1A-ASF-CaMKIIδ. In this study, we aimed to investigate whether Dyrk1A-ASF-CaMKIIδ signaling was involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. Rats were subjected to two kidney-one clip (2K1C) surgery and then treated with valsartan (30 mg/kg/day) for 8 weeks. Hypertrophic parameter analysis was then performed. Western blot analysis was used to determine the protein expression of Dyrk1A and ASF and RT-PCR was used to analyze the alternative splicing of CaMKIIδ in the left ventricular (LV) sample. Valsartan attenuated cardiac hypertrophy in 2K1C rats but without impairment of cardiac systolic function. Increased protein expression of Dyrk1A and decreased protein expression of ASF were observed in the LV sample of 2K1C rats. Treatment of 2K1C rats with valsartan reversed the changes in Dyrk1A and ASF expression in the LV sample. Valsartan adjusted the 2K1C-induced imbalance in alternative splicing of CaMKIIδ by upregulating the mRNA expression of CaMKIIδC and downregulating the mRNA expression of CaMKIIδA and CaMKIIδB. Valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats was mediated, at least partly, by Dyrk1A-ASF-CaMKIIδ signaling. © 2015 S. Karger AG, Basel.

  8. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    Full Text Available Left atrial enlargement in mitral regurgitation (MR predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD, and 6 purchased samples from normal subjects (NC. We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that "NFAT in cardiac hypertrophy" pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1 were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.Differentially expressed genes in the "NFAT in cardiac hypertrophy" pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

  9. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phearts (767.80±18.37 versus 650.23±9.84 μm(2); Pneurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm(2); Pneurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  10. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    International Nuclear Information System (INIS)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-01-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine [ 131 I] to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine [ 131 I] and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4 hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine [ 131 I] scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine [ 123 I] scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients

  11. Aspirin Reduces Cardiac Interstitial Fibrosis by Inhibiting Erk1/2-Serpine2 and P-Akt Signalling Pathways.

    Science.gov (United States)

    Li, Xuelian; Wang, GuoYuan; QiLi, MuGe; Liang, HaiHai; Li, TianShi; E, XiaoQiang; Feng, Ying; Zhang, Ying; Liu, Xiao; Qian, Ming; Xu, BoZhi; Shen, ZhiHang; Gitau, Samuel Chege; Zhao, DanDan; Shan, HongLi

    2018-01-01

    Cardiac interstitial fibrosis is an abnormality of various cardiovascular diseases, including myocardial infarction, hypertrophy, and atrial fibrillation, and it can ultimately lead to heart failure. However, there is a lack of practical therapeutic approaches to treat fibrosis and reverse the damage to the heart. The purpose of this study was to investigate the effect of long-term aspirin administration on pressure overload-induced cardiac fibrosis in mice and reveal the underlying mechanisms of aspirin treatment. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with 10 mg·kg-1·day-1 of aspirin for 4 weeks. Masson staining and a collagen content assay were used to detect the effects of aspirin on cardiac fibrosis in vivo and in vitro. Western blot and qRT-PCR were applied to examine the impact of aspirin on extracellular signal-regulated kinases (Erks), p-Akt/β-catenin, SerpinE2, collagen I, and collagen III levels in the mice heart. Aspirin significantly suppressed the expression of α-smooth muscle actin (α-SMA; 1.19±0.19-fold) and collagen I (0.95±0.09-fold) in TAC mice. Aspirin, at doses of 100 and 1000 µM, also significantly suppressed angiotensin II-induced α-SMA and collagen I in cultured CFs. The enhanced phosphorylation of Erk1/2 caused by TAC (p-Erk1, 1.49±0.19-fold; p-Erk2, 1.96±0.68-fold) was suppressed by aspirin (p-Erk1, 1.04±0.15-fold; p-Erk2, 0.87±0.06-fold). SerpinE2 levels were suppressed via the Erk1/2 signalling pathway following treatment with aspirin (1.36±0.12-fold for TAC; 1.06±0.07-fold for aspirin+TAC). The p-Akt and β-catenin levels were also significantly inhibited in vivo and in vitro. Our study reveals a novel mechanism by which aspirin alleviates pressure overload-induced cardiac interstitial fibrosis in TAC mice by suppressing the p-Erk1/2 and p-Akt/β-catenin signalling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    Science.gov (United States)

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.

  13. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

    Science.gov (United States)

    Sadi, Al Muktafi; Afroze, Talat; Siraj, M Ahsan; Momen, Abdul; White-Dzuro, Colin; Zarrin-Khat, Dorrin; Handa, Shivalika; Ban, Kiwon; Kabir, M Golam; Trivieri, Maria G; Gros, Robert; Backx, Peter; Husain, Mansoor

    2018-03-30

    Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca 2+ -ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo , and HF following experimental myocardial infarction (MI) in vivo Methods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca 2+ -regulatory genes, and induced hypertrophy without significant differences in Ca 2+ transients or diastolic Ca 2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    Science.gov (United States)

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  15. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  16. Evaluation of left ventricular hypertrophy using thallium-201 myocardial scintigraphy, echocardiography and vectorcardiography

    International Nuclear Information System (INIS)

    Tsukahara, Yasunori; Owada, Kenji; Suzuki, Shigebumi

    1983-01-01

    Thallium-201 ( 201 Tl) myocardial scintigraphy was performed in 40 patients with left ventricular hypertrophy(LVH). Twelve out of 40 patients had pressure overloading (Aortic stenosis: 5, Hypertension: 7), 14 patients had volume overloading (Aortic regurgitation: 9, Mitral regurgitation: 5) and 14 had idiopathic cardiomyopathy (Hypertrophic type (HCM): 8, Congestive type (CCM): 6), respectively. LV area, LV uptake index and Wall uptake ratio were calculated from left anterior oblique view of 201 Tl myocardial images. These three indices of both pressure overloading and volume overloading were significantly higher than those of controls. The degree of LVH was indicated by both LV area and LV uptake index. LV area was significantly larger in volume overloading than in pressure overloading. In idiopathic cardiomyopathy, these three indices of HCM and LV area and LV uptake index of CCM were significantly increased compared with those of controls. LV area of CCM was significantly larger than that of HCM, while Wall uptake ratio of HCM was significantly higher than that of CCM. LV uptake index and Wall uptake ratio of HCM became higher according as left ventricular cavity became smaller. LV area of CCM became larger in proportion as left ventricular cavity became larger and as left ventricular wall thickness became thinner. (author)

  17. Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy.

    Science.gov (United States)

    Garciarena, Carolina D; Pinilla, Oscar A; Nolly, Mariela B; Laguens, Ruben P; Escudero, Eduardo M; Cingolani, Horacio E; Ennis, Irene L

    2009-04-01

    The effect of endurance training (swimming 90 min/d for 5 days a week for 60 days) on cardiac hypertrophy was investigated in the spontaneously hypertensive rat (SHR). Sedentary SHRs (SHR-Cs) and normotensive Wistar rats were used as controls. Exercise training enhanced myocardial hypertrophy assessed by left ventricular weight/tibial length (228+/-7 versus 251+/-5 mg/cm in SHR-Cs and exercised SHRs [SHR-Es], respectively). Myocyte cross-sectional area increased approximately 40%, collagen volume fraction decreased approximately 50%, and capillary density increased approximately 45% in SHR-Es compared with SHR-Cs. The mRNA abundance of atrial natriuretic factor and myosin light chain 2 was decreased by the swimming routine (100+/-19% versus 41+/-10% and 100+/-8% versus 61+/-9% for atrial natriuretic factor and myosin light chain 2 in SHR-Cs and SHR-Es, respectively). The expression of sarcoplasmic reticulum Ca(2+) pump was significantly augmented, whereas that of Na(+)/Ca(2+) exchanger was unchanged (93+/-7% versus 167+/-8% and 158+/-13% versus 157+/-7%, sarcoplasmic reticulum Ca(2+) pump and Na(+)/Ca(2+) exchanger in SHR-Cs and SHR-Es, respectively; PEndurance training inhibited apoptosis, as reflected by a decrease in caspase 3 activation and poly(ADP-ribose) polymerase-1 cleavage, and normalized calcineurin activity without inducing significant changes in the phosphatidylinositol 3-kinase/Akt pathway. The swimming routine improved midventricular shortening determined by echocardiography (32.4+/-0.9% versus 36.9+/-1.1% in SHR-Cs and SHR-Es, respectively; Pendurance training to convert pathological into physiological hypertrophy improving cardiac performance. The reduction of myocardial fibrosis and calcineurin activity plus the increase in capillary density represent factors to be considered in determining this beneficial effect.

  18. Thallium-201 myocardial imaging for evaluation of right-ventricular overloading

    International Nuclear Information System (INIS)

    Kondo, M.; Kubo, A.; Yamazaki, H.; Ohsuzu, F.; Handa, S.; Tsugu, T.; Masaki, H.; Kinoshita, F.; Hashimoto, S.

    1978-01-01

    This study evaluated the specificity and sensitivity of Tl-201 myocardial imaging in the detection of right-ventricular (RV) overloading. Right-ventricular visualization (RVV) after administration of Tl-201 chloride was studied on 99 patients with various heart diseases. Tracer uptake in the free wall of the RV was graded in four degrees. The degree of RVV was compared with the findings of cardiac catheterization. The comparisons indicated that the uptake increased in step with the inreases in RV systolic pressure, RV end-diastolic pressure, mean pulmonary arterial pressure, total pulmonary vascular resistance, and stroke-work index of the right ventricle (P < 0.05--P < 0.001). Of the patients with visible RV, all but three had RV overloading, and all but three of those without RVV had normal RV systolic pressure. Myocardial images also reflect the type of RV overloading. In patients with RV pressure overloading, the septum showed a tendency to appear straight. In patients with atrial septal defect leading to RV volume overloading, the RV cavity was dilated, the LV image small, and the septum convex toward the RV cavity. These results indicate that Tl-201 myocardial imaging is a sensitive and specific method for the study of RV overloading

  19. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  20. Interactions of Aging, Overload, and Creatine Supplementation in Rat Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Mark D. Schuenke

    2011-01-01

    Full Text Available Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m and aging (A; 24m Fisher 344 rats underwent four weeks of either control (C, creatine supplementation (Cr, surgical overload (O, or overload plus creatine (OCr. Creatine alone had no effect on muscle fiber cross-sectional area (CSA or heat shock protein (HSP70 and increased myonuclear domain (MND only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression.

  1. Long-term treatment with nebivolol improves arterial reactivity and reduces ventricular hypertrophy in spontaneously hypertensive rats.

    Science.gov (United States)

    Guerrero, Estela; Voces, Felipe; Ardanaz, Noelia; Montero, María José; Arévalo, Miguel; Sevilla, María Angeles

    2003-09-01

    The aim of this study was to assess the effects of long-term nebivolol therapy on high blood pressure, impaired endothelial function in aorta, and damage observed in heart and conductance arteries in spontaneously hypertensive rats (SHR). For this purpose, SHR were treated for 9 weeks with nebivolol (8 mg/kg per day). Untreated SHR and Wistar Kyoto rats were used as hypertensive and normotensive controls, respectively. The left ventricle/body weight ratio was used as an index of cardiac hypertrophy, and to evaluate vascular function, responses induced by potassium chloride, noradrenaline, acetylcholine, and sodium nitroprusside were tested on aortic rings. Aortic morphometry and fibrosis were determined in parallel by a quantitative technique. Systolic blood pressure, measured by the tail-cuff method, was lower in treated SHR than in the untreated group (194 +/- 3 versus 150 +/- 4 mm Hg). The cardiac hypertrophy index was significantly reduced by the treatment. In aortic rings, treatment with nebivolol significantly reduced the maximal response to both KCl and NA in SHR. In vessels precontracted with phenylephrine relaxant, activity due to acetylcholine was higher in normotensive rats than in SHR and the treatment significantly improved this response. The effect of sodium nitroprusside on aortic rings was similar in all groups. Medial thickness and collagen content were significantly reduced in comparison with SHR. In conclusion, the chronic antihypertensive effect of nebivolol in SHR was accompanied by an improvement in vascular structure and function and in the cardiac hypertrophy index.

  2. Accessory papillary muscles and papillary muscle hypertrophy are associated with sudden cardiac arrest of unknown cause.

    Science.gov (United States)

    Uhm, Jae-Sun; Youn, Jong-Chan; Lee, Hye-Jeong; Park, Junbeom; Park, Jin-Kyu; Shim, Chi Young; Hong, Geu-Ru; Joung, Boyoung; Pak, Hui-Nam; Lee, Moon-Hyoung

    2015-10-15

    The present study was performed for elucidating the associations between the morphology of the papillary muscles (PMs) and sudden cardiac arrest (SCA). We retrospectively reviewed history, laboratory data, electrocardiography, echocardiography, coronary angiography, and cardiac CT/MRI for 190 patients with SCA. The prevalence of accessory PMs and PM hypertrophy in patients with SCA of unknown cause was compared with that in patients with SCA of known causes and 98 age- and sex-matched patients without SCA. An accessory PM was defined as a PM with origins separated from the anterolateral and posteromedial PMs, or a PM that branched into two or three bellies at the base of the anterolateral or posteromedial PM. PM hypertrophy was defined as at least one of the two PMs having a diameter of ≥1.1cm. In 49 patients (age 49.9±15.9years; 38 men) the cause of SCA was unknown, whereas 141 (age 54.2±16.6years; 121 men) had a known cause. The prevalence of accessory PMs was significantly higher in the unknown-cause group than in the known-cause group (24.5% and 7.8%, respectively; p=0.002) or the no-SCA group (7.1%, p=0.003). The same was true for PM hypertrophy (unknown-cause 12.2%, known-cause 2.1%, p=0.010; no SCA group 1.0%, p=0.006). By logistic regression, accessory PM and PM hypertrophy were independently associated with sudden cardiac arrest of unknown cause. An accessory PM and PM hypertrophy are associated with SCA of unknown cause. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Role of electrocardiographic changes in discriminating acute or chronic right ventricular pressure overload.

    Science.gov (United States)

    Can, Mehmet Mustafa; Özveren, Olcay; Biteker, Murat; Şengül, Cihan; Uz, Ömer; Işılak, Zafer; Kırılmaz, Ata

    2013-06-01

    Pulmonary embolism (PE) and severe pulmonary stenosis (PS) are two distinct conditions accompanied by increased pressure load of the right ventricle (RV). Despite major advances in our understanding of the mechanisms of RV adaptation to the increased pressure, substantial gaps in our knowledge remain unsettled. One of much less known aspect of pressure overload of RV is its impact on electrocardiographic (ECG) changes. In this study, we aimed to study whether acute and chronic RV overload are accompanied by different ECG patterns. Thirty-eight patients with PE underwent ECG monitoring were compared with 20 matched patients with PS in this observational retrospective study. ECG abnormalities suggestive of RV overload were recorded and analyzed in both groups. Logistic regression analysis was used to define the predictors of chronic RV overload. Among the ECG changes studied, premature atrial contraction (OR-12.2, 95% CI, 1.3-107, p=0.008), right axis deviation (OR-20.4, 95% CI 4.2-98, poverload. Our data indicate that the ECG changes that attributed to the acute RV pressure loading states may be more prevalent in chronic RV overload as compared with acute RV overload.

  4. Isosteviol prevents the prolongation of action potential in hypertrophied cardiomyoctyes by regulating transient outward potassium and L-type calcium channels.

    Science.gov (United States)

    Fan, Zhuo; Lv, Nanying; Luo, Xiao; Tan, Wen

    2017-10-01

    Cardiac hypertrophy is a thickening of the heart muscle that is associated with cardiovascular diseases such as hypertension and myocardial infarction. It occurs initially as an adaptive process against increased workloads and often leads to sudden arrhythmic deaths. Studies suggest that the lethal arrhythmia is attributed to hypertrophy-induced destabilization of cardiac electrical activity, especially the prolongation of the action potential. The reduced activity of I to is demonstrated to be responsible for the ionic mechanism of prolonged action potential duration and arrhythmogeneity. Isosteviol (STV), a derivative of stevioside, plays a protective role in a variety of stress-induced cardiac diseases. Here we report effects of STV on rat ISO-induced hypertrophic cardiomyocytes. STV alleviated ISO-induced hypertrophy of cardiomyocytes by decreasing cell area of hypertrophied cardiomyocytes. STV application prevented the prolongation of action potential which was prominent in hypertrophied cells. The decrease and increase of current densities for I to and I CaL observed in hypertrophied myocytes were both prevented by STV application. In addition, the results of qRT-PCR suggested that the changes of electrophysiological activity of I to and I CaL are correlated to the alterations of the mRNA transcription level. Copyright © 2017. Published by Elsevier B.V.

  5. Cardiac Effects of Attenuating Gsα - Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Marcus R Streit

    Full Text Available Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option.We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05 and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02. No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01 and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001. In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation.Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.

  6. Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI

    NARCIS (Netherlands)

    Nierop, van B.J.; Assen, van H.C.; Deel, van E.D.; Niesen, L.B.P.; Duncker, D.J.; Strijkers, G.J.; Nicolay, K.

    2013-01-01

    Background: Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding

  7. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    Science.gov (United States)

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-02-14

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  8. Fluid overload correction and cardiac history influence brain natriuretic peptide evolution in incident haemodialysis patients.

    Science.gov (United States)

    Chazot, Charles; Vo-Van, Cyril; Zaoui, Eric; Vanel, Thierry; Hurot, Jean Marc; Lorriaux, Christie; Mayor, Brice; Deleaval, Patrick; Jean, Guillaume

    2011-08-01

    Brain natriuretic peptide (BNP) is a cardiac peptide secreted by ventricle myocardial cells under stretch constraint. Increased BNP has been shown associated with increased mortality in end-stage renal disease patients. In patients starting haemodialysis (HD), both fluid overload and cardiac history are frequently present and may be responsible for a high BNP plasma level. We report in this study the evolution of BNP levels in incident HD patients, its relationship with fluid removal and cardiac history as well as its prognostic value. Forty-six patients (female/male: 21/25; 68.6 ± 14.5 years old) surviving at least 6 months after HD treatment onset were retrospectively analysed. Plasma BNP (Chemoluminescent Microparticule ImmunoAssay on i8200 Architect Abbott, Paris, France; normal value < 100 pg/mL) was assessed at HD start and during the second quarter of HD treatment (Q2). At dialysis start, the plasma BNP level was 1041 ± 1178 pg/mL (range: 14-4181 pg/mL). It was correlated with age (P = 0.0017) and was significantly higher in males (P = 0.0017) and in patients with cardiac disease history (P = 0.001). The plasma BNP level at baseline was not related to the mortality risk. At Q2, predialysis systolic blood pressure (BP) decreased from 140.5 ± 24.5 to 129.4 ± 20.6 mmHg (P = 0.0001) and the postdialysis body weight by 7.6 ± 8.4% (P < 0.0001). The BNP level decreased to 631 ± 707 pg/mL (P = 0.01) at Q2. Its variation was significantly correlated with systolic BP decrease (P = 0.006). A high BNP level was found associated with an increased risk of mortality. Hence, plasma BNP levels decreased during the first months of HD treatment during the dry weight quest. Whereas initial BNP values were not associated with increased mortality risk, the BNP level at Q2 was independently predictive of mortality. Hence, BNP is a useful tool to follow patient dehydration after dialysis start. Initial fluid overload may act as a confounding factor for its value as a

  9. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    OpenAIRE

    Divya Hitler; Parthasarathy Arumugam; Mathivanan Narayanasamy; Elangovan Vellaichamy

    2014-01-01

    Context: Desmodium gangeticum (L) DC (Fabaceae; DG), a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO)-induced left ventricular cardiac hypertrophy (LVH) in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection) for 7 days induced LVH...

  10. Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI

    NARCIS (Netherlands)

    van Nierop, Bastiaan J.; van Assen, Hans C.; van Deel, Elza D.; Niesen, Leonie B. P.; Duncker, Dirk J.; Strijkers, Gustav J.; Nicolay, Klaas

    2013-01-01

    Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model.

  11. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy

    African Journals Online (AJOL)

    Diabetes or hyperglycemia disrupts HIF-mediated cardiac hypertrophy adaptive regulatory mechanism [14]. In diabetic retinopathy, abnormal increase of ... detection system. Flow cytometry. After digesting with EDTA-free trypsin, the H9C2 cells were centrifuged at 1000 rpm for 5 min. After discarding the medium, the cells ...

  12. Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block

    NARCIS (Netherlands)

    van Borren, Marcel M. G. J.; Vos, Marc A.; Houtman, Marien J. C.; Antoons, Gudrun; Ravesloot, Jan H.

    2013-01-01

    Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na+ influx in hypertrophied cAVB ventricular myocytes

  13. Effect of Berberine on PPARα/NO Activation in High Glucose- and Insulin-Induced Cardiomyocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mingfeng Wang

    2013-01-01

    Full Text Available Rhizoma coptidis, the root of Coptis chinensis Franch, has been used in China as a folk medicine in the treatment of diabetes for thousands of years. Berberine, one of the active ingredients of Rhizoma coptidis, has been reported to improve symptoms of diabetes and to treat experimental cardiac hypertrophy, respectively. The objective of this study was to evaluate the potential effect of berberine on cardiomyocyte hypertrophy in diabetes and its possible influence on peroxisome proliferator-activated receptor-α (PPARα/nitric oxide (NO signaling pathway. The cardiomyocyte hypertrophy induced by high glucose (25.5 mmol/L and insulin (0.1 μmol/L (HGI was characterized in rat primary cardiomyocyte by measuring the cell surface area, protein content, and atrial natriuretic factor mRNA expression level. Protein and mRNA expression were measured by western blot and real-time RT-PCR, respectively. The enzymatic activity of NO synthase (NOS was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. HGI significantly induced cardiomyocyte hypertrophy and decreased the expression of PPARα and endothelial NOS at the mRNA and protein levels, which occurred in parallel with declining NOS activity and NO concentration. The effect of HGI was inhibited by berberine (0.1 to 100 μmol/L, fenofibrate (0.3 μmol/L, or L-arginine (100 μmol/L. MK886 (0.3 μmol/L, a selective PPARα antagonist, could abolish the effects of berberine and fenofibrate. NG-nitro-L-arginine-methyl ester (100 μmol/L, a NOS inhibitor, could block the effects of L-arginine, but only partially blocked the effects of berberine. These results suggest that berberine can blunt HGI-induced cardiomyocyte hypertrophy in vitro, through the activation of the PPARα/NO signaling pathway.

  14. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    International Nuclear Information System (INIS)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-01-01

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca 2+ signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7 −/− ) and wild-type mice (anxa7 +/+ ) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7 −/− mice than in anxa7 +/+ mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions

  15. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  16. Time course of gene expression during mouse skeletal muscle hypertrophy.

    Science.gov (United States)

    Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J

    2013-10-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.

  17. Systematic review of the synergist muscle ablation model for compensatory hypertrophy.

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalill; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2017-02-01

    The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  18. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    International Nuclear Information System (INIS)

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-01-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with [ 3 H]-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with [ 3 H]-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension

  19. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction.

    Directory of Open Access Journals (Sweden)

    Sebastião D Silva

    Full Text Available Exercise training reduces renin-angiotensin system (RAS activation, decreases plasma and tissue oxidative stress and inflammation in hypertension. However, the temporal nature of these phenomena in response to exercise is unknown. We sought to determine in spontaneously hypertensive rats (SHR and age-matched WKY controls the weekly effects of training on blood pressure (BP, plasma and left ventricle (LV Ang II and Ang-(1-7 content (HPLC, LV oxidative stress (DHE staining, gene and protein expression (qPCR and WB of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hypertension-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T or maintained sedentary (S for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8. Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II increase with amplified responses during the late phase of LV hypertrophy. Similar pattern was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with cardiomyocytes' diameter enlargement and collagen deposition. SHR-T exhibited prompt and marked decrease in LV Ang II content (T1 vs T4 in WKY-T, normalized oxidative stress (T2, augmented antioxidant defense (T4 and reduced both collagen deposition and inflammatory profile (T8, without changing cardiomyocytes' diameter and LV hypertrophy. These changes were accompanied by decreased plasma Ang II content (T2-T4 and reduced BP (T8. SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1-7 content. Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antioxidant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.

  20. Distinct cardiac transcriptional profiles defining pregnancy and exercise.

    Directory of Open Access Journals (Sweden)

    Eunhee Chung

    Full Text Available BACKGROUND: Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy-induced

  1. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  2. Impact of obesity on hypertension-induced cardiac remodeling: role of oxidative stress and its modulation by gemfibrozil treatment in rats.

    Science.gov (United States)

    Singh, Randhir; Singh, Amrit Pal; Singh, Manjeet; Krishan, Pawan

    2011-01-15

    This study investigated the possible synergistic role of obesity in hypertension-induced cardiac remodeling and its modulation by gemfibrozil treatment in rats. Male Wistar rats were fed a high-fat diet (HFD) for 90 days. Normal rats were subjected to hypertension by partial abdominal aortic constriction (PAAC) for 28 days. In the HFD+PAAC control group, rats on HFD were subjected to PAAC on the 62nd day and were sacrificed on the 90th day. HFD and PAAC individually resulted in significant cardiac hypertrophy and fibrosis along with increased oxidative stress and mean arterial blood pressure (MABP) in rats as evidenced by various morphological, biochemical, and histological parameters. Moreover, the HFD + PAAC control group showed marked cardiac remodeling compared to rats subjected to HFD or PAAC alone. The HFD+gemfibrozil and HFD+PAAC+gemfibrozil groups showed significant reduction in cardiac remodeling along with reduction in oxidative stress and MABP. Hence, it may be concluded that oxidative stress plays a key role in obesity-mediated synergistic effects on induction and progression of PAAC-induced cardiac remodeling, and its deleterious effects could be reversed by gemfibrozil treatment in rats through its antioxidant activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    Science.gov (United States)

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  4. Oligofructose overload induces lameness in cattle.

    Science.gov (United States)

    Danscher, A M; Enemark, J M D; Telezhenko, E; Capion, N; Ekstrøm, C T; Thoefner, M B

    2009-02-01

    The aim was to describe the clinical orthopedic implications of oligofructose overload. A group of 8 nonpregnant dairy heifers were given an oral dose of oligofructose (17 g/kg of body weight). At predefined times during a period spanning 3 d before and 9 d after oligofructose overload, the heifers underwent a clinical examination including locomotion scoring, hoof-testing, and palpation of tarso-crural joints, as well as the collection of blood and ruminal fluid samples. Locomotion sessions were videotaped; subsequently, locomotion was blind-scored. Locomotion scores increased after oligofructose overload and declined toward the end of the study period. The greatest locomotion scores were recorded on d 3 to 5 (60 to 120 h) where 12 of 42 (29%) locomotion scores were 3 and 13 of 42 (32%) were score 2. Positive reactions to hoof-testing were observed from 30 h after oligofructose overload and reached a maximum on d 7 and 9 where 12 of 28 (43%) reactions were marked positive. Distension of the tarso-crural joints was observed from 24 h after oligofructose overload, with maximum distension being observed on d 2, in which 44 of 56 (79%) of observed joints were either moderately or severely distended. The heifers developed classic signs of acute ruminal and systemic acidosis after the oligofructose overload (ruminal pH 4.3 +/- 0.07, standard base excess -10.8 +/- 2.3 at 18 h). With few exceptions, clinical and laboratory variables returned to normal within 9 d of oligofructose overload. But, good body condition and previous feeding with grass apparently predisposed the heifers to more severe systemic affection. Oligofructose overload in dairy heifers induced ruminal and systemic acidosis, diarrhea, dehydration, and, subsequently, lameness, claw pain, and joint effusion, collectively interpreted as signs of acute laminitis. Oligofructose overload at 17 g/kg of body weight represented a relatively mild laminitis model in cattle, as demonstrated by a reasonably quick

  5. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    Science.gov (United States)

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  6. YY1 Protects Cardiac Myocytes from Pathologic Hypertrophy by Interacting with HDAC5

    Science.gov (United States)

    Dockstader, Karen; McKinsey, Timothy A.

    2008-01-01

    YY1 is a transcription factor that can repress or activate the transcription of a variety of genes. Here, we show that the function of YY1 as a repressor in cardiac myocytes is tightly dependent on its ability to interact with histone deacetylase 5 (HDAC5). YY1 interacts with HDAC5, and overexpression of YY1 prevents HDAC5 nuclear export in response to hypertrophic stimuli and the increase in cell size and re-expression of fetal genes that accompany pathological cardiac hypertrophy. Knockdown of YY1 results in up-regulation of all genes present during fetal development and increases the cell size of neonatal cardiac myocytes. Moreover, overexpression of a YY1 deletion construct that does not interact with HDAC5 results in transcription activation, suggesting that HDAC5 is necessary for YY1 function as a transcription repressor. In support of this relationship, we show that knockdown of HDAC5 results in transcription activation by YY1. Finally, we show that YY1 interaction with HDAC5 is dependent on the HDAC5 phosphorylation domain and that overexpression of YY1 reduces HDAC5 phosphorylation in response to hypertrophic stimuli. Our results strongly suggest that YY1 functions as an antihypertrophic factor by preventing HDAC5 nuclear export and that up-regulation of YY1 in human heart failure may be a protective mechanism against pathological hypertrophy. PMID:18632988

  7. Systematic review of the synergist muscle ablation model for compensatory hypertrophy

    Directory of Open Access Journals (Sweden)

    Stella Maris Lins Terena

    Full Text Available Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training regarding the characteristics involved in the hypertrophy process (acute and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  8. Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms.

    Directory of Open Access Journals (Sweden)

    Belén Picatoste

    Full Text Available BACKGROUND: Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1 enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. METHODS: Goto-Kakizaki (GK rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin or vehicle (n=10, each. After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays. RESULTS: Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36, alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. CONCLUSIONS: Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36 promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.

  9. Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice.

    Science.gov (United States)

    Sanchez-Soria, Pablo; Broka, Derrick; Monks, Sarah L; Camenisch, Todd D

    2012-04-01

    Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding of how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic-treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic-exposed animals show an RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular-related mortalities. These results suggest that chronic low-level arsenite exposure promotes the development of hypertension and the comorbidity of concentric hypertrophy.

  10. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  11. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment.

    Science.gov (United States)

    Torlasco, Camilla; Cassinerio, Elena; Roghi, Alberto; Faini, Andrea; Capecchi, Marco; Abdel-Gadir, Amna; Giannattasio, Cristina; Parati, Gianfranco; Moon, James C; Cappellini, Maria D; Pedrotti, Patrizia

    2018-01-01

    Iron overload-related heart failure is the principal cause of death in transfusion dependent patients, including those with Thalassemia Major. Linking cardiac siderosis measured by T2* to therapy improves outcomes. T1 mapping can also measure iron; preliminary data suggests it may have higher sensitivity for iron, particularly for early overload (the conventional cut-point for no iron by T2* is 20ms, but this is believed insensitive). We compared T1 mapping to T2* in cardiac iron overload. In a prospectively large single centre study of 138 Thalassemia Major patients and 32 healthy controls, we compared T1 mapping to dark blood and bright blood T2* acquired at 1.5T. Linear regression analysis was used to assess the association of T2* and T1. A "moving window" approach was taken to understand the strength of the association at different levels of iron overload. The relationship between T2* (here dark blood) and T1 is described by a log-log linear regression, which can be split in three different slopes: 1) T2* low, 30ms, weak relationship. All subjects with T2*20ms, 38% had low T1 with most of the subjects in the T2* range 20-30ms having a low T1. In established cardiac iron overload, T1 and T2* are concordant. However, in the 20-30ms T2* range, T1 mapping appears to detect iron. These data support previous suggestions that T1 detects missed iron in 1 out of 3 subjects with normal T2*, and that T1 mapping is complementary to T2*. The clinical significance of a low T1 with normal T2* should be further investigated.

  12. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Directory of Open Access Journals (Sweden)

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  13. Whole-exome sequencing and an iPSC-derived cardiomyocyte model provides a powerful platform for gene discovery in left ventricular hypertrophy

    Directory of Open Access Journals (Sweden)

    Degui eZhi

    2012-05-01

    Full Text Available Rationale: Left ventricular hypertrophy (LVH is a heritable predictor of cardiovascular disease, particularly in blacks. Objective: Determine the feasibility of combining evidence from two distinct but complimentary experimental approaches to identify novel genetic predictors of increased LV mass . Methods: Whole exome sequencing (WES was conducted in 7 African American sibling trios ascertained on high average familial LV mass indexed to height (LVMHT. WES identified 31,426 missense or nonsense mutations (MS/NS which were examined for association with LVMHT using linear mixed models adjusted for age, sex, body weight, and family relationship. To functionally assess WES findings, human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM were stimulated to induce hypertrophy; mRNA sequencing was used to determine expression differences associated with hypertrophy onset. Results: After correction for multiple testing, 295 MS/NS variants in 265 genes were associated with LVMHT. We identified 44 of 265 WES genes differentially expressed (P<0.05 in hypertrophied cells. To further prioritize these 44 candidates, 7 supportive statistical and annotation-based criteria were used to evaluate the relevance of these genes. Five genes, HLA-B, HTT, MTSS1, SLC5A12, THBS1, were each supported by 3 criteria. THBS1 encodes an adhesive glycoprotein that promotes matrix preservation in pressure-overload LVH and harbors conserved and predicted damaging variants. Conclusions: Combining evidence from cutting-edge genetic and cellular experiments can enable identification of novel LVH risk loci.

  14. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  15. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  16. Ghrelin and its promoter variant associated with cardiac hypertrophy.

    Science.gov (United States)

    Ukkola, O; Pääkkö, T; Kesäniemi, Y A

    2012-07-01

    The roles of ghrelin, a peptide hormone that has a role in regulating food intake and energy homeostasis, in the cardiovascular system have not yet been unambiguously established. We evaluated the association between plasma ghrelin concentrations and -501A>C single-nucleotide polymorphism (SNP) in the ghrelin gene 5' flanking area and echocardiographic measurements in 1037 middle-aged subjects. Left ventricular mass index (LVMI) was calculated according to Devereux's method. The ambulatory blood pressure (BP) was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Results suggested that plasma ghrelin was not related to mean ambulatory BP values. However, the highest plasma ghrelin tertile was associated with increased intraventricular septum (P=0.043) and posterior ventricular wall (P=0.002) thicknesses as well as left ventricular mass (P=0.05). After adjustment for age, sex, body mass index and systolic BP, the association persisted between ghrelin tertiles and intraventricular septum (P=0.05) and posterior ventricular wall (P=0.001) thicknesses. The SNP -501A>C polymorphism was associated with LVMI after adjustments for age, sex and systolic BP. In conclusion, ghrelin and its promoter variant are associated with cardiac hypertrophy indexes independent of BP. Positive correlation between ghrelin levels and increased wall thickness parameters may reflect compensatory up-regulation of ghrelin concentrations or direct effects of ghrelin on myocardium. The effects of the SNP seem not to be mediated through its effects on ghrelin plasma levels.

  17. Fluid overload in the ICU: evaluation and management.

    Science.gov (United States)

    Claure-Del Granado, Rolando; Mehta, Ravindra L

    2016-08-02

    Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients. In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous

  18. Maternal Diet-Induced Obesity Programmes Cardiac Dysfunction in Male Mice Independently of Post-Weaning Diet.

    Science.gov (United States)

    Loche, Elena; Blackmore, Heather L; Carpenter, Asha A M; Beeson, Jessica H; Pinnock, Adele; Ashmore, Thomas J; Aiken, Catherine E; de Almeida-Faria, Juliana; Schoonejans, Josca; Giussani, Dino A; Fernandez-Twinn, Denise S; Ozanne, Susan E

    2018-04-04

    Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure and function was assessed in 8-week old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P<0.0001) and leptin levels (P<0.0001); maternal obesity (P=0.001) and a post-weaning obesogenic diet (P=0.002) increased absolute heart weight; maternal obesity (P=0.01) and offspring obesity (P=0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7:Myh6 ratio; P=0.0004), however these genes were not affected by offspring diet; maternal obesity (P=0.02) and offspring obesity (P=0.05) caused hypertension and effects were additive. Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes and remodelling of cardiac structure. These data highlight that the

  19. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  20. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    Science.gov (United States)

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  1. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    International Nuclear Information System (INIS)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-01-01

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and α-smooth muscle actin (α-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  2. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  3. Gene Expression Profile in the Early Stage of Angiotensin II-induced Cardiac Remodeling: a Time Series Microarray Study in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Meng-Qiu Dang

    2015-01-01

    Full Text Available Background/Aims: Angiotensin II (Ang II plays a critical role in the cardiac remodeling contributing to heart failure. However, the gene expression profiles induced by Ang II in the early stage of cardiac remodeling remain unknown. Methods: Wild-type male mice (C57BL/6 background, 10-weeek-old were infused with Ang II (1500 ng/kg/min for 7 days. Blood pressure was measured. Cardiac function and remodeling were examined by echocardiography, H&E and Masson staining. The time series microarrays were then conducted to detected gene expression profiles. Results: Microarray results identified that 1,489 genes were differentially expressed in the hearts at day 1, 3 and 7 of Ang II injection. These genes were further classified into 26 profiles by hierarchical cluster analysis. Of them, 4 profiles were significant (No. 19, 8, 21 and 22 and contained 904 genes. Gene Ontology showed that these genes mainly participate in metabolic process, oxidation-reduction process, extracellular matrix organization, apoptotic process, immune response, and others. Significant pathways included focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, MAPK and insulin signaling pathways, which were known to play important roles in Ang II-induced cardiac remodeling. Moreover, gene co-expression networks analysis suggested that serine/cysteine peptidase inhibitor, member 1 (Serpine1, also known as PAI-1 localized in the core of the network. Conclusions: Our results indicate that many genes are mainly involved in metabolism, inflammation, cardiac fibrosis and hypertrophy. Serpine1 may play a central role in the development of Ang II-induced cardiac remodeling at the early stage.

  4. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart.

    Science.gov (United States)

    Abdul-Ghani, Mohammad; Suen, Colin; Jiang, Baohua; Deng, Yupu; Weldrick, Jonathan J; Putinski, Charis; Brunette, Steve; Fernando, Pasan; Lee, Tom T; Flynn, Peter; Leenen, Frans H H; Burgon, Patrick G; Stewart, Duncan J; Megeney, Lynn A

    2017-10-01

    The post-natal heart adapts to stress and overload through hypertrophic growth, a process that may be pathologic or beneficial (physiologic hypertrophy). Physiologic hypertrophy improves cardiac performance in both healthy and diseased individuals, yet the mechanisms that propagate this favorable adaptation remain poorly defined. We identify the cytokine cardiotrophin 1 (CT1) as a factor capable of recapitulating the key features of physiologic growth of the heart including transient and reversible hypertrophy of the myocardium, and stimulation of cardiomyocyte-derived angiogenic signals leading to increased vascularity. The capacity of CT1 to induce physiologic hypertrophy originates from a CK2-mediated restraining of caspase activation, preventing the transition to unrestrained pathologic growth. Exogenous CT1 protein delivery attenuated pathology and restored contractile function in a severe model of right heart failure, suggesting a novel treatment option for this intractable cardiac disease.

  5. Baseline muscle mass is a poor predictor of functional overload-induced gain in the mouse model

    Directory of Open Access Journals (Sweden)

    Audrius Kilikevicius

    2016-11-01

    Full Text Available Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response.The aim of this study was to examine the effect of genetic background on variability in muscle mass at baseline and in the adaptive response of the mouse fast- and slow-twitch muscles to overload. Males of eight laboratory mouse strains: C57BL/6J (B6, n=17, BALB/cByJ (n=7, DBA/2J (D2, n=12, B6.A-(rs3676616-D10Utsw1/Kjn (B6.A, n=9, C57BL/6J-Chr10A/J/NaJ (B6.A10, n=8, BEH+/+ (n=11, BEH (n=12 and DUHi (n=12, were studied. Compensatory growth of soleus and plantaris muscles was triggered by a 4-week overload induced by synergist unilateral ablation. Muscle weight in the control leg (baseline varied from 5.2±07 mg soleus and 11.4±1.3 mg plantaris in D2 mice to 18.0±1.7 mg soleus in DUHi and 43.7±2.6 mg plantaris in BEH (p<0.001 for both muscles. In addition, soleus in the B6.A10 strain was ~40% larger (p<0.001 compared to the B6. Functional overload increased muscle weight, however, the extent of gain was strain-dependent for both soleus (p<0.01 and plantaris (p<0.02 even after accounting for the baseline differences. For the soleus muscle, the BEH strain emerged as the least responsive, with a 1.3-fold increase, compared to a 1.7-fold gain in the most responsive D2 strain, and there was no difference in the gain between the B6.A10 and B6 strains. The BEH strain appeared the least responsive in the gain of plantaris as well, 1.3-fold, compared to ~1.5-fold gain in the remaining strains. We conclude that variation in muscle mass at baseline is not a reliable predictor of that in the overload-induced gain. This suggests that a different set of genes influence variability in muscle mass acquired in the process of normal development, growth and maintenance, and in the process of adaptive

  6. Caffeic acid phenethyl ester prevents cadmium-induced cardiac impairment in rat

    International Nuclear Information System (INIS)

    Mollaoglu, Hakan; Gokcimen, Alpaslan; Ozguner, Fehmi; Oktem, Faruk; Koyu, Ahmet; Kocak, Ahmet; Demirin, Hilmi; Gokalp, Osman; Cicek, Ekrem

    2006-01-01

    Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine the effect of CAPE on cadmium (Cd)-induced hypertension and cardiomyopathy in rats. In particular, nitric oxide (NO) may contribute to the pathophysiology of Cd induced cardiac impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels and nitric oxide (NO, a vasodilator) levels were used as markers Cd-induced cardiac impairment and the success of CAPE treatment. Also, the findings have been supported by the histopathologic evidences. The rats were randomly divided into three experimental groups each (12), as follows: the control group, Cd-treated group (Cd) and Cd plus CAPE-treated group (Cd + CAPE). CdCl 2 in 0.9% NaCl was administrated intraperitoneally (i.p.) with a dose of 1 mg/kg/day. CAPE was co-administered i.p. a dose of 10 μM/kg for 15 days. Hypertension was found to be induced by intraperitoneal administration of Cd in a dose of 1 mg/kg/day on the measurements taken 15 days later. MDA levels were increased (p < 0.001) in cardiac tissue and NO levels were decreased (p < 0.05) in serum in the Cd group than those of the control group had. On the other hand, there was a slight difference (increase) in MDA levels in the Cd + CAPE group than the ones in the control group (p < 0.003). In addition, MDA levels were decreased and NO levels were increased in the Cd + CAPE group compared with the Cd group (p < 0.001, p < 0.0001, respectively). As a result, treatment with CAPE significantly reversed the increased lipid peroxidation (LPO) product, MDA, and decreased NO levels in Cd treated animals. In the histopathologic examination, a significant hypertrophy in atrial and ventricular myofibrils was observed in only Cd administered group, in comparison with the control group. There was no statistically significant difference

  7. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy.

    Science.gov (United States)

    Reza, Musarrat Maisha; Subramaniyam, Nathiya; Sim, Chu Ming; Ge, Xiaojia; Sathiakumar, Durgalakshmi; McFarlane, Craig; Sharma, Mridula; Kambadur, Ravi

    2017-10-24

    Exercise induces expression of the myokine irisin, which is known to promote browning of white adipose tissue and has been shown to mediate beneficial effects following exercise. Here we show that irisin induces expression of a number of pro-myogenic and exercise response genes in myotubes. Irisin increases myogenic differentiation and myoblast fusion via activation of IL6 signaling. Injection of irisin in mice induces significant hypertrophy and enhances grip strength of uninjured muscle. Following skeletal muscle injury, irisin injection improves regeneration and induces hypertrophy. The effects of irisin on hypertrophy are due to activation of satellite cells and enhanced protein synthesis. In addition, irisin injection rescues loss of skeletal muscle mass following denervation by enhancing satellite cell activation and reducing protein degradation. These data suggest that irisin functions as a pro-myogenic factor in mice.

  8. VO(2peak), myocardial hypertrophy, and myocardial blood flow in endurance-trained men.

    Science.gov (United States)

    Laaksonen, Marko S; Heinonen, Ilkka; Luotolahti, Matti; Knuuti, Juhani; Kalliokoski, Kari K

    2014-08-01

    Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. We studied the interrelationships between peak aerobic power (V˙O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. Both V˙O2peak (P negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.

  9. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    Science.gov (United States)

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  11. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  12. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH, insulin like grow factor 1 (IGF-1 and interleukin 6 (IL-6], or intramuscular [skeletal muscle androgen receptor (AR protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. RESULTS: Mean fiber area increased by 20% (range: -7 to 80%; P<0.001. Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19; however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023. Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007. There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019. CONCLUSION: Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  13. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  14. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  15. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  16. Comparative study of the antioxidant properties of monocarbonyl curcumin analogues C66 and B2BrBC in isoproteranol induced cardiac damage.

    Science.gov (United States)

    Hadzi-Petrushev, Nikola; Bogdanov, Jane; Krajoska, Jovanka; Ilievska, Jovana; Bogdanova-Popov, Biljana; Gjorgievska, Elizabeta; Mitrokhin, Vadim; Sopi, Ramadan; Gagov, Hristo; Kamkin, Andre; Mladenov, Mitko

    2018-03-15

    To test the antioxidant properties of the newly synthesized (2E,6E)-2,6-bis(2-bromobenzylidene)cyclohexanone (B2BrBC) in parallel with C66 in rats with cardiac hypertrophy. The protective effects of both C66 and B2BrBC against oxidative stress in rats with cardiac hypertrophy, was studied by evaluating the activity of antioxidant enzymes, the relationship between the ratio of the activities of the antioxidant enzymes R = SOD/(GPx + CAT) and levels of thiols and lipid peroxidation in the heart. In order to gain better understanding of the antioxidant properties of the studied compounds, computational methods were utilized. The properties of selected structurally related derivatives were obtained on optimized geometries for ground states, using semi-empirical PM3 quantum mechanical calculations. The ratio R shows disequilibrium in rats with induced hypertrophy (p antioxidant. The obtained results indicated that the antioxidant ability of B2BrBC is positively associated with the catalytic SOD and GPx activities expressed through preserved t-SH levels. It seems plausible that for a compound to exhibit antioxidant activity, as most of the 2,6-bis(benzylidene)cyclohexanones do, they should be good electron donors. Understanding the relationship between cardiac hypertrophy induced oxidative injuries and supporters of endogenous reparatory machinery will help in establishing the beneficial role of adequate antioxidant supplementation. In this study reliable data on the preventive effects of newly synthesized symmetric monocarbonyl curcumin analogue B2BrBC and its role in the prevention of oxidative injuries on three levels (enzymatic, protein and lipid), in the heart hypertrophic onset, were obtained. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension.

    Science.gov (United States)

    Brown, Mary Beth; Neves, Evandro; Long, Gary; Graber, Jeremy; Gladish, Brett; Wiseman, Andrew; Owens, Matthew; Fisher, Amanda J; Presson, Robert G; Petrache, Irina; Kline, Jeffrey; Lahm, Tim

    2017-02-01

    Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT's superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.

  18. Salt, Blood Pressure and Cardiovascular Changes in Human and ...

    African Journals Online (AJOL)

    Salt, Blood Pressure and Cardiovascular Changes in Human and Experimental Studies – A Review. ... Some of the pathophysiological changes include cardiac hypertrophy and enhanced cardiac contractility, enhanced contraction of blood vessels and veins in response to constrictor agonists and diminished relaxation of ...

  19. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Cardiac hypertrophy in chick embryos induced by hypothermia

    International Nuclear Information System (INIS)

    Boehm, C.; Johnson, T.R.; Caston, J.D.; Przybylski, R.J.

    1987-01-01

    A decrease in incubation temperature from 38 to 32 0 C elicits a decrease in chicken embryo size and weight with concomitant heart enlargement if done after day 10 of incubation. When assayed at day 18 of incubation with the hypothermia started on day 11 or 14, evidence is presented that the heart enlargement is an hypertrophy with no detectable hyperplasia. Supporting data are presented for various physical parameters showing increases in heart wet and dry weight, volume, area, wall thickness, and cell size. There was little difference in DNA content and nuclear [ 3 H]thymidine labeling index between hearts of control and hypothermic embryos. Hearts of hypothermic embryos showed a slight increase in water content and considerable increases in RNA, protein, and glycogen content per unit DNA. The average size of polysomes isolated from hypothermic hearts was larger than that of polysomes isolated from controls. Microscopic studies showed no obvious increase in amount of capillary beds, connective tissue, and myocardial cells. Annulate lamellae were found only in myocardial cells of hypothermic embryos in sparse amounts and low frequency but always associated with large deposits of glycogen

  1. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  2. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  3. Importance of Calibration Method in Central Blood Pressure for Cardiac Structural Abnormalities.

    Science.gov (United States)

    Negishi, Kazuaki; Yang, Hong; Wang, Ying; Nolan, Mark T; Negishi, Tomoko; Pathan, Faraz; Marwick, Thomas H; Sharman, James E

    2016-09-01

    Central blood pressure (CBP) independently predicts cardiovascular risk, but calibration methods may affect accuracy of central systolic blood pressure (CSBP). Standard central systolic blood pressure (Stan-CSBP) from peripheral waveforms is usually derived with calibration using brachial SBP and diastolic BP (DBP). However, calibration using oscillometric mean arterial pressure (MAP) and DBP (MAP-CSBP) is purported to provide more accurate representation of true invasive CSBP. This study sought to determine which derived CSBP could more accurately discriminate cardiac structural abnormalities. A total of 349 community-based patients with risk factors (71±5years, 161 males) had CSBP measured by brachial oscillometry (Mobil-O-Graph, IEM GmbH, Stolberg, Germany) using 2 calibration methods: MAP-CSBP and Stan-CSBP. Left ventricular hypertrophy (LVH) and left atrial dilatation (LAD) were measured based on standard guidelines. MAP-CSBP was higher than Stan-CSBP (149±20 vs. 128±15mm Hg, P curve analyses, MAP-CSBP significantly better discriminated LVH compared with Stan-CSBP (area under the curve (AUC) 0.66 vs. 0.59, P = 0.0063) and brachial SBP (0.62, P = 0.027). Continuous net reclassification improvement (NRI) (P AUC 0.63 vs. 0.56, P = 0.005) and conventional brachial SBP (0.58, P = 0.006), whereas Stan-CSBP provided no better discrimination than conventional brachial BP (P = 0.09). CSBP is calibration dependent and when oscillometric MAP and DBP are used, the derived CSBP is a better discriminator for cardiac structural abnormalities. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    Science.gov (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    International Nuclear Information System (INIS)

    Sultana, R.; Sultana, N.; Rashid, A.; Rasheed, S.Z.; Ahmed, M.; Ishaq, M.; Samad, A.

    2010-01-01

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  7. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, R; Sultana, N; Rashid, A; Rasheed, S Z; Ahmed, M; Ishaq, M; Samad, A [Karachi Institute of Heart Diseases, Karachi (Pakistan)

    2010-10-15

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  8. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice.

    Science.gov (United States)

    Ruan, Guoran; Ren, Haojin; Zhang, Chi; Zhu, Xiaogang; Xu, Chao; Wang, Liyue

    2018-01-01

    QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis

  10. Effects of Resistance Training on Ventricular Function and Hypertrophy in a Rat Model

    Science.gov (United States)

    Barauna, Valério Garrone; Rosa, Kaleizu Teodoro; Irigoyen, Maria Cláudia; de Oliveira, Edilamar Menezes

    2007-01-01

    Objective: The purpose of this study was to follow the ventricular function and cardiac hypertrophy in rats undergoing a resistance-training program for a period of 3 months. Design: Forty animals were divided into two major groups: control (n=16) and resistance trained (n=24). From the resistance-trained group, 12 animals were resistance trained for 1 month and another 12 for 3 months. The resistance-training protocol was performed with 4 sets of 12 repetitions using 65% to 75% of one repetition maximum (maximum lifted weight with the exercise apparatus). Methods: Echocardiographic analysis was performed at the beginning of the resistance-training period and at the end of each month. The repetition maximum was measured every 2 weeks. Cardiac hypertrophy was determined by echocardiography, by the absolute weight of the cardiac chambers and by histology of the left ventricle. Results: Before resistance training, both groups had similar repetition maximums, ranging from 1.8-fold to 2-fold the body weight; however, at the end of the resistance-training period, the repetition maximum of the resistance-trained group was 6-fold greater than the body weight. The left ventricular mass as assessed by echocardiography was 8%, 12% and 16% larger in the resistance-trained group than in the control group in the first, second and third months, respectively. This hypertrophy showed a similar increase in the interventricular septum and in the free posterior wall mass. There was no reduction in the end-diastolic left ventricular internal diameter during the 3-month resistance-training period. Systolic function did not differ between the groups throughout the resistance-training period. Conclusion: Resistance training induces the development of concentric cardiac hypertrophy without ventricular dysfunction or cavity reduction. Although diastolic function was not completely investigated, we cannot exclude the possibility that resistance training results in diastolic dysfunction. PMID

  11. Thyroid hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis is mediated by bone morphogenetic protein-4.

    Science.gov (United States)

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael; Mueller, Michael B

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair.

  12. Intradialytic Hypotension and Cardiac Remodeling: A Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2015-01-01

    Full Text Available Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.

  13. Recovery following Thyroxine Treatment Withdrawal, but Not Propylthiouracil, Averts In Vivo and Ex Vivo Thyroxine-Provoked Cardiac Complications in Adult FVB/N Mice

    Directory of Open Access Journals (Sweden)

    Nancy S. Saad

    2017-01-01

    Full Text Available Persistent cardiovascular pathology has been described in hyperthyroid patients even with effective antithyroid treatment. Here, we studied the effect of a well-known antithyroid drug, propylthiouracil (PTU; 20 mg/kg/day, on thyroxine (T4; 500 µg/kg/day-induced increase in blood pressure (BP, cardiac hypertrophy, and altered responses of the contractile myocardium both in vivo and ex vivo after 2 weeks of treatment. Furthermore, the potential recovery through 2 weeks of T4 treatment discontinuation was also investigated. PTU and T4 recovery partially reduced the T4-prompted increase in BP. Alternatively, PTU significantly improved the in vivo left ventricular (LV function with no considerable effects on cardiac hypertrophy or ex vivo right ventricular (RV contractile alterations subsequent to T4 treatment. Conversely, T4 recovery considerably enhanced the T4-provoked cardiac changes both in vivo and ex vivo. Altogether, our data is in agreement with the proposal that hyperthyroidism-induced cardiovascular pathology could persevere even with antithyroid treatments, such as PTU. However, this cannot be generalized and further investigation with different antithyroid treatments should be executed. Moreover, we reveal that recovery following experimental hyperthyroidism could potentially ameliorate cardiac function and decrease the risk for additional cardiac complications, yet, this appears to be model-dependent and should be cautiously construed.

  14. The overloaded right heart and ventricular interdependence.

    Science.gov (United States)

    Naeije, Robert; Badagliacca, Roberto

    2017-10-01

    The right and the left ventricle are interdependent as both structures are nested within the pericardium, have the septum in common and are encircled with common myocardial fibres. Therefore, right ventricular volume or pressure overloading affects left ventricular function, and this in turn may affect the right ventricle. In normal subjects at rest, right ventricular function has negligible interaction with left ventricular function. However, the right ventricle contributes significantly to the normal cardiac output response to exercise. In patients with right ventricular volume overload without pulmonary hypertension, left ventricular diastolic compliance is decreased and ejection fraction depressed but without intrinsic alteration in contractility. In patients with right ventricular pressure overload, left ventricular compliance is decreased with initial preservation of left ventricular ejection fraction, but with eventual left ventricular atrophic remodelling and altered systolic function. Breathing affects ventricular interdependence, in healthy subjects during exercise and in patients with lung diseases and altered respiratory system mechanics. Inspiration increases right ventricular volumes and decreases left ventricular volumes. Expiration decreases both right and left ventricular volumes. The presence of an intact pericardium enhances ventricular diastolic interdependence but has negligible effect on ventricular systolic interdependence. On the other hand, systolic interdependence is enhanced by a stiff right ventricular free wall, and decreased by a stiff septum. Recent imaging studies have shown that both diastolic and systolic ventricular interactions are negatively affected by right ventricular regional inhomogeneity and prolongation of contraction, which occur along with an increase in pulmonary artery pressure. The clinical relevance of these observations is being explored. Published on behalf of the European Society of Cardiology. All rights

  15. Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload.

    Directory of Open Access Journals (Sweden)

    Elena Montes-Cobos

    Full Text Available Mineralocorticoid receptor (MR inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox. Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.

  16. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway.

    Science.gov (United States)

    Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili

    2016-11-01

    Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

  17. The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy

    Science.gov (United States)

    Marcotte, George R.; West, Daniel W.D.; Baar, Keith

    2016-01-01

    In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Lastly, new mechanisms are highlighted for how β2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise. PMID:25359125

  18. Prevention of pulmonary vascular and myocardial remodeling by the combined tyrosine and serine-/threonine kinase inhibitor, sorafenib, in pulmonary hypertension and right heart failure

    Directory of Open Access Journals (Sweden)

    M. Klein

    2008-06-01

    Full Text Available Inhibition of tyrosine kinases can reverse pulmonary hypertension but little is known about the role of serine-/threonine kinases in vascular and myocardial remodeling. We investigated the effects of sorafenib, an inhibitor of the tyrosine kinases VEGFR, PDGFR and c-kit as well as the serine-/threonine kinase Raf-1, in pulmonary hypertension and right ventricular (RV pressure overload. In monocrotaline treated rats, sorafenib (10 mg·kg–1·d–1 p.o. reduced pulmonary arterial pressure, pulmonary artery muscularization and RV hypertrophy, and improved systemic hemodynamics (table 1. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of downstream signaling pathways (Erk 1/2. After pulmonary banding, sorafenib, but not the PDGFR/c-KIT/ABL-inhibitor imatinib reduced RV mass and RV filling pressure significantly. Congruent with these results, sorafenib only prevented ERK phosphorylation and vasopressin induced hypertrophy of the cardiomyocyte cell line H9c2 dose dependently (IC50 = 300 nM. Combined inhibition of tyrosine and serine-/threonine kinases by sorafenib prevents vascular and cardiac remodeling in pulmonary hypertension, which is partly mediated via inhibition of the Raf kinase pathway.

  19. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    Science.gov (United States)

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  20. Association of pulse pressure with new-onset atrial fibrillation in patients with hypertension and left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Larstorp, Anne Cecilie K; Ariansen, Inger; Gjesdal, Knut

    2012-01-01

    , and mean arterial pressure. When evaluated in the same model, the predictive effect of systolic and diastolic blood pressures together was similar to that of PP. In this population of patients with hypertension and left ventricular hypertrophy, PP was the strongest single blood pressure predictor of new......Previous studies have found pulse pressure (PP), a marker of arterial stiffness, to be an independent predictor of atrial fibrillation (AF) in general and hypertensive populations. We examined whether PP predicted new-onset AF in comparison with other blood pressure components in the Losartan...... Intervention For Endpoint reduction in hypertension study, a double-blind, randomized (losartan versus atenolol), parallel-group study, including 9193 patients with hypertension and electrocardiographic left ventricular hypertrophy. In 8810 patients with neither a history of AF nor AF at baseline, Minnesota...

  1. Elevated Levels of Asymmetric Dimethylarginine (ADMA in the Pericardial Fluid of Cardiac Patients Correlate with Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Zoltan Nemeth

    Full Text Available Pericardial fluid (PF contains several biologically active substances, which may provide information regarding the cardiac conditions. Nitric oxide (NO has been implicated in cardiac remodeling. We hypothesized that L-arginine (L-Arg precursor of NO-synthase (NOS and asymmetric dimethylarginine (ADMA, an inhibitor of NOS, are present in PF of cardiac patients and their altered levels may contribute to altered cardiac morphology.L-Arg and ADMA concentrations in plasma and PF, and echocardiographic parameters of patients undergoing coronary artery bypass graft (CABG, n = 28 or valve replacement (VR, n = 25 were determined.We have found LV hypertrophy in 35.7% of CABG, and 80% of VR patients. In all groups, plasma and PF L-Arg levels were higher than that of ADMA. Plasma L-Arg level was higher in CABG than VR (75.7 ± 4.6 μmol/L vs. 58.1 ± 4.9 μmol/L, p = 0.011, whereas PF ADMA level was higher in VR than CABG (0.9 ± 0.0 μmol/L vs. 0.7 ± 0.0 μmol/L, p = 0.009. L-Arg/ADMA ratio was lower in the VR than CABG (VRplasma: 76.1 ± 6.6 vs. CABGplasma: 125.4 ± 10.7, p = 0.004; VRPF: 81.7 ± 4.8 vs. CABGPF: 110.4 ± 7.2, p = 0.009. There was a positive correlation between plasma L-Arg and ADMA in CABG (r = 0.539, p = 0.015; and plasma and PF L-Arg in CABG (r = 0.357, p = 0.031; and plasma and PF ADMA in VR (r = 0.529, p = 0.003; and PF L-Arg and ADMA in both CABG and VR (CABG: r = 0.468, p = 0.006; VR: r = 0.371, p = 0.034. The following echocardiographic parameters were higher in VR compared to CABG: interventricular septum (14.7 ± 0.5 mm vs. 11.9 ± 0.4 mm, p = 0.000; posterior wall thickness (12.6 ± 0.3 mm vs. 11.5 ± 0.2 mm, p = 0.000; left ventricular (LV mass (318.6 ± 23.5 g vs. 234.6 ± 12.3 g, p = 0.007; right ventricular (RV (33.9 ± 0.9 cm2 vs. 29.7 ± 0.7 cm2, p = 0.004; right atrial (18.6 ± 1.0 cm2 vs. 15.4 ± 0.6 cm2, p = 0.020; left atrial (19.8 ± 1.0 cm2 vs. 16.9 ± 0.6 cm2, p = 0.033 areas. There was a positive correlation

  2. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    Science.gov (United States)

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. © The Author 2015. Published by Oxford University Press.

  3. High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ulises Novoa

    2017-01-01

    Full Text Available Diabetic cardiomyopathy refers to the manifestations in the heart as a result of altered glucose homeostasis, reflected as fibrosis, cellular hypertrophy, increased oxidative stress, and apoptosis, leading to ventricular dysfunction. Since physical exercise has been indicated as cardioprotective, we tested the hypothesis that high-intensity exercise training could reverse the cardiac maladaptations produced by diabetes. For this, diabetes was induced in rats by a single dose of alloxan. Diabetic rats were randomly assigned to a sedentary group or submitted to a program of exercise on a treadmill for 4 weeks at 80% of maximal performance. Another group of normoglycemic rats was used as control. Diabetic rat hearts presented cardiomyocyte hypertrophy and interstitial fibrosis. Chronic exercise reduced both parameters but increased apoptosis. Diabetes increased the myocardial levels of the mRNA and proteins of NADPH oxidases NOX2 and NOX4. These altered levels were not reduced by exercise. Diabetes also increased the level of uncoupled endothelial nitric oxide synthase (eNOS that was not reversed by exercise. Finally, diabetic rats showed a lower degree of phosphorylated phospholamban and reduced levels of SERCA2 that were not restored by high-intensity exercise. These results suggest that high-intensity chronic exercise was able to reverse remodeling in the diabetic heart but was unable to restore the nitroso-redox imbalance imposed by diabetes.

  4. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia.

    Science.gov (United States)

    Zhang, Lili; Lu, Xiangru; Gui, Le; Wu, Yan; Sims, Stephen M; Wang, Guoping; Feng, Qingping

    2016-08-01

    Rac1 is a small GTPase and plays key roles in multiple cellular processes including the production of reactive oxygen species (ROS). However, whether Rac1 activation during myocardial ischaemia and reperfusion (I/R) contributes to arrhythmogenesis is not fully understood. We aimed to study the effects of Rac1 inhibition on store overload-induced Ca(2+) release (SOICR) and ventricular arrhythmia during myocardial I/R. Adult Rac1(f/f) and cardiac-specific Rac1 knockdown (Rac1(ckd) ) mice were subjected to myocardial I/R and their electrocardiograms (ECGs) were monitored for ventricular arrhythmia. Myocardial Rac1 activity was increased and ventricular arrhythmia was induced during I/R in Rac1(f/f) mice. Remarkably, I/R-induced ventricular arrhythmia was significantly decreased in Rac1(ckd) compared to Rac1(f/f) mice. Furthermore, treatment with Rac1 inhibitor NSC23766 decreased I/R-induced ventricular arrhythmia. Ca(2+) imaging analysis showed that in response to a 6 mM external Ca(2+) concentration challenge, SOICR was induced with characteristic spontaneous intracellular Ca(2+) waves in Rac1(f/f) cardiomyocytes. Notably, SOICR was diminished by pharmacological and genetic inhibition of Rac1 in adult cardiomyocytes. Moreover, I/R-induced ROS production and ryanodine receptor 2 (RyR2) oxidation were significantly inhibited in the myocardium of Rac1(ckd) mice. We conclude that Rac1 activation induces ventricular arrhythmia during myocardial I/R. Inhibition of Rac1 suppresses SOICR and protects against ventricular arrhythmia. Blockade of Rac1 activation may represent a new paradigm for the treatment of cardiac arrhythmia in ischaemic heart disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Aortic stenosis with abnormal eccentric left ventricular remodeling secondary to hypothyroidism in a Bourdeaux Mastiff

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Minozzo

    Full Text Available ABSTRACT: This paper describes a case of congenital aortic stenosis with eccentric left ventricular hypertrophy associated with hypothyroidism in a 1-year-old Bourdeaux Mastiff dog. The dog had ascites, apathy, alopecic and erythematous skin lesions in different parts of the body. A two-dimensional echocardiogram revealed aortic valve stenosis, with poststenotic dilation in the ascending aorta. The same exam showed eccentric hypertrophy and dilation of the left ventricle during systole and diastole. Aortic stenosis usually results in concentric left ventricular hypertrophy instead of eccentric hypertrophy; and therefore, this finding was very unusual. Hypothyroidism, which is uncommon in young dogs, may be incriminated as the cause of ventricular dilation, making this report even more interesting. Because hypothyroidism would only result in dilatation, the eccentric hypertrophy was attributed to pressure overload caused by aortic stenosis. Thus, cardiac alterations of this case represent a paradoxical association of both diseases.

  6. Iron overload in myelodysplastic syndromes (MDS).

    Science.gov (United States)

    Gattermann, Norbert

    2018-01-01

    Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.

  7. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy

    International Nuclear Information System (INIS)

    Wang, Gui-Jun; Wang, Hong-Xin; Yao, Yu-Sheng; Guo, Lian-Yi; Liu, Pei

    2012-01-01

    We investigated whether Ca 2+ /calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 µg/L), and Ca 2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca 2+ ] i transients, CaMKIIδ B and CaN were evaluated by the Lowry method, [ 3 H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 µg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 µg/L) significantly increased the amplitude of spontaneous [Ca 2+ ] i transients, the total protein content, cell size, and [ 3 H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca 2+ chelator. The increases in protein content, cell size and [ 3 H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδ B by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca 2+ ] i , CaMKIIδ B and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca 2+ /CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α

  8. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  9. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jennifer C Irvine

    Full Text Available Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar

  10. The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression

    Science.gov (United States)

    Tan, Weijiang; Li, Xiangmin; Jiao, Chunwei; Huang, Ren; Yang, Burton B.

    2016-01-01

    To examine the role of oral Ganoderma spore oil in cardiovascular disease, we used transverse aortic constriction (TAC) in mice to model pressure overload-induced cardiomyopathy. Our preliminary results demonstrated a potential cardioprotective role for spore oil extracted from Ganoderma. We found that Ganoderma treatment normalized ejection fraction and corrected the fractional shortening generated by TAC. We also found evidence of reduced left ventricular hypertrophy as assessed by left ventricular end diastolic diameter. Analysis of total RNA expression using cardiac tissue samples from these mice corroborated our findings. We found reduced expression of genes associated with heart failure, including a novel circular RNA circ-Foxo3. Thus our data provides evidence for Ganoderma lucidum as a potential cardioprotective agent, warranting further preclinical exploration. PMID:27713910

  11. New classification of geometric ventricular patterns in severe aortic stenosis: Could it be clinically useful?

    Science.gov (United States)

    Di Nora, Concetta; Cervesato, Eugenio; Cosei, Iulian; Ravasel, Andreea; Popescu, Bogdan A; Zito, Concetta; Carerj, Scipione; Antonini-Canterin, Francesco; Popescu, Andreea C

    2018-04-16

    In severe aortic stenosis, different left ventricle (LV) remodeling patterns as a response to pressure overload have distinct hemodynamic profiles, cardiac function, and outcomes. The most common classification considers LV relative wall thickness and LV mass index to create 4 different groups. A new classification including also end-diastolic volume index has been recently proposed. To describe the prevalence of the newly identified remodeling patterns in patients with severe aortic stenosis and to evaluate their clinical relevance according to symptoms. We analyzed 286 consecutive patients with isolated severe aortic stenosis. Current guidelines were used for echocardiographic evaluation. Symptoms were defined as the presence of angina, syncope, or NYHA class III-IV. The mean age was 75 ± 9 years, 156 patients (54%) were men, while 158 (55%) were symptomatic. According to the new classification, the most frequent remodeling pattern was concentric hypertrophy (57.3%), followed by mixed (18.9%) and dilated hypertrophy (8.4%). There were no patients with eccentric remodeling; only 4 patients had a normalLV geometry. Symptomatic patients showed significantly more mixed hypertrophy (P < .05), while the difference regarding the prevalence of the other patterns was not statistically significant. When we analyzed the distribution of the classic 4 patterns stratified by the presence of symptoms, however, we did not find a significant difference (P = .157). The new classification had refined the description of different cardiac geometric phenotypes that develop as a response to pressure overload. It might be superior to the classic 4 patterns in terms of association with symptoms. © 2018 Wiley Periodicals, Inc.

  12. Miso (Japanese soybean paste) soup attenuates salt-induced sympathoexcitation and left ventricular dysfunction in mice with chronic pressure overload.

    Science.gov (United States)

    Ito, Koji; Hirooka, Yoshitaka; Sunagawa, Kenji

    2014-02-01

    The hypothalamic mineralocorticoid receptor (MR)-angiotensin II type 1 receptor (AT1R) pathway is activated in mice with chronic pressure overload (CPO). When this activation is combined with high salt intake, it leads to sympathoexcitation, hypertension, and left ventricular (LV) dysfunction. Salt intake is thus an important factor that contributes to heart failure. Miso, a traditional Japanese food made from fermented soybeans, rice, wheat, or oats, can attenuate salt-induced hypertension in rats. However, its effects on CPO mice with salt-induced sympathoexcitation and LV dysfunction are unclear. Here, we investigated whether miso has protective effects in these mice. We also evaluated mechanisms associated with the hypothalamic MR-AT1R pathway. Aortic banding was used to produce CPO, and a sham operation was performed for controls. At 2 weeks after surgery, the mice were given water containing high NaCl levels (0.5%, 1.0%, and 1.5%) for 4 weeks. The high salt loading in CPO mice increased excretion of urinary norepinephrine (uNE), a marker of sympathetic activity, in an NaCl concentration-dependent manner; however, this was not observed in Sham mice. Subsequently, CPO mice were administered 1.0% NaCl water (CPO-H) or miso soup (1.0% NaCl equivalent, CPO-miso). The expression of hypothalamic MR, serum glucocorticoid-induced kinase-1 (SGK-1), and AT1R was higher in the CPO-H mice than in the Sham mice; however, the expression of these proteins was attenuated in the CPO-miso group. Although the CPO-miso mice had higher sodium intake, salt-induced sympathoexcitation was lower in these mice than in the CPO-H group. Our findings indicate that regular intake of miso soup attenuates salt-induced sympathoexcitation in CPO mice via inhibition of the hypothalamic MR-AT1R pathway.

  13. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    Science.gov (United States)

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  14. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist.

    Science.gov (United States)

    Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira

    2012-12-01

    Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  16. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    Science.gov (United States)

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.

  17. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    Directory of Open Access Journals (Sweden)

    Divya Hitler

    2014-10-01

    Full Text Available Context: Desmodium gangeticum (L DC (Fabaceae; DG, a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO-induced left ventricular cardiac hypertrophy (LVH in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection for 7 days induced LVH in rats. The LVH rats were post-treated orally with DG (100 mg/kg body weight for a period of 30 days. Thereafter, changes in heart weight (HW and body weight (BW, HW/BW ratio, percent of hypertrophy, collagen accumulation, activities of matrix metalloproteinase (MMP -2 and -9, superoxide dismutase (SOD and catalase (CAT enzymes, and the level of an oxidative stress marker, lipid peroxide (LPO, were determined. Results: HW/BW ratio, an indicator of hypertrophic growth, was significantly reduced in DG root post-treated LVH rats as compared with that for the non-treated LVH rats. The altered levels of ventricular LPO, collagen, MMPs-2 and -9, and antioxidant enzymes in the ISO-treated animals reverted back to near normal upon DG treatment. Further, the anti-hypertrophic activity of DG was comparable to that of the standard drug losartan (10 mg/kg. Conclusions: The results of the present study suggest that the aqueous root extract of DG exhibited anti-hypertrophic activity in-vivo by inhibiting ISO-induced ROS generation and MMP activities.

  18. Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents

    Directory of Open Access Journals (Sweden)

    Salemi Vera

    2007-04-01

    Full Text Available Abstract Background Because cardiomyopathy is the leading cause of death in diabetic patients, the determination of myocardial function in diabetes mellitus is essential. In the present study, we provide an integrated approach, using noninvasive echocardiography and invasive hemodynamics to assess early changes in myocardial function of diabetic rats. Methods Diabetes was induced by streptozotocin injection (STZ, 50 mg/kg. After 30 days, echocardiography (noninvasive at rest and invasive left ventricular (LV cannulation at rest, during and after volume overload, were performed in diabetic (D, N = 7 and control rats (C, N = 7. The Student t test was performed to compare metabolic and echocardiographic differences between groups at 30 days. ANOVA was used to compare LV invasive measurements, followed by the Student-Newman-Keuls test. Differences were considered significant at P Results Diabetes impaired LV systolic function expressed by reduced fractional shortening, ejection fraction, and velocity of circumferential fiber shortening compared with that in the control group. The diabetic LV diastolic dysfunction was evidenced by diminished E-waves and increased A-waves and isovolumic relaxation time. The myocardial performance index was greater in diabetic compared with control rats, indicating impairment in diastolic and systolic function. The LV systolic pressure was reduced and the LV end-diastolic pressure was increased at rest in diabetic rats. The volume overload increased LVEDP in both groups, while LVEDP remained increased after volume overload only in diabetic rats. Conclusion These results suggest that STZ-diabetes induces systolic and diastolic dysfunction at rest, and reduces the capacity for cardiac adjustment to volume overload. In addition, it was also demonstrated that rodent echocardiography can be a useful, clinically relevant tool for the study of initial diabetic cardiomyopathy manifestations in asymptomatic patients.

  19. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  20. Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Cristiano Mostarda

    2012-07-01

    Full Text Available OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F in drinking water (100 g/l were concomitantly trained on a treadmill (FT for 10 weeks or kept sedentary. These rats were compared with a control group (C. Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz, and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 ± 0.2 vs. C: 4.5 ± 0.2 mg/dl/min, hypertension (mean blood pressure, F: 118 ± 3 vs. C: 104 ± 4 mmHg and obesity (F: 0.31±0.001 vs. C: 0.29 ± 0.001 g/mm. Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.

  1. The Role of PDH Inhibition in the Development of Hypertrophy in the Hyperthyroid Rat Heart: A Combined MRI and Hyperpolarized MRS Study

    Science.gov (United States)

    Atherton, Helen J.; Dodd, Michael S.; Heather, Lisa C.; Schroeder, Marie A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Tyler, Damian J.

    2015-01-01

    Background Hyperthyroidism increases heart rate, contractility and cardiac output, as well as metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate utilisation. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase (PDK), thereby inhibiting glucose oxidation via pyruvate dehydrogenase (PDH). Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy (MRS) to investigate the rate and regulation of in vivo pyruvate dehydrogenase (PDH) flux in the hyperthyroid heart, and to establish whether modulation of flux through PDH would alter cardiac hypertrophy. Methods & Results Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (T3; 0.2 mg/kg/day). In vivo PDH flux, assessed using hyperpolarized MRS, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 s−1 vs 0.0055 ± 0.0005 s−1, P = 0.0003) and this reduction was completely reversed by both acute and chronic delivery of the PDK inhibitor, dichloroacetic acid (DCA). Hyperpolarized [2-13C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine MRI showed that chronic DCA treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 mg vs 200 ± 30 mg; P = 0.04) despite no change to the increase observed in cardiac output. Conclusions This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is PDK mediated. Relieving this inhibition can increase the metabolic flexibility of the hyperthyroid heart and reduce the level of hypertrophy that develops

  2. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    Science.gov (United States)

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  4. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-01-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27 Kip1 , collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells

  5. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    International Nuclear Information System (INIS)

    Gutkin, L.; Scarth, D.A.

    2014-01-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  6. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gutkin, L.; Scarth, D.A. [Kinectrics Inc., Toronto, ON (Canada)

    2014-07-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  7. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    OpenAIRE

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hyper...

  8. Effect of Ca2+ overload on phosphoinositide (PI) metabolism in cardiac muscle

    International Nuclear Information System (INIS)

    Otani, H.; Otani, H.; Engelman, R.M.; Das, D.K.

    1986-01-01

    The investigated the relationship between Ca 2+ load and PI metabolism in isolated rat papillary muscle labeled with [ 3 H]inositol. Increase in [Ca 2+ ]/sub o/ from 0-3.6 mM reduced the incorporation of [ 3 H] inositol into PI moderately and increased the resting tension slightly. The incorporation of the label into PI was unchanged by 10 μm A-23187 at 1.8 mM [Ca 2+ ]/sub o/ that increased the contractility by 70% without a significant change in the resting tension. However, either 10.8 mM [Ca 2+ ]/sub o/ or 0.3 mM ouabain at 1.8 mM [Ca 2+ ]/sub o/ markedly decreased the PI labeling with corresponding increase in the resting tension while inclusion of excess EGTA greatly enhanced the radioactivity in PI. Determination of the PI breakdown and the inositol phosphates production by pulse-chase experiments revealed that the reduced PI turnover in the Ca 2+ -overload muscle was due to both inhibition of the synthesis and stimulation of the breakdown of this lipid that accounted for 30% decrease in the labeled PI from the muscle during 45 min without significant loss of the net PI pool size, suggesting the presence of a relatively smaller compartment of PI pool undergoing a rapid breakdown during Ca 2+ overload. The authors propose that alteration of Ca 2+ homeostasis may modulate the production of putative second messengers, inositol trisphosphate and diacylglycerol, which feed back to regulate [Ca 2+ ]/sub i/ in cardiac muscle

  9. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  10. The impact of non-dipper circadian rhythm of blood pressure on left ventricular hypertrophy in patients with non-dialysis chronic kidney disease.

    Science.gov (United States)

    Che, Xiajing; Mou, Shan; Zhang, Weiming; Zhang, Minfang; Gu, Leyi; Yan, Yucheng; Ying, Hua; Hu, Chunhua; Qian, Jiaqi; Ni, Zhaohui

    2017-04-01

    Objective The aim of this study was to investigate the correlation between non-dipper circadian rhythm of blood pressure (BP) and left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). Methods and results All 257 patients with stage 1 to 5 CKD were enrolled in the study and classified into a CKD1-3 group and a CKD4-5 group according to renal function. The parameters and circadian rhythm of BP were measured by a GE Marquette Tonoport V Eng dynamic sphygmomanometer, and cardiac structure was examined by echocardiography. The incidence of abnormal circadian BP rhythm (non-dipper rhythm) was quite high (75.4% in all enrolled patients and 71.3% in the patients with normal BP levels) in CKD patients and increased with the deterioration of renal function. Changes of cardiac structure such as LVH in patients with non-dipper BP were more distinct than in patients with dipper BP. The development of left ventricular mass index (LVMI) correlated positively with the incidence of non-dipper BP rhythm. Multiple regression analysis showed that 24-h systolic BP (β = 0.417, P circadian rhythm of blood pressure was quite high in CKD patients and increased with the deterioration of renal function. Non-dipper circadian rhythm of BP is closely related with LVMI.

  11. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  12. Quantitative evaluation of right ventricular overload with thallium-201 myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Watanabe, Toshiya; Miyakoda, Hiroyuki; Koike, Yoshihiro; Itatsu, Hidetaka; Kawai, Naoki; Sotobata, Iwao.

    1983-01-01

    Thallium-201 myocardial perfusion scintigraphy and right-heart catheterization were performed on patients with right ventricular pressure overload (RVPO) or right ventricular volume overload (RVVO). In 18 patients with RVPO, right ventricular systolic pressure correlated significantly both with the RV/LV wall thallium-201 uptake ratios (r=0.54, p<0.02) and the RV wall/background thallium-201 uptake ratios (r=0.70, p<0.01). RV/LV work ratios also significantly correlated with RV/LV wall thallium-201 uptake ratios (r=0.57, p<0.02). In 19 patients with RVVO, Qp/Qs and RV/LV work ratios both significantly correlated with RV/LV wall thallium-201 uptake ratios (r=0.78 and 0.87, respectively; p<0.001 for both) and RV wall/background thallium-201 uptake ratios (r=0.69, p<0.01 for both parameters). Right ventricular systolic pressure also correlated with RV/LV wall thallium-201 uptake ratios (r=0.57, p<0.02). Feasibility of the differentiation between RVPO and RVVO was suggested with use of ''transitional view angle'' and RV/LV diameter ratios obtained from the scintigram. In patients who underwent cardiac surgery, post-operative alleviations of the right ventricular overload were evaluated. There was a significant decrease in RV/LV wall thallium-201 uptake ratios, but no significant decrease in RV wall/background thallium-201 uptake ratios in patients with RVPO. On the other hand, there was a significant decrease both in RV/LV wall thallium-201 uptake ratios and RV wall/background thallium-201 uptake ratios in patients with RVVO. No significant changes were observed between the scintigraphic measurements obtained 1 month and 1 year after the surgery, irrespective of the type of right ventricular overloading. (J.P.N.)

  13. Adverse cardiac effects of exogenous angiotensin 1-7 in rats with subtotal nephrectomy are prevented by ACE inhibition.

    Directory of Open Access Journals (Sweden)

    Louise M Burrell

    Full Text Available We previously reported that exogenous angiotensin (Ang 1-7 has adverse cardiac effects in experimental kidney failure due to its action to increase cardiac angiotensin converting enzyme (ACE activity. This study investigated if the addition of an ACE inhibitor (ACEi to Ang 1-7 infusion would unmask any beneficial effects of Ang 1-7 on the heart in experimental kidney failure. Male Sprague-Dawley rats underwent subtotal nephrectomy (STNx and were treated with vehicle, the ACEi ramipril (oral 1mg/kg/day, Ang 1-7 (subcutaneous 24 μg/kg/h or dual therapy (all groups, n = 12. A control group (n = 10 of sham-operated rats were also studied. STNx led to hypertension, renal impairment, cardiac hypertrophy and fibrosis, and increased both left ventricular ACE2 activity and ACE binding. STNx was not associated with changes in plasma levels of ACE, ACE2 or angiotensin peptides. Ramipril reduced blood pressure, improved cardiac hypertrophy and fibrosis and inhibited cardiac ACE. Ang 1-7 infusion increased blood pressure, cardiac interstitial fibrosis and cardiac ACE binding compared to untreated STNx rats. Although in STNx rats, the addition of ACEi to Ang 1-7 prevented any deleterious cardiac effects of Ang 1-7, a limitation of the study is that the large increase in plasma Ang 1-7 with ramipril may have masked any effect of infused Ang 1-7.

  14. Association of Right Ventricular Pressure and Volume Overload with Non-Ischemic Septal Fibrosis on Cardiac Magnetic Resonance.

    Directory of Open Access Journals (Sweden)

    Jiwon Kim

    Full Text Available Non-ischemic fibrosis (NIF on cardiac magnetic resonance (CMR has been linked to poor prognosis, but its association with adverse right ventricular (RV remodeling is unknown. This study examined a broad cohort of patients with RV dysfunction, so as to identify relationships between NIF and RV remodeling indices, including RV pressure load, volume and wall stress.The population comprised patients with RV dysfunction (EF 6-fold more common in the highest, vs. the lowest, common tertile of PASP and RV size (p<0.001.Among wall stress components, NIF was independently associated with RV chamber dilation and afterload, supporting the concept that NIF is linked to adverse RV chamber remodeling.

  15. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity.

    Science.gov (United States)

    Martínez-Martínez, Ernesto; Jurado-López, Raquel; Valero-Muñoz, María; Bartolomé, María Visitación; Ballesteros, Sandra; Luaces, María; Briones, Ana María; López-Andrés, Natalia; Miana, María; Cachofeiro, Victoria

    2014-05-01

    Leptin acts as a cardiac profibrotic factor. However, the mechanisms underlying this effect are unclear. Therefore, we sought to elucidate the mediators involved in this process and the potential role of leptin in cardiac fibrosis associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 33.5% fat), or a standard diet (3.5% fat) for 6 weeks. HFD animals show cardiac hypertrophy, fibrosis and an increase in O2- production as evaluated by dihydroethidium. Echocardiographic parameters of cardiac structure and systolic function were similar in both groups. Cardiac levels of leptin, collagen I, galectin-3 and transforming growth factor β (TGF-β) were higher in HFD than in controls. In cardiac myofibroblasts, leptin (10-100 ng/ml) increased O2-, collagen I, galectin-3, TGF-β and connective tissue growth factor production (CTGF). These effects were prevented by the presence of either melatonin (10 mmol/l) or the inhibitor of mTOR, rapamycin (10 mmol/l). Blockage of galectin-3 activity by N-acetyllactosamine (LacNac 10 mmol/l) reduced both collagen I and O2(*-) production induced by leptin. The p70S6 kinase activation/phosphorylation, the downstream mediator of mTOR, induced by leptin was not modified by melatonin. Leptin reduced the metalloproteinase (MMP) 2 activity and the presence of melatonin, rapamycin or LacNac were unable to prevent it. The data suggest that leptin locally produced in the heart could participate in the fibrosis observed in HFD by affecting collagen turnover. Collagen synthesis induced by leptin seems to be mediated by the production of galectin-3, TGF-β and CTGF through oxidative stress increased by activation of mTOR pathway.

  16. Association of morning blood pressure surge with carotid intima-media thickness and cardiac dysfunction in patients with cardiac syndrome-X.

    Science.gov (United States)

    Mahfouz, Ragab A; Goda, Mohammad; Galal, Islam; Ghareb, Mohamed S

    2018-05-23

    Background & hypothesis: We hypothesized that exaggerated morning blood pressure surge, may contribute in cardiac dysfunction and arterial stiffness in patients with cardiac syndrome X. Thus we investigated the impact of morning blood pressure surge on cardiac function and carotid intima-media thickness in subjects with cardiac syndrome X. We studied patients with cardiac syndrome X using ambulatory blood pressure monitoring and investigated the association of morning blood pressure surge with carotid intima thickness, left atrial volume index and left ventricular filling (E/e'). Seventy patients with cardiac syndrome X were enrolled for the study and compared with 70 age and sex matched controls. Patients with cardiac syndrome X were stratified based on the systolic morning blood pressure surge value of control subjects to patients with exaggerated blood pressure surge (n = 42) and those with normal morning blood pressure surge (n = 28). Basal heart rate (p blood pressure surge group than those with morning blood pressure surge group. Morning blood pressure surge was significantly correlated with carotid intima-media thickness, high sensitive C-reactive protein, left atrial volume index and E/e' ratio in patients with cardiac syndrome X. In multivariate analysis, exaggerated morning blood pressure surge was the only independent predictor of increased carotid intima-media thickness (OR = 2.379; p blood pressure surge is an independent predictor for arterial stiffness and diastolic dysfunction in patients with cardiac syndrome X.

  17. [Role of cardiac magnetic resonance in cardiac involvement of Fabry disease].

    Science.gov (United States)

    Serra, Viviana M; Barba, Miguel Angel; Torrá, Roser; Pérez De Isla, Leopoldo; López, Mónica; Calli, Andrea; Feltes, Gisela; Torras, Joan; Valverde, Victor; Zamorano, José L

    2010-09-04

    Fabry disease is a hereditary disorder. Clinical manifestations are multisystemic. The majority of the patients remain undiagnosed until late in life, when alterations could be irreversible. Early detection of cardiac symptoms is of major interest in Fabry's disease (FD) in order to gain access to enzyme replacement therapy. Echo-Doppler tissular imaging (TDI) has been used as a cardiologic early marker in FD. This study is intended to determine whether the cardiac magnetic resonance is as useful tool as TDI for the early detection of cardiac affectation in FD. Echocardiography, tissue Doppler and Cardio magnetic resonance was performed in 20 patients with confirmed Fabry Disease. Left ventricular hypertrophy was defined as septum and left ventricular posterior wall thickness ≥12 mm. An abnormal TDI velocity was defined as (Sa), (Ea) and/or (Aa) velocities gadolinium-enhanced images sequences were obtained using magnetic resonance. Twenty patients included in the study were divided into three groups: 1. Those without left ventricular hypertrophy nor tissue Doppler impairment 2. Those without left ventricular hypertrophy and tissue Doppler impairment 3. Those with left ventricular hypertrophy and Tissue Doppler impairment. Late gadolinium enhancement was found in only one patient, who has already altered DTI and LVH. Tissue Doppler imaging (TDI) is the only diagnostic tool able to provide early detection of cardiac affectation in patients with FD. Magnetic resonance provides information of the disease severity in patients with LVH, but can not be used as an early marker of cardiac disease in patients with FD. However MRI could be of great value for diagnostic stratification. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  18. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  19. Left ventricular hypertrophy in valvular aortic stenosis: mechanisms and clinical implications.

    Science.gov (United States)

    Rader, Florian; Sachdev, Esha; Arsanjani, Reza; Siegel, Robert J

    2015-04-01

    Valvular aortic stenosis is the second most prevalent adult valve disease in the United States and causes progressive pressure overload, invariably leading to life-threatening complications. Surgical aortic valve replacement and, more recently, transcatheter aortic valve replacement effectively relieve the hemodynamic burden and improve the symptoms and survival of affected individuals. However, according to current American College of Cardiology/American Heart Association guidelines on the management of valvular heart disease, the indications for aortic valve replacement, including transcatheter aortic valve replacement, are based primarily on the development of clinical symptoms, because their presence indicates a dismal prognosis. Left ventricular hypertrophy develops in a sizeable proportion of patients before the onset of symptoms, and a growing body of literature demonstrates that regression of left ventricular hypertrophy resulting from aortic stenosis is incomplete after aortic valve replacement and associated with adverse early postoperative outcomes and worse long-term outcomes. Thus, reliance on the development of symptoms alone without consideration of structural abnormalities of the myocardium for optimal timing of aortic valve replacement potentially constitutes a missed opportunity to prevent postoperative morbidity and mortality from severe aortic stenosis, especially in the face of the quickly expanding indications of lower-risk transcatheter aortic valve replacement. The purpose of this review is to discuss the mechanisms and clinical implications of left ventricular hypertrophy in severe valvular aortic stenosis, which may eventually move to center stage as an indication for aortic valve replacement in the asymptomatic patient. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms.

    Science.gov (United States)

    Macchi, Chiara; Steffani, Liliana; Oleari, Roberto; Lettieri, Antonella; Valenti, Luca; Dongiovanni, Paola; Romero-Ruiz, Antonio; Tena-Sempere, Manuel; Cariboni, Anna; Magni, Paolo; Ruscica, Massimiliano

    2017-10-15

    Iron overload leads to multiple organ damage including endocrine organ dysfunctions. Hypogonadism is the most common non-diabetic endocrinopathy in primary and secondary iron overload syndromes. To explore the molecular determinants of iron overload-induced hypogonadism with specific focus on hypothalamic derangements. A dysmetabolic male murine model fed iron-enriched diet (IED) and cell-based models of gonadotropin-releasing hormone (GnRH) neurons were used. Mice fed IED showed severe hypogonadism with a significant reduction of serum levels of testosterone (-83%) and of luteinizing hormone (-86%), as well as reduced body weight gain, body fat and plasma leptin. IED mice had a significant increment in iron concentration in testes and in the pituitary. Even if iron challenge of in vitro neuronal models (GN-11 and GT1-7 GnRH cells) resulted in 10- and 5-fold iron content increments, respectively, no iron content changes were found in vivo in hypothalamus of IED mice. Conversely, mice placed on IED showed a significant increment in hypothalamic GnRH gene expression (+34%) and in the intensity of GnRH-neuron innervation of the median eminence (+1.5-fold); similar changes were found in the murine model HFE -/- , resembling human hemochromatosis. IED-fed adult male mice show severe impairment of hypothalamus-pituitary-gonadal axis without a relevant contribution of the hypothalamic compartment, which thus appears sufficiently protected from systemic iron overload. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  2. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  3. Odanacatib Inhibits Resistin-induced Hypertrophic H9c2 Cardiomyoblast Cells Through LKB1/AMPK Pathway

    Directory of Open Access Journals (Sweden)

    Xian Zheng

    2017-08-01

    Full Text Available ABSTRACT Odanacatib (ODN is a selective inhibitor of cathepsin K. The cysteine protease cathepsin K has been implicated in cardiac hypertrophy. Resistine is an adipokine which is identified to promote cardiac hypertrophy. Here, we hypothesize that ODN mitigates resistin-induced myocyte hypertrophy. Cell surface area and protein synthesis were measured after treatment with resistin and ODN in H9c2 cells. The expression of cardiomyocyte hypertrophy marker BNP and β-MHC was detected by RT-qPCR. The expression and phosphorylation of AMPK and LKB1 were analyzed with Western blot. Resistin could significantly increase cardiomyocyte cell surface area, protein synthesis, and embryonic gene BNP and β-MHC expression, inhibit phosphorylation of AMPK and LKB1. ODN could significantly reverse the effects of resistin. Collectively, our data suggest that ODN can inhibit cardiomyocyte hypertrophy induced by resistin and the underlying mechanism may be involved in LKB1/AMPK pathway.

  4. The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy.

    Science.gov (United States)

    Henselmans, Menno; Schoenfeld, Brad J

    2014-12-01

    Due to a scarcity of longitudinal trials directly measuring changes in muscle girth, previous recommendations for inter-set rest intervals in resistance training programs designed to stimulate muscular hypertrophy were primarily based on the post-exercise endocrinological response and other mechanisms theoretically related to muscle growth. New research regarding the effects of inter-set rest interval manipulation on resistance training-induced muscular hypertrophy is reviewed here to evaluate current practices and provide directions for future research. Of the studies measuring long-term muscle hypertrophy in groups employing different rest intervals, none have found superior muscle growth in the shorter compared with the longer rest interval group and one study has found the opposite. Rest intervals less than 1 minute can result in acute increases in serum growth hormone levels and these rest intervals also decrease the serum testosterone to cortisol ratio. Long-term adaptations may abate the post-exercise endocrinological response and the relationship between the transient change in hormonal production and chronic muscular hypertrophy is highly contentious and appears to be weak. The relationship between the rest interval-mediated effect on immune system response, muscle damage, metabolic stress, or energy production capacity and muscle hypertrophy is still ambiguous and largely theoretical. In conclusion, the literature does not support the hypothesis that training for muscle hypertrophy requires shorter rest intervals than training for strength development or that predetermined rest intervals are preferable to auto-regulated rest periods in this regard.

  5. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.

    Science.gov (United States)

    Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H

    2017-12-12

    Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.

  6. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  7. Tissue characteristics in left ventricular hypertrophy using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Shigeru; Ueno, Yuji; Arita, Mikio; Nishio, Ichiro; Masuyama, Yoshiaki

    1988-01-01

    For 15 normotensive patients with asymmetric septal hypertrophy (ASH), 10 hypertensive patients with concentric hypertrophy (CH), and five normal subjects (N), we examined changes in myocardial T 1 and T 2 values related to the cardiac cycle. The usefulness of those values in differentiating diseases with left ventricular hypertrophy was evaluated. Left ventricular (LV) short-axis spin echo images and inversion recovery images were obtained at endsystolic and diastolic cardiac phases, and T 1 and T 2 images were calculated. The regional wall thickness (WT) and T 1 and T 2 values were measured in the anterior septum, anterior wall, lateral wall, posterior wall and posterior septum. Myocardial T 1 and T 2 values were significantly decreased in systole (T 1 : 185.6±37.9 msec, T 2 : 24.4±6.3 msec, mean±SD) compared to those in diastole (T 1 : 249.2±56.7 msec, T 2 : 31.7±9.4 msec). In both the ASH and CH groups, significant correlations were observed between diastolic T 1 values and WT (ASH: r = 0.80, p 2 values and WT (ASH: r = 0.58, p 1 values in the ASH group (343.4±40.5 msec) were significantly higher than those of the CH group (247.3±21.4 msec), although the mean wall thickness values were similar in both groups. The T 1 /WT and T 2 /WT were significantly lower in the CH group than those in the ASH and N groups. In conclusion, myocardial T 1 and T 2 values were related not only to the cardiac cycle, but to wall thickness and to types of hypertrophy. The T 1 and T 2 values may be useful for distinguishing hypertrophic cardiomyopathy from hypertrophy due to hypertension. (author)

  8. A STUDY OF CHANGES IN DEFORMATION AND METABOLISM IN LEFT VENTRICLE AS A FUNCTION OF HYPERTROPHY IN SPONTANEOUS HYPERTENSIVE RATS USING MICROPET TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant, T; Huesman, Ronald, H; Reutter, Bryan, W; Sitek, Arkadiusz; Veress, Alexander, I; Weiss, Jeffrey, A; Yang, Yongfeng

    2017-06-13

    Problem: In the case of hypertrophy caused by pressure overload (hypertension) there is an increase in cardiac mass and modification cardiac metabolism. Aim: This study was designed to study the changes in glucose metabolism, ejection fraction, and deformation in the left ventricle with the progression of hypertrophy in spontaneous hypertensive rats (SHR). Methods: Dynamic PET data were acquired using the microPET II at UC Davis. Two rats were imaged at 10-week intervals for 18 months. Each time a dose of approximately 1- 1.5 mCi of F-18-FDG was injected into a normotensive Wistar Kyoto (WKY) rat and the same dose was injected into a SHR rat. Each rat was imaged using a gated dynamic acquisition for 80 minutes acquiring list mode data with cardiac gating of approximately 600-900 million total counts. For the analysis of glucose of metabolism, the list mode data were histogrammed into a dynamic sequence (42 frames over 80 mins). For each time frame, projection data of 1203 140x210 sinograms of 0.582 mm bins were formed by summing the last three gates before and one after the R-wave trigger to correspond to the diastolic phase of the cardiac cycle. Dynamic sequences of 128x128x83 matrices of 0.4x0.4x0.582 mm3 voxels in x, y, and z were reconstructed using an iterative MAP reconstruction which used a prior that penalized the high frequency components of the reconstruction using appropriate weighting between 26 nearest neighboring voxels. Time activity curves were generated from the dynamic reconstructed sequence for the blood and left ventricular tissue regions of interest which were fit to a 2-compartment model to obtain a least squares fit for the kinetic parameters. For the analysis of deformation, the list mode data were histogrammed into 8 gates of the cardiac cycle, each gate was the total sum of the later 60 mins of the 80 min acquisition. Images of 128x128x83 matrices for each gate were reconstructed using the same iterative MAP reconstruction used to

  9. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  10. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation.

    Science.gov (United States)

    Basu, Tapasree; Panja, Sourav; Shendge, Anil Khushalrao; Das, Abhishek; Mandal, Nripendranath

    2018-05-01

    Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation. © 2018 Wiley Periodicals, Inc.

  11. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone.

    Science.gov (United States)

    Parr, Maria Kristina; Zhao, Piwen; Haupt, Oliver; Ngueu, Sandrine Tchoukouegno; Hengevoss, Jonas; Fritzemeier, Karl Heinrich; Piechotta, Marion; Schlörer, Nils; Muhn, Peter; Zheng, Wen-Ya; Xie, Ming-Yong; Diel, Patrick

    2014-09-01

    The phytoectysteroid ecdysterone (Ecdy) was reported to stimulate protein synthesis and enhance physical performance. The aim of this study was to investigate underlying molecular mechanisms particularly the role of ER beta (ERβ). In male rats, Ecdy treatment increased muscle fiber size, serum IGF-1 increased, and corticosteron and 17β-estradiol (E2) decreased. In differentiated C2C12 myoblastoma cells, treatment with Ecdy, dihydrotestosterone, IGF-1 but also E2 results in hypertrophy. Hypertrophy induced by E2 and Ecdy could be antagonized with an antiestrogen but not by an antiandrogen. In HEK293 cells transfected with ER alpha (ERα) or ERβ, Ecdy treatment transactivated a reporter gene. To elucidate the role of ERβ in Ecdy-mediated muscle hypertrophy, C2C12 myotubes were treated with ERα (ALPHA) and ERβ (BETA) selective ligands. Ecdy and BETA treatment but not ALPHA induced hypertrophy. The effect of Ecdy, E2, and BETA could be antagonized by an ERβ-selective antagonist (ANTIBETA). In summary, our results indicate that ERβ is involved in the mediation of the anabolic activity of the Ecdy. These findings provide new therapeutic perspectives for the treatment of muscle injuries, sarcopenia, and cachectic disease, but also imply that such a substance could be abused for doping purposes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of Thymol on Serum Antioxidant Capacity of Rats Following Myocardial Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mohabbat Jamhiri

    2017-07-01

    Full Text Available Abstract Background: Oxidative stress plays an important role in the pathogenesis of hypertension- induced cardiac hypertrophy. Plants are a rich source of antioxidant compounds. Thymol is a natural monoterpen phenol which is plentiful in some plants and shows many biological effects. The aim of the present study was to assess the effects of thymol on activity of antioxidant enzyme catalase, malondialdehyde (MDA level and the activity of the inhibition of free radical DPPH (2,2-Diphenyl-1-picryl-hydrazyl, following left ventricular hypertrophy in rats. Materials and Methods: In this experimental study, rats were divided into hypertrophied group without any treatment (H group and rats pretreated with 25 and 50 mg/kg/day of thymol (Thy25+H and Thy50+H groups, respectively. Intact animals were served as control (Ctl. Animal model of left ventricular hypertrophy was induced by abdominal aortic banding. Serum catalase (CAT activity, malondialdehyde (MDA level and the activity of inhibition of free radicals DPPH were determined by the biochemical methods. Results: In Thy25+H and Thy50+H groups, the CAT activity was increased significantly in serum (p<0.01, vs. Ctl. Also, serum level of MDA was decreased significantly compared to the group H in Thy25+H and Thy50+H groups (p<0.05 and p<0.001, respectively. The effect of inhibiting DPPH free radicals was increased significantly in Thy25+H and Thy50+H groups compared to the group H (p<0.001 and p<0.05, respectively. Conclusion: The findings of this study suggest that thymol as an antioxidant causes cardioprotective effects and as well as prevents left ventricular hypertrophy via augmentation of serum antioxidant capacity.

  13. Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23.

    Science.gov (United States)

    Yan, Ling; Bowman, Marion A Hofmann

    Cardiovascular disease including left ventricular hypertrophy, diastolic dysfunction and ectopic valvular calcification are common in patients with chronic kidney disease (CKD). Both S100A12 and fibroblast growth factor 23 (FGF23) have been identified as biomarkers of cardiovascular morbidity and mortality in patients with CKD. We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. This review paper focuses on S100 proteins and their receptor for advanced glycation end products (RAGE) and summarizes recent findings obtained in novel developed transgenic hBAC-S100 mice that express S100A12 and S100A8/9 proteins. A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9 and S100A12 was expressed in C57BL/6J mice (hBAC-S100). CKD was induced by ureteral ligation, and hBAC-S100 mice and WT mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased FGF23 in the heart, left ventricular hypertrophy (LVH), diastolic dysfunction, focal cartilaginous metaplasia and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in WT mice with CKD or in hBAC-S100 mice lacking RAGE with CKD, suggesting that the inflammatory milieu mediated by S100/RAGE promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including IL-6, TNFα, LPS, or serum from hBAC-S100 mice up regulated FGF23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. Taken together, our study shows that myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a RAGE dependent manner in a mouse model of CKD. We speculate that FGF23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate LVH and diastolic

  14. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    levels of pSmad1, not pSmad3. Conclusions -Our results identify a novel functional role for BMP9 as an endogenous inhibitor of cardiac fibrosis due to LV pressure overload and further show that treatment with either recombinant BMP9 or disruption of endoglin activity promotes BMP9 activity and limits cardiac fibrosis in heart failure, thereby providing potentially novel therapeutic approaches for patients with heart failure.

  16. Effect of anabolic steroids on overloaded and overloaded suspended skeletal muscle

    Science.gov (United States)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass, the subcellular protein content, and the myosin patterns of normal overloaded and suspended overloaded plantaris muscle in female rat was investigated, dividing rats into six groups: normal control (NC), overload (OV), OV steroid (OV-S), normal suspended (N-sus), OV suspended (OV-sus), and OV suspended steroid (OV-sus-S). Relative to control values, overload produced a sparing effect on the muscle weight of the OV-sus group as well as increases of muscle weight of the OV group; increased protein content; and an increased expression of slow myosin in both OV and OV-sus groups. Steroid treatment of OV animals did not after the response of any parameter analyzed for the OV group, but in the OV-sus group steroid treatment induced increases in muscle weight and in protein content of the OV-sus-S group. The treatment did not alter the pattern of isomyosin expression observed in the OV or the OV-sus groups. These result suggest that the steroid acts synergistically with functional overload only under conditions in which the effect of overload is minimized by suspension.

  17. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  18. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  19. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  1. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  2. Hypertension and cardiac arrhythmias

    DEFF Research Database (Denmark)

    Lip, Gregory Y.H.; Coca, Antonio; Kahan, Thomas

    2017-01-01

    Hypertension is a common cardiovascular risk factor leading to heart failure (HF), coronary artery disease, stroke, peripheral artery disease and chronic renal insufficiency. Hypertensive heart disease can manifest as many cardiac arrhythmias, most commonly being atrial fibrillation (AF). Both...... supraventricular and ventricular arrhythmias may occur in hypertensive patients, especially in those with left ventricular hypertrophy (LVH) or HF. Also, some of the antihypertensive drugs commonly used to reduce blood pressure, such as thiazide diuretics, may result in electrolyte abnormalities (e.g. hypokalaemia......, hypomagnesemia), further contributing to arrhythmias, whereas effective control of blood pressure may prevent the development of the arrhythmias such as AF. In recognizing this close relationship between hypertension and arrhythmias, the European Heart Rhythm Association (EHRA) and the European Society...

  3. Left ventricular hypertrophy in normoalbuminuric type 2 diabetic patients not taking antihypertensive treatment

    DEFF Research Database (Denmark)

    Sato, A; Tarnow, L; Nielsen, F S

    2005-01-01

    BACKGROUND: Left ventricular hypertrophy (LVH) is an independent risk factor for myocardial ischaemia, cardiac arrhythmia, sudden death, and heart failure, all common findings in patients with type 2 diabetes. AIM: To determine the prevalence of, and risk factors for, LVH in normoalbuminuric type 2...... diabetic patients not taking antihypertensive treatment. DESIGN: Cross-sectional study. METHODS: From 1994 to 1998, M-mode echocardiography was performed by one experienced examiner in 262 consecutive, normoalbuminuric Caucasian type 2 diabetic patients, all with blood pressure ... of diabetes and blood pressure were not. Similar results were obtained for left ventricular mass index. DISCUSSION: LVH was frequent in our normoalbuminuric type 2 diabetic patients not taking antihypertensive treatment. Several potentially modifiable risk factors, such as raised BMI, poor glycaemic control...

  4. Efferent pathways in sodium overload-induced renal vasodilation in rats.

    Directory of Open Access Journals (Sweden)

    Nathalia O Amaral

    Full Text Available Hypernatremia stimulates the secretion of oxytocin (OT, but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g were anesthetized with sodium thiopental (40 mg. kg(-1, i.v.. A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP and renal blood flow (RBF. Renal vascular conductance (RVC was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6, OT infusion (0.03 µg • kg(-1, i.v. induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg(-1 b.wt., i.v. was infused over 60 s. In sham rats (n = 6, hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg(-1 • h(-1, i.v.; n = 7 and renal denervation (RX reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7 completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively, whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.

  5. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-01-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions

  6. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Costa, Fernando Ferreira [Universidade Estadual de Campinas, Campinas, SP (Brazil); Silveira, Paulo Augusto Achucarro [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Wood, John [University of Southern California, California (United States); Hamerschlak, Nelson [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2013-07-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  7. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging.

    Science.gov (United States)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-12-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  8. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  9. Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients.

    Science.gov (United States)

    Blankman, P; VAN DER Kreeft, S M; Gommers, D

    2014-09-01

    Inhomogeneous ventilation is an important contributor to ventilator-induced lung injury. Therefore, this study examines homogeneity of lung ventilation by means of electrical impedance tomography (EIT) measurements during pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) using the same ventilation pressures. Twenty mechanically ventilated patients were studied after cardiac surgery. On arrival at the intensive care unit, ventilation distribution was measured with EIT just above the diaphragm for 15 min. After awakening, PCV was switched to PSV and EIT measurements were again recorded. Tidal impedance variation, a measure of tidal volume, increased during PSV compared with PCV, despite using the same ventilation pressures (P = 0.045). The distribution of tidal ventilation to the dependent lung region was more pronounced during PSV compared with PCV, especially during the first half of the inspiration. An even distribution of tidal ventilation between the dependent and non-dependent lung regions was seen during PCV at lower tidal volumes (tidal volumes (≥ 8 ml/kg). In addition, the distribution of tidal ventilation was predominantly distributed to the dependent lung during PSV at low tidal volumes. In post-cardiac surgery patients, PSV showed improved ventilation of the dependent lung region due to the contribution of the diaphragm activity, which is even more pronounced during lower assist levels. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Hypertrophic Cardiomyopathy Mimicking Acute Anterior Myocardial Infarction Associated with Sudden Cardiac Death

    Directory of Open Access Journals (Sweden)

    Y. Daralammouri

    2012-01-01

    Full Text Available Hypertrophic cardiomyopathy is the most common genetic disease of the heart. We report a rare case of hypertrophic obstructive cardiomyopathy mimicking an acute anterior myocardial infarction associated with sudden cardiac death. The patient presented with acute ST elevation myocardial infarction and significant elevation of cardiac enzymes. Cardiac catheterization showed some atherosclerotic coronary artery disease, without significant stenosis. Echocardiography showed left ventricular hypertrophy with a left ventricular outflow tract obstruction; the pressure gradient at rest was 20 mmHg and became severe with the Valsalva maneuver (100 mmHg. There was no family history of sudden cardiac death. Six days later, the patient suffered a syncope on his way to magnetic resonance imaging. He was successfully resuscitated by ventricular fibrillation.

  11. Exercise-Induced Muscle Damage and Hypertrophy: A Closer Look Reveals the Jury is Still Out

    OpenAIRE

    Schoenfeld, Brad; Contreras, Bret

    2018-01-01

    This letter is a response to the paper by Damas et al (2017) titled, “The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis,” which, in part, endeavored to review the role of exercise-induced muscle damage on muscle hypertrophy. We feel there are a number of issues in interpretation of research and extrapolation that preclude drawing the inference expressed in the paper that muscle damage neither explains nor potenti...

  12. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition.

    Science.gov (United States)

    Parikh, Victoria Nicole; Liu, Jing; Shang, Ching; Woods, Christopher; Chang, Alex Chia Yu; Zhao, Mingming; Charo, David N; Grunwald, Zachary; Huang, Yong; Seo, Kinya; Tsao, Philip S; Bernstein, Daniel; Ruiz-Lozano, Pilar; Quertermous, Thomas; Ashley, Euan A

    2018-05-18

    The G protein coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJ endo-/- ) and myocardium (APJ myo-/- ). No baseline difference was observed in LV function in APJ endo-/- , APJ myo-/- or controls (APJ endo+/+ , APJ myo+/+ ). After exposure to transaortic constriction (TAC), APJ endo-/- animals developed left ventricular failure while APJ myo-/- were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile response to stretch in APJ -/- cardiomyocytes compared to APJ +/+ cardiomyocytes. Calcium transient did not change with stretch in either APJ -/- or APJ +/+ cardiomyocytes. Application of apelin to APJ +/+ cardiomyocytes resulted in decreased calcium transient. Further, hearts of mice treated with apelin exhibited decreased phosphorylation at Troponin I (cTnI) N-terminal residues (Ser 22,23), consistent with increased calcium sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering calcium transient while maintaining contractility through myofilament calcium sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition.

  13. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  15. Cardiac chambers and their walls in cardiomyopathies as evaluated with CT

    International Nuclear Information System (INIS)

    Wojtowicz, J.; Pawlak, B.; Lehman, Z.; Karwowski, A.; Akademia Medyczna, Poznan

    1984-01-01

    Thirty-two patients with cardiomyopathy, 25 with hypertrophic and 7 with dilated form were examined by cardiac catheterisation, left ventriculography, selective coronary angiography and ungated cardiac computed tomography. Diffuse hypertrophy, localized hypertrophy and dilated cardiomyopathy were diagnosed and assessed quantitatively based on CT linear, surface and volumetric parameters of cardiac morphology. Absolute septal thickness and left ventricular mass measured in CT image are the most discriminative attributes. (orig.)

  16. Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: The LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, K.; Palmieri, V.; Olsen, M.H.

    2002-01-01

    in a large hypertensive population. Methods The urine albumin/creatinine ratio (UACR) and echocardiographic measures of LV structure and function were obtained in 833 patients with stage I to III hypertension and LV hypertrophy determined by electrocardiogram (ECG) (Cornell voltage-duration or Sokolow...... geometry and high LV mass are associated with high UACR independent of age, systolic blood pressure, diabetes, and race, suggesting parallel cardiac and microvascular damage....

  17. Acromegaly-induced cardiomyopathy with dobutamine-induced outflow tract obstruction.

    Science.gov (United States)

    Abdelsalam, Mahmoud A; Nippoldt, Todd B; Geske, Jeffrey B

    2016-03-09

    A 50-year-old man with a history of acromegaly was referred for preoperative cardiac evaluation preceding trans-sphenoidal resection of a pituitary macroadenoma. Dobutamine stress echocardiography was negative for myocardial ischaemia. Resting left ventricular (LV) LV ejection fraction (LVEF) was 64% and there was hypertrophy of ventricular septum (18 mm) without resting LV outflow tract obstruction. With 40 µg/kg/min of dobutamine, the LVEF became hyperdynamic at 80%, and there was a maximal instantaneous LV outflow tract gradient of 77 mm Hg. There was no delayed myocardial enhancement on cardiac MRI and the pattern of hypertrophy was concentric. Acromegaly-induced cardiomyopathy can mimic hypertrophic cardiomyopathy in the setting of dobutamine provocation. Because cardiomyopathy is an important cause of mortality in acromegaly, diagnosis and appropriate management are critical to improve survival. 2016 BMJ Publishing Group Ltd.

  18. Adiponectin and Cardiac Hypertrophy in Acromegaly.

    Science.gov (United States)

    Gurbulak, Sabriye; Akin, Fulya; Yerlikaya, Emrah; Yaylali, Guzin F; Topsakal, Senay; Tanriverdi, Halil; Akdag, Beyza; Kaptanoglu, Bunyamin

    2016-01-01

    Adiponectin is an adipocytes-derived hormone which has been shown to possess insulin-sensitizing, antiatherogenic, and anti-inflammatory properties. In acromegaly, the data on adiponectin is contradictory. The relationship between adiponectin levels and cardiac parameters has not been studied. The aim of this study was to find out how adiponectin levels were affected in acromegalic patients and the relationship between adiponectin levels and cardiac parameters. We included 30 subjects (15 male, 15 female), diagnosed with acromegaly and 30 healthy (10 male, 20 female) subjects. Serum glucose, insulin, GH, IGF-1 and adiponectin levels were obtained and the insulin resistance of the subjects was calculated. Echocardiographic studies of the subjects were performed. We determined that adiponectin levels were significantly higher in the acromegalic group than the control group. In the acromegalic group, there was no statistically significant relation between serum adiponectin and growth hormone (GH), or insulin-like growth factor-1 (IGF-1) levels (p = 0.3, p = 0.1). We demonstrated that cardiac function and structure are affected by acromegaly. IVST, PWT, LVMI, E/A ratio, DT, ET, IVRT, VPR, and LVESV values were increased and the results were statistically significant. In the acromegalic group, adiponectin levels were positively related with left ventricle mass index (LVMI) but this correlation was found to be statistically weak (p = 0.03). In our study, there was a positive correlation between VAI and LVM. We also could not find any correlation between VAI and adiponectin levels. Although insulin resistance and high insulin levels occur in active acromegaly patients, adiponectin levels were higher in our study as a consequence of GH lowering therapies. Our study showed that adiponectin levels may be an indicator of the cardiac involvement acromegaly. However, the usage of serum adiponectin levels in acromegalic patients as an indicator of cardiac involvement should be

  19. Tacrolimus-related hypertrophic cardiomyopathy in an adult cardiac transplant patient

    Institute of Scientific and Technical Information of China (English)

    LIU Tong; DONG Jian-zeng; GAO Yun; GAO Yu-long; CHENG Yu-tong; WANG Su; LI Zhi-zhong; ZHANG Hai-bo; MENG Xu; MA Chang-sheng

    2012-01-01

    Left ventricular hypertrophy associated with the use of tacrolimus is a rare complication of solid organ transplantation in adult recipients.We present a cardiac transplant recipient who developed severe concentric left ventricular hypertrophy with congestive heart failure related to myocardial hypertrophy on tacrolimus.Hypertrophy improved when the drug was discontinued and replaced with sirolimus.

  20. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies.

    Science.gov (United States)

    Hung, Szu-Chun; Lai, Yi-Shin; Kuo, Ko-Lin; Tarng, Der-Cherng

    2015-05-05

    Volume overload is frequently encountered and is associated with cardiovascular risk factors in patients with chronic kidney disease (CKD). However, the relationship between volume overload and adverse outcomes in CKD is not fully understood. A prospective cohort of 338 patients with stage 3 to 5 CKD was followed for a median of 2.1 years. The study participants were stratified by the presence or absence of volume overload, defined as an overhydration index assessed by bioimpedance spectroscopy exceeding 7%, the 90th percentile for the healthy population. The primary outcome was the composite of estimated glomerular filtration rate decline ≥50% or end-stage renal disease. The secondary outcome included a composite of morbidity and mortality from cardiovascular causes. Animal models were used to simulate fluid retention observed in human CKD. We found that patients with volume overload were at a higher risk of the primary and secondary end points in the adjusted Cox models. Furthermore, overhydration appears to be more important than hypertension in predicting an elevated risk. In rats subjected to unilateral nephrectomy and a high-salt diet, the extracellular water significantly increased. This fluid retention was associated with an increase in blood pressure, proteinuria, renal inflammation with macrophage infiltration and tumor necrosis factor-α overexpression, glomerular sclerosis, and cardiac fibrosis. Diuretic treatment with indapamide attenuated these changes, suggesting that fluid retention might play a role in the development of adverse outcomes. Volume overload contributes to CKD progression and cardiovascular diseases. Further research is warranted to clarify whether the correction of volume overload would improve outcomes for CKD patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells.

    Science.gov (United States)

    Zhan, Yongkun; Sun, Xiaolei; Li, Bin; Cai, Huanhuan; Xu, Chen; Liang, Qianqian; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yin, Lianhua; Sheng, Wei; Huang, Guoying; Sun, Aijun; Ge, Junbo; Sun, Ning

    2018-04-01

    PRKAG2 cardiac syndrome is a distinct form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular pre-excitation and progressive cardiac conduction disorder. However, it remains unclear how mutations in the PRKAG2 gene give rise to such a complicated disease. To investigate the underlying molecular mechanisms, we generated disease-specific hiPSC-derived cardiomyocytes from two brothers both carrying a heterozygous missense mutation c.905G>A (R302Q) in the PRKAG2 gene and further corrected the R302Q mutation with CRISPR-Cas9 mediated genome editing. Disease-specific hiPSC-cardiomyocytes recapitulated many phenotypes of PRKAG2 cardiac syndrome including cellular enlargement, electrophysiological irregularities and glycogen storage. In addition, we found that the PRKAG2-R302Q mutation led to increased AMPK activities, resulting in extensive glycogen deposition and cardiomyocyte hypertrophy. Finally we confirmed that disrupted phenotypes of PRKAG2 cardiac syndrome caused by the specific PRKAG2-R302Q mutation can be alleviated by small molecules inhibiting AMPK activity and be rescued with CRISPR-Cas9 mediated genome correction. Our results showed that disease-specific hiPSC-CMs and genetically-corrected hiPSC-cardiomyocytes would be a very useful platform for understanding the pathogenesis of, and testing autologous cell-based therapies for, PRKAG2 cardiac syndrome. Copyright © 2018. Published by Elsevier Ltd.

  2. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    International Nuclear Information System (INIS)

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit; Sil, Parames C.

    2009-01-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As-induced

  3. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    International Nuclear Information System (INIS)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F.

    2014-01-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT 2 R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT 2 R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca 2+ -free medium or the subsequent tonic constrictions induced by the addition of Ca 2+ in the absence of agonists. Thus, the contractions induced by Ca 2+ release from intracellular stores and Ca 2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca 2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca 2+ . Neither levels of angiotensins nor of AT 2 R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca 2+ entry

  4. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease.

    Science.gov (United States)

    Hardwick, Jean C; Southerland, E Marie; Girasole, Allison E; Ryan, Shannon E; Negrotto, Sara; Ardell, Jeffrey L

    2012-11-01

    Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.

  5. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Resting spontaneous baroreflex sensitivity and cardiac autonomic control in anabolic androgenic steroid users

    OpenAIRE

    Santos, Marcelo R. dos; Sayegh, Ana L.C.; Armani, Rafael; Costa-Hong, Valéria; Souza, Francis R. de; Toschi-Dias, Edgar; Bortolotto, Luiz A.; Yonamine, Mauricio; Negrão, Carlos E.; Alves, Maria-Janieire N.N.

    2018-01-01

    OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, ...

  7. Cardiac biplane strain imaging: initial in vivo experience

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L [Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M [Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Singh, S K; Van Wetten, H B [Department of Cardiothoracic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kapusta, L [Pediatric Cardiology, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)], E-mail: R.Lopata@cukz.umcn.nl

    2010-02-21

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve ({delta}p: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy ({delta}p = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  8. Cardiac biplane strain imaging: initial in vivo experience

    International Nuclear Information System (INIS)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L; Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M; Singh, S K; Van Wetten, H B; Kapusta, L

    2010-01-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  9. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    Science.gov (United States)

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  10. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Liang, Yan [Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong (China); Zhang, Jin-fang [Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); Fu, Wei-ming, E-mail: fuweiming76@smu.edu.cn [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China)

    2017-05-15

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. - Highlights: • miR-218 is frequently downregulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  11. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications

    International Nuclear Information System (INIS)

    Liu, Yi; Liang, Yan; Zhang, Jin-fang; Fu, Wei-ming

    2017-01-01

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. - Highlights: • miR-218 is frequently downregulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  12. Prolactin induces adrenal hypertrophy

    Directory of Open Access Journals (Sweden)

    E.J. Silva

    2004-02-01

    Full Text Available Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc. In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05, and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05. We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05, and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05. Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy.

  13. Update on the use of deferasirox in the management of iron overload

    Directory of Open Access Journals (Sweden)

    Ali Taher

    2009-10-01

    Full Text Available Ali Taher,1 Maria Domenica Cappellini21American University of Beirut, Beirut, Lebanon; 2Universitá di Milano, Policlinico Foundation IRCCS, Milan, ItalyAbstract: Regular blood transfusions as supportive care for patients with chronic anemia inevitably lead to iron overload as humans cannot actively remove excess iron. The cumulative effects of iron overload cause significant morbidity and mortality if not effectively treated with chelation therapy. Based on a comprehensive clinical development program, the once-daily, oral iron chelator deferasirox (Exjade® is approved for the treatment of transfusional iron overload in adult and pediatric patients with various transfusion-dependent anemias, including β-thalassemia and the myelodysplastic syndromes. Deferasirox dose should be titrated for each individual patient based on transfusional iron intake, current iron burden and whether the goal is to decrease or maintain body iron levels. Doses of >30 mg/kg/day have been shown to be effective with a safety profile consistent with that observed at doses <30 mg/kg/day. Recent data have highlighted the ability of deferasirox to decrease cardiac iron levels and to prevent the accumulation of iron in the heart. The long-term efficacy and safety of deferasirox for up to 5 years of treatment have now been established. The availability of this effective and generally well tolerated oral therapy represents a significant advance in the management of transfusional iron overload. Keywords: deferasirox, Exjade, oral, iron chelation, iron overload, cardiac iron 

  14. Dependency of blood pressure upon cardiac filling in patients with severe postural hypotension

    DEFF Research Database (Denmark)

    Mehlsen, J; Haedersdal, C; Stokholm, K H

    1994-01-01

    by vasoconstriction. The reduction in cardiac output resulted from reductions in left ventricular end-diastolic volumes with unchanged left ventricular ejection fractions and only moderate increments in heart rate. The study was demonstrated that blood pressure is strongly dependent upon cardiac filling in severe......Autonomic denervation of the vascular bed results theoretically in a stronger dependency of blood pressure upon intravascular volume, and the study described aimed at an investigation of the relation between cardiac filling and arterial blood pressure in patients with severe postural hypotension....... Seven patients were studied during head-up tilt at three different tilt angles using intra-arterial blood pressure recordings and estimates of left ventricular volumes by radioisotope ventriculography. Blood pressure fell dramatically during head-up tilt due to reductions in cardiac output unopposed...

  15. Dependency of blood pressure upon cardiac filling in patients with severe postural hypotension

    DEFF Research Database (Denmark)

    Mehlsen, J; Haedersdal, C; Stokholm, K H

    1994-01-01

    Autonomic denervation of the vascular bed results theoretically in a stronger dependency of blood pressure upon intravascular volume, and the study described aimed at an investigation of the relation between cardiac filling and arterial blood pressure in patients with severe postural hypotension....... Seven patients were studied during head-up tilt at three different tilt angles using intra-arterial blood pressure recordings and estimates of left ventricular volumes by radioisotope ventriculography. Blood pressure fell dramatically during head-up tilt due to reductions in cardiac output unopposed...... by vasoconstriction. The reduction in cardiac output resulted from reductions in left ventricular end-diastolic volumes with unchanged left ventricular ejection fractions and only moderate increments in heart rate. The study was demonstrated that blood pressure is strongly dependent upon cardiac filling in severe...

  16. Role of iron overload-induced macrophage apoptosis in the pathogenesis of peritoneal endometriosis.

    Science.gov (United States)

    Pirdel, Leila; Pirdel, Manijeh

    2014-06-01

    This article presents an overview of the involvement of iron overload-induced nitric oxide (NO) overproduction in apoptosis of peritoneal macrophages of women with endometriosis. We have postulated that the peritoneal iron overload originated from retrograde menstruation or bleeding lesions in the ectopic endometrium, which may contribute to the development of endometriosis by a wide range of mechanisms, including oxidative damage and chronic inflammation. Excessive NO production may also be associated with impaired clearance of endometrial cells by macrophages, which promotes cell growth in the peritoneal cavity. Therefore, further research of the mechanisms and consequences of macrophage apoptosis in endometriosis helps discover novel therapeutic strategies that are designed to prevent progression of endometriosis. © 2014 Society for Reproduction and Fertility.

  17. Analysis of microRNA Expression Profiles Induced by Yiqifumai Injection in Rats with Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-02-01

    Full Text Available Background: Yiqifumai Injection (YQFM is clinically used to treat various cardiovascular diseases including chronic heart failure (CHF. The efficacy of YQFM for treating heart failure has been suggested, but the mechanism of action for pharmacological effects of YQFM is unclear.Methods: Echocardiography detection, left ventricular intubation evaluation, histopathology and immunohistochemical examination were performed in CHF rats to evaluate the cardioprotective effect of YQFM. Rat miRNA microarray and bioinformatics analysis were employed to investigate the differentially expressed microRNAs. In vitro models of AngII-induced hypertrophy and t-BHP induced oxidative stress in H9c2 myocardial cells were used to validate the anti-hypertrophy and anti-apoptosis effects of YQFM. Measurement of cell surface area, ATP content and cell viability, Real-time PCR and Western blot were performed.Results: YQFM significantly improved the cardiac function of CHF rats by increasing left ventricular ejection fraction and fractional shortening, decreasing left ventricular internal diameter and enhancing cardiac output. Seven microRNAs which have a reversible regulation by YQFM treatment were found. Among them, miR-21-3p and miR-542-3p are related to myocardial hypertrophy and cell proliferation, respectively and were further verified by RT-PCR. Target gene network was established and potential related signaling pathways were predicted. YQFM could significantly alleviate AngII induced hypertrophy in cellular model. It also significantly increased cell viabilities and ATP content in t-BHP induced apoptotic cell model. Western blot analysis showed that YQFM could increase the phosphorylation of Akt.Conclusion: Our findings provided scientific evidence to uncover the mechanism of action of YQFM on miRNAs regulation against CHF by miRNA expression profile technology. The results indicated that YQFM has a potential effect on alleviate cardiac hypertrophy and apoptosis

  18. Clinical studies on myocardial perfusion imaging in patients with right ventricular overload

    International Nuclear Information System (INIS)

    Abo, Kenji; Yamagata, Takashi; Nakajima, Masao; Fujita, Kimiaki; Morita, Nobuo

    1979-01-01

    Patients with heart disease which had been clinically diagnosed underwent 201 Tl myocardial perfusion imaging. The thickness of right ventricular wall measured from original images was directly proportional to systolic pressure of the right ventricle measured by cardiac catheterization, and 201 Tl activity in the right ventricle was more directly proportional to systolic pressure of the right ventricle. Imaging patterns of various diseases were also described. Images of patients with hypertrophic cardiomyopathy revealed that right ventricular wall was thin and right ventricular cavity was small, but the thickness of septal wall and left ventricular wall were maximal. Images of patients with mitral insufficiency revealed that the thickness of right ventricular wall, septal wall, and left ventricular wall was medium, and the right ventricular cavity was smaller than the left ventricular cavity. Images of patients with congestive cardiomyopathy and congestive cardiac failure showed that enlargement of both ventricular cavities was disproportionate to the thickness of each wall. Images of patients with arterial septal defect revealed that the thickness of each wall was comparatively normal, the right ventricular cavity was maximal, and the left ventricular cavity was minimal. Images of patients with primary pulmonary hypertention, pulmonary stenosis and tetralogy of Fallot in whom pressure overload was recognized revealed severe thickenings of right ventricular wall, moderate enlargement of the right ventricle, small left ventricle, and thin left ventricular wall. (Tsunoda, M.)

  19. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker

    Science.gov (United States)

    2013-01-01

    Background Diabetic cardiomyopathy (DCM) is defined as structural and functional changes in the myocardium due to metabolic and cellular abnormalities induced by diabetes mellitus (DM). The impact of prediabetic conditions on the cardiac tissue remains to be elucidated. The goal of this study was to elucidate whether cardiac dysfunction is already present in a state of prediabetes, in the presence of insulin resistance, and to unravel the underlying mechanisms, in a rat model without obesity and hypertension as confounding factors. Methods Two groups of 16-week-old Wistar rats were tested during a 9 week protocol: high sucrose (HSu) diet group (n = 7) – rats receiving 35% of sucrose in drinking water vs the vehicle control group (n = 7). The animal model was characterized in terms of body weight (BW) and the glycemic, insulinemic and lipidic profiles. The following parameters were assessed to evaluate possible early cardiac alterations and underlying mechanisms: blood pressure, heart rate, heart and left ventricle (LV) trophism indexes, as well as the serum and tissue protein and/or the mRNA expression of markers for fibrosis, hypertrophy, proliferation, apoptosis, angiogenesis, endothelial function, inflammation and oxidative stress. Results The HSu-treated rats presented normal fasting plasma glucose (FPG) but impaired glucose tolerance (IGT), accompanied by hyperinsulinemia and insulin resistance (P prediabetic. Furthermore, although hypertriglyceridemia (P prediabetes/insulin resistance could be an important tool to evaluate the early cardiac impact of dysmetabolism (hyperinsulinemia and impaired glucose tolerance with fasting normoglycemia), without confounding factors such as obesity and hypertension. Left ventricle hypertrophy is already present and brain natriuretic peptide seems to be the best early marker for this condition. PMID:23497124

  20. Magnetic and quadrupolar studies of the iron storage overload in livers

    International Nuclear Information System (INIS)

    Rimbert, J.N.; Dumas, F.; Richardot, G.; Kellershohn, C.

    1986-01-01

    Absorption 57 Fe Moessbauer spectra, performed directly on tissues of liver with iron overload due to an excessive intestinal iron absorption or induced by hypertransfusional therapeutics, have pointed out a new high spin ferric storage iron besides the ferritin and hemosiderin. Moessbauer studies, carried out on ferritin and hemosiderin fractions isolated from normal and overloaded livers, show that this compound, only present in the secondary iron overload (transfusional pathway), seems characteristic of the physiological process which induces the iron overload. (Auth.)

  1. Effects of growth hormone on morphology of cardiac muscle and skeletal muscle and hormone levels in rats

    International Nuclear Information System (INIS)

    Yang Ping; Liu Cong; Meng Fanbo; Zhu Jinming; Ni Jinsong; Zhou Hong; Tang Yubo

    2005-01-01

    Objective: To study the effects of growth hormone (GH) on morphology of cardiac muscle and skeletal muscle and hormone levels in Wistar rats. Methods: The GH was given with subcutaneous injection for 15 days, the level of serum GH was determined by radiation-immune method; the body weight and the ratio of organ weight to body weight were determined; the cell appearances of cardiac muscle and skeletal muscle were observed under microscope. the control group was set up. Results; The level of serum GH and rat body weight in experimental group were obviously higher than that in the control group, but the ratio of organ weight to body weight was not obviously different in two groups; musculature hypertrophy and cell nucleolus increasing were observed under microscopy, there were no capillary vessel hyperplasia and inflammatory soakage. Conclusion: GH can induce hypertrophy of cardiac muscle cells and skeletal muscle cells but not interstitial proliferation. (authors)

  2. Role of (Pro)Renin Receptor in Albumin Overload-Induced Nephropathy in Rats.

    Science.gov (United States)

    Fang, Hui; Deng, Mokan; Zhang, Linlin; Lu, Aihua; Su, Jiahui; Xu, Chuanming; Zhou, Li; Wang, Lei; Ou, Jing-Song; Wang, Weidong; Yang, Tianxin

    2018-05-30

    Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 weeks with vehicle, bovine serum albumin (5 g/kg/d via a single i.p. injection) alone or in conjunction with a PRR decoy inhibitor PRO20 (500 μg/kg/d via 3 s.c. injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, inflammation, accompanied by elevated urinary N-acetyl-beta-D-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen (AGT), and Ang II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.

  3. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  4. The characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Isobe, Naoki; Toyama, Takuji; Hoshizaki, Hiroshi

    1999-01-01

    We evaluated the characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy (LVH). Myocardial imaging with 123 I-beta-methyl iodophenyl pentadecanoic acid (BMIPP) was performed in 28 patients with hypertrophic cardiomyopathy (HCM), 15 patients with hypertensive heart disease (HHD), 13 patients with aortic stenosis (AS) and 8 normal controls (NC). The patients with HCM consisted of 13 patients of asymmetric septal hypertrophy (ASH), 7 patients of diffuse hypertrophy (Diffuse-HCM) and 8 patients of apical hypertrophy (APH). Planar and SPECT images of BMIPP were acquired 15 minutes and 4 hours after tracer injection. Resting 201 Tl SPECT images and echocardiography were also performed on other days. We calculated heart/mediastinum count ratio and washout rate of BMIPP by using planar image. In patients with LVH, the incidence of reduced BMIPP uptake was more frequent than that of reduced 201 Tl uptake. In delayed images, more than 60% of patients with LVH reduced BMIPP uptake, especially remarkable for patients with ASH and APH. The washout rate of all cardiac hypertrophic disorders was tended to be higher than that of normal subjects. Reduced BMIPP uptake was frequently found in septal portion of anterior and inferior wall in patients with ASH, in inferior wall in patients with Diffuse-HCM and HHD, in apex in patients with APH and AS. These results suggest that BMIPP scintigraphy can differentiate three types of cardiac hypertrophy. (author)

  5. The Influence of Domestic Overload on the Association between Job Strain and Ambulatory Blood Pressure among Female Nursing Workers

    Directory of Open Access Journals (Sweden)

    Luciana Fernandes Portela

    2013-11-01

    Full Text Available Evidence suggests that the workplace plays an important etiologic role in blood pressure (BP alterations. Associations in female samples are controversial, and the domestic environment is hypothesized to be an important factor in this relationship. This study assessed the association between job strain and BP within a sample of female nursing workers, considering the potential role of domestic overload. A cross-sectional study was conducted in a group of 175 daytime workers who wore an ambulatory BP monitor for 24 h during a working day. Mean systolic and diastolic BP were calculated. Job strain was evaluated using the Demand-Control Model. Domestic overload was based on the level of responsibility in relation to four household tasks and on the number of beneficiaries. After adjustments no significant association between high job strain and BP was detected. Stratified analyses revealed that women exposed to both domestic overload and high job strain had higher systolic BP at home. These results indicate a possible interaction between domestic overload and job strain on BP levels and revealed the importance of domestic work, which is rarely considered in studies of female workers.

  6. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  7. PPARalpha siRNA-treated expression profiles uncover the causal sufficiency network for compound-induced liver hypertrophy.

    Directory of Open Access Journals (Sweden)

    Xudong Dai

    2007-03-01

    Full Text Available Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs against the gene for peroxisome proliferator-activated receptor alpha (Ppara, our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARalpha-induced liver hypertrophy is supported by their ability to predict non-PPARalpha-induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005. Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug-induced

  8. The endoplasmic reticulum stress-autophagy pathway is involved in apelin-13-induced cardiomyocyte hypertrophy in vitro

    Institute of Scientific and Technical Information of China (English)

    Feng XIE; Di WU; Shi-fang HUANG; Jian-gang CAO; He-ning LI; Lu HE; Mei-qing LIU; Lan-fang LI; Lin-xi CHEN

    2017-01-01

    Apelin is the endogenous ligand for the G protein-coupled receptor APJ,and plays important roles in the cardiovascular system.Our previous studies showed that apelin-13 promotes the hypertrophy of H9c2 rat cardiomyocytes through the PI3K-autophagy pathway.The aim of this study was to explore what roles ER stress and autophagy played in apelin-13-induced hypertrophy of cardiomyocytes in vitro.Treatment of H9c2 cells with apelin-13 (0.001-2 μJmol/L) dose-dependently increased the production of ROS and the expression levels of NADPH oxidase 4 (NOX4).Knockdown of Nox4 with siRNAs effectively prevented the reduction of GSH/GSSG ratio in apelin-13-treated cells.Furthermore,apelin-13 treatment dose-dependently increased the expression of Bip and CHOP,two ER stress markers,in the cells.Knockdown of APJ or Nox4 with the corresponding siRNAs,or application of NADPH inhibitor DPI blocked apelin-13-induced increases in Bip and CHOP expression.Moreover,apelin-13 treatment increased the formation of autophagosome and ER fragments and the LC3 puncta in the ER of the cells.Knockdown of APJ,Nox4,Bip or CHOP with the corresponding siRNAs,or application of DPI or salubrinal attenuated apelin-13-induced overexpression of LC3-Ⅱ/Ⅰ and beclin 1.Finally,knockdown of Nox4,Bip or CHOP with the corresponding siRNAs,or application of salubrinal significantly suppressed apelin-13-induced increases in the cell diameter,volume and protein contents.Our results demonstrate that ER stress-autophagy is involved in apelin-13-induced H9c2 cell hypertrophy.

  9. [Pressure sensors to prevent cardiac decompensation].

    Science.gov (United States)

    Klug, Didier

    2017-11-01

    Most cases of hospitalisation for heart failure are preceded by episodes of cardiac decompensation. Preventing these episodes would improve quality of life and reduce mortality and treatment costs. The monitoring of intracardiac pressures, using innovative sensors, coupled with telemedicine, offers interesting perspectives. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Alamandine acts via MrgD to induce AMPK/NO activation against Ang II hypertrophy in cardiomyocytes.

    Science.gov (United States)

    de Jesus, Itamar Couto Guedes; Scalzo, Sergio; Alves, Fabiana; Marques, Kariny; Rocha-Resende, Cibele; Bader, Michael; Santos, Robson A Souza; Guatimosim, Silvia

    2018-02-14

    The renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. New members of this system have been characterized and shown to have biologically relevant actions. Alamandine and its receptor MrgD are recently identified components of RAS. In the cardiovascular system alamandine actions included vasodilation, antihypertensive and anti-fibrosis effects. Currently, the actions of alamandine on cardiomyocytes are unknown. Here our goal was twofold: (1) to unravel the signaling molecules activated by the alamandine/MrgD axis in cardiomyocytes; (2) to evaluate the ability of this axis to prevent against Angiotensin II (Ang II)-induced hypertrophy. In cardiomyocytes from C57BL/6 mice, alamandine treatment induced an increase in nitric oxide (NO) production, which was blocked by D-Pro 7 -Ang-(1-7), a MrgD antagonist. This NO rise correlated with increased phosphorylation of AMPK. Alamandine induced NO production was preserved in Mas -/- myocytes, and lost in MrgD -/- cells. Binding of fluorescent-labeled alamandine was observed in wild-type cells, but it was dramatically reduced in MrgD -/- myocytes. We also assessed the consequences of prolonged alamandine exposure to cultured neonatal rat cardiomyocytes (NRCMs) treated with Ang II. Treatment of NRCMs with alamandine prevented Ang II-induced hypertrophy. Moreover, antihypertrophic actions of alamandine were mediated via MrgD and NO, since they could be prevented by D-Pro 7 -Ang-(1-7) or inhibitors of NO synthase or AMPK. β-alanine, a MrgD agonist, recapitulated alamandine's cardioprotective effects in cardiomyocytes. Our data show that alamandine via MrgD induces AMPK/NO signaling to counterregulate Ang II induced hypertrophy. These findings highlight the therapeutic potential of the alamandine/MrgD axis in the heart.

  11. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  12. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  13. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  14. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    compelled us to work at the level of hemizygosity. The histological characterisation of left ventricle shows cardiac hypertrophy together with decrease in body mass and alopecia, this compared to the wild type. The immunohistochemical staining of aorta root showed hyperplasia with increased expression and colocalisation of renin and CTGF demonstrating that CTGF may be involved in vascular tone control. Genetic engineering is a noble avenue to investigate the function of new or existing genes. Our data have shown that CTGF transgenic mouse has cardiac and aorta root hypertrophy and abnormal renin accumulation in aorta root as compared to the wild-type animals. The transgenic animals developed alopecia and lean body mass adding two new functions on pre-existing CTGF multiple functions.

  15. Exercise Physiology of Zebrafish: Swimming Effects on Skeletal and Cardiac Muscle Growth, on the Immune Systeme, and the Involvement of the Stress Axis

    NARCIS (Netherlands)

    Palstra, A.P.; Schaaf, M.; Planas, J.V.

    2013-01-01

    Recently, we have established zebrafish as a novel exercise model and demonstrated the stimulation of growth by exercise. Exercise may also induce cardiac hypertrophy and cardiomyocyte proliferation in zebrafish making it an important model to study vertebrate heart regeneration and improved

  16. Asymmetric septal hypertrophy of sporadic form with abnormal thallium perfusion and myocardial enzymes

    International Nuclear Information System (INIS)

    Nagata, Seiki; Minamikawa, Tetsuhiro; Park, Yung-Dae; Nishimura, Tsunehiko; Yutani, Chikao; Ohmori, Fumio; Sakakibara, Hiroshi; Nimura, Yasuharu

    1986-01-01

    Asymmetric septal hypertrophy with abnormal thallium scintigram and elevated cardiac enzymes were observed in five patients and were studied with special reference to the clinical significance of their clinicopathological features. They were not familial cardiomyopathy patients. Two of the five patients (Cases 1 and 2) exhibited the clinical features characteristic of hypertrophic cardiomyopathy without abnormal thallium perfusion and serum cardiac enzyme levels. A right endomyocardial biopsy for Case 1 disclosed myocardial fibrosis in addition to hypertrophy and disarray of myocardial fibers. The left ventricular cavities of two other patients (Cases 4 and 5) tended to be dilated with signs of impaired systolic function and asymmetric septal hypertrophy. A regional area of reduced thickness was observed in the medial portion of the left ventricular posterior wall of Case 4. The remaining case (Case 3) exhibited left ventricular dilatation and reduced left ventricular systolic function, disproportionate hypertrophy, and had clinical signs of congestive heart failure. Necropsy disclosed massive fibrosis and diffuse disarray of myocardial fibers. Some patients with familial hypertrophic cardiomyopathy progress to exhibit clinical features of dilated cardiomyopathy in the termimal stages, and have massive fibrosis of the myocardium histologically. Thallium scintigraphic abnormalities and elevated serum levels of cardiac enzymes, especially the LDH 1 isoenzyme, in patients with hypertrophic cardiomyopathy may be a meaningful indicator of such progression in its early stages. The five patients in the present study exhibited a variety of clinical and histological features which may comprise a spectrum of clinical conditions during the progression from hypertrophic cardiomyopathy to a condition like dilated cardiomyopathy, similar to that in familial patients. This progression and the factors promoting it should be studied further in the near future. (author)

  17. Beat-by-beat analysis of cardiac output and blood pressure responses to short-term barostimulation in different body positions

    Science.gov (United States)

    Hildebrandt, Wulf; Schütze, Harald; Stegemann, J.

    Rapid quantification of the human baro-reflex control of heart rate has been achieved on a beat-by-beat basis using a neck-chamber with quick ECG-triggered pressure changes. Referring to recent findings on heart rate and stroke volume, the present study uses this technique to compare cardiac output as well as blood pressure changes in supine and upright position to investigate feedback effects and to confirm postural reflex modifications not revealed by RR-interval changes. A suction profile starting at +40 mmHg and running 7 steps of pressure decrease down to -65 mmHg was examined in 0° and 90° tilting position while beat-by-beat recordings were done of heart rate, stroke volume (impedance-cardiography) and blood pressure (Finapres tm) (n=16). The percentual heart rate decrease failed to be significantly different between positions. A suction-induced stroke volume increase led to a cardiac output almost maintained when supine and significantly increased when upright. A decrease in all blood pressure values was found during suction, except for systolic values in upright position which increased. Conclusively, (a) it is confirmed that different inotropy accounts for the seen gravitational effect on the cardiac output not represented by heart rate; (b) identical suction levels in different positions lead to different stimuli at the carotid receptor. This interference has to be considered in microgravity studies by beat-by-beat measurement of cardiac output and blood pressure.

  18. Blunted angiogenesis and hypertrophy are associated with increased fatigue resistance and unchanged aerobic capacity in old overloaded mouse muscle.

    Science.gov (United States)

    Ballak, Sam B; Busé-Pot, Tinelies; Harding, Peter J; Yap, Moi H; Deldicque, Louise; de Haan, Arnold; Jaspers, Richard T; Degens, Hans

    2016-04-01

    We hypothesize that the attenuated hypertrophic response in old mouse muscle is (1) partly due to a reduced capillarization and angiogenesis, which is (2) accompanied by a reduced oxidative capacity and fatigue resistance in old control and overloaded muscles, that (3) can be rescued by the antioxidant resveratrol. To investigate this, the hypertrophic response, capillarization, oxidative capacity, and fatigue resistance of m. plantaris were compared in 9- and 25-month-old non-treated and 25-month-old resveratrol-treated mice. Overload increased the local capillary-to-fiber ratio less in old (15 %) than in adult (59 %) muscle (P muscles of old mice had a higher succinate dehydrogenase (SDH) activity (P < 0.05) and a slower fiber type profile (P < 0.05), the isometric fatigue resistance was similar in 9- and 25-month-old mice. In both age groups, the fatigue resistance was increased to the same extent after overload (P < 0.01), without a significant change in SDH activity, but an increased capillary density (P < 0.05). Attenuated angiogenesis during overload may contribute to the attenuated hypertrophic response in old age. Neither was rescued by resveratrol supplementation. Changes in fatigue resistance with overload and aging were dissociated from changes in SDH activity, but paralleled those in capillarization. This suggests that capillarization plays a more important role in fatigue resistance than oxidative capacity.

  19. Inhibition of MicroRNA-146a and Overexpression of Its Target Dihydrolipoyl Succinyltransferase Protect Against Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction

    NARCIS (Netherlands)

    Heggermont, Ward A.; Papageorgiou, Anna-Pia; Quaegebeur, Annelies; Deckx, Sophie; Carai, Paolo; Verhesen, Wouter; Eelen, Guy; Schoors, Sandra; van Leeuwen, Rick; Alekseev, Sergey; Elzenaar, Ies; Vinckier, Stefan; Pokreisz, Peter; Walravens, Ann-Sophie; Gijsbers, Rik; van den Haute, Chris; Nickel, Alexander; Schroen, Blanche; van Bilsen, Marc; Janssens, Stefan; Maack, Christoph; Pinto, Yigal; Carmeliet, Peter; Heymans, Stephane

    2017-01-01

    BACKGROUND: Cardiovascular diseases remain the predominant cause of death worldwide, with the prevalence of heart failure continuing to increase. Despite increased knowledge of the metabolic alterations that occur in heart failure, novel therapies to treat the observed metabolic disturbances are

  20. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    Science.gov (United States)

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key

  1. Amlodipine and Atorvastatin Improved Hypertensive Cardiac Remodeling through Regulation of MMPs/TIMPs in SHR Rats

    Directory of Open Access Journals (Sweden)

    Jingchao Lu

    2016-06-01

    Full Text Available Background: MMPs/TIMPs system is well known to play important roles in pressure overload-induced cardiac remodeling, and Amlodipine and Atorvastatin have been showed to exert favourable protective effects on cardiovascular disease, however, it is not clear whether Amlodipine and Atorvastatin can improve hypertensive cardiac remodeling and whether the MMPs/TIMPs system is involved. The present study aims to answer these questions. Methods: 36 weeks old male spontaneous hypertension (SHR rats were randomly divided into four groups: 1. SHR control group, 2. Amlodipine alone (10 mg/kg/d group, 3. Atorvastatin alone (10 mg/kg/d group, 4.Combination of Amlodipine and Atorvastatin (10 mg/kg/d for each group. Same gender, weight and age of Wistar-Kyoto (WKY rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The blood pressure and left ventricle mass index were measured. Enzyme activity of MMP-2 and MMP-9 was assessed with Gelatin zymography. MMP-2, MMP-9, TIMP-1 and TIMP-2 mRNA and protein expression was studied by RT-PCR and Western blot. Single factor ANOVA and LSD-t test were used in statistical analysis. Results: Treatment with Amlodipine alone or combination with atorvastatin significantly decreased blood pressure, left ventricle mass index in SHR rats (P Conclusion: Amlodipine and Atorvastatin could improve ventricular remodeling in SHR rats through intervention with the imbalance of MMP-2/TIMP-2 and MMP-9/TIMP-1 system.

  2. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Parise, Gianni; Bellamy, Leeann; Baker, Steven K; Smith, Kenneth; Atherton, Philip J; Phillips, Stuart M

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m²) underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (Pmuscle volume and acute rates of MPS measured over 1-3 h (r = 0.02), 3-6 h (r = 0.16) or the aggregate 1-6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1(Thr37/46) at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  3. Salt-water imbalance and fluid overload in hemodialysis patients: a pivotal role of corin.

    Science.gov (United States)

    Ricciardi, Carlo Alberto; Lacquaniti, Antonio; Cernaro, Valeria; Bruzzese, Annamaria; Visconti, Luca; Loddo, Saverio; Santoro, Domenico; Buemi, Michele

    2016-08-01

    Natriuretic peptides (NP) play a key role in regulation of salt and water balance. Corin, a serine protease which activates NP, plays a key role in regulation of blood pressure and cardiac function. The aim of the study was to evaluate the involvement of corin in renal physiopathology, analyze its levels in dialyzed patients and evaluate its relation with fluid overload and comorbidities such as heart failure and blood hypertension. We studied serum corin in uremic patients (n = 20) undergoing hemodialysis therapy (HD) and in healthy subjects (HS). Corin levels in uremic patients were higher than in HS (p role of corin in kidney diseases and to define its diagnostic and prognostic role.

  4. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  5. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  6. Body Size Predicts Cardiac and Vascular Resistance Effects on Men's and Women's Blood Pressure

    Directory of Open Access Journals (Sweden)

    Joyce M. Evans

    2017-08-01

    Full Text Available Key Points SummaryWe report how blood pressure, cardiac output and vascular resistance are related to height, weight, body surface area (BSA, and body mass index (BMI in healthy young adults at supine rest and standing.Much inter-subject variability in young adult's blood pressure, currently attributed to health status, may actually result from inter-individual body size differences.Each cardiovascular variable is linearly related to height, weight and/or BSA (more than to BMI.When supine, cardiac output is positively related, while vascular resistance is negatively related, to body size. Upon standing, the change in vascular resistance is positively related to size.The height/weight relationships of cardiac output and vascular resistance to body size are responsible for blood pressure relationships to body size.These basic components of blood pressure could help distinguish normal from abnormal blood pressures in young adults by providing a more effective scaling mechanism.Introduction: Effects of body size on inter-subject blood pressure (BP variability are not well established in adults. We hypothesized that relationships linking stroke volume (SV, cardiac output (CO, and total peripheral resistance (TPR with body size would account for a significant fraction of inter-subject BP variability.Methods: Thirty-four young, healthy adults (19 men, 15 women participated in 38 stand tests during which brachial artery BP, heart rate, SV, CO, TPR, and indexes of body size were measured/calculated.Results: Steady state diastolic arterial BP was not significantly correlated with any index of body size when subjects were supine. However, upon standing, the more the subject weighed, or the taller s/he was, the greater the increase in diastolic pressure. Systolic pressure strongly correlated with body weight and height both supine and standing. Diastolic and systolic BP were more strongly related to height, weight and body surface area than to body mass

  7. A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth

    International Nuclear Information System (INIS)

    Lee, S.Y.; Choo, H.; Liaw, P.K.; An, K.; Hubbard, C.R.

    2011-01-01

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest load is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between Δε eff and ΔK eff provides experimental support for the hypothesis that ΔK eff can be considered as the fatigue crack tip driving force.

  8. Inhibition of PKC-dependent extracellular Ca{sup 2+} entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F. [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF (Mexico)

    2014-08-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT{sub 2}R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT{sub 2}R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca{sup 2+}-free medium or the subsequent tonic constrictions induced by the addition of Ca{sup 2+} in the absence of agonists. Thus, the contractions induced by Ca{sup 2+} release from intracellular stores and Ca{sup 2+} influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca{sup 2+} channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca{sup 2+}. Neither levels of angiotensins nor of AT{sub 2}R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca{sup 2+} entry.

  9. Information overload and data overload in lexicography

    DEFF Research Database (Denmark)

    Gouws, Rufus H.; Tarp, Sven

    2017-01-01

    the often uncritical inclusion of too much data. This paper discusses the general term information overload and its lexicographical counterpart data overload. Different types of data overload are identified and the problems users have when retrieving the necessary information from dictionary articles...

  10. The thickened left ventricle: etiology, differential diagnosis and implications for cardiovascular radiology; Der dicke linke Ventrikel. Ursachen und Differenzialdiagnose der linksventrikulaeren Hypertrophie und Implikationen fuer die kardiovaskulaere Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, P.; Barkhausen, J.; Hunold, P. [Universitaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Radke, P.W. [Universitaetsklinikum Schleswig Holstein, Luebeck (Germany). Medizinische Klinik II

    2012-08-15

    Hypertrophy of the left ventricular myocardium is a common finding and can be reliably detected by echocardiography, CT and MRI. Common causes include diseases associated with increased cardiac afterload as well as primary and secondary cardiomyopathy. With the opportunity to determine functional parameters and myocardial mass precisely as well as to detect structural changes of the cardiac muscle simultaneously, cardiac MRI is the most precise imaging method for quantifying left ventricular hypertrophy as well as determining the cause and the exact characterization of the myocardial changes. It is mandatory, however, to create a flexible, individually adapted examination protocol. This review presents useful diagnostic algorithms in relation to different underlying pathologies in patients with left ventricular hypertrophy. (orig.)

  11. The Cardiac MR Images and Causes of Paradoxical Septal Motion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hun [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Choi, Sang Il; Chun, Eun Ju [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Choi, Sung Hun [Ulsan University Hospital, Ulsan (Korea, Republic of); Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2010-10-15

    Real-time cine MRI studies using the steady-state free precession (SSFP) technique are very useful for evaluating cardiac and septal motion. During diastole, the septum acts as a compliant membrane between the two ventricles, and its position and geometry respond to even small alterations in the trans-septal pressure gradients. Abnormal septal motion can be caused by an overload of the right ventricle, delayed ventricular filling and abnormal conduction. In this study, we illustrate, based on our experiences, the causes of abnormal septal motion such as corrective surgery for tetralogy of Fallot, an atrial septal defect, pulmonary thromboembolism, mitral stenosis, constrictive pericarditis and left bundle branch block. In addition, we discuss the significance of paradoxical septal motion in the context of cardiac MR imaging.

  12. The Cardiac MR Images and Causes of Paradoxical Septal Motion

    International Nuclear Information System (INIS)

    Kim, Dong Hun; Choi, Sang Il; Chun, Eun Ju; Choi, Sung Hun; Park, Jae Hyung

    2010-01-01

    Real-time cine MRI studies using the steady-state free precession (SSFP) technique are very useful for evaluating cardiac and septal motion. During diastole, the septum acts as a compliant membrane between the two ventricles, and its position and geometry respond to even small alterations in the trans-septal pressure gradients. Abnormal septal motion can be caused by an overload of the right ventricle, delayed ventricular filling and abnormal conduction. In this study, we illustrate, based on our experiences, the causes of abnormal septal motion such as corrective surgery for tetralogy of Fallot, an atrial septal defect, pulmonary thromboembolism, mitral stenosis, constrictive pericarditis and left bundle branch block. In addition, we discuss the significance of paradoxical septal motion in the context of cardiac MR imaging

  13. A Benign Cardiac Growth but Not So Indolent

    Science.gov (United States)

    Reddy, Sahadev T.; Biederman, Robert W. W.

    2016-01-01

    Cardiac lipomatous hypertrophy is a rare benign condition that usually involves the interatrial septum. Due to its benign nature it rarely requires intervention. Its presence outside the interatrial septum is reported infrequently. We present a case of lipomatous hypertrophy in the intraventricular septum that was complicated by a severe, symptomatic, and disabling dynamic left ventricular outflow tract obstruction. The symptoms significantly improved following the excision of the mass. In our case transthoracic echocardiogram was used to visualize the mass and measure the severity of the obstruction; Cardiac Magnetic Resonance Imaging was used to characterize the mass and histopathology confirmed the diagnosis. PMID:27293911

  14. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  15. Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis.

    Science.gov (United States)

    García, Raquel; Villar, Ana V; Cobo, Manuel; Llano, Miguel; Martín-Durán, Rafael; Hurlé, María A; Nistal, J Francisco

    2013-08-15

    Myocardial microRNA-133a (miR-133a) is directly related to reverse remodeling after pressure overload release in aortic stenosis patients. Herein, we assessed the significance of plasma miR-133a as an accessible biomarker with prognostic value in predicting the reversibility potential of LV hypertrophy after aortic valve replacement (AVR) in these patients. The expressions of miR-133a and its targets were measured in LV biopsies from 74 aortic stenosis patients. Circulating miR-133a was measured in peripheral and coronary sinus blood. LV mass reduction was determined echocardiographically. Myocardial and plasma levels of miR-133a correlated directly (r=0.46, Pregression analysis identified plasma miR-133a as a positive predictor of the hypertrophy reversibility after surgery. The discrimination of the model yielded an area under the receiver operator characteristic curve of 0.89 (Pregression analysis revealed plasma miR-133a and its myocardial target Wolf-Hirschhorn syndrome candidate 2/Negative elongation factor A as opposite predictors of the LV mass loss (g) after AVR. Preoperative plasma levels of miR-133a reflect their myocardial expression and predict the regression potential of LV hypertrophy after AVR. The value of this bedside information for the surgical timing, particularly in asymptomatic aortic stenosis patients, deserves confirmation in further clinical studies.

  16. Hibiscus sabdariffa (Roselle) Polyphenol-rich Extract Averts Cardiac Functional and Structural Abnormalities in Type 1 Diabetic Rats.

    Science.gov (United States)

    Mohammed Yusof, Nur Liyana; Zainalabidin, Satirah; Mohd Fauzi, Norsyahida; Budin, Siti Balkis

    2018-05-04

    Diabetes mellitus is often associated with cardiac functional and structural alteration, an initial event leading to cardiovascular complications. Hibiscus sabdariffa or roselle has been widely proven as an antioxidant and recently has incited research interest for its potential in treating cardiovascular disease. Therefore, this study aimed to determine the cardioprotective effects of H. sabdariffa (roselle) polyphenol-rich extract (HPE) in type-1 induced diabetic rats. Twenty-four male Sprague-Dawley rats were randomized into four groups (n=6/group): non-diabetic (NDM), diabetic alone (DM), diabetic supplemented with HPE (DM+HPE) and metformin (DM+MET). Type-1 diabetes was induced with streptozotocin (55 mg/kg/i.p). Rats were forced-fed HPE (100 mg/kg) and metformin (150 mg/kg) daily for eight weeks. Results showed that HPE supplementation improved hyperglycemia and dyslipidemia significantly (p<0.05) in DM+HPE compared to DM group. HPE supplementation attenuated cardiac oxidative damage in DM group, indicated by low malondialdehyde and advanced oxidation protein product. As for the antioxidant status, HPE significantly (p<0.05) increased glutathione level, as well as catalase and superoxide dismutase 1 and 2 activities. These findings correlate with cardiac function, whereby HPE supplementation improved left ventricle developed pressure, coronary flow, cardiac contractility and relaxation rate significantly (p<0.05). Histological analysis showed a marked decrease in cardiomyocyte hypertrophy and fibrosis in DM+HPE compared to DM group. Ultrastructural changes and impairment of mitochondria induced by diabetes were minimized by HPE supplementation. Collectively, these findings suggest that HPE is a potential cardioprotective agent in a diabetic setting through its hypoglycemic, anti-hyperlipidemia and antioxidant properties.

  17. Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism.

    Science.gov (United States)

    Safa-Tisseront, V; Ponchon, P; Laude, D; Elghozi, J L

    1998-07-10

    A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous system activity and thyroid hormones in the control of heart rate and blood pressure. We now report on thyrotoxicosis produced by daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt. in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvent. In order to estimate the degree of autonomic activation in hyperthyroidism, specific blockers were administered intravenously: atropine (0.5 mg/kg), prazosin (1 mg/kg), atenolol (1 mg/kg) or the combination of atenolol and atropine. A jet of air was administered in other animals to induce sympathoactivation. Eight animals were studied in each group. The dose and duration of L-thyroxine treatment was sufficient to induce a significant degree of hyperthyroidism with accompanying tachycardia, systolic blood pressure elevation, increased pulse pressure, cardiac hypertrophy, weight loss, tachypnea and hyperthermia. In addition, the intrinsic heart period observed after double blockade (atenolol + atropine) was markedly decreased after treatment with L-thyroxine (121.5+/-3.6 ms vs. 141.2+/-3.7 ms, P hyperthyroidism and in these rats the jet of air did not significantly affect the heart period level. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of blood pressure variability (analyses on 102.4 s segments, modulus 1.10+/-0.07 vs. 1.41+/-0.06 mm Hg, P hyperthyroidism. The marked rise in the intrinsic heart rate could be the main determinant of tachycardia. The blood pressure elevation may reflexly induce vagal activation and sympathetic (vascular and cardiac) inhibition.

  18. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    Science.gov (United States)

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  19. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  20. Cardiac tissue Doppler imaging in sports medicine.

    Science.gov (United States)

    Krieg, Anne; Scharhag, Jürgen; Kindermann, Wilfried; Urhausen, Axel

    2007-01-01

    The differentiation of training-induced cardiac adaptations from pathological conditions is a key issue in sports cardiology. As morphological features do not allow for a clear delineation of early stages of relevant pathologies, the echocardiographic evaluation of left ventricular function is the technique of first choice in this regard. Tissue Doppler imaging (TDI) is a relatively recent method for the assessment of cardiac function that provides direct, local measurements of myocardial velocities throughout the cardiac cycle. Although it has shown a superior sensitivity in the detection of ventricular dysfunction in clinical and experimental studies, its application in sports medicine is still rare. Besides technical factors, this may be due to a lack in consensus on the characteristics of ventricular function in relevant conditions. For more than two decades there has been an ongoing debate on the existence of a supernormal left ventricular function in athlete's heart. While results from traditional echocardiography are conflicting, TDI studies established an improved diastolic function in endurance-trained athletes with athlete's heart compared with controls.The influence of anabolic steroids on cardiac function also has been investigated by standard echocardiographic techniques with inconsistent results. The only TDI study dealing with this topic demonstrated a significantly impaired diastolic function in bodybuilders with long-term abuse of anabolic steroids compared with strength-trained athletes without abuse of anabolic steroids and controls, respectively.Hypertrophic cardiomyopathy is the most frequent cause of sudden death in young athletes. However, in its early stages, it is difficult to distinguish from athlete's heart. By means of TDI, ventricular dysfunction in hypertrophic cardiomyopathy can be disclosed even before the development of left ventricular hypertrophy. Also, a differentiation of left ventricular hypertrophy due to hypertrophic

  1. Cardiac impairment evaluated by transesophageal echocardiography and invasive measurements in rats undergoing sinoaortic denervation.

    Directory of Open Access Journals (Sweden)

    Raquel A Sirvente

    Full Text Available BACKGROUND: Sympathetic hyperactivity may be related to left ventricular (LV dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE using intracardiac echocardiographic catheter. METHODS AND RESULTS: We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD. The rats (n = 32 were divided into 4 groups: 16 Wistar (W with (n = 8 or without SAD (n = 8 and 16 spontaneously hypertensive rats (SHR with (n = 8 or without SAD (SHRSAD (n = 8. Blood pressure (BP and heart rate (HR did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD. CONCLUSIONS: Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease.

  2. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    International Nuclear Information System (INIS)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil

    1985-01-01

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  3. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-03-15

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  4. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  5. Structural alterations in rat myocardium induced by chronic l-arginine and l-NAME supplementation

    Directory of Open Access Journals (Sweden)

    Amal Abdussalam Ali A. Hmaid

    2018-03-01

    Full Text Available Structural changes affecting cardiomyocyte function may contribute to the pathophysiological remodeling underlying cardiac function impairment. Recent reports have shown that endogenous nitric oxide (NO plays an important role in this process. In order to examine the role of NO in cardiomyocyte remodeling, male rats were acclimated to room temperature (22 ± 1 °C or cold (4 ± 1 °C and treated with 2.25% l-arginine·HCl or 0.01% l-NAME (Nω-nitro-l-arginine methyl ester·HCl for 45 days. Untreated groups served as controls. Right heart ventricles were routinely prepared for light microscopic examination. Stereological estimations of volume densities of cardiomyocytes, surrounding blood vessels and connective tissue, as well as the morphometric measurements of cardiomyocyte diameters were performed. Tissue sections were also analyzed for structural alterations. We observed that both l-arginine and l-NAME supplementation induced cardiomyocyte hypertrophy, regardless of ambient temperature. However, cardiomyocyte hypertrophy was associated with fibrosis and extra collagen deposition only in the l-NAME treated group. Taken together, our results suggest that NO has a modulatory role in right heart ventricle remodeling by coordinating hypertrophy of cardiomyocytes and fibrous tissue preventing cardiac fibrosis. Keywords: Cardiomyocyte, Cardiac hypertrophy, l-Arginine, l-NAME, Myocardium

  6. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Science.gov (United States)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  7. Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion.

    Science.gov (United States)

    Maity, Sangeeta; Kar, Dipak; De, Kakali; Chander, Vivek; Bandyopadhyay, Arun

    2013-05-01

    This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.

  8. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  9. Cardiac effects of noncardiac neoplasms

    International Nuclear Information System (INIS)

    Schoen, F.J.; Berger, B.M.; Guerina, N.G.

    1984-01-01

    Clinically significant cardiovascular abnormalities may occur as secondary manifestations of noncardiac neoplasms. The principal cardiac effects of noncardiac tumors include the direct results of metastases to the heart or lungs, the indirect effects of circulating tumor products (causing nonbacterial thrombotic endocarditis, myeloma-associated amyloidosis, pheochromocytoma-associated cardiac hypertrophy and myofibrillar degeneration, and carcinoid heart disease), and the undesired cardiotoxicities of chemotherapy and radiotherapy. 89 references

  10. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy.

    Science.gov (United States)

    Zeng, Fanxing; Zhao, Hua; Liao, Jingwen

    2017-12-01

    This study was designed to investigate the effects of exogenous androgen and resistance exercise on skeletal muscle hypertrophy and the role of the mammalian target of rapamycin (mTOR) signalling during the process. A total of 24 male Sprague-Dawley rats were randomly assigned to sham operation and dihydrotestosterone (DHT) implantation groups with subgroups subjected to sedentary conditions or resistance exercise (SHAM+SED, SHAM+EX, DHT+SED, and DHT+EX). The experimental procedure lasted for 10 days. The mRNA expression of androgen receptor (AR) and insulin-like growth factor I (IGF-I), the expression of myosin heavy chain (MHC), as well as the phosphorylation statuses of AR, mTOR, p70 ribosomal S6 kinase (p70 S6K ), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) were determined in the white gastrocnemius muscle. The cross sectional area and wet mass of the muscle were also measured. The cross sectional area and MHC expression were significantly higher in SHAM+EX, DHT+SED, and DHT+EX than in SHAM+SED. There was no significant difference among groups in muscle mass. The mRNA expression of AR and IGF-I and the phosphorylation of mTOR, p70 S6K , and 4EBP1 were significantly increased in DHT+SED and SHAM+EX and were significantly enhanced in DHT+EX compared with either DHT or exercise alone. These data show that DHT causes hypertrophy in skeletal muscle and that exercise has a synergistic effect on DHT-induced hypertrophy. Exercise enhances androgen-induced rapid anabolic action, which involves activation of the mTOR pathway.

  11. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  12. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload.

    Science.gov (United States)

    Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A

    2014-09-01

    Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (pyoung muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.

    Science.gov (United States)

    Enok, Sanne; Leite, Gabriella S P C; Leite, Cléo A C; Gesser, Hans; Hedrick, Michael S; Wang, Tobias

    2016-10-01

    To accommodate the pronounced metabolic response to digestion, pythons increase heart rate and elevate stroke volume, where the latter has been ascribed to a massive and fast cardiac hypertrophy. However, numerous recent studies show that heart mass rarely increases, even upon ingestion of large meals, and we therefore explored the possibility that a rise in mean circulatory filling pressure (MCFP) serves to elevate venous pressure and cardiac filling during digestion. To this end, we measured blood flows and pressures in anaesthetized Python regius The anaesthetized snakes exhibited the archetypal tachycardia as well as a rise in both venous pressure and MCFP that fully account for the approximate doubling of stroke volume. There was no rise in blood volume and the elevated MCFP must therefore stem from increased vascular tone, possibly by means of increased sympathetic tone on the veins. Furthermore, although both venous pressure and MCFP increased during volume loading, there was no evidence that postprandial hearts were endowed with an additional capacity to elevate stroke volume. In vitro measurements of force development of paced ventricular strips also failed to reveal signs of increased contractility, but the postprandial hearts had higher activities of cytochrome oxidase and pyruvate kinase, which probably serves to sustain the rise in cardiac work during digestion. © 2016. Published by The Company of Biologists Ltd.

  14. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death.

    Science.gov (United States)

    Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R

    2016-04-01

    Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.

  15. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  16. Frequent left ventricular hypertrophy independent of blood pressure in 1851 pre-western Inuit

    DEFF Research Database (Denmark)

    Andersen, Stig; Kjærgaard, Marie; Jørgensen, Marit Eika

    2011-01-01

    . METHODS: We evaluated the association between blood pressures and ECG signs of LVH, cardiac auscultation, and symptoms related to heart disease in the recently recovered data from the survey of 1851 Inuit conducted in 1962-1964 in East Greenland. RESULTS: The participation rate was 97%. Among the 812...

  17. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  18. A Benign Cardiac Growth but Not So Indolent

    Directory of Open Access Journals (Sweden)

    Adil S. Wani

    2016-01-01

    Full Text Available Cardiac lipomatous hypertrophy is a rare benign condition that usually involves the interatrial septum. Due to its benign nature it rarely requires intervention. Its presence outside the interatrial septum is reported infrequently. We present a case of lipomatous hypertrophy in the intraventricular septum that was complicated by a severe, symptomatic, and disabling dynamic left ventricular outflow tract obstruction. The symptoms significantly improved following the excision of the mass. In our case transthoracic echocardiogram was used to visualize the mass and measure the severity of the obstruction; Cardiac Magnetic Resonance Imaging was used to characterize the mass and histopathology confirmed the diagnosis.

  19. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    Science.gov (United States)

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  20. Ugly duckling or Nosferatu? Cardiac injury in endurance sport - screening recommendations.

    Science.gov (United States)

    Leischik, R; Dworrak, B

    2014-01-01

    In the beginning sporting activity may be exhausting, but over time, physical activity turns out to have beneficial effects to the body and even extended cycling or running is an emotional and healthy enrichment in life. On the other hand, spectacular sudden deaths during marathon, football and, just recently, in the trend discipline triathlon seem to support the dark side of the sporting activity. Since years there are constantly appearing reports about a potential myocardial injury induced by intensive sporting activities. Cardiac hypertrophy is the heart's response to arterial hypertension and to physical activity, but can be associated with an unfavorable outcome - in worst case for example with sudden death. The question of the right dose of sporting activity, the question how to prevent cardiac death induced by physical activity and the question how to screen the athletes for the possible risk of sudden death or other cardiac complications during sporting activity are those that will be answered by this review article. In this review we summarize recent insights into the problem of endurance sport and possible negative cardiac remodeling as well as the question how to screen the athletes.